253 research outputs found

    A regionally resolved inventory of High Mountain Asia surge-type glaciers, derived from a multi-factor remote sensing approach

    Get PDF
    This study was supported by the Strategic Priority Research Programs of the Chinese Academy of Sciences (grant nos. XDA20100300 and XDA19070202) and the Swiss National Science Foundation (200021E_177652/1) within the framework of the DFG Research Unit GlobalCDA (FOR2630).Knowledge about the occurrence and characteristics of surge-type glaciers is crucial due to the impact of surging on glacier melt and glacier-related hazards. One of the super-clusters of surge-type glaciers is High Mountain Asia (HMA). However, no consistent region-wide inventory of surge-type glaciers in HMA exists. We present a regionally resolved inventory of surge-type glaciers based on their behaviour across High Mountain Asia between 2000 and 2018. We identify surge-type behaviour from surface velocity, elevation and feature change patterns using a multi-factor remote sensing approach that combines yearly ITS_LIVE velocity data, DEM differences and very-high-resolution imagery (Bing Maps, Google Earth). Out of the ≈95000 glaciers in HMA, we identified 666 that show diagnostic surge-type glacier behaviour between 2000 and 2018, which are mainly found in the Karakoram (223) and the Pamir regions (223). The total area covered by the 666 surge-type glaciers represents 19.5% of the glacierized area in Randolph Glacier Inventory (RGI) V6.0 polygons in HMA. Only 68 glaciers were already identified as "surge type" in the RGI V6.0. We further validate 107 glaciers previously labelled as "probably surge type" and newly identify 491 glaciers, not previously reported in other inventories covering HMA. We finally discuss the possibility of self-organized criticality in glacier surges. Across all regions of HMA, the surge-affected area within glacier complexes displays a significant power law dependency with glacier length.Publisher PDFPeer reviewe

    Ice loss in High Mountain Asia and the Gulf of Alaska observed by CryoSat-2 swath altimetry between 2010 and 2019

    Get PDF
    We report the first application of a novel approach to retrieve spatially-resolved elevation change from radar altimetry over entire mountain glaciers areas. We apply interferometric swath altimetry to CryoSat-2 data acquired between July 2010 and July 2019 over High Mountain Asia (HMA) and in the Gulf of Alaska (GoA). We bin swath elevation data into 100 x 100 km bins, remove the topography with a reference DEM and generate linear rates of elevation changes for each bin individually using a weighted regression model. We exclude solutions that that did not fulfil a set of quality criteria based on elevation change uncertainties, temporal completeness, interannual changes and stability of regression results. To extrapolate missing data, hypsometric averaging is applied. We find that during the study period, HMA and GoA have lost an average of –28.0 ± 3.0 Gt yr–1 (–0.29 ± 0.03 m w.e. yr–1) and –76.3 ± 5.7 Gt yr–1 (–0.89 ± 0.07 m w.e. yr–1) respectively. Glacier thinning is ubiquitous except for the Karakoram-Kunlun region experiencing stable or slightly positive mass balanc

    Spatially and temporally resolved ice loss in High Mountain Asia and the Gulf of Alaska observed by CryoSat-2 swath altimetry between 2010 and 2019

    Get PDF
    International audienceGlaciers are currently the largest contributor to sea level rise after ocean thermal expansion, contributing ∌ 30 % to the sea level budget. Global monitoring of these regions remains a challenging task since global estimates rely on a variety of observations and models to achieve the required spatial and temporal coverage, and significant differences remain between current estimates. Here we report the first application of a novel approach to retrieve spatially resolved elevation and mass change from radar altimetry over entire mountain glaciers areas. We apply interferometric swath altimetry to CryoSat-2 data acquired between 2010 and 2019 over High Mountain Asia (HMA) and in the Gulf of Alaska (GoA). In addition, we exploit CryoSat's monthly temporal repeat to reveal seasonal and multiannual variation in rates of glaciers' thinning at unprecedented spatial detail. We find that during this period, HMA and GoA have lost an average of −28.0 ± 3.0 Gt yr−1 (−0.29 ± 0.03 m w.e. yr−1) and −76.3 ± 5.7 Gt yr−1 (−0.89 ± 0.07 m w.e. yr−1), respectively, corresponding to a contribution to sea level rise of 0.078 ± 0.008 mm yr−1 (0.051 ± 0.006 mm yr−1 from exorheic basins) and 0.211 ± 0.016 mm yr−1. The cumulative loss during the 9-year period is equivalent to 4.2 % and 4.3 % of the ice volume, respectively, for HMA and GoA. Glacier thinning is ubiquitous except for in the Karakoram-Kunlun region, which experiences stable or slightly positive mass balance. In the GoA region, the intensity of thinning varies spatially and temporally, with acceleration of mass loss from −0.06 ± 0.33 to −1.1 ± 0.06 m yr−1 from 2013, which correlates with the strength of the Pacific Decadal Oscillation. In HMA ice loss is sustained until 2015-2016, with a slight decrease in mass loss from 2016, with some evidence of mass gain locally from 2016-2017 onwards

