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Abstract 
 

We developed a new graphical/numerical method called TI2BioP (Topological Indices to 
BioPolymers) to estimate topological indices (TIs) from two-dimensional (2D) graphical 

approaches for DNA/RNA and protein data. TIs were used to build up alignment-free models 

to the functional classification and to infer evolutionary relationships without alignments in 

highly diverse gene/protein classes with relevance for the drug discovery process. The 

method was effective in the detection of new members and remote protein homologous 

compared to alignment procedures and was further confirmed by experimental evidences. 

The 2D Cartesian protein representation and its TIs were able to unravel the Cry 1Ab C-

terminal domain from Bacillus thuringiensis´s endotoxin as a bacteriocin-like protein, which 

has not been detected by classical alignment methods. We registered in public databases 

new members of the internal transcribed spacer (ITS2) and of the RNase III protein classes 

using alignment-free models. The predictions of these two members were verified through 

enzymatic assay for the new RNase III member and by evaluating both queries against 

profiles Hidden Markov Models (HMM). The amino acid clustering strategy to build 2D 

Cartesian protein maps was extrapolated to generate a non-classical profile HMM with high 

prediction accuracy to detect RNase III members. Classical profiles HMM showed a lower 

classification performance on the ITS2 genomic class than alignment-free models in spite of 

the fact they were generated by multiple sequence alignment (MSA) algorithms improved for 

sets of low overall sequence similarity. The new ITS2 sequence isolated from Petrakia sp. 

was used by alignment-free based techniques applied for the first time to the estimation of 

phylogenetic inferences. The Petrakia sp. fungal isolate was placed inside the 

Pezizomycotina subphylum and the Dothideomycetes class. Finally, we demonstrated that 

the use of graphical/numerical-based models in cooperation with alignment sequence search 

methods provided the most reliable exploration of the Adenylation domains (A-domains) 

repertoire of Nonribosomal Peptide Synthetases (NRPS) in the Microcystis aeruginosa 

proteome. The knowledge of the complete A-domain repertoire in the proteome of a 

cyanobacteria species may allow unraveling new NRPS clusters for the discovery of novel 

natural products with important biological activities. 

 

Key words: 2D graphs/ Topological Indices/ Sequence similarity/ Alignment-free models/ 

Functional annotation/ Phylogenetic analysis. 

 



 



 
 

 
 

Resumo 

Neste trabalho foi desenvolvido um novo método gráfico-numérico TI2BioP (Topological 

Indices to BioPolymers) para fornecer índices topológicos (ITs) a partir de aproximações 

gráficas a duas dimensões (2D), com o objectivo de construir modelos livres de 

alinhamentos para a classificação funcional de DNA, RNA e proteínas. O método permite 

igualmente inferir relações evolutivas em diversas classes de genes ou proteínas, directa ou 

indirectamente relacionadas com a descoberta de novos fármacos. O método foi efectivo na 

detecção de novos membros e de proteínas homólogas remotas, quando comparado com 

procedimentos que usam alinhamentos, tendo sido ainda confirmado por evidências 

experimentais. A representação cartesiana 2D das proteínas e seus ITs permitiu desvendar 

que o domínio Cry 1Ab C-terminal da endotoxina de Bacillus thuringiensis é uma proteína 

semelhante à bacteriocina, facto que não tinha sido possível detectar com métodos 

clássicos de alinhamento. Foram detectadas em bases de dados públicas novos membros 

das classes de proteínas RNase III e do espaçador interno transcrito (ITS2) usando 

modelos livres de alinhamentos. Essas predições foram verificadas através de ensaios 

enzimáticos, no caso do novo membro das RNase III, e através da avaliação de perfis HMM 

em ambos os casos. A estratégia de agrupamento de aminoácidos para construir os mapas 

cartesianos 2D de proteínas foi extrapolada para gerar um perfil HMM -clássico com alta 

precisão para a detecção de membros da classe RNase III. No entanto, os perfis clássicos 

HMM gerados por algoritmos de alinhamentos múltiplos de sequências (MSA), melhorados 

para conjuntos de sequências de baixa semelhança global, mostraram um pobre 

desempenho na classificação da classe genómica ITS2 relativamente aos modelos livres de 

alinhamentos. A nova sequência ITS2 isolada de Petrakia sp. foi utilizada pela primeira vez 

para fazer inferências filogenéticas com técnicas não baseadas em alinhamentos. O nosso 

grupo colocou o isolado fúngico de Petrakia sp. dentro do subphylum Pezizomycotina e a 

classe Dothideomycetes. Finalmente, demonstramos que o uso de modelos gráficos-

numéricos juntamente com métodos de alinhamentos de pesquisa de sequências fornecem 

os resultados mais fiáveis nas explorações do repertório dos domínios de adenilação 

(domínios A) das sintetases de péptidos não ribosomais (NRPS) no proteoma de 

Microcystis aeruginosa. O conhecimento de todo o repertório de domínios A no proteoma 

das diversas espécies de cianobactérias poderá revelar novos grupos de NRPS, o que 

poderá potencialmente permitir a descoberta de novos produtos naturais com importantes 

actividades biológicas. 

Palavras-chave: Gráficos 2D/ Índices Topológicos/ Similaridade de sequências/ Modelos 

livres de alinhamento/ Anotação funcional/ Análise filogenética. 
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1. Introduction  
 

Graphical approaches have been successfully used in several branches of science such 

as mathematics, physics, chemistry, biochemistry, biology and computer science to visualize 

complex relationships, including functional relations, outcomes of complicated processes 

and interactions, as well as to simplify scientific notation. A graph is a collection of vertices or 

nodes and a compilation of edges that connect pairs of vertices; they have been deeply 

studied in graph theory, a branch of discrete mathematics, to model pairwise relation 

between objects from a certain collection [1]. 

Graph theory has facilitated the development of Chemical Graph Theory (CGT) to allow 

combinatorial and topological exploration of the chemical molecular structure through the 

calculation of mathematical descriptors [2].The molecular topology is represented as graphs 

where atoms and bonds are considered as vertices and edges of the graph, respectively. It 

is possible to derive molecular descriptors from the graph representing an approximation of 

the molecular structure to carry out Quantitative-Structure-Activity/Property Relationship 

(QSAR/QSPR). Such mathematical descriptors have been traditionally used in QSAR/QSPR 

studies for small sized molecules. When these methodologies are applied to drugs, they can 

be used in medicinal chemistry for modeling drug design and drug-receptor relationships [3, 

4].  

More recently with the emergence of genomics and proteomics, the CGT is being 

extended to bioinformatics through the characterizations of DNA/RNA and proteins for 

comparative analysis without the use of sequence alignments. In genomics and proteomics, 

nucleotides, amino acids, proteins, electrophoresis spots, polypeptidic fragments, or more 

complex objects can play the role of nodes and the bonds or the relation either functional or 

geometrical between them are considered the edges of the graph [2].Thus, we can simplify 

complex biological systems like proteomes, metabolic networks and protein interaction 

networks (PINs) into the topology of a graph providing support to gain useful insights into 

such systems. All of these graphs or networks can be numerically described using the so-

called Topological Indices (TIs) [5]. TIs are numerical indices derived from the graph-

theoretical representation of a molecule as a whole and contain information about the 

connections between atoms in the molecule and the properties for the connected atoms [6]. 

Therefore, a topological index is the numerical representation of the information extracted 

from a chemical complex but it can be easily extended to characterize biological systems as 

mentioned above [7].  
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The use of TIs to characterize biosequences (DNA/RNA and proteins) to perform massive 

analyses without alignments is an active research topic in bioinformatics. To perform the 

numeric characterization of genes and proteins families through the calculation of TIs, we 

build a graph representing a DNA/RNA and protein sequence where nodes are represented 

by nucleotides or amino acids while the connections are normally represented by covalent 

bonds, hydrogen bridges, electrostatic interactions, van der Waals bonds and so on [8-10]. 

There are several types of TIs depending on the complexity of the biomolecule 

representation that could comprise several dimensional (D) spaces. Linear sequences 

(sequence order), is a one dimensional (1D) representation, while two-dimensional (2D) and 

three dimensional (3D) are related to sequence arrangement or geometry into these spaces 

[11-13]. Particular attention has been placed into the 2D representations which do not 

represent the “real structure” of the natural biopolymers but have been very effective in 

inspecting similarities/dissimilarities among biopolymers either by direct visualization or by 

numerical characterization [2]. Examples of 2D artificial representations for DNA and protein 

sequences with potentialities in bioinformatics include the spectrum-like, star-like, cartesian-

type and four-color maps [2, 14-17]. These DNA/RNA and protein maps can generally 

unravel higher-order useful information contained beyond the primary structure, i.e. 

nucleotide/amino acid distribution into a 2D space. Their essence can be captured in a 

quantitative manner through TIs to easily compare a great number of sequences/maps [18-

21]. 

Despite the complexity of the biomolecule representation, for the calculation of any TI is 

necessary the creation of the adjacency matrix. There are variants of the adjacency matrix 

e.g., node and edge adjacency matrix [22]. They translate the connectivity/adjacency 

relations between nodes or edges in the graph to a matrix arrangement [23]. The adjacency 

matrix is a square matrix where nodes or edges are numbered without specific order. The 

elements of the adjacency matrix nij or eij are equal to 1 if i and j are adjacent otherwise take 

the value of 0. When two nodes share a common edge are adjacent; the same consideration 

is applied for two edges sharing at least one node [24]. Once the adjacency matrix is built, 

there are several algorithms to calculate the TIs. One of the most common algorithms used 

in QSAR for TIs calculation can be represented according to the key vector-matrix-vector 

scheme. Several authors have reported TIs using this algorithm, such as the Winner index 

(W) [25], firstly defined in a chemical context; and others like Randić invariant (χ) [26], 

Balaban index (J) [27], Broto–Moreau autocorrelation (ATSd) [28] and the spectral moments 

introduced by Estrada [29].  

The last ones are based on the method of moments developed in the 70‟s and applied in 

solid-state physics and chemistry. Estrada et al.. extended these concepts to the use of 
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bond moments and included bond weights related to hydrophobic, electronic and steric 

molecular features. The spectral moments are defined as the sum of main diagonal entries 

of the different powers of the bond adjacency matrix [30]. This matrix is the same adjacency 

matrix described above where non-diagonal entries are 1 or 0 if the corresponding bonds 

share one atom or not but with the particularity that main diagonal entries are weighted with 

bond properties. Spectral moments were implemented in the TOPS-MODE (Topological 

Substructural Molecular Design) program [31] and have been widely validated by many 

authors to encode the structure of small molecules in QSAR studies [32-34] including the 

characterization of the folding degree of proteins based on its dihedral angles [35, 36]. 

Despite, the versatility of the spectral moments in QSAR studies, they have been poorly 

used to describe biopolymers structures excepting when they promoted the arising of the 

Estrada folding index (I3) for proteins [37]. We extended the spectral moments to search 

structure-function relationships in DNA/RNA and proteins classes with no alignments, turning 

the spectral moments into alignment-free predictors applied to annotate biological functions 

of genes/proteins [8, 19, 38].  

The prediction of the biological function, 2D and 3D structure of a query gene or protein 

has traditionally relied on similarity measures provided by alignment algorithms, to other 

recorded members of the family. The first tools to distinguish biologically significant 

relationships from chance similarities were based on dynamic programming algorithms; the 

Needleman-Wunsch [39] and Smith-Waterman algorithms [40]. Needleman-Wunsch 

algorithm was reported in 1970 to calculate global similarity scores between two sequences 

and it is more suitable when the homologies have been previously set, e.g. when 

evolutionary trees are built [39]. The Smith–Waterman procedure was proposed in 1981 to 

determine similar regions between two sequences instead of looking at the total sequence. 

This algorithm is able to detect sub-regions or sub-sequences with evolutionary conserved 

signals of similarity avoiding regions of low sequence similarity [40]. However the high 

computational cost of dynamic programming algorithms makes them impractical for 

searching large databases [41]. Rapid heuristic algorithms inspired on above-mentioned 

methods were developed to perform sequence searches against large databases in normal 

computers such the cases of FASTA [42] and Basic Local Alignment Search Tool (BLAST) 

programs [43]. FASTA algorithm was reported in 1985 by Lipman et al.. to find locally similar 

regions between two sequences based on identities but not gaps [42]. Such regions were 

rescored using a measure of similarity between residues, such as a PAM matrix [44]. BLAST 

was developed by Karlin and Altschul in 1990 to perform rapid sequences comparison 
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optimizing the local similarity as the maximal segment pair (MSP) score. BLAST can be 

applied to DNA and protein sequence database searches, motif searches, gene identification 

searches, and in the analysis of multiple regions of similarity in long DNA sequences. It is a 

simple and robust method that works faster than the other existing sequence comparison 

tools mentioned so far [43]. 

Today, the most powerful sequence-based comparison methods use sets of aligned 

sequences, either as profiles like HMM [45, 46] or position specific scoring matrices 

(PSSMs) [47]. Profile/HMM/PSSM methods are more sensitive than single-sequence 

comparison methods because they summarize the evolutionary history of a family, 

identifying more and less conserved positions within the protein [48]. PSSMs are the 

essence of the Position Specific Iterative-BLAST (PSI-BLAST), a very sensitive comparison 

tool that has revealed homologies between sequences that previously were recognized only 

from structure [47]. Profiles HMM are the core of the popular Protein family (Pfam) database 

made up for alignment profiles representing more than 3071 protein families [49]. Profiles 

HMM are sensitive tools to detect structural and functional protein signatures in large 

databases even when the sequence conservation is restricted.  

In short, alignment methods have being improved their sensitivity to detect functional 

signals in query sequences by using several strategies like the substitution of the original 

similarity matrixes among the aligned sequences for PSSMs [47], the addition of other steps 

in BLAST searches [50-52] and the implementation of stochastic predictive models such as 

the case of profiles HMM for DNA/RNA and protein sequences [49, 53]. 

Similar efforts have been carried out to improve the quality of MSA in phylogenetic 

reconstruction accuracy [54-56]. Phylogenetic tree reconstruction is traditionally based on 

MSAs and heavily depends on the validity of this information bottleneck [57]. CLUSTALW 

was reported in 1994 to align any number of homologous nucleotide/protein sequences with 

an improved sensitivity and it is widely utilized since then due to its well performance in 

practice [58]. Later, other algorithms have tried to improve MSA on the accuracy of 

CLUSTALW. T-Coffee reported in 2000 employed a similar progressive strategy but 

achieved a higher accuracy alignment by combining information derived from global and 

local multiple alignments [56]. MAFFT reduced drastically the CPU time in respect to T-

Coffee and CLUSTALW. Homologous regions are rapidly identified by fast Fourier transform 

(FFT) using a simplified scoring system. It provides increased alignment accuracy even for 

sequences having large insertions as well as distantly related sequences of similar length 

[59]. Edgar in 2004 implemented progressive and iterative refinement alignment strategies in 

MUSCLE. The speed and accuracy of MUSCLE are compared with T-Coffee, MAFFT and 

CLUSTALW [55]. More recently, DALIGN-TX was developed as a segment-based multiple 
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alignment tool improved for sets of low overall sequence similarity. On locally related 

sequences, DIALIGN-TX outperforms all other programs without increasing the CPU time 

[60]. 

Although the detection of functional signals in gene/protein classes has been improved as 

well as the quality of MSA to produce reliable phylogenetic trees; low sequence similarity or 

the similarity to genes/proteins lacking functional annotations represent a drawback for the 

performance of alignment algorithms [61]. It is still difficult to produce reliable alignments for 

proteins that share less than 30-40% of identity [61, 62]. Consequently, several alignment-

independent approaches are being developed to overcome this limitation for an effective 

functional annotation and for reliable phylogenetic inferences in highly diverse gene/protein 

families.  

Most of the alignment-free classifiers have been based on amino acid composition such 

as the one reported by Strope and Moriyama in 2007 to detect remote similarity of G-protein-

coupled receptor superfamily members using support vector machines [63]. In the same 

year, alignment-free descriptors such as amino acid content and amino acid pair association 

rules were used along with routinely available classification methods to classify protein 

sequences [64]. The web-server Composition based Protein identification (COPid) was 

developed in 2008 by Kumar et al.. to exploit the full potential of protein composition to 

annotate the function of a protein from its composition using whole or part of the protein [65]. 

One of the most popular alignment-free approaches is the Chou‟s concept of pseudo 

amino acid composition (PseAAC) introduced in 2001; it reflects the importance of the 

sequence order effect in addition to the amino acid composition to improve the prediction 

quality of protein cellular attributes [66]. This concept has been widely used to predict protein 

subcellular location [67], enzyme family classes [68], membrane protein types [69], protein 

quaternary structure [70] and many others protein attributes. A similar approach was 

developed by Caballero and Fernandez defined as Amino Acid Sequence Autocorrelation 

(AASA) vectors but instead of using a distance function (property difference) like in the 

PseAAC, they used autocorrelation (property multiplication) to predict the conformational 

stability of human lysozyme mutants [71]. AASA is an extension of the Broto-Moreau 

autocorrelation TIs used before in SAR studies to protein sequences [28]. Following the 

same philosophy González-Díaz and co-workers have scaled their Markovian descriptors 

and stochastic spectral moments to characterize protein sequences. They implemented 1D, 

2D and 3D TIs into the MARCH-INSIDE (Markov Chain Invariants for Network Selection & 
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Design) methodology to correlate biological properties with peptides and proteins structure 

[72]. 

Few alignment-free approaches have dealt with high sequence divergence [73] to 

increase the reliability of phylogenetic inferences [74]. There is evidence that at low 

divergence between sequences, the genetic code is a better indicator of the phylogenetic 

relationships while at high divergence better accuracy is achieved by focussing on amino 

acid properties [75]. The most relevant alignment-independent approaches reported for 

phylogenetic trees reconstruction have been based on patterns discovered in unaligned 

sequences [76], amino acid composition [65] and a kernel approach for evolutionary 

sequence comparison [74].  

While several types of graphical/numerical methods have been developed to carry out 

comparative analyses for DNA/RNA and proteins with no alignments [11], very few studies 

have exploited its potentialities in bioinformatics to perform functional predictions and 

phylogenetic inferences in highly diverse gene/protein classes. Therefore, we aimed to 

develop a new graphical/numerical tool inspired on previous experiences achieved by other 

methodologies such as TOPS-MODE and MARCH-INSIDE, to face alignment problems. 

Such graphical/numerical tool was called TI2BioP (Topological Indices to BioPolymers) 

because it allows the calculation of the original spectral moments as simple TIs from 

different 2D graphical approaches for DNA, RNA and proteins biopolymers. TI2BioP will be 

assessed by predicting functional classes and by inferring phylogenetic relationships at low 

sequence similarity [19].Thus, we placed the following hypothesis: 

 Is TI2BioP methodology an effective tool to develop alignment-free models to 

predict biological functions for highly diverse gene/protein families and useful in 

the molecular evolutionary field to obtain reliable phylogenetic trees?  

To validate this hypothesis we have selected four gene/protein families that share 

common features: (i) low sequence similarities among its members and (ii) relative 

involvement in the drug discovery process. Furthermore, the gene/protein family members 

studied belong to both prokaryotic and eukaryotic organisms.  

The gene/protein families studied were the following: 

1. Proteinaceous bacteriocins are toxins produced and exported by both gram-

negative and gram-positive bacteria as a defense mechanism. The bacteriocin 

family includes a diversity of proteins in terms of size, method of killing, method of 

production; genetics, microbial target, immunity mechanisms and release 

Bacteriocins can be applied as food preservatives and are of great interest for 

novel antibiotics development and as diagnostic agents for some cancers. 
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2. Ribonuclease III (RNase III) class shows variable homology and different domain 

structures. RNases III are useful for drug search or drug-target candidates for drug 

development because these enzymes are involved in several important biological 

processes.  

3. ITS2 gene class shows a high sequence divergence, which has traditionally 

complicated ITS2 annotation and limited its use for phylogenetic inference at low 

taxonomical level analyses (genus and species level). ITS2 is the standard gene 

target for fungal taxonomical identification at the species level [77], being 

especially relevant to identify fungal species that cannot be cultured such as the 

potential producers of bioactive compounds [78]. 

4. A-domains from NRPS show low sequence similarity between its members. NRPS 

are megasynthetases composed by several domains organized in clusters for the 

synthesis of oligopeptides having different biological activities. 

In summary, the objectives of this thesis are the following: 

1. To develop the TI2BioP methodology based on the graph theory to generate 

alignment-free predictors (spectral moments). 

2. To evaluate the ability of TI2BioP to detect functional signatures from the above-

mentioned gene/protein classes and to identify new members of such families in 

cooperation with experimental evidences and alignment procedures.  

3. To compare TI2BioP performance in detecting functional signatures among the 

gene/protein classes involved in this study against alignment algorithms like profiles 

HMM.  
4. To demonstrate that our TIs are also useful for molecular evolutionary inferences. 
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2. Materials and Methods  
 

2.1. General scheme of procedure  

In this chapter, information about the general procedure and methods used in this study is 

provided. Alignment-free models for functional classification of highly diverse gene/protein 

families were developed using TIs derived from 2D graphical representations for DNA and 

protein sequences. The classification performance of such models were compared with the 

obtained by classical alignment procedures from the same database. Both methods were 

used in cooperation to annotate the function of new gene/protein members and to re-

annotate proteomes (Figure 2.1). 

 

Figure 2.1. Flowchart of the general procedure to evaluate alignment-free models for functional classification of 
gene/protein classes involved in the study. 
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2.2. Database 

To test the performance and efficacy of our alignment-free approach TI2BioP to detect 

DNA and protein signatures and to infer phylogenetic relationships, four gene/protein 

families having low sequence similarity among their members according to some reports 

were selected. In addition, such gene/protein families are relevant for drug discovery. 

The gene/protein classes studied were: 

1. Bacteriocin protein class: A total of 196 bacteriocin-like proteins sequences 

belonging to several bacterial species were collected from the two major bacteriocin 

databases, BAGEL [50] and BACTIBASE [79]. 

2. Ribonuclease III class (RNase III): 206 RNase III protein sequences belonging to 

prokaryote and eukaryote species were downloaded from GenBank database 

gathering all RNAses III registered up to May of 2009. 
3. ITS2 class: A total of 4 355 ITS2sequences from a wide variety of eukaryotic taxa 

(http://its2.bioapps.biozentrum.uni-wuerzburg.de) were used. 

4. Adenylation domains (A-domains): 138 A-domain sequences from NRPS were 

collected from the major NRPS–PKS database (http://www.nii. res.in/nrps-pks.html).  

Because a negative set or control group to develop classification models is needed, three 

different control groups were selected according to some features: (1) structurally well-

characterized sequences (2) high functional diversity among its members and (3) similar 

sequence lengths in respect to the study case. 

Protein control groups:  

1. Sequences from Class, Architecture, Topology and Homology (CATH) domain 

database (version 3.2.0) (http://www.cathdb.info) sharing only 35% of sequence 

similarity were selected to provide a functional representation and avoid structural 

redundancy. This group was used as a control to develop the alignment-free 

models to recognize bacteriocin-like and A-domains sequences. 

2. High-resolution proteins in a structurally non-redundant and representative subset 

from the Protein Data Bank (PDB) made up of enzymes and non-enzymes were 

also used. This subset was selected according to independent-sequence similarity 

criteria but using simple features such as secondary-structure content, amino acid 

http://its2.bioapps.biozentrum.uni-wuerzburg.de/
http://www.cathdb.info/
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propensities, surface properties and ligands. Redundancy was removed by 

structural alignments to provide just representative structures. This protein subset 

was used as a control group to develop alignment-free models to detect RNase III 

enzymes [61].  

Gene control group:  

1. A non-redundant subset containing both 5‟- and 3‟-untranslated regions 

(UTRs) sequences from the fungi kingdom was selected from the eukaryotic 

mRNAs database: UTRdb (http://www.ba.itb.cnr.it/UTR/). It was selected as a 

control group to identify ITS2 members with no alignments because this class 

comprises diverse but structurally related genomic sequences to the ITS2 

class. Similar to the ITS2, UTRs are non-coding regions with divergence 

among the eukaryotes but showing a more conserved secondary structure 

when are transcribed into RNAs [80]. 

2.2.1. Training and test subsets selection 

After assessing the diversity of the study cases; both study case and control group were 

divided independently into training and test subsets. The selection of training and test 

members was carried at random when the size of the study case and the control group sets 

were originally balanced. Otherwise, both sets (study and control group) were balanced to 

avoid classification bias. K-Means cluster analysis (k-MCA)was performed to reduce 

representatively the size of control groups (generally, the control group is larger than the 

study case) [81].This procedure required a partition of the study case and its control group 

independently into several statistically representative K centers according the TIs values for 

each case (sequence). Each K center is the mean of the cases assigned to each cluster. 

Finally, clustering process was driven by structural features due to the intrinsic nature of TIs. 

Members that made up training and test sets were straightforwardly selected from such 

clusters.  

2.2.2 Methods to explore database diversity  

Pairwise alignment  

Although a high dissimilarity among gene/protein members of each study case involved in 

this study was previously reported [52, 79, 82, 83]; the quantification of such diversity had 

not been recorded yet. It has been demonstrated that the reliability of the predicted biological 

function and the phylogenetic reconstruction dramatically decreases when gene/protein 

http://www.ba.itb.cnr.it/UTR/


 
  
22   FCUP 
        A Graphical and Numerical Approach for Functional Annotation and Phylogenetic Inference 

 
 

 
 

 
 

families share pair-wise sequence similarities lower than 50% [57, 61, 84]. Thus, the Smith-

Waterman (SW) [85] and Needleman-Wunsch (NW) [39] dynamic programming algorithms 

were used to perform local and global sequence similarities either between pairs of DNA or 

pairs of proteins (all vs all) to explore the sequence diversity of gene/protein families 

involved in the present study. 

2.3. TI2BioP software 

TIs were calculated by our in-house TI2BioP software from different 2D graphical 

approaches applied to DNA/RNA and proteins. TI2BioP is based on the graph theory 

considering the “building blocks” of DNA/RNA and protein biopolymers as nodes and the 

bonds between them as edges into the 2D graphs. Consequently, the information contained 

in biopolymeric long strings is simplified in the topology of 2D graphs that is eventually 

determined by the sequence order and the nucleotide/amino acid composition of these 

biopolymers.  

TI2BioP was inspired mainly in TOPS-MODE [31] methodology for the calculation of the 

spectral moments as TIs but using the platform of MARCH-INSIDE  program [72]. It was 

built up on object-oriented Free Pascal IDE Tools (lazarus) running either on Windows or 

Linux operating system. Its latest version (version 2.0) is freely available at 

http://ti2biop.sourceforge.net/. The friendly interface of TI2BioP allows the users to access 

the sequence list introduction, selecting the representation type and calculations of TIs. The 

software just needs an input data containing either DNA or protein sequences into a fasta 

format file to be represented as 2D artificial but informative graphs (Figure 2.3). 

  

Figure 2.3.Window 
View of TI2BioP for 
the representation 
of protein four-color 
maps 

http://ti2biop.sourceforge.net/
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Two main types of 2D artificial representations have been implemented so far in the 

software (i) one based on Cartesian representation for DNA strings introduced by Nandy [86] 

and the other inspired on the four-color maps reported by Randic [87]. These two 2D artificial 

graphs were implemented in TI2BioP to represent DNA and protein sequences as well as the 

spectral moments calculations for each type of 2D DNA and protein maps. It is important to 

highlight that TI2BioP can also import files containing 2D structure inferred by other 

professional programs e.g. the RNASTRUCTURE [88] for the calculation of the spectral 

moments as TIs. 

2.3.1. 2D graphical representations of TI2BioP  

Cartesian representation for DNA and RNA 

We used the Cartesian representation reported by Nandy for the calculation of the 

spectral moments as TIs [86, 89]. This 2D representation is obtained by arranging a DNA 

primary sequence into a 2D Cartesian system following the sequential appearance of its 

bases. Purine and pyrimidine bases are placed on the Cartesian system by assigning them 

to X and Y axes, respectively. The representation is built by adding the k-th nucleotide of the 

DNA sequence to the coordinates (0, 0) of the Cartesian system. The first nucleotide is 

placed in the origin of the Cartesian system (0, 0) and it is represented as a square dot 

(figure 2.3.1). The value (1, 0) is assigned if the (k + 1)-th nucleotide is Guanine (rightwards-

step); (-1, 0) if Adenine (leftwards-step); (0, 1) if Cytosine (upwards-step) or (0, -1) if the (k + 

1)-th nucleotide is Thymine or Uracil (downwards-step) in the case of RNA sequences. The 

resulting path gives the overall graphical representation of DNA, though the information on 

the individual steps has been lost. The 2D Cartesian map for the sequence (AGCTG) is 

showed in the figure 2.3.1C; note that the central node contains both Guanine and Thymine 

nucleotides.  

 

 

 

 

 

 

 

 

Figure 2.3.1.Building the 2D-Cartesian map for the 
(A) DNA fragment AGCTG. (B) The coordinates for 
each nucleotide in the Cartesian system. (C) The 
2D-Cartesian map 
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Cartesian representation for proteins 

This representation is based on the graphs introduced by Nandy for DNA sequences 

described above but instead of using the four nucleotides assigned to each axe direction in 

the Cartesian space, all twenty amino acids were grouped into four groups: acid, basic, polar 

and non-polar amino acids [90]. These four groups characterize the physicochemical nature 

of the amino acids in terms of hydrophobicity (H) and polarity (P) [91]. Each amino acid in 

the sequence is placed in a Cartesian 2D space starting with the first amino acid at the (0, 0) 

coordinates. The coordinates of the successive amino acids are calculated as follows: 

a) Decrease by –1 the abscissa axis coordinate for an acid amino acid (leftwards-
step) or: 
b) Increase by +1 the abscissa axis coordinate for a basic amino acid (rightwards-
step) or: 
c) Increase by +1 the ordinate axis coordinate for a non-polar amino acid (upwards-
step) or: 
d) Decrease by –1 the ordinate axis coordinate for a polar amino acid (downwards-
step). 

 

Similar to 2D-Cartesian maps for DNA, more than one amino acid could be assigned to 

one node in the protein map. The information contained in the linear sequence is arranged 

into a 2D space of hydrophobicity and polarity (2D-HP) according to the sequence order and 

amino acid composition of proteins. 2D-HP protein maps provide a topology that depends on 

these two structural features, sequence order and amino acid composition, the same as to 

the real secondary structure.   

The 2D-HP map of the sequence (D1-E2-D3-K4-V5) is showed in the figure 2.3.2. Please 

note that the central node contains both E and K amino acids. 

 

 

 

 

 
 
 
 
 
 

Figure 2.3.2. The 2D-HP map 
(b) assigned to the protein 
fragment DEDKV (a) 
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The figure 2.3.3 shows the complete 2D-HP map for the new RNase III member from 

Escherichia coli BL21 substrain GG1108. Its two major domains are highlighted in red 

(RNase3 domain) and in blue (double-stranded RNA binding motif), respectively. 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.3.3. (a) RNase III protein sequence from Escherichia coli BL21 substrain GG1108 (b) 2D-HP map for 
the RNase III protein. 
 

Four-color maps for proteins 

Protein four-color maps are inspired on Randic‟s DNA/RNA [92] and protein 2D graphical 

representations [87]; but instead of using the concept of virtual genetic code, we have 

constructed the spiral of square cells straightforward from the amino acid sequences [21]. 

The four colours are assigned to the four amino acids classes (polar, non-polar, acid and 

basic) used previously by our group in Nandy‟s representation for proteins [38, 90] (Figure 

2.3.4).  

 

 

 

 

 
 
 
 
Figure 2.3.4. Steps for the four-color map construction for the first nine amino acids of 1 pdb AMU. (A) The first 
nine aminoacids of pdb 1AMU. (B and C) Building the four-color map for this protein fragment. 
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Figure 2.3.5 shows how the four-color map for the first A-domain structurally 

characterized (pdb 1AMU) is built up. The four colors are associated with each one of the 

amino acid groups: polar (green), non-polar (red), acid (yellow), basic (blue). 

 
 
 
 
 
 
 
 
 
 
 

Figure 2.3.5. The final four-color map for pdb 1AMU. 
 

2.3.2. Spectral moments calculation for different 2D graphical representations  

Spectral moments for 2D-Cartesian DNA and RNA maps 

In order to calculate the spectral moments, an edge adjacency matrix B was assigned to 

each graph after the representation of DNA/RNA sequences. B is a square symmetric matrix 

whose non-diagonal entries are either ones or zeroes if the corresponding edges (e) share 

or not one node in the 2D-Cartesian DNA map. These spectral moments are defined as the 

trace of B as is indicated in the equation below.  

 

    1
k

k ΒTrμ   

 

Where Tr is called the trace and indicates the sum of all values in the main diagonal of 

the matrices kB = (B)k, which are the natural powers of B [29]. The different powers of B give 

rise to the spectral moments series (µ0- µ15). The number of edges (e) in the graph is equal 

to the number of rows and columns in B but may be equal or even smaller than the number 

of nucleotide bonds in the sequence. The main diagonal was weighted with the average of 

the electrostatic charge (Q) between two bound nodes. The charge value q in a node is 
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equal to the sum of the charges of all nucleotides placed on it. The electrostatic charge of 

one nucleotide was derived from the Amber 95 force field [93].Thus, it sets up connectivity 

relationships between the nucleotides into the 2D Cartesian map but these interactions are 

characterized electronically providing a pseudo secondary structure for DNA sequences. 

When we apply equation 1 for the calculation of µk values, we are considering the topology 

of DNA pseudo-folding and its electronic features to numerically characterize DNA and RNA 

sequences; therefore we use the term pseudo-folding spectral moment (pfµk) (equation 2)  

 

    2
k

k

p f ΒTrμ   

 

In order to illustrate the calculation of the spectral moments for this type of representation, 

an example is developed in section 1.1 of the annexe 3.  

Spectral Moments for 2D-Cartesian protein maps  

We used the same philosophy for the calculation of spectral moments as TIs described 

for 2D Cartesian maps of DNA/RNA sequences. They were calculated from the adjacent 

matrix B which is modified according to the building of the 2D-Cartesian protein map; also 

called 2D-HP protein map due to the HP nature of the 2D Cartesian space. Thus, we used 

this nomenclature (HPµk) for the spectral moments series from the 2D Cartesian protein maps 

or 2D-HP protein maps. These TIs are analogously calculated as the trace of B (equation 2). 

We used the same property (electrostatic charge) to weight the main diagonal of B but using 

the values for amino acids. 

 

Spectral moments from inferred DNA/RNA secondary structures 

In addition to the development of artificial but informative representations for natural 

biopolymers; there are other approaches for inferring the secondary structure of DNA/RNA 

molecules. The Mfold algorithm implemented in the RNASTRUCTURE 4.0 software [94], 

which is based on the minimization of the folding energy (lowest ΔG), is one of the methods 

to infer DNA and RNA secondary structures. The algorithm generates 2D DNA/RNA maps 

topologies containing stems and loops formed by possible hydrogen bond interactions 

between nucleotides placed at middle and long range in the sequence. This graphical 

information is also provided through the connectivity table (ct files). Ct files contain 

information about the connection between nucleotides in the secondary structure generated 

with thermodynamic models [94]. Ct files containing topological information are imported by 
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TI2BioP to generate the bond adjacency matrix B for the calculation of spectral moments 

(mfµk), based on folding thermodynamics parameters. The main diagonal was weighted with 

the average of the electrostatic charge (Q) between two bound nucleotides as described 

above. 

Spectral moments for protein four-color maps  

To calculate the spectral moments for protein four-color maps, we considered each map 

region as a node made up of the amino acids clustering; two adjacent regions of the map 

sharing at least one edge (not a vertex) are connected. B is calculated in a similar way but 

instead of considering the adjacency relationships between edges, it is set up between 

nodes. The number of nodes or clusters in the graph is equal to the number of rows and 

columns in B. Since a cluster is made up of several amino acids sharing similar 

physicochemical properties, the cluster is weighted with the sum of individual properties (e.g. 

electrostatic charge (q) [93]) of all amino acids placed in a cluster). The main diagonal of B 

was weighted with the average of the electrostatic charge (Q) between two adjacent 

clusters. The calculation of the spectral moments up to the order k = 3 from the four colours 

maps using the first nine amino acids of pdb 1AMU (M1V2N3S4S5K6S7I8L9) is illustrated in 

details in the methods section of annex 4 [21].  

2.3.3. Alignment-free models developed from TI2BioP’s spectral moments 

Spectral moments series were used as alignment-free predictors to develop classification 

models to detect gene/protein members and to calculate alignment-free distances in order to 

reconstruct phylogenetic relationships at low sequence similarities. The classification models 

were built up using the following statistical techniques: 

Linear Models. General Discrimination Analysis  

General Discrimination Analysis (GDA) was selected as the linear statistical technique to 

perform predictors selection (spectral moments from TI2BioP) and to develop alignment-free 

models [95-97]. Both, model and variable selection were based on the revision of Wilk‟s () 

statistics ( = 0 perfect discrimination, being 0<<1). The Fisher ratio (F) was also inspected 

to indicate the contribution of one variable to the discrimination between groups with a 

probability of error (p-level) p(F) < 0.05. 
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Non-linear models. Decision Tree Models (DTM) 

The application of DTM as alignment-free models to protein functional classification and 

to search for protein signatures was introduced for first time in this work. We used the 

Classification and Regression Trees (C&RT)-style univariate split selection from the 

Classification Trees (CT) module of the STATISTICA 8.0 for Windows [98].The Gini index 

was used as a measure of goodness of fit and the ¨Prune on misclassification error¨ was set 

up as an stopping rule to select the right-sized classification tree. 

