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ABSTRACT 

The detection of meningococcal disease through identification of antimicrobial peptides 

using an in silico model creation. 

G. Abdullah 

Ph.D. thesis, Department of Biotechnology, Faculty of Natural Sciences, University of the 

Western Cape 

Neisseria meningitidis (the meningococcus), the causative agent of meningococcal disease 

(MD) was identified in 1887 and despite effective antibiotics and partially effective vaccines, 

Neisseria meningitidis (N. meningitidis) is the leading cause worldwide of meningitis and 

rapidly fatal sepsis usually in otherwise healthy individuals. Over 500 000 meningococcal 

cases occur every year. These numbers have made bacterial meningitis a top ten infectious 

cause of death worldwide. MD primarily affects children under  5  years  of  age, although in 

epidemic outbreaks  there  is  a  shift  in  disease  to  older  children, adolescents and adults. 

MD is also associated with marked morbidity including limb loss, hearing loss, cognitive 

dysfunction, visual impairment, educational difficulties, developmental delays, motor nerve 

deficits, seizure disorders and behavioural problems. Antimicrobial peptides (AMPs) are 

molecules that provide protection against environmental pathogens, acting against a large 

number of microorganisms, including bacteria, fungi, yeast and virus. AMPs production is a 

major component of innate immunity against infection. The chemical properties of AMPs 

allow them to insert into the anionic cell wall and phospholipid membranes of 

microorganisms or bind to the bacteria making it easily detectable for diagnostic purposes. 

AMPs can be exploited for the generation of novel antibiotics, as biomarkers in the diagnosis 

of inflammatory conditions, for the manipulation of the inflammatory process, wound 
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healing, autoimmunity and in the combat of tumour cells. Due to the severity of meningitis, 

early detection and identification of the strain of N. meningitidis is vital. Rapid and accurate 

diagnosis is essential for optimal management of patients and a major problem for MD is its 

diagnostic difficulties and experts conclude that with an early intervention the patient’ 

prognosis will be much improved. It is becoming increasingly difficult to confirm the 

diagnosis of meningococcal infection by conventional methods. Although polymerase chain 

reaction (PCR) has the potential advantage of providing more rapid confirmation of the 

presence of the bacterium than culturing, it is still time consuming as well as costly. 

Introduction of AMPs to bind to N. meningitidis receptors could provide a less costly and 

time consuming solution to the current diagnostic problems. World Health Organization 

(WHO) meningococcal meningitis program activities encourage laboratory strengthening to 

ensure prompt and accurate diagnosis to rapidly confirm the presence of MD. 

This study aimed to identify a list of putative AMPs showing antibacterial activity to N. 

meningitidis to be used as ligands against receptors uniquely expressed by the bacterium and 

for the identified AMPs to be used in a Lateral Flow Device (LFD) for the rapid and accurate 

diagnosis of MD. 

Various computational AMP databases such as APD, CAMP, DRAMP and DBAASP were 

explored to identify a list of experimentally validated AMPs against N. meningitidis. The 

identified peptides were used to construct probabilistic models; using an in silico 

mathematical algorithm Hidden Markov Models (HMM) to be used in the scanning of 

various genome sequences to identify putative AMPs for N. meningitidis. The predicted 

AMPs were selected based on their E-values and having a single domain. In this study, nine 

AMPs (YYNN1 – YYNN9) were identified as possible anti-N. meningitidis peptides 

displaying E-values < 0.01, with the smallest E-values seen for YYNN8 and then YYNN9.  
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Various search engines were accessed to identify receptors in the outer membrane of N. 

meningitidis which will serve as targets to the putative AMPs. Three N. meningitidis proteins 

were shortlisted as receptors for the identified peptides namely NhhA, Opc and PorA. The 

major considerations for using the aforementioned proteins was based on their unique 

expression in N. meningitidis as to ensure selectivity of the bacterium during diagnosis as 

well the nature of expression of these proteins being extracellular, to ensure their availability 

for binding during diagnosis.  

The physicochemical properties of the identified peptides were determined using APD and 

Bactibase to determine whether these peptides conformed to known AMPs since these 

peptides were considered putative/novel. 

Furthermore, the 3D structures of the AMPs and N. meningitidis receptors were modelled 

using I-TASSER. The 3D modelling results revealed that, all the AMPs as well as the 

receptors were of good models structurally based on their TM, RMSD and C-score values. 

The AMPs showed secondary structures including α-helices and extended shapes similar to 

other known AMPs whereas the receptors showed structures as seen within the literature. 

The 3D structures of the AMPs were docked against the 3D structures of the N. meningitidis 

receptors using PatchDock, to determine their binding affinity as well as binding orientation. 

The results showed that AMP YYNN5 has the highest binding affinity score of 15396 when 

bound to PorA as well as the highest binding affinity score when docked to NhhA with a 

score of 11904, whilst AMP YYNN8 showed the highest binding affinity score when docked 

to Opc, with a binding score of 11546 as calculated by PatchDock. 
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Lastly, identification of mutation sensitive or “hotspot” amino acid residues that are involved 

in forming the interface between the AMPs and the receptor proteins were identified using 

KFC. Non “hotspot” residues were changed using site directed mutagenesis with the parental 

AMPs as templates to generate derivative AMPs that displayed increased predicted binding 

affinity for the NhhA, Opc and PorA proteins. Derivative AMP YYNN2c had an increase in 

binding affinity from 14446 to 15072 with a net positive percentage of 4.3% when bound to 

the PorA protein, resulting in this AMP as having the second highest binding affinity score 

after YYNN5 (15396) bound to PorA although the binding affinity of YYNN5 did not 

increase following site directed mutagenesis.  

To ensure that site directed mutagenesis did not alter the physicochemical properties or the 

structure of the derived AMPs, APD and Bactibase were used once more as well as I-

TASSER. From the results obtained, the derived AMPs still conformed to known AMPs as 

well as displaying similar α-helical secondary structures as their parental counterparts, with 

slight variation in partial α-helical structure for certain derived AMPs.  

Taken together the results of this work indicates that YYNN5 bound to the N. meningitidis 

receptor PorA is the most likely AMP to be used in a LFD for the accurate and sensitive 

diagnosis of MD within patient samples such as blood. 

This is the first report on the identification of AMPs, using in silico analysis, as ligands to the 

bacteria N. meningitidis receptor proteins and can be a key step in the creation of an effective 

and universal diagnostic Point-of-Care (POC) method to diagnose MD at an early stage to 

prevent serious complications.  

Keywords: Antimicrobial Peptides, Neisseria meningitidis, Antimicrobial Peptide Database, 

Hidden Markov Model, Meningococcal disease, diagnostic, database. 
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Chapter 1 

Literature Review 

1.1. Introduction 

Meningococcal disease (MD) was first described by Vieusseaux in 1805, when an outbreak 

swept through Geneva (Pace and Pollard, 2012). Neisseria meningitides (N. meningitidis) 

(the meningococcus), the causative agent of MD was identified in 1887 by the Austrian 

pathologist Anton Wiechselbaum (Rosenstein et al., 2001; Pace and Pollard, 2012). 

Meningococcal disease is an acute bacterial infection with the two common presentations of 

meningococcal infection, these being meningococcal meningitis (infection of the membranes 

that surround the brain and spinal cord) and meningococcemia (infection of the 

bloodstream). An infected individual may suffer one or both of these diseases. The most 

common presentations of invasive MD are meningitis and sepsis (Pace and Pollard, 2012). 

Over 500,000-1,200,000 invasive meningococcal diseases occur each year, with 50,000-

135,000 deaths (Chang et al., 2012; Jafri et al., 2013; Gabutti et al., 2015). Young children, 

adolescents, and young adults suffer the greatest burden of disease from N. meningitidis. 

Children are particularly vulnerable to invasive MD because of their relative immune 

immaturity, in particular their relative under-responsiveness to pure polysaccharide antigens 

such as the meningococcal capsule (Nadel and Ninis, 2018). 

Bacterial meningitis is a global public health concern, with several responsible etiologic 

agents that vary by age group and geographical area: Escherichia coli, Haemophilus 

influenzae, Neisseria meningitidis, Streptococcus pneumoniae, group B Streptococcus 

agalactiae, Staphylococcus aureus, and Listeria monocytogenes (Oordt-Speets et al., 2018). 
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In a meta-analysis study, it was determined that S. pneumoniae and N. meningitidis are the 

predominant pathogens in all age groups and all regions, as shown in Figure 1.1, accounting 

for 25.1–41.2% and 9.1–36.2% of bacterial meningitis cases, respectively (Oordt-Speets et 

al., 2018) . 

 

Figure 1.1: Frequency of seven pathogens that caused bacterial meningitis in all ages by 

geographic region (Extracted from Oordt-Speets et al., 2018).  

In the human respiratory tract, the only known reservoir of N. meningitidis, meningococci 

are exposed to human endogenous antimicrobial peptides (AMPs). Antimicrobial peptides 

are molecules that are part of the innate immune response and play an important role as a 
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host defense against microbial pathogens (Tzeng and Stephens, 2015). AMPs have a myriad 

of potential uses in the diagnosis and treatment of complex diseases such as cancer, where 

Bullard et al., 2008 demonstrated Human Beta Defensin-1, an important component of the 

innate immune response, as a viable therapeutic agent for the treatment of late-stage prostate 

cancer. Terrin et al., in 2011 investigated an innate immunity component, serum calprotectin 

as a biomarker of septicaemia in very low birth weight infants. Antimicrobial peptides can be 

exploited for the generation of novel antibiotics, as biomarkers in the diagnosis of 

inflammatory conditions, for the manipulation of the inflammatory process, wound healing, 

autoimmunity and in the combat of tumour cells (Mahlapuu et al., 2016). 

The advent of the use of automation equipment in molecular biology, coupled with the 

sequencing of the human genome has led to the discovery of a large number of AMPs 

associated with immune response. The sequences of these AMPs are curated in various 

databases and the use of high throughput screening via bioinformatics tools may help in 

understanding the function of peptides.  

Computational tools are very useful for predicting novel antibacterial peptides, which could 

be used to design potent agents against bacterial pathogens. Extensive work has been done in 

the field of antibacterial peptides, describing their identification, characterization and 

mechanism of action. The information about these peptides has been collected and compiled; 

in major databases on AMPs (Lata et al., 2007). Researchers are focused on in silico 

screening and modelling of novel AMPs as computational approaches can accelerate the 

process of antimicrobial discovery and design (Wang et al., 2011; Li et al., 2017). 
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1.2. Meningococcal Disease (MD) 

Meningococcal disease is of major importance in public health due to its global distribution, 

epidemic potential, predominant disease burden in children and adolescents and fulminant 

clinical manifestations (Pace and Pollard, 2012; Lundbo et al., 2015; Borrow et al., 2017). 

The mild clinical presentation may progress to sudden onset of disease, multi-organ failure 

and death within hours (Nadel and Ninis, 2018). The clinical spectrum of invasive MD is 

diverse with meningitis and/or septicaemia being the commonest modes of presentation. 

Among survivors, disabling long-term sequelae can complicate meningococcal disease and 

result in potentially devastating effects on the quality of life of survivors, most of whom are 

infants, children and adolescents (Pace and Pollard, 2012). The presence of fever and 

cutaneous alterations petechia or purpura in an acutely ill patient should mandatorily evoke 

in the physician, the hypothesis of MD (Dwilow and Fanella, 2015; Batista et al., 2017).  

1.3. Pathogenesis of MD  

The pathogenesis of meningococcal infection involves initial penetration of the 

nasopharyngeal mucosal epithelium, entry into the blood, and the development of 

bacteraemia, which occurs in the absence of host humoral immunity (Brandtzaeg and van 

Deuren, 2012). The meningococcus is carried in the human nasopharynx, asymptomatically, 

by five to ten percent of adults in non-epidemic periods (Tzeng and Stephens, 2000; 

Yazdankhah and Caugant, 2004; Yezli et al., 2016). The interaction of N. meningitidis with 

human endothelial cells lining the blood vessels of the blood–cerebrospinal fluid barrier is a 

prerequisite for the development of meningitis (Coureuil et al., 2012; Doran et al., 2016). 

Neisseria meningitidis may access the bloodstream, evolving by one of two primary 

mechanisms: (1) rapid bacterial multiplication, associated with development of marked 
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systemic inflammatory response, producing the typical clinical picture of meningococcemia; 

(2) slower reproduction of the agent, allowing for fixation and multiplication in the joints, 

the pericardium, and especially in the central nervous system, producing in the latter clinical 

picture of meningococcal meningitis (Batista et al., 2017).  

N. meningitidis possesses a variety of adaptive characteristics which enable it to avoid being 

killed by the immune system, such as the capsule, the lipopolysaccharide (LPS), groups of 

proteins that block the action of the AMPs, proteins that inhibit the complement system and 

components that prevent both the maturation and the perfect functioning of phagocytes 

(Gasparini et al., 2012). The LPS (endotoxins) play a central role in the pathogenesis of the 

morbid condition, stimulating cells of the immune system (such as macrophages, monocytes 

and neutrophils) to release a series of inflammatory mediators: interleukin (IL) 1, IL-6, IL-8, 

IL-10, interferon-gamma and tumour necrosis factor alpha. These cytokines play a critical 

role in activation of multiple pathways. This increase in activity and events are directly 

responsible for the development of shock and multiple organ failure (Batista et al., 2017). 

1.4. Meningococcal colonization 

The mechanisms that lead from colonisation to invasive disease, which occurs only in a 

small proportion of carriers, are still not completely understood but are thought to be as a 

result of meningococcal virulence factors, environmental conditions and host susceptibility 

(Li et al., 2017; Nadel and Ninis, 2018). The blood-cerebrospinal fluid barrier 

physiologically protects the meningeal spaces from blood-borne bacterial pathogens. Few 

bacterial pathogens were able to reach the subarachnoid space and among those, N. 

meningitidis is the one that achieves this task the most constantly when present in the 

bloodstream. The small number of bacterial species capable of invading the meninges 
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suggests that specific virulence factors are required for bacteria to enter the subarachnoid 

space (Coureuil et al., 2012). Crossing the blood–brain barrier, the bacterium binds to 

endothelial cells of the cerebral microvasculature, and in the choroid plexus and capillaries of 

the encephalon at receptors. Once in the Cerebral Spinal Fluid (CSF), the pathogens 

begin replication and trigger inflammatory process in the subarachnoid space, with 

pathophysiological consequences (Batista et al., 2017). 

 

Figure 1.2: Schematic overview of meningococcal interactions at the epithelial barrier of the 

nasopharynx and the mode of barrier penetration (Adapted from Hill et al., 2010). 

Although, the process of invasion and subsequent disease are not fully understood, a 

sequence of events must occur (Dwilow and Fanella, 2015). N. meningitidis enters the 

nasopharynx and attaches to non-ciliated epithelial cells, probably through the binding of the 

pili to the CD46 receptor (a membrane cofactor protein) and the subsequent binding of 

opacity-associated proteins, Opa and Opc, to the CD66e (carcinoembryonic antigen) and 

heparan sulfate proteoglycan receptors, respectively as shown in Figure 1.2 (Hill et al., 2010;  

Doran et al., 2016). Neisseria meningitidis bind to members of the carcinoembryonic 
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antigen-related cell adhesion molecules (CEACAM) family of cell adhesion molecules and 

recognize specific glycoproteins in a lectin-like fashion. Binding of bacterial adhesins to 

specific host cell receptors may lead to a signal transduction resulting in tight bacterial 

attachment to or internalization by the host cells (Doran et al., 2016).  

The main means of adhesion of N. meningitidis to the host cells are Pili, type IV pili can 

retract through the bacterial cell wall, while the pilus tip remains attached to its target surface, 

allowing the so-called “twitching motility”, a flagella-independent mode of motility 

important for efficient colonization of host surfaces (Ribet and Cossart, 2015). Opacity-

associated proteins (Opa) and (Opc) are two proteins that make an important contribution to 

the process of adhesion to the cell. Porins A and B contribute to neisserial adhesion and 

penetration into the cells, and also inhibit the complement system. Factor H binding protein 

(fhbp) bind to factor H, allowing the bacteria to survive in the blood (Gasparini et al., 2012). 

Once attached, these bacteria are much more resistant to shear stress and can start to 

proliferate leading to the formation of microcolonies (biofilms). Biofilm formation constitutes 

a protected mode of growth that allows bacteria to survive in a hostile environment (Ribet and 

Cossart, 2015). 

Neisserial adhesin A (NadA) is a minor adhesin that is expressed by 50% of the pathogenic 

strains. NadA is known to be involved in cell adhesion and invasion and in the induction of 

proinflammatory cytokines. Neisserial heparin binding antigen (NHBA) binds heparin, thus 

increasing the resistance of the bacterium in the serum (Gasparini et al., 2012). 

Capsule down-modulation (or up-regulation of host receptors during inflammatory condition) 

allows interactions between outer-membrane proteins and their cognate host receptors. For 

example, Opa proteins may bind to the Carcinoembryonic antigen-related cell adhesion 

molecules (CEACAMs) and Heparin Sulfate Proteoglycans (HSPGs), and Opc proteins can 
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interact with HSPGs and, via vitronectin (Vn) and fibronectin (Fn), to their integrin receptors 

(Figure 1.2) (Hill et al., 2010).   

Although some minor adhesins such as Neisseria hia homolog A (NhhA) have been shown to 

interact with HSPGs, the receptors targeted by meningococcal serine protease A (MspA), 

Adhesion and penetration protein (App) and NadA remain to be determined. Engagement of 

CEACAMs, integrins and HSPGs can result in meningococcal internalization by epithelial 

cells by triggering a variety of host cell signalling mechanisms. On crossing the epithelial 

barrier, meningococci are able to interact further with proteins of the extracellular matrix 

including Fn and Vn. Internalized bacteria may also migrate back to the apical surface for 

transmission to a new host (Hill et al., 2010). 

1.5. Causative agent - Neisseria Meningitidis (N. meningitidis) 

N. meningitidis are gram-negative, aerobic diplococci bacteria and a member of the bacterial 

family Neisseriaceae (Rouphael and Stephens, 2012). There are 13 serogroups of N. 

meningitidis based on different capsular polysaccharide structures, but only six serogroups 

(A, B, C, W-135, X, and Y) cause invasive meningococcal disease (Harrison et al., 2013).  

Meningococci are further classified on the basis of their class 1 outer membrane proteins 

(serosubtype), class 2 or 3 outer membrane proteins (serotype) and lipooligosaccharides 

(immunotype) (Rouphael and Stephens, 2012). Despite effective antibiotics and partially 

effective vaccines, N. meningitidis is the leading cause worldwide of meningitis and rapidly 

fatal sepsis usually in otherwise healthy individuals (Herwald and Egesten, 2011). 

N. meningitidis penetrate host cellular barriers to initiate a local infection that can result in 

systemic spread associating in high-level bacteraemia and development of meningitis (Doran 

et al., 2016). Humans are the only natural host of meningococcus. The bacterium is 

transmitted through respiratory droplets and close contact, with transmission increasing in 

crowded settings such as military camps, universities, and schools (Ali et al., 2016). 
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N. meningitidis has outer and inner membranes surrounding a layer of peptidoglycan. The 

outer membrane contains important virulence factors including LPS and outer membrane 

proteins (OMPs), which function as porins (Figure 1.3). Other OMPs enhance adherence and 

invasion. Pili are also present on meningococci and play a key role in the process of 

adherence, colonization, and subsequent invasion. Recent in vitro work has identified a host 

cell surface receptor critical in the adhesion of pathogenic meningococci to endothelial cells 

(Dwilow and Fanella, 2015). N. meningitidis strains causing invasive disease and isolated 

from sterile sites such as the blood or the CSF are almost always encapsulated as seen in 

Figure 1.3. The capsule is essential for the survival of the organism in the blood as it provides 

resistance to antibody/complement-mediated killing and inhibits phagocytosis (Uria et al., 

2008). The main meningococcal capsular polysaccharides associated with invasive disease 

are composed of sialic acid derivatives and expressing different capsular polysaccharides, 

suggesting that meningococcal clones can switch the type of capsule they express and can 

escape vaccine-induced or natural protective immunity by capsule switching (Rouphael and 

Stephens, 2012). The most successful meningococcal vaccines target its capsular 

polysaccharide, which is expressed on the surface of the bacterium. The bacterial pathogen N. 

meningitidis is able to escape the currently available capsule-based vaccines by undergoing 

capsule switching (Ji et al., 2017). In N. meningitidis, N-acetylneuraminic acid (Neu5Ac) 

allows the meningococcus to become less visible to the host immune system. “Capsule 

switching” occurs due to genetic identity of parts of the capsule loci and is the result of 

horizontal exchange by transformation and recombination in the locus of serogroup specific 

capsule biosynthesis genes (Rouphael and Stephens, 2012).  
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Capsule switching may be an important virulence mechanism of meningococci and other 

encapsulated bacterial pathogens. Capsule switching is another mechanism of escape from 

vaccine-induced or natural protective immunity and a virulence mechanism shown by other 

encapsulated bacterial pathogens (e.g., Streptococcus pneumoniae) (Rouphael and Stephens, 

2012). 

The virulence factors of N. meningitidis include: the polysaccharide capsule: a structure that 

protects the etiologic agent from complement-mediated phagocytosis and lysis (Pizza and 

Rappuoli, 2015). The different sialic acid (serogroups B, C, Y, and W-135) and nonsialic acid 

(serogroup A) capsular polysaccharides expressed by N. meningitidis are major virulence 

factors. Lipopolysaccharide is an endotoxin responsible for toxic shock, meningococcal 

adhesion and activation of the innate immune system (Rouphael and Stephens, 2012). 

Adherence factor: type IV pilus, that binds to CD46 receptors, is a complex protein structure, 

located on the external plasma membrane, which plays an important role in pathogen 

adherence to epithelial and endothelial cells of Homo sapiens (Pizza and Rappuoli, 2015). 

External membrane proteins belonging to the porine class are believed to participate in 

adhesion and invasion of the host cell (Batista et al., 2017).  
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Figure 1.3: Cross-sectional view of the meningococcal cell membrane (Copyright© 2001 

Massachusetts Medical Society. All rights reserved) (Rouphael and Stephens, 2012) 

1.6. Epidemiology  

The disease epidemiology caused by the different serogroups is constantly changing, both 

around the world and in different countries, due to selection pressure following introduction 

of effective vaccines and differences in antimicrobial usage (Nadel and Ninis, 2018). 

Different countries have different strains of the bacteria and of the 13 serogroups (strains) six 

exist having the potential to cause a major epidemic - A, B, C, X, Y and W135 responsible 

for virtually all cases of the disease in humans (Harrison et al., 2013). Meningococcal 

disease can occur as endemic disease with sporadic cases, or epidemics with outbreaks of 

varying size and duration (Dwilow and Fanella, 2015). The disease is widespread around the 

globe and is known for its epidemical potential and high rates of lethality and morbidity 

(Batista et al., 2017).  
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Meningitis epidemics in the African meningitis belt (Figure 1.4) constitute an enormous 

public health burden. Shortages of vaccine to control the new hyper-invasive strain portend a 

catastrophe with potential to affect as many as 34 million people in the region. By raising the 

alert now, World Health Organization (WHO) hopes to close the critical vaccine gap and 

keep this highly feared disease from sweeping across and potentially beyond West Africa 

(WHO, 2018). 

 

Figure 1.4: Geographical distribution and high epidemic risk of meningococcal meningitis 

© Copyright World Health Organization (WHO), 2017. All Rights Reserved. 

Since the introduction of the meningococcal A conjugate vaccine (MenAfriVac®), N. 

meningitidis serogroup A (NmenA) cases have declined and NmenA epidemics have been 

eliminated. However, in parallel, the proportion of cases and epidemics caused by other N. 
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meningitidis serogroups such as W, X, and C has increased (Chow et al., 2016). More 

recently a N. meningitidis serogroup B protein-based vaccine has been developed and its use 

has been shown to limit outbreaks (Toneatto et al., 2017). 

 

Figure 1.5: Countries in Africa with laboratory-confirmed outbreaks or larger clusters of 

cases of MD in the sub-Saharan meningitis belt involving serogroup X meningococci (Xie et 

al., 2013). 

In the meningitis belt of sub-Saharan Africa, seen in Figure 1.5, pandemics of 

meningococcal disease occur regularly and attack rates may exceed 800 cases per 100,000 

populations per year. In some countries in this region, attack rates may be as high as 1 person 

in every 100 (Harrison et al., 2009; Nadel and Ninis, 2018). 

A new hyper-invasive strain of meningococcal meningitis serogroup C is circulating at the 

same time. Thus, an acute shortage of meningitis C-containing vaccine threatens to severely 

limit the ability to minimize the number of persons affected. The risk of imminent large-

scale epidemics is dangerously high. In 2016 alone, the new strain of N. meningitidis 
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serogroup C (NmenC) caused 18,000 cases in Nigeria and Niger. Attack rates can be very 

high (up to 670 cases/100,000), population immunity is low, the strain is already circulating 

in neighbouring countries of the African meningitis belt (Burkina Faso, Mali) and it showed 

a potential to spread outside the belt as observed in Liberia (WHO, 2017). 

In the United States of America (USA), the outbreak rate is less than one case per 100,000 

per year. During the 10-year period of 1998–2007 and according to the Active Bacterial Core 

surveillance (ABCs), the annual incidence decreased by 64.1%, from 0.92 cases per 100,000 

in 1998 to 0.33 cases per 100,000 in 2007 with an average of 0.53 cases per 100,000 per year 

(Rouphael and Stephens, 2012). Infants aged less than one year have the highest incidence of 

MD (5.38 cases per 100,000) and the meningococcal vaccine is recommended in the USA 

for children 9 months to two years, who are at an increased risk of meningococcal disease. 

Since 2012, serogroups C, Y (since the mid-1990s) and B caused most disease in the USA 

and in Europe the attack rates (≥2 per 100,000 per year) have been higher than those 

observed in the USA. In the United Kingdom, rates of 5 per 100,000 per year prompted 

universal vaccination against serogroup C (Rouphael and Stephens, 2012). 

In South Africa (SA) the pattern of MD is characterised by sporadic cases throughout the 

year with occasional small clusters and a definite seasonal increase in winter and early spring 

and outbreaks may especially occur in mines, correctional and detention facilities, academic 

institutions, and displaced communities. Vaccination is not given routinely but may be 

initiated in response to an outbreak (DoH, 2011; du Plessis et al., 2012). The National 

Institute for Communicable Diseases (NICD) data on laboratory-confirmed cases indicate 

high incidences in the Gauteng and the Western Cape provinces. In the Western Cape 

serogroup B tends to be the most common serogroup and in areas of Gauteng and North 

West provinces, outbreaks occur with serogroup A, and to a lesser extent, serogroup C 
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predominating (Von Gottberg et al., 2008; DoH, 2011; Jafri et al., 2013). In South Africa, a 

quadrivalent protein-conjugated meningococcal vaccine (MCV4) is available, and provides 

protection against 75% of disease causing serogroups (Meiring et al., 2017). 

 

Figure 1.6: Incidence of invasive meningococcal disease by serogroup, South Africa, 2003-

2015 (n = 5118) (Extracted from Meiring et al., 2017). 

The serogroups found to cause disease in South Africa (Figure 1.6), with the majority of 

disease caused by serogroup W, followed by serogroup B. Prior to 2005, serogroup A was 

South Africa’s predominant disease causing serogroup but only a few cases have been 

detected over the last 3 years. Meningococcal case-loads are known to undergo alternate 

increases and decreases over periods  of 5 to 10 years, therefore South Africa may possibly 

be on the verge of seeing an increase in meningococcal disease in the near future (Meiring et 

al., 2017).  
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The burden of disease is highest in infants <1 year old, but the case fatality ratio is highest in 

adults and increases with age; in addition, human immunodeficiency virus (HIV) infection is 

a risk factor for contracting MD (Cohen et al., 2010; Gianchecchi et al., 2015). Several cases 

have also been reported in closed groups, such as Hajj pilgrims, adolescents, military and in 

students who live in dormitories (Gianchecchi et al., 2015). The Global Meningococcal 

Initiative (GMI) was established in 2009 to promote the prevention of MD worldwide 

through education, research, international cooperation, and vaccination (Harrison et al., 

2011) and currently underline the need to increase the availability and quality of laboratory 

surveillance in order to understand the true burden of MD (Borrow et al., 2017). 

1.7. Antimicrobial peptides (AMPs) 

Antimicrobial peptides (AMPs) are a diverse class of naturally occurring molecules that are 

produced as a first line of defense by all multicellular organisms ranging from prokaryotes to 

humans (Zhang and Gallo, 2016). Antimicrobial peptides are generally amphipathic, small in 

size (12–50 amino acids) and have at least two positive charges (as arginine and lysine 

residues). These chemical properties allow them to insert into the anionic cell wall and 

phospholipid membranes of microorganisms, disrupting them, resulting in bacterial killing 

(da Silva and Machado, 2012). The net positive charge of peptides is a common property 

(cationicity) of more than two thousand different anuran defense peptides discovered so far. 

Another common property of helix-forming AMPs is amphipathicity. One helix side is 

hydrophilic and charged, whilst the other helix side is hydrophobic and neutral (Juretić et al., 

2013). Antimicrobial peptides are gene-encoded, ribosomally synthesized polypeptides. 

They usually have common characteristics: small peptide size, strongly cationic (pI 8.9–

10.7), heat-stable (100 ◦C, 15 min), no drug fastness and no effect on eukaryotic cells. 

Naturally occurring AMPs have been isolated and characterized from practically all-living 

organisms, ranging from prokaryotes to humans (Li et al., 2012). 
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The discovery of AMPs dates back to 1939, when Dubos extracted an antimicrobial agent 

from a soil Bacillus strain. This extract was demonstrated to protect mice from pneumococci 

infection. In the following year, Hotchkiss and Dubos fractionated this extract and identified 

an AMP which was named gramicidin (Bahar and Ren, 2013). The first reported animal-

originated AMP is defensin, which was isolated from rabbit leukocytes in 1956. In the 

following years, skin secretion of Bombinin maxima and lactoferrin from cow milk were 

both described (Bahar and Ren, 2013).  

Lysozyme was the first reported human antimicrobial protein identified in 1922 from nasal 

mucus by Alexander Fleming. In the 1960s, the rise of multidrug-resistant microbial 

pathogens awakened the interest in AMPs as host defence molecules. Presently, more than 

2,500 AMPs have been deposited in the Antimicrobial Peptide Database (APD) (Wang et al., 

2016). The ability of AMPs to kill bacteria usually depends upon their ability to interact with 

bacterial membranes or cell walls. Generally, AMPs exhibit a net positive charge and a high 

ratio of hydrophobic amino acids, allowing them to selectively bind to negatively charged 

bacterial membranes (Figure 1.7) (Zhang and Gallo, 2016). The growing problem of 

resistance to and overuse of conventional antibiotics has stimulated interest in the 

development of AMPs as the next generation anti-infective agents and as methods to more 

selectively combat pathogens (Zhang and Gallo, 2016). 
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Figure 1.7: Membrane targeting of antimicrobial peptides and basis of their selectivity 

(Adapted from Ebenhan et al., 2014). 

Most AMPs have the prominent function to kill bacteria, which were used in recruitment, 

activation and/or maturation of inflammatory and immune cells and/or tissue repair. Most 

mammalian AMPs are produced by the inflammatory and epithelial cells as part of the host 

response to microbial invasion (Li et al., 2012). Many AMPs have multi-functions such as 

antibacterial, antifungal and anti-cancer activities. In addition to their antimicrobial action, 

AMPs have demonstrated diverse biologic effects, all of which participate in the control of 

infectious and inflammatory diseases, characteristics that make these peptides attractive as 

therapeutic tools. Further researches will advance knowledge within the field and highlight 

the potential of AMPs as therapeutic agents (Li et al., 2012).  
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Bacteria are commonly divided into two families, Gram-positive and Gram-negative, based 

on the differences in cell envelope structure. In Gram-positive bacteria, the cytoplasmic 

membrane is surrounded by a thick peptidoglycan layer, whereas the cytoplasmic membrane 

of Gram-negative bacteria is surrounded by a thin peptidoglycan layer as well as an outer 

membrane (Lin and Weibel, 2016). It is widely accepted that membrane interaction is a key 

factor for the direct antimicrobial activity of AMPs (Mahlapuu et al., 2016). 

