205 research outputs found

    The detection of meningococcal disease through identification of antimicrobial peptides using an in silico model creation

    Get PDF
    Philosophiae Doctor - PhDNeisseria meningitidis (the meningococcus), the causative agent of meningococcal disease (MD) was identified in 1887 and despite effective antibiotics and partially effective vaccines, Neisseria meningitidis (N. meningitidis) is the leading cause worldwide of meningitis and rapidly fatal sepsis usually in otherwise healthy individuals. Over 500 000 meningococcal cases occur every year. These numbers have made bacterial meningitis a top ten infectious cause of death worldwide. MD primarily affects children under 5 years of age, although in epidemic outbreaks there is a shift in disease to older children, adolescents and adults. MD is also associated with marked morbidity including limb loss, hearing loss, cognitive dysfunction, visual impairment, educational difficulties, developmental delays, motor nerve deficits, seizure disorders and behavioural problems. Antimicrobial peptides (AMPs) are molecules that provide protection against environmental pathogens, acting against a large number of microorganisms, including bacteria, fungi, yeast and virus. AMPs production is a major component of innate immunity against infection. The chemical properties of AMPs allow them to insert into the anionic cell wall and phospholipid membranes of microorganisms or bind to the bacteria making it easily detectable for diagnostic purposes. AMPs can be exploited for the generation of novel antibiotics, as biomarkers in the diagnosis of inflammatory conditions, for the manipulation of the inflammatory process, wound healing, autoimmunity and in the combat of tumour cells. Due to the severity of meningitis, early detection and identification of the strain of N. meningitidis is vital. Rapid and accurate diagnosis is essential for optimal management of patients and a major problem for MD is its diagnostic difficulties and experts conclude that with an early intervention the patient’ prognosis will be much improved. It is becoming increasingly difficult to confirm the diagnosis of meningococcal infection by conventional methods. Although polymerase chain reaction (PCR) has the potential advantage of providing more rapid confirmation of the presence of the bacterium than culturing, it is still time consuming as well as costly. Introduction of AMPs to bind to N. meningitidis receptors could provide a less costly and time consuming solution to the current diagnostic problems. World Health Organization (WHO) meningococcal meningitis program activities encourage laboratory strengthening to ensure prompt and accurate diagnosis to rapidly confirm the presence of MD. This study aimed to identify a list of putative AMPs showing antibacterial activity to N. meningitidis to be used as ligands against receptors uniquely expressed by the bacterium and for the identified AMPs to be used in a Lateral Flow Device (LFD) for the rapid and accurate diagnosis of MD

    A species-wide inventory of NLR genes and alleles in Arabidopsis thaliana

    Get PDF
    Infectious disease is both a major force of selection in nature and a prime cause of yield loss in agriculture. In plants, disease resistance is often conferred by nucleotide-binding leucine-rich repeat (NLR) proteins, intracellular immune receptors that recognize pathogen proteins and their effects on the host. Consistent with extensive balancing and positive selection, NLRs are encoded by one of the most variable gene families in plants, but the true extent of intraspecific NLR diversity has been unclear. Here, we define a nearly complete species-wide pan-NLRome in Arabidopsis thaliana based on sequence enrichment and long-read sequencing. The pan-NLRome largely saturates with approximately 40 well-chosen wild strains, with half of the pan-NLRome being present in most accessions. We chart NLR architectural diversity, identify new architectures, and quantify selective forces that act on specific NLRs and NLR domains. Our study provides a blueprint for defining pan-NLRomes