Artificial Neural Networks (ANN)  

We used the Multilayer Layer Perceptron (MLP) network architecture as the most popular 

network architecture in use today. The selection of the subset of predictors that were most 

strongly related to the response variable was supported on the Feature and Variable 

Selection analysis of the ANN module from STATISTICA software [98]. The right complexity 

of the network was selected by testing different topologies to the MLP while checking the 

progress against a selection set to avoid over-fitting during the two-phase (back 

propagation/conjugate gradient descent) training algorithm [99]. 

Evaluation of Model performance  

The performance of all alignment-free models was evaluated by several statistical 

measures commonly used for classification: accuracy, sensitivity, specificity and F-score (it 

reaches its best value at 1 and the worst score at 0). The prediction power of such models 

was evaluated on the test set (this subset was not used to train the model) and the same 

statistical parameters were applied to show the prediction performance. The area under the 

Receiver Operating Characteristic (ROC) curve, commonly known as AUC was also 

calculated for the training and test sets to evaluate the classifier‟s  performance (a value of 

AUC=1.0 means a perfect predictor and 0.5 a random predictor). 

Validation procedures 

The reliability of the classification models was verified by 10-fold cross-validation (CV) 

procedure on both training and test sets. The CV statistics for each of the ten samples were 

averaged to give a 10-fold estimate for the accuracy, sensitivity and specificity for both 

subsets [100]. The external validation was carried out using the test set as an external set to 

measure the predictability of the alignment-free models. In addition to this external 

validation, new gene/protein sequences (not registered in any database) and proteomes 

were used as real external cases to evaluate the prediction power of the alignment-free 
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models. The predictability (performance in the prediction) was always compared to 

alignment classification algorithms either for the test set or for new isolated sequences.  

2.4. Alignment-based Methods for Functional Classification 

InterPro resource 

This tool combines different protein signature recognition methods native to the InterPro 

member databases into one resource with look up of corresponding InterPro and Gene 

Ontology annotation. The sequence classification was carried out by the InterProScan tool 

[101] looking into the InterPro database [102]. 

Profile Hidden Markov Models (HMM) 

Profiles HMM provide a classification model to predict structural and functional attributes 

for gene/protein families [103, 104]. The HMMER software containing the hmmbuild and 

hmmsearch programs, was used to obtain different profiles HMM [46]. Hmmbuild demands 

an MSA file obtained by any of the MSA methods that will be described below to build the 

profile HMM for a certain gene/protein family. The generated HMM profile is used for the 

hmmsearch to detect DNA/protein signatures against a database. 

Basic Local Alignment Search Tool (BLAST) 

BLAST is a widely used sequence search method to find matches to a query sequence 

within a large sequence database, such as Genbank. Although BLAST does not generate a 

predictive model as profiles HMM; it can be used for classification purposes. The similarity of 

a query sequence to others already annotated in a database is measured through a 

goodness score (S) and an estimate of the expected number of matches (E-value) with an 

equal or higher score than would be found by chance. Whether the query sequence is 

similar enough (positive) or not to others registered is decided based on the score and E-

value threshold [47].  

In this work we used two types of BLAST: 

1. BLASTn search (E-value cutoff = 10e-10) against the NCBI database to contrast the 

annotation of a new ITS2 genomic sequence.  

2. A multiple-template BLASTp reported by the NRPS-PKS database developers for 

NRPS (Adenylation (A), Condensation (C) and Thiolation (T)) domains searches was 
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used [52]. Multiple-template BLASTp consist in using each one of the (A, C and T) 

domain sequences as template to evaluate each query of a certain database by 

BLASTp (E-value=10) using BLOSUM62 scoring matrix and default values for gap 

penalties. The best matches under these conditions were retrieved. Namely, we used 

it to search the A-domain signature against the proteome of the cyanobacteria 

Microcystis aeruginosa. 

 

2.5. Experimental validation 

Although, the prediction performance of our alignment-free models in respect to 

alignment classification methods was assessed using a characterized test set, new isolated 

sequences were evaluated by both approaches as well as the re-annotation of the 

cyanobacteria Microcystis aeruginosa proteome. New sequences were registered at 

Genbank if at least two models (alignment-free models and alignment algorithms) agreed in 

the prediction; if they disagreed then an in vitro experimental test was used for a definitive 

functional annotation. A general experimental procedure was followed to isolate new 

gene/protein members that were used in this further external validation. A new member from 

the ITS2 genomic and the RNase III protein classes was isolated, respectively as follows: 

1. DNA extraction from Escherichia coli and the fungus Petrakia sp. 

2. PCR amplification of the ITS2 genomic sequence from Petrakia sp. and 

amplification of E. coli RNase III gene from Escherichia coli BL 21 strain CG 

1208 

3. Sequencing of both PCR products 

4. Purification and enzymatic assay of recombinant E. coli RNAse III 

The isolation, expression and the cryptic bactericide function of the Cry 1Ab C-terminal 

domain from Bacillus thuringiensis´s endotoxin was indirectly included in this work because 

its sequence was used to evaluate the bacteriocin alignment-free model. Its bactericide 

function was unraveled by the author of this thesis under the supervision of Vázquez-Padrón 

R.I in 2004 [105]. 

2.6. Phylogenetic analysis  

We have declared the hypothesis that our TIs are not only useful for functional 

classification of gene/protein classes but also to infer phylogenetic relationships. So, we 

used distance-based methods to reconstruct phylogenetic relations among different fungal 

classes applying the ITS2 biomarker. The taxon of interest was the fungus Petrakiasp. 

Phylogenetic trees were constructed using the Neighbour-joining (NJ) method. NJ trees 
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were generated from different sequence distance matrices: (1) alignment-based and (2) 

alignment-free distances 

1. Alignment-based distances: Evolutionary distances computed using Jukes-

Cantor (JC), Kimura2-parameter (K2P) and Maximum Composite Likelihood 

(MCL) substitution models were obtained using the MEGA4.  

2. Alignment-free distances: Euclidean distances (Ed) were computed from TIs 

values of sequences involved in the analysis, whereas phylogenetic trees were 

obtained by applying hierarchic clustering methods (furthest neighbor linkage). 

The validation of the classical NJ trees was mainly supported by bootstrap values and 

hierarchic clusters were validated by the cophenetic correlation coefficient. The topology 

consistency of both trees was also evaluated using other distances. 

Multiple sequence alignment (MSA) methods  

We used several MSA methods for different purposes; either to build profiles HMMs to 

search for a certain gene/protein signature in a sequence database or to carry out 

phylogenetic analyses. Depending on the sequence similarity degree of the gene/protein 

families involved in the study, different MSA methods were applied, such as: 

1. CLUSTALW: It uses progressive alignment methods, then progressively more 

distant groups of sequences are aligned until a global alignment is obtained [58]. 

2. DIALIGN-TX: DALIGN-TX is a segment-based multiple alignment tool improved 

for sets of low overall sequence similarity [60].  

3. MAFFT: Multiple Alignment (MA) based on fast Fourier transform (FFT), in which 

an amino acid sequence is turned into a sequence composed of volume and 

polarity values of each amino acid residue. It is suitable for sequences having 

large insertions or extensions as well as for distantly related sequences of similar 

lengths [106].  

CLUSTALW and DIALIGN-TX were run using the default parameters. In the case of 

MAFFT, the iterative alignment option (L-INS-I) was used [40, 41]. 
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3. Results 
 

In this section, the results are supported by the four articles published by the author 

during the thesis period. Each one of the author‟s papers is attached under the heading 

ANNEXES at the end of this manuscript. They are organized from the TI2BioP version 1.0 

implementation until its latest version 2.0 available at http://ti2biop.sourceforge.net/. Both 

software versions were applied to the gene/protein families in the same order given in the 

introduction. Pages belonging to the published works keep the actual journal numbering 

while thesis   s sections follow the appropriate numeration system. 

The results presented herein are related to the application of TI2BioP to the functional 

classification of proteinaceous bacteriocins, RNase III, ITS2 and NRPS A-domains. All these 

classes show high sequence divergence among their members and are related to the drug 

discovery process either by providing secondary metabolites with biological activities 

(bacteriocin and NRPS) or by representing drug targets (RNases III). The methodology was 

also useful to develop alignment-free based techniques applied to phylogenetic inference to 

complement the taxonomy of the Petrakia sp. fungal (putative producer of bioactive 

compounds) isolates using the ITS2 biomarker.  

In general, all papers contain the development of alignment-free models using different 

statistical classification techniques and the TIs generated by TI2BioP as input predictors, for 

functional annotation of the families mentioned above. These models were built with linear 

and non-linear statistical techniques and validated by cross and external validation 

procedures. The applicability of the models was demonstrated by detecting new members 

belonging to each gene/protein class, which were supported by experimental evidences and 

by classical alignment methods. Table 3.1 shows the best reported alignment-free model for 

the functional classification of each gene/protein family involved in the study and the 

procedure carried out to achieve the functional annotation of new members by such models, 

in cooperation with experimental evidences and alignment procedures. The performance of 

the alignment-free models was always contrasted with classical alignment procedures such 

as InterPro and profiles HMM for functional detection of the chosen gene/protein classes 

(Table 3.2). The graphical approach TI2BioP was used to visualize functional relationships 

and also to allow an alignment-free molecular taxonomy driven by numerical indices.  

http://ti2biop.sourceforge.net/
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Table 3.1. Best reported alignment-free models for the functional classification of each gene/protein family 
studied. New detected members of each gene/protein class and the procedure carried out for their functional 
annotation. 

 

Table 3.2. Prediction performance measured through the sensitivity on the test set and the identification of the 
new member for the best reported alignment-free and alignment-based method. When alignment-based 
procedures achieved a sensitivity of 100%, complex algorithms were applied. 

 Alignment-free models Alignment-based procedures 

Gene/protein 
class 

Statistical 
Technique 

Sensitivity 
Test set 

New 
Member 

Prediction 
Alignment 
algorithm 

Sensitivity 
Test set 

New 
Members 
Detection 

 
Protein 

Bacteriocins GDA 66.67% Significant 
hit InterPro 60.2% No-hit 

Genomic 
ITS2 ANN 92.59% Significant 

hit 

Profile 
HMM 

(MAFFT) 
66.66% Significant 

hit 

RNase III DTM 96.07% Significant 
hit 

Profile 
HMM 

(modified) 
100% Significant 

hit 

A-domains 
NRPS DTM 100% Significant 

hits 
profiles 
HMM 100% Significant 

hits 
 

Gene/protein 
class 

Control 
Group 

2D-
Graph 
Type 

Best-
Reported 

Alignment-
Free Model 

New Detected 
Members 

Annotation 
Procedure 

Protein 
Bacteriocins 

CATH 
domains Cartesian GDA 

Cry 1Ab C-terminal 
domain Bacillus 

thuringiensis 

1- Alignment-
free prediction 
2- Experimental 
evidences 

Genomic 
ITS2 

5´and 
3´UTRs 

Cartesian  
and 

Mfold 
ANN ITS2 genomic 

Petrakia sp. 

1-Alignment-
free prediction 
2- Homology-
based 
prediction 

RNase III 

Non-
redundant 

subset 
(enzymes 
and non-
enzymes) 

PDB 

Cartesian DTM 
Rnase III 

E coli BL21 substrain 
CG 1208 

1- Alignment-
free prediction 
2- Homology-
based 
prediction 
3- Experimental 
evidences 

A-domains 
NRPS 

CATH 
domains 

Four-
color map DTM 

5 hits in the proteome 
of Microcystis 

aeruginosa 
No registration 
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4. Discussion 
 

This thesis was inspired on previous works carried out with the MARCH-INSIDE 

methodology to annotate biological functions in gene/protein classes from plants. We had 

previously reported the 2D-Cartesian representation for proteins and its numerical 

characterization through sequence coupling numbers calculated by such method 

graphical/numerical method [90]. Coupling sequence numbers are calculated in analogy to 

other stochastic molecular descriptors using the Markov Chain Theory. MARCH-INSIDE 

software provides stochastic molecular descriptors calculated from a node adjacency matrix 

whose elements are transition probabilities between the connected nodes [72]. Thus, we 

published the first alignment-free model built up with coupling numbers derived from this 

graphical representation to functionally classify polygalacturonase (PG) members from 

plants [90]. The PG family is the most intensively studied of all cell wall modifying enzymes 

expressed during the ripening process [107]. PG members were detected with high accuracy 

by our reported alignment-free model. Despite the fact that this study opened a door to the 

application of graphical methods in bioinformatics for the detection of functional signatures in 

protein families, its usage was still limited [18, 90]. Members of PG protein class show high 

sequence similarity and consequently classical alignment procedures provide an excellent 

performance to detect functional signatures at such high similarity level. Alignment 

algorithms are the most popular techniques in bioinformatics; they are based on similarity 

measures (number of nucleotides/amino acids matches) between a new gene/protein 

member against others registered in a database or against a sequence family profile to 

predict functional and structural attributes of new members [47, 108]. These methodologies 

(e.g. BLAST, Pfam, InterPro) have a friendly interface for undemanding users to search for 

sequences as well as for structural and functional classifications, but they show a low 

performance in detecting members belonging to highly diverse gene/protein families [19, 61, 

63]. Several authors have provided evidence that the reliability of the predicted biological 

function dramatically decrease when protein families have pair-wise sequence similarities 

below 50% [57, 61, 84]. It has been also reported a twilight zone for the alignment algorithms 

where it is difficult to produce accurate alignments for proteins that share less than 30-40% 

of identity [61, 62]. Alignment-dependent algorithms ignore structural information beyond the 

linearity of the sequence, e.g. long-distance interactions. They are focused only on „positive‟ 

samples (protein family members) in the dataset without any contribution of „negative‟ 

samples (non-members) to the training of the algorithms. Other weakness of these methods 
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arises when a query sequence is similar to genes/proteins lacking functional annotations 

[109]. In addition, phylogenetic inferences relying on MSA methods are not reliable when 

gene/protein sequences show functional similarities but have greatly diverged [57].  

Nevertheless, the first reported alignment-free model based on 2D-Cartesian protein 

maps using stochastic molecular descriptors was rather illustrative than useful to overcome 

the limitations of alignment algorithms [90]. Afterwards, the 2D-Cartesian protein 

representation was numerically characterized through stochastic spectral moments to detect 

a particular RNAse III member (Pac 1) among several different proteins of this class [110]. 

Methods based on sequence alignments have revealed a low amino acidic identity (20-40%) 

for the pac1+ gene product with other typical RNases III. However, experimental 

observations have shown RNAse activity for the Pac1 protein [111]. These evidences 

represented a motivation for developing alignment-free models based on graphical 

approaches as an alternative to traditional alignment procedures for functional annotation. 

The first results were encouraging because a simple linear equation could detect signatures 

of the RNAse III from a highly diverse dataset and with a higher accuracy than that achieved 

using alignment procedures [110]. This report provided some clues about the potential of 

graphical/numerical approaches as alternative tools to detect remote homologous due to 

their alignment-independence.  

Considering these previous promising studies, we aimed to overcome such alignment 

limitations when using highly diverse gene/protein families through the creation of TI2BioP 

software as a new platform comprising several graphical approaches for DNA/RNA and 

proteins and its numerical characterization through simple TIs [112]. The TIs consist in the 

bond spectral moments introduced by Estrada which has been the inspiration for other 

stochastic molecular descriptors mentioned before [29] (annex 1). The use of different 

graphical approaches allows extracting different sequence information contained into these 

natural biopolymers and provides flexibility and diversity to the spectral moments 

calculations. These TIs were considered as alignment-free predictors for the development of 

classification models to annotate biological functions of gene/protein classes sharing low 

sequence similarity. They were also used to unravel functional and phylogenetic 

relationships using graphical and numerical sequence characterizations [8, 19, 38]. 

Although the gene/protein families selected to highlight the utility of TI2BioP show high 

sequence divergence among their members, they have also played an important role in the 

drug discovery process from natural sources. The bacteriocin protein class was the first 
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study case used to validate our methodology (annex 1). Bacteriocins are proteinaceous 

compounds of bacterial origin that are lethal to bacteria other than the producing strain. They 

have attracted attention as potential substitutes for, or as additions to, currently used 

antimicrobial compounds and also as probiotics [113]. 

The bacteriocin protein family is highly diverse in terms of size, method of killing, method 

of production, genetics, microbial target, immunity mechanisms and release, which 

contribute to its low pair-wise sequence similarity (23-50%). This makes bacteriocin 

classification a challenge based on alignment procedures [114], demanding the 

implementation of complex strategies [115, 116]. Since hydrophobicity and basicity are 

major criteria for the bactericide activity of bacteriocins, we clustered the 20 natural amino 

acids into four groups according to their hydrophobicity (H) and polarity (P) properties (polar, 

non-polar, acidic or basic amino acid [91]. Amino acids were placed into the 2D Cartesian 

system according to those (HP) properties arranging the sequence in a 2D-HP space. Using 

this artificial protein representation, spectral moments series (HPµk) from an adjacency matrix 

of edges were calculated for the first time. Using HPµk series, a simple alignment-free model 

supported by linear statistical techniques was built up. Our model was effective to detect 

bacteriocin proteins from a highly diverse dataset made up of non-redundant CATH domains 

and bacteriocin sequences, retrieving 66.7% of the bacteriocin-like proteins from an external 

test set while the InterPro resource could just detect 60.2%. To our knowledge, this is the 

first report where an alignment-free model based on a graphical approach outperforms a 

popular alignment-based resource for functional sequence annotation. Due to the diversity of 

the protein bacteriocin class, the InterPro resource either had significant similarity matches 

to functional domains unrelated to the bactericidal function per se or did not find significant 

matches with any integrated sequence into this resource (results and discussion are detailed 

in annex 1).  

On the other hand, clustering the 20 amino acids into four HP classes in a 2D Cartesian 

space provides graphical profiles which are generated by both the sequence order and the 

amino acid composition. Thus, such graphical profiles contain useful information beyond the 

primary structure. The calculated TIs captured numerically the essence of this artificial 

representation allowing the development of highly predictive models for bacteriocins 

detection. In fact, a remote bacteriocin homologous was detected in the Cry 1Ab C-terminal 

domain from Bacillus thuringiensis´s endotoxin, which had not been detected by classical 

alignment methods. Although bacteriocins and Cry 1Ab C-terminal domain share common 

biological features and function (explained in annex 1), their sequences are completely 
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different and consequently placed into two different protein classes by alignment procedures. 

The functional relationship between both protein classes had been assessed by 

experimental procedures in previous reports but no bioinformatic method was able to unravel 

it. TI2BioP methodology predicted successfully the bacteriocin function of the Cry 1Ab C-

terminal either by using the generated alignment-free model or by the superposition of the 

2D-Cartesian maps for Cry 1Ab C-terminal domain to other representative bacteriocins. This 

sort of 2D graphical alignment provided clues about the functional relation between them [8]. 

This graphical analysis has been useful to visualize similarities/dissimilarities between 

different protein classes in previous reports [90, 110].  

The discovery of new bacteriocins contributes to the development and design of 

probiotics and antibiotics of narrow spectrum that prevent the arising of microbial resistance. 

Particularly, the bactericide Cry 1Ab C-terminal domain could be used in biotechnology 

either for developing positive selection cloning vectors or for regulating the growth of E. coli 

cultures. 

Following the success of using 2D-HP maps for detecting distant homologues in the 

bacteriocin protein class, we applied them to detect RNAse III protein members through the 

calculation of the spectral moments (annex 2). RNase III family shows high diversity among 

its members regarding to the primary structure and domain organization. The homology 

among different RNase IIIs varies from 20 to 84% placing many of them into the twilight zone 

[117]. Additionally, the number and complexity of both ribonuclease and double stranded 

dsRNA binding domains in the RNase III architecture are also variable. In fact, this protein 

class is subdivided into four subclasses represented by four archetypes (bacterial RNase III, 

fungal RNase III, Dicer and Drosha) and their variable structural features also provide 

diversity in their biological role in the cell. Members from RNase III class have been 

characterized, specifically those involved in host defense promoting the release of cationic 

proteins from eosinophilic leukocytes [118]. Dicer and Drosha are responsible for the 

generation of short interfering RNAs (siRNAs) from long double-stranded RNAs during RNA 

interference (RNAi). Therefore, they are involved in several important biological processes 

with high biological and molecular diversity [119]. For instance, the function of Dicer on the 

vascular system regulates the embryonic angiogenesis probably by processing micro RNAs 

(miRNA), which regulate the expression levels of some critical angiogenic regulators in the 

cell [120]. Drosha activity is related to the processing of small nuclear RNAs sharing 

common features with the biogenesis of naturally occurring miRNA. Such miRNAs are likely 
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to be involved in most biological processes by affecting gene regulation. These facts show 

the relevance of RNase III as an interesting source to search drug or drug-target candidates 

for drug development [121].  

Spectral moments (HPµk), derived from the 20 amino acids clustering into a 2D-HP 

Cartesian space, were used to develop three different non-linear approaches to detect 

RNase III protein signatures against a structurally non-redundant subset of the PDB. The 

electrostatic charge of each amino acid was used for the calculation of the spectral moments 

series to build alignment-free models. Two alignment-free models were obtained, Decision 

Tree Models (DTMs) and Artificial Neural Networks (ANNs), to predict RNase III members. 

Profiles HMM were additionally used as an alignment-dependent algorithm to compare the 

performance of these two previous models in the classification of RNase III class members. 

A non-classical profile HMM, inspired on the graphical clustering of the amino acids was 

built, to make a fair comparison among classification models. Such profile HMM consisted in 

reducing the amino acid alphabet, clustering them according to their electric charges.  

Nonlinear classification models e.g. ANNs, Support Vector Machines (SVMs) and DTMs 

are more complex functions than linear discriminant based models. The relationship 

between predictors and the response variable in nonlinear functions is hard to interpret, 

contrary to the ability of linear models to easily measure the effect of predictors over the 

response variable. However, machine learning methods that use nonlinear functions like 

ANNs and Support Vector Machine (SVM) have been more frequently applied to the 

prediction of proteins structure and function [122-125] together with traditional alignment 

algorithms and probabilistic functions such as profiles HMM and Bayesian networks [49, 

108, 124, 126]. While nonlinear models have been applied for several purposes in 

bioinformatics, DTMs have been poorly explored to annotate biological function of proteins 

despite their widespread use in other fields [127]. We reported for first time a simple and 

interpretable DTM to annotate the function of RNase III members using spectral moments as 

input predictors. The reported DTM showed a high predictive power (96.07%) using just one 

spectral moment at different splitting values while ANNs provide a lower predictability 

(92.15%). As mentioned before, ANNs were also evaluated as non-linear method for RNase 

III classification and its predictability was similar to the DTM but using a more complex 

function (see results in annex 2).  

The non-classical profile HMM showed the best performance in the classification of 

proteins involved in this study. It reached the highest prediction rate (100%) for the RNase III 
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class in respect to ANN and DTM performance. Amino acid clustering according to its 

hydrophobic/charge properties was either effective at primary level to increase the sensitivity 

of the profile HMM to retrieve all RNase III members or at 2D level to develop high predictive 

alignment-free models like DTM.  

The strategy of developing non-classical profiles HMM could be applied to other highly 

diverse protein families to retrieve remote homologous. In addition, it confirmed that amino 

acid clustering according to its physicochemical features into 2D protein maps bear a 

biochemical sense to annotate biological functions. Though, the non-classical profile HMM 

showed a slightly better performance than the alignment-free models, their generation 

demands programming skills while DTM search resulted the easiest way to detect the 

RNase III signature among the diversity of the dataset. 

We have also validated the simplicity of DTM by predicting a new bacterial RNase III 

class member that was isolated and subsequently enzymatically tested and registered by 

our group (see annex 2). The efficiency of DTM as a sequence search procedure to screen a 

proteome in conjunction with TIs implemented in the TI2BioP software has been 

emphasized in annex 4 [21]. 

We have so far evaluated the TIs generated by TI2BioP as alignment-free classifiers in 

protein families. They should also be assessed in a gene family to prove their ability to 

characterize DNA sequences and for reconstructing phylogenies. For such purposes and 

with the aim to compare different graphical approaches, we used the original 2D Cartesian 

representation reported by Nandy for describing DNA sequences [86] and the secondary 

structure inferred by DNA folding algorithms (Mfold) [88], to derive two types of TIs for the 

ITS2 gene class (see annex 3). 

The ITS2 eukaryotic gene class shows a high sequence divergence among its members, 

which have traditionally complicated ITS2 annotation and limited its use for phylogenetic 

inference at low taxonomical level analyses (genus and species level classifications). 

Despite its high sequence variability, the ITS2 secondary structure has been considerably 

conserved among all eukaryotes [128]. This fact was considered in the implementation of 

homology-based structure modelling approaches to improve the ITS2 annotation quality and 

to carry out phylogenetic analyses at higher classification levels or taxonomic ranks for 

eukaryotes [51, 82, 128]. Thus, the ITS2 database (http://its2.bioapps.biozentrum.uni-

wuerzburg.de) was developed holding information about sequence, structure and taxonomic 
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classification of all ITS2 in GenBank [129]. Due to ITS2 sequence diversity, the annotation 

pipeline implemented in the aforementioned resource required the use of a specific score 

matrix in the BLAST search [129] and more recently, the use of profiles HMM based on 

conserved flanking regions (5.8S/28S rRNA) for the identification and delineation of ITS2 

sequences [82, 130]. Although alignment based methods have been exploited to the top of 

its complexity to tackle the ITS2 annotation and phylogenetic inference [82, 129], no 

alignment-free approach has so far been able to successfully address these issues.  

The use of the spectral moments series containing information about the sequence and 

structure of ITS2 was useful for ITS2 prediction and for phylogenetic reconstruction at high 

taxonomic levels in eukaryotes. Such TIs were derived from two types of DNA graphs by our 

TI2BioP methodology. The 2D-Cartesian representation for DNA sequences reported by 

Nandy and the 2D-DNA structure inferred by the Mfold algorithm were used to obtain the 

spectral moments from the edge adjacency matrix of both graph types (annex 3). Both 2D-

DNA representations were previously used to derive stochastic molecular descriptors to 

develop alignment-free models for ribosomal and ACC oxidase RNA classes from Psidium 

guajava, respectively [131, 132]. These models obtained from graphical/numerical 

approaches represented the first ones to classify RNA sequences without alignments. 

However, they were evaluated in RNA classes having high conservation degree and using 

small sized datasets. Such reports and others related to protein classes were the 

background of our current work.  

Linear and ANN-based models were developed as alignment-independent models using 

two types of spectral moments calculated by TI2BioP; one type derived from the 2D-

Cartesian DNA representation [86, 133] and the other resulting from the Mfold 2D structure 

[88]. They both were used to classify ITS2 members among large datasets (4 355 ITS2 and 

14 657 UTRs) and Mfold TIs were also applied to estimate phylogeny at higher taxonomic 

levels than genus and species in fungi. ANN-models provided a better performance to 

classify ITS2 genomic sequences than linear models in training and test sets for Nandy-like 

and Mfold structures, respectively. These results supported that the identification of gene 

signatures tend to be better when assessed with non-linear models. Although ANN-models 

built with TIs derived from Nandy-like and Mfold structures displayed an excellent 

performance to detect the ITS2 class; the Mfold graphical approach provided the best 

classification results. Mfold TIs contain structural information about DNA folding driven by 

thermodynamic rules, providing a more accurate description of the DNA/RNA structure. This 
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is the reason behind the application of Mfold TIs as an alignment-free approach to infer 

phylogenetic relationship to complement the taxonomy of a fungal isolate (see annex 3). 

The Nandy-like representation is less accurate in the classification process due to its 

artificial nature even though it carries the sequence order information and the nucleotide 

composition, which are important features for the recognition at a genome scale of genes 

that do not encode for a protein [134, 135]. Thus, the utility of this easy structural approach 

is evidenced when the correct 2D structure is not available (i.e. the physiological structure 

that occurs on the cell) and can only be obtained by predictions based on free energy 

minimizations. 

The performance of ANN-models derived from Nandy-like and Mfold structures were 

compared with several profiles HMM generated from MSA performed with CLUSTALW [58], 

DIALIGN-TX [60] and MAFFT [106] using different training sets, to classify the test set and to 

identify a new fungal member of the ITS2 class. Due to the low similarity level amongst the 

ITS2 sequences, we used DALIGN-TX and MAFFT that are expected to outperform 

CLUSTALW in such conditions. Performing a good alignment is a crucial step to generate a 

profile HMM with high classification power. The performance of alignment-free models was 

higher than the obtained by profiles HMM to classify the test set and to identify a new fungal 

member of the ITS2 class, even when they were built by MSA algorithms improved for sets 

of low overall sequence (annex 3, table 3). This new ITS2 sequence was isolated by our 

group (GenBank accession number FJ892749) from an endophytic fungus belonging to the 

genus Petrakia. Members of this fungal genus have been hard to be placed taxonomically 

and are potential producers of bioactive compounds [136]. We classified our fungal isolate 

as a mitosporic Ascomycota/Petrakia sp. according to its mycological culture features, as 

there is not a report with a detailed taxonomy about this genus, namely in the NCBI 

dedicated „Taxonomy‟ database. There is not specification about its subphylum and class 

[137] and the lack of other ITS2 sequences from different species of the genus Petrakia (with 

the exception of our sequence submission at the GenBank) precluded performing a 

phylogenetic analysis at the species level (low-level analysis). So, a higher-level 

phylogenetic study involving the Ascomycota phylum members sharing ITS2 sequence 

similarities with Petrakia may provide more details about its taxonomy into this phylum. We 

assumed that our fungal isolate belonged to the Pezizomycotina subphylum, the largest 

within Ascomycota phylum, according to a recent classification found in the "The dictionary 

of the Fungi" [138]. Consequently a higher-level phylogenetic analysis to elucidate the class 
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where Petrakia sp. belongs to was carried out using two different types of distance trees: (1) 

a traditional one based on multiple alignments of ITS2 sequences and (2) another 

irrespective of sequence similarity supported by Mfold TIs from the TI2BioP methodology. 

The alignment-free distances calculated from Mfold TIs provided similar phylogenetic 

relationships among the different classes of the Ascomycota phylum in respect to the 

traditional phylogenetic analysis (i.e. based on evolutionary distances derived from a multiple 

alignment of DNA sequences). Both phylogenetic analyses, the traditional and the 

alignment-free clustering, placed Petrakia isolate into the Dothideomycetes class. We 

concluded that our alignment-free approach is effective to construct hierarchical distance-

trees containing relevant biological information with an evolutionary significance (see annex 

3). 

Up to now we have only used 2D Cartesian graphs to derive the spectral moments series 

to describe several gene/protein classes with high divergence degree between its members. 

Although these 2D graphs were useful to unravel functional relationships for distant 

homologous of these families, either by direct visualization or by development of 

classification models, there are other 2D graphical approaches reported for DNA and 

proteins that have been mostly unexplored in bioinformatics; such is the case of the four-

color maps introduced by Randić [87, 92]. We implemented protein four-color maps in 

TI2BioP version 2.0 to provide TIs as alignment-free predictors, which can cooperate with 

traditional homology search tools (e.g. BLAST, HMMs) to carry out an exhaustive exploration 

of functional signatures in highly diverse gene/protein families. These 2D graphs are inspired 

on Randić‟s DNA/RNA and protein four-color maps, but with some modifications to speed up 

graph building and facilitate the calculation of spectral moments as TIs (see annex 4) [21]. 

A deep exploration of functional signatures in highly diverse gene/protein families should 

reveal the presence of remote homologous. Remote homologues are divergent gene/protein 

sequences that have conserved the same biological function in different organisms. They 

can be harvest in the alignment algorithms twilight zone (<30% of amino acid identity) and 

have been traditionally detected by the use of more sensitive alignment-based methods like 

PSI-BLAST [47] an profiles HMM [46]. Also complex alignment strategies have been 

adopted such as the ensemble of homology-search methods to overcome poor sequence 

similarity in gene/protein classes [50, 82].  

The NRPS family can harbor remote homologous due to the high sequence divergence 

among its A-domains, ranging mostly from 10-40% of sequence identity. Consequently, 
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many of them are placed in the twilight zone (20-35% sequence identity) reported for the 

alignment methods [139-141] (figure 2, annex 4). In fact, A-domain members cannot be 

retrieved easily by BLASTp using a single template [52]. NRPSs are megasynthetases 

composed by several domains organized in clusters for the synthesis of oligopeptides with 

biological activities including natural drugs. A-domains are a mandatory component for each 

NRPS cluster, being responsible for the amino acid selection and its covalent fixation on the 

phospho-pantethein arm as thioester, through AMP-derivative intermediates during the 

production of oligopeptides via non-ribosomal biosynthesis [104]. To cope with the high 

sequence divergence of A-domains, we propose an ensemble of homology-search methods 

that integrates an alignment-free model that uses TIs derived from protein four-color maps 

[21].  

Randić et al. introduced four-color maps to visualize similarities/dissimilarities between 

DNA sequences but also characterized numerically such DNA maps to gain a deeper insight 

into their similarities/dissimilarities when the number of differences among DNA sequences 

increased (possibly along with the length of the sequences). DNA four-color maps showed a 

high sensitivity to capture nucleotide changes but their numerical characterization was 

complicated, involving the definition of a distance matrix subdivided into 10 submatrices and 

finally providing a 10-dimensional vector for each DNA sequence [92]. Later, this author 

extended the same representation to inspect similarities/dissimilarities among protein 

sequences but turning protein alphabet into DNA sequences using the virtual genetic code 

concept. Their numerical characterizations were similar to those reported for DNA 

sequences; arriving to a 10-component vector but containing more structural information 

[87]. Although four-color maps were introduced with success to describe visually/numerically 

DNA and protein sequences, its application was illustrated for single sequences; the coding 

sequence of the exon 1 of the human b-globin gene and the A chain of human insulin, 

respectively. Their limited application in bioinformatics may be due to its complicated 

numerical characterization, especially for proteins demanding the use of a virtual genetic 

code and a 10-dimensional vector. We overcame this limitation by drawing the spiral of 

square cells straightforward from amino acid sequences avoiding the use of the virtual 

genetic code. The four colors are assigned to the four amino acids classes (polar, non-polar, 

acid and basic) used previously by our group in Nandy‟s representation for proteins [38, 90]. 

Grouping the amino acids into four classes reduced the number of regions in the graph, 

making it simpler than if we would group them according to their 20 natural types. This same 

concept was used for the 2D-Cartesian representation for proteins discussed above. Both 
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protein representations (i.e. 2D-Cartesian and four-color maps) are similar to Nandy and 

Randić representations for DNA sequences but showing a major degeneracy degree since 

different amino acids can be placed in the same node or region of the graph, respectively. 

Such degeneracy produced by the amino acid clustering into four classes is useful to 

describe homologous sequences (replacement made with amino acids of similar properties) 

and remote homologous (important changes in the primary structure but still retaining the 

same biological function). While small changes in the sequence do not affect the topology of 

the map, this kind of amino acid substitution produces implicit numerical changes in the 

calculation of TIs making sequences differentiation possible. When an amino acid exchange 

occurs between different physicochemical groups of amino acids, this change affects the 

topology of the map and consequently affects significantly the TIs values estimation. The 

topology of the 2D-Cartesian and protein four-color maps is determined by the sequence 

order and its amino acid composition (amino acid content according to the four groups 

mentioned above) and its essence is numerically captured by their respective spectral 

moments (annex 4) [21].  

Under this scenario we evaluated in annex 4, the potential of the spectral moments 

derived from protein four-color maps to generate high predictive alignment-free models to 

detect the A-domain NRPS signature among a benchmark dataset. We used a dataset made 

up of CATH domains sharing less than 30% of sequence identity and cleaned from any A-

domain signal and A-domains from experimentally characterized NRPS clusters that share 

10-40% of sequence identity. The spectral moments series were used to develop several 

alignment-free models using linear and nonlinear statistical techniques. Nonlinear models 

showed a better performance in classifying A-domains in respect to linear models, 

supporting previous results. DTM was selected among the nonlinear models due to its 

excellent performance and its simple way to detect A-domains in a highly diverse dataset. 

These results agreed with those obtained for the RNase III class, where a DTM showed the 

best classification performance among all alignment-free models. Additionally, the DTM 

based on our graphical/numerical method was contrasted to other different alignment-free 

approaches and homology-search methods in detecting A-domains on the same dataset. 

The Webserver PseAAC (http://www.csbio.sjtu.edu.cn/bioinf/PseAAC/) was used to 

generate alignment-free DTM based on amino acid composition (AAC) and pseudo amino 

acid composition (PseAAC) [142]. On the other hand, homology-based methods for A-

domains detection were performed by single-template BLASTp, multi-template BLASTp and 

http://www.csbio.sjtu.edu.cn/bioinf/PseAAC/
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profile HMM. These alignment-based methods show by definition different sensitivity to 

recognize distant homologs.  