    One Decade of Glacier Mass Changes on the Tibetan Plateau Derived from Multisensoral Remote Sensing Data

    Get PDF
    The Tibetan Plateau (TP) with an average altitude of 4,500 meters above sea level is characterized by many glaciers and ice caps. Glaciers are a natural indicator for climate variability in this high mountain environment where meteorological stations are rare or non-existent. In addition, the melt water released from the Tibetan glaciers is feeding the headwaters of the major Asian river systems and contributes to the rising levels of endorheic lakes on the plateau. As many people directly rely on the glacier melt water a continuous glacier monitoring program is necessary in this region. In situ measurements of glaciers are important, but are spatial limited due to large logistical efforts, physical constrains and high costs. Remote sensing techniques can overcome this gap and are suitable to complement in situ measurements on a larger scale. In the last decade several remote sensing studies dealt with areal changes of glaciers on the TP. However, glacier area changes only provide a delayed signal to a changing climate and the amount of melt water released from the glaciers cannot be quantified. Therefore it is important to measure the glacier mass balance. In order to estimate glacier mass balances and their spatial differences on the TP, several remote sensing techniques and sensors were synthesized in this thesis. In a first study data from the Ice Cloud and Elevation Satellite (ICESat) mission were employed. ICESat was in orbit between 2003 and 2009 and carried a laser altimeter which recorded highly accurate surface elevation measurements. As in mid-latitudes these measurements are rather sparse glaciers on the TP were grouped into eight climatological homogeneous sub-regions in order to perform a statistical sound analysis of glacier elevation changes. To assess surface elevation changes of a single mountain glacier from ICESat data, an adequate spatial sampling of ICESat measurements need to be present. This is the case for the Grosser Aletschgletscher, located in the Swiss Alps which served as a test site in this thesis. In another study data from the current TanDEM-X satellite mission and from the Shuttle Radar Topography Mission (SRTM) conducted in February 2000 were employed to calculate glacier elevation changes. In a co-authored study, these estimates could be compared with glacier elevation changes obtained from the current French Pléiades satellite mission. In order to calculate glacier mass balances, the derived elevation changes were combined with assumptions about glacier area and ice density in all studies. In this thesis contrasting patterns of glacier mass changes were found on the TP. With an ICESat derived estimate of -15.6±10.1 Gt/a between 2003 and 2009 the average glacier mass balance on the TP was clearly negative. However, some glaciers in the central and north-western part of the TP showed a neutral mass balance or a slightly positive anomaly which was also confirmed by data from the current TanDEM-X satellite mission. A possible explanation of this anomaly in mass balance could be a compensation of the temperature driven glacier melt due to an increase in precipitation

    Sub-daily simulation of mountain flood processes based on the modified soil water assessment tool (SWAT) model

    Get PDF
    Floods not only provide a large amount of water resources, but they also cause serious disasters. Although there have been numerous hydrological studies on flood processes, most of these investigations were based on rainfall-type floods in plain areas. Few studies have examined high temporal resolution snowmelt floods in high-altitude mountainous areas. The Soil Water Assessment Tool (SWAT) model is a typical semi-distributed, hydrological model widely used in runoff and water quality simulations. The degree-day factor method used in SWAT utilizes only the average daily temperature as the criterion of snow melting and ignores the influence of accumulated temperature. Therefore, the influence of accumulated temperature on snowmelt was added by increasing the discriminating conditions of rain and snow, making that more suitable for the simulation of snowmelt processes in high-altitude mountainous areas. On the basis of the daily scale, the simulation of the flood process was modeled on an hourly scale. This research compared the results before and after the modification and revealed that the peak error decreased by 77% and the time error was reduced from +/- 11 h to +/- 1 h. This study provides an important reference for flood simulation and forecasting in mountainous areas