    Context-specific methods for sequence homology searching and alignment

    Get PDF

    Machine learning solutions for predicting protein–protein interactions

    Get PDF
    Proteins are social molecules. Recent experimental evidence supports the notion that large protein aggregates, known as biomolecular condensates, affect structurally and functionally many biological processes. Condensate formation may be permanent and/or time dependent, suggesting that biological processes can occur locally, depending on the cell needs. The question then arises as to which extent we can monitor protein-aggregate formation, both experimentally and theoretically and then predict/simulate functional aggregate formation. Available data are relative to mesoscopic interacting networks at a proteome level, to protein-binding affinity data, and to interacting protein complexes, solved with atomic resolution. Powerful algorithms based on machine learning (ML) can extract information from data sets and infer properties of never-seen-before examples. ML tools address the problem of protein–protein interactions (PPIs) adopting different data sets, input features, and architectures. According to recent publications, deep learning is the most successful method. However, in ML-computational biology, convincing evidence of a success story comes out by performing general benchmarks on blind datasets. Results indicate that the state-of-the-art ML approaches, based on traditional and/or deep learning, can still be ameliorated, irrespectively of the power of the method and richness in input features. This being the case, it is quite evident that powerful methods still are not trained on the whole possible spectrum of PPIs and that more investigations are necessary to complete our knowledge of PPI-functional interaction

    From Structure Prediction to Genomic Screens for Novel Non-Coding RNAs

    Get PDF
    Non-coding RNAs (ncRNAs) are receiving more and more attention not only as an abundant class of genes, but also as regulatory structural elements (some located in mRNAs). A key feature of RNA function is its structure. Computational methods were developed early for folding and prediction of RNA structure with the aim of assisting in functional analysis. With the discovery of more and more ncRNAs, it has become clear that a large fraction of these are highly structured. Interestingly, a large part of the structure is comprised of regular Watson-Crick and GU wobble base pairs. This and the increased amount of available genomes have made it possible to employ structure-based methods for genomic screens. The field has moved from folding prediction of single sequences to computational screens for ncRNAs in genomic sequence using the RNA structure as the main characteristic feature. Whereas early methods focused on energy-directed folding of single sequences, comparative analysis based on structure preserving changes of base pairs has been efficient in improving accuracy, and today this constitutes a key component in genomic screens. Here, we cover the basic principles of RNA folding and touch upon some of the concepts in current methods that have been applied in genomic screens for de novo RNA structures in searches for novel ncRNA genes and regulatory RNA structure on mRNAs. We discuss the strengths and weaknesses of the different strategies and how they can complement each other

    Computational Approaches to Drug Profiling and Drug-Protein Interactions

    Get PDF
    Despite substantial increases in R&D spending within the pharmaceutical industry, denovo drug design has become a time-consuming endeavour. High attrition rates led to a long period of stagnation in drug approvals. Due to the extreme costs associated with introducing a drug to the market, locating and understanding the reasons for clinical failure is key to future productivity. As part of this PhD, three main contributions were made in this respect. First, the web platform, LigNFam enables users to interactively explore similarity relationships between ‘drug like’ molecules and the proteins they bind. Secondly, two deep-learning-based binding site comparison tools were developed, competing with the state-of-the-art over benchmark datasets. The models have the ability to predict offtarget interactions and potential candidates for target-based drug repurposing. Finally, the open-source ScaffoldGraph software was presented for the analysis of hierarchical scaffold relationships and has already been used in multiple projects, including integration into a virtual screening pipeline to increase the tractability of ultra-large screening experiments. Together, and with existing tools, the contributions made will aid in the understanding of drug-protein relationships, particularly in the fields of off-target prediction and drug repurposing, helping to design better drugs faster

    Virtual screening of potential bioactive substances using the support vector machine approach

