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SUMMARY

Infectious disease is both a major force of selection
in nature and a prime cause of yield loss in agricul-
ture. In plants, disease resistance is often conferred
by nucleotide-binding leucine-rich repeat (NLR) pro-
teins, intracellular immune receptors that recognize
pathogen proteins and their effects on the host.
Consistent with extensive balancing and positive se-
lection, NLRs are encoded by one of the most vari-
able gene families in plants, but the true extent of
intraspecific NLR diversity has been unclear. Here,
we define a nearly complete species-wide pan-
NLRome in Arabidopsis thaliana based on sequence
enrichment and long-read sequencing. The pan-
NLRome largely saturates with approximately 40
well-chosen wild strains, with half of the pan-
NLRome being present in most accessions. We chart
NLR architectural diversity, identify new architec-
tures, and quantify selective forces that act on spe-
cific NLRs and NLR domains. Our study provides a
blueprint for defining pan-NLRomes.

INTRODUCTION

Plant immunity relies critically on a repertoire of immunity recep-

tors whose diversity has been shaped by eons of plant-microbe

coevolution. Two classes of receptors can activate immune

signaling: cell-surface proteins that recognize microbe-associ-

ated molecular patterns (MAMPs) and intracellular proteins that

detect pathogen effectors (Dangl et al., 2013). A large portion

of the latter class comprises nucleotide-binding leucine-rich

repeat receptors (NLRs). These are encoded by highly polymor-

phic genes that represent the majority of genetically defined dis-

ease-resistance loci (Jones et al., 2016; Kourelis and van der

Hoorn, 2018; Monteiro and Nishimura, 2018), with hundreds of

NLR genes being found in the typical flowering plant genome
1260 Cell 178, 1260–1272, August 22, 2019 ª 2019 The Author(s). Pu
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(Shao et al., 2016). Most plant NLRs contain a central nucleo-

tide-binding domain shared by Apaf-1, resistance proteins,

and CED4 (NB-ARC, hereafter NB for simplicity), and either a

Toll/interleukin-1 receptor (TIR) or coiled-coil (CC) domain at

the N terminus (Jones et al., 2016; Monteiro and Nishimura,

2018). Proteins with similar arrangements of functional domains

are involved in host defenses of animals and fungi (Jones et al.,

2016; Uehling et al., 2017). Similar to animal NLRs, plant NLRs

appear to form inflammasome-like structures, or resistosomes,

that control cell death following pathogen recognition (Wang

et al., 2019a, 2019b).

Pathogen recognition by plant NLRs generally involves one of

at least three main mechanisms (Kourelis and van der Hoorn,

2018). NLRs can detect pathogen effectors indirectly by moni-

toring how they modify host targets, known as NLR guardees.

Alternatively, direct detection of pathogen effectors occurs

either through interaction of effectors with any of the three

canonical NLR domains or through interaction of effectors with

integrated domains (IDs) that resemble bona fide host targets

and act as target decoys.

Because of their importance in ecology and breeding, there

has been much interest in defining inventories of NLR genes at

different taxonomic levels. These efforts have revealed that the

number of NLR genes across species varies from fewer than a

hundred to over a thousand (Yue et al., 2012; Zhang et al.,

2016a), they have supported phylogenetic reconstruction of

key NLR lineages (Shao et al., 2016), and they have greatly

expanded the universe of ID-containing NLRs (Bailey et al.,

2018; Gao et al., 2018; Kroj et al., 2016; Maqbool et al., 2015;

Sarris et al., 2016; Shao et al., 2016), which are excellent candi-

dates for engineering new pathogen resistances (Helm et al.,

2019; Kim et al., 2016; Kourelis et al., 2016; Monteiro and Nishi-

mura, 2018).

While there has been substantial progress at higher taxonomic

levels, a thorough understanding of NLR diversity within species

has unfortunately been hindered by the extraordinarily polymor-

phic nature of the gene family, and its extensive pervasive pres-

ence-absence polymorphic variation even between closely

related individuals. Early intraspecific diversity studies revealed
blished by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Overview of NLR Complements in 64 Accessions
(A) Accession provenance. 1001 Genomes relicts, non-relicts, and MAGIC

founders.

(B) Total number (yellow) as well as number of clustered (rose) and paired

(purple) NLRs in each accession. Solid black lines, means; transparent hori-

zontal bands, Bayesian 95% highest density intervals (HDIs); circles, individual

data; full densities shown as bean plots.

(C) Number of NLRs in different structural classes in accessions. Orange,

TNLs; green, NLs; blue, CNLs; purple, RNLs (purple).

Related to Figure S1 and Table S1.
patterns of allelic and structural variation consistent with adap-

tive evolution and balancing selection for subsets of NLR genes

(Bakker et al., 2008), fitting a model of co-evolution of host and

pathogens. Some loci can have many different haplotypes, in

some instances even reflecting true allelic series (Allen et al.,

2004; Dodds et al., 2006; Rose et al., 2004). A further complica-

tion is that many NLR genes are arranged in clusters with exten-

sive copy-number variation (Chae et al., 2014; Cook et al., 2012;

Leister et al., 1998; Meyers et al., 1998; Noël et al., 1999).

Together with ubiquitous presence-absence polymorphisms,

this implies that reference genomes likely include only a fraction

of distinct NLR genes within a species, which in turn has made it

impossible to obtain a clear picture of NLR diversity based on re-

sequencing efforts. To remedy this gap in our knowledge of

NLR gene evolution, resistance gene enrichment sequencing

(RenSeq) has been developed, which is especially powerful

when combined with long read technology (Witek et al., 2016a).

Here, we present a substantial step toward defining the full

NLR repertoire, or pan-NLRome, and its variability in the refer-

ence species Arabidopsis thaliana, by analyzing a highly curated

diversity panel of 64 accessions. Despite the extreme diversity of

NLR complements when comparing only a few individuals,

discovery of the pan-NLRome of this species approached
saturation with about 40 well-chosen accessions. The se-

quences we obtained allow us to define the core NLR comple-

ment, chart integrated domain diversity, describe new domain

architectures, assess presence-absence polymorphisms in

non-core NLRs, and map uncharacterized NLRs onto the

A. thalianaCol-0 reference genome. Together, our work provides

a foundation for the identification and functional study of dis-

ease-resistance genes in agronomically important species with

more complex genomes.

RESULTS

The Samples
We selected 64 A. thaliana accessions for RenSeq analysis. Of

those, 46 were from the 1001 Genomes Project collection (1001

Genomes Consortium, 2016), with 26 representing non-relict ac-

cessions, several of which have informative disease-resistance

phenotypes, and 20 belonging to relict populations characterized

by an unusually high amount of genetic diversity. A further 18 of

the accessions are founders of multiparent advanced generation

inter-cross (MAGIC) lines (Kover et al., 2009) (Figure 1A;

Table S1). One MAGIC accession was sampled twice due to a

mislabeled seed stock (total number of datasets was thus 65).

NLR Discovery
RenSeq baits were designed to hybridize with 736 NLR-coding

genes from multiple Brassicaceae, including A. thaliana,

A. lyrata, Brassica rapa, Aethionema arabicum, and Eutrema

parvulum. RenSeq was combined with single-molecule real-

time (SMRT) sequencing to reconstruct 65 NLR complements,

resulting in 13,167 annotated NLR genes, with a range of 167

to 251 genes per accession (Figure 1B). We report the annotated

RenSeq sequences and identifiers also for the reference acces-

sion Col-0, but for downstream analyses, we used TAIR10 and

Araport 11 identifiers and sequences for Col-0 (Cheng et al.,

2017; Lamesch et al., 2012).

Adopting a definition of NLR clusters as genes within 200 kb of

each other in the genome (Holub, 2001), 47%–71% of NLR

genes in each accession were located in such clusters. A partic-

ularly interesting subset of NLR genes are those in head-to-head

orientation, termed paired NLRs (Narusaka et al., 2009; Saucet

et al., 2015). We found 10–34 such NLRs per accession. NLRs

were grouped into the four classes: TIR-NLR (TNL), CC-NLR

(CNL), CCR-NLR (RNL), and NB-and-LRR-only proteins (NL),

based on canonical NLR domains TIR, CC, RPW8-like coiled-

coil (CCR), NB, and leucine-rich repeats (LRRs). Most NLR genes

in each accession were TNLs, which also were the most variable

in overall gene number, followed by NLs, CNLs, and RNLs (Fig-

ures 1C and S1).