Meningococci have evolved effective mechanisms to confer intrinsic and high levels of 

resistance to the action of AMPs (Tzeng and Stephens, 2015). AMP resistance mechanisms 

have been well-characterized in various Gram negative bacteria such as N. meningitidis to 

include (i) efflux pumps that export AMP from the periplasmic and intracellular 

compartments (ii) structural modifications of LPS and lipooligosaccharide to reduce 

interaction with AMPs; (iii) modulation of outer membrane permeability to limit entry and/or 

enhance excretion of AMPs and (iv) proteases that degrade AMPs (Tzeng and Stephens, 

2015). 

The cytoplasmic membranes of both Gram-positive and Gram-negative bacteria are rich in 

the phospholipids phosphatidylglycerol, cardiolipin, and phosphatidylserine, which have 

negatively charged head groups, highly attractive for positively charged AMPs (Ebenhan et 

al., 2014). LPSs in the outer membrane of Gram-negative bacteria provide additional 

electronegative charge to the bacterial surface (Lai and Gallo, 2009; Ebenhan et al., 2014). 

Interactions between AMPs and mammalian cell membrane occur mainly via hydrophobic 

interactions, which are relatively weak compared to the electrostatic interactions taking place 

between AMPs and bacterial membranes. Furthermore, mammalian cell membranes, unlike 

those of microbes, have a high content of cholesterol (Lai and Gallo, 2009). Importantly, 
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regardless of the exact mode of action and target site, the antibacterial activity of AMPs is 

dependent on the interaction with microbial membrane (Mahlapuu et al., 2016).  

 

Figure 1.8: Classification and Structures of AMPs (Porto et al., 2017). 

There are two major classifications for AMPs, the first one being based on the structure and 

the second one on the presence or absence of disulphide bonds (Porto et al., 2017). As seen 

in Figure 1.8, the structure and classification of AMPs: Indolicidin - unstructured peptides; 

magainin II - disulphide-free α-helical peptides; EcAMP1 - cysteine-stabilized α-helical 

peptides; brazzein - mixed α- and β-structure peptides and human defensin 5 - peptides 

composed only of β-strands. Disulphide bridges are represented as ball and stick (Porto et 

al., 2017). 
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1.8. AMPs activity (mechanism) 

The activities of antibacterial peptides are almost universally dependent upon interaction 

with the bacterial cell membrane. The first step in this interaction is the initial attraction 

between the peptide and the target cell, which is thought to occur through electrostatic 

bonding between the cationic peptide and negatively, charged components present on the 

outer bacterial envelope. The peptide can permeabilize the membrane and/or translocate 

across the membrane and into the cytoplasm without causing major membrane disruption 

(Jenssen et al., 2006). 

 

Figure 1.9: Mechanisms of action for AMPs in bacteria (Adapted from Kumar et al., 2018). 
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The models of mechanisms of actions of AMPs can be classified under two broad categories: 

transmembrane pore and non-pore models. The transmembrane pore models can be further 

subdivided into the barrel-stave pore and toroidal pore models. In the barrel stave model, the 

AMPs are initially oriented parallel to the membrane but eventually insert perpendicularly in 

the lipid bilayer (Figure 1.9(a)). This promotes lateral peptide-peptide interactions where 

peptide amphipathic structure (minimum length of ~22 residues (α helical) and/or ~8 

residues (β sheet)), is essential in this pore formation mechanism as the hydrophobic regions 

interact with the membrane lipids (Kumar et al., 2018). 

In the toroidal pore model, the peptides also insert perpendicularly in the lipid bilayer but 

specific peptide-peptide interactions are not present. The peptides induce a local curvature of 

the lipid bilayer with the pores partly formed by peptides and partly by the phospholipid 

head group (Figure 1.9(b)) (Kumar et al., 2018). 

In the “carpet model” (Figure 1.9(c)), accumulation of peptides on the membrane surface 

causes tension in the bilayer that ultimately leads to disruption of the membrane and 

formation of micelles (Jenssen et al., 2006; Mahlapuu et al., 2016; Kumar et al., 2018). The 

final collapse of the membrane bilayer structure into micelles is also known as the detergent-

like model (Figure 1.9(d)) (Kumar et al., 2018). Importantly, regardless of the exact mode of 

action and target site, the antibacterial activity of AMPs is dependent on the interaction with 

microbial membrane (Mahlapuu et al., 2016). 

1.9. Bioinformatics – a search tool for AMPs discovery 

When researchers realized that a gold mine of potentially new antibiotic classes exists in 

insects and amphibians (about 25 years ago), vigorous work started in isolating, 

characterizing and testing natural AMPs in parallel with exploration of chemical 
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modifications needed to make them more active against bacteria and less toxic for human 

cells (Juretić et al., 2013). These methods of isolation and characterization included a peptide 

purification process and chromatography, which was both labour intensive and very costly. 

Various bioinformatic methods have been developed for predicting as well as characterizing 

new AMPs. For example, APD has an embedded algorithm that can predict whether a new 

peptide has the potential to be classified as an antimicrobial based on certain known 

principles (Wang et al., 2011). The computational approach to antimicrobial agent discovery 

and design encompasses genomics, molecular simulation and dynamics, molecular docking, 

structural and/or functional class prediction, and quantitative structure–activity relationships 

(Hammami and Fliss, 2010). Bioinformatic approaches are a valuable tool, since they have 

the advantages of fast sequence identification and low costs, if compared to the peptide 

purification process, allowing the rapid discovery of promising novel antimicrobial agents 

(Porto et al., 2017). 

Despite their diverse origins, the majority of them have common biophysical parameters that 

are probably essential for activity, including small molecular size, cationicity and 

amphipathicity (Hammami and Fliss, 2010). Bioinformatics and wet-lab biology are 

interdependent and complement each other for the purposes of their own progress and for 

progress in antimicrobial discovery in the future (Hammami and Fliss, 2010). Algorithms for 

AMP identification uses tools such as profile Hidden Markov Models (HMMs).  

1.9.1. Model Creation algorithm  

Searching sequence databases is one of the most important applications in computational 

molecular biology (Eddy, 2011). HMMER is a software suite for protein sequence similarity 

searches using probabilistic methods. The HMMER website, provides access to the protein 
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homology search algorithms found in the HMMER software suite ((Finn et al., 2015). The 

goal of the HMMER software is to make advanced probabilistic methods for sequence 

homology detection available in widely useful tools (Finn et al., 2011).  

1.9.2. What are Hidden Markov Models (HMMs)? 

An HMM profile is a probabilistic model of a protein family multiple-sequence alignment, 

which uses position-specific scores to indicate the likelihood of each amino acid occurring in 

each position in the alignment (Eddy, 1998). 

Profile HMMs are statistical models of multiple sequence alignments. They capture position-

specific information about how conserved each column of the alignment is and which 

residues are likely. All the profile methods are more or less statistical descriptions of the 

consensus of a multiple sequence alignment. They use position-specific scores for amino 

acids (or nucleotides) and position specific penalties for opening and extending an insertion 

or deletion. Traditional pairwise alignment for example, FASTA uses position-independent 

scoring parameters. This property of profiles captures important information about the 

degree of conservation at various positions in the multiple alignment and the varying degree 

to which gaps and insertions are permitted (Eddy, 2003; Finn et al., 2015). 

1.9.3. Technical aspects 

HMMs are a class of probabilistic models that are generally applicable to time series or 

linear sequences. An HMM describes a probability distribution over a potentially infinite 

number of sequences. Because a probability distribution must sum to one, the ‘scores’ that an 

HMM assigns to sequences are constrained. The probability of one sequence cannot be 

increased without decreasing the probability of one or more other sequences (Eddy, 1998). 
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Once an HMM is drawn, regardless of its complexity, the same standard dynamic 

programming algorithms can be used for aligning and scoring sequences with the model. The 

development of robust methods for automated sequence classification and annotation is 

imperative. Developing profile HMM methods hopefully can provide a second tier of solid, 

sensitive, statistically based analysis tools that complement current BLAST and FASTA 

analyses. The combination of powerful new HMM software and large sequence alignment 

databases of conserved protein domains should help make this hope a reality (Eddy, 1998).  

Various steps are needed to create a profile HMM (i) Build a profile HMM model by 

aligning sequences (DNA or protein) from an input multiple alignment of many sequences to 

a common profile HMM. (ii) A HMM is then calibrated and empirically determines 

parameters that are used to make searches more sensitive, by calculating more accurate 

expectation value scores (E-values) and searched for a sequence database for matches to an 

HMM. (iii) Search a protein profile HMM against a protein sequence database and align 

sequences to an existing model (Eddy, 2003). 

1.9.4. Examples of HMM use in discovery of a disease 

The use of the HMMER algorithm is deemed an appropriate tool, which enables a more 

sophisticated search for novel peptides through proteome sequence scanning. Several AMPs 

discovered using HMM, have been proven to detect the HIV capsid protein p24 and a 

diagnostic kit has been developed employing these AMPs instead of the classically used 

antibodies (Williams et al., 2016). 

Recognition of highly divergent viral sequences is problematic and may be further 

complicated by the inherently high mutation rates of some viral types, especially RNA 

viruses. In these cases, increased sensitivity may be achieved by leveraging position-specific 
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information during the alignment process. A HMMER3-compatible profile HMMs was 

constructed from all the virally annotated proteins in RefSeq in an automated fashion using a 

custom-built bioinformatic pipeline and then tested the ability of these viral profile HMMs to 

accurately classify sequences as viral or non-viral (Skewes-Cox et al., 2014). 

Modelling Hepatitis C virus (HCV) to identify the virus mutation process is essential to its 

detection and predicting its evolution. El Nahas et al., 2012, presented a model of HCV 

based on profile Hidden Markov Model architecture proposing to use it for detection of HCV 

in blood samples. Moreover, the HCV model will help in learning the mutation model of 

HCV and presents new therapeutic targets as well as genomic information for designing 

vaccine candidates. Tincho et al., in 2016 demonstrated the ability of AMPs to inhibit HIV 

replication by the usage of profile Hidden Markov Model in design and discovery (Tincho et 

al., 2016). 

1.10. Diagnosis for MD 

Gold standard culture diagnostic methods for meningococcal disease are too slow and 

frequently compromised by prior antibiotic treatment resulting in low sensitivity (Moore, 

2018). However, there are challenges with the diagnosis, particularly in the developing world 

with underdeveloped microbiological services and without updated diagnostic methods such 

as polymerase chain reaction (PCR) (Nadel and Ninis, 2018). 

PCR is increasingly used for diagnosis of meningococcal meningitis including serogrouping 

and multilocus sequence typing and improved antigen and nucleic acid detection systems are 

enhancing the accuracy of epidemiological studies (Stephens et al., 2007). PCR-based 

methods require specific laboratory equipment and trained staff and cannot be used as a 

bedside method. PCR may not be sufficiently set to ensure countrywide surveillance, 
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especially in populations living in remote areas. Other tests, such as the currently available 

latex agglutination kits, require trained staff and an unbroken cold chain for storage and 

distribution of the kits (Agnememel et al., 2015). PCR method may not be readily available 

for routine use and it may be more costly. Compared to conventional culture-based methods, 

PCR-based methods are not at risk of loss of viable organisms through early antibiotic 

treatment and sample processing (Vázquez et al., 2016). 

The development and application of sensitive quantitative Polymerase Chain Reaction 

(qPCR) assays has significantly improved laboratory detection rates and has reduced the time 

required to confirm invasive meningococcal disease. Currently, qPCR remains the preserve 

of a limited number of centralised reference laboratories who possess the necessary 

infrastructure, equipment and technical skills to routinely deliver an effective service. The 

time required to transport samples to centralised laboratories ultimately means that molecular 

detection of meningococci has little or no impact on patient management, whereby such 

testing merely confirms an initial clinical diagnosis and provides epidemiological data on 

circulating strains (Moore, 2018). 

If diagnostic decisions are driven by clinical observations derived from hospital case-series, 

rather than the course of symptoms before admission, a diagnostic delay is inevitable. Rapid 

identification and treatment of disease complications such as shock, raised intracranial 

pressure and seizures, are vitally important to improve outcome (Nadel and Ninis,  2018). 

The initial non-specific manifestations mimic the symptoms of common viral infections and 

may create a diagnostic conundrum for the examining clinician. Early recognition and timely 

management of meningococcal septicaemia has reduced the mortality rate from 40% in the 

late 90s to 5–20% (Pace and Pollard, 2012).  
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Early diagnosis of MD is crucial to prevent further complications and improve the overall 

outcome for the affected individual thus early detection may further reduce individual 

morbidity and morbidity of MD. MD can lead to death in a healthy person within 6-12 hours 

of the first appearance of symptoms. The clinical diagnosis of meningococcal meningitis 

relies on the recognition of fever, rash, meningeal signs, and altered mental status, and is 

confirmed by pleocytosis, gram stain with or without culture of Cerebral Spinal Fluid (CSF), 

or blood or skin lesions.  However, at early presentation, meningococcal disease and in 

particular, meningitis can have very non-specific signs and symptoms. The purpuric rash 

which aids diagnosis may be present early but often develops as the child is deteriorating 

(Stephens et al., 2007; Moore, 2018). The initial laboratory screening of a potential invasive 

MD case can incorporate a number of widely available and well-established laboratory 

evaluations; samples may be taken from CSF, peripheral blood or skin lesions or, when 

symptoms indicate, from synovial, pleural or pericardial fluid (Vázquez et al., 2016). 

N. meningitidis are aerobic agents, catalase-positive, oxidizing glucose and maltose with acid 

production and without gas formation. They grow well in chocolate and blood agar at 

temperatures between 35 0C and 37 0C, requiring an atmosphere of 5 %–10 % carbon dioxide 

(Rouphael and Stephens, 2012). Cerebral spinal fluid examination and culture lumbar 

puncture should be performed for suspected meningitis where no contraindications exist. The 

CSF should be kept as close to body temperature as possible whilst awaiting transport. The 

meningococcus is highly susceptible to heat, cold and direct sunlight. Tests requested on the 

CSF include: Protein and glucose determination (blood glucose should also be done), Direct 

microscopy (cell count and Gram stain) and culture and antibiotic susceptibility. There has 

been a renewal of interest in laboratory markers to help aid the diagnostic process and to help 

ensure that antibiotics are given at the earliest possible time (DoH, 2011).  

http://etd.uwc.ac.za/



 

29 
 

A simple, rapid diagnostic assay that could assist with decision making in antibiotic 

prescription when MD is possibly present would be extremely helpful. Identification of N. 

meningitidis can be made on the basis of a cytological examination of the CSF, specific 

colony morphology on blood and/or chocolate agar, staining properties on a Gram stain, or 

by detection of specific antigens in the CSF by a latex agglutination test or using a rapid 

diagnostic test (RDT)  (Organization, 2011). Spinal fluid cultures are positive in up to 90 % 

of cases later diagnosed as meningitis and blood cultures have only been reported to be 

positive in 40–75 % of cases suspicious for meningococcemia (Pollard and Finn, 2012). 

The Pasteur Institute in Paris and the Centre deRecherche Me dicale et Sanitaire (CERMES) 

in Niamey, Niger developed a new dipstick RDT for the diagnosis of N. meningitidis 

serogroups A, W135, C and Y without prior sample preparation. This test exists as a duplex 

of two dipsticks (RDT1 and RDT2) in which RDT1 detects N. meningitidis serogroups A 

and W135/Y, while RDT2 detects N. meningitidis serogroups C and Y. An algorithm based 

on the results of the two dipsticks thus allows the detection of N. meningitidis serogroups A, 

C, W135 or Y (Rose et al., 2009). The Pastorex test also carries certain constraints such as, 

restrictions of test reagents temperatures which must be kept between +4°C and +8°C. 

Manufacturer recommends on sample handling such as heating and centrifuging prior to 

using the test must be adhered to (Rose et al., 2009). 

In a study by Uadiale et al., 2016, they used the Pastorex to demonstrate the good 

performance in detecting N. meningitidis serogroup C under field conditions, although they 

detected a limitation whereby the prepositioning Pastorex at peripheral health facilities 

during non-epidemic periods was constrained by a short shelf-life of 1 month after the kit is 

opened. Thus there is need for development of RDTs that are cheaper and with less 

challenging requirements for storage and usage (Uadiale et al., 2016). 
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The dipstick RDT is better at correctly ruling out disease (as it has a lower false negative 

rate), while the Pastorex H test is better at confirming disease (having a lower false positive 

rate). However, the performance of the dipstick RDT on diluted whole blood samples was 

not satisfactory, as specificity was very low (57%). The sensitivity of this test on diluted 

whole blood, however, was similar to that of the Pastorex H test conducted on unprepared 

CSF (73% vs 69%) (Rose et al., 2009). Latex agglutination testing to identify meningococcal 

antigen from sterile fluids were more widely used but its limitations included poor overall 

sensitivity and specificity, poor sensitivity for certain serogroups and had the inability to 

identify certain serogroups thus preventing it as being a routine test (Dwilow and Fanella, 

2015).  

Test kits are designed to be used by non-specialized staff with minimal training in basic 

facilities. Thus far, tests have been developed for capsular groups A, C, W, Y (Chanteau et 

al., 2006) and X (Agnememel et al., 2015).  

Recently, the cryptococcal antigen lateral flow assay (CrAg LFA) was included as a resource 

for diagnosis. Unlike other tests, the CrAg LFA is a dipstick immunochromatographic assay, 

in a format similar to the home pregnancy test, and requires little or no lab infrastructure. 

This test meets all of the WHO ASSURED (Affordable, Sensitive, Specific, User friendly, 

Rapid/robust, Equipment-free, and Delivered) criteria. CrAg LFA in serum, plasma, whole 

blood, or cerebrospinal fluid is useful for the diagnosis of disease caused by Cryptococcus 

species (Vidal and Boulware, 2015). 

Lateral flow assays will likely become more commonplace in all of infectious disease 

diagnostics, including meningitis. An unresolved question is the degree to which new 

diagnostics will become available in low-income countries (Bahr and Boulware, 2014). 
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In a recent study by Williams et al., 2015, they reported 100% agreement between whole 

blood, serum and plasma LFA results demonstrated that fingerstick CrAg is a reliable 

bedside diagnostic test.  

1.11. Biomarkers currently used for diagnosis  

The inflammatory response elicited by N. meningitidis is considered to be the major factor 

responsible for the outcome of MD (Beran et al., 2009). Cytokines and chemokines that were 

concentrated in the CSF were also detectable in the serum in the majority of MD patients. It 

is well known that IL-6 and IL-8 can be used in the laboratory diagnostics of bacterial 

meningitis and sepsis (Kleine et al., 2003).  

The findings of Beran et al., 2009 also indicated the potential use of IL-1ra, MCP-1, and 

MIP-1β for the laboratory diagnostics of sepsis, as well as bacterial meningitis  tests are 

more laborious, expensive, time consuming, and less sensitive to distinguish bacterial 

meningitis treated with antibiotics from bacterial meningitis. As specific tests, e.g. bacterial 

culture and Gram stains (both are time consuming in performance), and latex agglutination, 

exhibited 70–90% sensitivity; no statistical CSF test proved to be fully reliable in 

distinguishing bacterial from viral meningitis thus far. Therefore, the results available with 

old classical markers of the current routine, e.g. lactate, leukocyte and granulocyte counts, 

Blood Brain Barrier (BBB) markers, glucose, must be reviewed in the context of clinical 

findings to diagnose bacterial meningitis reliably. Combinations of the CSF lactate test with 

CSF IL-6 test or with CSF leukocyte counts >800 M/l improved the lactate test. Moreover, 

the test with both the classical markers also proved to distinguish BM from intracerebral 

bleedings, stroke, Central Nervous System (CNS) tumours, and seizures as well (Beran et al., 

2009). 
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C-reactive protein (CRP) is one of the acute phase reactants produced by hepatocytes in 

response to inflammation. Its production is stimulated by IL-1 and IL-6 released from 

macrophages after activation by tissue damage, infection (bacterial, viral, fungal) or 

inflammation. An increase in CRP concentration in response to generalized inflammation 

occurs gradually during the first 12 h, reaching a maximum level at 48 to 72 h. Serum 

concentration of CRP higher than 80 mg/dl is a useful marker of bacterial etiology of 

meningitis (Gowin et al., 2016). The tests currently available are either non-specific, e.g. 

determination of leukocyte count and CRP, or the results are not available soon enough to 

influence early treatment, e.g. PCR and blood culture. The level of procalcitonin in serum is 

increasingly being considered as a possible diagnostic tool for bacterial infections. The 

serum level of procalcitonin, which increases rapidly after endotoxin challenge, has been 

considered to be a relatively bacterio-specific marker with a high sensitivity for systemic 

bacterial sepsis and meningitis (Mills et al., 2006). 

1.12. Conclusion  

One of the problems facing clinicians is that the spectrum of MD can present with non-

specific signs, particularly in the early stages or in young children. Finding mechanisms to 

distinguish those with minor illnesses from those with more serious and potentially life 

threatening disease such as meningitis is crucial. Patients with these diseases can also 

deteriorate quickly. A major problem for MD is the diagnosis difficulties and experts 

conclude that with an early intervention the patient can survive. Recently there has been a 

renewal of interest in laboratory markers to help aid the diagnostic process and to help 

ensure that antibiotics are given at the earliest possible time. 

Current targeting conventional markers (CRP, white blood cell, tumour necrosis factor-α, 

ILs, etc.) are non-specific for diagnosing sepsis. Procalcitonin, a member of the calcitonin 
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super family could be a critical tool for the diagnosis of sepsis. But to distinguish between 

bacterial versus viral infections, procalcitonin alone may not be effective (Vijayan et al., 

2017). Diagnosis relies on identifying typical features, which are not present in every case, 

particularly in the early stages. Procalcitonin appears to be better than white cell count and 

CRP, but still lacks sufficient accuracy to predict this infection (Bourke et al., 2010). 

Antimicrobial peptides play an important role as a host defense against microbial pathogens 

and are key components of the human innate immune response. It is therefore not surprising 

that meningococci have evolved effective mechanisms to confer intrinsic and high levels of 

resistance to the action of antibiotics and thus the importance of AMPs as new agents for 

detection and even so as therapeutics (Tzeng and Stephens, 2015). 

Combining experimental data with computational biology will ultimately enable better 

understanding of antimicrobial agent–target interaction and the ability to manipulate 

biological systems more efficiently (Hammami and Fliss, 2010). 

Over the past few decades, natural AMPs have been an active area of research and have 

shown a lowered likelihood for bacteria to form resistance compared to many conventional 

drugs (Veltri et al., 2018). 

Hoyos-Nogués et al., 2018 has shown that AMPs are also capable of achieving good levels 

of specificity, discriminating between pathogenic and non-pathogenic bacteria or between 

Gram-positive and Gram-negative species, by using biosensors for the early detection of 

bacterial infections. 

In another study by Mannoor et al., 2010, they reported a simulated “water-sampling” chip, 

consisting of a microfluidic flow cell integrated onto the hybrid sensor, which demonstrates 

real-time on-chip monitoring of the interaction of E. coli cells with the antimicrobial 
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peptides, thereby opening exciting avenues in both fundamental studies of the interactions of 

bacteria with antimicrobial peptides, as well as the practical use of these devices as portable 

pathogen detectors. Real-time sensing results demonstrate the capability of the relatively 

simple impedance-based transduction architecture to directly detect bacteria.  

A new much speedier method to rapidly identify N. meningitidis is required due to the urgent 

medical attention and deteriotion of the patient with MD. Early diagnosis and treatment may 

also help to halt the spread of the infection during epidemics and this can be done if 

diagnostic test are point-of-care and available at hospital beds. 

Therefore an introduction of AMPs to attach to N. meningitidis, would provide a solution to 

this current diagnostic problem. This in silico research should potentially identify AMPs 

which are able to bind to the bacteria and detect or inhibit proliferation. Thus based on these 

predictions it would likely improve alternative approaches to diagnosis of MD.  

The AMPs will provide a new way of diagnosing patients with MD. The AMPs will not be 

used as a therapeutic method since the bacterium has resistance mechanisms against the 

action of AMPs. Since the AMPs has to physically interact with the bacteria to exert its 

activity, this interaction can be exploited for diagnostic purposes with the use of a reporter 

molecule such as gold nano-particles as has been demonstrated by Williams et al., 2016, 

where AMPs where employed for the detection of HIV. 

1.13. Aims  

The aim of this research work is to identify novel AMPs with activity against N. meningitidis 

for diagnosis of MD using in silico model creation.  
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The overall aim will be reached through these objectives: 

Objectives  

Objective 1:  Collect all AMPs with antibacterial properties within the various databases and 

verify that they are experimentally validated as having activity against N. meningitidis. Cross 

reference between databases to create a final list of anti-N. meningitidis AMPs. 

Objective 2: Extract unique identifiers and amino acid sequences of the aforementioned 

AMPs to create a predictive model as to identify novel AMPs against the bacteria N. 

meningitidis.  

Objective 3: Construct Hidden Markov Models (HMM) models to identify the novel 

antimicrobial peptides from various genome sequences. 

Objective 4: Identify N. meningitidis receptors through literature mining to which the newly 

identified anti-N. meningitidis AMPs will interact with. 

Objective 5: Structural modelling of these AMPs as well as the N. meningitidis receptors 

using I-TASSER. 

Objective 6: Site-directed mutagenesis (SDM) of amino acids within these AMPs to increase 

their binding affinity to the N. meningitidis receptors. 

Objective 7: Interaction studies of these AMPs to the N. meningitidis receptors using 

PatchDock. 
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Chapter 2 

Generation of a putative AMP list for detection of N. meningitidis using a bioinformatics 

approach 

2.1. Introduction 

MD is of major importance in public health due to its global distribution, epidemic potential, 

predominant disease burden in children and adolescents, fulminant clinical manifestations 

and high rates of lethality and morbidity (Pace and Pollard, 2012; Batista et al., 2017). MD is 

an acute infection with the two common presentations of meningococcal infection being 

meningococcal meningitis and meningococcemia (sepsis) (Pace and Pollard, 2012).  

Of the diagnostic markers introduced into clinical practice, procalcitonin appears to have the 

best attributes, although not specific for MD. The disease is hard to diagnose because initial 

symptoms are similar to those of influenza. Isolating and identifying this pathogen using 

conventional biochemical methods require 48-72 h. While simple PCR-based tests that are 

specific for the genus Neisseria and the species N. meningitidis have been developed (Lansac 

et al., 2000). Rapid, accurate diagnosis is essential for optimal management of patients. It is 

becoming increasingly difficult to confirm the diagnosis of meningococcal infection by 

conventional microscopy and culturing techniques (Bryant et al., 2004). Other limitations of 

conventional diagnostic methods include the delay before cultures become positive and the 

poor sensitivity and specificity of rapid antigen and antibody tests (Bryant et al., 2004). 

AMPs are molecules small in size (12–50 amino acids) that provide protection against 

environmental pathogens, acting against a large number of microorganisms, including 

bacteria, fungi, yeast and virus. Their production is a major component of innate immunity 

against infection. In the human respiratory tract, the only known reservoir of N. meningitidis, 

meningococci are exposed to human endogenous AMPs (Tzeng and Stephens, 2015). AMPs 
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are gene-encoded, ribosomally synthesized polypeptides with common characteristics: 

strongly cationic (Isoelectric point (pI) 8.9–10.7), heat-stable (100 ◦C, 15 min), no drug 

fastness and no effect on eukaryotic cells. Naturally occurring AMPs have been isolated and 

characterized from practically all-living organisms, ranging from prokaryotes to humans (Li 

et al., 2012). 

The growing problem of resistance to and overuse of conventional antibiotics has stimulated 

interest in the development of AMPs as the next generation anti infectives and as methods to 

more selectively combat pathogens (Zhang and Gallo, 2016). AMPs have a myriad of 

potential uses in the diagnosis and treatment of complex diseases. AMPs can be exploited for 

the generation of novel antibiotics, as biomarkers in the diagnosis of inflammatory 

conditions, for the manipulation of the inflammatory process, wound healing, autoimmunity 

and in the combat of tumour cells (da Silva and Machado, 2012). 

In this study, an in silico approach was sought to identify potential AMPs as identifiers of N. 

meningitidis receptors in order to develop a diagnostic device with high sensitivity, efficacy 

and accuracy and with lower sample requirement and minimal result interpretation for N. 

meningitidis diagnostics. 

The AMPs identified will not be used as a therapeutic method since the bacterium has 

resistance mechanisms against the action of AMPs. Since the AMPs has to physically interact 

with the bacteria to exert its activity, this interaction can be exploited for diagnostic purposes 

with the use of a reporter molecule such as gold nano-particles as has been demonstrated by 

Williams et al., 2016, where AMPs were employed for the identification of HIV. 

2.2. Computational approaches used for the discovery of putative AMPs 

The organization of data into a unified resource (databases) ensures data quality and integrity 

and brings considerable benefits in terms of synergy and efficiency; however, there are 
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several antimicrobial databases of very similar or identical scope that act in competition 

rather than in a network. Cross-linking between these would make their use more efficient, 

and researchers would benefit from such synergy (Hammami and Fliss, 2010). The large 

variety of AMP databases developed to date is characterized by a substantial overlap of data 

and similarity of sequences with the majority of databases having their own set of unique 

sequences (Aguilera-Mendoza et al., 2015). Hence the reason and conclusion to include more 

than one database in this research project for searching and extracting AMPs. 

The identification of AMPs from databases has gained attention as a branch of structural 

genomics and bioinformatics and several approaches have been applied for the identification 

of AMPs from databases, including local alignments, activity prediction by machine learning 

methods and also three-dimensional (3D) structure predictions (see Figure 2.1.). For 

biotechnology, these approaches are a valuable tool, since they have the advantages of fast 

sequence identification and low costs, if compared to the peptide purification process, 

allowing the rapid discovery of promising novel antimicrobial agents (Porto et al., 2017).  

 

Figure 2.1: Current methods for mining databases for generating knowledge and useful data 

for sequence annotation  (Porto et al., 2017).  

The classic method for discovering natural AMPs is to isolate them from a natural source 

chromatographically and in terms of biological source, amino acid sequence, 3D structure 
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and antimicrobial activity, this method shaped the current views on AMPs. Identification via 

chromatography is demanding and costly and thus a need to discover AMPs by different 

approaches: computer-based prediction and design (Wang, 2017).  

2.2.1. Data mining 

Data mining (DM) refers to extracting or “mining” knowledge from large amounts of data by 

finding new interesting patterns and relationships within this data. It is defined as “the 

process of discovering meaningful new correlations, patterns and trends by digging into large 

amounts of data stored in warehouses” and is also sometimes referred to as Knowledge 

Discovery in Databases (KDD). DM approaches seem ideally suited for bioinformatics, since 

it is data-rich (Raza, 2012) and the bioinformatics principle approach is to compare and group 

the data according to biologically meaningful similarities and then, based on this, analysing 

one type of data to infer and understand the observations for another type of data (Kamble 

and Khairkar, 2017).  DM employs a wide spectrum of well-established statistical and 

machine learning techniques such as neural networks and other advanced algorithms and 

computational techniques to derive hidden meaningful correlations, patterns and trends from 

various biological databases (Ioannou et al., 2014). 

2.2.2. Biological databases  

Biological databases (BD) are libraries of life sciences information, collected from scientific 

experiments, published literature, high-throughput experiment technology, and computational 

analysis (Attwood et al., 2011). BD offer scientists the opportunity to access a wide variety of 

biologically relevant data, including the genomic sequences of an increasingly broad range of 

organisms (Baxevanis and Bateman, 2015). The aim of BD is to facilitate data retrieval and 

visualization as well as provide web application programming interfaces (APIs) for 

computers to exchange and integrate data from various database resources in an automated 
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manner, which is a fundamentally essential task in bioinformatics. BD integrate enormous 

amounts of omics data, serving as crucially important resources and becoming increasingly 

indispensable for scientists from wet-lab biologists to in silico bioinformaticians (Zou et al., 

2015).  

Several databases hosting AMPs were employed within this study, which is summarized in 

Table 2.1 and fully discussed in the subsequent paragraphs. 

2.2.2.1. Antimicrobial Peptide Database (APD) 

In the past, extensive work has been done in the field of antibacterial peptides, describing 

their identification, characterization and mechanism of action. The information about these 

peptides has been collected and compiled in databases on AMPs with APD being one such 

database and consists of detailed information for AMPs (Lata et al., 2007). 