    Get PDF
    Die vorliegende Dissertation stellt eine kumulative Arbeit dar, die in insgesamt acht wissenschaftlichen Publikationen (fünf publiziert, zwei eingerichtet und eine in Vorbereitung) dargelegt ist. In diesem Forschungsprojekt wurden Anwendungen von maschinellem Lernen für das virtuelle Screening von Moleküldatenbanken durchgeführt. Das Ziel war primär die Einführung und Überprüfung des Support-Vector-Machine (SVM) Ansatzes für das virtuelle Screening nach potentiellen Wirkstoffkandidaten. In der Einleitung der Arbeit ist die Rolle des virtuellen Screenings im Wirkstoffdesign beschrieben. Methoden des virtuellen Screenings können fast in jedem Bereich der gesamten pharmazeutischen Forschung angewendet werden. Maschinelles Lernen kann einen Einsatz finden von der Auswahl der ersten Moleküle, der Optimierung der Leitstrukturen bis hin zur Vorhersage von ADMET (Absorption, Distribution, Metabolism, Toxicity) Eigenschaften. In Abschnitt 4.2 werden möglichen Verfahren dargestellt, die zur Beschreibung von chemischen Strukturen eingesetzt werden können, um diese Strukturen in ein Format zu bringen (Deskriptoren), das man als Eingabe für maschinelle Lernverfahren wie Neuronale Netze oder SVM nutzen kann. Der Fokus ist dabei auf diejenigen Verfahren gerichtet, die in der vorliegenden Arbeit verwendet wurden. Die meisten Methoden berechnen Deskriptoren, die nur auf der zweidimensionalen (2D) Struktur basieren. Standard-Beispiele hierfür sind physikochemische Eigenschaften, Atom- und Bindungsanzahl etc. (Abschnitt 4.2.1). CATS Deskriptoren, ein topologisches Pharmakophorkonzept, sind ebenfalls 2D-basiert (Abschnitt 4.2.2). Ein anderer Typ von Deskriptoren beschreibt Eigenschaften, die aus einem dreidimensionalen (3D) Molekülmodell abgeleitet werden. Der Erfolg dieser Beschreibung hangt sehr stark davon ab, wie repräsentativ die 3D-Konformation ist, die für die Berechnung des Deskriptors angewendet wurde. Eine weitere Beschreibung, die wir in unserer Arbeit eingesetzt haben, waren Fingerprints. In unserem Fall waren die verwendeten Fingerprints ungeeignet zum Trainieren von Neuronale Netzen, da der Fingerprintvektor zu viele Dimensionen (~ 10 hoch 5) hatte. Im Gegensatz dazu hat das Training von SVM mit Fingerprints funktioniert. SVM hat den Vorteil im Vergleich zu anderen Methoden, dass sie in sehr hochdimensionalen Räumen gut klassifizieren kann. Dieser Zusammenhang zwischen SVM und Fingerprints war eine Neuheit, und wurde von uns erstmalig in die Chemieinformatik eingeführt. In Abschnitt 4.3 fokussiere ich mich auf die SVM-Methode. Für fast alle Klassifikationsaufgaben in dieser Arbeit wurde der SVM-Ansatz verwendet. Ein Schwerpunkt der Dissertation lag auf der SVM-Methode. Wegen Platzbeschränkungen wurde in den beigefügten Veröffentlichungen auf eine detaillierte Beschreibung der SVM verzichtet. Aus diesem Grund wird in Abschnitt 4.3 eine vollständige Einführung in SVM gegeben. Darin enthalten ist eine vollständige Diskussion der SVM Theorie: optimale Hyperfläche, Soft-Margin-Hyperfläche, quadratische Programmierung als Technik, um diese optimale Hyperfläche zu finden. Abschnitt 4.3 enthält auch eine Diskussion von Kernel-Funktionen, welche die genaue Form der optimalen Hyperfläche bestimmen. In Abschnitt 4.4 ist eine Einleitung in verschiede Methoden gegeben, die wir für die Auswahl von Deskriptoren genutzt haben. In diesem Abschnitt wird der