Diversity of NLR Domain Architectures
Of the 13,167 NLR genes, 663 encoded at least one non-canon-

ical NLR domain, or ID, representing 36 distinct Pfam domains

(Figures 2A–2C; Tables S2A and S3A). Individual accessions

had 5–17 IDs distributed across 4–16 NLR genes, including

several IDs not reported before in A. thaliana or other

Brassicaceae. Of the 36 IDs, 29 were already known from

other Brassicaceae including theA. thaliana reference accession
Cell 178, 1260–1272, August 22, 2019 1261



C

C
um

ul
at

iv
e 

nu
m

be
r

F

K
no

w
n 

B
ra

ss
ic

ac
ea

e 
ID

s

E

D
om

ai
n 

ar
ch

ite
ct

ur
es

B
fraction paired

In
te

gr
at

ed
 D

om
ai

ns
 (

ID
s)

307

D

Col-0   

pan-NLRome

Brassicaceae

(97)

(22)

(350)

S
ha

re
d 

In
te

gr
at

ed
 D

om
ai

ns
 (

ID
s)

0

50

100

150

200
203

19
872

A

Col-0

pan-NLRome

Brassicaceae

(36)

(10)

(230)

AAA_assoc
FBA_3

Alliinase_C
Mob1_phocein

IBR
Peptidase_M41

FMO-like
Ribosomal_S9

bZIP_1
Rib_5-P_isom_A

S10_plectin
PPR
AAA

PRR_2
LMWPc

Cytochrome_CBB3
Pkinase_Tyr

Retrotran_gag_2
MRP-L47

Calmodulin_bind
TOM20_plant

DUF761
B3

DUF640
TCP

zf-CCCH

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1

.86
-
-

.80
-

.93

.93
-

.94

.95

*
*
*

*

*

*
*

0 5 10 15

*

*

Motile_sperm
PAH
BRX
DUF641

Pkinase
LIM
DA1-like
PP2
WRKY

AIG1

-
.84

-
-

.98

.86

.28

.28
-

.91

38
44
43
45
45

76
86
87

105
172

0 100

0

6,580

9,870

11,515

13,160

ArchitecturesNLRs

Without ID

With ID

fraction paired

Architectures

T/N/DUF761
T/N/L/S10_plectin

R/N/LIM/DA1-like/PPR_2/PPR
R/C

Rib_5_P_isom_A/T/N/L
WRKY/T/N/PKinase

T/N/L
N/WRKY

N/C
L/T/N

C/N/L/AIG1/Pkinase_Tyr
T/N/L/WRKY

B3/T/N/L/zf-CCCH
N/T
L/N

C/N/L/Pkinase_Tyr
T/N/L/LMWPc

TCP/T/N/L/zf-CCCH
WRKY/T/N/L/Pkin
PAH/WRKY/T/N/L
N/L/LIM/DA1-like

T/N/L/TOM20_plant
N/L/WRKY/Cytochrome_CBB3

T/Retrotran_gag_2
T/N/L/MRP-L47

Calmodulin_bind/N

1
-
-
-
-
1

.50
1
-
-
1
-
1
-
-
1
0
1
1
1
1
-
1
-
-

.80

20

0 10 20 100
NLRs

N/BRX
TCP/B3/T/N/L/zf-CCCH

T/N/L/DUF761
N/L/C

L/T
C/N/L/Pkinase
DUF640/T/N/L

C/N/L/AIG1/Pkinase
T/DUF641/C

R/C/N
PAH/WRKY/T/N/L/Pkinase

T/L

-
.91

1
-
-

.86
-
1
-
-

.89

.02

C/N
C/N/L
C/N/L/X
NL
N/L/X
N/X
R/C
R/C/N
R/N/X
T/L
T/N
T/N/L
T/N/L/X
T/N/X
T/X

106

*
**

*
*

*

*
****
*
**

**

*
* *

*

AAA_assoc
PP2

Cytochrome_CBB3
Calmodulin_bind
Rib_5-P_isom_A

DUF640
Mob1_phoecin

Retrotran_gag_2
FBA_3

S10_plectin
PPR

FMO-like
Ribosomal_S9

BRX
AAA

PPR_2
DUF761

B3
TCP

zf-CCCH
Pkinase_Tyr

PAH
AIG1

LIM
Pkinase
DA1-like

WRKY

ab

ab

b

b

b

a

ab

ab
b

ab
b

ab

b
ab

ab

0 5 10 15

49

26
17

5

0

100

200

300

S
ha

re
d 

ar
ch

ite
ct

ur
es

Figure 2. Diversity of IDs and Domain Architectures
(A) UpSet intersection of IDs in the Col-0 reference accession, pan-NLRome, and 19 other Brassicaceae.

(B) ID distribution, with IDs not reported before from A. thaliana in blue and previously known IDs in green. Asterisks indicate IDs not reported before from other

Brassicaceae.

(C) Cumulative contribution to the pan-NLRome by different domain architectures, ranked from largest to smallest.

(D) UpSet intersection of architectures shared between Col-0 reference accession, pan-NLRome, and 19 other Brassicaceae. Darker colors indicate archi-

tectures with IDs.

(E) 38 new A. thaliana architectures not found in the Col-0 reference and represented bymore than one gene. Asterisks indicate architectures also not found in 19

other Brassicaceae.

(F) Newly described (blue) and previously known (green) architectures containing the 27 overlapping Brassicaceae IDs (see A). ‘‘a’’ and ‘‘b’’ indicate IDs as defined

in (Kroj et al., 2016) and (Sarris et al., 2016), respectively.

Related to Figure S2 and Table S2.
Col-0 (Figures 2A and 2B; Tables S2A–S2C and S3B). Nine had

been reported concordantly in two major genome-wide NLR-ID

surveys (Kroj et al., 2016; Sarris et al., 2016), namely WRKY,

phloem protein 2 (PP2), protein kinase, paired amphipathic helix

repeat (PAH), unknown domain DUF640, B3, protein tyrosine

kinase, PPR repeat family 2, and alliinase, of which five

occur in genetically linked paired NLRs (Figure 2B; Table S2A).
1262 Cell 178, 1260–1272, August 22, 2019
Rediscovery of these nine IDs is of particular relevance, since

they are enriched for domains similar to known effector targets

(Kroj et al., 2016; Mukhtar et al., 2011; Sarris et al., 2016;Weßling

et al., 2014). Note that singleton IDs, defined as those that were

found in only one NLR gene model in one accession, were not

considered further, to minimize the effects of potential annota-

tion artifacts on our analyses.
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Figure 3. Orthogroup Sizes, Saturation, and Distribution of Core,

Shell, and Cloud NLRs

(A) OG size distribution (without singleton OGs).

(B) Saturation of pan-NLRome discovery. Blue indicates fractions of pan-

NLRome that can be recovered from randomly drawn sets of accessions of

different sizes (with 1,0003 bootstrapping). Horizontal dashed line indicates

90% of pan-NLRome discovered. Green indicates average sizes of OG that

remain undiscovered with accession sets of different sizes. Vertical dashed

line indicates that 95% of the pan-NLRome can be recovered with 38

accessions (1,000 bootstraps).

(C) OG-type-specific distribution of NLR classes in cloud (brown), shell (green),

and the core pan-NLRome (blue). Percentages for each on top.

(D) OG-type-specific distribution of paired and unpaired NLRs and NLRs with

and without IDs in cloud (brown), shell (green), and core (blue). Percentages

on top.

(E–H) Comparison of OG size density distributions across different contrasting

NLR subsets. The blue and green numbers denote the total number of OGs in

the cloud, shell, and core for each of the four contrasting subsets shown. Gray

bands indicate the ranges in which the OG size density distributions would not

be significantly different from each other, determined with a bootstrap

approach.
A hallmark of NLRome diversity across species is the variation

in the relative fraction of different domain architectures (Li et al.,

2015; Sarris et al., 2016; Shao et al., 2016; Yue et al., 2012;

Zhang et al., 2016a). We identified 97 distinct architectures in

the A. thaliana pan-NLRome, of which only 22 were found in

the Col-0 reference genome and only 48 had been reported in

Col-0 or other Brassicaceae (Figures 2D and S2; Table S2D).

Fewer than a third of architectures, 27, corresponded to different

configurations of the canonical TIR, CC, CCR, NB, and LRR do-

mains, even though they accounted for the vastmajority, 95%, of

NLRs. The remaining 5% of NLRs had all at least 1 of 36 different

IDs, with most of the ID-containing architectures not seen before

in A. thaliana (Figures 2B, 2C, and S2C). Half of the new

A. thaliana architectures, 38 out of 75, were represented by

more than one gene (Figure S2C). Many of these, 17, comprised

paired NLRs with at least one ID (Figure 2E). All but 1 of the 175

NLR genes with new architectures contained an ID, and together

they made up 1.3% of the pan-NLRome (Figures 2D and 2E;

Tables S2D–S2F). Finally, 12 IDs were found in more than one

new architecture (Figure 2F; Tables S2E and S2F), reflecting

the recycling of a limited set of IDs into new domain arrange-

ments. Coincidentally, since it is likely that IDs are derived from

proteins repeatedly targeted by pathogen effectors, their identi-

fication provides leads for the identification of new pathogen

effector targets, even though only the TCP domain has been

found in a large interaction screen with diverse pathogen effec-

tors (Weßling et al., 2014).

The Pan-NLRome
To understand both the variation in NLR content and diversity of

NLR alleles, we clustered NLRs from different accessions into

orthogroups (OGs) based on sequence similarity. Only a little

more than 10% of all NLRs, 1,663, were singletons, with the

rest, 11,497, falling into 1 of 464 OGs. The OG size distribution

of these 464 non-singleton OGs is shown in Figure 3A. Of the

OGs, 95% could be discovered with 38 randomly chosen acces-

sions (Figure 3B). Additional sampling only recovered OGs with

three or fewer members, indicating that the pan-NLRome we

describe is largely saturated.

OGs were classified according to size, domain architecture,

and structural features. The core NLRome could be defined

with merely 106 OGs (23%), comprising 6,080 (53%) genes,

that were found in at least 52 accessions. A slightly higher num-

ber, 143 (31%) OGs, with 3,932 (34%) genes, were found in at

least 13 but fewer than 52 accessions, a class that we consid-

ered the shell NLRome. Finally, 46% of all OGs, 215, which

included 1,485 (13%) genes, were found in 12 or fewer acces-

sions, constituting the cloud NLRome (Figure 3A).