The Antimicrobial Peptide Database (APD) (http://aps.unmc.edu/AP/) web-accessible 

program provides interactive interfaces for peptide query, prediction and design.  It also 

provides statistical data for a select group of, or all the peptides in the database.  Peptide 

information can be searched using keywords such as peptide name, ID, length, net charge, 

hydrophobic percentage, key residue,   unique   sequence   motif,   structure   and activity 

(Wang and Wang, 2004). The initial APD was established in 2003 and a brief description of 

the database was published in an issue of Nucleic Acid Research in 2004 in order to promote 

the research, education and information retrieval and knowledge discovery in the 

antimicrobial peptide field. The new version which has been regularly updated and further 

expanded from APD2 (2009 version) into APD3, currently focuses on natural antimicrobial 

peptides (AMPs) with defined sequence and activity (Wang et al., 2015). 
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Table 2.1: The databases used for extraction of AMPs with activity against N. meningitidis 

Database 

Size (Sept 

2018) Site URL Description Reference 

APD 3013 AMPs http://aps.unmc.edu/AP/ Stores AMPs from all biological sources. Manually collected  

Wang and Wang 

2004;  

      and curated from the literature (via PubMed, PDB, Google and Wang et al., 2008;  

      Swiss-Prot), including some synthetic peptides. Wang et al., 2016 

CAMP  8164 AMPs http://www.bicnirrh.res.in/  Sequences and structural information of AMPs were retrieved Thomas et al., 2009;  

    antimicrobial  from protein databases such as NCBI, UniProt and PDB. CAMP is  Waghu et al., 2014;  

     sectioned into sequence, structure and patent databases.  Waghu et al., 2015 

      Experimentally validated peptides and predicted ones.   

DRAMP 17629 AMPs http://dramp.cpu-bioinfor. 

This database is divided into three datasets: general, patent, and 

clinical  Fan et al., 2016;  

      AMPs. It harbours diverse annotations, including sequence, structure, Liu et al., 2017  

    org physicochemical, patent, and clinical information.   

DBAASP 

11336 

peptides http://dbaasp.org  It stores peptides data from PubMed, concerning AMPs of different  

Gogoladze et al., 

2014;  

      routes of synthesis (ribosomal, nonribosomal and synthetic)  

      and level of complexity (monomers, dimers and  

Pirtskhalava et al., 

2015 

      covalent-linked peptides).   
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The APD enables effective search, prediction, and design of peptides with antibacterial, 

antiviral, antifungal, antiparasitic, insecticidal, spermicidal, anticancer activities, chemotactic, 

immune modulation, or antioxidative properties and the upgraded APD makes predictions 

based on the database-defined parameter space and provides a list of the sequences most 

similar to natural AMPs. Several newly annotated activity types are unique in this database, 

making the APD most comprehensive in terms of activity annotation (Wang, 2015). 

It is a comprehensive tool for discovery timeline, naming (nomenclature), classification, 

information search, statistical analysis, prediction and design of AMPs covering all six life 

kingdoms (bacteria, archaea, protists, fungi, plants, and animals). The peptide data stored in 

APD were extracted from the literature (PubMed, PDB, Google, and Swiss-Prot) manually in 

over a decade. The current AMP database contains over 2,950 antimicrobial peptides and 

proteins from living prokaryotic and eukaryotic organisms such as bacteria, archaea, protists, 

fungi, plants and animal host defense peptides.  

The APD3 has set up criteria for peptide registration. This database currently focuses on (i) 

natural AMPs with (ii) a known amino acid sequence, (iii) biological activity and (iv) a size 

less than 100 residues although APD also includes some small yet important antimicrobial 

proteins >100 aa (Wang et al., 2015). A few synthetic peptides of interest (~2% of the 

entries) are collected as separate entries and additional synthetic peptides derived from 

natural AMPs are annotated in their parent entries, however these derivatives are not of 

interest for the present research. An example of detailed information of an AMP search result 

from the database is shown in Table 2.2. 
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Table 2.2: An example of detailed information of an antimicrobial peptide search 

  Antimicrobial Peptide AP00016   

  APD ID AP00016   

  Name/Class Aurein 2.3 (XXA, UCLL1c; frog, amphibians, animals)   

  Source 
Southern bell frog Litoriaaureaor Litoriaraniformis, 

Australia 
  

  Sequence GLFDIVKKVVGAIGSL   

  Length 16   

  Net charge 2   

  
Hydrophobic 

residue% 
56%   

  Boman Index -1.01 kcal/mol   

  3D Structure Helix    

  Method NMR   

  SwissProt ID SwissProt ID: P82390     

  Activity anti-Gram+ & Gram-, antifungal, Cancer cells   

  Crucial residues 
Gain anticancer activity if change I13 to F (change to 

P82392) 
  

  Additional info 

Active against L. lactis (MIC 25 ug/ml) (provided by 

Chunfeng Wang). C-terminal NH2. Solution NMR in 

25% TFE established a helical structure (Biophys. J 

2007; 92: 2854). Found in multiple species. Updated 

9/2017.  

  

        

  

Title The antibiotic and anticancer active aurein peptides from 

the australian bell frogs Litoriaaurea and 

Litoriaraniformis the solution structure of aurein 1.2. 

  

  
Author Rozek T, Wegener KL, Bowie JH, Olver IN, Carver JA, 

Wallace JC, Tyler MJ.2000 
  

  Reference Eur J Biochem. 2000 Sep; 267(17):5330-41. PubMed.   

        
 

 

2.2.2.2. Collection of Anti-Microbial Peptides (CAMP) 

Collection of Anti-Microbial Peptides (CAMP) is a free online database that has been 

developed for advancement of the present understanding on antimicrobial peptides. CAMP is 

freely available at http://www.bicnirrh.res.in/antimicrobial (Thomas et al., 2009). 

It is manually curated and the sequences are divided into experimentally validated (patents 

and non-patents) and predicted datasets based on their reference literature. Information like 
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source organism, activity (minimum inhibitory concentration values), reference literature, 

target and non-target organisms of AMPs are captured in the database (Thomas et al., 2009). 

Sequence and structure analysis tools have been incorporated to enhance the usefulness of the 

database (Waghu et al., 2014). 

CAMPR3 is an update to the existing CAMP database available online at 

www.camp3.bicnirrh.res.in. CAMPR3 presently holds 10247 sequences, 757 structures and 

114 family-specific signatures of AMPs. Users can avail the sequence optimization algorithm 

for rational design of AMPs embedded within the database (Waghu et al., 2015). Links to 

UniProtKB, PDB, PubMed and other databases dedicated to AMPs are also made available 

for the benefit of the users. The data in CAMP is organized into 17 fields namely; CAMP ID, 

sequence, sequence length, source, taxonomy, activity, Gram nature, target organisms, 

haemolytic activity, PubMed ID, protein name, protein definition, GenInfo ID, Swiss-Prot, 

PDB accession numbers, comments and the dataset type (experimentally 

validated/patents/predicted) as seen in Table 2.3. Based on their activity, peptides are 

classified as ‘antibacterial’, ‘antifungal’, ‘antiviral’ or ‘antiparasitic’ (Thomas et al., 2009). 

 

 

 

 

 

 

 

 

http://etd.uwc.ac.za/



 

45 
 

Table 2.3: Various fields of data in the CAMP database search 

CAMPSQ983/APD00193/DRAMP03565 

Title : Hepcidin-25 / LEAP 

Source : Homo sapiens [Human] 

Length : 25 

Activity : Antibacterial, Antifungal 

Gram 

Nature : 
Gram+ve, Gram-ve 

Target : E.coli ML35p, S. epidermidis, S. aureus, C. albicans, group B Streptococcus , 

Neisseria cinerea , Saccharomyces cerevisiae ( MIC = 50 mg/ml) , B.subtilis 

( MIC = 40 mg/ml ) 

Validated : Experimentally Validated 

Pfam : PF06446 : ( Hepcidin ) 

InterPro : IPR010500 : Hepcidin. 

AMP 

Family : 
Hepcidin 

Gene 

Ontology : 
GO ID Ontology Definition  

GO:0005576 
Cellular 

Component 
Extracellular region  

 

Sequence: DTHFPICIFCCGCCHRSKCGMCCKT 

 

2.2.2.3. Data Repository of Antimicrobial Peptides (DRAMP) 

DRAMP (Data Repository of AntiMicrobial Peptides) is an open-access web server tool with 

detailed annotations of AMPs, especially detailed antimicrobial activity data and structure 

and sequence information including physicochemical information, patent information, 
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clinical information and reference information. This database is divided into three datasets: 

general, patent, and clinical AMPs (Fan et al., 2016).  

DRAMP is a manually curated database and can be accessed freely at http://dramp.cpu-

bioinfor.org a comprehensive user-friendly data repository of antimicrobial peptides, which 

holds 17349 antimicrobial sequences, including 4571 general AMPs, 12704 patented 

sequences and 74 peptides in drug development. Annotations also include accession numbers 

cross linking to Pubmed, Swiss-prot and Protein Data Bank (PDB) (Fan et al., 2016). The 

DRAMP ID of an entry in query or browse results gives a detailed information page. This 

page presents all annotations for the entry which are divided into general information, activity 

information, structure information, physicochemical information, comment information and 

literature information (Fan et al., 2016).  

2.2.2.4. Database of Antimicrobial Activity and Structure of Peptides (DBAASP) 

The Database of Antimicrobial Activity and Structure of Peptides (DBAASP) is a freely 

accessible at http://dbaasp.org which contains information on AMPs of different origins 

(ribosomal, non-ribosomal and synthetic) and complexity (monomers, dimers and two-

peptides). DBAASP is manually curated and is a depository of information on those peptides 

for which antimicrobial activity against particular targets has been evaluated experimentally. 

The database provides:   1) Full information on the chemical structure of peptides: complete 

information regarding post-translational and amino (N)/carboxyl (C) termini modification of 

amino acids. 2) Information about peptide antimicrobial activities and experimental 

conditions at which activities were estimated. 3) Information about peptide 

haemolytic/cytotoxic activities. 4)   Information about the target object of the cell (Gogoladze 

et al., 2014). In the database, information on the peptides’ activities against more than 4200 

different organisms (bacteria, fungi, some parasites, viruses and cancer cells) can be found. 
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Currently, DBAASP v.2 serves as a repository of the information necessary for the study of 

structure/activity relationships. DBAASP v.2 allows for the collection of statistically 

significant sets of peptides having experimentally validated activities against particular 

pathogens (Pirtskhalava et al., 2015).  

A new version of the database reports chemical structures and empirically-determined 

activities (MICs, IC50, etc.) against more than 4200 specific target microbes for more than 

2000 ribosomal, 80 non-ribosomal and 5700 synthetic peptides. The main difference between 

DBAASP and other AMP databases is its ability to provide the data required to perform 

structure/activity studies (i.e. comprehensive data on chemical and 3D structures along with 

susceptibilities of specific pathogenic agents) (Pirtskhalava et al., 2015). Full information on 

a peptide is presented in a peptide card seen in Table 2.4.  
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Table 2.4: DBAASP peptide is presented in a peptide card 
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2.2.3. Biomedical text mining 

The recent biomedical advances that have prevented or altered the course of many diseases 

are undoubtedly valued by all. Progress in biomedicine is attributable to advances in the 

understanding of disease mechanisms and the societal and commercial value of researching 

these mechanisms as well as the approaches for the prevention and cure of diseases. 

Biomedical text mining holds the promise of and in some cases delivers a reduction in cost 

and an acceleration of discovery (Simpson and Demner-Fushman, 2012). Due to the 

exponential growth of the biomedical literature, text mining tools have become crucial to 

process all available information contained in literature databases such as PubMed 

(http://www.ncbi.nlm.nih.gov/pubmed/) and Google Scholar (https://scholar.google.co.za/) 

which are accessed for free. The keyword search with PubMed offers optimal update 

frequency and includes online early articles; other databases rates articles by number of 

citations, as an index of importance. PubMed remains an optimal tool in biomedical 

electronic searches (Falagas et al., 2008) and is the most widely used biomedical 

bibliographic text database (Ioannou et al., 2014). Google Scholar, as for the Web in general, 

can help in the retrieval of even the most obscure information but, its use is marred by 

inadequate, less often updated, citation information (Falagas et al., 2008). Information 

retrieval (IR) is the activity of finding documents that answer information needed and IR 

systems (search engines) such as Google and PubMed being designed specifically to query 

the databases of biomedical publications (Ananiadou et al., 2006). 

2.3. Computational approaches for the prediction of novel AMPs 

2.3.1. Hidden Markov Models (HMM)  

Algorithms of sequence alignment are the key instruments for computer-assisted studies of 

biopolymers e.g. a protein or DNA. Sequence alignment is the main method for comparing 
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biological sequences. Local alignments identify regions of similarity within long sequences 

that are often widely divergent overall. Local alignments are often preferable, but can be 

more difficult to calculate because of the additional challenge of identifying the regions of 

similarity (Polyanovsky et al., 2011). A variety of computational algorithms have been 

applied to the sequence alignment problem. These also include probabilistic methods 

designed for large-scale database searches. Sequence alignments are stored in a wide variety 

of text-based file formats and most web-based tools allow a limited number of input and 

output formats, such as FASTA format and GenBank format (Porto et al., 2017). 

A Multiple sequence alignment (MSA) is a sequence alignment of three or more biological 

sequences, generally protein, DNA or RNA to identify regions of similarity that may be a 

consequence of functional, structural or evolutionary relationships between the sequences. 

High sequence similarity between molecules usually implies significant structural and 

functional similarities in an alignment. Computational algorithms are used to produce and 

analyse the alignments. MSAs require more sophisticated methodologies because they are 

more computationally complex (Mulia et al., 2012).  

HMMER is used for searching sequence databases for sequence homologs and for making 

sequence alignments. It implements methods using probabilistic models called profile hidden 

Markov models (profile HMMs). HMMER is designed to detect remote homologs as 

sensitively as possible, relying on the strength of its underlying probability models. 

Modelling biological sequences such as proteins and DNA sequences consisting of smaller 

substructures with different functions and different functional regions often displays distinct 

statistical properties (Yoon, 2009). HMMs have been shown to be very effective in 

representing biological sequences, and have become increasingly popular in computational 

molecular biology with many state-of-the-art sequence analysis algorithms being built on 

HMMs (Yoon, 2009). 
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The HMMER software is designed to run on UNIX platforms Linux and Apple Macintosh. 

All the HMM profiles in this study were constructed using Ubuntu 12.04 LTS operating 

system, which is based on the Linux kernel. Previous versions of HMMER have largely only 

been available as computationally intensive UNIX command line applications requiring local 

installation and local computing resources (Finn et al., 2011).  

2.4. Aims 

The aim of this chapter was to construct a sensitive and specific probabilistic model with 

experimental validated anti-N. meningitidis AMPs as input for identification of putative anti-

N. meningitidis AMPs from various proteome sequences. With the objectives of this chapter 

being as follows: 

➢ Extract and generate an anti-N. meningitidis AMP list by collecting all peptides within 

various databases and verify that they are experimentally validated as having activity 

against N. meningitidis through data mining. Cross reference between databases to 

eliminate duplicate entries within the final list. 

➢ Extract the amino acid sequences for AMPs within the final list  

➢ Construct Hidden Markov Models from the amino acid sequences. 

➢ Test the constructed models as to optimize them. 

➢ Scan the optimized models against various genome sequences  

➢ Identify potentially novel anti-N. meningitidis AMPs  

Section 2.5.1 presents the retrieval of experimentally validated anti- N. meningitidis AMPs 

from various databases and the elimination of duplicates. Section 2.5.2 will present the 

procedure for constructing HMMER models and finally, section 2.5.3 gives the performance 

measures of the models created using HMMER and section 2.5.4 scanning of the genome 

sequences to identify novel N. meningitidis AMPs. 
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2.5. Materials and methods 

 

Figure 2.2:  Flowchart describing the outline of methodology to retrieve novel antimicrobial 

peptides (AMPs) 

2.5.1. Data mining: Experimentally Validated Antimicrobial Peptides (AMPs) Data 

Assessment  

2.5.1.1. Data retrieval using the APD database 

To retrieve the experimentally validated AMPs, the APD database was accessed at 

(http://aps.unmc.edu/AP/) and from the homepage the activity ‘Antibacterial peptides’ was 

selected. This resulted in a new page displaying the peptides requested. Data mining and 

literature mining were done simultaneously as each peptide was scanned for activity against 

the genus Neisseria but specifically against N. meningitidis. The criteria used for the database 

Retrieval of experimentally validated AMPs with 
antibacterial activity towards N. meningitidis from the 
databases APD, CAMP, DRAMP and DBAASP. Cross 

reference between databases. 

Extract the amino acid sequences of the 
retrieved AMPs.

Construct predictive models using the Hidden 
Markov Models (HMMER) algorithm with 

retrieved AMPs as inputs.

Performance measures of each model based on 
prediction of the positive and the negative 

testing set. 

Identification of putative AMPs from genome 
sequences 
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search were only natural (not synthetic), experimentally validated AMPs. The amino acid 

sequences of these AMPs were extracted and saved in the FASTA format as a text document.  

2.5.1.2. Extracting anti–N. meningitidis AMPs from CAMP 

The extraction of the available AMPs with antibacterial activity against N. meningitidis from 

the CAMP database http://www.bicnirrhx.res.in/antimicrobial/index.php was done by 

accessing the homepage and “AMP Sequences” selected. The criteria used and selected were 

activity ‘Antibacterial’ and validation ‘Experimentally Validated (excluding Patents)’. 

Excluded in the search were synthetic constructs as the source, predictive AMPs and gram 

positive bacteria. Again data and literature mining were done simultaneously. Upon 

completion of searching the database, antibacterial peptides were saved as an excel 

spreadsheet for cross referencing. 

2.5.1.3. Cross referencing the retrieval of AMPs using DRAMP 

DRAMP database was accessed as a confirmation of results obtained from APD and CAMP 

and as a cross reference. ‘Search’ was selected on the homepage followed by ‘Advanced 

search’. The selection was made of "Antibacterial” as the choice for biological activity to 

limit the search and the ‘Submit’ button was selected.   

The AMP list was analysed by searching each AMP with reference information and with the 

same criteria as for the APD and CAMP database searches: ‘experimentally validated’ and 

‘natural’. A list of AMPs was created and further refined by removal of duplication.  

2.5.1.4. Further AMP extraction and identification of anti-N. meningitidis within the 

DBAASP database 

The DBAASP database was accessed on http://dbaasp.org and on the homepage ‘Search’ was 

selected, resulting in a new input window. The default settings were used except for the target 

species selected as ‘Neisseria Meningitidis’ and ‘Search’ button selected. Another selection 

http://etd.uwc.ac.za/



 

54 
 

was made which included the target species as ‘Neisseria spp’.  All experimentally evaluated 

AMPs were selected and synthetic AMPs excluded under ‘synthesis type’ within the 

DBAASP peptide card. AMPs were then cross reference between the four databases. See 

Table 2.5 as an example. 

2.5.1.5. Literature mining of the AMPs  

The databases used for literature mining for selected AMPs with calculated minimum 

inhibitory concentration (MIC) as experimental evidence against N. meningitidis were: 

PubMed and Google Scholar. All relevant literature, abstracts and journal articles were 

searched for information linking each AMP to the criteria selected as having antimicrobial 

activity to either the species Neisseria or more specifically N. meningitidis.  

2.5.1.6. Removal of duplicates and generation of final AMP list 

The final elimination of duplicates of the experimentally validated AMPs peptides was done 

between databases with cross referencing. The elimination was made on the basis of the 

peptide name and done manually since the numbers of AMPs were minimal. Due to the small 

amount of AMPs retrieved for the bacteria N. meningitidis, AMPs with antibacterial activity 

against the genus Neisseria were also included in the final AMP list. The retrieved AMPs 

were recorded in FASTA format.  

2.5.2. Construction of Hidden Markov Models (HMM)  

2.5.2.1. Construction of the Training and testing data sets 

The Hidden Markov Models algorithm version 2.3.2 was used to create HMMs profiles by 

utilizing AMP training sets as the input data and the testing set data, to strengthen the 

predictive ability of the profiles.  
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The final list of the experimentally validated AMPs were too small to create a robust 

predictive model and therefore three text files in FASTA format named All AMPs, N. 

gonorrheoae (Ngon) and N. meningitidis (Nmen) respectively were created, hence three 

different models were created instead of the anticipated one model. 

Each AMP data set was then divided into two portions: three-quarters of each data set was 

utilized as the training set whilst one-quarter was used as the testing set as seen in Figure 2.3.   

2.5.2.2. Sequence alignment of training set 

The HMMER software was installed and using ClustalW (Larkin et al., 2007), an alignment 

was done for the input sequences of the training set for All AMPs, Ngon and Nmen using the 

command line:  

 

 

Figure 2.3: Outlined the method to build profiles using the profile HMM algorithm  
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The command line of ClustalW means “to do an alignment of the sequences which are in the 

upper case found in the input filename e.g. “AllAMPstraining” with the FASTA format, 

using ClustalW as multiple alignment tool and GCG Postscript output for graphical printing”.  

The result was saved as msf (gcg) format (filename.msf). This aligned sequence was used for 

the next step.  

2.5.2.3. Create a HMM profile from the aligned sequences  

To search for additional remote homologues and using the hmmbuild module common motifs 

within the model was achieved by inputting the hmmbuild command line, which builds a new 

HMM profile from the multiple sequence alignment file using the command line: 

 

The ‘build profile’ was saved in hmm format (filename.hmm). 

2.5.2.4. Calibrate the profile HMM to enhance sensitivity 

hmmcalibrate - this step calibrates the HMM search statistics. This command line helps to 

improve the profile sensitivity. 

        

Models were calibrated using the training dataset in order to increase sensitivity. The 

resulting profile ‘training.hmm’, a calibrated model was employed in evaluating the 

performance of the profile by scanning it against anti-N. meningitidis AMPs in the testing 

sets designed.  
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2.5.3. Model Testing  

A profile HMM searches against a target sequence database, with the profile HMM being 

built from a query multiple sequence alignment. To measure the performance of the 

constructed profiles of the training datasets, the testing set of each dataset was used to query 

the profile of that dataset. 

This step helps to predict if the testing set of a particular dataset really belongs to the profile 

for that dataset i.e. if the sequences of the testing set belong to the constructed models which 

were built based on primary sequences of the training set e.g. positive dataset. 

The profile also confirms that the testing and the training sets have anti-N. meningitidis 

activities since both sets (training and testing) were derived from the list of experimentally 

validated anti-N. meningitidis AMPs. 

Following the profile calibration, the hmmsearch step was carried out, a step which searches 

and queries a particular peptide or protein list. Testing AMPs set (one-quarter of the retrieved 

AMPs) was utilized as the positive dataset hence, the testing AMPs set was queried against 

the constructed profile. The search was achieved using the command line: 

The E-value threshold (list of ranked top hits sorted by E-value, most significant hit first) was 

set to 1% or 0.01 as indicated on the command line, thus to increase sensitivity and the 

scanning was achieved using a new command line: 

 

The scores and E-values here reflect the confidence that this query sequence contains one or 

more domains belonging to Neisseria.  

Negative set evaluation  
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The profiles were also tested on a negative dataset consisting of 780 peptide sequences which 

are non-anti-Neisseria peptides. The negative set are the sequences with no activity against 

the bacteria Neisseria whilst the testing set has activity against Neisseria and thus is the 

positive set.  

HMMER reads all major database formats and does not need any special database indexing 

thus the negative set was downloaded in FASTA format.  

Using the command line: 

 

This step helps to identify the number of true positive, false negative, true negative and false 

negative antimicrobial peptides, which enabled the performance calculation of the 

constructed models. Testing the robustness of each HMMER profiles by scanning it against 

an anti-N. meningitidis AMP testing set and evaluates its performance and the algorithms 

ability to identify and highly discriminate putative AMPs from non-anti-N. meningitidis 

AMPs using the negative set.  

2.5.4. Performance measures of each profile based on prediction of the positive and the 

negative testing set 

By using sensitivity, specificity, accuracy and Mathew Correlation Coefficient as the 

parameters to measure the statistical performance evaluation of the created model, the 

performance of the profile was calculated. Models were measured for the evaluation of the 

quality of the prediction and were calculated to assess the strength of the constructed models.  

The reliability of these methods is evaluated by several parameters seen in Table 2.5. 
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Table 2.5: Definitions of the metrics used to formulate the evaluation of the quality of the 

prediction 

 

The statistical measures were calculated to evaluate the strength and the performance of the 

created model using the following mathematical formulas; 

Sensitivity is the percentage of anti-N. meningitidis AMPs (testing set) correctly predicted as 

anti-N. meningitidis AMPs (Positive) 

 Sensitivity = 100
TP

TP FN

 
 

+ 
     (1)    

Specificity is the percentage of non-anti-N. meningitidis AMPs (negative set) correctly 

predicted as non-anti-N. meningitidis AMPs (negative). The specificity is defined as: 

Specificity = 100
TN

TN FP

 
 



+

     (2)    

Accuracy is the percentage of correctly predicted anti-N. meningitidis and non-anti-N. 

meningitidis AMPs. The accuracy is defined as: 

Accuracy = 100
TP TN

TP FP TN FN

+


+ + +

 
 
 

    (3) 

Mathew’s correlation coefficient (MCC) is a measure of both sensitivity and specificity. It 

is worthy to note that MCC = 0 indicates completely random prediction, while MCC = 1 

indicates perfect prediction. It is defined as: 

MCC = 
( ) ( )

( ) ( ) ( ) ( )

TP TN FN FP

TP FN TN FP TP FP TN FN

 − 

+  +  +  +
  (4) 

Metric Description

TP True Positive

TN True Negative

FN False Negative

FP False Positive 

MCC Mathew’s correlation coefficient

Definition

represents correctly predicted anti-N. Meningitidis AMPs 

correctly predicted negative AMPs

number of AMPs incorrectly predicted as non anti-N. Meningitidis AMPs

number of non anti-N. Meningitidis  AMPs incorrectly predicted as AMPs

indicates completely random or perfect prediction
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Through these sets the algorithm is trained and then, tested against the negative set. From the 

results against the negative set, the true positives, negative and false positives and negatives 

are estimated and then the parameters (e.g., accuracy) are calculated. 

2.5.5. Scanning of proteomes using profile HMM based on anti-N. Meningitidis AMPs 

 

A list of all proteome sequences were retrieved from the ENSEMBL server 

(http://www.ensembl.org/index.html) and UNIPROT database (http://www.uniprot.org/) of 

an amount of 959 genomes in FASTA format. The protein genomes were retrieved from 

insects, microbes, plants, fish, animals and amphibians. 

In order to identify the putative anti- N. Meningitidis AMPs, the created profile/s was queried 

against all the proteome sequences with an E-value cut-off of 0.01. This was achieved by 

utilizing the hmmsearch module of HMMER and the command line used for scanning the 

proteome sequences: 

 

After performance calculation and scanning of various genome sequences databases duplicate 

sequences were removed to have a final list of putative AMPs. 

2.6. Results and Discussion 

2.6.1. Mining of biologic datasets 

The methodology used in this research work was in line with the work of Tincho et al., 2016, 

“In-Silico Identification and Molecular Validation of Putative Antimicrobial Peptides for HIV 

Therapy”. The Antimicrobial Peptide Database (APD) was used to extract all natural, 

experimentally validated antibacterial peptides having activity against the N. meningitidis 

hmmsearch –E 1e-2 filename.hmm filename (genomes).fasta > 

resultname.txt 
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bacteria. The APD created a set of criteria to collect peptides with the aim of guaranteeing 

curation quality (Liu et al., 2017). The initial search of the database resulted in 2415 

antibacterial peptides which were experimentally validated, inferred and synthetic 

antibacterial peptides. Search of the latest version of APD (APD3) resulted in 2434 peptides 

identified. The search in CAMP database resulted in 2157 antibacterial peptides and 2955 

antibacterial peptides in the DRAMP database search. A list of AMPs was created and further 

refined by removal of duplication resulting in the same AMPs generated from APD and/or 

CAMP. 

Data and literature mining revealed after cross referencing (example seen in Table 2.7) 

between the databases APD, CAMP, DRAMP and DBAASP, 20 AMPs experimentally 

validated as anti-N. meningitidis peptides. AMPs were considered experimentally validated 

based on molecular testing against certain microbes/bacteria with MIC values indicated for 

these AMPs. Peptides were extracted with activity against the bacteria N. meningitidis as well 

as other Neisseria genus e.g. N. cinerea, whilst other peptides have activity against only the 

two pathogens in the Neisseria family i.e. N. gonorrhoeae and N. meningitidis. See Table 2.6 

for the breakdown of AMPs extracted. Due to the small amount of AMPs extracted, the 

Neisseria genus was included for the creation of prediction models. The origin or source of 

the peptides was considered only if it was not synthetic or inferred i.e. only natural AMPs. 

It has to be noted that since there was only a small amount of AMPs retrieved and after all the 

four databases were exhausted in the search, various other database were also searched such 

as; Cybase (Mulvenna et al., 2006, Wang et al., 2007), Bactibase (Hammami et al., 2010) 

and DAMPD (Sundararajan et al., 2011). The Cybase database resulted in only 12 AMPs 

with antibacterial activity but none with activity against N. meningitidis. Only one AMP in 

the Bactibase database showed activity to the genus Neisseria but resulted in being a 
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duplicate found in the CAMP database. The DAMPD database (Sundararajan et al., 2011) 

was not accessible (URL not found on server) at the time of the search.  

Table 2.6: Number of AMPs extracted after database searches 

Number of AMPs retrieved Neisseria family type 

11 N. gonorrhoea only 

1 N. meningitidis only 

2 Both pathogens N. meningitidis and N. gonorrhoea 

2 N.Cinerea only 

3 N. meningitidis with other family 

1 Neisseria species only 

 

All databases, share some sequences with at least one other database, with the largest mutual 

overlap being single peptide commonalities. Moreover, there is some degree of redundancy in 

each database (Aguilera-Mendoza et al., 2015) and this was evident in the four databases 

searched for AMPs with activity against Neisseria based on the results obtained from data 

mining. 

2.6.2. Creation of training and testing sets for HMMs 

The sequences of the All AMPs, Ngon and Nmen files were used to create the testing and 

training sets for profile creation using HMM.  

The sequences of the anti-Neisseria AMPs of the three files were randomly divided into two 

portions: three-quarters of each data set was utilized as the training set, whilst one-quarter 
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was used as the testing set. The model created from the abovementioned partitioning failed to 

perform well after evaluation. To create a model that was more robust, sequences within each 

file, All AMPs, Ngon and Nmen, were randomly divided into three quarter training and one 

quarter testing set resulting in six datasets for each file to be used for model creation (Table 

2.8).  

2.6.3. Evaluate the algorithm performance measurements of the six model creations 

After testing all six models, performance measurements were calculated. The following 

measures were used; sensitivity, specificity, accuracy and MCC as seen in Table 2.8. The 

accuracy represents how well a method can predict in a range from 0 to 100 percent. Larger 

values equate to better classification performance, given that the number of positive and 

negative examples are comparable in size. MCC is a summary statistic to evaluate binary 

classification performance and is more stringent compared to accuracy, as it weighs the 

impact of false predictions more heavily. Values can range from 0 to 1. Larger values equate 

to better classification performance (Veltri, 2015). Performance analysis to identify the most 

robust model created for each file is reported in Table 2.8 in terms of sensitivity, specificity, 

accuracy and MCC. 

http://etd.uwc.ac.za/



 

65 
 

Table 2.7: Cross referencing between the various databases with similar peptides 

 

APD CAMP DRAMP DBAASP

ID   

AP00050

CAMPSQ38 DRAMP01097 529

Peptide name Bombinin-like peptide 1 (XXA, BLP-1, UCLL1c; 

toad, amphibians, animals)

Bombinin-like peptides 1 Bombinin-like peptide 1 (toads, amphibians, animals) Bombinin-like peptide 1, BLP-1

Source   

Oriental fire-bellied toad/frog, Bombina 

orientalis, Asia 

  Bombina orientalis [Oriental fire-bellied toad] Bombina orientalis (Oriental fire-bellied toad)  Bombina orientalis

Sequence   

GIGASILSAGKSALKGLAKGLAEHFAN

GIGASILSAGKSALKGLAKGLAEHFAN GIGASILSAGKSALKGLAKGLAEHFAN GIGASILSAGKSALKGLAKGLAEHFAN

Sequence length 27 27 27 27

Pubmed ID 1744108 1744108 1744108 1744108

Ref   

J. Biol. Chem. 1991; 266: 23103-23111. 

PubMed.