The DTM generated by four-color maps outperformed the DTM supported by AAC and 

PseAAC (annex 4, table 4). Although A-domains share 10-40% of sequence identity with 

several members placed in the twilight zone, it was possible to retrieve all of them using 

four-color maps. The other two left alignment-free models (AAC and PseAAC) showed lower 

sensitivity but they did not provide many false positives (annex 4, table 5). It was also 

demonstrated the effect of the sequence order besides the AAC on the prediction quality; 

when the PseAAC concept was applied, there was an improvement in all standard 

classification measures (annex 4, table 4). Regarding homology-based methods sensitivity, 

classification results agreed with the fact that multi-template BLASTp and profile HMM are 

more sensitive than simple BLASTp. Both multi-template BLASTp and profile HMM easily 

retrieved all A-domain members at expectation values (E-value≤10) without reporting any 

false positive (annex 4, table 5). However, the BLASTp search using a single template 

provided false positives (significant matches) among CATH domains at both high (E-

value=10) and relatively stringent cut-offs (E-values<0.05), which is considered statistically 

significant and useful for filtering easily identifiable homologs pairs [43, 143] (annex 4, table 

5). False positives came up in simple BLASTp searches despite we had cleaned the 

negative set (CATH domains) from any A-domain signal (by the use of profile HMM-based 

searches). In contrast to multi-template BLASTp and profile HMM searches, the single-

BLASTp search sensitivity did not show stability in identifying the A-domain signal among a 

benchmark dataset (CATH domains) when the classification parameter (E-value cut-off) was 

changed. Thus, due to the A-domain diversity, it is less reliable to extrapolate or apply 

BLASTp searches using a single A-domain template to an unknown test dataset such as an 

entire proteome. Therefore, the easy and reliable identification of A-domains by multi-

template BLASTp, profile HMM and four-color maps have been combined to explore the A-

domain repertoire in the proteome of the cyanobacteria Microcystis aeruginosa NIES-843 

[21]. 

The cyanobacteria Microcystis aeruginosa contains NRPS proteins as hybrids with 

polyketide synthases (PKS) being its proteome a good test set to explore the complete A-

domain repertoire leading to the detection of new A-domain variants. We carried out for first 

time an alignment-free search for the A-domain signature in combination to homology-

search methods against the Microcystis aeruginosa proteome. Thus, multiple-template 
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BLASTp and profile HMM searches for A-domains were also performed to deeply explore 

the repertoire of this protein signature in such proteome. The knowledge of the complete 

repertoire of A-domains in the proteome of cyanobacteria species may allow unraveling new 

NRPS clusters for the discovery of novel natural products with important biological activities. 

Interestingly, DTM detected two putative A-domain signatures among proteome‟s 

hypothetical proteins while another three hypothetical proteins were detected as A-domains 

by the profile HMM (annex 4, figure 4). Sequence search methods based on profiles 

(graphical and alignment) were able to detect more hits than the 20 A-domains already 

annotated in the proteome, which were confirmed by the multi-template BLASTp. 

Hypothetical proteins are greatly expanded in cyanobacteria and have been placed into the 

diversity of the nuclease superfamily by homology inference. Probably the graphical and 

HMM profiles detected signals of the A-domain signature among the highly diverse 

hypothetical proteins, leading us to the discovery of new A-domains variants. 

Both methods detected different additional hits as A-domains but they were found among 

the hypothetical proteins, which is a good clue for the presence of A-domains remote 

homologues in the proteome of Microcystis aeruginosa. The use of an ensemble of 

sequence search methods provides a more exhaustive description of certain protein class 

since each method extracts different features from protein sequences; their integration 

provides a higher yield for the detection of remote protein homologous with more confidence. 

This is the first report where a graphical-based method worked well in cooperation with 

alignment procedures to search for remote homologous, a whole challenge for current 

bioinformatics [21].  

The main goal of this thesis is to provide evidence of the potential use of 

graphical/numerical approaches to characterize DNA/RNA and proteins. This new tool is not 

in competition with currently available “tools” such as BLAST, profile HMM, FASTA and other 

computer software, but instead in cooperation with existing methodologies, as well as with 

experimentation procedures required to overcome hard comparative studies of DNA, RNA, 

proteins, and even proteomes [2].  

 



 



 

 

 

 

 

 

 

 

CONCLUSIONS
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

gisselle
Typewritten Text



 



 
  

FCUP   48 
                              A Graphical and Numerical Approach for Functional Annotation and Phylogenetic Inference 

 
 

 
 

5. Conclusions 
 

1. The Cartesian representation and the four-color maps reported for DNA/RNA 

sequences were extended to characterize graphically protein sequences. These 

graphical approaches allowed the successful application of the spectral moments to 

encode numerically relevant structural information of the natural biopolymers 

(DNA/RNA and proteins). Such graphical/numerical extension was implemented in 

the TI2BioP software. 

2. Spectral moments were useful to develop reliable alignment-free models to detect 

functional signatures from highly diverse gene/protein classes. A new bacteriocin, 

ITS2 and RNase III member were detected by alignment-free models in cooperation 

either to experimental evidences or to alignment procedures.  

3. Alignment-independent models outperformed alignment algorithms in detecting 

accurately all members of the ITS2 and bacteriocin class. They showed a similar 

performance for other classes (RNase III and NRPS A-domain) in respect to 

improved alignment strategies. 

4. Remote homologous were detected for the bacteriocin protein class and for NRPS A-

domains in cooperation with experimental evidences and advanced alignment 

procedures, respectively. 

5. TIs calculated from graphical approaches were introduced for the first time to 

construct hierarchical distance-trees with similar topology to classic distance-trees. 

This fact gives clues about the relevant biological information that bear such TIs and 

its potential use for molecular evolution. 

5.1. Future Directions 
 

1. Further characterization of the hypothetical proteins that were detected with the A-

domain NRPS signature in the proteome of Microcystis aeruginosa by assembling 

sequence-search methods. To extend such methodology to other proteomes with the 

aim to spot new NRPS clusters.  

2.  The implementation of other 2D representation for DNA and proteins in TI2BioP 

software for structural and functional classification purposes. 

3. To assess the suitability of our TIs derived from the 2D graphs in estimating 

phylogenetic distances by using a benchmark dataset (simulated sequences). 
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4. To improve our evolutionary approach providing alignment-free distances defined 

within an evolutionary framework. 
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Abstract Bacteriocins are proteinaceous toxins produced

and exported by both gram-negative and gram-positive bac-

teria as a defense mechanism. The bacteriocin protein family

is highly diverse, which complicates the identification of

bacteriocin-like sequences using alignment approaches. The

use of topological indices (TIs) irrespective of sequence

similarity can be a promising alternative to predict protein-

aceous bacteriocins. Thus, we present Topological Indices to

BioPolymers (TI2BioP) as an alignment-free approach

inspired in both the Topological Substructural Molecular

Design (TOPS-MODE) and Markov Chain Invariants for

Network Selection and Design (MARCH-INSIDE) method-

ology. TI2BioP allows the calculation of the spectral

moments as simple TIs to seek quantitative sequence-func-

tion relationships (QSFR) models. Since hydrophobicity and

basicity are major criteria for the bactericide activity of

bacteriocins, the spectral moments (HPlk) were derived for

the first time from protein artificial secondary structures

based on amino acid clustering into a Cartesian system of

hydrophobicity and polarity. Several orders of HPlk charac-

terized numerically 196 bacteriocin-like sequences and a

control group made up of 200 representative CATH domains.

Subsequently, they were used to develop an alignment-free

QSFR model allowing a 76.92% discrimination of bacterio-

cin proteins from other domains, a relevant result considering

the high sequence diversity among the members of both

groups. The model showed a prediction overall performance

of 72.16%, detecting specifically 66.7% of proteinaceous

bacteriocins whereas the InterProScan retrieved just

60.2%. As a practical validation, the model also predicted

successfully the cryptic bactericide function of the Cry 1Ab

C-terminal domain from Bacillus thuringiensis’s endotoxin,

which has not been detected by classical alignment methods.

Keywords Bacteriocin � Topological indices �
Spectral moments � Alignment methods �
Artificial secondary structure

Introduction

Bacteriocins are proteinaceous toxins produced and

exported by both gram-negative and gram-positive bacteria
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to inhibit the growth of similar or more distant bacteria

species (de Jong et al. 2006; Hammami et al. 2007). Bac-

teriocins can be applied as food preservatives (Cotter et al.

2005) and are of great interest for novel antibiotics

development (Gillor et al. 2005) and as a diagnostic agents

for some cancers (Cruz-Chamorro et al. 2006; Sand et al.

2007). The classical way to identify a bacteriocin includes

the determination of its biological activity, which is

accomplished by the extensive testing of the (putative)

producer strain ability to inhibit the growth of other

bacteria.

The bacteriocin family includes a diversity of proteins in

terms of size, method of killing, method of production,

genetics, microbial target, immunity mechanisms, and

release. Given such high diversity, bacteriocin classifica-

tion has been challenging (Cotter et al. 2006). The few

bioinformatics approaches developed to identify bacterio-

cins recognize putative open-reading frames (ORFs) based

on sequence alignment (Dirix et al. 2004; Stein 2005)

demanding the implementation of complex strategies due

to the low conservation of the bacteriocin protein class.

The use of topological indices (TIs), irrespective of

sequence similarity, can be a promising alternative to

predict proteinaceous bacteriocins (Estrada and Uriarte

2001; Gonzalez-Diaz et al. 2008; Gonzalez-Diaz et al.

2007c). Thus, we present Topological Indices to BioPoly-

mers (TI2BioP) as an alignment-free approach inspired in

both the Topological Substructural Molecular Design

(TOPS-MODE) (Estrada 2000) and Markov Chain Invari-

ants for Network Selection and Design (MARCH-INSIDE)

methodology (González-Dı́az et al. 2007) that calculates

the spectral moments as simple TIs to obtain alignment-

free models from quantitative sequence-function relation-

ships (QSFR). This methodology takes advantage of the

calculation of one-dimension (1D), two-dimension (2D),

and three-dimension (3D) parameters based on the graph-

ical representation of the chemical structure of biopolymers

such as DNA, RNA, and proteins. We evaluated the

TI2BioP accuracy to successfully identify proteinaceous

bacteriocins in spite of its high sequence diversity. Since

hydrophobicity and basicity are major criteria for the

bactericide activity of bacteriocins (Fimland et al. 2002;

Hammami et al. 2007), we derived the TIs from linear

sequences plotting its amino acids (aas) into an 2D

Cartesian Hydrophobicity-Polarity (2D-HP) lattice resem-

bling a protein pseudo-secondary structure (see Figs. 1, 7).

Thus, we calculated for the first time the spectral moments

(HPlk) of the edge matrix associated with such artificial

secondary structures as TIs. The new spectral moments are

based on the 2D spectral moments calculated by TOPS-

MODE as well as on the 3D and HP-Lattice stochastic

spectral moments calculated by MARCH-INSIDE (Agü-

ero-Chapin et al. 2009; Gonzalez-Diaz et al. 2007a;

Gonzalez-Diaz et al. 2007b; Munteanu et al. 2009), but

have a different definition and contain new structural

information. Its values characterized numerically 196

bacteriocin-like sequences and a control group made up of

200 representative CATH domains. Subsequently, several

orders of HPlk were used to develop an alignment-free

QSFR model that allowed a 76.92% discrimination of

bacteriocin proteins from other domains, a good result

considering the high sequence diversity among the mem-

bers of both groups. The model showed a prediction overall

performance of 72.16%, specifically retrieving 66.7% of

proteinaceous bacteriocins whereas the InterProScan clas-

sified just 60.2%. Our model further predicted successfully

the cryptic bactericide function of the Cry 1Ab C-terminal

domain from Bacillus thuringiensis’s endotoxin reported

by Vazquez-Padrón et al. (Vazquez-Padron et al. 2004).

We conclude that the TI2BioP approach based on the

higher-order encoding of the HP-spectral moments has a

high accuracy that justifies its use as an alternative method

to alignment approaches. TI2BioP retrieved successfully

the screening of putative proteinaceous bacteriocins in

spite of the high sequence diversity of this protein class.

Furthermore, TI2BioP allowed the prediction of protein

domains that have a cryptic bactericidal action, undetect-

able using alignment procedures. Finally, the alignment of

2D-HP protein maps offered a novel approach to explain

evolutionary relationships between the Cry 1Ab C-terminal

domain and the bacteriocin class.

Methods

Computational methods

An alignment-free methodology called ‘‘TI2BioP’’ is

presented to codify the structural information of

Fig. 1 Three structures for the colicin E1domain sequence. a Primary

structure b three-dimensional structure c the pseudo-secondary

Cartesian structure of hydropobicity and polarity
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proteinaceous bacteriocins and a control group designed

from 8,871 structurally non-redundant subset of the

CATH database (Cuff et al. 2009). TI2BioP was built up

on object-oriented Free Pascal IDE Tools (lazarus). The

program can be run on Windows and Linux operating

system. The user-friendly interface allows the users to

access the sequence list introduction, selecting the rep-

resentation type and calculations of TIs. It is based on

the graph theory considering the ‘‘building blocks’’ of

the biopolymers DNA, RNA, and protein as nodes or

vertexes and the bonds between them as edges into a

certain graph. Thus, the information contained in bio-

polymeric long strings is simplified in a graph consid-

ering some of its relevant features as the topology and

properties of the monomers. These factors determine

either the real secondary structure or the pseudo-folding

of linear sequences into 2D-HP lattice. TI2BioP was

developed on the basis of two well-known methodolo-

gies: ‘‘TOPS-MODE’’ (Estrada 2000) implemented in the

‘‘MODESLAB’’ software (Gutierrez and Estrada 2002)

and the MARCH-INSIDE program (González-Dı́az et al.

2007). TI2BioP shows a draw mode to represent auto-

matically linear sequences of DNA, RNA and proteins as

2D graphs, but can also import files containing 2D

structure inferred by other professional programs

(Mathews 2006). The calculation of the topological

indices from these 2D maps is performed following the

TOPS-MODE approach (Estrada 1996; Estrada 2000).

Finally, these TIs containing relevant information of the

sequence are used to carry out a QSFR, which allow

classifying gene and protein classes without the need to

perform an alignment procedure.

We used the 2D-HP graphs to encode information about

proteinaceous bacteriocin sequences following previous

experiences achieved using the MARCH-INSIDE meth-

odology (González-Dı́az et al. 2007) in the prediction of

protein function from linear sequences (Agüero-Chapin

et al. 2008b; Agüero-Chapin et al. 2009; Gonzalez-Diaz

et al. 2008).

The spectral moments (lk) introduced previously by

Estrada (Estrada 1996; Estrada 1997) were applied to

describe protein 2D-maps. These TIs have been widely

validated by many authors to encode the structure of small

molecules in QSAR studies (González et al. 2006;

Markovic et al. 2001) including the characterization of

macro molecular chains based on dihedral angles by

Estrada (Estrada 2007; Estrada and Hatano 2007). The

original adjacent matrix is modified according the building

of the 2HP-protein maps. The 20 different aas are clustered

into 4 HP classes. These four groups characterize the HP

physicochemical nature of the aas as polar, non-polar,

acidic or basic (Jacchieri 2000). Each amino acid (aa) in

the sequence is placed in a Cartesian 2D space starting with

the first monomer at the (0, 0) coordinates. The coordinates

of the successive aas are calculated as follows:

a. Decrease by -1 the abscissa axis coordinate for an

acid aa (leftwards-step) or:

b. Increase by ?1 the abscissa axis coordinate for a basic

aa (rightwards-step) or:

c. Increase by ?1 the ordinate axis coordinate for a non-

polar aa (upwards-step) or:

d. Decrease by -1 the ordinate axis coordinate for a

polar aa (downwards-step).

This 2D graphical representation for proteins is similar

to those previously reported for DNA (Nandy 1994; Nandy

1996; Randic and Vracko 2000) and has been also useful

for structural RNA classification (Agüero-Chapin et al.

2008a). The Fig. 1 shows the primary structure of the

channel-forming domain of colicin E1 bacteriocin (a), the

crystal structure of such domain (b) and its 2D-HP map (c).

The 191 aas of the colicin E1 domain sequence are rear-

ranged in a pseudo-secondary structure of hydrophobicity

and polarity that compact its linear sequence. Note that a

node (n) in the 2D-HP map could be made up for more than

one aa. The N and C termini of the protein sequence in the

2D-HP map are labeled with a red square dot and simple

dot, respectively.

We calculated for the first time the spectral moments

(HPlk) values as TIs describing these proteins maps. The
HPlk were selected based on the utility of lk to codify

structural information in small molecules (Cabrera-Pérez

et al. 2004; Estrada 2000) and also do to its relevance in

Proteomics, when stochastically calculated (HPpk) using the

Markov chain theory (Gonzalez-Diaz and Uriarte 2005;

Gonzalez-Diaz et al. 2005).

Spectral moments for 2D-HP protein maps

After the representation of the sequences we assigned to

each graph a bond matrix B for the computation of the

spectral moments. These TIs are defined as the trace, i.e.

sum of main diagonal entries of the different powers of the

bond adjacency matrix. This matrix is a square symmetric

matrix that its non-diagonal entries are ones or zeroes if the

corresponding bonds share or not one aa. Thus, it set up

connectivity relationships between the aa in the pseudo

secondary structure (2D-HP map). The number of edges

(e) in the graph is equal to the number of rows and col-

umns in B but may be equal or even smaller than the

number of peptide bonds in the sequence. Main diagonal

entries can have bonds weights describing hydrophobic/

polarity, electronic and steric features of the aas. Particu-

larly, the main diagonal was weighted with the average of

the electrostatic charge (Q) between two bound nodes that

in turn are weighted with electrostatic charge (q) from

Use of TI2BioP to unravel cryptic bacteriocin-like domains 433
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Amber 95 force field (Cornell et al. 1995). The q is equal

to the sum of the charges of all aas placed in a node. Thus,

it is easy to carry out the calculation of the spectral

moments of B in order to numerically characterize the

protein sequence.

HPlk ¼ Tr Bð Þk
h i

ð1Þ

where Tr is called the trace and indicates the sum of all the

values in the main diagonal of the matrices (B)k, which are

the natural powers of B.

In order to illustrate the calculation of the spectral

moments, an example is described below. The 2D-HP map

of the sequence (D1-E2-D3-K4-V5) is showed in the Fig. 2

as well as its bond adjacency matrix. The calculation of the

spectral moments up to the order k = 3 is also defined

downstream of the Fig. 2. Please note in the graph that the

central node contains both E, and K and the q values are

represented in the matrix as the aa symbols (E = 1.885,

V = 2.24, K = 2.254, D = 1.997).

Expansion of expression (1) for k = 1 gives the HPl1,

for k = 2 the HPl2 and for k = 3 the HPl3. The bond

adjacency matrix derived from this linear graph is descri-

bed for each case

HPl1 ¼ Tr B½ � ¼ Tr

3:068 1 1

1 3:068 1

1 1 3:189

2
4

3
5

0
@

1
A ¼ 9:325

ð1aÞ

HPl2 ¼ Tr Bð Þ2
h i

¼ Tr

3:068 1 1

1 3:068 1

1 1 3:189

2
64

3
75

0
B@

�
3:068 1 1

1 3:068 1

1 1 3:189

2
64

3
75

1
CA¼ 11:413ð Þ2þ 11:413ð Þ2

þ 12:170ð Þ2 ð1bÞ

HPl3 ¼ Tr Bð Þ3
h i

¼ Tr

3:068 1 1

1 3:068 1

1 1 3:189

2
64

3
75

0
B@

1
CA

3

¼ 49:405ð Þ3þ 49:405ð Þ3þ 53:323ð Þ3 ð1cÞ

The calculation of HPlk values for protein sequences of

both groups were carried out with our in-house software

TI2BioP version 1.0�, including sequence representation

(Molina et al. 2009). We proceeded to upload a row data

table containing the sixteen HPlk values for each sequence

(k = 1, 2, 3,…16), two additional TIs defined as Edge

Numbers and Edge Connectivity and the grouping variable

(Bact-score) that indicates the bacteriocin-like proteins

with value of 1 and -1 for control group sequences to

statistical analysis software (Statsoft 2007). The overall

methodology is represented schematically in order to

improve the understanding of our approach (see Fig. 3).

Database

A total of 196 bacteriocin-like proteins sequences belong-

ing to several bacterial species were collected from the two

major bacteriocin databases, BAGEL (de Jong et al. 2006)

and BACTIBASE (Hammami et al. 2007). A polypeptide

or proteinaceous bacteriocin was considered according its

sequence length ([100 bp). Each proteinaceous bacteriocin

sequence retrieved was labeled respecting its original

database ID code; see Table I in SM.

The negative group was selected from 8,871 protein

downloaded from the CATH domain database of protein

Fig. 2 The 2D-HP map for the protein fragment DEDKV, aside the

definition of its bond adjacency matrix. Note that all edges of the

graph are adjacent, thus all non-diagonal entries are ones

Fig. 3 The overall procedure followed for the classification of

bacteriocins
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structural families (version 3.2.0) (http://www.cathdb.info)

(Cuff et al. 2009). Particularly, we used the FASTA

sequence database for all CATH domains (based on

COMBS sequence data) sharing just the 35% of sequence

similarity as the starting group. The COMBS sequences

provide the full sequence instead of only the residues

present in the ATOM records (Brandt et al. 2008). The

FASTA database is made non-redundant case-sensitively

and IDs are concatenated. The 200 members of the final

control subset were selected using a k-means cluster

analysis (k-MCA) (Mc Farland and Gans 1995a). CATH

domains IDs that make up the control group are also

showed in Table Ia of SM. Training and predicting series of

the bacteriocin database were designed following the same

procedure.

Statistical analysis: k-means cluster analysis (k-MCA)

This method has been applied before in QSAR to design

the training and predicting series (Kowalski and Marcoin

2001; Mc Farland and Gans 1995b). The method requires a

partition of the bacteriocin and the starting control group

independently into several statistically representative

clusters of sequences. The members to conform the control

group are selected from all of these clusters and afterwards

the sequences of the training and predicting series. This

procedure ensures that the main protein classes will be

considered in the control group allowing the representation

of the entire ‘experimental universe’. The spectral moment

series were explored as clustering variables in order to

carry out k-MCA. The procedure described above is rep-

resented graphically in Fig. 4 for both groups.

General discriminant analysis (GDA)

The starting control group was reduced following the

k-MCA to balance both groups according to the GDA

requirements; then training and predicting series were

selected from 200 CATH members. The GDA best subset

was carried out for variable selection to build up the model

(Marrero-Ponce et al. 2005; Marrero-Ponce et al. 2004;

Meneses-Marcel et al. 2005; Ponce et al. 2004). The

STATISTICA software reviewed all the variable predictors

for finding the ‘‘best’’ possible sub model. The variables

were standardized in order to bring them onto the same

scale. Subsequently, a standardized linear discriminant

equation that allows comparison of their coefficients was

obtained (Kutner et al. 2005). The model selection was

based on the revision of Wilk’s (k) statistic (k = 0 perfect

discrimination, being 0 \ k\1) in order to assess the

discriminatory power of the model. We also inspected the

Fisher ratio (F), value of a variable indicating its statistical

significance in the discrimination between groups, which is

a measure of the extent of how a variable makes an unique

contribution to the prediction of group membership with a

probability of error (p level) p(F) \ 0.05.

Applicability domain

A simple method to investigate the applicability domain of

a prediction model is to carry out a leverage plot (plotting

residuals vs. leverage of proteins used in the training set)

(Eriksson et al. 2003; Niculescu et al. 2004). The leverage

(h) of a sequence in the original variable space which

measures its influence on the model is defined as

hi ¼ xT
i ðXT XÞ�1xði ¼ 1; . . .; nÞ

where xi is the descriptor vector of the considered sequence

and X is the model matrix derived from the training set

descriptor values. The warning leverage h* is defined as

follows:

h� ¼ 3� p0=n

where n is the number of training sequences and p0 is the

number of model adjustable parameters.

Alignment procedures

The Smith–Waterman algorithm was used to perform local

sequence alignment for determining similar regions

between pairs of bacteriocin protein sequences (all vs. all)

(Smith and Waterman 1981). The water program was

downloaded from the European Molecular Biology Open
Fig. 4 Scheme describing the design of training and predicting series

using k-MCA for both bacteriocins and control group
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Software Suite (EMBOSS) (http://www.ebi.ac.uk/Tools/

emboss) and run on Linux Ubuntu 8.04. Water uses the

Smith–Waterman algorithm (modified for speed enhance-

ments) to calculate the local alignment. EBLOSUM62 was

set as the substitution matrix and gap penalties values were

taken by default.

Bacteriocin classification using classical methods

Each bacteriocin protein sequence presented in this study

was also submitted to InterProScan for its classification

(Quevillon et al. 2005). Sequences in FASTA format were

analyzed one by one at the http://www.ebi.ac.uk/Tools/

InterProScan looking into the InterPro database (Hunter

et al. 2009).

Results and discussion

Prediction of proteinaceous Bacteriocins

using 2D-HP TIs

We calculated spectral moments (HPlk) of the bond adja-

cency matrix that describe electronically the connection

between the aas in the pseudo secondary structure or 2D-HP

map of the protein sequence. This calculation was carried

out for two groups of protein sequences, one made up of

bacteriocin-like proteins and the other formed by hetero-

geneous CATH domains. The members of both groups were

selected as follows: (1) the bacteriocin group contained 196

members in total; (2) the members of the training and pre-

dicting series were chosen according to the k-means cluster

analysis (k-MCA); (3) the k-MCA divided the data into four

clusters containing 75, 78, 27, and 16 members, respec-

tively; (4) the selection was based on the distance from each

member with respect to the cluster center (Euclidean dis-

tance); (5) the members of the external validation subset

were selected uniformly in respect to Euclidean distance

taking out the 25% in each cluster; and (6) the remaining

cases were used to train the model.

To set up the final control group, the original data of

8,871 proteins were reduced to 200 members in order to

balance the two groups as required by general discriminant

analysis (GDA). Data selection was also carried out using

the k-MCA to ensure the inclusion of representative protein

domains of each cluster in the control group. The original

data were split into six statistically representative clusters

of sequences made up by: 1,553, 1,416, 1,754, 1,863,

1,339, and 946 members. Afterwards, the members com-

prising the training and predicting subsets were selected

following the same procedure described above.

Cluster of cases were carried out using the TIs computed

in TI2BioP methodology. We have explored the standard

deviation between and within clusters, the respective Fisher

ratio and their p level of significance (Mc Farland and Gans

1995b). All variables were used to construct the clusters

but only the combination from the HPl12 to HPl16 showed

p levels\0.05 for Fisher test, as depicted in Table 1. Four

statistically homogeneous clusters of proteinaceous bacte-

riocins were described coinciding with the existence of

four proteinaceous subclasses described by Cotter et al.

(Cotter et al. 2006).

The k-MCA based on TI2BioP structural indices

revealed a high diversity between bacteriocins-like proteins

sequences, which was further supported by the pair-wise

alignment results performed between its 196 proteinaceous

members using the Smith–Waterman local algorithm. The

Smith–Waterman procedure is able to obtain correct

alignments in regions of low similarity between distantly

related biological sequences. Thus, it is possible to detect

sub regions or sub-sequences with an evolutionary con-

served signal of similarity. Bacteriocins are good candi-

dates to perform this procedure, because aa similarity

percentages can be as low as 25.7%. The 85% of the

sequences pairs aligned (16,240 pairs) showed similarity

percentage below 50% and the 23% sequences pairs (4,375

pairs) showed similarity below 35% in just short sub

regions. These outcomes are consistent with the high

diversity of bacteriocins and with the distinct performance

of the classification methods (see the Smith–Waterman

results in Table II of SM).

Once we performed a representative selection of the

training set for both groups, the discrimination functions

can be determined. Thus, we choose the functions with

higher statistical significance but with few parameters as

Table 1 Main results of the k-MCA for the proteinaceous bacterio-

cins class and the control group

Protein descriptors Between

SSa
Within

SSb
Fisher

ratio (F)

p levelc

Variance analysis bacteriocins-like proteins
HPl12 161.61 33.39 309.72 \0.001
HPl13 160.19 34.81 294.48 \0.001
HPl14 161.44 33.56 307.91 \0.001
HPl15 159.49 35.51 287.43 \0.001
HPl16 162.20 32.80 316.52 \0.001

Control group
HPl12 8347.91 522.09 28349.40 \0.001
HPl13 8319.39 550.61 26788.96 \0.001
HPl14 8334.12 535.88 27574.19 \0.001
HPl15 8313.42 556.58 26482.71 \0.001
HPl16 8336.86 533.14 27725.03 \0.001

a Variability between groups
b Variability within groups
c Level of significance
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possible. Each discriminant function expresses in proba-

bility terms the tendency or propensity of a given aa

sequence to belong to the bacteriocin-like protein class.

The model classifies the sequences according to its bio-

logical function providing a predicted probability as a

numerical score (0 B score B 1). The best classification

function equation found for the bacteriocin group after

GDA analyses was:

Bact-score ¼ 6:86� HPl1 � 2:06� HPl3 � 2:39

� HPl10 � 2:34� EdgeN� 0:08

� N ¼ 299 k ¼ 0:63 F ¼ 53:22 p\0:001 ð3Þ

Where, N is the number of proteins used to seek the

corresponding classification models, which discriminate

between proteinaceous bacteriocins and representative

CATH domains. The statistics parameters of the above

equation are the same usually shown for QSAR linear

discriminant models (Santana et al. 2006; Vilar et al.

2005), including Wilk’s statistical (k) and Fisher ratio (F)

with a probability of error (p level) p(F). The value of p(F)

shows significance, rejecting the null hypothesis (H0) (no

difference between two groups).

This discriminant function (equation 3) classified cor-

rectly 230 out of 299 proteins used in the training series

(level of accuracy of 76.92%). More specifically, the model

correctly classified 122/148 (82.43%) sequences of pro-

teinaceous bacteriocins and 108/151 (71.52%) of the con-

trol group. A validation procedure was subsequently

performed in order to assess the model predictability.

We used the subsampling test to examine the prediction

accuracy of our model. This validation procedure is easier

to implement and provides reliable results in the validation

of a predictive model at low computational cost (Rivals and

Personnaz 1999). Thus, we took out randomly subsamples

representing the 25% of the training set to assess the model

predictability. The procedure was repeated ten times

varying the composition of the subsamples. Afterwards the

mean values for the Wilk’s statistical, accuracy, sensitivity

and specificity in training and external validation subsets

were calculated. The respective classification matrices for

training and cross-validation are depicted in Table 2. The

classification results derived from the sub-sample test were

very similar to those achieved from the member’s selection

using k-MCA; notice that the Wilk’s statistical remained

almost invariant showing the robustness of the model.

An external validation was also performed using the

predicting series derived from the k-MCA. It is important

to highlight that this external set was not used to build the

model. This procedure was carried out with an external

series of 48 bacteriocin-like proteins and 49 CATH

domains (see Table 2). The model showed a prediction

overall performance of 72.16%, able to predict 32/48

(66.7%) of proteinaceous bacteriocins and 38/49 (77.5%)

of the functionally diverse domains. This result is

remarkable relatively to other QSAR studies using 2D

stochastic indices to classify protein classes with higher

degree of sequence conservation among its members

(Agüero-Chapin et al. 2009; Vilar et al. 2008). The clas-

sification of each protein sequence (bacteriocins and

CATH domains) is shown in more details in Table I and Ia

of SM.

As can be seen from the model equation, the spectral

moment HPl1 is the major predictor that contributes posi-

tively to the bacteriocin classification. However, the rest of

the predictors (HPl3, HPl10 and EdgeN) affect bacteriocin

identification in a negative way. This fact points out that

the increase of higher-order spectral moments and edge

numbers affects negatively the bacteriocin identification.

Proteins sequences pseudo folded into 2D-HP maps with

few edges numbers and high values of HPl1 are more likely

to present the antibiotic action on other bacteria. Edge

numbers are associated directly with the length of the linear

sequence but in our pseudo secondary structure are also

influenced by the composition of its acid, basic, polar and

non-polar aas. Thus, bacteriocins proteinaceous sequences

pseudo folded in a more compact 2D-HP map show a

balance of hydrophobicity due to its amino acidic compo-

sition. This fact agrees with the amphiphatic properties of

mature bacteriocins, which form domains or helices having

hydrophobic and hydrophilic regions; an essential struc-

tural feature to perform its antibiotic action (Kaur et al.

2004). It also supports the fact that naturally-occurring

antimicrobial agents are often peptide-like bacteriocins

rather than proteins (Sang and Blecha 2008).

The protein classification based solely on linear

sequence homology can perform poorly when the sequence

diversity is high, as in the case of bacteriocins. By contrast,

the classification based on higher structural organization is

much more effective because during the evolution of pro-

tein families often its secondary and tertiary structure

Table 2 Classification results derived from the model for training

and validation series

Training set (k-MCA) External validation (k-MCA)

Total% 76.92 Bact. Control Bact. Control 72.17 Total%

Bact. 82.43 122 26 32 16 66.67 Bact.

Control 71.52 43 108 11 38 77.5 Control

Cross-validation (Training set)

Training subset Validation subset

Bact. Control Total% k Bact. Control Total%

82.36 71.76 77.02 0.629 81.55 70.54 75.94

Numbers in bold highlight the well-classified cases
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remained more conserved than the primary sequence. Our

TIs reveal hidden but relevant information contained in the

primary sequence, as the hydrophobicity/polarity features

of its aas, which are important properties for the secondary

structure fold of bacteriocins (Hammami et al. 2007).

Consequently, the 2D-HP TIs are useful to determine with

more accuracy the biological function when higher struc-

tural levels are not available (e.g. 2D and 3D information).

This fact makes the TIs very useful to carry out easily the

screening of large protein databases, such as entire prote-

omes, by considering information beyond the primary

level.

In addition to validation procedures, the receiver oper-

ating characteristic (ROC) curve was also constructed for

our model. Notably, the curve presented a convexity with

respect to the y = x line for the training series (see Fig. 5).

This result confirms that the present model is a significant

classifier having an area under the curve above 0.8.

According to the ROC curve theory, random classifiers

have an area of only 0.5, which clearly differentiate our

classifiers from those working at random (Swets 1988).

Sequences with h [ h* = 0.05 are out of the model’s

applicability domain. As observed in Fig. 6, most of the

sequences in training and test set lies within the model’s

applicability domain; just seven training and three valida-

tion sequences are out.

Particularly, it is important for the model predictability

to recognize sequences used in the test set that are outside

of its applicability domain. Thus, sequences like

pdb1gkrB02 (h = 0.056), pdb1ys1X00 (h = 0.223) and

P22522.1 (h = 0.073) should not be predicted as protein-

aceous bacteriocins using this model or at least be

considered cautiously. Considering such analysis, these

three last cases will remain out of the external set

increasing slightly the overall prediction percentage from

72.17 up to 72.34%. The new classification results after the

removal of such cases from the external set are shown in

Table 3.

Bacteriocins prediction using classical methodologies

In order to compare the methodology reported here with

classical predictive sources of functional annotation, the

196 proteinaceous bacteriocins used in this study were

submitted to InterPro analysis using its InterProScan tool

(Quevillon et al. 2005). This tool combines different pro-

tein signature recognition methods native to the InterPro

member databases into one resource with look up of cor-

responding InterPro and Gene Ontology annotation. Pro-

tein signature databases have become vital tools for

identifying distant relationships in novel sequences and

hence are used for the classification and function deduction

of protein sequences. Most of the protein signature recog-

nition methods implemented in InterPro rely up to certain

Fig. 5 Receiver Operating Characteristic curve (ROC-curve) for the

bacteriocin model (dark line) and random classifier (tight line) with

areas under curve of 0.87, and 0.5, respectively

Fig. 6 Graphical representation for the applicability domain of the

model

Table 3 Results of the external set prediction after determining the

model’s applicability domain

External set Classification

percentage

Control

Group

Bacteriocins

Control Group 76.59 36 11

Bacteriocins 68.09 15 32

Total 72.34 47 47

Numbers in bold highlight the well-classified cases
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extend on alignment procedures, which justify why we

have selected it to carry out a comparative study using our

alignment-free approach. In this sense, InterProScan tool

did not classify 40 protein sequences out of a total of 196.

Out of these 40 non-classified sequences, 16 did not

retrieve any hits and the remaining sequences did not have

integrated signatures on InterPro database, thus just being

classifying 79.6% of the data. In addition, 38 proteinaceous

bacteriocins were recognized by InterPro as having other

protein signatures, unrelated to bacteriocins-like sequences,

thus decreasing the good classification percentage to 60.2%

(see Table III of SM). Despite the simplicity of our

alignment-free approach, the QSFR model showed a gen-

eral classification of 78.6% (154/196). This result is not

distant from the InterPro’s performance considering the

unclassified bacteriocins (79.6%), but is considerably

higher than the general classification percentage provided

by the InterPro (60.2%). Therefore, the identification of

proteinaceous bacteriocins using alignment approaches is

not a simple task considering the high diversity in its pri-

mary structure. Bacteriocins-like sequences could have

significant similarities to functional domains unrelated with

the bactericidal function per se or may not match any

recorded sequence, as suggested by this study. The use of

alignment methods will also make difficult the detection of

a putative bactericide function in polypeptides or domains

that have been traditionally classified in another class.

Thus, independent domains belonging to proteins with

completely different functions from the bacteriocin class

might never be detected unless if using experimental pro-

cedures. In this sense, the development of alternative

methods not relying on sequence similarity to detect bac-

tericidal function in proteins, polypeptides (domains) and

internal domains could be a solution.