Themajority of OGs, 58%, were TNLs, in agreement with TNLs

being the prevalent NLR class in the Brassicaceae (Guo et al.,

2011; Meyers et al., 2003; Peele et al., 2014; Zhang et al.,

2016b), 22% were CNLs, 7% were RNLs, and 13% were NLs

(Figure 3C). Specific TNLs were missing from accessions on

average less often than CNLs, reflected in CNL OGs being

much more likely to be part of the cloud pan-NLRome (Figures

3C and 3E). 64 OGs included genetically paired NLRs, and 28

contained members with an ID, with almost all belonging to the

shell or core NLRome (Figures 3D, 3G, and 3H). In general,
Cell 178, 1260–1272, August 22, 2019 1263
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Figure 4. Genomic Location of NLR Genes in the Reference Assembly

The five A. thaliana chromosomes are shown as horizontal bars with centromeres in gray, and reference NLRs are shown as black line segments. Text labels are

shown only for functionally defined Col-0 NLRs. Anchored OGs found in at least 10 accessions are shown below each chromosome. Orange, paired OGs; blue,

other anchored OGs.

Related to Figure S3 and Table S3C.
NLR clusters and pairs as well as ID-containing NLRs were not

only widely distributed in the population, but both were also on

average more conserved than unpaired NLRs or those without

IDs (Figures 3D–3H).

We tested for each shell or core OGwhether the topology of its

phylogeny could be linked to available metadata, such as sub-

class membership or expression across accessions. With strin-

gent filtering criteria, we found 56 such associations for 68

OGs, with 16 OGs having multiple associations (Table S4I). The

most frequently associated metadata types were relic classifica-

tion (50; e.g., OG40.1), domain architecture (11; e.g., OG172.1),

NLR subclass (10; e.g., OG174.1), and the pattern of surrounding

transposable elements (10; e.g., OG160.1). An association with

resistance to Albugo candida (AcEx1) was found twice

(OG16.10 and OG284.1). None of the OGs showed a strong as-

sociation with expression pattern, population classification, or

geographic origin of accessions.

Previous studies, such as the one of Kuang and colleagues

(Kuang et al., 2004), found that some NLR loci feature signs of

frequent sequence exchange between paralogs (type I), whereas

others have a more obvious allelic pattern (type II). We could

identify clear allelic series for 86% of OGs, but 14% of OGs ap-

peared initially as overclustered (i.e., including non-allelic genes).

Such overclustering could reflect high sequence similarity

because of frequent exchange between paralogs or recent
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duplication events, or in other words, being consistent with

potential type I loci. Among these initially overclustered loci,

we found the RPP8/RCY1/HRT, RPP4/5, and RPP7/TuNI OGs.

These loci constitute all three known examples in A. thaliana,

where different paralogs confer resistance to different classes

of pathogens, or distinct effectors from the same pathogen, a

sign of neo-functionalization (Asai et al., 2019; van der Biezen

et al., 2002; Liu et al., 2015; Takahashi et al., 2002). This suggests

that type I-like loci are important for the evolution of new

pathogen-recognition specificities.

Genomic Placement of Non-reference OGs
296 OGs were missing from the Col-0 reference genome, with 6

belonging to the core, 205 to the cloud, and 85 to the shell pan-

NLRome. To anchor these OGs to the reference genome, we

looked for co-occurrence of such OGs on the same contig as

NLR or non-NLR OGs with a Col-0 reference allele (Table S3C).

With a threshold of 10 accessions, we derived 42 co-occurrence

subnetworks (Figure S3), which allowed us to anchor 24 of 132

non-reference OGs present in at least 10 accessions. Non-refer-

ence OGs were mostly linked to regions known from Col-0 to

contain NLRs (Table S3C), which was expected, since our baits

for enrichment were based on NLR sequences. However,

OG102 and OG211 were found in a region not known before to

contain NLRs (Figures 4 and S3). Newly anchored OGs included
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Figure 5. Diversity and Selection across the Pan-NLRome

RNL OGs are not shown because of the low number of OGs in this class.

(A) Nucleotide diversity (average pairwise nucleotide differences) by OG type

and NLR class.

(B) Haplotype diversity (average pairwise haplotype differences) by OG type

and NLR class. Large values indicate a high chance of finding two different

haplotypes when two randomly chosenmembers of a given OG are compared.

(C) Nucleotide diversity distribution in different domain types. The NL class

included a few OGs where a minority of members had an identifiable CC

domain; hence the CC class and the NL class overlapped.

(D) Tajima’s D, a measure of genetic selection, by OG type and NLR class.

Related to Figure S4.
one CNL and three TNL pairs, one of which was the ID-contain-

ing sensor-type OG205, which was found in head-to-head orien-

tation with the executor-type OG204 (Figure S3).

Pan-NLRome Diversity
In an orthogonal approach to classifying NLR genes according to

their architectures, we assessed sequence diversity as an indi-

cation of the evolutionary forces shaping the pan-NLRome.

Average nucleotide diversity reached 95% saturation already

with 32 randomly selected accessions. In contrast, haplotype di-

versity saturated only with 49 accessions, reflecting that new

haplotypes emerge not only by mutation but also by intragenic

recombination and gene conversion, for which we found evi-

dence in three-quarters (74%) of OGs (Table S4G). This is in

agreement with long-standing observations that intragenic

recombination can contribute to functional diversification of

NLR genes (McDowell et al., 1998) (Figures S4A and S4B).

Compared to non-clustered OGs, clustered OGs had signifi-

cantly higher nucleotide diversity (Figure S4), consistent with

relaxed selection after gene duplication in these clusters

(Ohno, 1970). Even though the different NLR classes had very

different profiles when it came to presence-absence polymor-

phisms (Figure 3B), average nucleotide diversity within OGs

was similar for CNLs, TNLs, and NLs (Figure 5A). It was lowest

in RNLs, consistent with their function as conserved helper
NLRs (Monteiro and Nishimura, 2018), but because this was

the smallest group, this difference was not statistically signifi-

cant. Haplotype diversity was also similar for different NLR clas-

ses, being highest in core OGs (Figure 5B). This is consistent with

OGs that were present in many accessions having haplotypes

with similar population frequencies and any random pair of ac-

cessions therefore often representing different haplotypes.

Nucleotide diversity decreased from cloud to core OGs (Fig-

ure 5A), consistent with within-haplotype nucleotide diversity

for common haplotypes being comparatively low. A few cloud

OGs and a couple of shell TNL OGs stood out because of their

ultra-low haplotype diversity, indicative of OGs that, when pre-

sent, constitute only a single haplotype, without any geographic

bias in the distribution of accessions with these OGs. Such hap-

lotypes could be maintained by a conserved but rarely encoun-

tered selective pressure.

When considering different NLR protein domains, the highest

diversity was found in LRRs across all major classes and

subclasses, consistent with LRRs being more likely than other

domains to be involved in ligand binding and to be under diver-

sifying selection (Goritschnig et al., 2016; Krasileva et al., 2010;

Shen et al., 2003) (Figure 5C). Combining population genetics

statistics for a principal-component analysis (PCA) revealed

that more than 60% of the variance could be explained by the

first two principal components (Figures S4C–S4H). However,

none of the known properties, such as OG size, OG prevalence,

selection type, NLR class, or the presence of IDs or a potential

partner, explained the first two principal components (Figures

S4D–S4H), suggesting a complex interplay of different factors

driving NLR evolution. Tajima’s D values, which can indicate

balancing and purifying selection (Tajima, 1989), were similarly

distributed across different NLR classes, with all classes con-

taining extremes in both directions (Figure 5D), although nega-

tive Tajima’s D values, indicative of an excess of rare alleles,

were most common in TNLs.

A selection analysis on individual branches identified 131 OGs

with at least one branch under episodic positive selection

(Table S4H). Most OGs belonged to the core (50) or shell (73)

NLRomes. A subset of 32 OGs included branches with members

that had different metadata associations. Most overlaps were

found for associations with patterns of surrounding transposable

elements (10; OG159.1) or NLR subclasses (9; OG106.1), fol-

lowed by expression patterns (7; OG115.1), population (7;

OG70.1) and relic classifications (5; OG77.1), or the geographic

origin (4; OG21.1). A single OG included a selected branch linked

to resistance to A. candida (AcEx1; OG173.1). Site-specific se-

lection analyses revealed 543 core and shell OGs that had likely

experienced constant (46%), pervasive (30%), or episodic (24%)

positive selection (Figures 6A, 6B, and S5). Invariable codons,

indicating constant purifying selection, could be found across

all types (e.g., core, shell), classes (e.g., TNLs, CNLs), and

pair-status (e.g., paired, unpaired) (Figures 6A–6D). Subclasses

showed an uneven pattern of positive selection (Figure 6E),

and sites under constant positive selection were more likely in

TIR, CCR, NB, and LRR than in CC and ID domains (Figure 6F).

Pervasive and episodic positive-selection patterns appeared

predominantly in NB and TIR domains (Figures 6G and 6H). A

few OGs stood out because of the large fraction of codons of
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(A–E) Fraction of different positive selection categories grouped by NLR class

(A), OG type (B), ID status (C), paired NLR status (D), or NLR subclass (E). An

OG was considered if at least one positive selected site of a given class was

detectable.

(F–H) Fractions of OGs inferred to be under constant (F), pervasive (G), or

episodic (H) selection or without positive selection detected, grouped by

annotated protein domains.

Related to Figure S5.
annotated protein domains under positive selection, including

RPP13, which is well known because of its allelic series that con-

fers race-specific downy mildew resistance (Bittner-Eddy et al.,

2000; Rose et al., 2004) (Figure S5). Sites under positive selec-

tion were also found in 11 IDs, including WRKY, TCP, B3, and

DA1-like domains (Figure 6C). Notably, invariant sites were de-

tected in the WRKY domains of all three OGs containing a

WRKY and in a surprisingly high proportion of sites in the BRX

domains of the RLM3-containing OG (Table S4A). We conclude

that positive selection is widespread in the core NLRome, being

most prevalent in canonical NLR domains.