J Biol Chem. 1991 Dec 5;266(34):23103-23111. J Biol Chem. 1991 Dec 5;266(34):23103-23111. Gibson BW, Tang DZ, Mandrell R, Kelly M, Spindel ER.  J 

Biol Chem, 1991, 266, 23103-23111.

Validated Experimentally Yes Yes Yes Yes

Target Active against N. meningitidis strains 118V, 

15240, 126E, N. gonorrhoeae, N. lactamica, and 

N. cinerea (82-100% at 20 ug/ml).

82 % inhibition Neisseria meningitidis 118V C ( 

MIC = 20 microg/ml ),98 % inhibition Neisseria 

meningitidis 15240 IAI( MIC = 20 microg/ml ), 85% 

inhibition Neisseria meningitidis 126E IC1( MIC = 

20 microg/ml ),98% inhibition Neisseria 

gonorrhoeoe F62(MIC

82 % inhibition Neisseria meningitidis 118V C (MIC=20 

µg/ml), 98 % inhibition Neisseria meningitidis 15240 

IAI(MIC=20 µg/ml), 85% inhibition Neisseria 

meningitidis 126E IC1(MIC=20 µg/ml), 98% inhibition 

Neisseria gonorrhoeoe F62 (MIC=20 µg/ml), 96% 

inhibition Neisseria Iactamica 15323(MIC=20 µg/ml), 

100% inhibition Neisseria Iactamica 15215A(MIC=20 

µg/ml), 98% inhibition Neisseria cinerea 15461 

(MIC=20 µg/ml),

82 % inhibition Neisseria meningitidis 118V C (MIC=20 

µg/ml), 98 % inhibition Neisseria meningitidis 15240 

IAI(MIC=20 µg/ml), 85% inhibition Neisseria 

meningitidis 126E IC1(MIC=20 µg/ml), 98% inhibition 

Neisseria gonorrhoeoe F62 (MIC=20 µg/ml), 96% 

inhibition Neisseria Iactamica 15323(MIC=20 µg/ml), 

100% inhibition Neisseria Iactamica 15215A(MIC=20 

µg/ml), 98% inhibition Neisseria cinerea 15461 

(MIC=20 µg/ml),

Title Bombinin-like peptides with antimicrobial 

activity from skin secretions of the Asian toad, 

Bombina orientalis.

Bombinin-like peptides with antimicrobial activity 

from skin secretions of the Asian toad, Bombina 

orientalis.

Bombinin-like peptides with antimicrobial activity 

from skin secretions of the Asian toad, Bombina 

orientalis.

Bombinin-like peptides with antimicrobial activity 

from skin secretions of the Asian toad, Bombina 

orientalis.

AMP extraction from various databases
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As seen in Table 2.8, yellow highlighted model 3 was the best model showing the sensitivity 

as 40%, 25% and 50% for All AMPs, All Ngon and All Nmen, respectively. This result 

measures the proportion of actual positives that are correctly identified. Specificity was 

calculated as 100% for All AMPs, Ngon and Nmen models created. The accuracies of the 

models were calculated as 99.60%, 99.62% and 99.87% for All AMPs, All Ngon and All 

Nmen, respectively. This proves that the models have more than 95% confidence to predict a 

peptide as a putative anti-N. meningitidis AMP. The MCC values calculated for model 3 for 

all data subsets indicates that the algorithm is performing similarly to perfect prediction as the 

values are closer to 1. Thus from the performance measures for all the models created, model 

3 for each dataset scored the best across all the performance measures calculated and will 

subsequently be used for genome scanning. 

Table 2.8: Performance measurements generated for each model created by HMMER profile. 

 

Model Sensitivity Specificity Accuracy MCC 

          
All AMPs 20% 100% 98.50% 0.44 

All Ngon  25% 100% 98.90% 0.49 

All Nmen 50% 100% 99.60% 0.71 

          

All AMPs 2 0% 100% 99.36% 0 

All Ngon 2 0% 100% 99.49% 0 

All Nmen 2 0% 100% 99.74% 0 

          

All AMPs 3 40% 100% 99.60% 0.63 

All Ngon 3 25% 100% 99.62% 0.499 

All Nmen 3 50% 100% 99.87% 0.71 

          

All AMPs 4 0% 99.87% 99.24% 0.0029 

All Ngon 4 0% 100% 99.49% 0 

All Nmen 4 50% 100% 99.87% 0.71 

          

All AMPs 5 0% 100% 99.36% 0 

All Ngon 5 0% 100% 99.49% 0 

All Nmen 5 0% 100% 99.74% 0 

          

All AMPs 6 40% 100% 99.62% 0.63 

All Ngon 6 0% 100% 99.49% 0 

All Nmen 6 50% 100% 99.87% 0.71 
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Genome scanning 

The chosen model 3 were scanned against protein genomes from insects, microbes, plants, 

fish, animals and amphibians, retrieved from the ENSEMBL server and UniProt database. 

The total number of genomes scanned was 959, in order to search for novel anti-Neisseria 

AMPs by identifying peptides with similar motifs and properties as the created model. An 

example of a scanning result is seen in Figure 2.4: 

hmmsearch - search a sequence database with a profile HMM 

HMMER 2.3.2 (Oct 2003) 

Copyright (C) 1992-2003 HHMI/Washington University School of Medicine 

Freely distributed under the GNU General Public License (GPL) 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

HMM file:                   N.gonorrhoeaetraining3.hmm [N.gonorrhoeaetraining3] 

Sequence database:          Gallus_gallus.fasta 

per-sequence score cutoff:  [none] 

per-domain score cutoff:    [none] 

per-sequence Eval cutoff:   <= 0.01       

per-domain Eval cutoff:     [none] 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 

Query HMM:   N.gonorrhoeaetraining3 

Accession:   [none] 

Description: [none] 

  [HMM has been calibrated; E-values are empirical estimates] 

 

Scores for complete sequences (score includes all domains): 

Sequence           Description                          Score    E-value  N 

--------           -----------                          -----    ------- --- 

GENSCAN00000033381 pep:genscan chromosome:WASHUC2:1:1    26.6    0.00039   4 

 

Parsed for domains: 

Sequence           Domain  seq-f seq-t    hmm-f hmm-t      score  E-value 

--------           ------- ----- -----    ----- -----      -----  ------- 

GENSCAN00000033381   2/4     643   668 ..     1    27 []     6.9       30 

GENSCAN00000033381   3/4     980  1005 ..     1    27 []     6.9       30 

GENSCAN00000033381   4/4    1489  1514 ..     1    27 []     6.9       30 

GENSCAN00000033381   1/4     177   202 ..     1    27 []     5.9       44 

 

 

 

Figure 2.4: HMMER results page Classification results of a query sequence using HMM 

profile. 

As seen in Figure 2.4, the grey highlighted section explains the program ran using one of the 

models created, in this example its model 3 of the Ngon dataset scanned against the proteome 

of Gallus gallus as well as indicated the cutoff’s used. 
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The turquoise section shows the top sequence identified (highest similarity to the model 

created), ranking the top hits (sorted by E-value, most significant hit first). It states the name 

of the target sequence followed by the description line for the sequence. 

After proteome scanning, sequences were extracted and resulted in All AMPs, All Ngon and 

All Nmen with 139, 415 and 112 sequences, respectively. Removal of duplicates showed All 

AMPs with 72 sequences, All Ngon with 131 and All Nmen with 35 sequences and this 

included unique/single and multiple domains.  

Unique/single domains and multiple domains were extracted and single domains were 

considered, as the single domains had complete sequence with activity against Neisseria and 

met the cut-off E-value of 0.01, whereas with multiple domains, the entire sequence/protein 

will not have activity against the chosen bacteria (only certain domains/parts). The E-values 

are much higher than the requested cut-off set at 0.01 for sequences with multi domains. The 

smallest E-value is indicative of a peptide that is most likely to be an AMP; this E-value 

gives more confidence about the probability that the predicted peptide is to be a true anti-N. 

meningitidis AMP. A final list of nine AMPs were identified and named YYNN1 – YYNN9 

and the scores (bits) with an E-value for each AMP provided (Appendix A). The smallest E-

value was observed for YYNN8 and then YYNN9 indicating that these peptides are most 

likely to have the best activity against N. meningitidis and potentially the highest binding 

affinity for the receptors of the bacterium.  

These nine AMPs were used for further in silico interaction studies with N. meningitidis 

receptors (to be identified in Chapter 6) for the continuation of the study. 

2.7. Summary 

The aim of this chapter was to construct a sensitive and specific probabilistic model with 

experimental validated anti-N. meningitidis AMPs as input for identification of putative anti-
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N. meningitidis AMPs from various genome sequences. This was achieved by extracting and 

generating an AMP list by collecting all peptides within the databases; APD, CAMP, 

DBAASP and DRAMP and verifying that they are natural, experimentally validated as 

having activity against N. meningitidis through data and literature mining. Cross-referencing 

between databases was done to eliminate duplicate entries within the final list with the final 

list containing 20 AMPs. The amino acid sequences of the 20 AMPs were extracted and used 

to construct Hidden Markov Models within HMMER and then tested using several 

performance measures as to optimize them.  

Fjell et al., 2008 published a study using HMMs to screen for AMPs in the bovine genome, 

which led to the discovery of a previously unknown AMP, this study highlighting an 

approach to design AMPs with great success. The use of the HMMER algorithm is deemed 

an appropriate tool, which enables a more sophisticated search for novel peptides through 

proteome sequence scanning (Tincho et al., 2016). 

The optimized models were scanned against various genome sequences retrieved from the 

ENSEMBL server and UniProt database and identified a number of peptide sequences that 

can potentially be considered anti-N. meningitidis AMPs. A final list of nine AMPs were 

identified and named YYNN1 – YYNN9 with the smallest E-values observed for YYNN8 

followed by YYNN9. 

Before this era, methods for de novo AMP discovery relied on long-standing bioinformatics 

methods, including sequence alignment and homology modelling for prediction of biological 

activity. Now, the convergence of innovations in machine learning models, the presence of 

modern computational tools and the availability of high-quality datasets has enabled the 

machine learning-aided design of AMP candidates (Lee et al., 2017). 
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Chapter 3 

Identification of N. meningitidis receptors and their associated pathways and secretion 

mechanisms to serve as targets for the putative AMPs 

3.1. Introduction 

Current dogma dictates that the antimicrobial activity of peptides is mediated through 

interaction of AMPs with target cell membranes and subsequent membrane disruption 

(Kulagina et al., 2007). For bacteria with a largely extracellular lifestyle, such as N. 

meningitidis, their target receptors may be expected to be expressed at the surfaces of cells 

(Sa E Cunha et al., 2009). Manifold interactions with the host are typical of invasive MD and 

among these, pathogen–endothelium interactions are crucial in the development of invasive 

MD (Simonis and Schubert‐Unkmeir, 2016). 

Years of research in the areas of biochemistry (Epand et al., 2008) and molecular dynamics 

(Fjell et al., 2012) suggest AMP models need to take into consideration the lipid membrane 

composition of a target bacteria if AMP-membrane interactions is to be achieved. Adherence 

can be defined as a phenomenon resulting from the interaction between two surfaces, with the 

participation of physical, chemical and biological factors, with contact between the bacterium 

and the cell being necessary for adherence to take place (Uberos et al., 2015). The first 

contact between the bacterium and host cells involves the process of adhesion, which can 

depend on the interaction of specific bacterial surface molecules (Hung and Christodoulides, 

2013). 

The outer membrane, an essential organelle of Gram negative bacteria, is composed of four 

major components: lipopolysaccharide, phospholipids, β-barrel proteins and lipoproteins. The 

mechanisms underlying the transport of these components to outer membranes are under 

extensive examination (Tokuda, 2009). 
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For many bacterial pathogens, a multitude of methods are used to invade mammalian hosts, 

damage tissue sites and thwarting of the immune system from responding with one essential 

component of these strategies, being the secretion of proteins. Secreted proteins can play 

many roles in promoting bacterial virulence, from enhancing attachment to eukaryotic cells, 

to scavenging resources in an environmental niche, to directly intoxicating target cells and 

disrupting their functions. Many pathogens use dedicated protein secretion systems (Green 

and Mecsas, 2016). To interact with its environment, N. meningitidis transports many 

proteins across the outer membrane to the bacterial cell surface and into the extracellular 

medium for which it deploys the common and well-characterized autotransporter, two-partner 

and type I secretion mechanisms, as well as a recently discovered pathway for the surface 

exposure of lipoproteins (Tommassen and Arenas, 2017). 

The quest for novel vaccine antigens has enormously stimulated research into cell-surface-

exposed and secreted proteins in N. meningitidis and has led to the discovery of new transport 

mechanisms and machineries of general (micro) biological significance, such as the BAM (β-

Barrel Assembly Machinery) and SLAM (Surface Lipoprotein Assembly Modulator) 

(Tommassen and Arenas, 2017).  In most Gram-negative bacteria, cell surface exposed, 

particularly the integral OMPs (Outer Membrane Proteins) of the BAM systems are attractive 

targets for the development of new antimicrobials (Urfer et al., 2016). 

The surface of many Gram-negative bacteria contains lipidated protein molecules referred to 

as surface lipoproteins (Hooda et al., 2017). Gram negative bacteria utilise many systems to 

translocate proteins into (insertion) or through (translocation) one or both membranes 

(Holland, 2010), as explained in section 3.2. 
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3.2. Pathway discovery for the Transport of Outer Membrane Components 

Secretion pathways are a collection of specialized, structurally distinct pathways that deliver 

proteins into the extracellular space (or directly into other bacteria or eukaryotic cells). In 

some pathways proteins are secreted across both membranes in one step (e.g., type III and IV 

pathways), while in other pathways proteins are secreted sequentially across the two cell 

membranes (e.g., type II and V pathways). The structure and function of the proteins secreted 

by each pathway vary considerably, but in general the proteins play important roles in 

nutrient acquisition, survival in specific environments, or virulence (Wilson and Bernstein, 

2016). These systems are mostly responsible for the translocation and secretion of proteins 

across the outer membrane of Gram-negative bacteria (sometimes employing the Sec or Tat 

machinery for transport across the cytoplasmic membrane). In bacteria, secretory proteins 

cross the cytoplasmic membrane either via the general secretion pathway (Sec-pathway) or 

the twin arginine translocation (Tat-pathway) (Natale et al., 2008). 

3.2.1. β-Barrel Assembly Machinery (BAM)  

Barrel assembly machine (Bam) complex is a hetero-oligomeric complex that catalyses the 

integration of β-barrel proteins (proteins that fold into a closed cylindrical structure) into the 

bacterial outer membrane (Wilson and Bernstein, 2016).  The essential OM protein BamA 

(originally termed Omp85 in N. meningitidis has been shown to be crucial for autotransporter 

(AT) biogenesis. BamA is the core of the essential BAM complex responsible for integration 

of outer membrane proteins (Jacob-Dubuisson et al., 2013). 

The β-barrel assembly complex, consisting of BamA, catalyses the insertion of virtually all β-

barrel OM proteins (Knowles et al., 2009). The Bam complex recognizes a C-terminal motif 

in β-barrel proteins.  BamA consists of an N-terminal periplasmic domain that contains five 
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polypeptide transport associated (POTRA) domains and a C-terminal 16-stranded β-barrel 

domain (Noinaj et al., 2017). 

The BAM complex consists of five components: the essential core component BamA, which 

is an OMP itself, and four accessory lipoproteins termed BamB, BamC, BamD and BamE, 

each containing an N-terminal post-translational lipid modification that anchors them to the 

inner leaflet of the outer membrane. The BAM complex can also partner with the 

translocation and assembly module (TAM) complex to mediate the biogenesis of some 

autotransporters (Noinaj et al., 2017). 

3.2.2. Translocation and Assembly Module (TAM) 

The TAM complex is involved in the secretion of some AT proteins with a β-helical 

passenger domain. Based on these findings, it has been proposed that the BAM complex 

assembles the β-barrel and the TAM complex assists in β-helix secretion (Selkrig et al., 

2012). TamA and TamB form the Translocation and Assembly Module (TAM) complex 

involved in the transport and assembly of a subset of ATs (Jacob-Dubuisson et al., 2013).  

3.2.3. Twin Arginine Translocation (TAT) 

The TAT system has mostly been implicated in the secretion of folded and/ or cofactor 

containing proteins (Natale et al., 2008; Patel et al., 2014). This pathway is critical because 

not all proteins can be secreted in their unfolded state. This pathway consists of 2–3 

components (TatA, TatB, and TatC). In Gram-negative bacteria, TatB and TatC bind a 

specific N-terminal signal peptide containing a “twin” arginine motif on folded Tat secretion 

substrates. TatB and TatC then recruit TatA to the cytoplasmic membrane, where it forms a 

channel. Folded proteins are then translocated across the channel and into the periplasm 

(Green and Mecsas, 2016). 
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3.2.4. Secretion (SEC) Pathway 

The Sec system is involved in both the secretion of unfolded proteins across the cytoplasmic 

membrane and the insertion of membrane proteins into the cytoplasmic membrane (Natale et 

al., 2008). The Sec system constitutes the general export pathway for periplasmic and outer-

membrane proteins (OMPs) (Grijpstra et al., 2013). The Sec system is also the major system 

for the insertion of helical membrane proteins into the IM (Inner Membrane) (Natale et al., 

2008). Most bacterial secretory proteins pass across the cytoplasmic membrane via the 

translocase, which consists of a protein-conducting channel SecYEG and an ATP-dependent 

motor protein SecA. The ancillary SecDF membrane protein complex promotes the final 

stages of translocation. SecA is a motor protein that uses ATP as energy source and threads 

the unfolded polypeptide through the channel. The adjoining SecDF complex is involved in 

later stages of protein translocation and presumably pulls translocating proteins from the 

channel at the periplasmic side of the membrane (a Nijeholt and Driessen, 2012).  

A removable signal sequence recognized by the SecB protein which serves as a chaperone 

binds to pre-secretory proteins and prevents them from folding. SecB then delivers its 

substrates to SecA, a multi-functional protein that both guides’ proteins to the SecYEG 

channel, and also serves as the ATPase that provides the energy for protein translocation. 

Following transport through the SecYEG channel, proteins are folded in the periplasm. 

Periplasmic proteins may be released extracellularly with the help of an additional secretion 

system (Green and Mecsas, 2016). 

3.2.5. Lipoprotein Outer membrane Localization (LOL) Pathway 

Many antimicrobial agents that target bacteria are cationic and can interact with the anionic 

lipid components that are exposed on the bacterial membrane (Epand and Epand, 2011). The 

LOL system, composed of five proteins, catalyses outer membrane sorting of lipoproteins 
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(Tokuda, 2009). Lipoproteins present on the surface of Gram-negative bacteria, referred to as 

surface lipoproteins or SLPs. SLPs are synthesised in the cytoplasm and contain an N-

terminal signal peptide. The signal peptide is recognised by the Sec or Tat translocon and the 

SLP is transported to the periplasm. The SLP molecule is then processed by three enzymes 

(Lgt/SpII/Lnt) that cleave off the signal peptide and attach a lipid head group. The SLP is 

then delivered to the OM by the five-component Lol system. Pathogenic Neisseria species 

possess four Lol components where the LolC homodimer compensates for the LolC-LolE 

heterodimer in the inner membrane (Hooda et al., 2017). 

The Lol system comprises an inner-membrane ABC transporter LolCDE complex, a 

periplasmic carrier protein, LolA, and an outer membrane receptor protein, LolB. 

Lipoproteins are synthesized as precursors in the cytosol and then translocated across the 

inner membrane by the Sec translocon to the outer leaflet of the inner membrane, where 

lipoprotein precursors are processed to mature lipoproteins. The LolCDE complex then 

mediates the release of outer membrane-specific lipoproteins from the inner membrane, while 

the inner membrane-specific lipoproteins, possessing Asp at position 2, are not released by 

LolCDE because it functions as a LolCDE avoidance signal, causing the retention of these 

lipoproteins in the inner membrane. A water-soluble lipoprotein–LolA complex is formed as 

a result of the release reaction mediated by LolCDE (Holland, 2010). 

3.3. Protein Secretion Systems in N. meningitidis 

Gram-negative bacteria have developed several systems for the secretion of proteins across 

their cell envelope into the extracellular milieu or directly into the cytoplasm of eukaryotic 

target cells. Six of these systems, designated Types I–VI secretion systems (T1–6SS), are 

widely disseminated among Gram-negative bacteria. N. meningitidis contains only the T1SS 

and T5SS (Tommassen and Arenas, 2017), as discussed below.  
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3.3.1. Type 1 secretion system (T1SS) 

Type I secretion requires a machinery composed of multimers of three proteins: an OM-

embedded channel protein (pore), an IM-embedded ABC (ATP binding cassette) transporter 

and an adaptor or membrane-fusion protein (MFP) connecting these two components, which 

is anchored in the IM and has a large periplasmic domain. This machinery spans the entire 

cell envelope and the secretion involves a single step from the cytoplasm directly into the 

extracellular medium (Tommassen and Arenas, 2017). Specific substrates are recognized by a 

C-terminal, non-cleavable motif and pass both membranes in one step (Natale et al., 2008).  

T1SS transports one or a few unfolded substrates. These substrates range in function and 

include digestive enzymes, such as proteases and lipases, as well as adhesins, heme-binding 

proteins and proteins with repeats-in-toxins (RTX) motifs. T1SS substrates are generally Sec-

independent and typically, but don’t always, contain a C-terminal signal sequence that is 

recognized by the T1SS and remains uncleaved. RTX motifs bind to calcium at extracellular, 

but not intracellular levels. Because calcium binding promotes the folding of these proteins, 

these large substrates are able to remain unfolded inside the cell (Green and Mecsas, 2016). 
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Figure 3.1: Type 1 secretion system (Tommassen and Arenas, 2017) 

3.3.2. Type 5 secretion systems (T5SS) 

In T5SS, proteins are first transported across the inner membrane via the general export 

pathway, mediated by the Sec system, after which the periplasmic intermediate is transported 

across the outer membrane (OM). Based on differences in the latter step, five subsystems are 

discriminated: T5a–eSS (Grijpstra et al., 2013). Four types encode the translocator (pore-

forming) and the passenger (secreted) domains in a single gene: the classical AT (T5aSS), the 

trimeric AT (T5cSS), the inverted AT (T5eSS), and the fused two-partner system (T5dSS). In 

two-partner systems (T5bSS), the translocator and passenger are encoded in two separate 

(typically contiguous) genes (Abby et al., 2016). In N. meningitidis, T5aSS, T5bSS, and 

T5cSS are present (Tommassen and Arenas, 2017).  

3.3.2.1. AT (type Va) pathway/ T5aSS: the classical ATs 

ATs are classified into monomeric and trimeric ATs. The common principle of all ATs is 

their dependency on the Sec machinery for IM transit, and the presence of a β-barrel domain 
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that inserts into the bacterial OM, where it acts as a transporter for the so-called passenger 

domain(s) destined for surface localization (Leo et al., 2012).  

The T5aSS encompasses classical ATs, which are synthesized as precursors consisting of 

three domains: an N-terminal signal sequence, which is required for targeting the Sec 

machinery, a passenger domain, and a C-terminal translocator domain. The translocator 

domain is inserted as a 12-stranded β-barrel into the OM via the general OM-protein 

assembly machinery, the BAM complex and/or the alternative TAM complex (Tommassen 

and Arenas, 2017). Neisseria can export monomeric AT adhesins, App and MspA/AusI, 

through a type Va secretion system (Hung and Christodoulides, 2013). The integral 

translocator domain in the OM has a central hydrophilic channel, which can act as a pore and 

is essential for transportation of the passenger domain to the cell surface (van Ulsen, 2011). 

Passenger domains often function as hydrolases, cytotoxins or adhesins and have other 

activities associated with virulence (Bernstein, 2015). 

The N. meningitidis NalP protein, the H. pylori AlpA protein, the C. jejuni CapA protein and 

the Bordetella pertussis SphB1 protein, are exposed on the cell surface by the AT (type Va) 

pathway (Wilson and Bernstein, 2016). 

ATs are produced by a large variety of Gram-negative bacteria. These cell-surface-exposed 

and secreted proteins have been intensively studied (Grijpstra et al., 2013). In N. 

meningitidis, for example, a homologue of BamB is lacking, but the Bam complex contains 

another component, RmpM, which stabilizes OMP complexes and is anchored via its 

periplasmic domain to the peptidoglycan (Grijpstra et al., 2013). Monomeric ATs are 

expressed as a single polypeptide that contains an N-terminal signal peptide, and the proteins 

are secreted by the Sec machinery into the periplasm (Leo et al., 2012).  
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Figure 3.2: AT secretion system (Tommassen and Arenas, 2017) 

Following secretion of the unfolded AT protein through the inner membrane, the translocator 

domain assembles in the outer membrane, forming a 12-stranded β-barrel, usually with the 

help of a number of accessory factors, including the periplasmic chaperone Skp and the Bam 

complex (Green and Mecsas, 2016).  

3.3.2.2. Two-partner secretion (type Vb) pathway/ T5bSS 

In T5bSS, or two-partner secretion (TPS) system, a large β-helical protein, generically 

designated TpsA, is translocated across the OM via a protein designated TpsB (Jacob-

Dubuisson et al., 2013). The two-partner secretion pathway is a branch of type V secretion, 

alongside the AT. There are two major players in TPS systems, the secreted proteins 

collectively called TpsA proteins (‘the cargos’) and their outer membrane partners 

collectively called TpsB proteins (‘the transporters’). TPS systems are dedicated to the 

secretion across the outer membrane of long proteins that form extended β-helices (Jacob-

Dubuisson et al., 2013). TPS system is where a pair of proteins participates in the secretion 
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process, in which one partner carries the β-barrel domain, while the other partner serves as 

the secreted protein (Green and Mecsas, 2016). 

TPS is a secretion pathway that, in a growing number of Gram-negative bacteria, has been 

shown to be devoted to the secretion of large virulence-associated proteins (Talà et al., 2008).  

 

Figure 3.3: The two-partner secretion system (Tommassen and Arenas, 2017) 

3.3.2.3. T5cSS: the trimeric ATs 

The T5cSS encompasses trimeric ATs, which are similar to classical ATs, but it requires 

three subunits, which each contribute four β-strands, to form a similar 12-stranded β-barrel as 

in the T5Ass (Tommassen and Arenas, 2017). In contrast to many of their monomeric 

counterparts (type Va ATs), they are usually adhesins, do not harbour enzymatic functions 

and are not released from the cell surface by an autoproteolytic mechanism. Instead, they 

protrude from the cell surface as relatively rigid rods, with a length of over 250 nm in some 

cases (Leo et al., 2012). Trimeric ATs follow the same route as type Va ATs for their 
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biogenesis, the major difference being the presence of three polypeptide chains (Leo et al., 

2012). 

3.4. Tools for sequence retrieval of N. meningitidis receptors 

3.4.1. National Center for Biotechnology Information (NCBI) 

NCBI (https://www.ncbi.nlm.nih.gov/) is a readily available Web resource, a division of the 

National Library of Medicine (NLM) at the U.S. National Institutes of Health, is a leader in 

the field of bioinformatics. NCBI hosts approximately 40 online literature and molecular 

biology databases including PubMed, PubMed Central, and GenBank that serve millions of 

users around the world (Tatusova et al., 2013). Over the years the amount and variety of data 

that NCBI maintains has expanded enormously and can be generally divided into six 

categories: Literature, Health, Genomes, Genes, Proteins and Chemicals. Each of these six 

categories has a corresponding web page that lists the relevant databases and tools, along 

with links to tutorials and other information (Coordinators, 2017). 

3.4.2. UniProt Knowledgebase (UniProtKB) 

UniProtKB (https://www.uniprot.org/) is a Protein knowledge-base and it consists of two 

sections: UniProtKB/Swiss-Prot, which is manually annotated and reviewed as well as 

UniProtKB/TrEMBL, which is automatically annotated and is not reviewed (Boutet et al., 

2016). For the retrieval of the receptors, the UniProt/Swiss-Prot section of UniProtKB was 

used. The UniProt consortium maintains the UniProt KnowledgeBase (UniProtKB), updated 

every 4 weeks. The Swiss-Prot section of the UniProt KnowledgeBase (UniProtKB/Swiss-

Prot) contains publicly available expertly manually annotated protein sequences obtained 

from a broad spectrum of organisms (Boutet et al., 2016).  
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The database contains over 60 million sequences, of which over half a million sequences 

have been curated by experts who critically review experimental and predicted data for each 

protein. Since the last update in 2014, the number of reference proteomes doubled to 5631, 

giving a greater coverage of taxonomic diversity (Wu and Consortium, 2016). 

UniProtKB/Swiss-Prot contains over 550 000 sequences that have been curated by an expert 

biocuration team. For these entries experimental information has been extracted from the 

literature and organized and summarized, greatly easing scientists access to protein 

information (Wu and Consortium, 2016). 

3.5. Aims 

The aim of this chapter is to search for N. meningitidis receptors and linking it to pathways 

and secretion mechanisms within the bacterium to determine the most significant outer 

membrane (OM) protein/s for the novel AMP/s (ligand/s) to interact with. Through the 

interaction of the AMP/s to selected N. meningitidis receptors, the bacterium can be detected 

within biological samples i.e. a diagnostic test for N. meningitidis. The objectives are as 

follows: 

➢ To search for receptors associated to N. meningitidis by literature mining. 

➢ To identify the ideal receptors in the OM of N. meningitidis to serve as targets for the 

identified putative AMPs. 

➢ To extract amino acid sequences of the selected receptors using NCBI and UniProt, 

for 3D modelling and docking studies with the AMPs (chapters 4 and 5). 
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3.6. Materials and methods 

 

Figure 3.4: Flow chart of the methodology used for identification of receptors as targets to 

the retrieved AMPs 

3.6.1. Biomedical Literature Mining in search of N. meningitidis receptors 

Various search engines such as Pubmed/NCBI (https://www.ncbi.nlm.nih.gov/pubmed/), 

Google Scholar (https://scholar.google.co.za/) and Science Direct 

(https://www.sciencedirect.com/)  were accessed with the keywords or key phrases entered 

into the search engine “cell-surface receptors of Neisseria meningitidis”, “cell surface 

proteins of Neisseria meningitidis”, “outer membrane proteins, receptors of Neisseria 

meningitidis” etc. Literature mining was done using references from published articles, in 

relation to the above search, a list of Web content results in the form of websites, images, 

videos or other online data were displayed which was accessed and the relevant information 

retrieved. 

 

 

Literature Mining in search of N. meningitidis receptors

Identify the receptors of interest to be used in further
analysis and their associated pathways and secretion
mechanisms

Extract the amino acid sequences of the N. meningitidis
receptors which will serve as targets to the putative AMPs
using NCBI and UniProt
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3.6.2. Computational tools for retrieval of amino acid sequences of N. meningitidis 

receptors 

The full amino acid sequences of the N. meningitidis receptors identified from the previous 

step were retrieved from National Center for Biotechnology Information (NCBI) database 

and as confirmation, from the Universe Protein Resource, UniProt Knowledgebase 

(UniProtKB) database.  

NCBI 

Using the URL https://www.ncbi.nlm.nih.gov/, the gene name according to the literature 

articles, e.g. Opc was entered in the query field. The subsequent protein was identified and its 

ID entered, with N. meningitidis as the species / microorganism. The amino acid sequence 

was extracted and saved for further analysis in the FASTA format 

UNIPROT 

The extraction of N. meningitidis sequences was done by accessing the URL 

https://www.uniprot.org/. On the home page of UniProtKB, the keyword e.g. “Opc (N. 

meningitidis receptor)” was entered into the “query” box followed by selecting, the Boolean 

operator “AND” as well as Neisseria meningitidis. This was followed by selecting the 

“Search” button. A list of proteins which matched the keyword was generated. The first result 

matching the search was selected and under sequence, sequence data in FASTA format was 

chosen and the sequences copied and saved.  

3.7. Results and Discussion 

3.7.1. Outer membrane receptors identified for N. meningitidis in the literature 

Based on literature reviewed, the receptors associated to N. meningitidis, have been identified 

as seen in Table 3.1. The highlighted receptors are discussed more in detail below. 
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Table 3.1: Summary of N. meningitidis Adhesins and Cell Surface Structures identified from 

the literature 

Receptors Expression 

Opc only expressed by N. meningitidis 

Opa expressed by both meningococci and gonococci and some 

commensal strains 

PorA expressed in all strains of meningococci 

PorB meningococci have both PorA and PorB. N. lactamica and 

N. polysaccharea, N. gonorrhoeae 

NhhA/ Msf in all meningococcal isolates 

NadA ~50% of meningococcal strains, but absent in both N. 

gonorrhoeae and N. lactamica. 