An alignment-free prediction to a cryptic

bacteriocin-like domain

We provide a practical example of our approach to detect

putative bacteriocin-like sequences in internal domains of

proteins unrelated with the bactericidal function—the case

of the C-terminal domain of the Cry1Ab endotoxin from

Bacillus thuringiensis subsp. kurstaki (Vazquez-Padron

et al. 2004). Cry1Ab is one of the most studied insecticidal

proteins produced by B. thuringiensis as crystalline inclu-

sion body during sporulation (Bravo et al. 2004; Padilla

et al. 2006; Pardo-Lopez et al. 2006). Consequently, its

nucleotide and amino acid sequence have been recorded for

a large number of B. thuringiensis strains. Several

sequences are nearly identical, and have been designated as

variations of the same gene. The crystal protein (Cry)

genes specify a family of related insecticidal proteins

(Bravo 1997).

Although the Cry 1Ab C-terminal domain is not

exported to the medium due to its internal location into a

crystal protein, it shares relevant features to bacteriocins

such as (1) it is produced by a Gram-positive bacteria

(B. thuringiensis), (2) inhibits the growth of other bacteria

genera like A. tumefaciens and E. coli, both being Gram-

negative bacteria and showing a broad range of bactericidal

action, (3) it presents an immunity mechanism to its ori-

ginal host B. thuringiensis by binding to the N-terminal

portion of the d endotoxin, and (4) it is encoded by a large

B. thuringiensis plasmid despite others being chromosom-

ally encoded.

According to these evidences, the C-terminal domain of

549 aa is a bacteriocin-like sequence. However, the

sequence is recognized by alignment methods like Basic

Local Search Alignment Tool (BLAST) as a delta-endo-

toxin from B. thuringiensis. The InterProScan showed ‘‘no

hits’’ meaning no possible classification among the protein

classes recorded in the InterPro database. Therefore, the

use of alignment-free procedures as TI2BioP represents a

complementary alternative to the classical methodologies.

The Cry 1Ab C-terminal domain was pseudo folded in a

2D-HP lattice, afterwards the calculation of its TIs (spectral

moments) were carried out and the values of l1, l3, l10 and

Edge numbers were evaluated in our classification func-

tion. The discriminant equation predicted that the Cry 1Ab

C-terminal domain was a bacteriocin-like sequence with a

high score of 0.97. The QSFR model prediction is

consistent with our experimental observations (Vazquez-

Padron et al. 2004).

Moreover, we also applied the water program to find

maximal local similarities between the Cry 1Ab C-terminal

domain and all proteinaceous bacteriocins used in our

study. We investigated common structural features

accounting for the cryptic bactericidal action of the C-ter

domain. The pair-wise local alignment showed similarities

below 50% to the 88.8% of the bacteriocins, with 43.37%

of them sharing less than 35% of sequence similarities with

our query. That is the case of Q88LD6 classified as a

bacteriocin production protein reaching the maximal sim-

ilarity (80%) in a short region of 15 aa with a low aa

identity percentage (see Table IV of SM).

2D-HP maps insight into the bactericide function

and evolution of Cry 1Ab C-terminal domain

Alignment procedures based on linear homology are lim-

ited to search structural relationships between proteins with

similar biological functions but low conservation at the

primary level. However, exploiting sequence features

beyond the primary level can be insightful in the charac-

terization of a certain protein class. We selected the most

representative sequences (the closest ones to the cluster
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centroid) into the four clusters of proteinaceous bacterio-

cins divided by the HPlk to perform a bi-dimensional

alignment. The 2D alignment of the pseudo-secondary

structures of bacteriocins and Cry 1Ab C-terminal domain

provided graphical evidence that both are functionally

related. Starting from the coordinates (0, 0), a clear

superposition between the C-ter domain and the HP-lattice

conformed by bacteriocin sequences are shown in Fig. 7.

The matching region is evident in contrast with the low-

similarity percentages obtained by the Smith–Waterman

procedure. This fact supports the relevance of the hydro-

phobicity and basicity to characterize functionally a bac-

teriocin-like sequence and the cryptic bactericide action of

this Cry 1Ab portion.

The cry genes are mostly found in large conjugative

plasmids. Such plasmids also contain coding sequences to

other proteins being the gene cluster involved in the pro-

duction and exportation of antibiotic peptides, one of the

most amazing determiners (Bravo et al. 2007). For

instance, the sequencing on the coding plasmid (pBtoxis) to

Bt subsp. israelensis toxins showed the presence of toxin

short sequences with homology to central and C-terminal

regions of Cry proteins (Berry et al. 2002). These apparent

remainders have suggested that during the pBtoxis evolu-

tion, its ancestors have been host of other toxins that were

then lost. Considering that these genes are also character-

ized for their mobilization by transposition either into this

species or in-between others (Barloy et al. 1998; Yokoyama

et al. 2004), an evolutionary hypothesis to the finding of the

bactericide function of the Cry 1Ab C-ter from the Bt

subsp. kurstaki could be proposed. We believe that such

fragment belongs to an ancestral bacteriocin that could

have lost its mechanism of exportation.

These results confirmed the utility of our alignment-

independent method to recognize cryptic bacteriocins that

are difficult to identify if using solely alignment proce-

dures. Our method is also effective because it allows the

use of graphical procedures to find functional and evolu-

tionary relationships among very distant protein classes.

The simplicity and advantage of our approach make it

suitable for complementing classical alignment tools,

which can be of particular relevance to screen bacterial

proteomes for new polypeptides with antibiotic action.

Conclusions

We presented TI2BioP methodology as a successful alter-

native approach relatively to alignment procedures to

identify proteinaceous bacteriocins from domain sequen-

ces. Its usefulness stems from the use of 2D-HP protein

maps to calculate the spectral moments as TIs. Such TIs

condense the hydrophobicity and polarity information

of the sequences and were used to develop a simple

QSFR classifier. Despite the bacteriocins high diversity,

this QSFR model could discriminate successfully the

bacteriocin-like sequences among representative CATH

domains and showed a good predictability. TI2BioP pro-

vided several advantages for the bacteriocins classification

relatively to classical protein function annotation methods

like InterPro. Moreover, the predictions made by our model

for the Cry 1Ab C-ter domain coincided with its cryptic

bactericidal action demonstrated in practical experiments.

Thus, overlapping of protein pseudo-secondary structures

can be an useful alternative to reveal functional and evo-

lutionary relationships of orthologous proteins.
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Agüero-Chapin G, Gonzalez-Diaz H, de la Riva G, Rodriguez E,

Sanchez-Rodriguez A, Podda G, Vazquez-Padron RI (2008b)

MMM-QSAR recognition of ribonucleases without alignment:

comparison with an HMM model and isolation from Schizosac-

charomyces pombe, prediction, and experimental assay of a new

sequence. J Chem Inf Model 48:434–448
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a b s t r a c t

Alignment-free classifiers are especially useful in the functional classification of protein classes with variable

homology and different domain structures. Thus, the Topological Indices to BioPolymers (TI2BioP)

methodology (Agüero-Chapin et al., 2010) inspired in both the TOPS-MODE and the MARCH-INSIDE
methodologies allows the calculation of simple topological indices (TIs) as alignment-free classifiers. These

indices were derived from the clustering of the amino acids into four classes of hydrophobicity and polarity

revealing higher sequence-order information beyond the amino acid composition level. The predictability

power of such TIs was evaluated for the first time on the RNase III family, due to the high diversity of its

members (primary sequence and domain organization). Three non-linear models were developed for RNase

III class prediction: Decision Tree Model (DTM), Artificial Neural Networks (ANN)-model and Hidden Markov

Model (HMM). The first two are alignment-free approaches, using TIs as input predictors. Their performances

were compared with a non-classical HMM, modified according to our amino acid clustering strategy. The

alignment-free models showed similar performances on the training and the test sets reaching values above

90% in the overall classification. The non-classical HMM showed the highest rate in the classification with

values above 95% in training and 100% in test. Although the higher accuracy of the HMM, the DTM showed

simplicity for the RNase III classification with low computational cost. Such simplicity was evaluated in

respect to HMM and ANN models for the functional annotation of a new bacterial RNase III class member,

isolated and annotated by our group.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

There are many software tools for searching sequences into
databases, but all use some measure of similarity between sequences
to annotate the biological function of certain gene or protein (Strope
and Moriyama, 2007). While such available methodologies for
sequence classification have a friendly interface for the normal users
(Altschul et al., 1997), its algorithms demand a high computational
cost and in many cases require the implementation of stochastic
process for building a predictive model (Finn et al., 2009). Such
procedures turn out to be less effective when the members of a
certain gene (Selig et al., 2008) and protein (de Jong et al., 2006) class
diverge and show different domain structures; then much more
expensive alignment strategies in time and memory are required to

improve the classification accuracy. Thus, the development of effec-
tive and less costly classification methods based on alignment-free
classifiers is important as a complement to alignment-dependent
algorithms (Strope and Moriyama, 2007; Deshmukh et al., 2007). To
date, most of the alignment-free classifiers estimate 1D sequence
parameters based on the amino acid composition to evaluate
sequence-function relationships (Kumar et al., 2008), predict
protein–protein interactions (Roy et al., 2009) and protein attributes
(Chou, 2009).

The introduction of 2D or higher dimension representations of
sequences (Liao et al., 2006; Randic and Zupan, 2004) previous to the
calculation of such numerical parameters allows uncovering higher-
order useful information not encoded by 1D sequence parameters.
Thus, we cluster the amino acids of protein sequences according to its
charge or its hydrophobic features into a 2D representation or map
that provides higher sequence-order information beyond the amino
acid composition level. This approach is one of the applications of our
methodology Topological Indices to BioPolymers (TI2BioP) (Agüero-
Chapin et al., 2010) inspired in both the Topological Sub-structural
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Molecular Design (TOPS-MODE) (Estrada, 2000) and the Markov
Chain Invariants for Network Selection & Design (MARCH-INSIDE)
(González-Dı́az et al., 2007) methodologies. TI2BioP allows the
calculation of the spectral moments as simple topological indices
(TIs) from different structural representation of biopolymers (DNA,
RNA and proteins) that can be used for the prediction of functional
classes irrespective of sequence similarity.

The RNase III family was selected as a case of study to assess the
predictability power of our alignment-free classifiers (TIs), due to the
high diversity among its members (primary sequence and domain
organization). This protein class belongs to a super-family that
includes an extensive network of distinct and divergent gene lineages
(Dyer and Rosenberg, 2006). Although all RNases of this super-family
share invariant structural and catalytic elements and some degree of
enzymatic activity, the primary sequences have diverged significantly.
In fact, the RNase III family can be divided into four subclasses
(Lamontagne and Elela, 2004). Class 1 consists of bacterial enzymes
with a minimal RNase III domain and a single dsRNA binding domain
(dsRBD). Class 2 includes fungal enzymes, with an extra N-terminal
region without any recognizable motif. Class 3 comprise the Drosha
orthologs found in animals, which has two RNase III domains and one
dsRBD in the C-terminal half and a proline-rich domain and an
arginine rich (R-rich) domain in the N-terminal half of the protein.
Class 4 RNase III enzymes contain the Dicer homologs expressed in S.

pombe, plants and animals. Their C-terminal half appears similar to
Drosha, but the N-terminal half features show different domain
structures. The homology among the different RNase IIIs may vary
from 20% to 84% depending on their evolutionary distance, suggesting
a low level of primary structure conservation (Lamontagne and Elela,
2004).

The electric charge clustering of the amino acids was used to
develop three different non-linear models: Classification Trees
(CT), Artificial Neural Networks (ANNs) and Hidden Markov
Models (HMM), which allowed predicting the RNase III member-
ship of a query sequence. CT and ANN-based models are align-
ment-free approaches obtained, using our TIs as input predictors.
These models were compared with a traditional alignment algo-
rithm to recognize protein signatures: HMM, which was modified
by using a non-classical alignment profile based on the clustering
of amino acids according to their charges values.

The ANNs have been more frequently applied to the prediction
of protein structure and function than the CTs (Punta and Rost,
2008; Nair and Rost, 2008). Although, the CTs are widely used in
applied fields as diverse as medicine (diagnosis), computer
science (data structures), botany (classification) and psychology
(decision theory), due to its easy interpretation based on a
graphical representation (Ripley, 1996), they have been poorly
explored in proteomics, namely to annotate the biological func-
tion of proteins. In this sense, we showed its novel application
into the proteomics field by allowing the identification of RNase
III-like sequences, using simple TIs as alignment-free classifiers.
The simple procedure to search an RNase III protein among the
available protein molecular diversity was compared with the
classification performance obtained using other artificial intelli-
gent methods, such as ANNs and HMMs.

We showed that the spectral moments were useful as input
predictors to develop non-linear models (DTM, ANN) to classify the
RNase III family irrespective of sequence similarity. A simple and
interpretable alignment-free Decision Tree Model (DTM) was built to
detect RNase III-like members, using just one TI at two different
levels. However, the ANN-based model used 18 TIs as input pre-
dictors and demanded a more complex topology to retrieve similar
results in the RNase III family classification. Although, the HMM
based on our clustering strategy provided an optimal performance in
the prediction of the test set, it is not a practical procedure for a
normal user. Therefore, we recommend the easy use of the DTM

based on the spectral moments calculated by the TI2BioP methodol-
ogy (Agüero-Chapin et al., 2010) for the RNase III classification. The
performance of the three non-linear models was also compared for
the prediction of a new bacterial member of the RNase III class. This
sequence was isolated, characterized and annotated by our group at
the GenBank Database (accession number GU190214) (Benson et al.,
2009). Its DTM detection as a RNase III class member was remarkably
simple and required low computational cost relatively to the HMM
and ANN models.

2. Methods

2.1. Computational methods

TI2BioP was built up on object-oriented Free Pascal IDE Tools
(lazarus) (Agüero-Chapin et al., 2010). The program could be run on
Windows and Linux operating systems. The user friendly interface
allows the users to access to the sequence list introduction, selecting
the representation type and calculations of TIs. It is based on the
graph theory considering the ‘‘building blocks’’ of the biopolymers
DNA, RNA and protein as nodes or vertexes and the bonds between
them as edges into a certain graph. Thus, the information contained in
biopolymeric long strings is simplified in a graph, considering some of
its relevant features as the topology and properties of the monomers.
These factors determine either the approximated secondary structure
(Mathews, 2006) or the artificial, but informative, folding of linear
sequences (Aguero-Chapin et al., 2006). TI2BioP allows the calculation
of the spectral moments derived from such inferred and artificial 2D
structures of DNA, RNA and proteins. Consequently, it was developed
on the basis of two well-known methodologies: ‘‘TOPS-MODE’’
(Estrada, 2000) implemented in the ‘‘MODESLAB’’ software
(Gutierrez and Estrada, 2002) and the MARCH-INSIDE program
(González-Dı́az et al., 2007). The calculation of the spectral moments
as TIs is performed according to the TOPS-MODE approach (Estrada,
2000) and the pseudo-secondary structures for the protein sequences
were taken from experiences achieved by using the MARCH-INSIDE
methodology (Aguero-Chapin et al., 2006; Agüero-Chapin et al.,
2009). We used the 2D lattice of hydrophobicity (H) and polarity
(P) introduced by our group to encode an information about poly-
galacturonases enzymes (Aguero-Chapin et al., 2006) to obtain the
protein pseudo-secondary structures.

The 20 different amino acids are regrouped into four HP classes.
These four groups characterize the HP physicochemical nature of the
amino acids as polar, non-polar, acidic or basic (Jacchieri, 2000). Each
amino acid in the sequence is placed in a Cartesian 2D space starting
with the first monomer at the (0, 0) coordinates. The coordinates of
the successive amino acids are calculated as follows:

a) Decrease by �1 the abscissa axis coordinate for an acid amino
acid (leftwards-step) or;

b) Increase by +1 the abscissa axis coordinate for a basic amino
acid (rightwards-step) or;

c) Increase by +1 the ordinate axis coordinate for a non-polar
amino acid (upwards-step) or;

d) Decrease by �1 the ordinate axis coordinate for a polar amino
acid (downwards-step).

This 2D graphical representation for proteins is similar to those
previously reported for DNA (Nandy, 1996; Randic and Vracko, 2000;
Nandy, 1994) that was extended later to classify protein families
(Aguero-Chapin et al., 2006; Agüero-Chapin et al., 2009) and struc-
tural RNA (Aguero-Chapin et al., 2008), using stochastic indices (Yuan,
1999). Fig. 1 shows how the new RNase III protein sequence from
Escherichia coli BL 21 substrain GG1108 is pseudo-folded into a HP-
lattice or 2D-HP map that compacts its linear sequence: its two major
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domains are highlighted in red (RNase III domain) and in blue
(double-stranded RNA binding motif). Note that a node (n) in the
2D-HP map could be made up for more than one amino acid. The N
and C termini residues are pointed out in black and red as a square
and simple dot, respectively.

All sequences are pseudo-folded into a HP-Cartesian lattice by
TI2BioP. The original spectral moments (mk) introduced previously
by Estrada (Estrada, 1996; Estrada, 1997), which have been
validated for many authors to encode the structure of small
molecules in Quantitative Structure Activity Relationship (QSAR)
studies (Gonzalez-Diaz et al., 2005; Markovic et al., 2001;
González et al., 2006), were applied to describe such protein
2D-HP maps (HPmk) to contain the new structural information. The
original adjacent matrix is modified according to the building of
the 2D-HP protein maps described above.

2.2. Building an electronic bond matrix for 2D-HP protein maps.

Calculation of TIs irrespective of sequence similarity

After the representation of sequences we assigned to each graph, a
bond adjacency matrix B for the computation of the TIs. They are
called ‘‘spectral moments’’, defined as the trace of B consisting in the
sum of main diagonal entries, of the different powers of the bond

adjacency matrix. B is the square symmetric matrix, where its non-
diagonal entries are ones or zeroes if the corresponding bonds or
edges share or not one amino acid. Thus, it set up connectivity
relationships between the amino acid in the artificial secondary
structure (2D-HP map). The number of edges (e) in the graph is
equal to the number of rows and columns in B, but may be equal or
even smaller than the number of peptide bonds in the sequence.
Main diagonal entries can be bonds weights describing hydrophobic/
polarity, electronic and steric features of the amino acids. In parti-
cular, the main diagonal was weighted with the average of the
electrostatic charge (Q) between two bound nodes. The charge value q

in a node is equal to the sum of the charges of all amino acids placed
on it. The q value for each amino acid was derived from the Amber 95
force field (Cornell et al., 1995).

Thus, it is easy to carry out the calculation of the spectral
moments of B in order to numerically characterize the protein
sequence.

HPm ¼ Tr½ðBÞk� ð1Þ

where Tr is the operator ‘‘trace’’ that indicates the sum of all the
values in the main diagonal of the matrices kB¼(B)k, which are
the natural powers of B.

In order to illustrate the calculation of the spectral moments, an
example is developed below. The building of the 2D-HP map on the
Cartesian system for the protein fragment (D1–E2–D3–K4–V5), the
coordinates for each one of its amino acids and the definition of its
bond adjacency matrix are depicted in Fig. 2. The calculation of the
spectral moments up to the order k¼3 is also defined downstream of
Fig. 2. Please note in the graph that the central node contains both E

and K and q values are represented in the matrix as the amino acid
symbols (E¼1.885, V¼2.24, K¼2.254 and D¼1.997).

Expansion of expression (1) for k¼1 gives the HPm1, for k¼2
the HPm2 and for k¼3 the HPm3. The bond adjacency matrix derived
from this linear graph is described for each case

HPm1 ¼ Tr½B� ¼ Tr
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Fig. 2. Building the 2D-HP map on Cartesian axes for the protein fragment DEDKV: (a) the coordinates for each amino acid in Cartesian system and (b) the definition of the

bond adjacency matrix derived from the 2D-HP map. Note that all edges of the graph are adjacent, thus all non-diagonal entries are ones.

MNPIVINRLQRKLGYTFNHQELLQ

QALTHRRASRKHNERLEFLGDSILS

YVIANALYHRFPRVDEGDMSRMR

ATLVRGNTLAELAREFELGECLRL

GTGELKSGGFRRESILADTVEALIG

GVFLESDIQTVEKLILNWYQTRVD

EISPGDKQKDPKTRVHEYLQGRHL

PLPTYLVVQVRGEAHDQEFTIHCQ

VSGLSEPVVGTGSSRRKAEQAAAE

QALKKLELE

Fig. 1. (a) RNase III protein sequence from Escherichia coli BL 21 substrain GG1108

and (b) pseudo folding of this sequence into a 2D-HP-lattice.
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The calculation of HPmk values for protein sequences of both
groups were carried out with our in-house software TI2BioP
version 1.0s, including the sequence representation (Molina
et al., 2009). We proceeded to upload a row data table containing
the sixteen HPmk values for each sequence (k¼1, 2, 3, y, 16), two
additional TIs defined as Edge Numbers and Edge Connectivity
and a grouping variable (Group) that indicates the RNase III-like
proteins with value of 1 and �1 for the control group (CG)
sequences to statistical analysis software (Statsoft, STATISTICA
7.0, 2007), see File I of supplementary materials (SM).

2.3. Database

A total of 206 RNase III protein sequences belonging to
prokaryote and eukaryote species were downloaded from the
GenBank database gathering RNases III registered up to May of
2009. Each RNase III sequence was labeled by its accession
number. The control group was selected from 2015 high-resolu-
tion proteins in a structurally non-redundant subset of the
Protein Data Bank (PDB); such data were published by other
authors to distinguish enzymes and non-enzymes without align-
ment (Dobson and Doig, 2003), see File I of an SM. The selection of
such subset was determined, using a K-means cluster analysis (k-
MCA) (Mc Farland and Gans, 1995). This same procedure was
carried out to design the training and predicting series in both
groups.

2.4. Selection of training and predicting series. K-means cluster

analysis (k-MCA)

The selection of members to conform training and predicting
series was carried out by k-MCA (Mc Farland and Gans, 1995).
This method requires a partition of the RNase III group and the
2015 high-resolution proteins independently into several statis-
tically representative clusters of sequences. The RNase III mem-
bers that conform the training and predicting series were selected
straightforward from its clusters according to Euclidean distance.

A representative sample of 224 non-redundant proteins was
set as the control group. This subset was selected from the
partition of the 2015 proteins into representative clusters follow-
ing the same procedure, which ensures the main protein classes
will be represented in the control group. Finally the control group
was further partitioned in training and prediction series. The
spectral moment series was explored as clustering variables, in
order to carry out k-MCA. This method has been widely applied
before in QSAR to design the training and predicting series (Mc
Farland and Gans, 1995; Cruz-Monteagudo and Gonzalez-Diaz,
2005). The procedure described above is represented graphically
in Fig. 3 for both groups.

2.5. Non-linear methods for RNase III classification. Decision

tree models

A series of eighteen TIs, consisting in sixteen spectral moments
(HPmk), edge numbers and edge connectivity, calculated for pro-
tein sequences from training and predicting series were used as
ordered predictors to build a DTM, using the CT module of the
STATISTICA 7.0 for Windows (Statsoft, STATISTICA 7.0, 2007). A
categorical variable that assign the value of 1 to the RNase III class
and �1 to the control group was set as dependent variable. CT is a
technique that builds a classification rule to predict the class
membership on the basis of feature information. CT is a data-
analysis method for relating a categorical dependent variable (Y)
to one or more independent variables (X), in order to uncover or
simply understand the elusive relationship, Y¼ f(X). The result of
CT is a ‘‘graph’’ that divides the study sample into smaller samples
(every subsample is called a node) according to whether a
particular selected predictor is above of a chosen cutoff value or
not. In the development of the DTM, the Classification and
Regression Trees (C&RT)-style univariate split selection method
was used since it examines all possible splits for each predictor
variable at each node to find the split producing the largest
improvement in goodness of fit. The prior probabilities were
estimated for both groups with equal misclassification cost. The
Gini index was used as a measure of goodness of fit and the
‘‘Prune on misclassification error’’ was set as the stopping rule to
select the right-sized classification tree.

The prediction capacity of the classification model was verified
by a cross-validation (CV) procedure. Ten random sub-samples
were selected from the learning sample. The classification tree of
the specified size is computed ten times, each time leaving out
one of the subsamples from the computations, and using such
sub-sample as a test sample for cross-validation. The CV costs
computed for each of the ten test samples are then averaged to
give the 10-fold estimate of the CV costs.

2.6. Artificial neural networks (ANN) for RNase III classification

We used an ANN as another non-linear method for RNase III
classification, using the same series of TIs as input variables and only
one output variable (RNase III membership). We used the multilayer
layer perceptron (MLP), due to its ability to model functions of almost
arbitrary complexity showing a simple interpretation as a form of an
input–output model. As starting point we used one hidden layer, with
the number of units equal to half the sum of the number of input and
output units. To select the right complexity of network, we tested
different topologies to the MLP, but checking the progress against an
independent data set to avoid over-fitting during the back propaga-
tion training method. The selection set was extracted by k-MCA from
the training set used to build the DTM, the test set to asses an ANN
predictability was the same.

2015 high-resolution 
proteins

PDB

206
RNases III 
GenBank

K-MCA1 K-MCA2

C
luster 1 

C
luster 2 

C
luster 3 

C
luster 4

C
luster 1 

C
luster 2 

C
luster 3 

Control
Group

The most representative members in 
each cluster 

Predicting
series

Training
series

Fig. 3. Scheme describing the design of training and predicting series, using

k-MCA for both RNase III and control group.
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2.7. Building a non-classical HMM for the RNase III family

A non-classical profile HMMs for this family were constructed
based on the training set, using the HMMer software package
(release 2.3.2) (Krogh et al., 1994). In the first place, a HMM
representing the appearance probabilities of amino acids charges
was obtained. For this purpose, amino acids were grouped
according to their charges values as follows.

class-I¼(A, S, G); class-II¼(M, L, I, V); class-III¼(K, R, T, H);
class-IV¼(N, D, E, Q); and class-V¼(F, Y, W). Based on this
regrouping, sequences in the training set were modified according
to the following criteria: amino acids belonging to the same class
were substituted by the same character identifier of each group.
Regardless their charge characteristics, proline and cysteine
remained unchangeable, due to its biological meaning. The
modified training set was then aligned. The HMM-build program
was used to create a new profile HMM based on the alignment of
the set of sequences. Finally, the HMM-search was used to score
test sequences against the non-classical HMM.

3. Experimental section

3.1. Strains and culture media

Escherichia coli BL 21 strain CG 1208 was routinely grown in
Luria Broth (LB) medium at 30 1C during 12 h. Bacterial strains
Escherichia coli BL 21 strain CG 1208 and DH5a was grown in Luria
Broth (LB). Transformed bacteria were recovered in the same LB
medium, but supplemented with carbencillin at 100 mg/ml. Media
were also supplemented with bacteriological agar when it was
required.

3.2. Total DNA extraction

A colony from Escherichia coli BL 21 strain CG 1208 was
inoculated in 5 ml of an LB medium and grown at 30 1C during
12 h until OD600¼0.5. From this culture, 250 ml were transferred
to 50 ml of the same medium and grown overnight at the same
temperature. When OD600¼0.8, cells were collected by centrifu-
gation and broken using the standard procedure. Cellular pellet
was resuspended in 300 ml sterile water at 50 1C and the extract
was separated from cellular debris by centrifugation. Total DNA
was purified using a total DNA extraction kit (Qiagen GmbH,
Germany).

3.3. Primers design

The primers used for PCR amplification of Escherichia coli

RNase type III were designed based on the previously reported
E. coli RNase type III coding sequence (Date and Wickner, 1981;
March et al., 1985): forward primer (RNaseIII50) 50-cccATGGACCC-
CATCGTAATTAATCGGC-30 and reverse primer (RNase III30) 50-
caataaatccgcggatccttttatcgatgcTCA-30. In both, primer sequences
are shown the restriction sites Nco1 and BamH1 introduced at 50

and 30 ends, the start ATG and the stop TGA codon. The coding
regions are also shown in capital letters.

3.4. PCR amplifications

Amplification of E. coli RNase III gene from Escherichia coli BL

21 strain CG 1208 was performed by standard PCR from its total
DNA. The reaction mixture containing 10 ng of template, 1 mM of
each dNTP, 1.5 mM MgCl2, 2 mM of each PAC50 and PAC30 primers,
in a total volume of 50 ml, 1� Taq Pol (Gibco BRL) and 2.5 U Taq

Pol (Gibco) was completed. The PCR was carried out using
thermo-cycler (Perkin Elmer 2400) programmed as follows:
5 min previous template denaturation at 94 1C, cycle steps:
1 min template denaturation at 94 1C, 2 min primer annealing at
45 1C, 1 min primer extension at 72 1C for 30 cycles; plus a final
extension step at 72 1C for 5 min. PCR product was visualized by
electrophoresis on 1% TBE agarose gel.

3.5. Plasmid construction and sequencing

PCR amplification product was purified using GEL Band Pur-
ification kit (Amersham Pharmacia Biotech) and ligated to pMOS-
Blue T-vector (Amersham Pharmacia Biotech). The ligation was
transformed into electrocompetent E. coli DH5a by electropora-
tion in 0.2 cm cubettes and Gene Pulser Machine (BioRad)
(12.5 kV, 25 mF, 1000o). Transformation was plated onto an LB
medium supplemented with 40 ml of 20 mg/ml X-gal solution and
4 ml of isopropylthio-b-D-galactoside from 200 mg/ml IPTG solu-
tion per plate and grown overnight at 37 1C. White colonies,
presumable carrying the recombinant E. coli RNase III gene
inserted in pMOS-Blue T-vector, named pREC1, were selected
and plasmid DNA extracted for analysis of cloned fragments.
Sequencing of cloned fragment was performed using the ABI 3700
sequencer (Applied Biosystems). The cloned gene was properly
manipulated for further purification and enzymatic assay pur-
poses as described (Amarasinghe et al., 2001).

3.6. Synthesis and preparation of dsRNA substrate for an enzymatic

assay

The synthesis and preparation of dsRNA substrate for enzy-
matic assay of recombinant E. coli RNase III was conceived
according to create an optimized dsRNA structure for the mea-
surement of enzymatic activity (Lamontagne and Elela, 2004).
One of the T7 substrates, named R1.1 RNA (109nt), was used for
the biological assay of recombinant enzyme. This short RNA forms
hairpin structures containing the recognition and cleavage sites
by E. coli RNase type III and have been extensively studied (Zhang
and Nicholson, 1997). The DNA fragment encoding for 109nt R1.1
RNA was synthesized chemically, purified by denaturing gel-
electrophoresis and cloning into pBluescript II KS (-) for further
T7 polymerase transcription. The integrity of the cloned fragment
was verified by sequencing. The RNA transcripts were generated
by T7 polymerases using oligonucleotides as templates and the
reactions were carried in the presence of [a32P] UTP. The tran-
scription reactions were prepared in a final volume of 20 ml
containing 40 mM Tris–HCl (pH 7.9), 6 mM MgCl2, 2 mM sper-
medine, 10 mM DTT, 0.5 mM of each ribonucleoside (Amersham
Pharmacia Biotech), 50 mCi [a32P] UTP (800 Ci/mmol), 20 U RNA-
sin (Promega), and 20 U T7 RNA polymerase (Amersham Pharma-
cia Biotech). The unpaired RNA strands were removed by an
RNase A (Promega) treatment. The dsRNA substrate was puri-
fied (PAGE-TBE 15% gel) and stored in diethyl pyrocarbonate
(DEPC) treated distilled water at �70 1C and purified for the
enzymatic assay.

3.7. Enzymatic assay of recombinant E. coli RNase III

The E. coli RNase III gene was properly cloned within Nco1 and
BamH1 of pIVEX2.4a (Roche Applied Science, Indianapolis, IN
46250, United States) to produce and purify the recombinant
protein as described (Amarasinghe et al., 2001) in the form of
6� (His)-RNase III. Double-stranded RNase activity of recombi-
nant protein form was performed basically with the same method
we used for S. pombe strain 428-4-1, but with minor variations
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(Aguero-Chapin et al., 2008). The E. coli assay was carried using
the following conditions: 30 mM Tris–HCl (pH 7.6), 1 mM DTT,
10 mM of MgCl2, 10 nM of dsRNA substrate and 100 mM poly-
different quantities (0, 1, 10, 100 nM) of purified recombinant E.

coli RNase type III enzyme. Enzymatic reactions were completed
on ice and started by the addition of 0.1 V of 50 mM MgCl2,
incubated at 30 1C for 10 min and stopped by addition of 500 ml of
5% ice-cooled TCA followed by 15 min on ice. The aliquots were
centrifuged at 16,000 g during 5 min in Spin-X filter unit (Costar).
The soluble fractions (filtrate) were quantified by the liquid
scintillation counting. The counting data represent the amount
of acid precipitable polynucleotide phosphorus (dsRNA) substrate
transformed into acid soluble cleavage products by E. coli RNase
type III enzyme. The procedure was repeated three times with
three repetitions per experiment.

4. Results and discussion

4.1. Predicting type III RNase activity irrespective of sequence

alignment

In this work, we calculated the spectral moments (HPmk) of the
bond adjacency matrix between the amino acids of protein
sequences pseudo-folded into the 2D-HP-lattice. Such TIs describe
electronically the amino acids connectivity at different orders in a
pseudo-secondary structure that is determined by the hydropho-
bic and polarity features of the amino acids. The calculation was
carried out for two groups of protein sequences, one made up of
206 RNase III-like enzymes and other conformed by 224 non-
redundant enzymes and non-enzymes as the control group.

The members of the training and predicting series for the
RNase III class were selected according to the k-MCA, which
divided the data into three clusters containing 53, 77 and 76
members. Selection was based on the distance from each member
to the cluster center (Euclidean distance). The members of the
external validation subset were selected uniformly in respect to
Euclidean distance taking out the 25% in each cluster. The
remainder of the cases was used to train the model.

To set up the final control group, the original data of 2015
proteins (enzymes and non-enzymes) were reduced to 224
members in order to balance both the groups. Data selection
was also carried out using the k-MCA to ensure the inclusion of
representative protein domains of each cluster in the control
group. The original data was split into four statistically represen-
tative clusters of sequences made up by: 267, 430, 655 and 663
members. Afterwards, the members to constitute the training and
predicting subsets were selected following the same procedure
described for the RNase III class.

Clustering of cases was carried out by using the TIs computed
in the TI2BioP methodology (Agüero-Chapin et al., 2010). We
explored the standard deviation between and within clusters, the
respective Fisher ratio and their p-level of significance (Mc
Farland and Gans, 1995). All variables were used to construct
the clusters, but only the combination from the HPm10 to HPm14

showed p-levels o0.05 for Fisher test, as depicted in Table 1. We
also obtained different mean values for these five variables that
produce an evident separation between the clusters (Fig. 4). They
described three and four statistically homogeneous clusters for
the RNase III class and the control group, respectively.

Such division of the RNase III protein sequences into three
clusters according to our TIs is a close approximation to the
structure-based characterization reported by Lamontagne and
Elela for this family (Lamontagne and Elela, 2004), which divided
it into four sub-classes. However, our three groups coincided

perfectly with another subdivision based on the biological activity
(Nicholson, 1997).

4.2. Prediction based on DTM using TIs

Although different alignment-free methods have been reported for
improving the classification accuracy in protein classes and super-
families, to date no DTM have been developed to differentiate the
protein classes. We select the RNase III class to assess the DTM
predictability, due to its diversity in sequence similarity and domain
organization between its members representing different subclasses.
Thus, we used the CT as an exploratory technique to obtain a DTM to
differentiate the RNase III class from a non-redundant subset of

Table 1
Main results of the k-MCA for the RNase III class and the control group.

Protein descriptors Between SSa Within SSb Fisher ratio (F) p-Levelc

Variance analysis RNase III-like proteins
HPm10 134.49 70.51 193.60 o0.001
HPm11 142.75 62.25 232.75 o0.001
HPm12 143.97 61.03 239.44 o0.001
HPm13 146.00 58.99 251.23 o0.001
HPm14 141.02 63.98 223.73 o0.001

Control group
HPm10 1716.57 297.43 3868.72 o0.001
HPm11 1763.70 250.30 4723.45 o0.001
HPm12 1760.22 253.78 4649.43 o0.001
HPm13 1770.23 243.77 4867.85 o0.001
HPm14 1767.92 246.08 4815.87 o0.001

a Variability between groups.
b Variability within groups.
c Level of significance.

Fig. 4. Plot of the TIs’s means for each cluster: (a) division of the RNase III group

into three clusters and (b) division of the control group into four clusters.
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enzymes and non-enzymes, as linear traditional methods failed to
succeed on that goal. We carried out previously a general discrimina-
tion analysis (GDA) for variable selection to build up a linear model
(Cruz-Monteagudo et al., 2006; Cruz-Monteagudo et al., 2008;
Marrero-Ponce et al., 2007). Eighteen variables, including a series of
sixteen HPmk calculated by TI2BioP methodology, were reviewed for
finding the ‘‘best’’ possible sub model with the STATISTICA software.
The best sub model selected from 262,126 models showed a Wilk’s
statistic of 0.86, indicating little separation between the two groups.
All predictors entered significantly into the model, but just provided
an overall classification of 62.32%. In contrast, the development of
DTM based on C&RT-style exhaustive search for univariate splits
showed excellent results on the RNase III classification.