Linking Diversity to Known Function
Because NLRs that had been experimentally implicated in

resistance to biotrophic pathogens showed enhanced diver-

sity, we sorted OGs by resistance to adapted biotrophs (Hya-

loperonospora arabidopsidis), non-adapted biotrophs (Bras-

sica-infecting races of A. candida) (Cevik et al., 2019) and

hemibiotrophs (mostly Pseudomonas spp.). OGs that provide

resistance against adapted biotrophs were significantly more

diverse than other categories (Figure 7A; ANOVA and Tukey’s

HSD p < 0.01), suggesting that host-adapted biotrophic path-

ogens are driving diversification of NLRs more than other
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pathogens. That RNL helper NLRs had low diversity is consis-

tent with their requirement to function with several sensor

NLRs (Bonardi et al., 2011; Castel et al., 2019; Wu

et al., 2017).

Among the OGs with the lowest Tajima’s D values, a prom-

inent example was RPM1, which confers resistance to a hemi-

biotrophic bacterial pathogens, and for which an ancient,

stably balanced presence-absence polymorphism across

A. thaliana is well established (Stahl et al., 1999). OGs that

provide resistance to adapted biotrophs tended to have

higher Tajima’s D values, indicating that they experience not

only diversifying but also balancing selection. Tajima’s D

values within sensor-executor pairs encoded in head-to-

head orientation were correlated, whereas other closely linked

NLR genes or random pairs were not (Figures 7B and S6;

Table S4B). As an example, two OGs with high Tajima’s D

values were the paired NLRs CSA1 (OG91) and CHS3

(OG130). CHS3 featured two very different groups of alleles

distinguished by the presence of LIM and DA1-like IDs (Xu

et al., 2015). This allelic pattern was perfectly mirrored by

the one for CSA1, the paired executor partner NLR of CHS3,

even though it lacks IDs—evidence for the importance of

within-pair specificity (Figure 7C).

DISCUSSION

We have defined a nearly complete species-wide repertoire of

the gene family that encodes NLR immune receptors in the

model plant A. thaliana. Our first important observation was

that the pan-NLRome inventory became >98% saturated with

any 40 of the 64 accessions analyzed. It was known before

that there was excessive variation at some NLR loci, such that

in the small number of accessions in which the relevant genomic

regionwas analyzed in detail, every accessionwas very different,

including significant presence-absence variation (Noël et al.,

1999; Rose et al., 2004). That our pan-NLRome saturated with

a relatively small set of accessions indicates that the number

of divergent loci is not unlimited. Our success in pan-NLRome

discovery almost certainly reflects also the choice of our acces-

sion panel based on extensive prior knowledge of diversity within

the species (1001 Genomes Consortium, 2016). Our study thus

not only provides guidance for future efforts in other species in

which genome-wide diversity has been characterized, but it is

also good news for the informed safeguarding of germplasm of

crop species and their wild relatives. Nevertheless, pan-

NLRome discovery efforts in crops will also depend on the

type of pathogen that is themost significant threat for a particular

crop, since we observed the highest sequence diversity in NLR

genes that provide resistance to evolutionarily adapted bio-

trophic pathogens.

Another important observation is that the diversity of IDs is

substantially greater than what one might have guessed based

on the Col-0 reference genome alone. IDs are thought to allow

hosts to rapidly accrue the ability to recognize pathogen effector

proteins. Most ID-containing NLRs that have been functionally

characterized are found in paired orientation. In these pairs,

the ID member functions as pathogen sensor, and the other

member as signaling executor (Cesari et al., 2014; Le Roux
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(A) Effect of pathogen lifestyle on nucleotide diversity for characterized resistance genes. Gray floating text indicates examples for each category.

(B) Correlation of Tajima’s D values in sensor-executor and other pairs.

(C) Maximum-likelihood phylogenetic trees of two OGs 91 and 130, which form a sensor-executor pair (Xu et al., 2015). Bootstrap support (100 iterations)

indicated at major nodes. OG130 includes a clade with LIM and DA1-like IDs and a clade without. Scale bar indicates substitutions per site. Genes from the same

accession are connected by lines, with solid lines indicating presence on the same assembly contig.

Related to Figure S6.
et al., 2015; Narusaka et al., 2009; Sarris et al., 2015; Saucet

et al., 2015; Xu et al., 2015; Zhang et al., 2017), with both mem-

bers contributing to repression and activation of NLR signaling

(Ma et al., 2018). Considered the primary interface for pathogen

effector interaction, we anticipated that sensor NLRs would

exhibit a stronger signal of selection than their executor partners.
In contrast to this expectation, the correlation between Tajima’s

D values of such paired NLRs supports a co-evolutionary sce-

nario whereby mutations in the sensor component lead to

compensatory changes in the executor, or vice versa. On the

codon level, however, many IDs did exhibit signals of positive se-

lection. The allelic data that we present, particularly in pairs
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where there is polymorphism or presence-absence in the ID,

present an opportunity for further experimental studies of NLR

pair-complex dynamics.

Half of the 22 most commonly found IDs did not occur in an

arrangement indicative of sensor-executor pairs. An open ques-

tion is whether these function with unlinked executor partners or

whether they can function as dual sensor-executor proteins.

Within the A. thaliana pan-NLRome, we identified three key

groups of IDs, derived from defense-related TCP, WRKY, and

CBP60 transcription factors, all of which are represented as

IDs in sensors of the class defined by the NLR RRS1. The TCP

domain is particularly interesting, as TCP transcription factors

are targeted by effectors from divergently evolved pathogens

(Mukhtar et al., 2011; Sugio et al., 2014; Weßling et al., 2014;

Yang et al., 2017). IDs in effector targets have the potential to

provide new avenues for engineering of NLR specificity, for

example through TCP swaps or inclusion of known effector-in-

teracting platforms from TCP14 (Yang et al., 2017), in analogy

with protease cleavage site swaps (Helm et al., 2019; Kim

et al., 2016).

In aggregate, our work not only provides a panoramic view

of NLR genes in a species, but it also provides the first step

for more detailed investigations of NLR diversity within popu-

lations at different scales. In particular, it enables rapid

assessment of NLR variants in local populations within the

geographic range covered by accessions used here. In addi-

tion, our pan-NLRome provides a baseline for the study of

geographic regions that have only recently been recognized

as harboring additional genetic diversity, such as Africa, Mac-

ronesia, and Central Asia (Durvasula et al., 2017; Fulgione and

Hancock, 2018; Fulgione et al., 2017; Zou et al., 2017). And

despite the apparent saturation of NLR diversity at the level

of OG diversity, we not only expect that the universe of very

rare NLR genes is likely substantial, but also that more subtle

variation, primarily at the allelic level, can be discovered with

the analysis of additional accessions. Similarly, natural

A. thaliana pathogen incidence and diversity will almost

certainly help to interpret the OG variation we report here (Dur-

vasula et al., 2017).

Finally, the pan-NLRome of the selfing diploid species

A. thaliana will serve as a basis for comparison with the pan-

NLRome of obligate out-crossers in the genus such as

A. lyrata, as well as autopolyploids such as many A. arenosa in-

dividuals, allopolyploids such as A. suecica, and domesticated

paleopolyploid Brassica species (Clauss and Koch, 2006;

Hollister et al., 2012; Novikova et al., 2016). For example, in

polyploids, NLR gene deletions might be more frequent

because of fitness tradeoffs (Grant et al., 1998). As another

example, out-crossers have generally greater diversity than

selfers (Wright et al., 2013), but it is unknown whether this

also applies to NLR genes, as increased diversity at these loci

might increase the risk of costly intra-immune system conflict

(Chae et al., 2016; Karasov et al., 2017). Understanding what

promotes and limits NLR diversity in different plants is an

important prerequisite both for learning howwild species adapt

to their biotic environment and for discovering how breeding

can make crops more resilient to old and emerging pathogens

(Durvasula et al., 2017).
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corrplot, magrittr, dplyr, plyr, fitdistrplus,

lattice, gridExtra, grid, FactoMineR,

cowplot, gridGraphics, ggplot2,

easyGgplot2, ggpubr, RColorBrewer,

reshape2, gsubfn, rworldmap, UpSetR,

PerformanceAnalytics, karyoploteR,

viridis and sm

(RStudio Team 2015;

R Development Core

Team 2008; Pfeifer et al., 2014;

Conway et al., 2017)

RRID:SCR_001905

3seq (Lam et al., 2018) http://mol.ax/software/3seq/

aBSREL (Smith et al., 2015) https://www.datamonkey.org/absrel

ExaBayes version 1.4.1 (Aberer et al., 2014) https://cme.h-its.org/exelixis/web/software/

exabayes/

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Other

A. thaliana Col-0 transcripts and proteins

from Araport database

(Cheng et al., 2017) https://www.araport.org/downloads/

Capsella rubella and Arabidopsis lyrata

gene models from Phytozome database

(Slotte et al., 2013; Hu et al., 2011) https://phytozome.jgi.doe.gov/

A. thaliana expression data

AtGenExpress (deprecated)

(Schmid et al., 2005;

Kemmerling et al., 2011)

https://www.arabidopsis.org/portals/expression/

microarray/ATGenExpress.jsp/
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact,

Detlef Weigel (weigel@weigelworld.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Accession selection
64 Arabidopsis thaliana accessions were used for this study, germplasm sources are listed in Table S1. Among the 1001 Genomes

Project accessions, a subset known as ‘relicts’ is distinguished by its high genetic diversity (1001 Genomes Consortium, 2016). To

maximize NLRome diversity, 20 relicts were included. To maximize phenotypic diversity, a set of 18 MAGIC founders were included

(Kover et al., 2009; Scarcelli et al., 2007). The remaining accessions were chosen to maximize high diversity at the whole genome

level, representing different genetic groups (1001 Genomes Consortium, 2016) (Table S1). The reference accession Col-0 was

included for quality control purposes.