Unterschied zwischen einer „Filter“- und der „Wrapper“-basierten Auswahl von Deskriptoren herausgearbeitet. In Veröffentlichung 3 (Abschnitt 7.3) haben wir die Vorteile und Nachteile von Filter- und Wrapper-basierten Methoden im virtuellen Screening vergleichend dargestellt. Abschnitt 7 besteht aus den Publikationen, die unsere Forschungsergebnisse enthalten. Unsere erste Publikation (Veröffentlichung 1) war ein Übersichtsartikel (Abschnitt 7.1). In diesem Artikel haben wir einen Gesamtüberblick der Anwendungen von SVM in der Bio- und Chemieinformatik gegeben. Wir diskutieren Anwendungen von SVM für die Gen-Chip-Analyse, die DNASequenzanalyse und die Vorhersage von Proteinstrukturen und Proteininteraktionen. Wir haben auch Beispiele beschrieben, wo SVM für die Vorhersage der Lokalisation von Proteinen in der Zelle genutzt wurden. Es wird dabei deutlich, dass SVM im Bereich des virtuellen Screenings noch nicht verbreitet war. Um den Einsatz von SVM als Hauptmethode unserer Forschung zu begründen, haben wir in unserer nächsten Publikation (Veröffentlichung 2) (Abschnitt 7.2) einen detaillierten Vergleich zwischen SVM und verschiedenen neuronalen Netzen, die sich als eine Standardmethode im virtuellen Screening etabliert haben, durchgeführt. Verglichen wurde die Trennung von wirstoffartigen und nicht-wirkstoffartigen Molekülen („Druglikeness“-Vorhersage). Die SVM konnte 82% aller Moleküle richtig klassifizieren. Die Klassifizierung war zudem robuster als mit dreilagigen feedforward-ANN bei der Verwendung verschiedener Anzahlen an Hidden-Neuronen. In diesem Projekt haben wir verschiedene Deskriptoren zur Beschreibung der Moleküle berechnet: Ghose-Crippen Fragmentdeskriptoren [86], physikochemische Eigenschaften [9] und topologische Pharmacophore (CATS) [10]. Die Entwicklung von weiteren Verfahren, die auf dem SVM-Konzept aufbauen, haben wir in den Publikationen in den Abschnitten 7.3 und 7.8 beschrieben. Veröffentlichung 3 stellt die Entwicklung einer neuen SVM-basierten Methode zur Auswahl von relevanten Deskriptoren für eine bestimmte Aktivität dar. Eingesetzt wurden die gleichen Deskriptoren wie in dem oben beschriebenen Projekt. Als charakteristische Molekülgruppen haben wir verschiedene Untermengen der COBRA Datenbank ausgewählt: 195 Thrombin Inhibitoren, 226 Kinase Inhibitoren und 227 Faktor Xa Inhibitoren. Es ist uns gelungen, die Anzahl der Deskriptoren von ursprünglich 407 auf ungefähr 50 zu verringern ohne signifikant an Klassifizierungsgenauigkeit zu verlieren. Unsere Methode haben wir mit einer Standardmethode für diese Anwendung verglichen, der Kolmogorov-Smirnov Statistik. Die SVM-basierte Methode erwies sich hierbei in jedem betrachteten Fall als besser als die Vergleichsmethoden hinsichtlich der Vorhersagegenauigkeit bei der gleichen Anzahl an Deskriptoren. Eine ausführliche Beschreibung ist in Abschnitt 4.4 gegeben. Dort sind auch verschiedene „Wrapper“ für die Deskriptoren-Auswahl beschrieben. Veröffentlichung 8 beschreibt die Anwendung von aktivem Lernen mit SVM. Die Idee des aktiven Lernens liegt in der Auswahl von Molekülen für das Lernverfahren aus dem Bereich an der Grenze der verschiedenen zu unterscheidenden Molekülklassen. Auf diese Weise kann die lokale Klassifikation verbessert werden. Die folgenden Gruppen von Moleküle wurden genutzt: ACE (Angiotensin converting enzyme), COX2 (Cyclooxygenase 2), CRF (Corticotropin releasing