The method found the HPm1 predictor as the splitting variable to
produce two decision splits at different values showing the largest
improvement in goodness of fit, therefore an effective classification
was developed. The tree structure was very simple, two decision
nodes (outlined in blue) and three terminal nodes (outlined in red)
summing up a total of five nodes. In the graph, the numbers of the
nodes are labeled on its top-left-corner. All 323 training sequences are
assigned to the root node (first node) and tentatively classified as
non-RNase III enzymes or the control group, as is indicated by the
control group label (�1) placed in the top-right-corner of the root
node. Sequences from the control group are chosen as the initial
classification, because they are slightly more than RNase III enzymes
(1), as is indicated by the histogram plotted within the root node.

The root node is split, forming two new nodes. The text below
the root node describes the split. It indicates that protein
sequences with HPm1 values r422.6 are sent to node number
2 and tentatively classified as RNase III enzymes, and the protein
sequences with HPm1 values 4422.6 are assigned to node number
3 and classified as non-RNase III enzymes or other non-enzymatic
proteins. Similarly, node 2 is subsequently split taking the
decision that sequences with HPm1 values r339.69 are sent to
node number 4 to be classified in the control group (59 cases).
The remaining 160 proteins with HPm1 values of 4339.69 are sent
to node number 5 to be classified as RNase III enzymes.

The tree graph presents all this information in a simple and
straightforward way allowing evaluating the information in much

less time. The histograms plotted within the tree’s terminal nodes
show that the classification tree classifies the RNase III enzymes
from the control group quite efficiently (Fig. 5). All the informa-
tion in the tree graph is also available in the tree structure shown
in Table 2.

When univariate splits are performed, the predictor variables
can be ranked on a 0–100 scale in terms of their potential
importance in accounting for responses on the dependent vari-
able (Breiman et al., 1984). In this case, HPm1 is clearly the most
important predictor to discriminate the RNase III class from other
protein signatures (Fig. 6).

The DTM classified correctly 296 out of the 323 proteins used in
the training series (level of accuracy of 91.64%). More specifically, the
model correctly classified 144/155 (92.90%) of RNase III-like
sequences and 152/168 (90.48%) of the control group. In order to
minimize the computational cost, the DTM was validated using the
10-fold cross-validation method. For this purpose, we took out
randomly 65 sequences representing the 20% of the training set to
examine the prediction accuracy of the model. The procedure was
repeated 10 times varying the composition of the sub-samples. The
mean values for the accuracy, sensitivity and specificity obtained in
the 10-fold cross-validation on the training sample were very similar
to those achieved from the data partition, using k-MCA showing the

Number of splits = 2; Number of terminal nodes = 3

1

32

54

HPµ1<=422.6

HPµ1<=339.69

219 104

59 160

-1

1-1

11-

-1
1

Fig. 5. The architecture of the DTM: decision nodes are represented in blue and terminal nodes in red. The RNase III class is labeled with 1, using an intermittent line.

Otherwise the control group is signed with �1 using a continuous line. Numbers at the right-corner of the nodes indicates tentative membership to one group. Numbers at

the left-corner represent the node’s number. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Tree structure in details, child nodes, observed class n’s, predicted class and split

condition for each node.

Node Left
branch

Right
branch

n In
control
(�1)

n In
RNase
III class
(1)

Predicted
class

Split
constant

Split
variable

1 2 3 168 155 �1 �422.602 HPm1

2 4 5 66 153 1 �339.687 HPm1

3 102 2 �1

4 50 9 �1

5 16 144 1

Numbers in bold highlight the well-classified cases and the terminal nodes.

G. Agüero-Chapin et al. / Journal of Theoretical Biology 273 (2011) 167–178 173



Author's personal copy

robustness of the DTM. The classification matrices for training and
cross-validation are depicted in Table 3.

An external validation was also performed using the same
cross-validation method mentioned above on the predicting
series derived from the k-MCA. It is important to highlight that
this external set was not used to build the model. This procedure
was carried out with an external series of 107 protein sequences,
51 RNase III-like proteins and 56 proteins from the control group
(see Table 3 and File IISM). The model showed a prediction
overall performance of 92.52%, being able to predict 49/51
(96.07%) of the ribonucleases III and 50/56 (89.28%) of the
functionally diverse proteins. The cross-validation cost (CV cost)
and standard deviation (SD) in misclassification were also
explored for the two validation procedures to evaluate the
predictability performance. Both cases showed values o0.5,
which is an excellent result for the misclassification of the model.

The retrieved DTM structure is very simple and its graphical
display makes easier the interpretation of the data classification.
Particularly, the spectral moment HPm1 is the split condition at
two levels to predict membership of protein sequences in the

RNase III class or in other structural and functional different
groups. This fact points out that proteins sequences pseudo-
folded into 2D-HP maps with values of 339.69rHPm1r422.6
are more likely to present double-stranded ribonuclease activity.

4.3. Artificial neural networks (ANN) in the prediction of the

RNase III class

The complexity of DTM as a non-linear statistical method to
predict the RNase III class, using our TIs was evaluated in respect
to another non-linear method: ANN. The multilayer layer percep-
tron (MLP) was selected as the most popular ANN architecture in
use today (Rumelhart and McClelland, 1986). The MLP was tested
at different topologies using the 18 predictors calculated by the
TI2BioP methodology as input variables. From the same training
set used to develop the DTM, an independent data set (the
selection set) was selected to keep an independent check on the
progress of the back propagation algorithm used for training. Such
selection set was chosen by k-MCA to take out a representative
subset of 61 sequences that were not used in the back propaga-
tion algorithm. Thus, 262 cases were used for the training and the
same test subset made up of 107 cases was evaluated on the
external validation (File IISM). Table 4 shows the different MLP
topologies used to select the right complexity of network, the
performance on training, selection and test progress were exam-
ined as well as its errors. The best model was the MLP profile
number 7 (highlighted in bold), which showed an excellent
performance on training, selection and test sets, minimizing its
respective errors.

This ANN model showed an overall classification in training,
selection and test of 93.89%, 93.34% and 90.65%, respectively,

Fig. 6. Predictor variable importance rankings, rankings on scale from 0¼ low

importance to 100¼high importance.

Table 3
Classification results derived from CT for the training and the validation series.

Predicted class (row)�observed class n’s (column).

Training sample k-MCA

(N¼323)

Cross-validation 10-fold

Class
(%)

RNase III
class

Control
group

Class
(%)

RNase III
class

Control
group

CV
cost

RNase III
class

92.90 144 16 92.90 144 20 0.095

Control
Group

90.48 11 152 88.10 11 148 SD

Total 91.64 155 168 90.40 155 168 0.016

External validation (N¼107)

Class (%) RNase III class Control
group

CV cost

RNase III
class

96.07 49 6 0.07

Control
group

89.28 2 50 SD

Total 92.52 51 56 0.025

Numbers in bold highlight the well-classified cases.

Table 4
Different topologies for the MLP on the RNase III classification. Performance and

error on training, selection and test sets.

Model summary report

MLP profile Train
perf.

Select
perf.

Test
perf.

Train
error

Select
error

Test
error

1 18:18-10-1:1 0.885 0.967 0.850 0.303 0.226 0.325

2 18:18-9-1:1 0.946 0.934 0.869 0.214 0.226 0.336

3 18:18-8-1:1 0.954 0.934 0.887 0.216 0.223 0.343

4 18:18-7-1:1 0.893 0.918 0.897 0.291 0.278 0.334

5 18:18-6-1:1 0.923 0.885 0.869 0.281 0.311 0.338

6 18:18-5-1:1 0.904 0.901 0.850 0.284 0.291 0.351

7 18:18-4-1:1 0.938 0.934 0.906 0.240 0.244 0.294
8 18:18-3-1:1 0.908 0.885 0.831 0.288 0.291 0.363

9 18:18-2-1:1 0.541 0.524 0.626 0.459 0.459 0.461

10 18:18-2-1:1 0.923 0.918 0.869 0.264 0.284 0.345

Table 5
Classification results derived from an ANN (MPL-7) for training, selection and test

series.

Train
(1)

Train
(�1)

Selection
(1)

Selection
(�1)

Test
(1)

Test
(�1)

RNase III class
(1)

119 9 28 3 47 6

Control group
(�1)

7 127 1 29 4 50

Total 126 136 29 32 51 56

Good class (%) 94.44 93.38 96.55 90.62 92.15 89.28

Overall class
(%)

93.89 93.34 90.65

Numbers in bold highlight the well-classified cases.
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which are quite good results taking into account the classification
values reported for protein families with a higher degree of
conservation (Agüero-Chapin et al., 2009). The classification

results derived from our alignment-free approach to classify
RNase III membership are showed in Table 5 and in File IISM for
more details.

Although the excellent results obtained, the method is based
on a non-linear function of high complexity implemented in the
MLP classifier. ANN-based models are complex non-linear func-
tions that are unknown, therefore hard to interpret. In addition,
the 18 predictors entered in the ANN model, using one hidden
layer made up of four neurons representing a more complex
architecture to face the RNase III classification in contrast with
the simplicity of the DTM. Fig. 7 depicts the network map for the
best MLP model Table 6.

To validate the ANN model, we constructed the receiver
operating characteristic (ROC) curve for the training, selection
and test subsets. In each case, curve presented an area higher than
0.5 reaching values of 0.95, 0.97 and 0.92 for training, selection
and test sets, respectively (Fig. 8). According to the ROC-curve
theory, random classifiers have an area of only 0.5. This result
confirms that the present model is a significant classifier rela-
tively to those working at random. The validity of this type of
procedures in developing ANN-QSAR models have been demon-
strated before, namely by Caballero and Fernandez (2008),
Fernandez et al. (2007) and Caballero et al. (2007).

4.4. Non-classical HMM in RNase III classification

In order to compare with other non-linear methodologies based
on the sequence alignment, the training and the test set from the
RNase III class and control group were scored against a non-classical
HMMs profile. We constructed a modified training set representing
the electrical properties of the amino acids to add sense to the
comparison with the TI2BioP methodology. The retrieved HMM
represents the occurrence probabilities of amino acids charge groups.
As this modification has an implicit generalization step, we expect
this model to perform better in detecting remote homologs than
classical HMMs. Since our TIs encode information of the complete
sequence, we present the classification results for the whole
sequences. The HMM performance on an RNase III training set was
94.83%, 147 out of 155 satisfied the E-value cut off, while the test set
was successfully predicted at 100% (51/51). In the case of the control
group coming from a high-resolution non-redundant subset from
PDB, the HMM did not recognize any RNase III sequence in the
training and the test sets of this group, showing a classification of
100% (see File IIISM). We consider a better general performance of
the modified HMMs, due to the hydrophobic clustering in the
alignment profile according to the amino acids charges. In fact, in
the previous reports, the application of classical HMM on RNase III
classification showed a major failing rate on a similar control subset
(Aguero-Chapin et al., 2008).

Our free-alignment approach TI2BioP provides simplicity to
non-linear methods like DTM that can be used as an alternative
classification method for the RNase III class allowing a simple
screening of a large set of proteins and at low computational cost.
It just requires carrying out the calculation of HPm1 values for the
2D-HP protein maps (automatically represented and calculated
by the TI2BioP methodology). On the other hand, the basis of our
graphical approach inspired the building of a non-classical HMM-
profile to increase the prediction accuracy in the recognition of
double-stranded ribonucleases. Although maximal prediction
percentages were attained, its main drawback stems from its
hard implementation for non-specialized researches. The predic-
tion of a completely new putative RNase III type sequence
(unregistered previously in a public database) represents another
way of validating the DTM simplicity in respect to the HMM and
the ANN models.

Fig. 7. The architecture of the MLP profile 7. It represents several input variables, four

neurons in a one layer and only one output variable (from the left to the right).

Table 6
Classification results on an RNase III class derived from the three classification

algorithms used in the study. DTM, ANN-MLP and HMM modified for training and

test series in the RNase III class and control group (CG).

DTM ANN-MLP HMM modified

RNase III CG RNase III CG RNase III CG

Training 92.90 90.48 94.44 93.38 94.83 100

Overall 91.64 93.89 96.11
Test 96.07 89.28 92.15 89.28 100 100

Overall 92.52 90.65 100

Fig. 8. Receiver operating characteristic curve (ROC-curve) for the ANN-based

model in training (blue line), selection (red line) and test (green line) sets with

areas under curves of 0.95, 0.97 and 0.92, respectively. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version

of this article.)
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4.5. Isolation, prediction and biological activity for a new

RNase III member

4.5.1. Isolation and sequencing

We isolated, cloned and expressed a new putative RNase type
III DNA sequence from Escherichia coli BL 21 strain CG 1208. Total
DNA solution was measured at 260 nm in a spectrophotometer
reaching a concentration of 3.8 mg/ml. It was also run on an
agarose gel 0.8% visualizing high integrity. The PCR reaction
showed a band coinciding with the size of the predicted ORF
(data not showed). Sequencing retrieved a product of 681 kB, and
its nucleotide and amino acid sequence from a genomic-cloned
gene was recorded at the GenBank database with the accession
number GU190214. Before submission to GenBank, this new
RNase III member was also predicted using our three non-linear
models and further tested enzymatically as a ribonuclease.

4.5.2. Prediction of GU190214 using non-linear models.

A comparative study

We analyzed our new RNase III sequence GU190214 using
TI2BioP methodology to predict its protein open reading frame
(ORF) as a member of the RNase III class. Its deduced protein ORF
was automatically pseudo-folded into a hydrophobicity and
polarity lattice as performed previously for the whole data set.
Afterwards, its HPm1 value was calculated according to the TI2BioP
methodology. It showed a HPm1 value of 422.38, which was further
evaluated on the DTM. Following the tree graph representing the
DTM, we can easily classify our query sequence. Accordingly to
the first decision on the node two, it is classified as an RNase III;
then after a second decision, the classification was reaffirmed
being submitted it to the terminal node number five. The predic-
tion of our query sequence, using the other alignment-free non-
linear model, was also carried out. This particular case was
included in the validation subset to be predicted, using the
ANN-based model. Finally, the MLP also classified it in the group
of the RNase III class supporting that the identification of protein
signatures tend to be better assessed with non-linear models.

In order to compare the prediction with classical alignment
procedures based on the non-linear functions, our protein query
sequence was coded according to the amino acid charge clustering
and assessed against the non-classical RNase III HMM-profile. The
HMM-search predicted it with a high score of 154.7, highly significant
(E-value of 5.5�10�47) in the recognition of the ribonuclease III
domain. All three models showed a good performance in the
classification of the query sequence. However, the simplicity of
DTM to classify a protein sequence based only on two values of one
predictor is remarkable in respect to the others procedures. An ANN-
based model retrieved a similar performance in the classification, but
it was built on the basis of 18 predictors and its model architecture is
much more complex than DTM. Although the non-classical HMM
showed the best performance for the query sequence and the whole
database, its implementation requires the building of a modified
HMM-profile based on an amino acid charge clustering, the codifica-
tion of the query sequence and running the HMM-search program,
which demand a much higher computational cost. All these steps
hinder its practicality for a normal user that wants to retrieve an
information easily. On the other hand, we demonstrated that our
strategy of an amino acid clustering according to their charge or to
hydrophobic features can increase the accuracy in the classification of
protein families with divergent members either using classical
procedures or alignment-free models.

4.5.3. Enzymatic assay of the recombinant RNase III

The recombinant enzyme was expressed in E. coli DH5a strain
and purified, as we described previously. Fig. 9 shows the results

of the expression and the purification assays. The double-
stranded RNase activity of the recombinant protein from the
E. coli strain BL 21 CG 1208 was measured in vitro following the
protocol described above. The unit definition for all RNase III
types is the amount of enzyme able to solubilize 1 nmol of acid
precipitable per hour (Dunn and Ribonulcease III, 1982). Enzy-
matic activity showed values of 5.858�105, 6.017�105 and
6.177�105 U/mg, for each assay, and the mean value was
6.017�105 U/mg (see Table 7).

5. Conclusions

The amino acid clustering in a protein sequence according to
the hydrophobic features or to charge properties at the primary

25kDa

1 2 3

Fig. 9. Electrophoresis of the 25 kDa recombinant E. coli RNase III from E. coli

DH5a: pREC1 loaded in 12.5% PAGE-SDS and stained with coomassie brilliant.

Lane 1: crude extract from non-induced bacteria; Lane 2: crude extract from an

induced bacteria; and Lane 3: purified recombinant E. coli RNase III.

Table 7
Assay of biological activity of recombinant bacterial RNase III using 10 nM of

dsRNA substrate and polydifferent quantities of recombinant enzyme: 0, 1, 10 and

100 nM. The procedure consisted in three independent experiments with three

repetitions per experiment.

Enzyme Enzymatic activity

nM Experiment 1

105 U/mg

Experiment 2

105 U/mg

Experiment 3

105 U/mg

0.011 0.042 0.021

0.0 0.023 0.016 0.011

0.012 0.014 0.013

6.200 6.015 6.312

0.1 6.512 5.912 6.801

6.011 6.108 6.709

6.701 5.519 6.089

1.0 6.603 5.808 5.816

6.415 5.901 5.588

6.211 6.009 6.131

10.0 6.112 6.221 6.674

6.221 6.325 6.415

6.306 6.119 6.201

100.0 6.614 6.201 5.803

6.507 6.067 5.587

Average 5.858 6.017 6.177
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level and higher sequence-orders is effective to produce non-
linear functions with high prediction power for the RNase III class.
When this clustering is projected into a 2D protein map, it is
possible to calculate simple TIs characterizing the protein
sequence. Thus, TIs can be used to develop alignment-free
approaches based on DTM and ANN, being of great utility for
the classification of functional protein classes with low sequence
similarity. Although, the non-classical HMM provided a higher
accuracy in the prediction on the RNase III class, the use of DTM
based on the TI2BioP methodology also showed excellent results
in the detection of molecular diverse members of this protein
class with low computational and procedure costs.
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Detailed information on the protein sequences used in the
study is supplied in the online Supplementary Materials includ-
ing IDs or accession numbers, training and prediction series,
values of the TIs predictors, cluster members (File ISM). Classifi-
cation results derived from DTM and ANN-model on the test set
(File IISM). HMM classification results on training and test sets
are also showed in File IIISM. This information is available free of
charge via the Internet at: doi:10.1016/j.jtbi.2010.12.019.
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Abstract

The ITS2 gene class shows a high sequence divergence among its members that have complicated its annotation and its use
for reconstructing phylogenies at a higher taxonomical level (beyond species and genus). Several alignment strategies have
been implemented to improve the ITS2 annotation quality and its use for phylogenetic inferences. Although, alignment
based methods have been exploited to the top of its complexity to tackle both issues, no alignment-free approaches have
been able to successfully address both topics. By contrast, the use of simple alignment-free classifiers, like the topological
indices (TIs) containing information about the sequence and structure of ITS2, may reveal to be a useful approach for the
gene prediction and for assessing the phylogenetic relationships of the ITS2 class in eukaryotes. Thus, we used the TI2BioP
(Topological Indices to BioPolymers) methodology [1,2], freely available at http://ti2biop.sourceforge.net/ to calculate two
different TIs. One class was derived from the ITS2 artificial 2D structures generated from DNA strings and the other from the
secondary structure inferred from RNA folding algorithms. Two alignment-free models based on Artificial Neural Networks
were developed for the ITS2 class prediction using the two classes of TIs referred above. Both models showed similar
performances on the training and the test sets reaching values above 95% in the overall classification. Due to the
importance of the ITS2 region for fungi identification, a novel ITS2 genomic sequence was isolated from Petrakia sp. This
sequence and the test set were used to comparatively evaluate the conventional classification models based on multiple
sequence alignments like Hidden Markov based approaches, revealing the success of our models to identify novel ITS2
members. The isolated sequence was assessed using traditional and alignment-free based techniques applied to
phylogenetic inference to complement the taxonomy of the Petrakia sp. fungal isolate.
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Introduction

Standard alignment methods are less effective for the functional

prediction of gene and protein classes that show a high primary

sequence divergence between their members [3]. Thus, the

implementation of stochastic models [4], the modification of the

original similarity matrixes among the aligned sequences, and the

addition of other steps in the alignment procedures [5,6], have

been strategies adopted to improve the classification of divergent

gene/protein functional classes. On the other hand, several

alignment-free methods have been developed as an alternative to

traditional alignment algorithms for gene/protein classification at

low sequence similarity level [1,7,8].

The internal transcribed spacer 2 (ITS2) eukaryotic gene class is

one of the cases showing a higher sequence divergence among its

members, which have traditionally complicated ITS2 annotation

and limited its use for phylogenetic inference at low taxonomical

level analyses (genus and species level classifications). Despite the

ITS2 high sequence variability, the ITS2 structure has been

considerably conserved among all eukaryotes [9]. This fact has

been considered for the implementation of homology-based

structure modelling approaches to improve the ITS2 annotation

quality and also as a tool for eukaryote phylogenetic analyses at

higher classification levels or taxonomic ranks [6,9,10]. Thus, the

ITS2 database (http://its2.bioapps.biozentrum.uni-wuerzburg.de)

was developed holding information about sequence, structure and

taxonomic classification of all ITS2 in GenBank [11]. However,

due to ITS2 high sequence variability, the annotation pipeline

implemented in the aforementioned resource requires the use of a

specific score matrix in the BLAST search [11] and more recently,

the use of HMM for the identification and delineation of the ITS2

sequences [10,12]. Although alignment based methods have been

exploited to the top of its complexity to tackle the ITS2 annotation

and phylogenetic inference [10,11], no alignment-free approach

has been able to successfully address these issues so far. The use of

simple alignment-free classifiers like the topological indices (TIs)

containing also information about the sequence and structure of

ITS2 can be another useful approach for the prediction and
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phylogenetic analyses of the ITS2 class in eukaryotes. Such TIs are

determined by our methodology entitled Topological Indices to
BioPolymers ‘‘TI2BioP’’ where the spectral moments are

calculated from different graphical approaches representing the

structure of the biopolymers: DNA, RNA and proteins [1,2].

TI2BioP is now available at http://ti2biop.sourceforge.net/ as a

public tool for the calculation of two different TIs, one class

derived from the ITS2 artificial 2D structures generated from

DNA strings (Nandy structures) [13,14] and the other class

resulting from the secondary structure inferred with RNA folding

algorithms (Mfold) [15]. These alignment-free classifiers were used

to build linear and Artificial Neural Networks (ANN)-models for

classifying the ITS2 members among positive and negative sets

and also to estimate the ITS2 phylogeny at higher classification

levels.

The ANN-models provided the highest classification accuracy

(95.9 and 97.5%) during the training step compared to the linear

models for Nandy-like and Mfold structures, respectively. A very

similar ANN performance was obtained for the test set for both

structural representations. These results support that the identifi-

cation of gene signatures tend to be better when assessed with non-

linear models. We also showed the utility of the artificial secondary

structure when the correct 2D structure is not available (i.e. the

physiological structure that occurs on the cell) and can only be

obtained by predictions based on free energy minimizations.

The performance of our two alignment-free models based on

ANN was also compared with several profile Hidden Markov

Models (HMMs) generated from alignments performed with

CLUSTALW [16], DIALIGN-TX [17] and MAFFT [18] using

different training sets, to classify the test set and to identify a new

fungal member of the ITS2 class. Moreover, a BLASTn search

against NCBI was carried out to give more reliability to the gene

annotation and to assess taxonomically related hits to our query

fungal sequence. ITS2 is the standard gene target for fungal

identification and taxonomy at the species level [19]. This new

ITS2 sequence was isolated by our group (GenBank accession

number FJ892749) from an endophytic fungus belonging to the

genus Petrakia. Members of this fungal genus have been hard to be

placed taxonomically and are potential producers of bioactive

compounds [20]. The Petrakia sp. strain was morphologically

identified and its ITS2 sequence was used to carry out traditional

and alignment-free phylogenetic analyses to support its taxonomic

characterization.

The alignment-free models identified the new query sequence as

a member of the ITS2 class with high significance, while the

profile HMMs showed a poor performance in doing so. We

demonstrated that our TIs are useful not only in sequence

identification but also in molecular evolutionary inferences. The

alignment-free tree built based on TIs provided similar phyloge-

netic relationships among the different classes of the Ascomycota

phylum in respect to the traditional phylogenetic analysis (i.e.

based on evolutionary distances derived from a multiple alignment

of DNA sequences). Both analyses placed the Petrakia genus inside

the Pezizomycotina subphylum and the Dothideomycetes class.

Methods

1. Computational methods. Topological Indices to
BioPolymers (TI2BioP)

TI2BioP allows the calculation of the spectral moments derived

from inferred and artificial 2D structures of DNA, RNA and

proteins [21]. Consequently, it is feasible to carry out a structure-

function correlation using such sequence/structure numerical

indices. The calculation of the spectral moments as sequence

descriptors is performed according to the TOPS-MODE approach

[22] implemented in the ‘‘MODESLAB’’ software [23] and the

draw mode for sequence representation was retrieved from the

MARCH-INSIDE methodology [24,25,26]. TI2BioP can also

import files containing 2D structure inferred by other professional

softwares like the RNASTRUCTURE [15]. We propose for the

first time to fold the ITS2 genomic sequences into an artificial

secondary structure based on Nandy’s representation for DNA

strings [13]. This graph groups purine and pyrimidine bases on a

Cartesian system assigning to X and Y axes each nucleotide-type,

respectively. The representation was carried out by adding to the

coordinates (0, 0) of the Cartesian system the k-th nucleotide of the

DNA sequence. The value (1, 0) if the (k+1)-th nucleotide is

Guanine (rightwards-step); (21, 0) if Adenine (leftwards-step); (0,

1) if Cytosine (upwards-step) or (0, 21) if the (k+1)-th nucleotide is

Thymine or Uracil (downwards-step).

Figure 1 depicts the 2D Cartesian representation of the 558 bp

genomic DNA fragment from Petrakia sp. ef08-038 (accession

number FJ892749) comprising the ITS2 with its boundaries

(fig. 1A) and only the ITS2 (fig. 1B). The figure also shows the

ITS2 sequence (without its boundaries) folded as DNA (fig. 1C)

and RNA (fig. 1D) by the Mfold program.

In the study, a total of 4,355 out of the original 5,092 ITS2

sequences from a wide variety of eukaryotic taxa (http://its2.

bioapps.biozentrum.uni-wuerzburg.de) shared similar secondary

structure features and were used as positive dataset.

The negative set or control group comprises diverse but

structurally related genomic sequences to the ITS2 class: the

untranslated regions (UTRs) of eukaryotic mRNAs. They are non-

coding regions with divergence among the eukaryotes but showing

a more conserved secondary structure when are transcribed into

RNAs [27]. A non-redundant subset containing 6,529 and 8,128

of the 59- and 39-UTRs’ sequences from the fungi kingdom,

respectively, was selected from the eukaryotic mRNAs database:

UTRdb (http://www.ba.itb.cnr.it/UTR/). The sequence diversi-

ty among the ITS2 and UTRs datasets was explored compara-

tively using the Needleman-Wunsch (NW) [28] and Smith-

Waterman (SW) [29] algorithms. See in supporting information

(S) the NW & SW analyses (File S1 and figure S1).

Training and test series were randomly selected. The members

of the test set were selected taking out at random the 20% of the

overall data (19,012 cases). The remainder of the cases was used to

train the model. Sequences with ambiguity at least in one

nucleotide position were removed from both groups. Each ITS2

and UTR sequence retrieved was labeled respecting its original

database ID code; see File S2.

All sequences (positive and negative sets) were pseudo-folded

into a Cartesian system by TI2BioP to obtain the artificial

secondary structures as it was described above. On the other hand,

they were also used to infer optimized DNA secondary structures

by the Mfold algorithm implemented in the RNASTRUCTURE

4.0 software [30] (fig. 1C). The structural optimization is based on

the minimization of the folding energy (lowest DG). Spectral

moments (mk) introduced previously by Estrada et al. (1996)

[31,32] were applied to codify the new structural information

contained into the artificial secondary structures and into the

inferred secondary structures of both the ITS2 and UTRs

sequences.

1.1. Calculation of TIs irrespective of sequence

similarity. The topological indices called ‘‘spectral moments’’

were calculated as the sum of the entries placed in the main

diagonal of the bond adjacency matrix (B) for the DNA/RNA

sequences. B is a square matrix of n6n row and column where its

non-diagonal entries are ones or zeroes if the corresponding bonds

A New Tool for ITS2 Annotation and Phylogenetics

PLoS ONE | www.plosone.org 2 October 2011 | Volume 6 | Issue 10 | e26638



or edges share or not one nucleotide. Thus, it set up connectivity

relationships between the nucleotides in certain DNA/RNA

graph. The different powers of B give the spectral moments of

higher order.

In the DNA/RNA artificial secondary structure, the number of

edges (e) in the graph is equal to the number of rows and columns

in B but may be equal or even smaller than the number of bonds

in the nucleotide sequence. The main diagonal entries of B were

weighted with the average of the electrostatic charge (Q) between

two bound nodes. The charge value q in a node is equal to the sum

of the charges of all nucleotide placed on it. The electrostatic

charge of one nucleotide was derived from the Amber 95 force

field [33]. Thus, it is easy to carry out the calculation of the

spectral moments of B in order to numerically characterize the

pseudo-folding (pfmk) of DNA/RNA sequences.

pf mk~Tr Bð Þk
h i

ð1Þ

Where Tr is called the trace and indicates the sum of all the values

in the main diagonal of the matrices kB = (B)k, which are the

natural powers of B.

In order to illustrate the calculation of the spectral moments, an

example is developed below. The 2D Cartesian network of the

Figure 1. The ITS2 region (in black) with its boundaries ordered 59upstream: a short end corresponding to the 18S rDNA (in red),
the ITS1 (in green), the 5.8S rDNA and 39downstream: a short fragment of the 28S rDNA (in pink) (A). The ITS2 region pseudo-folded
into the 2D-Cartesian system (B). The ITS2 sequence folded as a DNA and RNA structure by the Mfold program, respectively (C and D).
doi:10.1371/journal.pone.0026638.g001
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sequence (AGCTG) is showed in the figure 2D and its bond

adjacency matrix is depicted in the figure 2C; note that the central

node contains both Guanine and Thymine nucleotides. The

calculation of the spectral moments up to the order k = 3 is also

defined below on the figure 2. The q values are represented in

the matrix as the nucleotides symbols (G = 0.24, A = 0.22,

C = 0.19, T and U = 0.21).

Expansion of expression (1) for k = 1 gives the pfm1, for k = 2 the
pfm2 and for k = 3 the pfm3. The calculation of the spectral

moments up to order three from this DNA graph is described

below.

pf m1~Tr B½ �~Tr
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TI2BioP version 1.0 H arrange automatically the DNA/RNA

sequences into a 2D Cartesian network [21] and also import the

connectivity table (ct files) generated by the RNASTRUCTURE

4.0 software. Ct files contain information about the connection

between nucleotides in the secondary structure generated with

thermodynamic models [30]. Thus, it is possible to perform the

calculation of the spectral moments (mfmk) based on folding

thermodynamics parameters for the positive and negative sets.

Another two additional TIs defined as Edge Numbers and Edge

Connectivity were introduced for these two DNA/RNA structural

approaches; see File S2 for more details.

2. Building up alignment free-models with TIs
2.1. Variable screening. We used the Feature Selection and

Variable Screening module of the Data Mining menu from

STATISTICA software [34] to select a subset of predictors that is

most strongly related to the dependent (outcome) variable of

interest regardless of whether that relationship is simple (linear) or

complex (nonlinear). The algorithm for selecting those variables is

not biased in favor of a single method for subsequent analyses;

further post-processing algorithms were applied, based on linear

and non-linear modeling methods.

2.2. Alignment-free models for ITS2 classification. Linear

models. The General Discrimination Analysis (GDA) was

carried out for building up linear models for ITS2 alignment-free

identification [35,36,37,38]. The most significant predictors

obtained from the variable screening method for each structural

approach were used to fit linear discriminant functions. Both subsets

of TIs were standardized in order to become equally scaled to allow

an effective comparison between the regression coefficients [39].

The model performance was evaluated by several statistical

measures: accuracy, area under the Receiver Operating Charac-

teristic (ROC) curve, commonly known as AUC with a value of 1.0

for a perfect predictor and 0.5 for a random predictor and the F-

score (it reaches its best value at 1 and worst score at 0) [40].

2.3. Alignment-free models for ITS2 classification. Non-

linear models. Artificial Neural Networks (ANN). We used

ANN method for ITS2 classification using the same series of TIs as

Figure 2. Building the 2D-Cartesian map for the (A) DNA fragment AGCTG. (B) The coordinates for each nucleotide in the Cartesian system.
(C) The definition of the bond adjacency matrix derived from (D) the 2D-Cartesian map. Note that all edges of the graph are adjacent, thus all non-
diagonal entries are ones.
doi:10.1371/journal.pone.0026638.g002
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input variables and only one output variable (ITS2 membership).

We used the Multilayer Layer Perceptron (MLP) due to its ability

to model functions of almost arbitrary complexity showing a

simple interpretation as a form of input-output model. To select

the right complexity of the network, we tested different topologies

to the MLP while checking the progress against a selection set to

avoid over-fitting during the two-phase (back propagation/

conjugate gradient descent) training algorithm [41]. The

selection set was extracted at random from the training set

(10%) by also generating random numbers. The test set was the

same used for GDA representing an external subset (not used

during training algorithms) to check the final network

performance.

The optimal cutoff for ITS2 gene classification for ANN-models

was defined by determining on the ROC-curve the model’s

parameter values (‘accept’ and ‘reject’ classification thresholds)

giving the nearest point (optimal operating point) to the (0,1)

coordinates. This point constitutes the ideal condition for ITS2

classification (most balanced solution where both specificity and

sensitivity are maximized). The optimal operating point was

determined by computing the slope S that considers the

misclassification costs for each class. The point was found by

moving the straight line with slope S from the upper left corner of

the ROC plot (0, 1) down and to the right until it intersects the

ROC curve.

3. Alignment-based models for ITS2 classification. Profile
Hidden Markov Models (HMM)

Three training subsets were selected to build up several profile

HMMs for ITS2 gene classification: (i) 134 sequences extracted

representatively from the original training set (2802 ITS2

sequences) to represent evenly the whole range of sequence

similarity while retaining representative members from all the

eukaryotic taxa within the training set (this sampling was based on

the sequence similarity clustering carried out in File S1); (ii) 80

sequences representative of the fungal kingdom selected following

a similar procedure as described in (i); and (iii) 2802 ITS2

sequences used to train the alignment-free models. In addition,

three different multiple sequence alignments (MSA) algorithms

were used to align these subsets: CLUSTALW [16], DIALIGN-

TX [17] and MAFFT [18]. Due to the low similarity level

amongst the ITS2 sequences, we have used DALIGN-TX and

MAFFT that are expected to outperform CLUSTALW in such

conditions. DALIGN-TX is a segment-based multiple alignment

tool improved for sets of low overall sequence similarity and the

MAFFT program is able to identify homologous regions among

distantly related sequences. Performing a good alignment is a

crucial step to generate a profile HMM with high classification

power.

CLUSTALW and DIALIGN-TX were run using the default

parameters. In the case of MAFFT the iterative alignment option

(L-INS-I) was used [29,42].

Alignments were edited in every case as follows: aligned

positions were removed from both ends until gaps were observed

in less than 10% of the aligned sequences. Thus, we removed non-

informative positions from the multiple alignments that could

deteriorate the resulting HMM. Edited alignments were used as

input for hmmbuild release 2.3.2 [43], which generated the profile

HMMs. During the profile HMMs generation step the fast option

of the hmmbuild program was used with a default value equal to 0.5.

This option assigns the insert state to every column in the alignment

containing gaps in at least half of the sequences. In this way, the

resulting HMMs do not make an explicit use of the sequence

distribution (i.e. nucleotides frequencies) of positions with high

amount of gaps but rather consider them as insertion states.

The obtained profile HMMs allowed to classify members of the

test set, as well as the newly isolated ITS2 sequence from Petrakia

sp. (see below) using hmmsearch. An optimal cutoff for the ITS2

classification was determined by running each profile HMM at 20

different E-values (0.1–10). The E-value that maximizes both

sensitivity and specificity was selected as the optimal classification

cutoff. The performance of these models at the optimal

classification cutoff was compared to that of the alignment-free

models described above (sections 2.2.2 and 2.2.3).

4. Phylogenetic analyses
We defined an empirical threshold of ITS2 representatives with

more than 60% of sequence similarity with our query fungus

(Petrakia sp. ef08-038) among the members of the Ascomycota

phylum for the phylogenetic analysis. This allowed the retrieval of

an ITS2 subset comprising 16 sequences that encompassed several

classes from the subphyla Pezizomycotina (Dothideomycetes,

Lecanoromycetes, Leotiomycetes and Sordariomycetes), while

the remaining cases were either taxonomically characterized as

mitosporic Ascomycotas (asexual species that produce conidia

namely mitospores) or unclassified Ascomycotas. The 16 ITS2

sequences plus our query sequence (FJ892749) were aligned with

the CLUSTAL W setting a Gap Open Penalty (GOP) of 20 and a

Gap Extension Penalty (GEP) of 10. The final alignment was

edited removing end gaps and the phylogenetic analyses were

conducted in MEGA4 software [19]. Neighbour-joining (NJ) trees

were generated from different sequence distance matrices from (1)

alignment and (2) alignment-free approaches:

1. NJ trees based on different evolutionary distances computed

using Jukes-Cantor (JC), Kimura 2-parameter (K2P) and

Maximum Composite Likelihood (MCL) substitution models

were obtained using the MEGA4. In addition, the Minimum

Evolution (ME) method was assessed on the JC and K2P

distance matrices. The bootstrap support (BS) values for nodes

were computed from 1000 replicates.