Accession verification
Routine seed stock genotyping prevents sample contamination (Pisupati et al., 2017). At a late stage of this project, 46 accessions

were re-sequenced as part of a routine seed stock verification effort and the accessions were determined using SNPmatch (Pisupati

et al., 2017). Three mis-labeled accessions were found in our dataset (1001 Genomes Project IDs 7063, 9911 and 9658). Their acces-

sion names and IDs were corrected (Table S1). For the sake of contiguity, their project IDs were not changed. 7063 was identified as

7186, which means there is one accession occurring twice in our analyses. The total number of datasets (referred to as accessions in

the main text for simplicity) is thus 65.

METHOD DETAILS

SMRT RenSeq
Genomic DNA libraries were enriched for NLR sequences and sequenced using PacBio long read technology (Witek et al., 2016b).

Library preparations were performed collaboratively in three labs (UNC, MPI, and TSL) with minor handling differences. DNA was

extracted using either the DNeasy Plant Maxi kit (UNC) (QIAGEN, CA, USA), a custom highmolecular weight DNA extraction protocol

(MPI), or by grinding in Shorty buffer (20% 1M Tris HCl pH 9, 20% 2M LiCl, 5% 0.5M EDTA, 10% SDS, 45% dH2O), followed by

phenol chloroform extraction and precipitation with isopropanol (TSL). Extracted DNAwas fragmented to 2-5 kb using either Covaris

red miniTubes (Intensity = 1, DutyCycle = 20%, Cycles per Burst = 1000, Treatment time = 600 s, Temperature = 20�C, Water level =

15, Sample volume = 200 ml) (TSL), or Covaris g-tubes using manufacturer’s instructions for a targeted size of 6 kb (UNC, MPI)

(Covaris, MA, USA). DNA was purified using 0.4x AMPure XP beads (Beckman Coulter, IN, USA) according to manufacturer’s

instructions.

Libraries were constructed using ‘NEBNext Ultra DNA Library Prep Kit for Illumina’ (New England Biolabs Inc, MA, USA). Sixteen

accessions from TSL were prepared for multiplexed sequencing, by introducing custom barcoded adapters (dual 8 bp index) instead

of the standard ones (Table S5A). For PCR amplification, 5-10 ml adaptor-ligated DNA was used together with 25 ml 2x KAPA HiFi

HotStart ReadyMix, 1 ml Index and Universal PCR Primer, and 13-18 ml water (to a total volume of 50 ml) (Kapa Biosystems, MA,

USA). Initial denaturation (94�C for 4 min) was followed by at least 8 cycles (denaturation: 94�C for 30 s, annealing: 65�C for 30 s,

extension: 68�C for 4 min) and a final extension (68�C for 10 min).

For enrichment of NLR genes, 20,000 synthetic 120 nt biotinylated RNA probes (bait library), complementary to 736 known NLR

genes from the reference genomes of Arabidopsis thaliana (Swarbreck et al., 2008), Arabidopsis lyrata (Hu et al., 2011), Brassica

rapa (Wang et al., 2011), Aethionema arabicum (Haudry et al., 2013) and Eutrema parvulum (Yang et al., 2013) were designed

(MYbaits; MYcroarray, MI, USA) (Table S5B). Where known, additional A. thaliana alleles were included, along with non-repetitive
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intron regions to improve capture of genes with introns > 350 bp. 100-500 ng of library DNAwas hybridized with the baits using half of

the reaction volume suggested in MYbaits v3.0 protocol, with the following modifications: For each reaction, hybridization mix was

prepared using 10 ml Hyb#1, 4 ml Hyb#3, 0.4 ml Hyb#2 and 0.4 ml Hyb#4; librarymix with 2.5 ml SeqCAP (Roche), 0.3 ml Block#3 and 3 ml

gDNA library; capture mix with 2.5 ml bait library and 0.5 ml RNase block (MYcroarray, MI, USA). Following the manufacturer’s rec-

ommended cycling conditions, mixes were brought to a hybridization temperature of 65�C and 5 ml of the library mix and 5.5 ml of the

hybridization mix were combined with the capture mix. After 16 to 24 hours hybridization, the enriched libraries were recovered using

50 ml DynabeadsMyOne Streptavidin C1 beads (Life Technologies, CA, USA). Binding andwashing were carried out according to the

MYbaits 3.0 manual without the use of Hyb#4. Incubation of captured libraries with streptavidin beads was increased to 45min. 30 ml

molecular biology grade water was used to re-suspend the DNA. The captured libraries were PCR amplified for 18-30 cycles using

the KAPAHiFi DNAPolymerase and the protocol for cycling conditions given in the previous paragraph (Kapa Biosystems, MA, USA).

PacBio libraries at MPI were prepared using the ‘2 kb Template Preparation and Sequencing’ protocol (Pacific Biosciences, CA,

USA), and size selected for 2-5 kb using a BluePippin instrument (0.75% agarose dye-free/0.75%DF 2-6 kbMarker S1, Start = 2000,

End = 2000) (Sage Science,MA, USA). PacBio libraries at UNCwere prepared using themanufacturer’s recommended procedure for

‘5 kb Template Preparation and Sequencing’, and size selection for fragments over 3 kbwas done using a SAGE-ELF instrument with

0.75% gel cassettes (Sage Science, MA, USA), size-based separation mode, target value 3 kb and target well 10. All wells containing

fractions above 3 kb were pooled. PacBio libraries at TSL data were prepared by size selecting fragments > 3 kb from the captured

library using a SAGE-ELF instrument as described above.

Quality control of all libraries was performed with Qubit (Life Technologies, CA, USA) and Bioanalyzer (Agilent, CA, USA). The Pac-

Bio RS II sequencing platform and P6-C4 chemistry was used to sequence each accession or multiplexed pool on individual SMRT

cells (Pacific Biosciences, CA, USA). Sequencing of several accessions was repeated in order to obtain sufficient output (Table S1).

De novo assembly and NLR annotation
Assembly

Reads were assembled with Canu (version 1.3; -pacbio-corrected, trimReadsCoverage = 2, errorRate = 0.01, genomeSize = 2 m;

(Koren et al., 2017)). Expected genome size was adjusted to 2 Mb, which reflects the proportion of an A. thaliana genome expected

to be captured (�1.4 Mb NLR genes plus expected flanking regions). Read ends were trimmed using a minimum evidence of two

reads. Contigs were removed if they were fully contained in a larger contig with > 99.5% identity. For final assembly size and contig

length distribution, see https://github.com/weigelworld/pan-nlrome.

Annotation

Coding and non-coding elements were annotated. Evidence- and profile-based methods were integrated in the MAKER pipeline

(version 2.32; pred_flank = 150, keep_preds = 1, split_hit = 3200, ep_score_limit = 95, en_score_limit = 95; (Campbell et al.,

2014)). Genes were predicted with AUGUSTUS (version 3.1.0; defaults; (Stanke et al., 2006)) and SNAP (version 2006-07-28; de-

faults; (Korf, 2004)). AUGUSTUS used the default ‘Arabidopsis’ profile for gene prediction, and SNAP used a custom Hidden Markov

Model (hmm) based on NB-ARC and/or TIR containing genes. Gene predictions were improved using Col-0 proteins and transcripts

from the Araport11 website (Araport11_genes.20151202.pep.fasta, Araport11_genes.20151202.mRNA.fasta, (https://www.araport.

org/)). Protein and transcript evidence was considered only if its mapping quality was sufficiently high (see above for ep_score_limit

and en_score_limit). Repeat-masked regions were not used for gene prediction (RepeatMasker; version open-4.0.5; model_org =

Arabidopsis; (http://www.repeatmasker.org/RMDownload.html)). Capsella rubella and Arabidopsis lyrata reference annotations

were revised to create reliable sets of NLRs for these outgroups.

Reference annotations, evidence and gene predictions were integrated in MAKER. RNA-seq data guided gene prediction with

BRAKER1 (version 1.9; defaults; (Hoff et al., 2016)). Reads from silique, root, stem, leaf, and flower (PRJNA336053; PE; 100 bp;

5-10 Mb; (Wang et al., 2016)) were mapped to the reference genomes using HISAT2 (version 2.0.5;–no-mixed–no-discordant;

(Kim et al., 2015)). Gene prediction was guided by mapped reads, and these were also used to assemble transcripts (Cufflinks;

version 2.2.1; defaults; (Trapnell et al., 2010)). Gene predictions were compared to reference gene annotations using MAKER

(pred_gff, model_gff). Evidence mappings were used to choose the best annotation per locus. Reference genomes and annotations

were taken from Phytozome (https://phytozome.jgi.doe.gov/). Assembled transcripts acted as the primary evidence (est_gff),

re-annotated A. thaliana NLR transcripts and proteins were used as alternative evidence (altest, protein).

Protein domains were predicted for genemodels and for AUGUSTUS gene-prediction products using Pfam hmms and coiled coils

(InterProScan; version 5.20-59.0; -dp -iprlookup -appl Pfam,Coils; (Zdobnov and Apweiler, 2001)). RepeatMasker results were

visualized to flag complicated regions. Diverged repeats in outgroups were additionally masked and visualized (repeat_protein =

te_proteins.fasta provided by MAKER).