factor) Antagonisten, DPP (Dipeptidylpeptidase) IV, HIV (Human immunodeficiency virus) protease, Nuclear Receptors, NK (Neurokinin receptors), PPAR (peroxisome proliferator-activated receptor), Thrombin, GPCR und Matrix Metalloproteinasen. Aktives Lernen konnte die Leistungsfähigkeit des virtuellen Screenings verbessern, wie sich in dieser retrospektiven Studie zeigte. Es bleibt abzuwarten, ob sich das Verfahren durchsetzen wird, denn trotzt des Gewinns an Vorhersagegenauigkeit ist es aufgrund des mehrfachen SVMTrainings aufwändig. Die Publikationen aus den Abschnitten 7.5, 7.6 und 7.7 (Veröffentlichungen 5-7) zeigen praktische Anwendungen unserer SVM-Methoden im Wirkstoffdesign in Kombination mit anderen Verfahren, wie der Ähnlichkeitssuche und neuronalen Netzen zur Eigenschaftsvorhersage. In zwei Fällen haben wir mit dem Verfahren neuartige Liganden für COX-2 (cyclooxygenase 2) und dopamine D3/D2 Rezeptoren gefunden. Wir konnten somit klar zeigen, dass SVM-Methoden für das virtuelle Screening von Substanzdatensammlungen sinnvoll eingesetzt werden können. Es wurde im Rahmen der Arbeit auch ein schnelles Verfahren zur Erzeugung großer kombinatorischer Molekülbibliotheken entwickelt, welches auf der SMILES Notation aufbaut. Im frühen Stadium des Wirstoffdesigns ist es wichtig, eine möglichst „diverse“ Gruppe von Molekülen zu testen. Es gibt verschiedene etablierte Methoden, die eine solche Untermenge auswählen können. Wir haben eine neue Methode entwickelt, die genauer als die bekannte MaxMin-Methode sein sollte. Als erster Schritt wurde die „Probability Density Estimation“ (PDE) für die verfügbaren Moleküle berechnet. [78] Dafür haben wir jedes Molekül mit Deskriptoren beschrieben und die PDE im N-dimensionalen Deskriptorraum berechnet. Die Moleküle wurde mit dem Metropolis Algorithmus ausgewählt. [87] Die Idee liegt darin, wenige Moleküle aus den Bereichen mit hoher Dichte auszuwählen und mehr Moleküle aus den Bereichen mit niedriger Dichte. Die erhaltenen Ergebnisse wiesen jedoch auf zwei Nachteile hin. Erstens wurden Moleküle mit unrealistischen Deskriptorwerten ausgewählt und zweitens war unser Algorithmus zu langsam. Dieser Aspekt der Arbeit wurde daher nicht weiter verfolgt. In Veröffentlichung 6 (Abschnitt 7.6) haben wir in Zusammenarbeit mit der Molecular-Modeling Gruppe von Aventis-Pharma Deutschland (Frankfurt) einen SVM-basierten ADME Filter zur Früherkennung von CYP 2C9 Liganden entwickelt. Dieser nichtlineare SVM-Filter erreichte eine signifikant höhere Vorhersagegenauigkeit (q2 = 0.48) als ein auf den gleichen Daten entwickelten PLS-Modell (q2 = 0.34). Es wurden hierbei Dreipunkt-Pharmakophordeskriptoren eingesetzt, die auf einem dreidimensionalen Molekülmodell aufbauen. Eines der wichtigen Probleme im computerbasierten Wirkstoffdesign ist die Auswahl einer geeigneten Konformation für ein Molekül. Wir haben versucht, SVM auf dieses Problem anzuwenden. Der Trainingdatensatz wurde dazu mit jeweils mehreren Konformationen pro Molekül angereichert und ein SVM Modell gerechnet. Es wurden anschließend die Konformationen mit den am schlechtesten vorhergesagten IC50 Wert aussortiert. Die verbliebenen gemäß dem SVM-Modell bevorzugten Konformationen waren jedoch unrealistisch. Dieses Ergebnis zeigt Grenzen des SVM-Ansatzes auf. Wir glauben jedoch, dass weitere Forschung auf diesem Gebiet zu besseren Ergebnissen führen kann
    • …
    corecore