2. A NJ tree was built based on the hierarchic clustering that uses

the Euclidean distance matrix as a multidimensional measure

to form the sequences clusters. Euclidean distance (Ed) was

computed from the TIs values of the same seventeen ITS2

sequences mentioned above and the complete linkage or

furthest neighbor was used as cluster method.

Euclidean distance x,yð Þ~
X

i

xi{yið Þ2
( )1=2

ð2Þ

The quality of this numerical taxonomy was tested (i)

performing the Joining Tree Clustering with different distance

metrics (City-block, Chebychev, and Power distance), (ii) using

other cluster methods (Single linkage, Unweighted pair-group

average and the Ward’s method), and (iii) calculating the

cophenetic correlation coefficient.

5. Experimental section
Petrakia strain was isolated from leaves of Acer psedoplatanus. The

plant material was collected in Kaiserslautern, Germany. It was

cut and surface-sterilized by immersion in 70% ethanol for 1 min,

5% NaOCl for 3 min and 70% ethanol for 1 sec followed by a

wash in sterile distilled water. Samples were then cut into small

fragments and plated onto 2% malt agar with penicillin G and
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streptomycin sulfate (each 200 mg/l). The mycelial culture was

deposited in the culture collection of the Institute of Biotechnology

and Drug Research (IBWF), Kaiserslautern.

DNA extraction was performed as described previously by

Sacks [44]. The entire ITS (ITS1, 5.8S rDNA, and ITS2) region

was amplified for ITS sequence analysis. The primers used for

amplification were ITS5 (59-GGAAGTAAAAGTCGTAACA-

AGG) and ITS4 (59- TCCTCCGCTTATTGATATGC) accord-

ing to White et al. [45]. Their method was used with slight

modifications: A GeneAmp PCR System 9700 was employed

(Applied Biosystem, Foster City, CA, USA). The PCR amplifica-

tion cycle consisted of 30 s at 94uC, 1 min at 50uC, and 1 min at

72uC. PCR products were sequenced by MWG Biotech (Ebers-

berg, Germany) with the same primers used for the amplification.

Each sequence was obtained in duplicate from each of two

separate PCR amplifications.

Results and Discussion

6. Predicting eukaryotic ITS2 sequences with alignment-
free classifiers

Two classes of predictors comprising 18 TIs each were

calculated by the TI2BioP methodology for 19,012 genomic

sequences (4,355 ITS2 and 14,657 UTRs): the spectral moments

series (m0- m15) of the bond adjacency matrix between the

nucleotides arranged into the Cartesian space (pfmk) and between

the nucleotides connected into the Mfold structures (mfmk). Other

two additional TIs were computed (the Edge Numbers and the

Edge Connectivity) for each class. The spectral moments are

structural-based TIs that describe electronically the nucleotide

connectivity at different orders in these two structural approaches.

The Nandy-like structure is determined by the sequence order and

DNA/RNA nucleotide composition. The 2D structure obtained

by the Mfold software depends also of the primary sequence but its

folding is driven by the optimization of thermodynamics

parameters (lowest folding free energy-DG0).

In order to select the most significant predictors for both

datasets (Nandy-like and Mfold structures), we carried out a

feature selection as a preliminary variable screening method before

the model building. We found that the four most significant

variables (p,0.01) were the Edge Connectivity, the pfm0, pfm1, and
pfm2 for Nandy’s structures and for Mfold structures the mfm0, mfm5,
mfm7 and mfm15 (figure 3).

These two sets of four variables were used as input predictors to

build classification linear models based on the GDA implemented

in the STATISTICA software [34]. The alignment-free classifiers

based on Nandy-like structures provided classification accuracy in

training and test of 84.87 and 84.95%, respectively. The AUC and

F-score for the test set were of 0.919 and 0.687, respectively. In

contrast, the TIs derived from the Mfold structures showed a

better classification performance. Its accuracy level was notably

higher in training (94.17%) and in the test subset (94.26%). The

same was true for the AUC and F-score statistics that reach values

of 0.983 and 0.960, respectively. These facts point out that the TIs

calculated from the 2D topology predicted by folding thermody-

namics rules are more effective classifiers than the TIs derived

from artificial structures. However, the former takes much more

computational and procedure cost than for the TIs obtained from

the Cartesian graphical approach. The 2D Cartesian TIs have

been useful for protein and RNA structure descriptors when

higher structural levels are not available [46,47,48]. Thus, we

evaluate non-linear methods on both data sets with the aim to

improve the classification performance, especially for the pseudo-

folding TIs. The Artificial Neural Networks (ANN), particularly

the Multilayer Layer Perceptron (MLP) was selected as the most

popular ANN architecture in use today [49].

6.1 Artificial Neural Networks (ANN) in the prediction of

the ITS2 class. The MLP was tested at different topologies

using the four predictors already selected for each secondary

structural approach as input variables. From the same training set

used to develop the discriminant function, an independent data set

(the selection set) was selected. This subset was chosen randomly

taking out the 20% of the training set being not used in the back

propagation algorithm. Thus, 12,168 cases were used for the

training, 3,042 represented the selection subset and the 3,802 cases

were evaluated in external validation to set the comparison.

Figure 3. Predictor importance according the variable screening analysis for the Nandy and Mfold structures. E.C.I. (Edege
Connectivity Index).
doi:10.1371/journal.pone.0026638.g003
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The Table 1 shows the different MLP topologies used to select

the right complexity of the ANN in both datasets, the performance

on training, selection and test progress were examined as well as its

errors. The best models were the MLP profiles number 3 and 1

(highlighted in bold) for Nandy and Mfold datasets, respectively,

which showed the best accuracy on training, selection and test sets,

minimizing its respective errors. These ANN-models showed a

higher accuracy level in classifying the training and test sets in

respect to the linear models. The TIs calculated from the Mfold

structures provided a better ANN performance on the data

classification than when derived from the Nandy graphical

approach. Although, ANN-based models showed an analogue

behaviour in respect to the linear models (Mfold . Nandy); the

classification performances of both structural approaches are more

similar and higher when a non-linear function is applied (Table 1).

This suggests that the identification of gene signatures tend to be

better assessed with non-linear models and we further showed the

utility of the artificial but informative folding of the biopolymeric

sequences for gene/protein class identification [24,50,51].

The classification results derived from our two best alignment-

free approaches to classify ITS2 membership is showed in Table 2
and File S3. The structural TIs based on the folding

thermodynamics rules provide a more accurate description of

the DNA/RNA structure, which is supported by the classification

results (Table 2). The 2D topology of these molecules is affected

by the primary information and by the possible hydrogen

interactions between nucleotides forming the stems and loops;

therefore a better functional classification performance is achieved.

Although the Nandy-like representation is less accurate in the

classification due to its artificial nature, it takes into account the

sequence order information and the nucleotide composition,

which are important features for the recognition at a genome scale

of genes that do not encode a protein [52,53]. Thus, the utility of

this easy structural approach is reflected in the excellent

discrimination achieved between these two distinct DNA/RNA

functional classes with divergence among its members but sharing

common structural features.

We carried out a 10-fold cross validation to examine the

classification performance of our alignment-free models. This

validation procedure is easier to implement and provides reliable

results in the validation of a predictive model at low computational

cost [54]. Thus, the original data set was divided at random into

10 subsets containing the same number of cases. Of the 10 subsets,

a single subset was retained as a prediction subsample for testing

the model, and the remaining nine subsets were used as the

training data. Since a selection subset is also needed to check the

training algorithm, it was selected from the training set at random

(10%). The cross-validation procedure is then repeated 10 folds or

rounds using each of the 10 subsets for prediction exactly once, in

such way ensures that all cases were predicted and used in

training. Afterwards the average values for the accuracy,

sensitivity, specificity for training and test sets, as well as the

AUC were calculated to provide a single estimation from the 10

folds (Table 2).

We plotted the ROC curve for each fold from the cross-

validation procedure on the test set. In each fold or round, the

curve presented an area higher than 0.5 (figure 4). According to

the ROC curve theory random classifiers have an area of only 0.5.

This result confirms that the present model is a significant classifier

relatively to those working at random. In the plotting, the ROC

curves for the ANN-models (MLP-1 and 3) on the test set were

included to show visually its classification performance similarity

Table 1. Testing different topologies for the MLP on the ITS2 classification using TIs from Nandy and Mfold DNA structures.

Nandy structure

Profile Train Accuracy Selection Accuracy Test Accuracy Train Error Selection Error Test Error

1 MLP 4:4-4-1:1 0.946 0.948 0.946 0.232 0.226 0.230

2 MLP 4:4-3-1-1:1 0.946 0.949 0.945 0.225 0.219 0.224

3 MLP 4:4-2-2-1:1 0.959 0.958 0.956 0.178 0.180 0.187

4 MLP 4:4-1-3-1:1 0.949 0.950 0.948 0.199 0.198 0.200

5 MLP 4:4-3-1:1 0.946 0.948 0.946 0.232 0.226 0.230

6 MLP 4:4-2-1-1:1 0.772 0.769 0.768 0.419 0.422 0.422

7 MLP 4:4-1-2-1:1 0.946 0.949 0.945 0.216 0.210 0.215

8 MLP 4:4-2-1:1 0.946 0.948 0.946 0.232 0.225 0.230

9 MLP 4:4-1-1:1 0.946 0.949 0.945 0.233 0.226 0.231

Mfold structure

1 MLP 4:4-4-1:1 0.976 0.975 0.973 0.140 0.138 0.145

2 MLP 4:4-3-1-1:1 0.968 0.968 0.967 0.158 0.155 0.162

3 MLP 4:4-2-2-1:1 0.942 0.954 0.943 0.207 0.196 0.204

4 MLP 4:4-1-3-1:1 0.941 0.955 0.943 0.206 0.194 0.203

5 MLP 4:4-3-1:1 0.969 0.970 0.967 0.159 0.155 0.162

6 MLP 4:4-2-1-1:1 0.957 0.961 0.960 0.176 0.170 0.172

7 MLP 4:4-1-2-1:1 0.943 0.955 0.944 0.205 0.193 0.202

8 MLP 4:4-2-1:1 0.943 0.956 0.944 0.205 0.193 0.202

9 MLP 4:4-1-1:1 0.941 0.940 0.945 0.209 0.211 0.199

Accuracy and error rates on training, selection and test sets.
doi:10.1371/journal.pone.0026638.t001
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with the 10-fold cross validation (figure 4). Thus, the similarity in

the prediction performance between the 10-fold cross validation

procedure and the reported ANN-models shows the robustness of

our models. The validity of this type of procedures in structure-

function relationship studies based on ANN-models has been

demonstrated before [55,56,57].

We found an optimum cutoff for ITS2 gene classification using

an ‘‘acceptance’’ threshold of 0.475 that provides a sensitivity of

0.929 and a specificity of 0.986 for our best predictive model (based

on M-fold’ TIs). Moreover, for the other alignment-free model that

used Nandy-like’s TIs, the ‘‘acceptance’’ classification threshold was

0.529 showing a sensitivity of 0.838 and a specificity of 0.988.

Although ANN-based models are more complex than linear

functions, the architecture of these networks is rather simple since

they use just four predictors and one hidden layer made up of four

neurons for the case of the TIs calculated from Mfold structures

and two layers with the same amount of neurons for the Nandy

structural approach (figure 5). Thus, the ANN-models based on

the TI2BioP methodology are effective and simple tools to search

an ITS2 sequences among the diversity of this DNA/RNA class in

a wide variety of eukaryotic taxa.

7. Hidden Markov Models in the classification of the ITS2
class. A comparative study

Hidden Markov Models (HMM) has been widely used for

classification purposes of DNA and protein sequences [58]. Their

simplicity and high performance have made them the core of the

popular database Pfam [4]. Profile HMMs generates predictive

models in which classification performance can be easily evaluated

in terms of accuracy, sensitivity and specificity. Nine profile HMMs

from members of the ITS2 class were built up using three MSA

algorithms (CLUSTALW, DIALIGN-TX and MAFFT) with

different training sets. The classification measures for both the

profile HMMs and the alignment-free models are shown in Table 3.

As shown in Table 3, all the profile HMMs obtained for the

ITS2 classification provide a lower performance in respect to the

alignment-free approaches. Nevertheless, we obtained generally

some improvements in the sensitivity on the ITS2 classification

when the E-value cutoff was increased (File S6) and when the

profile HMMs based on improved MSA algorithms was applied.

The use of a wider training set comprising 2802 ITS2 sequences

also improved the classification performance for the profile HMMs

based on DIALIGN-TX and MAFFT algorithms since this dataset

better captures the vast diversity of the ITS2 class. However, the

ITS2 query sequence from Petrakia sp. was identified with a higher

significance level when a fungi-specific dataset aligned with

MAFFT was considered for building the models (Table 3).

We provide information about the MSA handled with

CLUSTALW, DIALIGN-TX and MAFFT (File S4) and the

ITS2 profile HMMs generated with the aforementioned MSA

algorithms on the three training sets described in section 2.3

(File S5).

Table 2. Classification results derived from the ANN-models (MLP-3 and 1) for Nandy and Mfold structures respectively in training,
selection and test series.

Nandy structure Training Selection Test

ITS2 CG ITS2 CG ITS2 CG

ITS2 class 2434 128 575 31 770 38

Control Group (CG) 368 9238 87 2349 121 2863

Total 2802 9366 662 2380 891 2911

Sensitivity (Sv) (%) 86.86 86.85 86.42

Specificity (Sp) (%) 98.63 98.70 98.35

Accuracy (Acc) (%) 95.95 96.12 95.58

AUC 0.984 0.985 0.980

F-score 0.939

10-fold CV Sv Sp Acc Sv Sp Acc AUC

Average 84.79 98.85 95.64 84.59 98.87 95.59 0.978

Mfold structure Training Selection Test

ITS2 CG ITS2 CG ITS2 CG

ITS2 class 2592 102 604 19 825 35

Control Group (CG) 210 9264 58 2361 66 2876

Total 2802 9366 662 2380 891 2911

Sensitivity(Sv) (%) 92.50 91.24 92.59

Specificity (%) 98.91 99.20 98.79

Accuracy (%) 97.57 97.53 97.31

AUC 0.994 0.995 0.994

F-score 0.960

10-fold CV Sv Sp Acc Sv Sp Acc AUC

Average 92.37 99.01 97.50 92.26 98.97 97.44 0.993

10-folds Cross Validation (CV) procedure on training and test sets.
Numbers in bold highlight well-classified cases.
doi:10.1371/journal.pone.0026638.t002
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We explain the low performance of the profile HMMs on the

poorly informative multiple alignments used for its creation.

Neither the use of a specific nor of an extended training set aligned

with an improved MSA (e.g. MAFFT) assures a good classifica-

tion; the maximum sensitivity obtained on the test set was only

66.66% (Table 3). This result is in line with the one previously

obtained by developers of the ITS2 database [10], which reported

the use of more conserved 5.8S and 28S rRNAs adjacent to the

ITS2 in order to obtain an useful profile HMM. All together, these

results reinforce the usability of our alignment-free models that

additionally require less sequence information compared to

classical alignment-based approaches.

As a practical validation, a novel ITS2 genomic sequence was

isolated from a fungal isolate as a part of its taxonomic

characterization. This ITS2 sequence was used to evaluate the

ability of the ANN-models and the profile HMMs to identify a

novel member of this gene class and also its use into the traditional

and alignment-free phylogenetic assessment.

8. Experimental results. Annotation of a novel ITS2
member using several predictive models

We selected the fungal genus Petrakia that lives inside plants of

the genus Acer, which can be a latent pathogen agent of these plants

and a potentially producer of bioactive compounds [59]. Members

of the Petrakia genus are placed inside the Ascomycota phylum

despite the absence of a defined ascus (a microscopic sexual

structure in which nonmotile spores, called ascospores, are

formed). These fungi that produce conidia (mitospores) instead

of ascospores were previously described as mitosporic Ascomycota

[53]. However, its taxonomy identification has been a problem at

the species level. Thus, a polyphasic approach involving

mycological culture with molecular detection [60] to determine

the presence of fungi in plants is needed.

Our fungal isolate showed all morphological characteristics of a

mitosporic Ascomycota/ genus Petrakia such as: aerial mycelium,

cover entire plate of Malt Extract Agar medium, conidiophores

forming dark sporodochium, conidia pigmented, many-celled,

muriform, with several cylindrical projections [61] (figure 6A).

However, the species could not be unequivocally determined and

therefore an attempt to perform a low level-phylogenetic analysis

supported on the ITS2 biomarker was required to complement the

fungus detection.

We isolated a genomic DNA fragment of 558 bp comprising the

entire (ITS1, 5.8S rDNA, and ITS2) region with shorts ends at

59and 39positions corresponding to the 18S and 28S rDNA

conserved genes, respectively (figure 6B). The PCR product was

Figure 5. The architecture of the ANN-models (MLP-3 and MLP-
1) for Nandy and Mfold structures, respectively. It represents
four input variables, four neurons in two layers (Nandy) and four in one
layer (Mfold) and only one output variable (from the left to the right).
doi:10.1371/journal.pone.0026638.g005

Figure 4. ROC-curves for the 10-fold cross validation procedure of both ANN-models (Nandy and Mfold structures) on the test set.
The curve for the reported model in each case is represented by a yellow discontinuous line.
doi:10.1371/journal.pone.0026638.g004
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sequenced and registered at the GenBank Database (accession

number FJ892749). The ITS2 region was delineated by alignment

methods [62] using the conserved 5.8S and 28S rDNA flanking

fragments. Then, the ITS2 region was selected to evaluate the

predictability of our alignment-free models based on the TI2BioP

methodology and also by predictive alignment procedures.

We selected the ANN-based models for the ITS2 classification

since they show the highest classification rate for both structural

approaches. Both alignment-free models allowed a successfully

prediction of the Petrakia ITS2 sequence with a confidence level of

0.996 and 0.990 for the Mfold and Nandy-like structures,

respectively (Table 3). Despite the high divergence among the

ITS2 sequences, the models were able to identify a new fungal

ITS2 sequence from a dataset made up of divergent UTR

sequences with similar structural features but functional different.

We also demonstrated that Nandy-like structures provide patterns

that are useful for gene class discrimination. These 2D artificial

maps for DNA/RNA provides information about the connectivity

of the nucleotides, but also accounts for the content of purines

(GA) and pyrimidine (CT) in the rDNA molecules, which can be

observed in the tendency of occupying certain quadrant in the

Cartesian system (figure 1). The variations in the content of

nucleotides have been also used in the genomic recognition of non-

protein-coding RNAs [52].

By contrast, profile HMMs generated with different MSA

algorithms and different training sets showed in general a poor

classification performance on the ITS2 sequence of Petrakia sp.

Only the profile HMMs based on MAFFT classified it correctly

(Table 3). Despite that the alignment-free methods and the profile

HMMs based on MAFFT recognized our query ITS2 sequence

with significance, a BLASTn search (E-value cutoff = 10e210)

against the NCBI database was carried out to support the

annotation of the newly isolated sequence by looking for hits

belonging or related to the Petrakia genus. We retrieved the second

best hit (HQ433006) from an uncultured fungus from the

Ascomycota phylum. The score (172) and sequence similarity

(89%) between our query and this hit were significant (E-

value = 4e-40). However, the BLAST search did not find any hit

from the Petrakia genus except our own submission (first hit). This

confirms that Petrakia genus is not well-represented at NCBI and

has not been deeply studied yet either taxonomically or as a source

of novel secondary metabolites.

9. A comparative phylogenetic analysis
The lack of other ITS2 sequences from different species of the

genus Petrakia (with the exception of our sequence submission at

the GenBank) precluded performing a phylogenetic analysis at the

species level (low-level analysis). We classified our fungal isolate as

a mitosporic Ascomycota/Petrakia sp. according to its mycological

culture features, as there is not a report with a detailed taxonomy

about this genus namely in the NCBI dedicated ‘Taxonomy’

Table 3. Comparative analysis for the classification performance on the test set and Petrakia sp. ITS2 sequence using nine profile-
HMMs built up with CLUSTALW, DALIGN-TX and MAFFT algorithms with different training sets.

ALIGNMENT BASED MODELS

Training set (source and number of
sequences)

Sequence Alignment
(processing) Method

Optimal Classification
Cutoff (E-value) Sensitivity/Specificity (%)

Prediction on the
ITS2 Petrakia sp.*

Representative fungi (80 sequences) CLUSTALW 2.0 15.82/100 No significant hit

DALIGN-TX 9.0 18.18/100 No significant hit

MAFFT 5.0 20.20/100 0.02

Representative eukaryotes (134 sequences) CLUSTALW 2.0 13.92/100 No significant hit

DALIGN-TX 0.1 6.95/100 No significant hit

MAFFT 2.0 3.59/100 No significant hit

Eukaryotes (2802 sequences) CLUSTALW 8.0 12.69/100 No significant hit

DALIGN-TX 0.8 35.58/100 No significant hit

MAFFT 4.0 66.66/100 1.0

ALIGNMENT-FREE MODELS

Training set (source and number of
sequences) 2D Structural Approach

Optimal Classification
Cutoff (Accept/Reject) Sensitivity/Specificity (%)

Prediction on the
ITS2 Petrakia sp.

Eukaryotes (12168 sequences) Nandy structure Accept . 0.529 83.80/98.80 0.990

Mfold structure Accept . 0.475 92.90/98.60 0.996

The classification results of our alignment-free models (Mfold and Nandy) when using an optimal cutoff are also provided.
*Classification performance at optimal cutoff in every case (E-value).
doi:10.1371/journal.pone.0026638.t003

Figure 6. Conidia of Petrakia sp. from 7 days culture on Malt
Extract Agar (6400) (A). Isolation of a novel ITS2 genomic sequence
from Petrakia sp. (1) 1 Kb ladder (Gibco BLR), (2) Genomic DNA from the
Petrakia isolate, (3) PCR reaction with the ITS5 and ITS4 primers (B).
doi:10.1371/journal.pone.0026638.g006
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database (http://www.ncbi.nlm.nih.gov/tanonomy). Further-

more, there is no specification about its subphylum and class

[63]. These fungal species was initially placed into a separate

artificial phylum ‘‘the Deuteromycota’’ along with asexual species

from other fungal taxa but currently asexual ascomycetes are

identified and classified based on morphological or physiological

similarities to ascus-bearing taxa, as well as based on phylogenetic

analyses of DNA sequences [64]. So, a higher-level phylogenetic

study involving Ascomycota members haring ITS2 sequence

similarities with Petrakia may complement its taxonomy relatively

to the ascus-bearing taxa. First, we assumed that our fungal isolate

belonged to the Pezizomycotina subphylum, the largest within

Ascomycota phylum. Our inference agree with a recent classifi-

cation found in the ‘‘The dictionary of the Fungi’’ [65].

Two different types of distance trees were built: (1) a traditional

one based on multiple alignments of ITS2 sequences and (2)

another irrespective of sequence similarity supported by the

TI2BioP methodology. Both phylogenetic analyses, the traditional

and the alignment-free clustering, showed that the Petrakia isolate is

similar to the Dothideomycetes class members (figure 7 and 8).

Dothideomycetes is the largest and most diverse class of

ascomycete fungi. They are often found as pathogens, endophytes

or epiphytes of living plants sharing some morphological features

described above for the Petrakia genus [66]. In addition, Petrakia sp.

was placed by the two different computational taxonomic

approaches near to the mitosporic Ascomycota Ampelomyces sp.DSM

2222 supporting the mycological characterization of the query

fungus. Ampelomyces sp.DSM 2222 is taxonomically placed among

the Dothideomycetes class and inside the mitosporic Lepto-

sphaeriaceae family producing conidia as Petrakia sp. We only show

the NJ-tree based on the K2P substitution model to illustrate the

tree topology and the BS values for each node that support our

phylogenetic inferences (figure 7). Similar tree topologies and BS

support were obtained with other evolutionary distance matrices

and the ME method (see section 2.4) (figure S2).

Furthermore, we evaluate the stability of our results on the NJ-

tree clustering: (i) by measuring the influence of several alignment-

free distances (City-block, Chebychev, and Power distance) in

addition to the Euclidean distance, (ii) by assessing other clustering

methods (Single linkage, Uweighted pair-group average and the

Ward’s method) and (iii) by calculating the cophenetic correlation

coefficient for the clustering depicted in the figure 8. The

topologies of the alignment-free trees based on different distance

metrics are quite similar as well as the positions of the taxa in

respect of our query fungus along the four trees (figure S3).

Similar outcomes were obtained when different clustering methods

were computed using the Euclidean distance to plot the trees

(figure S4). These two facts support the consistency of our

original alignment-free clustering despite the difficulty to perform

a statistical significance testing, as unlike many other statistical

procedures, cluster analysis methods are mostly used when we do

not have any a priori hypotheses. One way to measure the validity

of the cluster information generated by the linkage function is to

compare it with the original proximity data generated by the

pairwise distance (Euclidean) function. If the clustering is valid, the

linking of objects in the cluster tree should have a strong

correlation with the distances between objects in the distance

vector. The cophenet function compares these two sets of values

and computes their correlation, returning a value called the

cophenetic correlation coefficient (ccc) [18]. We retrieve a ccc

value for the furthest-neighbor clustering of 0.87 showing an

strong correlation (the closer the value of the ccc is to 1, the better

the clustering solution). The cophenet function was used to

evaluate the clustering method using the other distance metrics

mentioned above. The ccc values for the City-block, Chebychev,

and Power distances were 0.84, 0.82 and 0.80, respectively,

showing consistency in the clustering solution.

The tree topologies obtained for both approaches are somewhat

similar as well as the sub-topologies within the Ascomycota classes,

specially the Petrakia’s location among the Dothideomycetes.

Moreover, Phyllactinia moricola (outgroup) is placed far from the rest

of the members (inner group). Therefore, the NJ clustering based

on the Euclidean distance matrix computed from our alignment-

free indices largely agrees with the traditional NJ distance tree,

which have a phylogenetic meaning since is based on evolutionary

distances.

These findings support the importance of including ITS2

structural information when assessing the phylogenetic relation-

ships at higher levels in eukaryote evolutionary comparisons.

Although the Euclidean distance is simply a sort of geometric

Figure 7. Neighbor-joining tree based on the ITS2 sequences using the substitution Kimura 2-parameter (K2P).
doi:10.1371/journal.pone.0026638.g007
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distance in a multidimensional space with no phylogenetic

meaning, it led to an effective hierarchical biological clustering

with an evolutionary approach because it was derived from the TIs

containing both sequence and structural information.

Conclusions
Topological indices containing information about ITS2 sequenc-

es and structures are effective to produce ANN-models with a high

prediction power despite the sequence diversity of this class. The use

of artificial but informative DNA/RNA secondary structures is a

less-costly alternative for the ITS2 classification when higher

structural levels are not available or the correct structure is only

rarely found by standard RNA folding algorithms. TI2BioP

provided simplicity and reliability to ANN-models to search a novel

ITS2 member, performing even better than the profile HMMs built

up with optimized MSA algorithms for low overall sequence

similarity. In addition, our alignment-free approach is effective to

construct hierarchical distance-trees containing relevant biological

information with an evolutionary significance.

Supporting Information

File S1 Exploring ITS2 and UTRs sequence diversity by

Needleman-Wunsch and Smith-Waterman procedures.

(DOC)

File S2 IDs, training and prediction series, values of the TIs

predictors for the ITS2 and UTR sequences.

(XLS)

File S3 Classification results derived from ANN-models on the

training, selection and test set for the two structural approaches.

(XLS)

File S4 MSA performed by several algorithms (CLUSTALW,

DIALIGN-TX and MAFFT) using three different training sets

(File S4.1–4.9).

(RAR)

File S5 ITS2 profile HMMs generated with the MSA showed in

File S4 (File S4.1–4.9).

(RAR)

File S6 ROC analysis for each profile HMM at 20 different E-

values (0.1–10).

(XLS)

Figure S1 Pair wise comparison (all vs all) for the ITS2 and

UTRs sequences evaluated in this study using the Needleman-

Wunsch (NW) (in light gray) and Smith-Waterman (SW) (in dark

gray) alignment algorithms.

(TIF)

Figure S2 Neighbor-joining trees based on JC (in black) and

MCL (in red) substitution models and ME trees based on the JC

(in green) and K2P (in blue) evolutionary distances.

(TIF)

Figure S3 Neighbour-joining trees built with different align-

ment-free distance metrics: Euclidean (in black), City-block (in

blue), Chebychev (in red) and Power (in green) distances. Each

taxa is labeled for a number as follow: (1) FJ892749 Petrakia sp.

ef08-038, (2) 1835168 Pyrenophora avenae [Dothideomycetes], (3)

2735013 Ampelomyces sp.DSM 2222 [Dothideomycetes], (4)

11191992 Microsphaeropsis amaranthi [mitosporic Ascomycota], (5)

20531622 leaf litter ascomycete strain its301 [unclassified Ascomycota],

(6) 32442335 Botryosphaeria corticola [Dothideomycetes incertae

sedis], (7) 45502431 Cenococcum geophilum [Dothideomycetes], (8)

13242223 Caloplaca chlorina [Lecanoromycetes], (9) 11993310

Rinodina bischoffii [Lecanoromycetes], (10) 29725499 Cladia aggregata

[Lecanoromycetes], (11) 19070580 Pseudocyphellaria granulata [Le-

canoromycetes], (12) 25136312 Graphium pseudormiticum [Sordar-

iomycetes], (13) 3420858 Oidiodendron scytaloides [Leotiomycetes

incertae sedis], (14) 28974832 Tricladium splendens [mitosporic

Ascomycota], (15) 5442303 Salal mycorrhizal UBCtra179 [unclassi-

fied Ascomycota], (16) 18644046 Mollisia minutella [Leotiomycetes],

(17) 1843420 Phyllactinia moricola [Leotiomycetes].

(TIF)

Figure 8. Neighbor-joining tree clustering based on the Euclidean distance calculated from the TIs values.
doi:10.1371/journal.pone.0026638.g008
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Figure S4 Joining-tree clustering using different methods for the

linkage of the Euclidean distance: Complete linkage (in black),

single linkage (in blue), unweighted pair-group average (in red) and

the Ward’s method (in green). Taxa are labeled by numbers as in

the figure S3.

(TIF)

Acknowledgments

GACH would like to thank Dr. Leticia Arco-Garcı́a from the CEI/UCLV

for her collaborative work on the validation of hierarchic clusters. Special

thanks to Prof. Dr. Timm Anke from Department of Biotechnology,

University of Kaiserslautern, for allowing Hidalgo-Yanes P.I to work in his

research group. Comments made by the Associate Editor, Jonathan H.

Badger, and two anonymous referees improved a previous version of this

manuscript.

Author Contributions

Conceived and designed the experiments: AA GACH ASR. Performed the

experiments: GACH PIHY RMR YPC ASR. Analyzed the data: GACH

ASR AA. Contributed reagents/materials/analysis tools: AA VV RMR

KM. Wrote the paper: GACH ASR AA.

References

1. Aguero-Chapin G, Perez-Machado G, Molina-Ruiz R, Perez-Castillo Y,

Morales-Helguera A, et al. (2011) TI2BioP: Topological Indices to BioPolymers.

Its practical use to unravel cryptic bacteriocin-like domains. Amino Acids 40:

431–442.

2. Aguero-Chapin G, de la Riva GA, Molina-Ruiz R, Sanchez-Rodriguez A,

Perez-Machado G, et al. (2011) Non-linear models based on simple topological

indices to identify RNase III protein members. J Theor Biol 273: 167–178.

3. Strope PK, Moriyama EN (2007) Simple alignment-free methods for protein

classification: a case study from G-protein-coupled receptors. Genomics 89:

602–612.

4. Finn RD, Mistry J, Tate J, Coggill P, Heger A, et al. (2009) The Pfam protein
families database. Nucleic Acids Res.

5. de Jong A, van Hijum SA, Bijlsma JJ, Kok J, Kuipers OP (2006) BAGEL: a web-

based bacteriocin genome mining tool. Nucleic Acids Res 34: W273–279.

6. Selig C, Wolf M, Muller T, Dandekar T, Schultz J (2008) The ITS2 Database II:

homology modelling RNA structure for molecular systematics. Nucleic Acids

Res 36: D377–380.

7. Chou KC (2009) Automated prediction of protein attributes and its impact to

biomedicine and drug discovery. In: Alterovitz G, Benson R, Ramoni MF, eds.

Automation in Proteomics and Genomics: An Engineering Case-Based

Approach (Harvard-MIT interdisciplinary special studies courses). UK: Wiley

& Sons. pp 97–143.

8. Perez-Bello A, Munteanu CR, Ubeira FM, De Magalhaes AL, Uriarte E, et al.

(2009) Alignment-free prediction of mycobacterial DNA promoters based on

pseudo-folding lattice network or star-graph topological indices. J Theor Biol

256: 458–466.

9. Schultz J, Maisel S, Gerlach D, Müller T, Wolf M (2005) A common core of

secondary structure of the internal transcribed spacer 2 (ITS2) throughout the

Eukaryota. RNA 11: 361–364.

10. Koetschan C, Forster F, Keller A, Schleicher T, Ruderisch B, et al. (2009) The

ITS2 Database III–sequences and structures for phylogeny. Nucleic Acids Res.

11. Schultz J, Müller T, Achtziger M, Seibel P, Dandekar T, et al. (2006) The

internal transcribed spacer 2 database–a web server for (not only) low level

phylogenetic analyses. Nucleic Acids Research 34.

12. Keller A, Schleicher T, Schultz J, Muller T, Dandekar T, et al. (2009) 5.8S–28S

rRNA interaction and HMM-based ITS2 annotation. Gene 430: 50–57.

13. Nandy A (1996) Two-dimensional graphical representation of DNA sequences

and intron-exon discrimination in intron-rich sequences. Comput Appl Biosci
12: 55–62.

14. Nandy A (2009) Empirical relationship between intra-purine and intra-

pyrimidine differences in conserved gene sequences. PLoS One 4: e6829.

15. Mathews DH (2006) RNA secondary structure analysis using RNAstructure.

Curr Protoc Bioinformatics Chapter 12: Unit 12 16.

16. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the

sensitivity of progressive multiple sequence alignment through sequence

weighting, position-specific gap penalties and weight matrix choice. Nucleic

Acids Res 22: 4673–4680.

17. Subramanian AR, Kaufmann M, Morgenstern B (2008) DIALIGN-TX: greedy

and progressive approaches for segment-based multiple sequence alignment.

Algorithms Mol Biol 3: 6.

18. Katoh K, Kuma K, Miyata T, Toh H (2005) Improvement in the accuracy of

multiple sequence alignment program MAFFT. Genome Inform 16: 22–33.

19. Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson KH (2008)

Intraspecific ITS variability in the kingdom fungi as expressed in the

international sequence databases and its implications for molecular species

identification. Evol Bioinform Online 4: 193–201.

20. Qi FH, Jing TZ, Wang ZX, Zhan YG (2009) Fungal endophytes from Acer

ginnala Maxim: isolation, identification and their yield of gallic acid. Lett Appl

Microbiol 49: 98–104.
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Abstract

The introduction of two-dimension (2D) graphs and their numerical characterization for comparative analyses of DNA/RNA
and protein sequences without the need of sequence alignments is an active yet recent research topic in bioinformatics.
Here, we used a 2D artificial representation (four-color maps) with a simple numerical characterization through topological
indices (TIs) to aid the discovering of remote homologous of Adenylation domains (A-domains) from the Nonribosomal
Peptide Synthetases (NRPS) class in the proteome of the cyanobacteria Microcystis aeruginosa. Cyanobacteria are a rich
source of structurally diverse oligopeptides that are predominantly synthesized by NPRS. Several A-domains share amino
acid identities lower than 20 % being a possible source of remote homologous. Therefore, A-domains cannot be easily
retrieved by BLASTp searches using a single template. To cope with the sequence diversity of the A-domains we have
combined homology-search methods with an alignment-free tool that uses protein four-color-maps. TI2BioP (Topological
Indices to BioPolymers) version 2.0, available at http://ti2biop.sourceforge.net/ allowed the calculation of simple TIs from
the protein sequences (four-color maps). Such TIs were used as input predictors for the statistical estimations required to
build the alignment-free models. We concluded that the use of graphical/numerical approaches in cooperation with other
sequence search methods, like multi-templates BLASTp and profile HMM, can give the most complete exploration of the
repertoire of highly diverse protein families.
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Introduction

The Chemical Graph Theory (CGT) consists in the application

of the graph theory to perform combinatorial and topological

exploration of the chemical molecular structure. Currently, the

CGT is being extended to bioinformatics through the introduction

of two-dimensional (2D) graphs for comparative analyses of DNA/

RNA and proteins without the use of sequence alignments. These

2D graphs or maps do not represent the ‘‘real structure’’ of the

natural biopolymers but they have been very effective to inspect

similarities/dissimilarities among them, either by direct visualiza-

tion or by numerical characterization [1]. Examples of 2D

artificial representations of DNA and protein sequences with

potentialities in bioinformatics include the spectrum-like, star-like,

cartesian-type and four-color maps [1–5]. These DNA/RNA and

protein maps can generally unravel higher-order useful informa-

tion contained beyond the primary structure, i.e. nucleotide/

amino acid distribution into a 2D space. Their essence can be

captured in a quantitative manner through numerical indices to

easily compare a great number of sequences/maps [6–8]. One of

the simplest numerical characterizations of sequences compre-

hends the use of topological indices. Topological Indices (TIs) are

based on the connectivity between the elements composing the 2D

graph in terms of whether they are connected or not [9,10]. While

several types of 2D maps have been developed for DNA/RNA

and proteins, including their numerical characterization [11], the

four-color maps application in bioinformatics has been mostly

unexplored, being limited to illustrative examples on the

comparative characterization of DNA and protein sequences

[12]. However, the use of the four-color maps and its numerical

characterization can cooperate with traditional homology search

tools (e.g. BLAST, HMMs) to carry out an exhaustive exploration

of functional signatures in highly diverse gene/protein families.