Web Apollo

Gene models and evidence tracks from Maker were integrated into WebApollo for manual inspection (version 2.0.4; http://

ann-nblrrome.tuebingen.mpg.de; (Lee et al., 2013)). Additional evidence tacks were added to evaluate the quality of the

gene models. A track for duplicated and diversified genes was added by aligning transcripts (track = est2genome-50) and proteins

(track = protein2genome-50) from the reference gene annotation (Araport11) to each NLRome (–percent 50, exonerate; version 2.2.0;

(Slater and Birney, 2005)). The same procedure was carried out on known pseudogene transcripts. Protein domain predictions were

added for both MAKER (track = InterProScan) and AUGUSTUS (track = InterProScan Augustus) gene models. A track with CCS read
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mappings (pbalign; version 3.0; defaults; (Tyagi et al., 2008)) was added to aid contig quality inspection. In case of A. lyrata and

C. rubella, RNA-seq alignment data were added for inspection of intron-exon boundaries.

Manual re-annotation

Genes containing NB-ARC or TIR domains were manually inspected (see reannotation SOPs at https://github.com/weigelworld/

pan-nlrome). Genemodels were evaluated using several biological evidence layers inWeb Apollo. Incorrectly fused genes were split,

while incorrectly split genes were merged. Col-0 protein and transcript mappings were used to detect wrongly fused gene models or

split gene models. Genes were split, if several proteins or transcripts mapped next to each other within one model. Genes were

merged, if protein or transcript mappings spanned several models. Both cases were often associated with multiple gene predictions

that were inconsistent with each other. Additional features that were used to identify fused genes were extremely long introns, or

pseudogene mappings.

Evidence from protein and transcript mappings, as well as RNA-seq readmappings was considered to select the best genemodel.

Gene structures were corrected, and intron, exon, and UTR boundaries were refined. Alternative splice forms were not used in this

study. Genes were flagged with ‘corbound’ if exon-intron structures were changed without direct protein or transcript evidence, and

‘cortrans’ was used, if translation start points were changed (see gff files at https://github.com/weigelworld/pan-nlrome). Exceptions

were individually evaluated. Non-canonical splice sites were confirmed using reference proteins and transcripts. Rare erroneous

reference annotations were corrected using TAIR10 annotations. Genes were flagged with ‘pseudogene’ if a pseudogene from

Araport11 was aligned to the same region. Incomplete genes and uncorrectable annotations were flagged. Genes at contig borders

were flagged as ‘truncated’ if confirmed by protein or transcript mappings. Rarely, genes were extensively changed to rescue

domain structures. These genes were flagged with ‘mod’. Erroneous gene models due to misassembled contigs were flagged

with ‘misassembly’ if base calls were contradicted reliably by CCS read mappings.

Mis-annotated genes

A small number of mis-annotated genes, as determined during manual curation, was removed from the final NLRome

(see Table S3H).

Classification and architectures
We defined as NLR genes those that contained at least an NB, a TIR, or a CCR (RPW8) domain. I.e., LRR or CCmotifs alone were not

considered sufficient for NLR identification. As a first subdivision (Table S3D), we defined TNLs (at least a TIR domain), CNLs (CC+NB

domain), RNLs (at least an RPW8 domain), and NLs (at least an NB domain). The second subdivision defined 25 different groups by

the different combinations of TIR, CC, NB, RPW8, LRR, and X (other Integrated Domains [ID]) independent of sequence and number

of domains.

As mentioned earlier (Web Apollo section), protein domains were predicted using Pfam HMMs. CC motifs were refined using a

majority vote from Coils (2.2.1; InterProScan-defaults; (Lupas et al., 1991)), Paircoil2 (defaults; (McDonnell et al., 2006)), and NLR-

parser (v.2; defaults; (Steuernagel et al., 2015)). Coils and Paircoil2 use databases of many known coiled-coils, whereas NLR-parser

uses two NLR-specific coiled-coil motifs (motif16 and motif17) (Steuernagel et al., 2015). CC signatures were considered if predic-

tions from at least two methods overlapped. CCs of functional NLRs previously annotated as CNLs were not always confirmed

(Table S2G).

An architecture was defined as the collapsed protein domain set, i.e., without making a distinction between genes in which a

domain was found once versus multiple times (Tables S2A and S2F). Canonical architectures contain only NB (Pfam accession

PF00931), TIR (PF01582), RPW8 (PF05659), LRR (PF00560, PF07725, PF13306, PF13855) domains, or CC motifs (Figure S2).

Non-canonical architectures contain at least one ID, as defined in (Baggs et al., 2017). To identify new and recurring domain arrange-

ments, we compared the reference Araport11 Col-0 NLRs with our A. thaliana pan-NLRome (without Col-0 RenSeq NLR genes) and

with the NLRome of 19 Brassicaceae species (Table S2C). Bash and R scripts used to generate Figure 2 are available in CodeOcean

(https://doi.org/10.24433/CO.5847249.v1).

OG visualization

Unrefined OGs and corresponding metadata were integrated into iTOL (Letunic and Bork, 2016) for visualization and re-inspection

(https://itol.embl.de/shared/pan_NLRome). IDs of refined OGs were added to highlight over-clustered OGs and outliers. The domain

architecture and the protein lengthwere plotted to compareOGmembers structurally. Transposable elements (TEs) in exons, introns,

and 2 kb up- or downstream of NLRs were integrated into iTOL as well. Sub-clustering might be related to accession-based meta-

data, thus we included for each protein if its accession belonged to the relict group, the geographic origin, and the admixture group.

Albugo candida screening

A suspension of 105 AcEx1 zoosporangia/mL in distilled water was sprayed on four 4-week old plants of each accession (AcEx1:

(Prince et al., 2017)). Phenotypes (green resistant: GR, green susceptible: GS, weak chlorotic susceptible: WCS) were recorded at

10 days post inoculation, with two replicate experiments. Several accessions exhibited delayed/poor germination and were not

tested (N/A). Results can be found in Table S1.

Identification of paired NLRs and sensor-executor pairs

Wegenerated a list of paired NLRgenes containing the nine Col-0 divergently transcribed TNLs sharing a genetic arrangement similar

to the RPS4/RRS1 pair (Narusaka et al., 2009). We added seven additional divergently transcribed pairs identified by manual inspec-

tion of 138 Col-0 genes that contained a TIR domain. We also used an in-house CNL list to mine the Col-0 genome for consecutive
e4 Cell 178, 1260–1272.e1–e8, August 22, 2019

https://github.com/weigelworld/pan-nlrome
https://github.com/weigelworld/pan-nlrome
https://github.com/weigelworld/pan-nlrome
https://doi.org/10.24433/CO.5847249.v1
https://itol.embl.de/shared/pan_NLRome


genes and included six paired CNL-CNL loci, of which only two are divergently transcribed. During manual curation, we further iden-

tified one divergently transcribed pair of TNLs with no Col-0 allele.

To further examine pair evolution, we narrowed the list of pairs to ones in head-to-head orientation in either the Col-0 reference

genome, or in the RenSeq assemblies, and to those that were phylogenetically placed in the clades with the RPS4 or SOC3 executor

TNLs or in the clades with the RRS1 or CHS1 sensor TN(L)s. The NB domain alignment-based phylogeny used for this decision is

shown in Figure S6. Of 16 such pairs in the pan-NLRome, two are missing from the Col-0 reference genome.

To test the possibility that genetic proximity could lead to co-evolution or conservation of population genetic characteristics, we

identified a set of control NLR pairs that are less than 4 kb apart in the Col-0 reference genome.We identified 15 such pairs; for a list of

all pairs specific to this context and pertaining to Figure 7B, see Table S4B.

Figure generation

Bash and R scripts used to generate Figure 2 and Figure 4 are available in CodeOcean (Monteiro, 2019) (https://doi.org/10.24433/

CO.5847249.v1). All quantitative data panels were generated using R (version 3.4.4; (R Development Core Team, 2008)) and RStudio

(RStudio Team, 2015), unless otherwise stated. For clarity, floating text was added to SVG files generated in R using Inkscape

(version 0.92.3; https://inkscape.org). Used packages included ggplot2, grid, gridExtra, reshape2, gsubfn, cowplot, rworldmap,

yarrr, UpSetR, PerformanceAnalytics, karyoploteR and viridis (see Key Resources Table and our Github repository). OG phylogenetic

trees were visualized using iTOL (Letunic and Bork, 2016). The phylogeny for Figure S6 was generated through the use of MEGA 6.06

including MUSCLE (Edgar, 2004) and WAG maximum-likelihood phylogenetics (Whelan and Goldman, 2001). Figures 7C and S6

were generated using FigTree (v1.4.3; https://github.com/rambaut/figtree). Input data and R scripts for all relevant figures can be

found at https://github.com/weigelworld/pan-nlrome. Adobe Illustrator CS6 v16.0.4 was used at the final stage to edit and compose

main and supplemental figures.

Quantification and statistical analysis
Read correction

We used PacBio raw reads that cover the same genomic DNA fragment multiple times (circular consensus sequencing). The raw

reads were self-corrected to consensus reads, which reduces the read error from 17% to 2% (CCS; version 2.0.0; default settings;

(Travers et al., 2010)). Where indexingwas employed, corrected sequenceswere de-multiplexed (see demultiplexing script at https://

github.com/weigelworld/pan-nlrome/). A single, combined CCS dataset was created for accessions that were sequenced on more

than one SMRT cell. Only CCS reads with > 99% per-base accuracy were considered (see https://github.com/weigelworld/

pan-nlrome for final read statistics).