MspA/Aus1 not present in all meningococcal strains 

App shares ~95% and 73% identity with N.gonorrhoeae and N. 

lactamica  

TpsA/HrpA - TpsB/HrpB homology to FHA of B. pertussis 

GapA-1 in meningococci (>97% identical) and also present in 

gonococci (99% identical to strain FA1090) and N. 

lactamica  

ACP commensal strains such as N. lactamica, N. polysaccharea 

and N. sicca 

Enolase, DnaK, Peroxidedoxin moonlighting proteins in various spp. 
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NHBA/GNA2132 found in several other Neisseria species, 

RmpM shares sequence and structural similarity of the OmpA 

protein from Escherichia coli 

fHbp present in most meningococcal strains, a few invasive 

isolates with either have a frameshifted gene or express 

fHbp at minimal levels 

NaIP/AspA not all strains of meningococci 

TspA TspA amino acid sequences were also identified in N. 

polysaccharea 

Tfp/type IVpilus expressed diverse set of bacterial species 

FBA meningococcal isolates also 70%, 67% and 65% identical 

to FBA from Cupriavidus metallidurans, Xanthobacter 

falvus and Synechocystis spp. 

 

Meningococcal adhesins can be divided into three broad structural classes, the polymeric 

hair-like pili, the integral outer membrane proteins (OMP), including the opacity proteins 

Opa and Opc, which are usually beta barrel structures, and the ATs (including meningococcal 

serine protease (Msp)A), meningococcal surface fibril (Msf, or Neisseria hia homolog 

(Nhh)A), and Neisseria adhesin (Nad)A (Hill and Virji, 2012). 

Opacity associated proteins being the most abundant adhesins located in the neisserial outer 

membrane facilitate the interaction of bacteria with a number of host cell types, including 

epithelial cells on mucosal surfaces and various immune cells, indicating a direct effect on 

the immune response (Sadarangani et al., 2011).  
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Opc 

The Opc proteins, expressed only by N. meningitidis are β-barrelled transmembrane 

molecules in the outer membrane with the Opa proteins having four, and the Opc proteins 

five, surface loops (Sa E Cunha et al., 2009, Simonis and Schubert‐Unkmeir, 2016). They are 

basic in nature and target several human receptors of which at least one class of receptors, the 

heparan sulfate proteoglycans, is recognized by both these proteins particularly on epithelial 

cells (Sa E Cunha et al., 2009). 

Studies on the mechanisms of Opc-mediated interactions with human endothelial cells, 

integrins were identified as the major receptors at the apical surfaces of the cells. Binding to 

integrins occurred via a sandwich mechanism in which Opc was shown to first bind to serum-

derived integrin receptors, particularly vitronectin and to a lesser extent fibronectin (Figure 

3.6), and subsequently form a trimolecular complex with the αvβ3 and α5β1 integrins (Sa E 

Cunha et al., 2009).  

Opa and Opc are similar in size (27–31 kDa) and were initially known as Class 5 proteins 

(Hill et al., 2010). The crystal structure of Opc was solved in 2002 and has been determined 

to 2.0 Ǻ resolution showing that this adhesin adopts a ten-stranded β-barrel presenting five 

largely invariant surface-exposed loops (Hill et al., 2010, Hung and Christodoulides, 2013). 

Opc expressed in N. meningitidis, but not N. gonorrhoeae, is also an important adhesion 

(Virji, 2009). (Figure 3.5) Although Opc is not present in every N. meningitidis strain, 

interestingly, epidemiological studies reported meningococcal strains lacking the Opc gene 

caused severe sepsis with fatal outcomes, but not meningitis, suggesting that Opc could play 

a key role in the induction of meningitis in IMD (Simonis and Schubert‐Unkmeir, 2016). 
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Figure 3.5: Structure of N. meningitidis Opc protein. This Figure was extracted from  (Hill et 

al., 2010). 

 

Figure 3.6: Interactions between Neisseria Opa and Opc proteins and human host cells 

involves multiple binding receptors (Hung and Christodoulides, 2013). 
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Porin (Por) 

N. meningitidis expresses two distinct porins, PorA (formerly class 1 protein) and PorB 

(formerly class 2/3 protein based on molecular mass). Both porins are β-barrel proteins, 

which associate into trimers in the bacterial outer membrane through which small hydrophilic 

nutrients diffuse into the cell. Individual porins vary in molecular mass with PorA (∼46 kDa) 

being expressed in all strains of meningococci (Hill et al., 2010). Porins comprise up to 60% 

of the proteins present in the Neisseria OM. PorA and PorB of N. meningitidis are trimeric 

voltage-gated pores that mediate ion exchange between the organism and its environment 

(Hung and Christodoulides, 2013; Peak et al., 2016). 

 AT Adhesin: NhhA  

NhhA, Neisseria Hia/Hsf homologue, is an outer membrane protein homologous to the Hia 

and Hsf adhesins of Haemophilus influenza. These proteins exhibit divergent functional 

properties and often contribute to bacterial adherence, invasion, micro colony formation, and 

transepithelial trafficking or serum resistance. The meningococcal NhhA protein is an AT 

adhesin that is present in all tested meningococcal strains (Sjölinder et al., 2008). 

In a study by Scarselli et al., 2006, it was demonstrated that NhhA facilitates bacterial 

attachment to host cells in vitro.  Sjölinder et al., 2008 demonstrated that the protein is 

essential for bacterial colonization of the nasopharyngeal mucosa and NhhA has a 

determining role in protecting bacteria from host innate immune defences, which 

subsequently affects the outcome of the disease process. Taken together, the results of this 

study revealed a multifaceted impact of NhhA during the development of meningococcal 

disease.  

A Bioinformatic analysis of meningococcal outer-membrane adhesins by Andreae et al., 

2018 revealed that Msf (Msf; also referred to as Neisseria hia homologue A, NhhA) is found 
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in all meningococcal isolates, and displays diversity in the N-terminal domain. The 

Meningococcal surface fibril (Msf), binds to the activated form of vitronectin (Vn) (Figure 

3.7) to increase N. meningitidis survival in human serum (Hill et al., 2015). The C-terminal 

domain of NhhA is able to form a translocator domain that allows localization of the protein 

to the bacterial surface (Sjölinder et al., 2012). 

 

Figure 3.7: Schematic review of N. meningitidis surface molecules and their interactions 

with human host cell binding ligands (Hung and Christodoulides, 2013) 

3.7.2. N. meningitidis receptors chosen to interact with the AMPs 

The selection of receptors was based on specificity to N. meningitidis and meningococcal 

strains thus allowing for a potential LFD to identify N. meningitidis specifically as well as 

other meningococcal strains. Binding studies within this research will determine the AMP/s 

to be used within a potential LFD. 
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Table 3.2: Selected N. meningitidis receptors to use as targets to the putative AMPs 

Receptors Sensitivity 

Opc expressed only by N. meningitidis 

NhhA OMP present in all meningococcal strains 

PorA expressed in all strains of meningococci 

 

3.7.3. Retrieval of receptor sequences 

3.7.3.1. NCBI sequences of N. meningitidis receptors selected  

The retrieved sequence of the receptor NhhA, resulted in 591 amino acids (aa), Opc 272 aa 

and PorA 392 aa. The sequences of the N. meningitidis proteins extracted from NCBI are 

shown in Appendix B: Table B.1, B.3 and Table B.5. 

3.7.3.2. UniProt identification of N. meningitidis amino acid sequences of chosen 

receptors 

As in the NCBI database the search of UniProt resulted in identical sequences of NhhA 591 

aa, although it was extracted from the N. meningitidis serogroup B (strain MC58), it is the 

only sequence reviewed and records with information extracted from literature and curator-

evaluated computational analysis as seen in Figure 3.8.  
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Figure 3.8: Taken from UniProt displaying the Reviewed result for NhhA 

The Opc 272 aa, sequence extracted were unreviewed for the organism N. meningitidis. The 

PorA 392 aa sequences were reviewed for the N. meningitidis serogroup B (strain MC58) as 

well. The sequences of the N. meningitidis proteins extracted from UniProt are shown in 

Appendix B: Table B.2, B.4 and Table B.6. 

3.8. Summary 

This chapter focused on the identification of N. meningitidis receptors and linking these 

receptors to pathways and secretion mechanisms to determine the most significant OM 

protein for the novel AMPs to interact with through literature mining. The choice of receptor 

to be targeted by the AMP/s are based on its unique expression within N. meningitidis such 

that a diagnostic test using AMP/s selectively identify this bacterium within a patient sample.  

Particularly in a case were an individual has been infected by various strains of meningococci 

it will be of great importance that the more virulent strains are identified for the best 

treatment options. 

 Two databases were used, for cross referencing of the extracting amino acid sequences of the 

three selected receptors, namely NCBI and UniProt which yielded identical amino acid 

sequences for the selected proteins. 
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Reasons and justifications why certain OMPs where not selected over the three N. 

meningitidis proteins (NhhA, Opc and PorA) for further use in this study; as the aim of this 

study is to detect N. meningitidis with high specificity only. 

1) The conservation of NadA, fHbp, and NHBA might suggest that they are not naturally 

immunologically exposed (during colonising infection) and as such might not be as 

immunogenic as more variable outer membrane proteins (Sadarangani and Pollard, 

2010). The fHbp gene is present in strains of commensal Neisseria species that are 

closely related to N. meningitidis (Seib et al., 2015). 

2) Neisserial App (Adhesion and penetration protein) shares a high degree of homology 

to Hap (Haemophilus adhesion and penetration protein, the product of the hap gene) 

in Haemophilus influenza. All Neisseria species possess the app gene and the 

meningococcal App protein amino acid sequence shares ~95% and 73% identity with 

N. gonorrhoeae and N. lactamica App, respectively (Hung and Christodoulides, 

2013). 

3) Glyceraldehyde 3-phosphate dehydrogenases (GAPDHs) are cytoplasmic glycolytic 

enzymes, with N. meningitidis having two genes, gapA-1 and gapA-2, encoding 

GAPDH enzymes (Tunio et al., 2010). GapA-1 is surface-located and highly 

conserved in meningococci (>97% identical) and also present in gonococci (99% 

identical to strain FA1090) and N. lactamica (90% identical to strain ST640) 

(Tommassen and Arenas, 2017). 

4) Hung et al., 2013 demonstrated adhesin complex protein (ACP), as a protein located 

on the surface of meningococci and expressed by patient and carriage strains, 

including N. sicca, N. polysaccharea, and N. lactamica 

5) NHBA is a surface-exposed lipoprotein that is a target of both meningococcal and 

human proteases (Sadarangani and Pollard, 2010). NHBA gene is ubiquitous in 

http://etd.uwc.ac.za/



 

94 
 

meningococcal strains of all different serogroups and it has also been found in several 

other Neisseria species, including N. lactamica, N. polysaccharea and N. Flavescens 

(Serruto et al., 2010). 

6) The C-terminal domain  of rmpM belongs to a family that shares sequence and 

structural similarity with the C-terminal domain of the OmpA protein from 

Escherichia coli (Maharjan, et al., 2016). 

7) N. meningitidis is the only species of the genus Neisseria that possesses a functional 

nalP gene/protein, although nalP is not present in any commensal species and is 

present in the human pathogen Ngon (Oldfield et al., 2013). 

8) Similar TspA amino acid sequences were also identified in N. polysaccharea, but not 

in N. lactamica or Ngon (Hung and Christodoulides, 2013). 

9) Shams et al., 2016 demonstrated that FBA is present on the surface of pathogenic and 

nonpathogenic species of Neisseriae.  

10) Opacity-associated (Opa) protein is commonly expressed in both meningococci and 

gonococci. Expression of Opa proteins has been demonstrated in some commensal 

strains, including N. lactamica, N. subflava and N. flavescens (Hung and 

Christodoulides, 2013).  

In conclusion, only proteins PorA, NhhA and Opc will be selected for further studies to 

identify the ideal receptor to bind the AMPs for accurate and specific detection of MD. 
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Chapter 4 

Physicochemical Characterization of the putative AMPs and 

predicting the 3D structures of the Anti-N. meningitidis putative AMPs and N. 

meningitidis receptors 

4.1. Introduction 

Although AMPs are a diverse group of molecules in terms of sequence, structure and sources, 

there are several properties that are common to almost all AMPs. AMPs display a net positive 

charge ranging from +2 to +13, are ≈10–40 amino acids long and may contain a specific 

cationic domain. The cationic nature can be attributed to the presence of basic amino acid 

residues lysine and arginine (and sometimes histidine) with the presence of hydrophobic 

residues alanine, leucine, phenylalanine or tryptophan (greater than 30%) being common, and 

other residues such as isoleucine, tyrosine and valine also present (Schmidtchen et al., 2014; 

Travkova et al., 2017; Lee et al., 2017; Kumar et al., 2018). Hydrophobic interactions are 

among the most important driving forces in nature and in biology. These interactions 

determine the structure of proteins and cells as well as the self-assembly of membranes. The 

hydrophobic effect plays a key role in ligand binding processes (Schauperl et al., 2016). 

Amphipathicity which is shared by all antimicrobial peptides refers to the relative abundance 

of hydrophilic and hydrophobic residues or domains within the AMPs. It can be thought of as 

the balance between the cationic and hydrophobic residues, not just at the primary sequence 

level, but also in terms of the 2D or 3D structures of the AMPs (Kumar et al., 2018). 

Amphipathicity is very important for binding to microbial membranes and can be achieved 

via a multitude of peptide conformations (Travkova et al., 2017). 
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The initial event in attachment is the adsorption onto the outer membrane surface of the 

microbe, which can occur within tens of nanoseconds and is largely mediated by electrostatic 

interactions between cationic AMPs and anionic lipopolysaccharides (LPS) molecules. 

Characteristics of the interaction of AMPs with the outer and cytoplasmic membranes 

include: length of the AMP sequence, the total and density of cationic charges, the total 

number of hydrogen bond donors and the 3D conformation of the AMP in solution and at the 

membrane (Kang et al., 2012; Mihajlovic and Lazaridis, 2012; Schmidtchen et al., 2014; 

Juba et al., 2015; Li et al., 2017). Hence the electrostatic and hydrophobic interactions are 

two driving forces that steer an AMP toward and into the bacterial membrane (Li et al., 

2017). 

In a study by Mihajlovic and Lazaridis 2010 they used molecular dynamic simulations to 

investigate binding preferences of antimicrobial peptides and showed that four AMPs 

(alamethicin, melittin, a magainin analogue, MG-H2, and piscidin 1) bind strongly to 

membrane pores. 

The physicochemical properties are directly derived from the peptide sequence and comprise 

a complete set of parameters that accurately describe AMPs. Torrent et al., 2011 concluded 

that sequence derived parameters are enough to characterize antimicrobial peptides. Various 

tools for physicochemical characterisation have been created and are embedded in databases 

such as APD and Bactibase. 

AMPs are found to exist in a wide range of secondary structures such as 𝛼-helices, 𝛽-strands 

with one or more disulphide bridges, loop and extended structures (Pushpanathan et al., 2013; 

Schmidtchen et al., 2014; Travkova et al., 2017). In silico modelling reveals that both the 

alpha helical and beta-sheet conformations are amphiphilic (Li et al., 2017). Torrent et al., 

2011 observed that AMPs tend to be randomly coiled in solution, with a low tendency to 
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present any defined structure. Many AMPs form α-helices, particularly when interacting with 

lipid membranes (Schmidtchen et al., 2014). 

The shape and the physicochemical properties on the protein molecular surfaces govern the 

specific molecular interactions in protein-ligand complexes. Therefore, studies as diverse as 

those on protein folding, protein conformational stability, inter- and intra- protein 

interactions, molecular recognition and docking; as well as applications-orientation, such as 

drug design, protein and peptide solubility, crystal packing and enzyme catalysis, benefit 

from an accurate and precise representation of the molecular surfaces (Nicolau Jr et al., 

2014). 

Great progress has been made in structure determination of proteins/peptides using 

experimental methods, such as X-ray crystallography, high-resolution electron microscopy 

and nuclear magnetic resonance (NMR) spectroscopy, these approaches are generally still 

expensive, time consuming, and not always applicable. Computational methods for predicting 

the 3D structures of proteins enjoy a high degree of interest and are the focus of many 

research and service development efforts (Schwede et al., 2008). I-TASSER is one such a 

program for 3D structure determination and will be used in this study. 

4.2. Physicochemical Parameters of the putative anti-N. meningitidis AMPs 

4.2.1. Antimicrobial Peptide Database (APD) 

The APD is a comprehensive database for peptide discovery, nomenclature, classification, 

information search, calculations, prediction and design of AMPs. This database can be 

accessed at the website (http://aps.unmc.edu/AP). To include the calculation and prediction 

section of APD the following URL must be accessed at 

(http://aps.unmc.edu/AP/prediction/prediction_main.php). The host defense AMPs registered 

in APD cover the five kingdoms (bacteria, protists, fungi, plants, and animals) or three 

http://etd.uwc.ac.za/

http://aps.unmc.edu/AP


 

98 
 

domains of life (bacteria, archaea, and eukaryota) (Wang et al., 2016). In the peptide property 

calculations section, in addition to peptide length, net charge, amino acid composition and 

Boman index previously found in APD, and in an updated version, APD3 enables the 

calculation of molecular weight, molecular formula, molar extinction and coefficient. APD 

also provides identification of the most similar sequences. Once a new peptide is sequenced, 

one would like to know which known sequences it most resembles, which can be conducted 

in the prediction interface of APD (Wang et al., 2016). 

The Prediction interface allows users to input a new peptide sequence. The program will 

carry out a residue analysis on the peptide. It also predicts whether the new peptide has the 

potential to be antimicrobial based on some known principles. In terms of structure, only 

some simple predictions can be made. For instance, when the hydrophobic residues appear 

every two to three residues in the peptide sequence, an amphipathic helix will be predicted 

(Wang and Wang, 2004). However, I-TASSER will be used for structure prediction in this 

study (see 4.3.1.). 

4.2.2. Bactibase 

The Bactibase database is a data repository of bacteriocin natural antimicrobial peptides 

freely available at (http://bactibase.pfba-lab.org); a web-based platform enabling easy 

retrieval, via various filters, of sets of bacteriocins that will enable detailed analysis of a 

number of microbiological and physicochemical data for both Gram-positive and Gram-

negative bacteria  (Hammami et al., 2007). 

4.3. De novo modelling of the 3D Structure of N. meningitidis receptors and Putative 

Anti-N. meningitidis AMPs  

De novo (or ab initio) methods aim to predict the structure of a protein purely from its 

primary sequence, using principles of physics that govern protein folding and/or using 
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information derived from known structures but without relying on any evolutionary 

relationship to known folds (Schwede et al., 2008). The term ab initio prediction often refers 

to the subset of de novo methods that rely on energy functions based solely on 

physicochemical interactions. Such approaches, using full-atom simulations with empirical 

force fields as well as explicit and implicit solvent models, have been successful in predicting 

the folding of short peptides (Schwede et al., 2008). The popularity of the de novo (or ab 

initio) method means that “threading” became a generic term to describe carrying out protein 

fold recognition (McGuffin, 2008).  

Fold recognition and threading techniques are a comparatively fast and inexpensive way to 

build a close approximation of a structure from a sequence, without the time and costs of 

experimental procedures (McGuffin, 2008). The structural biology of proteins is much more 

complex, where each protein has its own unique 3D structure. Since small changes in the 

sequence of a protein can have strong effects on its biophysical properties, experimental 

determination of protein structures is a laborious and often unpredictable endeavour. The 

computational modelling of a protein’s structure has therefore attracted substantial interest in 

the field of bioinformatics to complement experimental structural biology efforts to 

characterize the protein universe (Schwede, 2013). De novo modelling methods do not 

explicitly rely on whole known structures as templates. Thus, the structure of any protein can 

be predicted by these de novo methods (Schwede et al., 2008).  

4.3.1. I-TASSER (Iterative Threading ASSEmbly Refinement) 

The iterative threading assembly refinement (I-TASSER) server is an integrated platform for 

automated protein structure and function prediction based on the sequence-to-structure-to-

function paradigm. Starting from an amino acid sequence, I-TASSER generates three-

dimensional (3D) atomic models from multiple threading alignments and iterative structural 
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assembly simulations (Roy et al., 2010). The I-TASSER server is freely available to the 

academic community at http://zhang.bioinformatics.ku.edu/I-TASSER (Zhang, 2008). 

The community-wide Critical Assessment of Structure Prediction (CASP) experiments have 

been designed to obtain an objective assessment of the state-of-the-art in the field, where I-

TASSER was ranked as the best method in the server section of the recent 7th CASP 

experiment and has been ranked as the best method for the automated protein structure 

prediction in the last two CASP experiments (Zhang, 2008)  

For each submitted sequence, the following items are returned by email after I-TASSER 

modeling to estimate the accuracy of the I-TASSER predictions: (1) up to five predicted 

models ranked based on the structure density of the SPICKER clustering (algorithm to 

identify the near-native models from a pool of protein structure decoys); (2) Confidence score 

(C-score) of all the I-TASSER models; (3) estimated Template Modelling score (TM-score) 

and Root Mean Square Deviation (RMSD) for the first model in the form of Estimation ± 

Deviation (Zhang, 2008). 

The C-score is an estimate of the quality of the predicted models and is normally in the range 

[−5, 2] and a model of C-score >−1.5 usually has a correct fold, with TM-score >0.5. The 

biological functions of the protein, including ligand-binding sites, enzyme commission 

number, and gene ontology terms, are then inferred from known protein function databases 

based on sequence and structure profile comparisons (Yang and Zhang, 2015).  

A large-scale benchmark test demonstrates a strong correlation between the C-score and the 

TM-score of the first models with a correlation coefficient of 0.91 (Zhang, 2008, Yang et al., 

2015). Combining C-score and protein length, the accuracy of the I-TASSER models can be 

predicted with an average error of 0.08 for TM-score and 2 Å for RMSD (Zhang, 2008). 
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Identifying template proteins from solved structure databases which have a similar structure 

or similar structural motif as the query sequence, with TM-score <0.17 meaning random 

predictions and TM-score >0.5 meaning correct topology for all sizes of proteins. As a 

consequence of the sensitivity of TM-score on structural topology, it was found that the 

correlation coefficient of C-score and TM-score (0.91) is much higher than that of C-score 

and RMSD (0.75). The estimation of TM-score is usually more reliable than that of RMSD 

for the I-TASSER models, i.e. TM-score estimation has usually a much smaller systematic 

error than RMSD estimation (Roy et al., 2010). 

As the biological function of protein molecules is determined by their 3D shape (which 

dictates how the protein interacts with receptors or other protein molecules), one of the most 

common motivations for predicting the protein structure is to use the structural information to 

gain insight into the protein’s biological function (Roy et al., 2010). 

The users can view the structures of these files with any professional molecular visualization 

software e.g., PyMOL and RasMol and draw customized figures for various purposes (Yang 

and Zhang, 2015). 

4.4. Visualization of the 3D Structure of N. meningitidis receptors and Putative Anti-N. 

meningitidis AMPs   

4.4.1. PyMol 

PyMol is a free cross-platform molecular graphics system made possible through recent 

advances in hardware, internet, and software development technology. PyMOL has been 

released under a completely unrestrictive open-source software license so that all scientists 

and software developers can freely adopt PyMOL and then distribute derivative works based 

on it without cost or limitation. PyMOL supports most of the common representations for 

macromolecular structures: wire bonds, cylinders, spheres, ball-and-stick, dot surfaces, solid 
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surfaces, wire mesh surfaces, backbone ribbons, and cartoon ribbons (DeLano, 2002). 

Originally designed to: (1) visualize multiple conformations of a single structure [trajectories 

or docked ligand ensembles] (2) interface with external programs, (3) provide professional 

strength graphics under both Windows and Unix, (4) prepare publication quality images, and 

(5) fit into a tight budget (DeLano and Bromberg, 2004).  

PyMOL can be downloaded for free via the internet at http://www.pymol.org and currently 

runs on a variety of platforms: Windows, Linux, IRIX, Mac OSX, and Tru64 Unix (DeLano, 

2002). Visualization is essential to understanding structural biology. Only open−source 

software allows you to surmount problems by directly changing and enhancing the way 

software operates, and it places virtually no restrictions on your power and opportunity to 

innovate (DeLano and Bromberg, 2004).  

4.5. Aims 

The aim of this chapter was to determine whether the peptide sequences identified by 

HMMER conform to known AMPs both in physicochemical characteristics as well as 

structure. The objectives were to: 

➢ Characterise the predicted peptide sequences based on their physicochemical 

properties to ensure that they conform to known AMPs using APD and Bactibase 

➢ Predict the 3D structures of the N. meningitidis receptors and the putative AMPs 

using I-TASSER server  

➢ Visualise the 3D structures generated using the PyMOL 1.3. Software  
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4.6. Materials and methods 

 

Figure 4.1: Flow chart of the methodology used in Chapter 4 

4.6.1. Determination of the Physicochemical Parameters of the Putative Anti-N. 

meningitidis AMPs  

The physicochemical properties studied of the nine identified putative anti-N. meningitidis 

AMPs included: (i) the number of residues, (ii) total hydrophobic ratio, (iii) total net charge, 

(iv) the Isoelectric point, (v) the Boman Index (or protein binding potential), (vi) molecular 

weight, (vii) the instability index of the proteins, (viii) Arginine (Arg) % and Lysine (Lys) %, 

(ix) other amino acids with high %,  using the calculation and prediction section in APD and 

in Bactibase and is presented in Table 4.1. 

4.6.1.1. Physicochemical Properties using APD 

The APD database was used in this chapter for the calculation and characterization of the 

nine putative anti-N. meningitidis AMPs.  All nine putative AMP sequences were submitted 

to the AMP characterization software Antimicrobial Peptide Database (calculations & 

prediction tab) (http://aps.unmc.edu/AP/prediction/prediction_main.php) to determine the 

Characterization of the nine putative AMPs based 
on physicochemical properties using the APD and 

Bactibase database

3D structure modeling of the Nmen receptors and 
putative AMPs using I-TASSER 

Visualise the 3D structures using the PyMOL 1.3. 
Software 
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characteristics of each putative AMP. Using the prediction interface of APD, the sequence of 

each AMP separately were copied and placed under the “Please input your peptide sequence 

(one-letter code for the standard 20 amino acids and no space” instruction then ‘Submit’ was 

selected.  

4.6.1.2. Physicochemical Parameters Analysis within Bactibase  

All nine putative AMP sequences were submitted to the AMP characterization software 

Bactibase (physiochemical properties tab) (http://bactibase.pfba-lab- tun.org/ physicochem) 

to determine the characteristics of each putative AMP. Using the Tools tab, physicochemical 

profile was selected and each physicochemical profile of the query sequence was analysed by 

submitting the nine AMPs sequences individually. Extraction of some physicochemical 

properties from Bactibase, which were not found in APD were all combined in Table 4.1. 

4.6.2. Predicted 3D de novo structures of the Anti-N. meningitidis Putative AMPs and N. 

meningitidis receptors by I-TASSER 

The amino acid sequence of the N. meningitidis receptors and nine AMPs to be modelled 

were inputted in the FASTA format and submitted to the online server of the I-TASSER 

software (http://zhang.bioinformatics.ku.edu/I-TASSER) and the result generated in PDB 

format. 

Depending on the protein size, the I-TASSER modelling procedure takes a maximum of 48 

hours (typically 5–10 hours for a sequence around 200 residues). After the modelling is 

finished, an email is sent, which include the PDB format files of up to 5 predicted models, C-

score of the models, and the predicted RMSD and TM score of the first model. A brief 

explanation of the RMSD, TM-score, and C-score is also provided in the email (Zhang, 

2008). 
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The 3D structure prediction of the N. meningitidis receptors (NhhA, Opc and PorA) was done 

using the I-TASSER server (http://zhanglab.ccmb.med.umich.edu/I-TASSER/) online 

database. The amino acid sequences of the receptors were copied into the input box, ‘run I-

TASSER’ was selected to submit the job. All output files were saved for visualization of the 

structures for the N. meningitidis receptors. 

4.6.3. Visualization using PyMol software. 

The PyMol software was accessed and in the ‘File’ menu, a PDB file was selected 

corresponding to the AMP or receptors 3D structure as generated by I-TASSER. Hide lines 

and show cartoons were selected. The structure was enhanced and saved in two formats the 

PSE and PNG formats.  

4.7. Results and Discussion 

4.7.1. Characterization of the putative AMPs based on Physicochemical Properties in 

APD 

The physicochemical properties of the nine putative anti-N. meningitidis AMPs were 

determined to ensure that these peptides conform to other known AMPs. The output of the 

APD database results were (refer to Table 4.1): 

a) Number of amino acids (residues) 

AMPs are characterized by a short length; they generally comprise less than 50 amino acids. 

This property minimizes the probability of being degraded by bacterial proteases (Osorio et 

al., 2015). All AMPs were short in length ranging from 27-34 amino acids thus falling within 

the range expected for AMPs. 

b) Total hydrophobic ratio  
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The hydrophobicity is an important stabilization force in protein folding. It is considered to 

be the driving force of the peptide to the core of the bacterial membrane (Osorio et al., 2015). 

It was ascertained that all the putative anti-N. meningitidis peptides have hydrophobic values 

that are above 30%, which is the anticipated value for hydrophobicity content of an AMP 

(Table 4.1). The presence of hydrophobic residues (greater than 30%) in AMPs is common 

(Lee et al., 2017). In a study by Chen et al., 2007, they investigated the role of 

hydrophobicity in the antimicrobial activity of a synthetic V13KL AMP by systematically 

decreasing or increasing the hydrophobicity and noted that decreasing AMP hydrophobicity 

was associated with reduced antimicrobial activity. The hydrophobic and positively charged 

domains of indolicidin, a small antimicrobial peptide with 13 amino acids isolated from 

bovine neutrophils, rich in tryptophan (39%) and arginine (23%) residues, are crucial for its 

interactions with bacterial pathogens (Mojsoska and Jenssen, 2015). Although extremely 

variable in length, amino acid composition and secondary structure, all peptides can adopt a 

distinct membrane-bound amphipathic conformation (Nguyen et al., 2011). 

c) Total net charge 

The characterisation of the putative anti-N. meningitidis AMPs based on their net charge 

showed AMPs with a positive total net charge ranging from +1 to +8, contributed to by the 

high percentage of the presence of the positively charged amino acids Lysine and Arginine 

(see Table 4.1) within the respective AMP sequences. Although YYNN4 had 0% Lys and 

YYNN9 had 0% Arg, it had high Arg and Lys percentages respectively. It was shown that out 

of the nine anti-N. meningitidis AMPs, all AMPs have a high net positive charge except for 

YYNN4, YYNN3 and YYNN9, which showed a low positive net charge and this, can be 

attributed to the absence of the positively charged amino acid Lysine within the AMP 

sequence YYNN4, Arg in YYNN9 and low % Lys in YYNN3. AMPs have a positive net 

charge at pH 7, which provides binding specificity to the negatively charged bacterial 
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membranes through electrostatic interactions (Osorio et al., 2015). The antimicrobial activity 

of most of the members of the defensin family appears to be related to their cationicity. 

Human defensin 5 as an example, interacts with the bacterial surface via its arginine residues 

and thus exerts its antimicrobial activity. Replacement of arginine residues at position 9 and 

28 with alanine or lysine residues reduces the antibacterial killing as well as the host cell 

interaction (Mojsoska and Jenssen, 2015). The antimicrobial peptide, human neutrophil 

peptide-1 (net charge +3), appeared to be more effective against S. aureus than human β-

defensin-3 (net charge +11) thus cationicity alone cannot account for selectivity. There is a 

large insertion of Arg and Lys residues at the C terminus of human β-defensin-3 and 

significant bactericidal activity against Gram-positive Staphylococcus aureus at physiological 

salt concentrations (0.154μM) (Schibli et al., 2002; Mojsoska and Jenssen, 2015). The lethal 

concentration of human neutrophil peptide-1 for killing S. aureus NCTC 8530 is 0.8 ± 0.2μM 

(Varkey and Nagaraj, 2005).  