Such exploration is effective when all family members are

retrieved including remote homologs. Remotes homologues are

divergent gene/protein sequences that have conserved the same

biological function in different organisms. They can be harvest in

the alignment algorithms twilight zone (,30% of amino acid

identity) and have been traditionally detected by the use of more
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sensitive alignment-based methods like PSI-BLAST [13] and

profiles Hidden Markov Models (HMM) [14]. The Nonribosomal

Peptide Synthetases (NRPS) family can harbor remote homolo-

gous due to the high sequence divergence among its Adenylation

domains (A-domains). In fact, all A-domain members cannot be

retrieved easily by BLASTp using a single template [15]. NRPS

are megasynthetases composed by several domains organized in

clusters for the synthesis of oligopeptides with biological activities.

A-domains are mandatory in each NRPS cluster being responsible

for the amino acid selection and its covalent fixation on the

phospho-pantethein arm as thioester, through AMP-derivative

intermediate during the production of oligopeptides via non-

ribosomal [16]. Cyanobacteria are a rich source of structurally

diverse oligopeptides that are predominantly synthesized by

NRPS. In Microcystis, a common cyanobacteria genus in eutrophic

freshwaters, numerous bioactive peptides have been identified that

can be mostly classified as aeruginosins, microginins, microcystins,

cyanopeptolins, and anabaenopeptins [17]. In the present work we

aim to annotate the A-domain repertoire in the proteome of

Microcystis aeruginosa as a strategy to spot NRPS clusters. To handle

the high sequence diversity of A-domains we used an ensemble of

homology-search methods, including an alignment-free model that

integrates the four-color-maps for proteins. TI2BioP (Topological

Indices to BioPolymers) version 2.0, available at http://ti2biop.

sourceforge.net/ allows the calculation of TIs from the four-color

maps for protein sequences [18]. Such TIs were used as input

predictors for statistical techniques to build alignment-free models.

We concluded that the use of an ensemble of sequence search

methods (homology-based and alignment-free) can give the best

exploration of the repertoire of highly diverse protein classes, such

as the NRPS represented by its A-domains. The graphical method

rendered a Decision Tree Model (DTM) that detected signatures

of 22 A-domains in the proteome of Microcystis aeruginosa matching

19 out of 20 hits previously annotated as A-domains. The

multiple-template BLASTp found exactly the 20 A-domain

signatures annotated in the proteome, while the profile HMM

detected the same 20 hits plus three additional ones. DTM and

profile HMM identified, respectively, two and three A-domain

signatures not found by multi-template BLASTp among the

hypothetical proteins. The consensus detection of additional hits

by the two sequence search methods provides clues for the

presence of further A-domains remote homologues. The new A-

domain variants found in the proteome of Microcystis aeruginosa

could unravel the presence of novel NRPS clusters.

Results

Alignment-free model selection
We computed 17 TIs that consist in spectral moment series

(fcm0-fcm16) derived from four-color maps representing 8892 protein

domains (138 A-domains and 8854 CATH domains) using

TI2BioP (described in Methods and Database). The fcm0-fcm16

series were used as input predictors to build classification linear

models as the simplest relation between the response variable and

the predictors. General Discrimination Analysis (GDA) best subset

implemented in the STATISTICA software was used for such

purposes [19]. We select the best subset of predictors that accounts

for the more effective discrimination between A and CATH

domains through plotting the l variation against the number of

predictors in the set of models. A parsimonious linear model was

selected at the point where the l start to decrease smoothly

(Figure 1).

We found a linear classification function (see equation
below) with four significant predictors (fcm1,

fcm2,
fcm9,

fcm12)

describing the topology of the four-color maps at short range (fcm1,
fcm2) and at long range (fcm9,

fcm12) interactions.

AvsCATHdomains~54:83HPm1{20:94HPm2+68:70HPm9

{62:0HPm12{252:69

N~6750 l~0:11 F~1556:7 pv0:05

Where, N is the number of domain sequences used to train the

classification model and the statistics parameters commonly used

to evaluate linear functions (Wilk’s statistical (l) and Fisher ratio

(F) with a probability of error (p-level)) [20,21]. They provided

values indicating a good power of discrimination (l= 0.11) with

significance (p(F),0.05).

The model classification performance is shown in Table 1
together with the classification results from other alignment-free

models developed with non-linear techniques.

GDA provides good classification results in detecting A-domains

despite the members of this class ranged mostly between 10–40%

of sequence identity (Figure 2A) and the CATH domains share

less than 35% of sequence identity. Pair-wise identity is the most

common cutoff used to decide the twilight zone for alignment

algorithms [22]. Sequence alignments unambiguously distinguish

between protein pairs of similar and non-similar functional and

structural signals when the pairwise sequence identity is high

(.40%). The signal gets blurred in the twilight zone of 20-35%

sequence identity [22–24]. Particularly, the test set was made up of

A-domains mostly sharing between 20 to 30% of amino acid

identity (Figure 2B) and CATH domains with the diversity

above-mentioned. Such test set matches into the twilight zone

where generally remote homologous can be harvested.

The prediction power on the test set could be improved using

non-linear models like Decision Tree Models (DTM) and Artificial

Neural Networks (ANN) as can be seen below.

Although several alignment-free methods have been reported

for improving classification accuracy in protein classes and super-

families [25–27], DTM have been poorly explored to differentiate

protein classes [28]. We used Classification Trees (CT) as an

exploratory technique to obtain a DTM as predictive tools to

detect A-domain signatures. The method found the fcm1 and fcm2

predictors as splitting variables to produce two decisions split at

different values, respectively. The tree structure was very simple,

two decision nodes (outlined in blue) and three terminal nodes

(outlined in red) summing up a total of five nodes. The numbers of

the nodes are labelled on its top-left corner and on the top-right

corner are placed the label of the predicted class (A or CATH

domain). The 6750 training sequences are assigned to the root

node (first node) and tentatively classified as CATH domains or

control set. CATH domains are chosen as the initial classification

because they are numerically superior to A-domains.

The root node is split, forming two new nodes. The text below

the root node describes the split. It indicates that protein sequences

with fcm1 values higher than or equal to 3817 are sent to node

number 3 and tentatively classified as A-domains, by contrary

domain sequences with fcm1 values lesser than this value are

assigned to node number 2 and classified in the control set (CATH

domains). Similarly, node 3 is subsequently split taking the

decision that sequences with fcm2 values lesser than or equal to

11.12 are sent to node number 4 to be classified as A domains (109

cases). The remaining domain sequence with fcm2 value greater

than 11.12 are sent to node number 5 to be classified as CATH

domains reaching 6641 cases well classified (100%).

(1)

Ensemble of Sequence-Search Methods
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The tree graph presents all this information in a simple and

straightforward way allowing processing the information easily.

The histograms plotted within the tree’s terminal nodes show the

excellent performance of the DTM for the recognition of A-

domain signatures (Figure 3). The information from the tree plot

is also available in Table 2.

The classification results from the DTM development to

recognize A-domain signatures on training and test sets are shown

in Table 1 as well as the results for the 10-fold CV procedure on

the training set and the predictability on the test set. The

classification improvement is remarkable in respect to the linear

models.

ANN is one of the most popular non-linear modelling

techniques in use today and has been frequently applied into

bioinformatics [29–31]. The selection of input variables is a critical

part of neural network design. We use the combination of our own

experience and several feature selection algorithms (Forward,

Backward and Genetic Algorithm Selection) based on Multilayer

Perceptrons (MLP) available in the STATISTICA Neural Networks

module for variable selection [19]. The fcm0 and fcm1 predictors

were selected by consensus from the three methods. Then, a good

starting point to set the topology of the MLP is to use one hidden

layer, with the number of units equal to half the sum of the

number of input and output units.

The Table 3 shows the different MLP topologies used to select

the right complexity of the ANN. The performance on training,

selection and test progress were examined as well as its errors. The

best model was the MLP profile highlighted in bold in Table 3,

which showed the best accuracy on training, selection and test sets,

minimizing its respective errors.

The classification results derived from the best MLP profile to

classify A-domains are shown in Table 1. This ANN-model also

showed a higher accuracy level in classifying the training and test

sets in respect to the linear model but a very similar performance

in comparison to the DTM. However, according to the statistics

from the 10-fold CV procedure carried out for each alignment-

free model, the DTM shows the best statistics average (Table 1)
being the most robust model reported among them. Therefore,

DTM was the selected model to perform A-domains search among

the proteome of Microcystis aeruginosa.

Alignment-free approaches vs. homology-search
methods in the detection of A-domains

We carried out a comparatively analysis to evaluate the

sensitivity of other different alignment-free approaches and

homology-search methods in respect to our graphical/numerical

model to detect A-domains among the overall dataset (138 A-

domains and 8 854 CATH domains) included in study. Such

comparison was addressed to inspect the ability of our alignment-

free approach to detect distant A-domains members (A-domains

placed in the twilight zone) in the selected dataset. The Webserver

PseAAC (http://www.csbio.sjtu.edu.cn/bioinf/PseAAC/) was

used to generate alignment-free approaches based on amino acid

composition (AAC) and pseudo amino acid composition (PseAAC)

[32]. Both approaches provided classifiers to build up DTM under

the same statistical parameters reported for our graphical/

numerical-based model. Amino acids were weighted with their

hydrophobicity values, similarly to the physicochemical property

used for the four-color maps and l values that reflect the sequence

order effect was set to 0 if the AAC is only considered and 1 if we

take into account the sequence order [33].

Most of the alignment-free classifiers have been based on AAC

to predict protein cellular attributes and biological functions

including remote homologs detection [26,34]. One of the most

popular alignment-free approaches is the Chou’s concept of

PseAAC that reflects the importance of the sequence order effect

Figure 1. Assessing the relationship between the number of TIs entered in each model and the Wilk’s (l) values obtained for each
one.
doi:10.1371/journal.pone.0065926.g001

Ensemble of Sequence-Search Methods

PLOS ONE | www.plosone.org 3 July 2013 | Volume 8 | Issue 7 | e65926



T
a

b
le

1
.

C
la

ss
if

ic
at

io
n

re
su

lt
s

fo
r

th
e

th
re

e
al

ig
n

m
e

n
t-

fr
e

e
m

o
d

e
ls

(G
D

A
,

D
T

M
an

d
A

N
N

)
in

A
-d

o
m

ai
n

s
d

e
te

ct
io

n
.

T
ra

in
in

g
T

e
st

G
D

A
A

-d
o

m
a

in
C

A
T

H
d

o
m

a
in

A
-

d
o

m
a

in
C

A
T

H
d

o
m

a
in

A
-d

o
m

ai
n

1
0

2
0

2
4

0

C
A

T
H

d
o

m
ai

n
7

6
6

4
1

5
2

2
1

3

T
o

ta
l

1
0

9
6

6
4

1
2

9
2

2
1

3

Se
n

si
ti

vi
ty

(S
v)

(%
)

9
3

.5
8

8
2

.7
6

Sp
e

ci
fi

ci
ty

(S
p

)
(%

)
1

0
0

1
0

0

A
cc

u
ra

cy
(A

cc
)

(%
)

9
9

.8
9

9
9

.7
8

F-
sc

o
re

0
.9

9

1
0

-f
o

ld
C

V
S

v
S

p
A

cc

A
ve

ra
g

e
9

3
.5

8
1

0
0

9
9

.8
9

T
ra

in
in

g
T

e
st

D
T

M
A

-d
o

m
a

in
C

A
T

H
d

o
m

a
in

A
-d

o
m

a
in

C
A

T
H

d
o

m
a

in

A
-d

o
m

ai
n

1
0

9
0

2
9

0

C
A

T
H

d
o

m
ai

n
0

6
6

4
1

0
2

2
1

3

T
o

ta
l

1
0

9
6

6
4

1
2

9
2

2
1

3

Se
n

si
ti

vi
ty

(%
)

1
0

0
1

0
0

Sp
e

ci
fi

ci
ty

(%
)

1
0

0
1

0
0

A
cc

u
ra

cy
(%

)
1

0
0

1
0

0

F-
sc

o
re

1
.0

1
0

-f
o

ld
C

V
S

v
S

p
A

cc

A
ve

ra
g

e
9

8
.1

6
9

9
.9

8
9

9
.9

5

T
ra

in
in

g
S

e
le

ct
io

n
T

e
st

A
N

N
A

-d
o

m
a

in
C

A
T

H
d

o
m

a
in

A
-d

o
m

a
in

C
A

T
H

d
o

m
a

in
A

-d
o

m
a

in
C

A
T

H
d

o
m

a
in

A
-d

o
m

ai
n

8
7

0
2

1
0

2
8

0

C
A

T
H

d
o

m
ai

n
0

5
3

1
3

1
1

3
2

8
1

2
2

1
3

T
o

ta
l

8
7

5
3

1
3

2
2

1
3

2
8

2
9

2
2

1
3

Se
n

si
ti

vi
ty

(%
)

1
0

0
9

5
.4

5
9

6
.5

5

Sp
e

ci
fi

ci
ty

(%
)

1
0

0
1

0
0

1
0

0

A
cc

u
ra

cy
(%

)
1

0
0

9
9

.9
2

9
9

.9
5

F-
sc

o
re

1
.0

1
0

-f
o

ld
C

V
S

v
S

p
A

cc

A
ve

ra
g

e
8

0
.2

4
7

9
.9

1
7

9
.9

2

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

0
6

5
9

2
6

.t
0

0
1

Ensemble of Sequence-Search Methods

PLOS ONE | www.plosone.org 4 July 2013 | Volume 8 | Issue 7 | e65926



in addition to the AAC to improve the prediction quality to detect

protein attributes [33,35]. Classification trees were selected as the

statistical technique to generate alignment-free models due to its

simplicity and reliability to recognize the A-domain signature

among the overall dataset (Table 1).
On the other hand, homology-based searches for A-domains

were performed by single-template BLASTp, multi-template

BLASTp and profile HMM. These methods that show by

definition different sensitivity to recognize distant homologs were

evaluated considering their ability to retrieve all A-domains (close

and distant members).

Our alignment-free model (DTM) generated by four-color maps

outperformed alignment-free models (DTM) supported by AAC

and PseAAC (Table 4). Although A-domains share 10–40% of

sequence identity with several members placed in the twilight

zone, it was possible to retrieve all of them using four-color maps.

In spite of the fact that the other two left alignment-free methods

(AAC and PseAAC) showed lower sensitivity, they did not provide

many false positives (Table 5). It was also demonstrated the effect

of the sequence order besides the AAC on the prediction quality;

when l was increased from 0 to 1, there was an improvement in all

standard classification measures (Table 4).
Regarding homology-based methods sensitivity, classification

results agreed with the fact that multi-template BLASTp and

profile HMM are more sensitive than simple BLASTp. Both

multi-template BLASTp and profile HMM easily retrieved all A-

domain members at expectation values (E-value#10) without

reporting any false positive (Table 5). However, the BLASTp

search using a single template provided false positives (significant

matches) among CATH domains at both high (E-value = 10) and

relatively stringent cut-offs (E-values,0.05) (Files S1–S5), which

is considered statistically significant and useful for filtering easily

Figure 2. Dot plot for the global sequence identity matrix obtained by Needleman-Wunsch algorithm for A-domains. (A) All A-
domains involved in the study. (B) A-domains of the test set.
doi:10.1371/journal.pone.0065926.g002
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identifiable homologs pairs [36,37] (Table 5). False positives came

up in simple BLASTp searches despite we had cleaned the

negative set (CATH domains) from any A-domain signal (by the

use of profile HMM-based searches). In contrast to multi-template

BLASTp and profile HMM searches, the single-BLASTp search

sensitivity did not show stability in identifying the A-domain signal

among a benchmark dataset (CATH domains) when the

classification parameter (E-value cut-off) was changed. Thus, due

to the A-domain diversity, it is less reliable to extrapolate or apply

BLASTp searches using a single A-domain template to an

unknown test dataset such as an entire proteome. The multi-

template BLAST reported by the PKS-NRPS developers was not

only useful to detect A-domains with correct boundaries [15]; it

also provided more sensitivity (no false positive) and reliability in

the identification of this domain class from no stringent conditions

(File S6). In addition, both the profile HMM described in the

methods section (File S7) and the DTM built up from four-color

maps profiles reached the top in classifying the positive and

negative sets. These facts support that profile-based methods are

more effective to deal with remote protein homology unless a muli-

template BLASTp strategy or PSI-BLAST is conducted. The easy

and reliable identification of A-domains by multi-template

BLASTp, profile HMM and four-color maps in contrast to a

simple BLASTp search and other alignment-free methods

provided real clues about the ability of the four-color maps to

identify A-domain members in the twilight zone given the

evaluated dataset.

An ensemble of methods to explore the repertoire of
NRPS A-domains in Microcystis aeruginosa

The potentialities of the four-color maps and its numerical

characterization to detect A-domains in the twilight zone are

promising, as we showed previously. Detecting A-domains remote

homologues with reliability in a proteome that contains a large

diversity of proteins is a challenge for any sequence search method.

As several homology-search methods have been assembled into a

Figure 3. Architecture for the DTM. Decision Nodes are represented in blue and terminal nodes are in red. A-domains are labeled using
an intermittent line. Otherwise CATH domains are signed by a continuous line. Labels at the right-corner of the nodes indicate tentative membership
to A or CATH domain class. Numbers at the left-corner represent the node’s number.
doi:10.1371/journal.pone.0065926.g003

Table 2. Tree structure in details, child nodes, observed class n’s, predicted class, and split condition for each node.

Node Left branch Right branch CATH A-domain Predicted class Split constant Split variable

1 2 3 6641 109 CATH 23817.00 fcm1

2 6640 0 CATH 211.13 fcm2

3 4 5 1 109 A-domain

4 0 109 A-domain

5 1 0 CATH

Numbers in bold highlight the well-classified cases and the terminal nodes.
doi:10.1371/journal.pone.0065926.t002
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certain annotation resource to retrieve accurately all members

from highly diverse gene/protein families [38,39], we used our

graphical alignment-free method not in competition but in

cooperation with alignment procedures to explore the whole

repertoire of A-domains, including the detection of new variants

(remote homologous), in the proteome of Microcystis aeruginosa.

The proteome of the Microcystis aeruginosa NIES-843 (http://

genome.kazusa.or.jp/cyanobase) is encoded from a 5.8Mbp

genome with 6 311 annotated genes; some of them codifying

NRPS proteins as hybrids with polyketide synthases (PKS)

representing a good target to evaluate the detection of A-domains.

DTM was selected among the alignment-free models due to its

excellent performance at low sequence identity and its simple way

to recognize A-domains. We just calculate the TIs for a proteome

and select A-domain signatures according to the DTM rule

(fcm1$3817 and fcm2#11.12) (File S8). DTM search detected 19

A-domain signatures that coincided with the previously annotation

inferred for these genes in the proteome. Three additional cases

were also detected as A-domains, but these cases have been

previously predicted to be other protein signatures unrelated to

NRPS A-domains in the proteome, namely a transketolase-like

protein and the other two were hypothetical proteins. The putative

hits with some remote relation to A-domains are probably found

among the hypothetical proteins due to its unclear annotation. To

increase the confidence and quality of the A-domains re-

annotation, two sensitive homology-search methods were evaluat-

ed on the same proteome. We carried out multi-template BLASTp

and profile HMM searches for A-domains in the proteome

Table 3. Testing different topologies for the MLP on the A-domain classification using TIs from four-color maps.

Performance Summary for ANN

MLP Topologies Train Accuracy Selection Accuracy Test Accuracy Train Error Select Error Test Error

1 MLP 2:2–1–1:1 1.000 0.999 0.999 0.000 0.027 0.021

2 MLP 2:2–2–1:1 0.756 0.757 0.758 0.001 0.024 0.020

3 MLP 2:2–1–1–1:1 0.755 0.763 0.759 0.001 0.038 0.024

4 MLP 2:2–3–1:1 0.756 0.755 0.760 0.016 0.033 0.035

5 MLP 2:2–1–2–1:1 0.755 0.762 0.757 0.013 0.025 0.026

6 MLP 4:2–2–1–1:1 0.756 0.757 0.759 0.006 0.022 0.020

Accuracy performance and error on training, selection and test sets.
doi:10.1371/journal.pone.0065926.t003

Table 4. Classification results for alignment-free DTM based on four-color maps, amino acid composition (AAC) and pseudo-amino
acid composition (PseAAC) in the A-domains detection.

Four-color maps DTM Training Test

Sensitivity (Sv) (%) 100 100

Specificity (Sp) (%) 100 100

Accuracy (Acc) (%) 100 100

F-score 1.0

10-fold CV Sv Sp Acc

Average 98.16 99.98 99.95

AAC (l = 0) DTM Training Test

Sensitivity (%) 53.70 3.44

Specificity (%) 100 99.68

Accuracy (%) 99.25 98.44

F-score 0.07

10-fold CV Sv Sp Acc

Average 21.73 100 98.78

PseAAC (l = 1) DTM Training Test

Sensitivity (%) 67.89 20.68

Specificity (%) 99.80 99.77

Accuracy (%) 99.30 98.75

F-score 0.40

10-fold CV Sv Sp Acc

Average 21.73 100 98.78

doi:10.1371/journal.pone.0065926.t004
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according to procedures described in the Methods section,

respectively. Multi-template-BLASTp found 20 significant hits

coinciding perfectly with the number of A-domains signatures in

the annotated genome (File S9). The profile HMM detected 23

significant matches for the A-domain signature in the cyanobac-

teria proteome (File S10). Twenty out of these 23 matches agreed

with the multi-template BLASTp results and therefore with the

current proteome annotation. The remaining three detected hits

by the profile HMM were found among the hypothetical proteins,

similarly to the alignment-free search (Figure 4). These five hits

retrieved by the use of two different sequence search methods

among the hypothetical proteins could reveal the presence of

additional A-domains remote homologues.

Discussion

The potential usefulness of several graphical/numerical ap-

proaches to characterize genes and proteins for comparative

analyses without the use of alignments has been recently reported

by Randić et al [1,40,41]. We have extended this philosophy

through the TI2BioP tool to characterize graphically and

numerically large sequences databases [18]. The 2D Cartesian

representation for genes and proteins and its simple numerical

characterization were implemented in TI2BioP version 1.0,

especially to deal with functional classification problems at low

sequence similarity [8,28,42]. Our alignment-free models predic-

tions based on graphical profiles have generally been used in

cooperation with profile HMMs and experimental evidences

[8,28].

In this work we highlighted a practical utility of the four-color

maps accompanied with sensitive alignment procedures to detect a

functional signal among a highly diverse protein domains dataset

including a proteome. The four-color maps construction was

based on a similar procedure carried out to the building of 2D

Cartesian maps for protein sequences, previously used with success

to detect functional signatures at low homology level [28,42].

Proteins four-color maps were modified by clustering the amino

acids according to their physicochemical properties in four groups

(polar, non-polar, acid and basic) labeled in the map with four

colors. The numerical characterization of the four-color maps can

describe homologous sequences (replacement between amino acids

of similar properties) and remote homologous (important changes

in the primary structure but still retaining the same biological

function). While small changes in the sequence do not affect the

topology of the map, this kind of amino acid substitution produces

implicit numerical changes in the calculation of the TIs making

possible the differentiation of the sequences. When an amino acid

exchange occurs between different physicochemical groups of

amino acids, this change affects the topology of the map and

consequently affects significantly the TIs values estimation.

The TIs consist in the spectral moments series (fcm0-fcm16)

describing the protein four-color maps. The topology of the

protein four-color maps is determined by the sequence order and

its amino acid composition (amino acid content according to the

above-mentioned four groups). These two sequence features define

the number and composition of the clusters formed in the map.

The spectral moments series codify a range of information about

the protein four-color maps that comprise the number of formed

clusters in the map (fcm0) until the connectivity between the clusters

in the map at different range (fcm1-fcm16). Our approach has a

similar conceptual framework to the PseAAC introduced by Chou

[33] but instead of using linear information (amino acid

composition and sequence order) to get a vector representing the

protein, four-color maps are built following similar rules but

containing higher order information beyond the linearity of the

Table 5. True positives vs. false positives in the A-domain
detection for different sequence-search methods among the
overall dataset involved in the study.

Sequence-search method True positive False Positive

DTM (Four-color maps) 138 0

DTM (AAC) 59 7

DTM (PseAAC) 80 18

HMM (E-value = 10) 138 0

Multi-template BLASTp (E-value = 10) 138 0

BLASTp (E-value = 10) 138 6033

BlASTp (E-value = 0.05) 138 122

BLASTp (E-value = 0.01) 138 24

BLASTp (E-value = 0.001) 138 4

BLASTp (E-value = 0.0001) 138 0

doi:10.1371/journal.pone.0065926.t005

Figure 4. Re-annotation of the A-domains in the proteome of Microcystis aeruginosa by using an ensemble of algorithms.
doi:10.1371/journal.pone.0065926.g004
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sequence. Afterwards, the topology of such 2D graphs is described

by node adjacency matrices used to calculate the spectral moments

series as TIs.

The spectral moments series (fcm0-fcm16) were used to develop

several alignment-free models with linear and non-linear statistical

techniques. DTM and ANN showed a better performance in

classifying A-domains in respect to linear models supporting that

the identification of protein signatures are better assessed with

non-linear models. DTM was the best-reported alignment-free

model due to the reasons given in the previous section.

Consequently, it was applied to get other alignment-free models

based on AAC and PseAAC to inspect their sensitivity to retrieve

all A-domains members. Such DTM displayed lower classification

rates than those reached by the four-color maps based models

(Table 4). It seems that higher order patterns providing by the

four-color maps are more effective in the detection of A-domains

than linear sequence features driven by AAC and PseAAC.

Therefore, the DTM based on four-color map patterns was

selected to perform the alignment-free search for A-domains in the

proteome of the cyanobacteria Microcystis aeruginosa.

Interestingly, DTM detected in the proteome two putative hits

of A-domain signatures among the hypothetical proteins and later

another three hypothetical proteins were detected as A-domains

by the profile HMM (Figure 4). The sequence search methods

based on profiles (graphical and alignment) were able to detect

more hits than the 20 A-domains already annotated in the

proteome, which were also detected by the multi-template

BLASTp. Hypothetical proteins are greatly expanded in cyano-

bacteria and have been placed into the diversity of the nuclease

superfamily by homology inference. Probably the graphical and

HMM profiles detected signals of the A-domain signature among

the diversity of the hypothetical proteins leading us to new variants

of A-domains.

Both methods detected different additional hits as A-domains

but they were found among the hypothetical proteins, which is a

good clue for the presence of further A-domains remote

homologues in the proteome of Microcystis aeruginosa. The use of

an ensemble of methods provides more confidence to the

predictions since each method exploits different features of the

protein sequences. Four-color maps generate graphical patterns

using the sequence order and the amino acid composition

arranged into a 2D space. These graphical profiles are numerically

described in a wide range of information by series of TIs, which

characterize individually the sequences. Consequently, such TIs

are flexible to be used for different classification problems (from

high sequence identities until the twilight zone).

Figure 5. Steps for the four-color map construction of 1 pdb AMU. (A) Arranging the protein sequence into a square spiral. (B) Making up the
clusters according to the amino acids properties: polar (green), non-polar (red), acid (yellow), basic (blue). (C) The final four-color map for pdb 1AMU.
doi:10.1371/journal.pone.0065926.g005
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On the other hand, the profile HMM is based on amino acid

positions conserved at low range through multiple sequence

alignments in linear sequences. HMM profiles are proved sensitive

tools for remote protein homology detection even when the

sequence conservation is restricted to short motifs, as is the case of

A-domains [16,43].

The ensemble of the three sequence search algorithms (DTM,

multi-template BLASTp and profile HMM) provided the best

solution for the search of remote homologues among a highly

diverse protein class.

Methods

Computational methods
TI2BioP software version 2.0 was used for the calculation of

spectral moments as TIs associated with the protein four-color

maps depicted below (Figure 5). Protein four-color maps are

inspired on the Randic’s DNA/RNA [44] and protein 2D

graphical representations [12]; but instead of using the concept

of virtual genetic code, we construct the spiral of square cells

straightforward from the amino acid sequences. The four colors

are assigned to the four amino acids classes (polar, non-polar, acid

and basic) used previously by our group in Nandy’s representation

for proteins [28,45]. A node adjacency matrix is defined to

calculate the spectral moments to describe the topology of these

proteins colored maps (Figure 6).
Figure 5 shows how the four-color map for the first A-domain

structurally characterized is built up. It belongs to the Gramicidin

Synthetase cluster isolated from Brevibacillus brevis (pdb 1AMU).

Each of the four colors is associated with each one of the amino

acid groups: polar (green), non-polar (red), acid (yellow), basic

(blue).

Database
Positive set. 109 A-domain sequences from NRPS were

collected from the major NRPS–PKS database (http://www.nii.

res.in/nrps-pks.html) to conform the training set. The test set was

made up of 29 A-domain sequences independently gathered from

the subset of the NRPS-PKS hybrids (http://www.nii. res.in/nrps-

pks.html). The sequence diversity among A-domains was explored

comparatively using the Needleman-Wunsch (NW) algorithm.
Negative set. The starting group was made up for 8 871

protein sequences downloaded from the CATH (Class, Architec-

ture, Topology and Homology) domain database of protein

structural families (version 3.2.0) (http://www.cathdb.info). We

select the FASTA sequence database for all CATH domains

sharing just the 35% of sequence similarity (,35% of sequence

identity). The starting data was reduced to 8 854 CATH domains:

Figure 6. From the protein sequence to its numerical characterization. (A) The first nine aminoacids of pdb 1AMU. (B and C) Building the
four-color map for A. (D) The definition of the node adjacency matrix derived from C the four-color map.
doi:10.1371/journal.pone.0065926.g006
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17 cases were removed because they showed the A-domain

signature when an hmmsearch was performed against the AMP-

binding profile HMM (PF00501). The members of the test set (2

213 sequences) were selected taking out at random the 20% from

the 8 854 CATH domains; the rest 6641 CATH domains were

used to train the models.

Each A-domain and CATH domain sequence retrieved was

labeled respecting its original database ID code (File S11).

Numerical characterization of protein four-color maps
through the spectral moments

The spectral moments are TIs calculated as the sum of the

entries placed in the main diagonal of the bond adjacency matrix

(B) between atoms for the small organic molecules. B is a square

matrix of n x n row and column where its non-diagonal entries are

ones or zeroes if the corresponding bonds or edges (n) share or not

one atom. The different powers of B give the spectral moments of

higher order to obtain the spectral moments series (m0- m15).

mk ~Tr Bð Þk
h i

2ð Þ

Where Tr is called the trace and indicates the sum of all the values

in the main diagonal of the matrices kB = (B)k, which are the

natural powers of B [46].

For the calculation of the spectral moments from the protein

four-color maps, we consider each region of the map as a node

made up for the amino acids clustering; two adjacent regions of

the map sharing at least one edge (not a vertex) are connected. B is

calculated in a similar way but instead of considering the

adjacency relationships between bonds or edges, it is set between

nodes. The number of nodes or clusters in the graph is equal to the

number of rows and columns in B. Since a cluster is made up for

several amino acids sharing similar physicochemical properties,

the cluster is weighted with the sum of the individual properties

(e.g. electrostatic charge (q)) of all amino acids placed in the

cluster). The main diagonal of B was weighted with the average of

the electrostatic charge (Q) between two adjacent clusters. The q

values were taken from Amber 95 force field [47]. The calculation

of the spectral moments up to the order k = 3 from the four colours

maps is illustrated (downstream figure 6) using the first nine

amino acids of pdb 1AMU (M1V2N3S4S5K6S7I8L9). The figure 6
represents the four-color map built up for these nine amino acids,

as well as its cluster adjacency matrix. q values are represented in

the matrix as the amino acids symbols (M = 1.91, V = 2.24,

N = 2.07, S = 2.09, K = 2.254, I = 2.02, L = 1.91).

Expansion of expression (2) for k = 0 gives the fcm0, for k = 1 the
fcm1 and for k = 2 the fcm2. The node adjacency matrix derived

from this 2D map is described for each case

fcm0~Tr Bð Þ0
h i

~Tr
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fcm2~Tr Bð Þ2
h i
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TI2BioP version 2.0 arranges automatically all domain sequenc-

es (positive and negative sets) into four-colour maps and allows the

calculation of spectral moments series (fcmk). File S12 shows the

calculation of these indices to the positive and negative sets.

Alignment-free models development with four-color
maps TIs for A-domains detection

Linear models. General Discrimination Analysis. The

General Discrimination Analysis (GDA) best subset was carried

out for variable selection to build up the linear models [48–50]. All

variable predictors were reviewed for finding the ‘‘best’’ possible

sub model. The predictors were standardized in order to bring

them onto the same scale. Subsequently, a standardized linear

discriminant equation that allows comparison of their coefficients

was obtained [51]. The model and variable selection was based on

the revision of Wilk’s (l) statistic (l= 0 perfect discrimination,

being 0,l,1). The Fisher ratio (F) was also inspected to indicate

the contribution of one variable to the discrimination between

groups with a probability of error (p-level) p(F),0.05.

Non-linear methods. Decision Tree Models (DTM). The

development of the DTM was performed using the C&RT

(Classification and Regression Trees)-style univariate split selection

from the Classification Trees (CT) module of the STATISTICA

8.0 for Windows [19]. The C&RT examine all possible splits for

each predictor variable at each node to find the split producing the

largest improvement in goodness of fit. The prior probabilities

were estimated for both groups with equal misclassification cost.

The Gini index was used as a measure of goodness of fit and the

F̈ACT-style direct stopping̈ was set to 0.1 as stopping rule to select

the right-sized classification tree.

Artificial Neural Networks (ANN). We used the Multilayer

Layer Perceptron (MLP) network architecture as the most popular

network architecture in use today. The selection of the subset of

predictors that is most strongly related to the response variable was

supported on the Feature and Variable Selection analysis of the ANN

module from STATISTICA software [19]. The right complexity of

the network was selected by testing different topologies to the MLP

while checking the progress against a selection set to avoid over-

fitting during the two-phase (back propagation/conjugate gradient

descent) training algorithm. The selection set was randomly

extracted (10%) from the training set. The test set was the same

used for GDA and DTM representing an external subset (not used

during training algorithms) to check the final network performance

[52].

(2a)

(2b)

(2c)
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Evaluation of models’ performance and validation
procedure

The performance of the all alignment-free models was evaluated

by several statistical measures commonly used for classification:

accuracy, sensitivity, specificity and F-score (it reaches its best

value at 1 and worst score at 0). The robustness of the classification

model was verified by a 10-fold cross-validation (CV) procedure on

the training set. The CV statistics for each of the ten samples were

averaged to give the 10-fold estimate for the accuracy, sensitivity

and specificity [53]. In addition, a test set made up for 2242

domains was selected to evaluate the prediction power of each

model.

Ensemble of methods for re-annotation of A-domains
NRPS in the proteome Microcystis aeruginosa

We used an ensemble of three methods for the re-annotation of

the Microcystis aeruginosa proteome considering its repertoire of A-

domains signatures.

1. The graphical method represented by the alignment-free

model (DTM) to perform the A-domain search in the

proteome. Spectral moments series from the four-color maps

were calculated for the proteome of Microcystis aeruginosa NIES-

843 (6 311 annotated genes) and later a simple rule was applied

to detect A-domain signatures (fcm1$3817 and fcm2#11.12).

2. A profile HMM for whole A-domain sequences was built as

follows: (i) the 109 A-domain sequences used in training the

alignment-free models were aligned by CLUSTALW [54], (ii)

alignment was edited by Gblock software [55] to increase the

alignment quality (iii), edited alignment was used as input for

hmmbuild release 2.3.2 [14]. The generated profile HMM is

used to search A-domains in the proteome of Microcystis

aeruginosa.

3. The multiple-template BLASTp reported by the NRPS-PKS

database developers for A-domain searches was used [15].

Multiple-template BLASTp consist in using each one of the

109 A-domains from the training set as template to evaluate

each query of the proteome by BLASTp. BLOSUM62 scoring

matrix, default values for gap penalties and E-value = 10 were

set as BLASTp parameters and just the best matches were

retrieved.