Assembly Validation
Quality Scores

Wemapped CCS reads back to the assembly. Any read that is not mapped to its correct origin because the NLRwas not assembled,

is expected to map to a sequence related NLR gene (if such a gene is present), giving rise to pseudo-heterozygous SNP calls. For

read mapping, a pseudo-genome was constructed for each RenSeq assembly by combining the assembled contigs with NLR gene-

masked chromosome sequences from the TAIR10 reference genome. On the RenSeq contigs, non-NLR genes were masked, as

almost all should be present in the reference genome. CCS reads were then mapped to these pseudo-genomes (minimap2; 2.9-

r748-dirty; -x map-pb (Li, 2018)). SNPs were called for NLR genes using high quality mappings only (htsbox pileup; r345; -S250

-q20 -Q3 -s5; available at https://github.com/lh3/htsbox).

To assess assembly quality, the number of pseudo-heterozygous sites (hetsites) was compared to the total number of mappable

NLR gene bases (totalsites). The quality was calculated as logarithmically linked to the ratio of pseudo-heterozygous calls to the total

amount of mapped bases.

Q= abs

�
� 10 � log10

�
hetsites

totalsites

��

Completeness assessment

We used assemblies of subsampled reads from the Col-0 reference accession, for which the ground truth is known, to assess as-

sembly completeness. Corrected CCS reads from Col-0 were sub-sampled from 100 to 1% in 1% steps (seqtk sample; v.1.0-

r82-dirty; defaults). 100%of the data correspond to 26,639 readswith aN50 read length of 2,846 bases and 77.98Mb total sequence.

Each sub-sampled dataset was assembled with Canu as described above. All genes from the original 100%RenSeq Col-0 assembly

were mapped to each sub-assembly to detect assembled NLRs. NLR genes were extracted from these alignments (exonerate;

v.2.2.0;–model est2genome–bestn 1–refine region–maxintron 546; (Slater and Birney, 2005)). The quality of each sub-assembly

was assessed based on pseudo-heterozygous calls as described above.

For each sub-assembly, we determined what fraction of the full Col-0 reference NLR complement had been recovered. NLR gene

models were evaluated using rnaQUAST (version 1.5.0; defaults; (Bushmanova et al., 2016)) with the TAIR10 reference genome and

NLR genes annotated in Araport11. Completeness was calculated by dividing the amount of covered NLR genes (in bases) by the

total length of the Araport11 NLR genes. The relation between completeness and quality (as defined in the section above) of the
Cell 178, 1260–1272.e1–e8, August 22, 2019 e5

https://doi.org/10.24433/CO.5847249.v1
https://doi.org/10.24433/CO.5847249.v1
https://inkscape.org
https://github.com/rambaut/figtree
https://github.com/weigelworld/pan-nlrome
https://github.com/weigelworld/pan-nlrome/
https://github.com/weigelworld/pan-nlrome/
https://github.com/weigelworld/pan-nlrome
https://github.com/weigelworld/pan-nlrome
https://github.com/lh3/htsbox


tested Col-0 sub-assemblies was used to infer completeness values for the other accessions. Each accession quality was used to

find the corresponding completeness value from the tested Col-0 sub-assemblies.

Similarity to Col-0 reference accession

Wedetermined if the similarity of an accession to the Col-0 reference accession influenced its quality. RenSeq assemblies weremap-

ped against the Col-0 assembly (minimap2; 2.9-r748-dirty; defaults; (Li, 2018)) and SNPs were called in NLR gene regions (htsbox

pileup; r345; defaults; available at https://github.com/lh3/htsbox). Only biallelic SNPs were used to calculate the Identity-By-State

(IBS) value for each accession compared to Col-0 (SNPRelate_1.10.2; method = ’biallelic’; (Zheng et al., 2012)). For assembly

validation results, see https://github.com/weigelworld/pan-nlrome.

Pan-NLRome generation
Our A. thaliana pan-NLRome was constructed using a protein-clustering approach, resulting in ‘orthogroups’ (OGs) (Table S3E).

Clusters were generated with a three-step procedure. First, all-against-all full length protein alignments were produced (DIAMOND;

version 0.9.1.102;–max-target-seqs 13169–more-sensitive–comp-based-stats; (Buchfink et al., 2015)). Second, putative ortholog

and inparalog relationships were identified (orthAgogue, commit 82dcb7aeb67c,–use_scores–strict_coorthologs; (Ekseth et al.,

2014)). Third, protein clusters were formed based on the orthology information (mcl; version 12-135; -I 1.5; (Enright et al., 2002)).

OGs had to contain at least two genes; the rest were considered as singletons.

Orthogroup (OG) refinement

The initial set of OGs was inspected for over-clustering by screening for paralogs within OGs. Protein alignments were gener-

ated for each OG with > 4 members (T-Coffee; version 11.00.8cbe486; mode: mcoffee; (Neelabh et al., 2016)) and converted

into the corresponding codon alignments (PAL2NAL; version 14, defaults; (Notredame et al., 2000)), which were used to remove

three different types of outliers: non-homologous, partly mistranslated and low similarity sequences (OD-seq; version 1.0;–anal-

ysis bootstrap; (Jehl et al., 2015)). The remaining core sequences for each OG were realigned in protein space, converted into

the corresponding codon alignments and used to infer a phylogenetic tree (FastME; version 2.1.5.1; -s -n -b 100; (Lefort et al.,

2015)). Each tree was used to detect simple paralogs (duplications in terminal branches) and complex paralogs (duplications

spread across the whole phylogeny). For OGs where at most 5% of the accessions with at least one OG member showed

evidence of within-OG duplications, all paralogs were removed. Otherwise the tree was split at (accession) duplication events

(ete3; version 3.0.0b36; (Huerta-Cepas et al., 2016)), and new OGs were created from the leaves of all resulting sub trees

(Table S3F). Codon alignments and trees were re-computed using ExaBayes version 1.4.1 with default settings (Aberer

et al., 2014) and considered robust with all sampled parameters showing an effective sample size (ESS) over 200. Final

consensus trees were generated with a burn-in of 25% and MRE as thresholding function (see alignments and trees at

https://github.com/weigelworld/pan-nlrome).

Saturation analysis

OG as well as haplotype and nucleotide diversity discovery rates were determined by saturation analysis. For OG discovery, acces-

sions were randomly selected from the pan-NLRome and the number of OGs counted they were part of. The process was repeated

1,000 times starting with two and ending with 64 randomly selected accessions. For nucleotide and haplotype diversity discovery,

accessions were selected as above. Nucleotide and haplotype diversity were calculated for each of the replicates and averaged. The

process was repeated 100 times starting with two and ending with 64 randomly selected accessions.

OG classification

The final set of refined OGs was annotated with metadata derived from transcript-based majority votes (e.g., classes), transcript-

based counts (e.g., members with IDs, members flagged as paired, members flagged as clustered) or OG-based counts and analysis

(e.g., type, diversity statistics, positive selection, average tree branch length). Refined OGs were classified into three size-based cat-

egories after visual inspection of OG size density distribution (Figure 3A): < 13 members as ‘‘cloud,’’ > 51 members as ‘‘core,’’ and 13

%OGmembers% 51 as ‘‘shell.’’ OGs were classified as clustered if the majority of OGmembers were annotated as clustered. OGs

were classified as ID-containing if at least onemember contained an ID.We further classifiedOGs using protein domain architectures

using the majority vote from domain architectures of OG members.

Diversity, selection, association and expression analyses
Diversity and neutrality statistics were calculated for each codon alignment of the refined OGs (PopGenome; version 2.2.4; (Pfeifer

et al., 2014)). Domain-specific diversity statistics were calculated on subset, concatenated alignments only consisting of positions

covering the respective domains (e.g., NB). Alignment columns were annotated with a majority vote across all individual sequence

annotations and selected subsequently. The average tree-derived branch length for an OG was defined as the sum of all branch

lengths normalized by the OG size. Positive selection tests were carried out using HyPhy (version 2.3.13; (Pond et al., 2005)) using

codon alignments and corresponding trees. Pervasive diversifying positive selection was detected with FUBAR (version 2.1; default

parameters, (Murrell et al., 2013)) and sites considered with a posterior probability > = 0.95 (Tables S4C and S4D). Episodic diver-

sifying positive selection was detected with MEME (version 2.0.1; default parameters; (Murrell et al., 2012)) and sites considered with

a p value threshold% 0.01 (Tables S4E and S4F). Branch-site selection was detected with aBSREL (version 2.0; (Smith et al., 2015))

and branches considered under selection at a p value of 0.01 having at least five members. Invariable codons were identified using

a custom script (see msa2cns script at https://github.com/weigelworld/pan-nlrome). Domain-specific positive selection was
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calculated on a subset of positions covering the respective domains (e.g., NB). The alignment annotation was the same as for the

Domain-specific diversity statistics.

Statistical comparison of OGs grouped by established functional role (Figure 7A) was performed by one-way ANOVA and post hoc

Tukey test using the online astatsa.com resource. One-way ANOVA performed on four groups (biotroph:adataped, biotroph:non-

adapted, hemibiotroph and helper) of combined size 30 within-OG nucleotide diversity measurements yielded a p value of

1.1172e-05. The post hoc Tukey test revealed that the biotroph:adataped group was significantly different to each other group indi-

vidually with p values < 0.01. All the other groups were statistically indistinguishable from each other.

Assessment of the relationship of pair status and nucleotide selection (Tajima’s D) (Figure 7B) was performed using linear regres-

sion in Excel for Mac v15.33 (Microsoft Corporation, MA, USA). 15 control pairs and 16 sensor-executor pairs of OGs were identified

and tested for correlation. The list of pairs and full analysis is presented in Table S4B.