Many linear AMPs are unstructured in an aqueous solution and require a membranous 

environment to adopt a stable amphipathic conformation. Membrane interactions remain 

important even for intracellular- targeting peptides because they must have a means of 

translocation. The cationicity of the AMPs also promotes interactions with negatively 

charged moieties on other biomolecules such as outer membrane lipids, nucleic acids and 

phosphorylated proteins (Nguyen et al., 2011). 

d) Molecular weight (MW) 

The molecular weight is directly related to the length of the amino acid sequence and is 

expressed in units called daltons (Da). AMPs due to its short length are characterized by a 

molecular weight <10 kDa (10000 Da) (Osorio et al., 2015). As seen in Table 4.1, all AMPs 
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molecular weight represented in Da, shows results with low MW in line with the expected 

range. 

e) Boman Index 

The Boman index estimates the potential for one protein to interact or bind to different 

receptors of a pathogen. AMPs tend to not interact with other proteins (the proposed 

mechanism of action is based on the interaction with membranes), so their Boman indices are 

usually less than zero or near 0 (Osorio et al., 2015). An antimicrobial peptide with a Boman 

index value lower or equal to 1 kcal/mol signifies that the peptide will likely exhibit high 

antimicrobial activity with no side effects and a Boman index value of 2.50 to 3.00 will 

indicate multifunctional activity with hormone-like activities (Boman, 2003). 

In other words, a high Boman index value indicates that an AMP will play a variety of 

different roles within the cell due to its ability to interact with a wide range of proteins (Azad 

et al., 2011). The potential protein interaction is an easy way to differentiate the action of 

antimicrobial peptides (protein-membrane) through this index (Osorio et al., 2015).  

The putative Anti-N. meningitidis AMPs, YYNN2, YYNN3, YYNN4 YYNN8 and YYNN9 

has a potential to bind to other proteins based on their Boman indices that are less than 2.5 

kcal/mol. It was observed for YYNN 2, YYNN8 and YYNN 9, a Boman index less than zero, 

meaning that they may be good antimicrobial peptides. The Boman indices of the remaining 

putative AMPs were high, thus indicating that the peptide could be multifunctional with 

hormone-like activities. 

Three peptides, namely LL‐37, PR‐39 and VIP with index values 2.48 or higher are predicted 

to have a high binding potential. VIP is regarded as a neurotransmitter and the 

multifunctional data for the other two would justify these peptides as potential hormones. The 

cecropin‐melittin hybrid CA(1–7)M(2–9) was designed only to be antibacterial and it has a 
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negative index (−0.54). Of the natural peptides, magainin has the lowest index (0.42). It 

predicts a low potential for interaction with receptors with a relatively good correlation 

between the index and the known properties of the respective peptides (Boman, 2003). 

4.7.2. Characterization of the putative AMPs based on Physicochemical Properties in 

Bactibase 

As seen in Table 4.1 the following additional physicochemical parameters were provided by 

Bactibase: 

a) Isoelectric point 

The isoelectric point (pI) is the pH value at which the net charge of a molecule is zero 

(Kozlowski, 2016). It is a variable that affects the solubility of the peptides under certain 

conditions of pH. When the pH of the solvent is equal to the pI of the protein, it tends to 

precipitate and loose its biological function (Torrent et al., 2011). AMPs and non-AMPs have 

similar average isoelectric points of 9.26 and 9.20, respectively. A high positive net charge is 

required for AMPs, whereas it does not represent a distinctive feature in non-AMPs, probably 

due to the diverse functions exerted by these peptides (Torrent et al., 2011). The isoelectric 

point is significant since it represents the pH where solubility is typically minimal. 

Overall, the net charge of the peptide is strongly related to the pH, as seen in table 4.1, where 

AMPs YYNN2, YYNN7 and YYNN8 shows a pI of above 11 and a high positive net charge. 

Although, seen in YYNN9 a low net charge is displayed with a pI of 11.1, this can be due to 

diverse functions exerted by antimicrobial peptides.  

b) Instability Index 

The instability index, an estimate of peptide stability, is based on its amino acid composition 

(Osorio et al., 2015). Antimicrobial peptides tend to be considered stable with index values 
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less than 40 and peptides with values greater than 40 are said to be unstable (Wang and 

Wang, 2004). The instability index of AMPs could predict the peptide to be stable or unstable 

in an in vivo environment, since in protein-peptide interaction biomolecules are in three-

dimensional conformation, thus requiring a stable form. The findings seen in table 4.1, only 

YYNN 2, YYNN8 and YYNN 9 had an instability value less than 40 and the rest of the 

peptides instability values were over 40. 

4.7.3. Predicted in-silico 3D structures of the putative AMPs and N. meningitidis 

receptors 

The amino acid sequences of the putative anti-N. meningitidis AMPs and N. meningitidis 

receptors were submitted to I-TASSER for 3D structure determination and visualized using 

PyMol. 

Based on Table 4.2, the C-score, TM-score and RMSD of the putative anti-N. meningitidis 

peptides and the three N. meningitidis receptors, 3D structures obtained were that of a good 

model. As seen in Figure 4.3, the I-TASSER results indicated that all the predicted structures 

of the putative anti-N. meningitidis peptides contained majorly α-helical structures. 

a) C-Score 

A model generated with a C-score >−1.5 usually has a correct fold, although an estimate of 

the quality of the predicted models and is normally in the range [−5, 2] (Yang and Zhang, 

2015). It was shown that the predicted 3D structures of NhhA, Opc and PorA had a C-score 

of -0.73, -0.17 and -0.72, respectively. Although all the putative anti-N. meningitidis AMPs 

gave C-score values higher than -1.5, except YYNN2 having a C-score of -1.76. YYNN2 C-

score is still within range, which indicated a predicted model of good quality.  
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Table 4.1: Physicochemical properties for the nine putative anti-N. meningitidis AMPs as determined by APD (Wang et al., 2016) and Bactibase 

(Hammami et al., 2007). 

 

AMP  Residues

Total 

hydrophobic 

ratio

Total 

net 

charge 

Molecular 

weight 

Protein-binding 

Potential (Boman 

index) 

Arginine 

%

Lysine 

%

Other amino acids with 

high %

Most 

Common 

amino acid 

Isoelectric 

point

Instability 

Index

Job ID 

number - 

I-TASSER

YYNN1 33 39% 5 3828.493 3.36 kcal/mol 21% 3% Ser 15%; Cysine 12% R 10.00 78.33 S396810

YYNN2 33 51% 8 3724.599 0.82 kcal/mol 9% 15% Ala, Val, Ile 12% K 11.79 19.27 S397251

YYNN3 33 42% 2 3872.584 2.28 kcal/mol 15% 3% Ser, Cys, Ile, Leu 9% R 8.51 53.2 S397304

YYNN4 34 41% 1 3803.33 2.42 kcal/mol 14% 0% Ser 11% R 8.04 42 S397545

YYNN5 33 39% 4 3836.472 3.15 kcal/mol 18% 3% Ser, Cys 12% Leu 9% R 9.11 88.21 S397779

YYNN6 33 39% 4 3800.436 3.08 kcal/mol 18% 3% Ser 15% Cys 12% Leu 9% R 9.11 81.88 S397819

YYNN7 33 42% 6 3784.483 3.04 kcal/mol 21% 3% Ser 15% Cys 12% Leu 9% R 11.17 72.49 S397983

YYNN8 27 51% 6 3067.751 0.65 kcal/mol 7% 14% Ile, Val 11% Ala 14% KA 11.84 38.61 S398034

YYNN9 27 48% 3 2529.055 -1.07 kcal/mol 0% 11% Gly 25% Leu 22% Ala 11% G 11.1 -15.53 S398202

BactibaseAntimicrobial Peptide Database (APD)
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b) TM-Score 

A TM-score > 0.5 indicates a model of correct topology and a TM-score < 0.17 means a 

random similarity (Roy et al., 2010). 

All N. meningitidis proteins and putative anti-N. meningitidis AMPs had TM-scores greater 

than 0.5, meaning that the proteins have correct topology or structural shape (Roy et al., 

2010), except YYNN2 which had a TM-score of +/- 0.50, which meant that the template 

modelling structure used for its structure prediction was not similar to the peptide which 

structure was to be predicted (Roy et al., 2010). 

c) RMSD 

High-resolution models with (RMSD) values in the range of 1–2 Å usually meet the highest 

structural requirements and are sometimes suitable for computational ligand-binding studies 

and virtual compound screening. Medium-resolution models, roughly in the RMSD range of 

2–5 Å, can be used for identifying the spatial locations of functionally important residues 

such as active sites and the sites of disease-associated mutations. Finally, even models with 

the lowest resolution, from an otherwise meaningful prediction, i.e. models with an 

approximately correct topology, predicted using either ab initio approaches or based on weak 

hits from threading, have a number of uses including protein domain boundary identification 

(Roy et al., 2010).  

The RMSD of YYNN3, YYNN4 of the predicted structures had a value between 1-2 Å and 

the RMSD of YYNN8 and YYNN9 of the predicted structures had a value between 2-5 Å.  

The RMSD of YYNN1, YYNN5, YYNN6 and YYNN7 had a value less than 1 Å and the 

three N. meningitidis receptors and YYNN2 of the predicted structures had a value greater 

than 5 Å (see Table 4.2). 

 

http://etd.uwc.ac.za/



 

113 
 

Table 4.2: Quality evaluation scores of the predicted 3D structures by I-TASSER 

AMP Name and N. 

meningitidis receptors  C-score Exp.TM-Score Exp.RMSD (Å) 

YYNN1 0.98  0.85+-0.08 0.5+-0.5 

YYNN2 -1.76  0.50+-0.15 5.3+-3.4 

YYNN3 -0.03  0.71+-0.12 1.9+-1.6 

YYNN4 0.56 0.79+-0.09 1.0+-1.0 

YYNN5 1 0.85+-0.08 0.5+-0.5 

YYNN6 0.99 0.85+-0.08 0.5+-0.5 

YYNN7 0.98 0.85+-0.08 0.5+-0.5 

YYNN8 -0.69 0.63+-0.14  2.8+-2.0 

YYNN9 -1.15  0.57+-0.15 3.6+-2.5 

NhhA -0.73 0.62+-0.14 9.4+-4.6 

Opc -0.17 0.69+-0.12 6.3+-3.9 

PorA -0.72 0.62+-0.14 8.4+-4.5 

 

For the three N. meningitidis receptors, a high RMSD value is observed, but with a good or 

reasonable TM-score. This often happens when the protein is big. In these situations, the user 

should judge the quality of the predicted model based on the expected TM-score rather than 

the expected RMSD (Roy et al., 2010).  

As a consequence of the sensitivity of TM-score on structural topology, Roy, Kucukural et 

al., 2010 found in a benchmark test that the correlation coefficient of C-score and TM-score 

(0.91) is much higher than that of C-score and RMSD (0.75). Therefore, the estimation of 

TM-score is usually more reliable than that of RMSD for the I-TASSER models, i.e., TM-

score has usually a much smaller systematic error than RMSD in the estimation. 

Following physicochemical characterization, Yang and Zhang, 2015 have rigorously 

evaluated the algorithms in the I-TASSER server in community-wide blind experiments and 

demonstrated considerable advantages of this method over peer methods in protein structure 

and function prediction. With numerous feedback from the user community, a variety of new 

developments have been made to the server to improve the quality of the server in atomic-
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level structure refinement, structure-based function annotation, local quality estimation and 

user interface communication (Yang and Zhang, 2015). Based on these constant and current 

method developments, this database provided an accurate and excellent structure and 

functions prediction method for the novel AMPs in this study. 

4.7.4. Visualisation of 3D structures output 

The AMPs showed secondary structures including α-helices and extended shapes. YYNN1, 

YYNN3 YYNN4, YYNN5, YYNN6 and YYNN7 all have similar structures, represented by 

an extended partial α-helical structure or loop structure with partial α-helical secondary 

structure. The AMPs YYNN2, YYNN8 and YYNN9 exhibited secondary structures, 

represented by α-helical structure. It is noted that none of the putative AMPs resulted in β-

sheet structures. Many AMPs form α-helices, particularly when interacting with lipid 

membranes (Schmidtchen et al., 2014). AR-23 is a melittin-related peptide with 23 residues 

that has a high α-helical amphipathic structure which results in strong bactericidal activity 

and cytotoxicity (Zhang et al., 2016). 

Opc has a β-barrel structure with five surface-exposed loops shown by the results obtained by 

I-TASSER server. According to the literature, the structure of Opc is a β-barrel protein also 

with five surface-exposed loops (Hill et al., 2010). 

PorA (formerly class 1 protein) are β-barrel proteins, which associate into trimers in the 

bacterial outer membrane through which small hydrophilic nutrients diffuse into the cell. 

Individual porins vary in molecular mass with PorA (~46 kDa) being expressed in all strains 

(Hill et al., 2010). The same structure was predicted by I-TASSER for this protein (seen in 

Figure 4.2). 
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According to the literature, NhhA is a trimeric autotransporter adhesin (TAA) family of 

secreted Gram-negative OM proteins and is capable of trimerization to form a complete β-

barrel (Hung and Christodoulides, 2013). 

The NhhA structure was predicted with good topology although showing a low C-score 

value, indicating a lack of good templates in the protein structure library, this is seen in the 

structural difference of the prediction by the I-TASSER server, where NhhA was not 

predicted as a trimeric β-barrel.  

Ab initio modeling of medium-to-large size proteins without using templates is a major 

challenge in the field (Roy et al., 2010). 

                      

YYNN1      YYNN2 
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YYNN3      YYNN4 

       

YYNN5      YYNN6 

                              

  YYNN7                         YYNN8                           
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YYNN9      NhhA 

                                

 Opc            PorA 

Figure 4.2: 3D structures of putative anti-N. meningitidis AMPs (YYNN1, YYNN2, 

YYNN3, YYNN4, YYNN5, YYNN6 YYNN7, YYNN8 and YYNN9) and N. meningitidis 

receptors (NhhA, Opc and PorA) as predicted by I-TASSER. 

4.8. Summary 

The aim of this chapter was to determine that the peptide sequences identified by HMMER 

(Chapter 2) conform to known AMPs both in physicochemical characteristics as well as 3D 

structure. Their physicochemical properties were predicted using APD and Bactibase. The 

predication of the 3D structures of the putative AMPs as well as that of the N. meningitidis 

receptors were carried out using the I-TASSER server and visualized using the PyMOL 1.3. 

Software. 

The results obtained from APD and Bactibase indicates that the identified peptides conform 

to known AMPs based on their physiochemical characteristics. In addition, the 3D structures 

of the putative anti-N. meningitidis AMPs and the receptors of N. meningitidis were of good 

quality; based on their C-score, TM-score and RMSD value as determined by I-TASSER. 

The putative AMPs that stood out with good structural prediction based on C-score, TM-

score and RMSD and considered most suitable for computational ligand-binding studies were 
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YYNN3 and YYNN4. I-TASSER results indicated that all the predicted structures of the 

putative anti-N. meningitidis peptides contained majorly α-helical structures with the N. 

meningitidis protein structures obtained, the same as seen in the literature.  
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Chapter 5 

In Silico Site-Directed Mutagenesis Study 

5.1. Introduction 

Site-directed mutagenesis (SDM) is a powerful tool for discovering the importance of an 

amino acid in the function of the protein. Changes in amino acid type can reveal sites that are 

important in maintaining the structure of the protein. Conversely, when investigating 

functionally interesting sites, it is important to choose replacement residues that are unlikely 

to affect structure dramatically (Betts and Russell, 2007). Experimental or computational 

SDM can be applied to optimize the specificity of a peptide for its target (Vanhee et al., 

2011). 

Experimentally, SDM like alanine scanning mutagenesis and experimental biochemical 

identification methods, such as crystallographic complex determination, are costly and time-

consuming. Instead, computational methods predict ‘hotspots’ residues with higher efficiency 

and lower cost (Tuncbag et al., 2009; Aumentado-Armstrong et al., 2015; Qiao et al., 2018; 

Wang et al., 2018). ‘Hotspot’ residues of proteins are fundamental interface residues that help 

proteins perform their functions. In the binding interface, ‘hotspots’ are packed significantly 

more tightly than other residues and are key in understanding binding mechanisms and the 

stability of protein-protein interactions. The formation of biological complexes, such as 

protein-based complexes, is generally accomplished by the presence of single residues with 

high binding affinity (Tuncbag et al., 2009; Ramos and Moreira, 2013; Cukuroglu et al., 

2014).  

The binding affinity and the specificity of the protein-protein interactions are provided by 

energetically important residues. Mutations of these residues cause dissociation of the 

proteins or force them to change their binding modes (Cukuroglu et al., 2014). In silico 
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mutagenesis of interaction interfaces has revealed that peptide interfaces contain ‘hotspot’ 

residues, reminiscent of those found in protein–protein interfaces (Vanhee et al., 2011).  

In silico SDM is simple, fast, has a low computational cost and can be applied to a wide 

range of proteins providing a correct anatomic image of an interface. It can be used prior to 

an experimental investigation helping in the ‘hotspot’ detection and the choice of the amino 

acids to mutate (Moreira et al., 2007), potentially increasing the binding affinity between the 

receptor and the peptide/ligand. 

Probably the most common broad division of amino acids is those that prefer to be in an 

aqueous environment (hydrophilic) and those that do not (hydrophobic). The latter can be 

divided according to whether they have aliphatic or aromatic side chains (Betts and Russell, 

2007). In SDM, consideration of the physical and chemical properties of the amino acids 

guides the choice of replacements, along with knowledge of the structure of the protein (Betts 

and Russell, 2007).   

Consequences of substitutions were examined as shown by Betts and Russell, 2007. When 

considering a mutation, it is important to consider how conserved the position is within other 

homologous proteins. Conservation across all homologues (paralogues and orthologues) 

should be considered carefully. These amino acids are likely to play key structural roles or a 

role in a common functional theme (i.e. catalytic mechanism). Other amino acids may play 

key roles only in the particular orthologous group (i.e. they may confer specificity to a 

substrate), thus meaning they vary when considering all homologues (Betts and Russell, 

2007). Darnell et al., 2007 proposed prediction of ‘hotspots’ with computational alanine 

scanning method (using atomic contacts, physicochemical properties and shape specificity 

contributions), as a hybrid computational model combining decision tree. The technique of 

SDM has been used to characterize gene and protein structure–function relationships, 
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protein–protein interactions, binding domains of proteins, or active sites of enzymes for 

decades (Carrigan et al., 2011). 

Computational approaches for the prediction of interaction sites are based on an attempt to 

identify general features that are shared by many interaction sites and then use these features 

to identify new putative interaction sites (Ofran, 2009). The machine-learning approaches try 

to learn the complicated relationship between ‘hotspot’ and various residue features and then 

distinguish hot spots from the interface residues (Wang et al., 2018). 

There has been considerable interest applying machine-learning methods to predict ‘hotspots’ 

such as Neural Networks (Ofran and Rost, 2007), Decision Trees (Darnell et al., 2007;  

Darnell et al., 2008), Support Vector Machines (Zhu and Mitchell, 2011) and Random 

Forests (Wang et al., 2012), for developing computational prediction methods to complement 

the mutagenesis experiments. 

Several algorithms have been developed for prediction and include energy-based methods, 

such as Robetta and FOLDEF, which make a prediction based on an estimate of the energetic 

contribution to binding for every interface residue. Also, knowledge-based methods that try 

to learn the complex relationship between ‘hotspots’ and various residue features in training 

data and then predict new ‘hotspots’(Wang et al., 2012).  

Overall, computational approaches have become a valuable complement to experimental 

approaches and can reduce the number of mutations that experimental researchers have to 

pursue when attempting to establish principles about binding mechanisms (Xia et al., 2016). 

For the purpose of this work the next section will focus on KFC for the prediction of ‘hot 

spot’ residues.  
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5.2. Knowledge-based FADE and Contacts (KFC) Server 

The Knowledge-based FADE and Contacts (KFC) Server is a web-based machine learning 

approach for the prediction of ‘hotspots’ and is accessible at http://kfc.mitchell-lab.org 

(Darnell et al., 2008). K-FADE uses shape specificity features calculated by the Fast Atomic 

Density Evaluation (FADE) program, and K-CON uses biochemical contact features. The 

combined KFADE/CON (KFC) model displays better overall predictive accuracy than 

computational alanine scanning (Robetta–Ala) (Darnell et al., 2007; Chen et al., 2013), 

analysing the features of experimentally determined ‘hotspot’ residues from protein 

complexes having known structures. Knowledge-based models are created from this data to 

predict ‘hotspot’ residues in new protein complexes (Darnell et al., 2008). 

A machine learning algorithm analyses these features and produces a model for predicting 

new ‘hotspots’. K-FADE and K-CON predict several ‘hotspot’ that are missed by Robetta–

Ala, further illustrating that knowledge-based methods improve the scope and accuracy of 

‘hotspot’ predictions within protein interfaces. KFC method is considerably faster than 

Robetta–Ala. By joining forces, KFC and Robetta–Ala (KFCA) together predict nearly three-

quarters of experimentally observed ‘hotspot’ residues. The server is organized into three 

main sections: the submission page, the queue and the job viewer. On the submission page, 

the user provides a protein structure and defines the interface to be analysed. Next, the 

submitted job enters the server’s queue for processing. Afterwards, the job viewer 

superimposes the results from the KFC analysis onto the protein structure. These tools help 

the user to quickly analyse a protein interface and to simply visualize the structural 

environment around putative hot spots (Darnell et al., 2008). 
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5.3. Aim 

The aim of this chapter was to use the parental AMPs as templates to generate derivative 

AMPs that display increased predicted binding affinity for the NhhA, Opc and PorA proteins 

using site directed mutagenesis. 

➢ Identify 'hotspot' residues responsible for the interaction between the receptors and the  

parental AMPs using the KFC server 

➢ Perform site directed mutagenesis (SDM) by changing ‘non hotspot’ amino acid 

residues within the binding interaction area to increase the binding affinity of the 

AMPs to their interacting proteins 

➢ Determine the physicochemical characteristics of each derivative AMP using 

Bactibase and APD 

➢ Predict the 3D structures of the derivative AMPs using the algorithm I-TASSER  

5.4. Materials and Methods 

 

Figure 5.1: Outline of Methodology for mutated AMPs 

Identify mutation sensitive amino acids or 
'hotspot' residues using KFC server

Site-directed mutagenesis of the  
anti-N. Meningitidis AMPs

Analysis of the physicochemical 
properties of the derived AMPs using 

APD and Bactibase

Generate 3D predictive structures of 
the derived AMPs using I-TASSER
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5.4.1. Identify ‘hotspot’ residues or mutation sensitive residues within the parental 

AMPs 

Before in silico site-directed mutagenesis, essential amino acids have to be identified. 

‘Hotspot’ residues were predicted using the KFC server on each of the parental AMPs in 

relation to their binding to each identified receptor (NhhA, Opc and PorA). 

5.4.2. Selection of positions and residues for mutagenesis 

The substitutions of amino acids (non hotspots) introduced into the parental AMP sequences 

were done to increase the binding affinity when bound to N. meningitidis receptors. All 

amino acid substituted to generate mutated AMPs where of similar characteristics to the 

amino acids present in the parental AMPs, as to maintain the predicted structure and 

functioning of the AMPs. 

5.4.3. Determination of the Physicochemical Parameters of the mutated AMPs 

Following site directed mutagenesis (SDM) using KFC of the parental (wild-type) identified 

AMPs (see Chapter 2) it was important to ascertain that the mutated AMPs retains the same 

functionality as the parental AMPs. Analysis of the mutated AMPs was carried out as 

described in Chapter 4 section 4.5.1.1. using Antimicrobial Peptide Database (APD) (Wang 

and Wang, 2004; Wang et al., 2009; Wang, 2015; Wang et al., 2016)  and Bactibase 

(Hammami et al., 2007; Hammami et al., 2010). The physicochemical properties of the 

derived anti-N. meningitidis AMPs can be seen in Table 5.5. 

5.4.4. 3D structure prediction of the mutated AMPs 

The amino acid sequences of the derivative AMPs were used as input for I-TASSER 

(http://zhanglab.ccmb.med.umich.edu/I-TASSER). Predicted structure outputs were given as 
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PDB files, with a scoring which represented the accuracy of each structure prediction. The 

visualisations of the 3D structures were done using the PyMOL 1.3. Software. 

5.5. Results and Discussion 

5.5.1. ‘Hotspot’ identification 

For comparisons of side chain functional properties, each of the 20 common amino acids 

were grouped by their standard side chain class as (1) acidic, (2) aliphatic, (3) amidic, (4) 

aromatic, (5) basic, (6) hydroxylic, or (7) sulfur-containing. For comparison of molecular 

dimensions, standard molar mass in grams per mol (g/mol) were assigned to each of the 20 

common amino acids and was used as a surrogate for molecular dimensions as amino acids 

with larger side chains have greater molar mass relative to amino acids with smaller side 

chains. Requiring one or more key amino acids to share either the same side chain 

classification or molar mass as the template species was used for determination of chemical 

susceptibility in order to produce conservative predictions, as dramatic differences among 

amino acid residues are more likely to change the protein-chemical interaction relative to 

minor differences (Doering et al., 2018).  

The outputs of the task from KFC server resulted in amino acid residues that contribute to the 

interaction of the three N. meningitidis proteins (NhhA, Opc and PorA) and the AMPs, with 

the “hotspot” residues within the binding area (seen in Table 5.1 as an example). Results 

represent a confidence score of K-FADE prediction (worst value is 0 and its best value is 1) 

and a confidence score of K-CON prediction (worst value is 0 and its best value is 1) (Table 

5.1). Figure 5.2 shows the interaction between AMP YYNN1 and the N. meningitidis Opc 

protein, indicating amino acid residues “hot spots” within this interaction. 
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Figure 5.2: Displays the Interaction of AMP YYNN1 and the N. meningitidis Opc protein. 

The small orange balls highlight local regions of well-matched shape specificity between the 

binding partners. The translucent surface around the residues (pink) displays the area where a 

predicted ‘hotspot’ is situated in this interaction (E.g. ARG8 for the AMP and THR7 for the 

receptor). 

‘Hotspot’ residues were not mutated, since this is where the interaction and strong binding 

occurs. These residues contribute most of the energy involved in protein-protein or protein-

peptide interactions. By mutagenesis of the “hot spot” residues, the binding affinity will be 

decreased instead of increased. 

A result of hotspots of the AMP YYNN1 to the N. meningitidis protein, NhhA can be seen in 

the Table 5.1. 
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Table 5.1: ‘Hotspot’ Prediction RESULT from KFC server for AMP YYNN1 interacting 

with NhhA protein 

 

KFC predicts computational ‘hotspots’ by a machine learning approach by structural features 

such as atomic contacts and H-bonds and gives a binary answer whether a residue is a ‘hot 

spot’ or not (Darnell et al., 2008). For prediction on large-scale data, KFC is preferred 

because of its computational effectiveness and comparable performance (Tuncbag et al., 

2009).  

Unravelling ‘hotspots’ in binding interfaces continues to stimulate interest, since reliable 

prediction of key residues in the interface has immediate applications in protein engineering 

and it is an attractive alternative therapy for many diseases (Moreira et al., 2007). 

5.5.2. Site directed mutagenesis   

After the identification of the ‘hotspots’, position of amino acid residues were studied and 

mutated by changing ‘non hotspot’ residues. Most amino acid residue substitution is based on 

Amino acid Residue Predicted K-FADE Predicted K-CON

Name number K-FADE class Conf K-CON class  Conf

TRP 2 Hotspot 0.35 Hotspot 0.08

ARG 3 ------- -2.5 ------- -0.81

GLY 4 ------- -0.91 ------- -0.7

VAL 5 ------- -1.44 ------- -0.88

SER 6 ------- -1.14 ------- -0.88

LEU 7 ------- -0.1 ------- -0.08

ARG 8 Hotspot 1.01 Hotspot 0.34

PRO 9 Hotspot 0.72 ------- -0.12

ILE 10 ------- -2.18 ------- -0.66

GLY 11 ------- -1 ------- -0.66

ALA 12 Hotspot 0.89 ------- -0.47

SER 13 ------- -1.96 ------- -0.52

ARG 15 Hotspot 0.31 Hotspot 0.14

ASP 16 Hotspot 1.22 ------- -0.13

ASP 17 ------- -0.06 ------- -0.43

SER 18 Hotspot 1.23 ------- -0.28

GLU 19 Hotspot 1.34 Hotspot 0.19

ARG 23 ------- -1.25 ------- -0.53

CYS 25 ------- -2.27 ------- -0.69

ARG 28 ------- -0.32 ------- -0.17

ARG 29 ------- -1.91 ------- -0.81

CYS 30 ------- -0.04 ------- -0.24

SER 31 ------- -0.72 ------- -0.7

LEU 32 ------- -2.19 ------- -0.96

NhhA-YYNN1

http://etd.uwc.ac.za/



 

128 
 

increasing the binding affinity of the ligand within the complex with its receptor. The criteria 

of mutation of a specific amino acid was based on similarity of the substituted amino acid 

with that of the parental molecule, since the amino acids has similar physicochemical 

properties, it was expected that the mutated AMPs will have increased binding affinity, 

following site-directed mutagenesis.  

YYNN1a (S6T) mutation was made by substituting the serine residue of the parental peptide 

with the threonine amino acid, since both are hydrophilic and neutral, hydroxyl-containing 

side chains with similar molecular weight. This concept was used throughout the mutation 

process of amino acid substitution of parental AMPs.  See Table 5.2, 5.3 and 5.4 for all the 

substitutions made within the parental AMPs. The following nomenclature will be used 

subsequently in this thesis: a - the respective AMPs bound to NhhA, b - the respective AMPs 

bound to Opc and c - the respective AMPs bound to PorA e.g. AMPs bound to NhhA will be 

designated YYNN1a – YYNN9a. 

Table 5.2: Displaying the position of each amino acid on the parental AMPs and the amino 

acid substitution on that same AMP, which would still bind selectively to NhhA protein. 

 

 

 

 

 

 

 

NhhA-YYNN 

Mutated AMPs Mutation 

YYNN1a S6T 

YYNN2a L26V 

YYNN3a P9V 

YYNN4a E19L 

YYNN5a G4V 

YYNN6a Q15C 

YYNN7a T22M 

YYNN8a N19C 

YYNN9a T26R 
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Table 5.3: Displaying the position of each amino acid on the parental AMPs and the amino 

acid substitution on that same AMP, which would still bind selectively to Opc protein 

Opc-YYNN 

Mutated AMPs Mutation 

YYNN1b E19Y 

YYNN2b F5W 

YYNN3b S18R 

YYNN4b Y27F 

YYNN5b H15K 

YYNN6b E19Y 

YYNN7b A12L 

YYNN8b N12Q 

YYNN9b S5T 

 

Table 5.4: Displaying the position of each amino acid on the parental AMPs and the amino 

acid substitution on that same AMP, which would still bind selectively to PorA protein 

PorA-YYNN 

Mutated AMPs Mutation 

YYNN1c C14M 

YYNN2c L26I 

YYNN3c G4V 

YYNN4c S13K 

YYNN5c G11L 

YYNN6c D17E 

YYNN7c G4A 

YYNN8c R2H 

YYNN9c V25L 

 

5.5.3. Physicochemical properties of the derived anti-N. meningitidis AMPs 

The physiochemical properties of the derived AMPs were determined using APD and 

Bactibase to ascertain that the mutated AMPs still conform to known AMPs 

The physicochemical properties remained fairly similar following substitution based site-

directed mutagenesis (results shown in Table 5.5). It could be observed from Table 5.5 that 
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the parameters used for physiochemical characterization of the derived AMPs are the same as 

those used for the parental AMPs.  Slight changes in physicochemical characteristics post site-

directed mutagenesis were observed for the mutated AMPs. This observation can be 

explained by the amino acid substituted within the derived AMPs. Although similar in nature 

to the amino acid substituted within the parental AMP, these amino acids are not exactly the 

same and will thus contribute differently to the physiochemical character of the AMP. 

All mutated AMPs total hydrophobic ratios ranged from 39% - 51%, also seen in the parental 

AMPs with slight percentage changes but still conforming to a range of known AMPs. The 

total net charge of all the mutated AMPs displayed a range of +2 to +8, except for YYNN4b 

with a positive net charge of 1, owing to its 0% lysine. All molecular weights remained the 

same since no amino acids were added, but just one substituted for another one with similar 

molecular weight.  