Conclusions

The utility of graphical approaches in bioinformatics has been

demonstrated by the introduction of the four-color maps and the

TIs as a cooperative tool for detecting remote homologous of A-

domains in the proteome of Microcystis aeruginosa. Since each

sequence search method extract different features from the protein

sequences, their integration allow a more exhaustive description of

certain protein class and therefore provide a higher yield for the

detection of remote protein homologous. The knowledge of the

complete repertoire of A-domains in the proteome of cyanobac-

teria species may allow unraveling new NRPS clusters for the

discovery of novel natural products with important biological

activities.
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Abstract Bacteriocins are proteinaceous toxins produced


and exported by both gram-negative and gram-positive bac-


teria as a defense mechanism. The bacteriocin protein family


is highly diverse, which complicates the identification of


bacteriocin-like sequences using alignment approaches. The


use of topological indices (TIs) irrespective of sequence


similarity can be a promising alternative to predict protein-


aceous bacteriocins. Thus, we present Topological Indices to


BioPolymers (TI2BioP) as an alignment-free approach


inspired in both the Topological Substructural Molecular


Design (TOPS-MODE) and Markov Chain Invariants for


Network Selection and Design (MARCH-INSIDE) method-


ology. TI2BioP allows the calculation of the spectral


moments as simple TIs to seek quantitative sequence-func-


tion relationships (QSFR) models. Since hydrophobicity and


basicity are major criteria for the bactericide activity of


bacteriocins, the spectral moments (HPlk) were derived for


the first time from protein artificial secondary structures


based on amino acid clustering into a Cartesian system of


hydrophobicity and polarity. Several orders of HPlk charac-


terized numerically 196 bacteriocin-like sequences and a


control group made up of 200 representative CATH domains.


Subsequently, they were used to develop an alignment-free


QSFR model allowing a 76.92% discrimination of bacterio-


cin proteins from other domains, a relevant result considering


the high sequence diversity among the members of both


groups. The model showed a prediction overall performance


of 72.16%, detecting specifically 66.7% of proteinaceous


bacteriocins whereas the InterProScan retrieved just


60.2%. As a practical validation, the model also predicted


successfully the cryptic bactericide function of the Cry 1Ab


C-terminal domain from Bacillus thuringiensis’s endotoxin,


which has not been detected by classical alignment methods.


Keywords Bacteriocin � Topological indices �
Spectral moments � Alignment methods �
Artificial secondary structure


Introduction


Bacteriocins are proteinaceous toxins produced and


exported by both gram-negative and gram-positive bacteria
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to inhibit the growth of similar or more distant bacteria


species (de Jong et al. 2006; Hammami et al. 2007). Bac-


teriocins can be applied as food preservatives (Cotter et al.


2005) and are of great interest for novel antibiotics


development (Gillor et al. 2005) and as a diagnostic agents


for some cancers (Cruz-Chamorro et al. 2006; Sand et al.


2007). The classical way to identify a bacteriocin includes


the determination of its biological activity, which is


accomplished by the extensive testing of the (putative)


producer strain ability to inhibit the growth of other


bacteria.


The bacteriocin family includes a diversity of proteins in


terms of size, method of killing, method of production,


genetics, microbial target, immunity mechanisms, and


release. Given such high diversity, bacteriocin classifica-


tion has been challenging (Cotter et al. 2006). The few


bioinformatics approaches developed to identify bacterio-


cins recognize putative open-reading frames (ORFs) based


on sequence alignment (Dirix et al. 2004; Stein 2005)


demanding the implementation of complex strategies due


to the low conservation of the bacteriocin protein class.


The use of topological indices (TIs), irrespective of


sequence similarity, can be a promising alternative to


predict proteinaceous bacteriocins (Estrada and Uriarte


2001; Gonzalez-Diaz et al. 2008; Gonzalez-Diaz et al.


2007c). Thus, we present Topological Indices to BioPoly-


mers (TI2BioP) as an alignment-free approach inspired in


both the Topological Substructural Molecular Design


(TOPS-MODE) (Estrada 2000) and Markov Chain Invari-


ants for Network Selection and Design (MARCH-INSIDE)


methodology (González-Dı́az et al. 2007) that calculates


the spectral moments as simple TIs to obtain alignment-


free models from quantitative sequence-function relation-


ships (QSFR). This methodology takes advantage of the


calculation of one-dimension (1D), two-dimension (2D),


and three-dimension (3D) parameters based on the graph-


ical representation of the chemical structure of biopolymers


such as DNA, RNA, and proteins. We evaluated the


TI2BioP accuracy to successfully identify proteinaceous


bacteriocins in spite of its high sequence diversity. Since


hydrophobicity and basicity are major criteria for the


bactericide activity of bacteriocins (Fimland et al. 2002;


Hammami et al. 2007), we derived the TIs from linear


sequences plotting its amino acids (aas) into an 2D


Cartesian Hydrophobicity-Polarity (2D-HP) lattice resem-


bling a protein pseudo-secondary structure (see Figs. 1, 7).


Thus, we calculated for the first time the spectral moments


(HPlk) of the edge matrix associated with such artificial


secondary structures as TIs. The new spectral moments are


based on the 2D spectral moments calculated by TOPS-


MODE as well as on the 3D and HP-Lattice stochastic


spectral moments calculated by MARCH-INSIDE (Agü-


ero-Chapin et al. 2009; Gonzalez-Diaz et al. 2007a;


Gonzalez-Diaz et al. 2007b; Munteanu et al. 2009), but


have a different definition and contain new structural


information. Its values characterized numerically 196


bacteriocin-like sequences and a control group made up of


200 representative CATH domains. Subsequently, several


orders of HPlk were used to develop an alignment-free


QSFR model that allowed a 76.92% discrimination of


bacteriocin proteins from other domains, a good result


considering the high sequence diversity among the mem-


bers of both groups. The model showed a prediction overall


performance of 72.16%, specifically retrieving 66.7% of


proteinaceous bacteriocins whereas the InterProScan clas-


sified just 60.2%. Our model further predicted successfully


the cryptic bactericide function of the Cry 1Ab C-terminal


domain from Bacillus thuringiensis’s endotoxin reported


by Vazquez-Padrón et al. (Vazquez-Padron et al. 2004).


We conclude that the TI2BioP approach based on the


higher-order encoding of the HP-spectral moments has a


high accuracy that justifies its use as an alternative method


to alignment approaches. TI2BioP retrieved successfully


the screening of putative proteinaceous bacteriocins in


spite of the high sequence diversity of this protein class.


Furthermore, TI2BioP allowed the prediction of protein


domains that have a cryptic bactericidal action, undetect-


able using alignment procedures. Finally, the alignment of


2D-HP protein maps offered a novel approach to explain


evolutionary relationships between the Cry 1Ab C-terminal


domain and the bacteriocin class.


Methods


Computational methods


An alignment-free methodology called ‘‘TI2BioP’’ is


presented to codify the structural information of


Fig. 1 Three structures for the colicin E1domain sequence. a Primary


structure b three-dimensional structure c the pseudo-secondary


Cartesian structure of hydropobicity and polarity
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proteinaceous bacteriocins and a control group designed


from 8,871 structurally non-redundant subset of the


CATH database (Cuff et al. 2009). TI2BioP was built up


on object-oriented Free Pascal IDE Tools (lazarus). The


program can be run on Windows and Linux operating


system. The user-friendly interface allows the users to


access the sequence list introduction, selecting the rep-


resentation type and calculations of TIs. It is based on


the graph theory considering the ‘‘building blocks’’ of


the biopolymers DNA, RNA, and protein as nodes or


vertexes and the bonds between them as edges into a


certain graph. Thus, the information contained in bio-


polymeric long strings is simplified in a graph consid-


ering some of its relevant features as the topology and


properties of the monomers. These factors determine


either the real secondary structure or the pseudo-folding


of linear sequences into 2D-HP lattice. TI2BioP was


developed on the basis of two well-known methodolo-


gies: ‘‘TOPS-MODE’’ (Estrada 2000) implemented in the


‘‘MODESLAB’’ software (Gutierrez and Estrada 2002)


and the MARCH-INSIDE program (González-Dı́az et al.


2007). TI2BioP shows a draw mode to represent auto-


matically linear sequences of DNA, RNA and proteins as


2D graphs, but can also import files containing 2D


structure inferred by other professional programs


(Mathews 2006). The calculation of the topological


indices from these 2D maps is performed following the


TOPS-MODE approach (Estrada 1996; Estrada 2000).


Finally, these TIs containing relevant information of the


sequence are used to carry out a QSFR, which allow


classifying gene and protein classes without the need to


perform an alignment procedure.


We used the 2D-HP graphs to encode information about


proteinaceous bacteriocin sequences following previous


experiences achieved using the MARCH-INSIDE meth-


odology (González-Dı́az et al. 2007) in the prediction of


protein function from linear sequences (Agüero-Chapin


et al. 2008b; Agüero-Chapin et al. 2009; Gonzalez-Diaz


et al. 2008).


The spectral moments (lk) introduced previously by


Estrada (Estrada 1996; Estrada 1997) were applied to


describe protein 2D-maps. These TIs have been widely


validated by many authors to encode the structure of small


molecules in QSAR studies (González et al. 2006;


Markovic et al. 2001) including the characterization of


macro molecular chains based on dihedral angles by


Estrada (Estrada 2007; Estrada and Hatano 2007). The


original adjacent matrix is modified according the building


of the 2HP-protein maps. The 20 different aas are clustered


into 4 HP classes. These four groups characterize the HP


physicochemical nature of the aas as polar, non-polar,


acidic or basic (Jacchieri 2000). Each amino acid (aa) in


the sequence is placed in a Cartesian 2D space starting with


the first monomer at the (0, 0) coordinates. The coordinates


of the successive aas are calculated as follows:


a. Decrease by -1 the abscissa axis coordinate for an


acid aa (leftwards-step) or:


b. Increase by ?1 the abscissa axis coordinate for a basic


aa (rightwards-step) or:


c. Increase by ?1 the ordinate axis coordinate for a non-


polar aa (upwards-step) or:


d. Decrease by -1 the ordinate axis coordinate for a


polar aa (downwards-step).


This 2D graphical representation for proteins is similar


to those previously reported for DNA (Nandy 1994; Nandy


1996; Randic and Vracko 2000) and has been also useful


for structural RNA classification (Agüero-Chapin et al.


2008a). The Fig. 1 shows the primary structure of the


channel-forming domain of colicin E1 bacteriocin (a), the


crystal structure of such domain (b) and its 2D-HP map (c).


The 191 aas of the colicin E1 domain sequence are rear-


ranged in a pseudo-secondary structure of hydrophobicity


and polarity that compact its linear sequence. Note that a


node (n) in the 2D-HP map could be made up for more than


one aa. The N and C termini of the protein sequence in the


2D-HP map are labeled with a red square dot and simple


dot, respectively.


We calculated for the first time the spectral moments


(HPlk) values as TIs describing these proteins maps. The
HPlk were selected based on the utility of lk to codify


structural information in small molecules (Cabrera-Pérez


et al. 2004; Estrada 2000) and also do to its relevance in


Proteomics, when stochastically calculated (HPpk) using the


Markov chain theory (Gonzalez-Diaz and Uriarte 2005;


Gonzalez-Diaz et al. 2005).


Spectral moments for 2D-HP protein maps


After the representation of the sequences we assigned to


each graph a bond matrix B for the computation of the


spectral moments. These TIs are defined as the trace, i.e.


sum of main diagonal entries of the different powers of the


bond adjacency matrix. This matrix is a square symmetric


matrix that its non-diagonal entries are ones or zeroes if the


corresponding bonds share or not one aa. Thus, it set up


connectivity relationships between the aa in the pseudo


secondary structure (2D-HP map). The number of edges


(e) in the graph is equal to the number of rows and col-


umns in B but may be equal or even smaller than the


number of peptide bonds in the sequence. Main diagonal


entries can have bonds weights describing hydrophobic/


polarity, electronic and steric features of the aas. Particu-


larly, the main diagonal was weighted with the average of


the electrostatic charge (Q) between two bound nodes that


in turn are weighted with electrostatic charge (q) from
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Amber 95 force field (Cornell et al. 1995). The q is equal


to the sum of the charges of all aas placed in a node. Thus,


it is easy to carry out the calculation of the spectral


moments of B in order to numerically characterize the


protein sequence.


HPlk ¼ Tr Bð Þk
h i


ð1Þ


where Tr is called the trace and indicates the sum of all the


values in the main diagonal of the matrices (B)k, which are


the natural powers of B.


In order to illustrate the calculation of the spectral


moments, an example is described below. The 2D-HP map


of the sequence (D1-E2-D3-K4-V5) is showed in the Fig. 2


as well as its bond adjacency matrix. The calculation of the


spectral moments up to the order k = 3 is also defined


downstream of the Fig. 2. Please note in the graph that the


central node contains both E, and K and the q values are


represented in the matrix as the aa symbols (E = 1.885,


V = 2.24, K = 2.254, D = 1.997).


Expansion of expression (1) for k = 1 gives the HPl1,


for k = 2 the HPl2 and for k = 3 the HPl3. The bond


adjacency matrix derived from this linear graph is descri-


bed for each case


HPl1 ¼ Tr B½ � ¼ Tr


3:068 1 1


1 3:068 1


1 1 3:189


2
4


3
5


0
@


1
A ¼ 9:325


ð1aÞ


HPl2 ¼ Tr Bð Þ2
h i


¼ Tr


3:068 1 1


1 3:068 1


1 1 3:189


2
64


3
75


0
B@


�
3:068 1 1


1 3:068 1


1 1 3:189


2
64


3
75


1
CA¼ 11:413ð Þ2þ 11:413ð Þ2


þ 12:170ð Þ2 ð1bÞ


HPl3 ¼ Tr Bð Þ3
h i


¼ Tr


3:068 1 1


1 3:068 1


1 1 3:189


2
64


3
75


0
B@


1
CA


3


¼ 49:405ð Þ3þ 49:405ð Þ3þ 53:323ð Þ3 ð1cÞ


The calculation of HPlk values for protein sequences of


both groups were carried out with our in-house software


TI2BioP version 1.0�, including sequence representation


(Molina et al. 2009). We proceeded to upload a row data


table containing the sixteen HPlk values for each sequence


(k = 1, 2, 3,…16), two additional TIs defined as Edge


Numbers and Edge Connectivity and the grouping variable


(Bact-score) that indicates the bacteriocin-like proteins


with value of 1 and -1 for control group sequences to


statistical analysis software (Statsoft 2007). The overall


methodology is represented schematically in order to


improve the understanding of our approach (see Fig. 3).


Database


A total of 196 bacteriocin-like proteins sequences belong-


ing to several bacterial species were collected from the two


major bacteriocin databases, BAGEL (de Jong et al. 2006)


and BACTIBASE (Hammami et al. 2007). A polypeptide


or proteinaceous bacteriocin was considered according its


sequence length ([100 bp). Each proteinaceous bacteriocin


sequence retrieved was labeled respecting its original


database ID code; see Table I in SM.


The negative group was selected from 8,871 protein


downloaded from the CATH domain database of protein


Fig. 2 The 2D-HP map for the protein fragment DEDKV, aside the


definition of its bond adjacency matrix. Note that all edges of the


graph are adjacent, thus all non-diagonal entries are ones


Fig. 3 The overall procedure followed for the classification of


bacteriocins
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structural families (version 3.2.0) (http://www.cathdb.info)


(Cuff et al. 2009). Particularly, we used the FASTA


sequence database for all CATH domains (based on


COMBS sequence data) sharing just the 35% of sequence


similarity as the starting group. The COMBS sequences


provide the full sequence instead of only the residues


present in the ATOM records (Brandt et al. 2008). The


FASTA database is made non-redundant case-sensitively


and IDs are concatenated. The 200 members of the final


control subset were selected using a k-means cluster


analysis (k-MCA) (Mc Farland and Gans 1995a). CATH


domains IDs that make up the control group are also


showed in Table Ia of SM. Training and predicting series of


the bacteriocin database were designed following the same


procedure.


Statistical analysis: k-means cluster analysis (k-MCA)


This method has been applied before in QSAR to design


the training and predicting series (Kowalski and Marcoin


2001; Mc Farland and Gans 1995b). The method requires a


partition of the bacteriocin and the starting control group


independently into several statistically representative


clusters of sequences. The members to conform the control


group are selected from all of these clusters and afterwards


the sequences of the training and predicting series. This


procedure ensures that the main protein classes will be


considered in the control group allowing the representation


of the entire ‘experimental universe’. The spectral moment


series were explored as clustering variables in order to


carry out k-MCA. The procedure described above is rep-


resented graphically in Fig. 4 for both groups.


General discriminant analysis (GDA)


The starting control group was reduced following the


k-MCA to balance both groups according to the GDA


requirements; then training and predicting series were


selected from 200 CATH members. The GDA best subset


was carried out for variable selection to build up the model


(Marrero-Ponce et al. 2005; Marrero-Ponce et al. 2004;


Meneses-Marcel et al. 2005; Ponce et al. 2004). The


STATISTICA software reviewed all the variable predictors


for finding the ‘‘best’’ possible sub model. The variables


were standardized in order to bring them onto the same


scale. Subsequently, a standardized linear discriminant


equation that allows comparison of their coefficients was


obtained (Kutner et al. 2005). The model selection was


based on the revision of Wilk’s (k) statistic (k = 0 perfect


discrimination, being 0 \ k\1) in order to assess the


discriminatory power of the model. We also inspected the


Fisher ratio (F), value of a variable indicating its statistical


significance in the discrimination between groups, which is


a measure of the extent of how a variable makes an unique


contribution to the prediction of group membership with a


probability of error (p level) p(F) \ 0.05.


Applicability domain


A simple method to investigate the applicability domain of


a prediction model is to carry out a leverage plot (plotting


residuals vs. leverage of proteins used in the training set)


(Eriksson et al. 2003; Niculescu et al. 2004). The leverage


(h) of a sequence in the original variable space which


measures its influence on the model is defined as


hi ¼ xT
i ðXT XÞ�1xði ¼ 1; . . .; nÞ


where xi is the descriptor vector of the considered sequence


and X is the model matrix derived from the training set


descriptor values. The warning leverage h* is defined as


follows:


h� ¼ 3� p0=n


where n is the number of training sequences and p0 is the


number of model adjustable parameters.


Alignment procedures


The Smith–Waterman algorithm was used to perform local


sequence alignment for determining similar regions


between pairs of bacteriocin protein sequences (all vs. all)


(Smith and Waterman 1981). The water program was


downloaded from the European Molecular Biology Open
Fig. 4 Scheme describing the design of training and predicting series


using k-MCA for both bacteriocins and control group
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Software Suite (EMBOSS) (http://www.ebi.ac.uk/Tools/


emboss) and run on Linux Ubuntu 8.04. Water uses the


Smith–Waterman algorithm (modified for speed enhance-


ments) to calculate the local alignment. EBLOSUM62 was


set as the substitution matrix and gap penalties values were


taken by default.


Bacteriocin classification using classical methods


Each bacteriocin protein sequence presented in this study


was also submitted to InterProScan for its classification


(Quevillon et al. 2005). Sequences in FASTA format were


analyzed one by one at the http://www.ebi.ac.uk/Tools/


InterProScan looking into the InterPro database (Hunter


et al. 2009).


Results and discussion


Prediction of proteinaceous Bacteriocins


using 2D-HP TIs


We calculated spectral moments (HPlk) of the bond adja-


cency matrix that describe electronically the connection


between the aas in the pseudo secondary structure or 2D-HP


map of the protein sequence. This calculation was carried


out for two groups of protein sequences, one made up of


bacteriocin-like proteins and the other formed by hetero-


geneous CATH domains. The members of both groups were


selected as follows: (1) the bacteriocin group contained 196


members in total; (2) the members of the training and pre-


dicting series were chosen according to the k-means cluster


analysis (k-MCA); (3) the k-MCA divided the data into four


clusters containing 75, 78, 27, and 16 members, respec-


tively; (4) the selection was based on the distance from each


member with respect to the cluster center (Euclidean dis-


tance); (5) the members of the external validation subset


were selected uniformly in respect to Euclidean distance


taking out the 25% in each cluster; and (6) the remaining


cases were used to train the model.


To set up the final control group, the original data of


8,871 proteins were reduced to 200 members in order to


balance the two groups as required by general discriminant


analysis (GDA). Data selection was also carried out using


the k-MCA to ensure the inclusion of representative protein


domains of each cluster in the control group. The original


data were split into six statistically representative clusters


of sequences made up by: 1,553, 1,416, 1,754, 1,863,


1,339, and 946 members. Afterwards, the members com-


prising the training and predicting subsets were selected


following the same procedure described above.


Cluster of cases were carried out using the TIs computed


in TI2BioP methodology. We have explored the standard


deviation between and within clusters, the respective Fisher


ratio and their p level of significance (Mc Farland and Gans


1995b). All variables were used to construct the clusters


but only the combination from the HPl12 to HPl16 showed


p levels\0.05 for Fisher test, as depicted in Table 1. Four


statistically homogeneous clusters of proteinaceous bacte-


riocins were described coinciding with the existence of


four proteinaceous subclasses described by Cotter et al.


(Cotter et al. 2006).


The k-MCA based on TI2BioP structural indices


revealed a high diversity between bacteriocins-like proteins


sequences, which was further supported by the pair-wise


alignment results performed between its 196 proteinaceous


members using the Smith–Waterman local algorithm. The


Smith–Waterman procedure is able to obtain correct


alignments in regions of low similarity between distantly


related biological sequences. Thus, it is possible to detect


sub regions or sub-sequences with an evolutionary con-


served signal of similarity. Bacteriocins are good candi-


dates to perform this procedure, because aa similarity


percentages can be as low as 25.7%. The 85% of the


sequences pairs aligned (16,240 pairs) showed similarity


percentage below 50% and the 23% sequences pairs (4,375


pairs) showed similarity below 35% in just short sub


regions. These outcomes are consistent with the high


diversity of bacteriocins and with the distinct performance


of the classification methods (see the Smith–Waterman


results in Table II of SM).


Once we performed a representative selection of the


training set for both groups, the discrimination functions


can be determined. Thus, we choose the functions with


higher statistical significance but with few parameters as


Table 1 Main results of the k-MCA for the proteinaceous bacterio-


cins class and the control group


Protein descriptors Between


SSa
Within


SSb
Fisher


ratio (F)


p levelc


Variance analysis bacteriocins-like proteins
HPl12 161.61 33.39 309.72 \0.001
HPl13 160.19 34.81 294.48 \0.001
HPl14 161.44 33.56 307.91 \0.001
HPl15 159.49 35.51 287.43 \0.001
HPl16 162.20 32.80 316.52 \0.001


Control group
HPl12 8347.91 522.09 28349.40 \0.001
HPl13 8319.39 550.61 26788.96 \0.001
HPl14 8334.12 535.88 27574.19 \0.001
HPl15 8313.42 556.58 26482.71 \0.001
HPl16 8336.86 533.14 27725.03 \0.001


a Variability between groups
b Variability within groups
c Level of significance
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possible. Each discriminant function expresses in proba-


bility terms the tendency or propensity of a given aa


sequence to belong to the bacteriocin-like protein class.


The model classifies the sequences according to its bio-


logical function providing a predicted probability as a


numerical score (0 B score B 1). The best classification


function equation found for the bacteriocin group after


GDA analyses was:


Bact-score ¼ 6:86� HPl1 � 2:06� HPl3 � 2:39


� HPl10 � 2:34� EdgeN� 0:08


� N ¼ 299 k ¼ 0:63 F ¼ 53:22 p\0:001 ð3Þ


Where, N is the number of proteins used to seek the


corresponding classification models, which discriminate


between proteinaceous bacteriocins and representative


CATH domains. The statistics parameters of the above


equation are the same usually shown for QSAR linear


discriminant models (Santana et al. 2006; Vilar et al.


2005), including Wilk’s statistical (k) and Fisher ratio (F)


with a probability of error (p level) p(F). The value of p(F)


shows significance, rejecting the null hypothesis (H0) (no


difference between two groups).


This discriminant function (equation 3) classified cor-


rectly 230 out of 299 proteins used in the training series


(level of accuracy of 76.92%). More specifically, the model


correctly classified 122/148 (82.43%) sequences of pro-


teinaceous bacteriocins and 108/151 (71.52%) of the con-


trol group. A validation procedure was subsequently


performed in order to assess the model predictability.


We used the subsampling test to examine the prediction


accuracy of our model. This validation procedure is easier


to implement and provides reliable results in the validation


of a predictive model at low computational cost (Rivals and


Personnaz 1999). Thus, we took out randomly subsamples


representing the 25% of the training set to assess the model


predictability. The procedure was repeated ten times


varying the composition of the subsamples. Afterwards the


mean values for the Wilk’s statistical, accuracy, sensitivity


and specificity in training and external validation subsets


were calculated. The respective classification matrices for


training and cross-validation are depicted in Table 2. The


classification results derived from the sub-sample test were


very similar to those achieved from the member’s selection


using k-MCA; notice that the Wilk’s statistical remained


almost invariant showing the robustness of the model.


An external validation was also performed using the


predicting series derived from the k-MCA. It is important


to highlight that this external set was not used to build the


model. This procedure was carried out with an external


series of 48 bacteriocin-like proteins and 49 CATH


domains (see Table 2). The model showed a prediction


overall performance of 72.16%, able to predict 32/48


(66.7%) of proteinaceous bacteriocins and 38/49 (77.5%)


of the functionally diverse domains. This result is


remarkable relatively to other QSAR studies using 2D


stochastic indices to classify protein classes with higher


degree of sequence conservation among its members


(Agüero-Chapin et al. 2009; Vilar et al. 2008). The clas-


sification of each protein sequence (bacteriocins and


CATH domains) is shown in more details in Table I and Ia


of SM.


As can be seen from the model equation, the spectral


moment HPl1 is the major predictor that contributes posi-


tively to the bacteriocin classification. However, the rest of


the predictors (HPl3, HPl10 and EdgeN) affect bacteriocin


identification in a negative way. This fact points out that


the increase of higher-order spectral moments and edge


numbers affects negatively the bacteriocin identification.


Proteins sequences pseudo folded into 2D-HP maps with


few edges numbers and high values of HPl1 are more likely


to present the antibiotic action on other bacteria. Edge


numbers are associated directly with the length of the linear


sequence but in our pseudo secondary structure are also


influenced by the composition of its acid, basic, polar and


non-polar aas. Thus, bacteriocins proteinaceous sequences


pseudo folded in a more compact 2D-HP map show a


balance of hydrophobicity due to its amino acidic compo-


sition. This fact agrees with the amphiphatic properties of


mature bacteriocins, which form domains or helices having


hydrophobic and hydrophilic regions; an essential struc-


tural feature to perform its antibiotic action (Kaur et al.


2004). It also supports the fact that naturally-occurring


antimicrobial agents are often peptide-like bacteriocins


rather than proteins (Sang and Blecha 2008).


The protein classification based solely on linear


sequence homology can perform poorly when the sequence


diversity is high, as in the case of bacteriocins. By contrast,


the classification based on higher structural organization is


much more effective because during the evolution of pro-


tein families often its secondary and tertiary structure


Table 2 Classification results derived from the model for training


and validation series


Training set (k-MCA) External validation (k-MCA)


Total% 76.92 Bact. Control Bact. Control 72.17 Total%


Bact. 82.43 122 26 32 16 66.67 Bact.


Control 71.52 43 108 11 38 77.5 Control


Cross-validation (Training set)


Training subset Validation subset


Bact. Control Total% k Bact. Control Total%


82.36 71.76 77.02 0.629 81.55 70.54 75.94


Numbers in bold highlight the well-classified cases
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remained more conserved than the primary sequence. Our


TIs reveal hidden but relevant information contained in the


primary sequence, as the hydrophobicity/polarity features


of its aas, which are important properties for the secondary


structure fold of bacteriocins (Hammami et al. 2007).


Consequently, the 2D-HP TIs are useful to determine with


more accuracy the biological function when higher struc-


tural levels are not available (e.g. 2D and 3D information).


This fact makes the TIs very useful to carry out easily the


screening of large protein databases, such as entire prote-


omes, by considering information beyond the primary


level.


In addition to validation procedures, the receiver oper-


ating characteristic (ROC) curve was also constructed for


our model. Notably, the curve presented a convexity with


respect to the y = x line for the training series (see Fig. 5).


This result confirms that the present model is a significant


classifier having an area under the curve above 0.8.


According to the ROC curve theory, random classifiers


have an area of only 0.5, which clearly differentiate our


classifiers from those working at random (Swets 1988).


Sequences with h [ h* = 0.05 are out of the model’s


applicability domain. As observed in Fig. 6, most of the


sequences in training and test set lies within the model’s


applicability domain; just seven training and three valida-


tion sequences are out.


Particularly, it is important for the model predictability


to recognize sequences used in the test set that are outside


of its applicability domain. Thus, sequences like


pdb1gkrB02 (h = 0.056), pdb1ys1X00 (h = 0.223) and


P22522.1 (h = 0.073) should not be predicted as protein-


aceous bacteriocins using this model or at least be


considered cautiously. Considering such analysis, these


three last cases will remain out of the external set


increasing slightly the overall prediction percentage from


72.17 up to 72.34%. The new classification results after the


removal of such cases from the external set are shown in


Table 3.


Bacteriocins prediction using classical methodologies


In order to compare the methodology reported here with


classical predictive sources of functional annotation, the


196 proteinaceous bacteriocins used in this study were


submitted to InterPro analysis using its InterProScan tool


(Quevillon et al. 2005). This tool combines different pro-


tein signature recognition methods native to the InterPro


member databases into one resource with look up of cor-


responding InterPro and Gene Ontology annotation. Pro-


tein signature databases have become vital tools for


identifying distant relationships in novel sequences and


hence are used for the classification and function deduction


of protein sequences. Most of the protein signature recog-


nition methods implemented in InterPro rely up to certain


Fig. 5 Receiver Operating Characteristic curve (ROC-curve) for the


bacteriocin model (dark line) and random classifier (tight line) with


areas under curve of 0.87, and 0.5, respectively


Fig. 6 Graphical representation for the applicability domain of the


model


Table 3 Results of the external set prediction after determining the


model’s applicability domain


External set Classification


percentage


Control


Group


Bacteriocins


Control Group 76.59 36 11


Bacteriocins 68.09 15 32


Total 72.34 47 47


Numbers in bold highlight the well-classified cases
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extend on alignment procedures, which justify why we


have selected it to carry out a comparative study using our


alignment-free approach. In this sense, InterProScan tool


did not classify 40 protein sequences out of a total of 196.


Out of these 40 non-classified sequences, 16 did not


retrieve any hits and the remaining sequences did not have


integrated signatures on InterPro database, thus just being


classifying 79.6% of the data. In addition, 38 proteinaceous


bacteriocins were recognized by InterPro as having other


protein signatures, unrelated to bacteriocins-like sequences,


thus decreasing the good classification percentage to 60.2%


(see Table III of SM). Despite the simplicity of our


alignment-free approach, the QSFR model showed a gen-


eral classification of 78.6% (154/196). This result is not


distant from the InterPro’s performance considering the


unclassified bacteriocins (79.6%), but is considerably


higher than the general classification percentage provided


by the InterPro (60.2%). Therefore, the identification of


proteinaceous bacteriocins using alignment approaches is


not a simple task considering the high diversity in its pri-


mary structure. Bacteriocins-like sequences could have


significant similarities to functional domains unrelated with


the bactericidal function per se or may not match any


recorded sequence, as suggested by this study. The use of


alignment methods will also make difficult the detection of


a putative bactericide function in polypeptides or domains


that have been traditionally classified in another class.


Thus, independent domains belonging to proteins with


completely different functions from the bacteriocin class


might never be detected unless if using experimental pro-


cedures. In this sense, the development of alternative


methods not relying on sequence similarity to detect bac-


tericidal function in proteins, polypeptides (domains) and


internal domains could be a solution.


An alignment-free prediction to a cryptic


bacteriocin-like domain


We provide a practical example of our approach to detect


putative bacteriocin-like sequences in internal domains of


proteins unrelated with the bactericidal function—the case


of the C-terminal domain of the Cry1Ab endotoxin from


Bacillus thuringiensis subsp. kurstaki (Vazquez-Padron


et al. 2004). Cry1Ab is one of the most studied insecticidal


proteins produced by B. thuringiensis as crystalline inclu-


sion body during sporulation (Bravo et al. 2004; Padilla


et al. 2006; Pardo-Lopez et al. 2006). Consequently, its


nucleotide and amino acid sequence have been recorded for


a large number of B. thuringiensis strains. Several


sequences are nearly identical, and have been designated as


variations of the same gene. The crystal protein (Cry)


genes specify a family of related insecticidal proteins


(Bravo 1997).


Although the Cry 1Ab C-terminal domain is not


exported to the medium due to its internal location into a


crystal protein, it shares relevant features to bacteriocins


such as (1) it is produced by a Gram-positive bacteria


(B. thuringiensis), (2) inhibits the growth of other bacteria


genera like A. tumefaciens and E. coli, both being Gram-


negative bacteria and showing a broad range of bactericidal


action, (3) it presents an immunity mechanism to its ori-


ginal host B. thuringiensis by binding to the N-terminal


portion of the d endotoxin, and (4) it is encoded by a large


B. thuringiensis plasmid despite others being chromosom-


ally encoded.


According to these evidences, the C-terminal domain of


549 aa is a bacteriocin-like sequence. However, the


sequence is recognized by alignment methods like Basic


Local Search Alignment Tool (BLAST) as a delta-endo-


toxin from B. thuringiensis. The InterProScan showed ‘‘no


hits’’ meaning no possible classification among the protein


classes recorded in the InterPro database. Therefore, the


use of alignment-free procedures as TI2BioP represents a


complementary alternative to the classical methodologies.


The Cry 1Ab C-terminal domain was pseudo folded in a


2D-HP lattice, afterwards the calculation of its TIs (spectral


moments) were carried out and the values of l1, l3, l10 and


Edge numbers were evaluated in our classification func-


tion. The discriminant equation predicted that the Cry 1Ab


C-terminal domain was a bacteriocin-like sequence with a


high score of 0.97. The QSFR model prediction is


consistent with our experimental observations (Vazquez-


Padron et al. 2004).


Moreover, we also applied the water program to find


maximal local similarities between the Cry 1Ab C-terminal


domain and all proteinaceous bacteriocins used in our


study. We investigated common structural features


accounting for the cryptic bactericidal action of the C-ter


domain. The pair-wise local alignment showed similarities


below 50% to the 88.8% of the bacteriocins, with 43.37%


of them sharing less than 35% of sequence similarities with


our query. That is the case of Q88LD6 classified as a


bacteriocin production protein reaching the maximal sim-


ilarity (80%) in a short region of 15 aa with a low aa


identity percentage (see Table IV of SM).


2D-HP maps insight into the bactericide function


and evolution of Cry 1Ab C-terminal domain


Alignment procedures based on linear homology are lim-


ited to search structural relationships between proteins with


similar biological functions but low conservation at the


primary level. However, exploiting sequence features


beyond the primary level can be insightful in the charac-


terization of a certain protein class. We selected the most


representative sequences (the closest ones to the cluster
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centroid) into the four clusters of proteinaceous bacterio-


cins divided by the HPlk to perform a bi-dimensional


alignment. The 2D alignment of the pseudo-secondary


structures of bacteriocins and Cry 1Ab C-terminal domain


provided graphical evidence that both are functionally


related. Starting from the coordinates (0, 0), a clear


superposition between the C-ter domain and the HP-lattice


conformed by bacteriocin sequences are shown in Fig. 7.


The matching region is evident in contrast with the low-


similarity percentages obtained by the Smith–Waterman


procedure. This fact supports the relevance of the hydro-


phobicity and basicity to characterize functionally a bac-


teriocin-like sequence and the cryptic bactericide action of


this Cry 1Ab portion.


The cry genes are mostly found in large conjugative


plasmids. Such plasmids also contain coding sequences to


other proteins being the gene cluster involved in the pro-


duction and exportation of antibiotic peptides, one of the


most amazing determiners (Bravo et al. 2007). For


instance, the sequencing on the coding plasmid (pBtoxis) to


Bt subsp. israelensis toxins showed the presence of toxin


short sequences with homology to central and C-terminal


regions of Cry proteins (Berry et al. 2002). These apparent


remainders have suggested that during the pBtoxis evolu-


tion, its ancestors have been host of other toxins that were


then lost. Considering that these genes are also character-


ized for their mobilization by transposition either into this


species or in-between others (Barloy et al. 1998; Yokoyama


et al. 2004), an evolutionary hypothesis to the finding of the


bactericide function of the Cry 1Ab C-ter from the Bt


subsp. kurstaki could be proposed. We believe that such


fragment belongs to an ancestral bacteriocin that could


have lost its mechanism of exportation.


These results confirmed the utility of our alignment-


independent method to recognize cryptic bacteriocins that


are difficult to identify if using solely alignment proce-


dures. Our method is also effective because it allows the


use of graphical procedures to find functional and evolu-


tionary relationships among very distant protein classes.


The simplicity and advantage of our approach make it


suitable for complementing classical alignment tools,


which can be of particular relevance to screen bacterial


proteomes for new polypeptides with antibiotic action.


Conclusions


We presented TI2BioP methodology as a successful alter-


native approach relatively to alignment procedures to


identify proteinaceous bacteriocins from domain sequen-


ces. Its usefulness stems from the use of 2D-HP protein


maps to calculate the spectral moments as TIs. Such TIs


condense the hydrophobicity and polarity information


of the sequences and were used to develop a simple


QSFR classifier. Despite the bacteriocins high diversity,


this QSFR model could discriminate successfully the


bacteriocin-like sequences among representative CATH


domains and showed a good predictability. TI2BioP pro-


vided several advantages for the bacteriocins classification


relatively to classical protein function annotation methods


like InterPro. Moreover, the predictions made by our model


for the Cry 1Ab C-ter domain coincided with its cryptic


bactericidal action demonstrated in practical experiments.


Thus, overlapping of protein pseudo-secondary structures


can be an useful alternative to reveal functional and evo-


lutionary relationships of orthologous proteins.
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