An average expression percentagewas estimated for eachOGusing RNA-seq data from the 1001Genomes Project (1001 Genomes

Consortium, 2016; Kawakatsu et al., 2016). For each accession, a pseudo-transcriptome was generated from accession-specific NLR

transcripts plus all non-NLR transcripts from the Col-0 reference accession. NLR gene intronswere added to the pseudo-transcriptome

for expression filtering. Transcript abundance was quantified with pseudo-alignments of RNA-seq reads from 727 accessions (kallisto,

v.0.43.0,–single -l 200 -s 25 -b100–bias; (Bray et al., 2016)). The datawas further processedwithR (v.3.4.1). Abundancewas normalized

(DESeq2; v.1.16.1; estimateSizeFactor; (Love et al., 2014)) and expressed NLR genes were defined using a per-accession expression

threshold. Expression counts from intronswere used to compute a background expression density distribution and subtracted from the

density distribution of all NLR expression counts. The lowest expression level with a density > 0 was used as minimum expression

threshold. On average, NLRs were considered expressed with an expected count R 175. Finally, for each NLR, the percentage of

accessions that provided reliable expression was calculated.

We consulted the AtGenExpress expression atlas to gauge absolute expression level (Schmid et al., 2005), bias in leaf versus

root specificity of expression and the pathogen inducibility of Col-0 NLRs. NLR genes were broadly divided into low-, medium-

and high-expression groups, based on whether at least two samples had absolute signal values in the developmental datasets

that were 20 < expression < 100, 100 < expression < 1,000, 1,000 < expression. Genes that had generally absolute signal values

below 20 were characterized as marginally expressed. If average expression in leaf and rosette samples was at least twice of that

in root samples, or vice versa, genes were considered tissue biased in expression. Note that differences between tissues can be

much larger, > 100 fold. Pathogen inducibility was assessed from the AtGenExpress pathogen dataset (Kemmerling et al., 2011),

based on induction by at least two pathogen-related stimuli. The final Col-0 NLR annotation was amended for the respective OGs.

OG topologies were tested for association with the abovementionedmetadata using BaTS (version 0.10.1; 100 bootstraps, burn-in

25%). Associations were considered with a BaTS significant value % 0.01. Associations results were overlaid with branches under

episodic diversifying selection by comparing BaTS p values of selected versus unselected branches respectively its members. BaTS

significant values were mapped to members using the metadata supplied to BaTS. Both p value sets were compared using a

Wilcoxon rank sum test and considered significant at a p value % 0.01 and the selected branch having smaller significant values

than the unselected one (https://github.com/weigelworld/pan-nlrome/blob/master/code/possel2bats.py).

We assessed the probability of non-clonal evolution (i.e., intragenic recombination or gene conversion) in OGs by running 3seq

build 170612 (Lam et al., 2018) in full mode, inspecting only distinct sequences on OG nucleotide alignment multifasta files. OGs

with a corrected p value of < 0.05 were considered to have evidence of recombination/gene conversion events.

Placement of non-reference OGs

Annotated non-NLR proteins in the 64 accessions were clustered into OGs using the approach described above (see ‘pan-NLRome

generation’ section). Briefly, non-NLR protein clusters were generated with three main procedures. First, we used DIAMOND to

obtain all-against-all full length protein alignments (DIAMOND; version 0.9.1.102;–max-target-seqs 50691–more-sensitive–comp-

based-stats; (Buchfink et al., 2015). Second, we identified putative orthologs using orthAgogue (orthAgogue, commit

82dcb7aeb67c,–use_scores–strict_coorthologs (Ekseth et al., 2014). Third, we used theMCL algorithm to define the cluster structure

of the similarity relationships established in the previous steps (mcl; version 12-135; -I 1.5 (Enright et al., 2002). No refinement steps

were applied to non-NLR OGs (Table S3I).

For each NLR gene in NLR-OGs, we tested contig linkage with other annotated genes in the respective accession. To establish

OG-OG co-occurrence, we extracted OG size (node size), NLR-OGs and non-NLR-OGs (node color). Whenever OGs contained a

Col-0 allele we established a reference anchoring position in the reference genome (node shape).

OG co-occurrence matrices were used to calculate bidirectional networks of contig linkage at different thresholds (R 10 shown in

Figure S3) using Cytoscape v.3.5.1 (Shannon et al., 2003), running on Java v. 1.8.0_151. We extracted all observed combinations

from the accession’s gff files and visualized co-occurrence intersections in UpSet plots. Apparent paired NLR genes were identified

from annotation flags (see ‘Identification of paired NLRs and sensor-executor pairs’ and ‘Analyses of over-represented flags’

sections; Table S3G). All enrichments with a q-value below 0.1 (Fisher’s Exact and hypergeometric tests/FDR) are reported. Positions

of anchored OGs are shown as a schematic karyogram (see ‘Figure generation’ section). Col-0 reference NLR gene coordinates were

extracted from TAIR9/Araport11 annotation. Non-reference OG anchoring positions are approximate values derived frommanual in-

spection of NLRome assemblies (see ‘Web Apollo’ section). Bash-, R-scripts and input files for the UpSet plots, karyogram and the

Cytoscape network are available in CodeOcean (https://doi.org/10.24433/CO.5847249.v1).
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Analyses of over-represented flags

Gene annotation flags (such as ‘paired’, ‘fusion’, ‘merged’) in each OGwere compiled using an in-house bash script. Flag enrichment

was calculated in R using hypergeometric test. Multiple testing was corrected via false discovery rate (FDR) estimation and q-values

below 0.1 were reported (Table S3G).

DATA AND CODE AVAILABILITY

The data generated during this study are available at the European Nucleotide Archive (ENA): PRJEB23122. The code generated

during this study are available along with manually curated gene models (gff), domain annotations, OGs, protein and transcript

alignments, phylogenetic trees, scripts necessary to produce figures and further metadata files containing information parsed and

restructured from the supplemental tables in this manuscript at the GitHub pan-NLRome repository (https://github.com/

weigelworld/pan-nlrome/). Assemblies are available for download via the 2blades foundation (http://2blades.org/resources/).

Visualization of OG phylogenetic trees and metadata is available at iTOL (https://itol.embl.de/shared/pan_NLRome).

ADDITIONAL RESOURCES

A genome browser is available at http://ann-nblrrome.tuebingen.mpg.de.
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Supplemental Figures

Figure S1. NLR Frequency for Different Subclasses, Related to Figure 1

NLRs are grouped by domain content: T (TIR), N (NB), C (CC), R (CCR), and X (all IDs). Domains in parentheses are not present in all members of that group.

Domain order is not considered. Mean is shown as a solid black horizontal line and the 95% Highest Density Intervals (HDI; points in the interval have a higher

probability than points outside) are shown as transparent bands around the sample mean. Individual data points plotted as open circles and full densities shown

as bean plots.
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Figure S2. Schematic Representation of NLRDomain Architecture Diversity and Simplification of Consecutively RepeatedDomains, Related

to Figure 2

(A) Examples of NLR domain architecture diversity.

(B) Reduction of TNL domain combinations by collapsing duplicated/repetitive domains. Analogous strategies were applied to CNL, RNL and NL classes.

(C) Full set of NLR architectures not described before for A. thaliana, including architectures found in only one gene. Asterisks indicate 49 architectures not

reported from other Brassicaceae, or in the reference accession Col-0.
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Figure S3. OG Combinations, Related to Figure 4

(A) Co-occurrences network for NLR (no prefix) and non-NLR (prefix ‘‘non_’’) OGs on the same contigs inR 10 accessions. Similar networks were found for higher

or lower thresholds. Blue boxes highlight NLR OGs without a Col-0 allele, orange boxes highlight paired OGs without a Col-0 allele.

(B) Co-occurrence of the paired, head-to-head NLRs OG205 (TCP-B3-TIR-NB-LRR-Zf) and OG204 (TIR-NB-LRR), which are not found in Col-0 or in Ler. Grey,

non-NLR OGs.



Figure S4. Saturation of Diversity Discovery and PCAs of Population Genetics Statistics, Related to Figure 5

(A and B) Fraction of nucleotide and haplotype diversity that can be recovered from a randomly drawn set of accessions with different set sizes (with 1000x

bootstrapping). Horizontal dashed lines indicate 90% of diversity found. Vertical dashed line indicates number of accessions with which 95% of diversity can be

recovered (1,000 bootstraps).

(C) Principal component analysis carried out on 10 population genetics statistics, nucleotide diversity (pi), haplotype diversity, Fu and Li’s D, Fu and Li’s F,

Tajima’s D, Rozas’ R2, Strobeck’s S and number of segregating sites.



Figure S5. Positive Selection Landscape of the Pan-NLRome, Related to Figure 6

(A–E) Number of OGs in different selection classes grouped by NLR class (A), OG type (B), ID status (C), paired NLR status (D), or NLR subclass (E). An OG was

considered if at least one positive selected site of a given class was detectable.

(F) NLR coverage with different types of positively selected sites.

(G–I) Domain coverage with positively selected sites.
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Figure S6. Phylogenetic Tree of NB Domain Alignments of TNLs to Delineate Sensor-Executor Pairs, Related to Figure 7

The paired NLRs RPS4-like (executors, silver) and RRS1-like (sensors, gold) as well as SOC3-like (executors, light purple) and CHS1-like (sensors, brick) defined

distinct subclades of TNLs. The NJ phylogeny was built from manually refined MUSCLE alignments of NB domains (�240 amino acids) of Col-0 proteins plus

selected additional representatives of OGs inferred to be paired, but absent from the Col-0 reference. NB domains from human APAF1 (green) and the A. thaliana

CNL AT1G58602 (blue) were included as outgroups. The WAG maximum likelihood method allowing for 3 discrete Gamma categories was used. AT4G36140

contains two distinct NB domains, both of which were included; the second NB domain of AT4G36140 groups with other RRS1-like NB domains. Support from

100 bootstraps shown at major nodes. Scale bar indicates substitutions per site.
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