An instability index of <40 are stable AMPs (providing an estimate of the stability of the 

AMP in a test tube); a value of <40 was calculated for the mutated AMPs YYNN2a, 

YYNN4a, YYNN9a, YYNN2b, YYNN9b, YYNN2c, YYNN4c, YYNN8c and YYNN9c. It 

was observed for AMPs YYNN9a, YYNN9b and YYNN9c, a Boman index less than zero, 

meaning that they may be good antimicrobial peptides. The mutated anti-N. meningitidis 

AMPs, YYNN2a, YYNN3a, YYNN4a YYNN8a, YYNN2b, YYNN4b, YYNN8b, YYNN2c, 

YYNN3c, YYNN4c and YYNN8c has a potential to bind to other proteins based on their 

Boman indices that were less than 2.5 kcal/mol as seen in Table 5.5. 

Table 5.5: Physicochemical properties for the derived anti-N. meningitidis AMPs 
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AMP  Residues

Total 

hydrophobic 

ratio

Total 

net 

charge 

Molecular 

weight 

Protein-binding 

Potential (Boman 

index) 

Arginine 

%

Lysine 

%

Other amino acids with high 

%

Most 

Common 

amino acid 

Isoelectric 

point

Instability 

Index

YYNN1a 33 39% 5 3842.52 3.34 kcal/mol 21% 3% Ser, Cys 12%; Leu 9% Arginine 10.00 75.75

YYNN2a 33 51% 8 3710.572 0.84 kcal/mol 9% 15% Val 15%; Ile,Ala 12% Lys,Val 11.79 16.98

YYNN3a 33 45% 2 3874.6 2.16 kcal/mol 15% 3% Ile,Cys, Ser, Leu 9% R 8.51 47.36

YYNN4a 34 44% 2 3787.374 2.08 kcal/mol 14% 0% Leu, Ser 11% R 8.51 29.08

YYNN5a 33 42% 4 3878.553 3.05 kcal/mol 18% 3% Ser, Cys 12%; Leu 9% R 9.11 90.78

YYNN6a 33 42% 4 3775.45 2.87 kcal/mol 18% 3% Ser, Cys 15%; Leu 9% R 8.81 84.16

YYNN7a 33 45% 6 3814.577 2.89 kcal/mol 21% 3% Ser 15%, Cys 12% R 11.17 70.21

YYNN8a 27 55% 6 3056.792 0.36 kcal/mol 7% 14% Ala 14%, Val Ile 11% AK 11.26 45.74

YYNN9a 27 48% 4 2584.138 -0.61 kcal/mol 3% 11% Gly 25%,Leu 22% G 11.92 -12.38

AMP  Residues

Total 

hydrophobic 

ratio

Total 

net 

charge 

Molecular 

weight 

Protein-binding 

Potential (Boman 

index) 

Arginine 

%

Lysine 

%

Other amino acids with high 

%

Most 

Common 

amino acid 

Isoelectric 

point

Instability 

Index

YYNN1b 33 39% 6 3862.553 3.16 kcal/mol 21% 3% Ser 15%, Cys 12% R 10.45 59.18

YYNN2b 33 51% 8 3763.635 0.84 kcal/mol 9% 15% Val 12%; Ile,Ala 12% K 11.79 36.63

YYNN3b 33 42% 3 3941.694 2.63 kcal/mol 18% 3% Ile,Cys, Leu 9% R 8.96 43.32

YYNN4b 34 44% 1 3787.331 2.33 kcal/mol 14% 0% Ser 11% R 8.05 44.22

YYNN5b 33 39% 5 3827.501 3.17 kcal/mol 18% 6% Ser Cys12% R 9.86 78.33

YYNN6b 33 39% 5 3834.496 2.87 kcal/mol 18% 3% Ser 15%, Cys 12% R 9.66 62.73

YYNN7b 33 42% 6 3826.564 2.95 kcal/mol 21% 3% Ser 15%, Cys Leu 12% R 11.17 75.06

YYNN8b 27 51% 6 3081.778 0.61 kcal/mol 7% 14% Ala 14%, Val Ile 11% AK 11.84 41.76

YYNN9b 27 48% 3 2543.082 -1.1 kcal/mol 0% 11% Gly 25%,Leu 22% G 11.1 -15.53

AMP  Residues

Total 

hydrophobic 

ratio

Total 

net 

charge 

Molecular 

weight 

Protein-binding 

Potential (Boman 

index) 

Arginine 

%

Lysine 

%

Other amino acids with high 

%

Most 

Common 

amino acid 

Isoelectric 

point

Instability 

Index

YYNN1c 33 39% 5 3856.547 3.33 kcal/mol 21% 3% Ser 15%, Cys Leu 9% R 11.17 66.16

YYNN2c 33 51% 8 3724.599 0.82 kcal/mol 9% 15% Val 12%; Ile 15%,Ala 12% KI 11.79 32.58

YYNN3c 33 45% 2 3914.665 2.19 kcal/mol 15% 3% Ile,Cys, Ser, Leu 9% R 8.51 55.77

YYNN4c 34 41% 2 3844.422 2.49 kcal/mol 14% 2% Ile,Cys, Ser, Leu, Gly, Ala 8% R 8.51 32.41

YYNN5c 33 42% 4 3892.58 3.03 kcal/mol 18% 3% Ser Cys Leu 12% R 9.11 96.62

YYNN6c 33 39% 4 3814.463 3.02 kcal/mol 18% 3% Ser 15%, Cys 12% R 9.11 81.88

YYNN7c 33 45% 6 3798.51 3.01 kcal/mol 21% 3% Ser 15%, Cys 12% R 11.17 75.06

YYNN8c 27 51% 5 3048.704 0.27 kcal/mol 3% 14% Ala 14%, Val Ile 11% AK 11.28 22.7

YYNN9c 27 48% 3 2543.082 -1.1 kcal/mol 0% 11% Gly 25%,Leu 25% GL 11.1 -12.38

Antimicrobial Peptide Database (APD) Bactibase
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5.5.4. De novo structure prediction of the mutated AMPs 

The 3D structures of the mutated AMPs were predicted using the I-TASSER server to see 

whether the structures of the derived AMPs would change following site directed 

mutagenesis. The output of I-TASSER server contained statistical indicators used to interpret 

the results, which provided an estimate of accuracy scoring of the predicted derived AMPs 3-

D structure. These statistical indicators are based on the C-score, TM-score, and RMSD.  

The results of the predicted 3D structures of the mutated AMPs showed that these peptides 

have C-score values, which ranged from -2.03 to 1.06. YYNN2a, YYNN2b and YYNN2c 

were the only mutated AMPs with a score < -1.5. The parental AMP YYNN2 had a C-score 

of -1.76, which is also smaller than -1.5, meaning that the structure of parental AMP YYNN2 

and its derivative AMPs YYNN2a, YYNN2b and YYNN2c was randomly predicted or there 

was not enough information available for an accurate 3D prediction (Roy et al., 2010). All 

remaining AMPs represents C-score > -1.5 with a correct fold in structural prediction. All 

AMPs has TM-scores >0.5, except YYNN2a, YYNN2b and YYNN2c, with TM-scores 

ranging from  0.47+-0.15, 0.50+-0.15 and 0.49+-0.15, respectively.  

The RMSD values with the highest structural requirements suitable for ligand binding were 

seen in the following AMPs: YYNN3a, YYNN4a, YYNN3b, YYNN4b, YYNN3c and 

YYNN4c. Medium-resolution models, roughly in the RMSD range of 2–5 Å with a good or 

reasonable TM-score, resulted in AMPs; YYNN8a, YYNN9a, YYNN8b, YYNN9b, 

YYNN8c and YYNN9c. As seen in Table 5.6, AMPs with the lowest resolution of <1 Å 

RMSD , from an otherwise meaningful prediction, i.e. models with an approximately correct 

topology, TM-score and C-score, were YYNN1a, YYNN5a, YYNN6a, YYNN7a, YYNN1b, 

YYNN5b, YYNN6b, YYNN7b, YYNN1c, YYNN5c, YYNN6c and YYNN7c, as seen in 
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Table 5.6. All results of RMSD, TM-score and C-score fall within range of the expected 

results for correct topology. 

Table 5.6: Evaluation scores of the predicted 3D structures by I-TASSER of the derived 

AMPs 

AMP Name and N. 

meningitidis ligand  C-score Exp.TM-Score Exp.RMSD (Å) 

YYNN1a 0.97 0.85+-0.08  0.5+-0.5  

YYNN2a -2.03 0.47+-0.15  5.8+-3.6  

YYNN3a 0.26 0.75+-0.10 1.4+-1.3 

YYNN4a 0.55 0.79+-0.09 1.0+-1.0   

YYNN5a 0.97 0.85+-0.08  0.5+-0.5   

YYNN6a 0.96 0.84+-0.08  0.5+-0.5   

YYNN7a 0.91 0.84+-0.08  0.5+-0.5 

YYNN8a -0.56 0.64+-0.13 2.5+-1.9 

YYNN9a -1.21 0.56+-0.15 3.8+-2.6 

NhhA -0.73 0.62+-0.14 9.4+-4.6 

AMP Name and N. 

meningitidis ligand  C-score Exp.TM-Score Exp.RMSD (Å) 

YYNN1b 0.94 0.84+-0.08 0.5+-0.5    

YYNN2b -1.74 0.50+-0.15 5.2+-3.3 

YYNN3b 0.12 0.73+-0.11 1.7+-1.5 

YYNN4b 0.52 0.78+-0.09 1.1+-1.1 

YYNN5b 0.9 0.84+-0.08 0.5+-0.5 

YYNN6b 0.94 0.84+-0.08 0.5+-0.5 

YYNN7b 1.02 0.85+-0.08 0.5+-0.5 

YYNN8b -0.78 0.61+-0.14 2.9+-2.1 

YYNN9b -1.24 0.56+-0.15 3.8+-2.6 

Opc -0.17 0.69+-0.12 6.3+-3.9 

AMP Name and N. 

meningitidis ligand  C-score Exp.TM-Score Exp.RMSD (Å) 

YYNN1c 0.91 0.85+-0.08 0.5+-0.5 

YYNN2c -1.82 0.49+-0.15 5.4+-3.4 

YYNN3c -0.07 0.70+-0.12 2.0+-1.6 

YYNN4c 0.55 0.79+-0.09 1.0+-1.0 

YYNN5c 1.06 0.86+-0.07 0.5+-0.5 

YYNN6c 0.98 0.85+-0.08 0.5+-0.5 

YYNN7c 0.93 0.84+-0.08 0.5+-0.5 

YYNN8c -0.9 0.60+-0.14 3.2+-2.2 

YYNN9c -0.92 0.60+-0.14 3.2+-2.3 

PorA -0.72 0.62+-0.14 8.4+-4.5 
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 YYNN1a YYNN2a YYNN3a 

 

YYNN4a YYNN5a YYNN6a 

 

YYNN7a                    YYNN8a 

YYNN9a 

Figure 5.3: Displays the predicted 3D structure of the derived AMPs YYNN1 – 9 using  

I-TASSER. 
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YYNN1b YYNN2b YYNN3b 

YYNN4b YYNN5b YYNN6b 

YYNN7b                       YYNN8b 

YYNN9b 

Figure 5.4: Displays the predicted 3-D structure of the derived AMPs YYNN1 - 9 using  

I-TASSER. 
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YYNN1c YYNN2c YYNN3c 

 

YYNN4c YYNN5c YYNN6c 

 

YYNN7c           YYNN8c 

 

YYNN9c 

Figure 5.5: Displays the predicted 3-D structure of the derived AMPs YYNN1 - 9 using  

I-TASSER. 
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It was observed that the derived AMPS display similar α-helical secondary structures as their 

parental counterpart AMPs, with slight variation in partial α-helical structure after SDM in 

certain derived AMPs. 

It was observed that the derived YYNN1b is not displaying an extended partial α-helical 

structure, which was present in the parental YYNN1. The absence of α-helical conformation 

in YYNN1b was observed which could be justified by the deletion of hydrophilic glutamate 

amino acid residue and introduction of hydrophobic tyrosine in the derived YYNN1 AMP. 

The presence of tyrosine plays a role in structure; partially hydrophobic, buried in protein 

hydrophobic cores and its aromatic side chain can also mean that tyrosine is involved in 

stacking interactions with other aromatic side-chains and this by its introduction changed the 

structure of YYNN1.  

5.6. Summary 

The first aim of this chapter was to use the parental AMPs as templates to generate derivative 

AMPs that display increased binding affinity for the NhhA, Opc and PorA N. meningitidis 

receptors by identifying 'hotspot' residues responsible for the interaction between the 

receptors and the parental AMPs using the KFC server. Thereafter, using site directed 

mutagenesis the ‘non hotspot’ amino acid residues within the binding interaction area were 

mutated to increase the binding affinity of the AMPs to their interacting proteins (docking 

studies between the modelled AMP 3D structures and the 3D structures of the N. meningitidis 

receptors shown in chapter 6). Finally, the physicochemical characteristics of each mutated 

AMP were determined using Bactibase and APD as well as the 3D structures of the mutated 

AMPs predicted using the algorithm I-TASSER to ensure that the derived AMPs still 

conform to known AMPs. 
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The physicochemical properties of the mutated AMPs remained fairly similar following 

substitution based site-directed mutagenesis and shown based on their physicochemical 

properties that they still conform to known AMPs.  

The results of the predicted 3D structures of the mutated AMPs using I-TASSER showed that 

these peptides C-score, RMSD-score and TM-score values were within range of the expected 

results for correct topology.  

The mutated AMPs displayed similar α-helical secondary structures as their parental 

counterpart AMPs, with slight variation in partial α-helical structure. The exception was 

observed in the derived AMP YYNN1b that did not display an extended partial α-helical 

structure, which was present in the parental AMP YYNN1. 
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Chapter 6 

In Silico Protein-Peptide Interaction Study 

6.1. Introduction 

The binding of a ligand to protein receptors underlies a wide variety of recognition processes 

in biological systems. The understanding of such systems can be enhanced greatly by the 

development of reliable computational methods to calculate protein–ligand binding constants. 

Many computational methods using a range of approximations have been developed to 

estimate both the relative binding affinities of closely related receptors and the absolute 

binding constants. Widely used simplified methodologies range from docking  to continuum 

electrostatic methods (Woo, 2008). Before a protein-ligand complex is formed, the individual 

partners that are not a part of hydrophobic surface are involved in hydrogen bonds with the 

surrounding water. Once the complex is formed, these hydrogen bonds are replaced with 

hydrogen bonds between the ligand and the protein. The contribution of hydrophobic 

interactions to protein-ligand binding is normally regarded to be proportional to the size of 

the hydrophobic surface buried during complex formation.  Hydrophobic interactions are also 

regarded to be the main driving force of conformational change of the receptor upon ligand 

binding (Yunta, 2016). 

Molecular docking is usually performed between a small molecule and a target 

macromolecule and is defined as the modeling of the 3D structure of a complex from its 

known constituents, and its combination with a limited amount of NMR- data is extremely 

powerful and has found a wide range of applications. This is often referred to as ligand–

protein docking (Fuentes et al., 2008; Morris and Lim-Wilby, 2008).  
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Given a protein target, molecular docking generates hundreds of thousands of putative ligand 

binding orientations/conformations at the active site around the protein. A scoring function is 

used to rank these ligand orientations/conformations by evaluating the binding tightness of 

each of the putative complexes. Application of a scoring function is to predict the absolute 

binding affinity between protein and ligand (Huang et al., 2010).  

Experimentally, 3D structures of protein–protein complexes are determined using X-ray 

crystallography, Nuclear Magnetic Resonance (NMR) spectroscopy and electron microscopy 

or a structure obtained by computational techniques (such as homology modeling) (Gromiha 

et al., 2017; Salmaso and Moro, 2018).  

In silico methods for predicting protein–ligand binding sites and protein biochemical 

functions offers a practical solution to predict the 3D structures of protein–protein complexes 

using their unbound proteins (Roche et al., 2015; Gromiha et al., 2017).  

Small molecules interact with proteins in regions that are accessible and that provide 

energetically favourable contacts. Geometrically, these binding sites are generally deep, 

concave shaped regions on the protein surface, referred to alternately as clefts or pockets 

(Kauffman and Karypis, 2010). The goal of automated molecular docking software is to 

understand and predict molecular recognition, both structurally, finding likely binding modes, 

and energetically, predicting binding affinity. Molecular docking helps to provide a 3D 

structural hypotheses of how a ligand interacts with its target (Morris and Lim-Wilby, 2008).  

Protein–peptide docking methods are used most commonly as tools supporting experimental 

work, for example for the interpretation of ambiguous experimental data, identification of key 

interactions, or simply for complex visualization (Ciemny et al., 2018).  
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Figure 6.1: Outline of the molecular docking process.  

(A) 3D structure of the AMP shown as a stick representation; (B) 3D structure of the receptor 

(protein) represented as a cartoon; (C) The ligand is docked into the binding cavity of the 

receptor and the putative conformations are explored; (D) The most likely binding 

conformation and the corresponding intermolecular interactions are identified. The ligand is 

shown in carbon in magenta and active site residues in carbon in blue. Water is shown as a 

white sphere and hydrogen bonds are indicated as dashed lines (Ferreira et al., 2015). 

6.2. PatchDock 

Duhovny et al., 2002  presented an algorithm for unbound (real life) docking of molecules. 

The high efficiency of the algorithm is the outcome of several factors: (i) focusing initial 

molecular surface fitting on localized, curvature based surface patches; (ii) use of Geometric 

Hashing and Pose Clustering for initial transformation detection; (iii) accurate computation of 

shape complementarity; (iv) efficient steric clash detection and geometric fit scoring based on 

a multi-resolution shape representation and (v) utilization of biological information by 
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focusing on ‘hotspot’ rich surface patches, all contributing to the quality of the results 

(Duhovny et al., 2002). This algorithm was developed in PatchDock by (Schneidman-

Duhovny et al., 2005). 

PatchDock Beta 1.3 version is a free online web-server that allows for protein-small ligand 

molecule docking, available at http://bioinfo3d.cs.tau.ac.il/PatchDock/. The PatchDock 

method performs structure prediction of protein–protein and protein–small molecule 

complexes. Within the docking method, the goal is to find the correct association of two 

interacting molecules given a structural representation for each molecule separately. 

PatchDock, a very efficient algorithm, is a geometry-based molecular docking algorithm 

aimed at finding docking transformations that yields good molecular shape complementarity 

(Schneidman-Duhovny et al., 2005).  

The algorithm succeeds in docking of large proteins (antibody with antigen) and small drug 

molecules. The PatchDock algorithm divides the Connolly dot surface representation of the 

molecules into concave, convex and flat patches (Schneidman-Duhovny et al., 2005). Then, 

complementary patches are matched in order to generate candidate transformations. Each 

candidate transformation is further evaluated by a scoring function that considers both 

geometric fit and atomic desolvation energy. The main reason behind PatchDock’s high 

efficiency is its fast transformational search, which is driven by local feature matching rather 

than brute force searching of the six-dimensional transformation space. The run time of 

PatchDock for two input proteins of average size (about 300 amino acids) is <10 min on a 

single 1.0 GHz PC processor under the Linux operating system (Schneidman-Duhovny et al., 

2005).  
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6.3. Molecular Graphics Visualisation Tool 

6.3.1. RasMol 

RasMol is a molecular graphics program intended to visualize proteins, nucleic acids and 

small molecules for which a 3D structures is available. This standalone software can be 

downloaded from the RasMol homepage: www.umass.edu/microbio/rasmol. The 

visualization provides a choice of colour schemes and molecular representation (wireframe, 

cylinder (Dreiding) stick bonds, alpha carbon trace, space filling (CPK) spheres, macro 

molecular ribbons (either smooth shaded solid ribbons or parallel strands), hydrogen bonding 

and dot surface. Additional features such as test labelling for selected atoms, different colour 

schemes for different parts of the molecule, zoom, rotation, etc. have made this the most 

popular of all visualization tools (Harisha, 2010). 

RasMol can be used as a quick and handy tool for the analysis of biomolecular structures 

with good results. For many years RasMol is still one of the most used programs for 

molecular visualization. It is an excellent tool due to its simplicity and its low demand of 

computer power (Pikora and Gieldon, 2015).  

6.4. Aims 

This chapter aims to determine the ligand-receptor complex structure with binding affinity 

scores of the parental and mutated AMPs and the N. meningitidis receptors using in silico 

methods. To achieve this, the following objectives will be obtained: 

➢ Complete an in-silico protein-peptide interaction of the parental and mutated anti-N. 

meningitidis AMPs and the N. meningitidis proteins NhhA, Opc and PorA using 

PatchDock 

➢ Visualize the in-silico binding studies using RasMol 
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➢ Analyse the geometric scores of the binding affinity of each anti-N. meningitidis AMP 

(parental and mutated) with each outer membrane protein of N. meningitidis (NhhA, 

Opc and PorA). 

➢ Identify the best candidate AMP (parental or mutated) to be used as a diagnostic 

molecule based on high binding affinity as well as correct orientation of binding to its 

receptor.  

6.5. Materials and Methods 

6.5.1. Molecular Docking Algorithm of PatchDock Based on Shape Complementarity 

Principles  

The nine AMP 3D structures (parental as well as mutated) were docked against each N. 

meningitidis protein (NhhA, Opc and PorA) 3D structure respectively. The binding affinities 

were recorded and the results were downloaded as PDB files, which represented the structural 

complex between the AMPs and the N. meningitidis proteins. The input was the two 

molecules in PDB format for each AMP to each protein. The cluster RMSD was set to 4.0 Å 

and the complex type was selected as “protein-small ligand. 

The results received via email included the link to a web page where the predictions are 

presented. Specific predictions were viewed and the top scoring solutions downloaded as a 

file in PDB format. The solutions page presents the geometric score (seen in Table 6.1), 

interface area size and desolvation energy of the 20 top scoring solutions. The geometric 

score is provided where a higher score is indicative of better binding. PatchDock is one of the 

only servers that score the binding affinity.  

6.5.2. Visualization of the biomolecular 3D structure complex using RasMol 

Interaction analysis of the complex formation between the N. meningitidis protein and the 

anti-N. meningitidis AMPs were visualized using RasMol 2.7.5.2 software. Each complex 

http://etd.uwc.ac.za/



 

145 
 

structure is selected and viewed by selecting cartoons for Display and Chain for colour 

scheme. Output results are seen in Figures 6.2, 6.3 and 6.4. 

6.6. Results and Discussion 

6.6.1. The Protein-Peptide Interaction between the Anti-N. meningitidis AMPs and N. 

meningitidis Proteins using PatchDock  

The docking results of the structural complex between the AMPs and the proteins were 

downloaded as PDB files. The objective for studying the structure complex formation 

between the anti-N. meningitidis AMPs and the N. meningitidis receptors were not only to 

predict the interaction of the receptors to the AMPs (ligands), but also to show that the AMPs 

bind to the receptors at specific sites and with high affinity binding score. The binding of the 

ligand/s to the receptor/s will facilitate the detection of the N. meningitidis bacterium within a 

patient sample. The results are shown for the C-terminal domain in Figure 6.2, 6.3 and 6.4 in 

which the receptors (NhhA, Opc and PorA) are seen with a blue surface and the respective 

ligand (AMPs) are shown in red. 

Parental AMPs bound to NhhA 

Figure 6.2, displays the interaction of the parental AMPs to the N. meningitidis protein NhhA 

bound at a position between the N-terminus and C-terminus. The C-terminus always faces the 

periplasmic side of the OM (Hung and Christodoulides, 2013), thus  this binding orientation 

found for all the AMPs, is in the outer membrane of the protein and therefore  accessible for 

detection of N. meningitidis. 
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            NhhA – Protein (receptor)                                                                                                

                                                YYNN1 – AMP (ligand) 

  NhhA-YYNN2     NhhA-YYNN3       NhhA-YYNN4  

                         

   NhhA-YYNN5   NhhA-YYNN6     NhhA-YYNN7 

                        

NhhA-YYNN8    NhhA-YYNN9 
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Figure 6.2: Interactions of anti-N. meningitidis parental AMPs with NhhA as determined by 

PatchDock. The red colours depict the anti-N. meningitidis AMPs (YYNNs); blue colours 

represented the NhhA protein 

Parental AMPs bound to Opc 

Opc-YYNN1     Opc-YYNN2                                 Opc-YYNN3 

              

Opc-YYNN4        Opc-YYNN5          Opc-YYNN6 

                     

Opc-YYNN7     Opc-YYNN8                          Opc-YYNN9 
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Figure 6.3: Interactions of anti-N. meningitidis parental AMPs with Opc as determined by 

PatchDock. The red colours depicted the anti-N. meningitidis AMPs (YYNNs); blue colours 

represented the Opc protein 

As seen in Figure 6.3, YYNN1, YYNN2, YYNN3, YYNN5 and YYNN6 shows binding of 

the AMPs to the protein Opc at the N-terminal domain which is located in the outer 

membrane of the N. meningitidis bacteria, whereas the AMPs YYNN4, YYNN7 and YYNN9 

binds the protein in the periplasmic space of the bacteria and therefore this binding 

orientation could impede detection of Opc by the AMPs (ligands). YYNN8 binds Opc within 

the extracellular medium and presented with the highest binding affinity score (as seen in 

Table 6.1), therefore represents a good candidate for detection of N. meningitidis. 

Parental AMPs bound to PorA 

PorA-YYNN1    PorA-YYNN2   PorA-YYNN3 

                   

PorA-YYNN4    PorA-YYNN5   PorA-YYNN6 

                              

PorA-YYNN7    PorA-YYNN8       PorA-YYNN9 
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Figure 6.4: Interactions of anti-N. meningitidis parental AMPs with PorA as determined by 

PatchDock. The red colours depicted the anti-N. meningitidis AMPs (YYNNs); blue colours 

represented the PorA protein 

All AMPs, as seen in Figure 6.4 are bound to the PorA protein in the outer membrane of the 

N. meningitidis bacteria thus could be used for detection of the bacterium.  

6.6.2 Binding affinities  

The result output provides the highest geometric score of the complexes formed between 

proteins NhhA, Opc and PorA and anti-N. meningitidis parental AMPs as a PDB file. All the 

AMPs showed a positive interaction with the three proteins. Highlighted binding affinities 

represent the highest binding geometric scores of certain AMPs to the respective proteins.  

NhhA 

Seen in Table 6.1, YYNN5 and YYNN4 showed the highest binding affinities 11904 and 

11710, respectively when bound to NhhA, although both peptides did not display the lowest 

E-value prediction score. A low E-value indicates a prediction of a peptide most likely to be a 

true N meningitidis AMP i.e. a peptide with potentially the highest activity against the 

bacterium. Since the AMP has to interact with the bacterium it is expected it to have a high 

binding score. However, this is not necessarily true since AMPs interacts with the bacterial 

cell wall to exert its activity rather through specific proteins. 
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AMPs YYNN3, YYNN6 and YYNN9 displayed low binding affinities towards this receptor. 

Opc 

Opc has the lowest binding affinity scores to all the parental AMPs, with YYNN8 displaying 

the highest score for this receptor (Table 6.1). This confirms the probability of this peptide to 

be a true anti-N. meningitidis peptide as it also showed the lowest E-value prediction score 

and fulfils all the physicochemical property requirements of a good AMP. 

PorA 

The binding affinity scores of individual AMPs to PorA, showed the highest values when 

compared to the NhhA and Opc proteins docked to all the nine AMPs. All AMPs displayed 

binding of PorA in the outer membrane and to the 16-strand β-barrel, possibly through the 

channel pore. Overall, YYNN5 displayed the highest binding affinity geometric score to 

PorA (Table 6.1). Arginine is the most abundant amino acid within YYNN5 AMP, 18 %, 

which facilitates binding of AMP to a receptor, with serine and lysine both 12 %. The 

positive net charge of +4 of YYNN5 is contributed to by the presence of arginine and lysine 

amino-acids and helps in directing the peptide to the target pathogen through electrostatic 

attraction. The Boman index value (3.15 kcal/mol) indicates that the peptide YYNN5 is 

multifunctional with hormone-like activities, although not displaying the lowest E-value 

prediction scores. 
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Table 6.1: PatchDock results for each AMP, with the binding affinity geometric Scores 

Binding Affinity Geometric scores  

Parental AMPs NhhA  Opc  PorA 

YYNN1 11368 10164 12314 

YYNN2 11622 10310 14446 

YYNN3 10936 9160 15030 

YYNN4 11710 9882 13642 

YYNN5 11904 9960 15396 

YYNN6 10620 9526 13114 

YYNN7 11300 9776 13684 

YYNN8 11456 11546 13474 

YYNN9 10892 9558 13196 

        
 

6.6.3. The Protein-Peptide Interaction between the mutated Anti-N. meningitidis AMPs 

and N. meningitidis Proteins using PatchDock  

The PDB files from the docking study of the mutated AMPs and N. meningitidis proteins 

using PatchDock server were visualized using PyMOL and RasMol software. The analysis of 

the cartoon representation of N. meningitidis protein interaction with the derived AMPs 

proves that binding occurs at various positions on the respective proteins (Figure 6.5, Figure 

6.6. and Figure 6.7) some AMPs as their parental molecules binding to the same position 

whilst others are showing a shift in binding.  

Derived AMPs bound to NhhA 

All derivative AMPs displayed binding to NhhA protein at exact same positions as the 

parental AMPs interaction, except derived YYNN8a has shifted its binding position on the 

NhhA protein as seen in Figure 6.5.  

 

 

http://etd.uwc.ac.za/



 

152 
 

NhhA-YYNN8    NhhA-YYNN8a 

   C-terminal domain  

                                            N-terminal domain  

Figure 6.5: The predicted 3D structure of the parental NhhA-YYNN8 and the derived NhhA-

YYNN8a complex formation during interaction. The cartoon representation in blue colour is 

the N. meningitidis protein NhhA and the AMPs are represented in red colour.  

YYNN8 initially bound at a position between the N-terminal and C-terminal domain, 

however YYNN8a experienced a noticeable shift in binding, which resulted in its binding at 

the N-terminal domain (Figure 6.5). The change caused by the introduction of the mutation, 

displayed a better-predicted fit at the N-terminal domain of the YYNN8 derivative AMP, 

although showing a decrease in binding affinity from 14456 to 11032. The N-terminal 

domain presents a larger surface area for binding of AMPs.  

In a study by Williams et al., 2016, several AMPs were identified using HMMER. AMPs 

were eliminated from further study if it did not bind to HIV p24 protein at the N-terminal as 

suppose to the C-terminal domain. Several parental AMPs after mutagenesis shift their 

binding position to the N-terminal domain. The N-terminal binding was preferred since the 

antibody from the HIV testing kit currently used, competes with p24 antibodies produced by 

the infected person, leading to a high percentage false negatives  (Buttò et al., 2010). 
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Derived AMPs bound to Opc 

                                                   

               parent AMP-YYNN1    derivative AMP-YYNN1b 

Figure 6.6: Displays the binding shift of the parent AMP-YYNN1 to the derivative AMP-

YYNN1b to Opc. The AMPs are seen in red colour.  

YYNN3b and YYNN5b showed the same shift as YYNN1b when binding to Opc. 

(A)  (B)  

(C)          (D)  

Figure 6.7: The predicted 3D structure of the Opc protein with different AMPs as determined 

by PatchDock (A) parental AMP YYNN8 bound to Opc (B) derivative AMP YYNN8b 

bound to Opc, (C) parental AMP YYNN9 bound to Opc and (D) derivative AMP  YYNN9b 

bound to Opc.  
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The interaction of the Opc protein with the derivative AMPs showed shifting in position of 

YYNN1b, YYNN3b, YYNN5b, YYNN8b and YYNN9b on this protein (Figure 6.6 and 

Figure 6.7). This shift displaces the binding of the derivative AMPs YYNN1b, YYNN3b and 

YYNN5b to the periplasm and therefore the protein would not be accessible by these AMPs 

for detection of N. meningitidis. 

In Figure 6.7 C) and D) a clear shift is displayed in binding position of the derived AMP 

YYNN9b interacting with Opc. This shift presents the AMP YYNN9b bound to Opc in the 

extracellular medium instead of the periplasmic space, thus being easily available for 

detection of the bacteria. A shift is also seen in the derived AMP YYNN8b with Opc but, it is 

still located at the N-terminal domain in the outer membrane.  