    A regionally resolved inventory of High Mountain Asia surge-type glaciers, derived from a multi-factor remote sensing approach

    Get PDF
    Knowledge about the occurrence and characteristics of surge-type glaciers is crucial due to the impact of surging on glacier melt and glacier-related hazards. One of the super-clusters of surge-type glaciers is High Mountain Asia (HMA). However, no consistent region-wide inventory of surge-type glaciers in HMA exists. We present a regionally resolved inventory of surge-type glaciers based on their behaviour across High Mountain Asia between 2000 and 2018. We identify surge-type behaviour from surface velocity, elevation and feature change patterns using a multi-factor remote sensing approach that combines yearly ITS_LIVE velocity data, DEM differences and very-high-resolution imagery (Bing Maps, Google Earth). Out of the ≈95 000 glaciers in HMA, we identified 666 that show diagnostic surge-type glacier behaviour between 2000 and 2018, which are mainly found in the Karakoram (223) and the Pamir regions (223). The total area covered by the 666 surge-type glaciers represents 19.5 % of the glacierized area in Randolph Glacier Inventory (RGI) V6.0 polygons in HMA. Only 68 glaciers were already identified as “surge type” in the RGI V6.0. We further validate 107 glaciers previously labelled as “probably surge type” and newly identify 491 glaciers, not previously reported in other inventories covering HMA. We finally discuss the possibility of self-organized criticality in glacier surges. Across all regions of HMA, the surge-affected area within glacier complexes displays a significant power law dependency with glacier length

    Remote Detection of Surge-Related Glacier Terminus Change across High Mountain Asia

    Get PDF
    High Mountain Asia (HMA) hosts the largest glacier concentration outside of polar regions. It is also distinct glaciologically as it forms one of two major surge clusters globally, and many glaciers there contradict the globally observed glacier recession trend. Surging glaciers are critical to our understanding of HMA glacier dynamics, threshold behaviour and flow instability, and hence have been the subject of extensive research, yet many dynamical uncertainties remain. Using the cloud-based geospatial data platform, Google Earth Engine (GEE) and GEE-developed tool, GEEDiT, to identify and quantify trends in the distribution and phenomenological characteristics of surging glaciers synoptically across HMA, we identified 137 glaciers as surging between 1987–2019. Of these, 55 were newly identified, 15 glaciers underwent repeat surges, and 18 were identified with enhanced glaciological hazard potential, most notably from Glacier Lake Outburst Floods (GLOFs). Terminus position time series analysis from 1987–2019 facilitated the development of a six-part phenomenological classification of glacier behaviour, as well as quantification of surge variables including active phase duration, terminus advance distance and rate, and surge periodicity. This research demonstrates the application of remote sensing techniques and the GEE platform to develop our understanding of surging glacier distribution and terminus phenomenology across large areas, as well as their ability to highlight potential geohazard locations, which can subsequently be used to focus monitoring efforts

    Impacts of climate change on Tibetan lakes: patterns and processes

    Get PDF
    High-altitude inland-drainage lakes on the Tibetan Plateau (TP), the earth’s third pole, are very sensitive to climate change. Tibetan lakes are important natural resources with important religious, historical, and cultural significance. However, the spatial patterns and processes controlling the impacts of climate and associated changes on Tibetan lakes are largely unknown. This study used long time series and multi-temporal Landsat imagery to map the patterns of Tibetan lakes and glaciers in 1977, 1990, 2000, and 2014, and further to assess the spatiotemporal changes of lakes and glaciers in 17 TP watersheds between 1977 and 2014. Spatially variable changes in lake and glacier area as well as climatic factors were analyzed. We identified four modes of lake change in response to climate and associated changes. Lake expansion was predominantly attributed to increased precipitation and glacier melting, whereas lake shrinkage was a main consequence of a drier climate or permafrost degradation. These findings shed new light on the impacts of recent environmental changes on Tibetan lakes. They suggest that protecting these high-altitude lakes in the face of further environmental change will require spatially variable policies and management measures
    • 

    corecore