Derived AMPs bound to PorA 

Docking analysis of the PorA-YYNN1c-9c displayed no shifts in positions of the AMPs.  

6.6.4 Binding affinities of the mutated AMPs 

From the results it was observed that the binding of the derived AMPs to the N. meningitidis 

proteins had both an increase and decrease in binding affinity geometric scores (Table 6.2). 

The percentage increases of the derived AMPs are discussed further and highlighted in 

yellow. The binding predictions showed that the binding of certain parental AMPs was higher 

than their mutated counterparts. As seen in the parental binding analysis, highest binding of 

YYNN5 to NhhA, YYNN8 to Opc and YYNN5 to PorA, with binding score of 11904, 11546 

and 15396, respectively SDM had not resulted in these mutated AMPs to having a higher 

binding score. 
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NhhA 

AMP YYNN1a (S6T) mutation was made by substituting the hydrophilic serine neutral 

residue of the parental peptide with threonine amino acid. The introduced amino acid 

increased the binding score to NhhA receptor by 6.2 % and displayed little difference in 

physicochemical properties to the parental AMP YYNN1. YYNN3a was mutated by 

replacing the hydrophobic amino acid proline with a neutral hydrophobic amino acid residue 

valine (Table 6.2). A percentage increase of the derived AMP YYNN6a to NhhA was 

observed where hydrophilic glutamine was replaced with cysteine, at position 15 of the 

parental AMP YYNN6 (Q125C) (Table 6.2). This mutation displays the highest increase of 

12.3 % for this receptor. 

Opc  

Binding is a consequence of net charge and other physiochemical properties such as 

hydrophilicity or hydrophobicity, size, and functional groups, since these properties are 

important for protein–protein interactions. The binding affinity of the AMPs was 

strengthened if the positive charged and/or hydrophobicity percentages of the peptides were 

increased by an amino acid substitution. After examination of the scores, it can be noted that 

YYNN9b has the highest binding increase percentage with a net positive percentage of 13.7 

% by substituting the hydrophilic serine neutral residue of the parental peptide with threonine 

amino acid. 

An increase in binding affinity was obtained for YYNN3b of 11.8 % when bound to Opc, 

signifying that the positively charged arginine amino acid substitution played a role in the 

AMP’s increased ability to bind the protein.  
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PorA 

Derivative AMP YYNN2c had an increase in binding affinity from 14446 to 15072 with a net 

positive percentage of 4.3 %, resulting in this AMP as having the second highest binding 

affinity score. From the results it was observed that the binding of the derived AMPs to PorA 

had very high binding scores similar to the parental AMPs but much higher than to the other 

proteins (Table 6.2). 

The binding affinity differences of derived AMPs YYNN1c, YYNN2c, YYNN4c, YYNN6c, 

YYNN7c and YYNN9c were positive i.e. increased. This increase could be a consequence of 

the amino acid on the side chain structure change of the AMPs which, played a huge role in 

the AMP’s ability to bind to the protein with an increase in affinity with these AMPs having 

the required hydrophobicity percentage for strong interaction with the bacterial cell wall 

AMP YYNN6c (D17E) mutation was made by substituting the hydrophilic aspartate neutral 

residue of the parental peptide with glutamate amino acid. The introduced amino acid 

increased the binding score to PorA receptor by 9.6 % having the highest binding difference 

and percentage increase compared to the other AMPs binding to PorA and displayed little 

difference in physicochemical properties to the parental AMP YYNN6. 
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Table 6.2: Binding affinities, position of parent AMPs and derivative AMPs on N. 

meningitidis proteins. a = binding to NhhA, b = binding to Opc and c = binding to PorA. 

Mutated Parental AMPs  Derived AMPs  Binding %Increase Protein Mutation 

AMPs  binding score binding score  difference       

YYNN1a 11368 12072 704 6.2% NhhA S6T 
YYNN2a 11622 11598 -24 -0.2% NhhA L26V 
YYNN3a 10936 12018 1082 9.9% NhhA P9V 
YYNN4a 11710 11476 -234 -2.0% NhhA E19L 
YYNN5a 11904 11626 -278 -2.3% NhhA G4V 

YYNN6a 10620 11924 1304 12.3% NhhA Q15C 
YYNN7a 11300 11292 -8 -0.1% NhhA T22M 
YYNN8a 11456 11032 -424 -3.7% NhhA N19C 
YYNN9a 10892 10484 -408 -3.7% NhhA T26R 
YYNN1b 10164 9902 -262 -2.6% Opc E19Y 
YYNN2b 10310 10238 -72 -0.7% Opc F5W 
YYNN3b 9160 10240 1080 11.8% Opc S18R 
YYNN4b 9882 9756 -126 -1.3% Opc Y27F 
YYNN5b 9960 9168 -792 -8.0% Opc H15K 
YYNN6b 9526 9156 -370 -3.9% Opc E19Y 
YYNN7b 9776 10416 640 6.5% Opc A12L 
YYNN8b 11546 12128 582 5.0% Opc N12Q 

YYNN9b 9558 10868 1310 13.7% Opc S5T 
YYNN1c 12314 13268 954 7.7% PorA C14M 
YYNN2c 14446 15072 626 4.3% PorA L26I 
YYNN3c 15030 13346 -1684 -11.2% PorA G4V 
YYNN4c 13642 14404 762 5.6% PorA S13K 
YYNN5c 15396 12936 -2460 -16.0% PorA G11L 
YYNN6c 13114 14370 1256 9.6% PorA D17E 
YYNN7c 13684 14494 810 5.9% PorA G4A 
YYNN8c 13474 13266 -208 -1.5% PorA R2H 

YYNN9c 13196 13360 164 1.2% PorA V25L 

 

6.7. Summary 

In this chapter in-silico protein-peptide interaction of the parental and mutated anti-N. 

meningitidis AMPs with the N. meningitidis proteins NhhA, Opc and PorA respectively, were 

accomplished using PatchDock. Visualization of the in-silico binding studies was achieved 

using RasMol. The analysis of the geometric scores of the binding affinity of each anti-N. 
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meningitidis AMP (parental and mutated) with each outer membrane protein of N. 

meningitidis (NhhA, Opc and PorA) was performed to identify the best candidate AMP/s 

(parental or mutated) to be used as a diagnostic molecule within a Lateral Flow Device 

(LFD). 

The inclusive criteria for that AMP being; having the highest binding affinity as well as 

correct orientation of binding to its receptor which, will ensure both sensitivity as well as 

specificity of the LFD for the diagnosis of MD.  

YYNN5 showed very high binding affinity geometric scores to the respective N. meningitidis 

proteins with the highest score to PorA. In addition, this AMP was predicted by the HMMER 

models with a low E-value as well as having all the physicochemical characteristics of an 

AMP.  This AMP also binds to the N. meningitidis receptors in the correct binding orientation 

that will facilitate identification of these receptors within a patient sample. This AMP 

however, did not show an increase in binding affinity following site directed mutagenesis.  

The AMP that showed the most significant increase in binding affinity following site directed 

mutagenesis was YYNN2c bound to PorA yet, not higher than that observed for parental 

AMP, YYNN5. Taken together, the results suggest YYNN5 the best candidate to be used in a 

LFD for the detection of MD followed by YYNN2c or both AMPs to be used to increase the 

binding affinity to PorA thus increasing the specificity of the identification of N. meningitidis 

within a patient sample.  
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Chapter 7 

General Discussion and Summary 

7.1. General discussion 

Meningococcal disease (MD) was first described during an outbreak in Geneva in 1805 by 

Gaspard Vieusseux. In 1884, Italian pathologists Ettore Marchiafava and Angelo Celli 

described intracellular micrococci in cerebrospinal fluid and in 1887, Anton Wiechselbaum 

identified Neisseria meningitidis (the meningococcus), the causative agent of MD in 

cerebrospinal fluid and established the connection between the organism and epidemic 

meningitis (Henry, 2017).  

Invasive MD is of major public health importance due to its global distribution, epidemic 

potential, and predominant disease burden in children, adolescents and fulminant clinical 

manifestations. Meningococcal meningitis is associated with 5–15% mortality, a rate that has 

remained relatively unchanged since the 1930s (Pace and Pollard, 2012). Devastating long 

term sequelae such as amputations, hearing loss and neurodevelopmental disabilities are seen 

in 11–19% of survivors. Early recognition of MD and its timely treatment is critical in 

managing and reducing complicated and fatal disease (Pace and Pollard, 2012). 

The gold standard for the diagnosis of systemic meningococcal infection is the isolation of 

Neisseria meningitidis (N. meningitidis) from culture of a usually sterile body fluid, such as 

blood or cerebrospinal fluid, or, less commonly, synovial, pleural, or pericardial fluid 

(Apicella et al., 2009). Although considered the “gold standard” for detection/diagnosis of 

exposure and infection, culture of live bacterial or viral pathogens is time-consuming, 

requires significant technical skill and, depending on the agent, biosafety level 3 or 4 is 

required, thereby necessitating transport to an appropriate laboratory facility (Kulagina et al., 

2007).  
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The frequency of positive blood cultures is 50 to 60 percent, a much lower rate than the 

frequency of positive Cerebro Spinal Fluid (CSF) cultures (80 to 90 percent), even in patients 

without overt meningeal symptoms. The TaqMan array card (TAC) is a rapid diagnostic real-

time PCR assay that allows simultaneous detection of many viral, bacterial, and parasitic 

pathogens in blood or cerebrospinal fluid (Apicella et al., 2009). MD has been diagnosed by 

PCR alone and its sensitivity (reportedly 96%) is not affected by prior administration of 

antibiotics (Takada et al., 2016). Despite these benefits, PCR has not replaced traditional 

culture methods for detection of N. meningitidis since it cannot be used to determine 

antimicrobial susceptibility and is not routinely performed by many hospital laboratories. 

Another limitation is that false-negative results can occur with N. meningitidis isolates that 

possess gene polymorphisms, particularly when a single gene is targeted (Apicella et al., 

2009).  

Reliable tests for the identification of cases of meningococcal meningitis and serogroup 

determination are crucial to ensuring proper individual (case-by-case) and collective 

management of cases and epidemiological surveillance.  

Every living organism elaborates antimicrobial peptides (AMPs), as they are vital for survival 

(Patel and Akhtar, 2017). AMPs are diverse, yet some of them retain high sequence 

similarity, despite being generated in taxonomically-distant species. Just because the 

microbial, plant or animal-derived AMPs have shown biological activity, prospecting them as 

therapeutics for human illnesses appear callous. Additionally, the human immune system is 

likely to recognize the AMP from other organismal sources as non-self and retaliate by 

provoking inflammatory responses. Amongst the new-fangled functions of AMPs, their 

biomarker potential is very promising (Patel and Akhtar, 2017). Peptides are immediate 

solutions in diagnostic development due to numerous properties such as its small size; 

therefore rapid and reproducible synthesis, simple and controllable modification, high 
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stability and non/low toxicity thus overcoming the shortcomings associated with antibodies 

(Williams et al., 2016). 

Schluesener et al., 2012  reports the brain pathology diagnostic marker scope of AMPs as 

having the potential to be employed in diverse medical fields. Much interest has been focused 

on development of therapeutic drugs from AMPs, but so far the many promises did not result 

into any major clinical application (Schluesener et al., 2012). There have been limited reports 

describing use of AMPs for capture and detection of target analytes i.e. diagnostics.  

Combining experimental data with computational biology will ultimately enable better 

understanding of antimicrobial agent–target interaction and the ability to manipulate 

biological systems more efficiently. The combination of bioinformatics and relational 

databases provides the antimicrobial researcher with better tools for analysing, linking and 

comparing online search results. The development of computational tools depends on 

knowledge generated from diverse disciplines including mathematics, statistics, computer 

science, information technology and molecular biology (Hammami and Fliss, 2010). One 

such tool is the mathematical algorithm, Profile Hidden Markov Models (HMMER), where 

Tincho et al., 2016, identified putative anti-HIV AMPs using HMMER and Williams et al., 

2016, using these identified anti-HIV AMPs to design a LFD prototype accurately detecting 

both HIV-1 and HIV-2 and providing reproducible results on patient samples with sensitivity, 

accuracy, low sample requirement, and result interpretation within 15 minutes of the test 

being taken. 

The aim of this research work is to identify novel AMPs with activity against N. meningitidis 

for diagnosis of MD using in silico model creation.  

 

 

http://etd.uwc.ac.za/



 

162 
 

7.2. Chapter 2 

The aim of this chapter was to construct a sensitive and specific probabilistic model using 

HIMMER with experimentally validated anti-N. meningitidis AMPs as input for 

identification of putative anti-N. meningitidis AMPs from various genome sequences.  

Experimentally proven AMPs showing activity towards N. meningitidis found in several 

AMP databases such as APD (Wang and Wang, 2004; Wang et al., 2008; Wang et al., 2016), 

CAMP (Thomas et al., 2009; Waghu et al., 2014; Waghu et al., 2015), DRAMP (Fan et al., 

2016; Liu et al., 2017) and DBAASP (Gogoladze et al., 2014; Pirtskhalava et al., 2015) were 

retrieved. Data and Literature mining revealed after cross referencing between the databases, 

20 AMPs experimentally validated as anti-N. meningitidis peptides. A predictive model to 

identify potentially novel AMPs against the bacteria N. meningitidis was created using 

HMMER. The HMMER model to be used for genome scanning showed more than 95 % 

confidence to predict a peptide as a putative anti-N. meningitidis AMP following calibration 

of the created model. 

Following proteome scanning of the optimized model, several sequences resulted containing 

both unique/single and multiple domains. Identified sequences containing only unique/single 

domains were considered, as the single domains had a complete sequence with activity 

against Neisseria and met the cut-off E-value of 0.01. 

A final list of nine AMPs using the in silico mathematical algorithm HMMER were identified 

and named YYNN1 – YYNN9 with the smallest E-value seen for the prediction of YYNN8 

followed by YYNN9. 

Recently, Waghu et al., 2016 studied the use of sequence signatures represented by patterns 

and HMMs present in experimentally studied AMPs to identify novel AMPs. The study 

aimed to accelerate the discovery of novel AMPs by exploiting the conserved sequence 
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signatures present in AMP families. These studies highlight methods such as HMM to predict 

and design AMPs with great success.  

7.3. Chapter 3   

The aim of this chapter was to search for N. meningitidis receptors and linking it to pathways 

and secretion mechanisms within the bacterium to determine the most significant outer 

membrane (OM) protein/s for the novel AMP/s (ligand/s) to interact with. Through the 

interaction of the AMP/s to selected N. meningitidis receptors, the bacterium can be detected 

within biological samples i.e. a diagnostic test for N. meningitidis.  

Various search engines such as PubMed/NCBI, Google Scholar and Science Direct were 

accessed to identify the receptors in the outer membrane of N. meningitidis to serve as targets 

for the identified AMPs. Through an exhaustive literature mining approach, all N. 

meningitidis proteins and their associated pathways and secretion mechanisms were studied 

to identify the best candidate receptors for the identified AMPs. Three proteins were 

identified namely NhhA, Opc and PorA based on their selective expression within N. 

meningitidis. 

The amino acid sequences of the N. meningitidis receptors NhhA, Opc and PorA were 

extracted using NCBI and UniProt for 3D modelling as well as docking against the 3D 

models of the identified AMPs (subsequent chapters). 

7.4. Chapter 4  

The aim of this chapter was to determine whether the peptide sequences identified by 

HMMER conform to known AMPs both in physicochemical characteristics as well as 

structure.  
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The physicochemical properties of the nine identified putative anti-N. meningitidis peptide 

sequences were determined using APD and Bactibase, to ensure that it conformed to known 

AMPs based on the observed results i.e. their properties. It was ascertained that all the 

putative anti-N. meningitidis peptides have hydrophobic values that are above 30%, which is 

the anticipated value for hydrophobicity content of an AMP (Table 4.1) with all other 

physicochemical properties measured also falling within the expected range for known 

AMPs. 

The 3D structure of the N. meningitidis receptors and putative AMPs were modelled using 

the I-TASSER server and visualized using the PyMOL 1.3. Software. From the results AMPs 

YYNN1, YYNN3 YYNN4, YYNN5, YYNN6 and YYNN7 all have similar structures, 

represented by an extended partial α-helical structure or loop structure with partial α-helical 

secondary structure. The AMPs YYNN2, YYNN8 and YYNN9 exhibited α-helical secondary 

structures. The conformational structures observed for the putative AMPs are also 

characteristic of known AMPs. Taken together, the peptides identified conform to known 

AMPs based on physicochemical properties as well as structure. These peptide sequences can 

thus now be considered bona vide AMPs.  

Based on the C-score, TM-score and RMSD provided by I-TASSER of the anti-N. 

meningitidis peptides and the N. meningitidis protein 3D structures represented models of 

good prediction and structural topology i.e. correct predicted models. Even though, the 

structures already exists for the receptor proteins, both here modelled using I-TASSER to 

ensure uniformity in the criteria used for 3D structure determination.  

7.5. Chapter 5 

The aim of this chapter was to use the parental AMPs as templates to generate derivative 

AMPs that display increased predicted binding affinity for the NhhA, Opc and PorA proteins 
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using site directed mutagenesis. Work within this chapter was carried out using the KFC 

server to identify “hotspot” amino acid residues within the protein-peptide binding 

interphase. 

After the identification of mutation sensitive amino acids or “hotspot” amino acid residues of 

the AMPs using the KFC server site directed mutagenesis was carried out by substitution of 

‘non hotspot’ amino acid with amino acids of similar characteristics in an attempt to increase 

the binding affinity of the AMPs (ligands) to their targets (N. meningitidis receptors). 

As mentioned above, all amino acids substituted to generate derivate AMPs were of similar 

characteristics to the amino acids present in the parental AMPs, as to maintain the previously 

predicted structures of the parental AMPs as well as to still conform to known AMPs 

following site directed mutagenesis but with increased affinities.  

Following mutagenesis, the physicochemical characteristics of each mutated AMP were 

determined using Bactibase and APD and their 3D structures predicted using I-TASSER to 

ensure that after SDM the AMPs still retained the properties characteristic of this class of 

molecules. 

The physicochemical properties remained fairly similar following substitution based site-

directed mutagenesis using the same parameters for the derived AMPs as what was used for 

the parental AMPs. Slight changes in physicochemical characteristics post site-directed 

mutagenesis was observed for certain derived AMPs which, can be explained by the 

particular amino acid substituted. As indicated, amino acid substitution was carried out with 

an amino acid of similar properties and not the exact properties as the replaced one. 

For structural determination, it was observed that, the derived AMPs display similar α-helical 

secondary structures as their parental counterparts. The results showed that the derived AMP 

YYNN1b is not displaying an extended partial α-helical structure, which was present in the 
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parental YYNN1 which can also be a consequence of the amino acid substituted within the 

parental AMP. 

7.6. Chapter 6 

The aim of this chapter was to determine the ligand-receptor complex structure with their 

associated binding affinity scores of the parental and mutated AMPs with the N. meningitidis 

receptors NhhA, Opc and PorA respectively using PatchDock. Visualisation outputs of the in 

silico binding studies were done using RasMol.  

YYNN5 showed the highest binding affinities of all AMPs when bound to PorA and second 

highest score when bound to NhhA with YYNN8 showing the highest binding score to Opc.  

After examination of the scores, it can be noted that YYNN9b had the greatest percentage 

increase in binding affinity with a net positive percentage of 13.7 %, following site directed 

mutagenesis, and it still does not have the highest binding score when bound to the N. 

meningitidis proteins. The parental AMP YYNN5 still has the highest binding score bound to 

PorA protein. Derivative AMP YYNN2c had an increase in binding affinity from 14446 to 

15072 with a net positive percentage of 4.3 %, when bound to the PorA protein, resulting in 

this AMP having the second highest binding affinity score after AMP YYNN5 following 

mutagenesis. The AMPs also bound the receptors at positions that will allow free binding of 

ligand and receptor within a biological sample using a lateral flow device (LFD). 

The results observed from this chapter as well as previous chapters make YYNN5 the most 

likely candidate to be a true anti-N. meningitidis peptide as it also showed a low E-value 

prediction score by HMMER (Chapter 2) and fulfils all the physicochemical property 

requirements of a good AMP (Chapter 4) followed by AMP YYNN2c.  
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Major outputs from the study 

This is the first study to describe the in silico creation of a predictive profile for the 

identification of AMPs to be used as detection molecules for N. meningitidis. Similar study 

was carried out by Tincho et al., 2016, that discovered novel peptides against HIV for the 

detection of this disease within patient samples. 

It is also the first study to aim at discovering peptides for use as diagnostics for N. 

meningitidis. The current detection tests are still based on antibody technology. 

Also, there is no current detection test for N. meningitidis using lateral flow technology with 

such a test being created being able to overcome the various shortcoming listed within this 

work. 

Shortcoming of this work 

The major shortcoming of this work was the fact that the explored AMP databases had very 

few sequences for N. meningitidis. HMMER requires at the least 100 sequences within the 

training dataset to create a model with very high discriminatory power. Although, following 

calibration, the created models performed well in the performance evaluation measures. The 

output results still need to undergo experimental validation to ensure they possess activity 

against N. meningitidis. 

7.7. Future Work  

7.7.1. Molecular study  

The DNA sequences of the identified bacterial receptors (GenScript, USA) will be cloned 

into a vector and transformed into bacterial cells and purified using the GST purification 

system. All samples will be analysed by a 12% SDS-PAGE. The purified protein will be 

lyophilized and stored at -80° C for further use in a binding study. 
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7.7.2. Peptides synthesis  

Selected AMPs will be chemically synthesized by GL Biochem Ltd. using the solid-phase 

method and will be purified to >98% by reverse-phase High-Pressure Liquid 

Chromatography and the AMPs will be shipped in a lyophilized form.  

7.7.3. Binding studies 

Surface Plasmon resonance studies will be carried out between the peptides that showed the 

highest binding affinities and the N. meningitidis proteins it showed the highest binding 

affinity to, as a confirmation of the observed in silico results. 

7.7.4. Construction of a lateral flow device  

A lateral flow device will be constructed that can detect N. meningitidis and tested using 

patients samples as described by Williams et al., 2016 for HIV using AMPs. The best AMPs 

will be conjugated to gold nanoparticles (AuNPs) and implemented in a Lateral Flow Device 

(LFD) to determine meningococcal disease using patient sera which could within 15 minutes 

provide patients with accurate and sensitive diagnosis of meningococcal disease. In the 

absence of positive patient sera, control sera can be spiked with the various N. meningitidis 

proteins, as to mimic the infection, and applied to the LFD. 

Thereafter, a field study will be completed to test n number of patient samples at various 

stages of infection to assess the consistency and detection power of the LFD prototype. 
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Table 7.1: Outer Membrane Proteins for the Lateral Flow Device combination test 

Opc  Detection of only N. meningitidis within a 

patient sample a patient  

NhhA Detection of all meningococcal strains 

within a patient sample   

PorA Detection of all strains of meningococci 

within a patient sample 

 

Various combinations can be used in the LFD for the detection of N. meningitidis, provided 

the LFD has more than one testing line e.g. T1 and T2, where T1 can detect only the Opc in 

the patient sample (by using the best AMP) and T2 could detect NhhA (Table 7.1). In this 

regard, T1 will give a result where it shows N. meningitidis is present and potentially virulent 

due to the presence of Opc and T2 will confirm N. meningitidis presence since this OMP 

(NhhA) is found in all strains (as seen in Figure 7.1.). This being only one combination of 

AMPs with the potential of more combinations of AMPs introduced to increase sensitivity as 

well as specificity of the LFD. 

     T1 (AMPs to detect Opc)    +ve Control  

 

 

 

   Sample application area T2 (AMPs to detect NhhA) 

Figure 7.1: A possible Lateral Flow Device combination for N. meningitidis detection. 
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7.7.5. In silico work 

Using in silico analysis of more completely sequenced genomes additional putative AMPs 

can be identified interact with N. meningitidis proteins.  

SDM has to be performed on the additional AMPs using positively charged amino acid 

residues to increase binding scores. Mutations could be carried out making use of a 

hydrophobic residue such as the amino acid histidine. The end result would be to implement 

the best suited AMPs in a POC device for detection of MD constantly increasing both 

sensitivity as well as specificity. 

7.8. Outputs 

In summary, this work could lead to a new reliable and rapid diagnostic test to detect N. 

meningitidis that should enhance the diagnosis of MD and improve epidemiological 

surveillance. Rapid testing could help clinicians to identify the many children with MD who 

are not diagnosed when they first presented to healthcare. This bioinformatic approach 

potentially identified AMPs with diagnostic potential against N. meningitidis. Moreover, the 

algorithm may be used to prioritize biomarkers in other pathogen species as well.  

A POC diagnostic kit of this nature for diagnosis of MD would be easy to access by medical 

personnel as well as the patients. It will also not require training for personnel to be able to 

read and understand the result. A POC of this nature will also be very cost effective since it 

uses AMPs as compared to antibodies which on the average, are produced at a much higher 

cost than the synthetic process used for AMP synthesis. 

The CRDM of NICD also contributes data on numbers and serogroups of N. meningitidis and 

supports diagnostic testing and outbreak response for suspected cases of meningococcal 

meningitis. One objective for the NICD CRDM is to build local and regional capacity in 

epidemiology and laboratory diagnostics for respiratory disease and meningitis. Other WHO 
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meningococcal meningitis program activities include laboratory strengthening to ensure 

prompt and accurate diagnosis to rapidly confirm the diagnosis of MD. A test of this nature 

which is much easier to implement compared to the current methods employed for diagnosis 

of MD will contribute greatly to creating accurate data on this infection to aid International 

agencies such as WHO to know the exact disease burden as well as predict potential 

outbreaks in regions with high prevalence of N. meningitidis infections.  
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APPENDICES 

Appendix A 

Supplementary Material for Chapter 2 

Table A.1: HMMER scores and E-values for AMPs 

 

Appendix B 

Supplementary Material for Chapter 3 

Table B.1: NCBI result for NhhA 

>NP_274028.1 adhesin - nhhA 

MNKIYRIIWNSALNAWVVVSELTRNHTKRASATVKTAVLATLLFATVQASANNEEQEEDLYLDPVQRTVA 

VLIVNSDKEGTGEKEKVEENSDWAVYFNEKGVLTAREITLKAGDNLKIKQNGTNFTYSLKKDLTDLTSVG 

TEKLSFSANGNKVNITSDTKGLNFAKETAGTNGDTTVHLNGIGSTLTDTLLNTGATTNVTNDNVTDDEKK 

RAASVKDVLNAGWNIKGVKPGTTASDNVDFVRTYDTVEFLSADTKTTTVNVESKDNGKKTEVKIGAKTSV 

IKEKDGKLVTGKDKGENGSSTDEGEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGTNVTF 

ASGKGTTATVSKDDQGNITVMYDVNVGDALNVNQLQNSGWNLDSKAVAGSSGKVISGNVSPSKGKMDETV 

NINAGNNIEITRNGKNIDIATSMTPQFSSVSLGAGADAPTLSVDGDALNVGSKKDNKPVRITNVAPGVKE 

GDVTNVAQLKGVAQNLNNRIDNVDGNARAGIAQAIATAGLVQAYLPGKSMMAIGGGTYRGEAGYAIGYSS 

ISDGGNWIIKGTASGNSRGHFGASASVGYQW 

 

Table B.2: UniProt result for NhhA  
 

 

>sp|Q7DDJ2|NHHA_NEIMB Autotransporter adhesin NhhA  

MNKIYRIIWNSALNAWVVVSELTRNHTKRASATVKTAVLATLLFATVQASANNEEQEEDLYLDPVQRTVA 

VLIVNSDKEGTGEKEKVEENSDWAVYFNEKGVLTAREITLKAGDNLKIKQNGTNFTYSLKKDLTDLTSVG 

TEKLSFSANGNKVNITSDTKGLNFAKETAGTNGDTTVHLNGIGSTLTDTLLNTGATTNVTNDNVTDDEKK 

RAASVKDVLNAGWNIKGVKPGTTASDNVDFVRTYDTVEFLSADTKTTTVNVESKDNGKKTEVKIGAKTSV 

IKEKDGKLVTGKDKGENGSSTDEGEGLVTAKEVIDAVNKAGWRMKTTTANGQTGQADKFETVTSGTNVTF 

Single domain All AMPs

name Scores E-value

YYNN1 33.8 3.50E-06

YYNN2 23.2 0.0033

YYNN3 26 0.00085

YYNN4 24.1 0.0067

YYNN5 30.5 2.90E-05

YYNN6 32.6 2.00E-05

YYNN7 29.9 0.00013

N.gon

YYNN8 37.6 1.50E-07

N.men

YYNN9 29.1 2.40E-06
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ASGKGTTATVSKDDQGNITVMYDVNVGDALNVNQLQNSGWNLDSKAVAGSSGKVISGNVSPSKGKMDETV 

NINAGNNIEITRNGKNIDIATSMTPQFSSVSLGAGADAPTLSVDGDALNVGSKKDNKPVRITNVAPGVKE 

GDVTNVAQLKGVAQNLNNRIDNVDGNARAGIAQAIATAGLVQAYLPGKSMMAIGGGTYRGEAGYAIGYSS 

ISDGGNWIIKGTASGNSRGHFGASASVGYQW 

 

Table B.3: NCBI result for PorA 

>NP_274441.1 outer membrane protein PorA  

MRKKLTALVLSALPLAAVADVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVT 

KAKSRIRTKISDFGSFIGFKGSEDLGDGLKAVWQLEQDVSVAGGGATQWGNRESFIGLAG 

EFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIFKRHDDMPVSVRYDSPEFSGFSGS 

VQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVGKPGSDVYYAGLNYKNGGFAGNYAFKY 

ARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENG 

DKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRT 

SAIVSGAWLKRNTGIGNYTQINAASVGLRHKF 

 

Table B.4: UniProt result for PorA  
 

>sp|P0DH58|OMPA_NEIMB Major outer membrane protein PorA 

MRKKLTALVLSALPLAAVADVSLYGEIKAGVEGRNYQLQLTEAQAANGGASGQVKVTKVT 

KAKSRIRTKISDFGSFIGFKGSEDLGDGLKAVWQLEQDVSVAGGGATQWGNRESFIGLAG 

EFGTLRAGRVANQFDDASQAIDPWDSNNDVASQLGIFKRHDDMPVSVRYDSPEFSGFSGS 

VQFVPIQNSKSAYTPAYYTKNTNNNLTLVPAVVGKPGSDVYYAGLNYKNGGFAGNYAFKY 

ARHANVGRNAFELFLIGSGSDQAKGTDPLKNHQVHRLTGGYEEGGLNLALAAQLDLSENG 

DKTKNSTTEIAATASYRFGNAVPRISYAHGFDFIERGKKGENTSYDQIIAGVDYDFSKRT 

SAIVSGAWLKRNTGIGNYTQINAASVGLRHKF 

 

Table B.5: NCBI result for Opc 

>NP_274087.1 class 5 outer membrane protein - Opc 

MKKTVFTCAMIALTGTAAAAQELQTANEFTVHTDLSSISSTRAFLKEKHKAAKHISVRAD 

IPFDANQGIRLEAGFGRSKKNIINLETDENKLGKTKNVKLPTGVPENRIDLYTGYTYTQT 

LSDSLNFRVGAGLGFESSKDSIKTTKHTLHSSRQSWLAKVHADLLSQLGNGWYINPWSEV 

KFDLNSRYKLNTGVTNLKKDINQKTNGWGFGLGANIGKKLGESASIEAGPFYKQRTYKES 

GEFSVTTKSGDVSLTIPKTSIREYGLRVGIKF 

 

Table B.6: UniProt result for Opc 

>tr|Q51227|Q51227_NEIME OpcA protein OS=Neisseria meningitidis 

MKKTVFTCAMIALTGTAAAAQELQTANEFTVHTDLSSISSTRAFLKEKHKAAKHIGVRAD 

IPFDANQGIRLEAGFGRSKKNIINLETDENKLGKTKNVKLPTGVPENRIDLYTGYTYTQT 

LSDSLNFRVGAGLGFESSKDSIKTTKHTLHSSRQSWLAKVHADLLSQLGNGWYINPWSEV 

KFDLNSRYKLNTGVTNLKKDINQKTNGWGFGLGANIGKKLGESASIEAGPFYKQRTYKES 

GEFSVTTKSGDVSLTIPKTSIREYGLRVGIKF 

 

http://etd.uwc.ac.za/
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