1,439 research outputs found

    A Survey of Techniques For Improving Energy Efficiency in Embedded Computing Systems

    Full text link
    Recent technological advances have greatly improved the performance and features of embedded systems. With the number of just mobile devices now reaching nearly equal to the population of earth, embedded systems have truly become ubiquitous. These trends, however, have also made the task of managing their power consumption extremely challenging. In recent years, several techniques have been proposed to address this issue. In this paper, we survey the techniques for managing power consumption of embedded systems. We discuss the need of power management and provide a classification of the techniques on several important parameters to highlight their similarities and differences. This paper is intended to help the researchers and application-developers in gaining insights into the working of power management techniques and designing even more efficient high-performance embedded systems of tomorrow

    Efficiently mapping high-performance early vision algorithms onto multicore embedded platforms

    Get PDF
    The combination of low-cost imaging chips and high-performance, multicore, embedded processors heralds a new era in portable vision systems. Early vision algorithms have the potential for highly data-parallel, integer execution. However, an implementation must operate within the constraints of embedded systems including low clock rate, low-power operation and with limited memory. This dissertation explores new approaches to adapt novel pixel-based vision algorithms for tomorrow's multicore embedded processors. It presents : - An adaptive, multimodal background modeling technique called Multimodal Mean that achieves high accuracy and frame rate performance with limited memory and a slow-clock, energy-efficient, integer processing core. - A new workload partitioning technique to optimize the execution of early vision algorithms on multi-core systems. - A novel data transfer technique called cat-tail dma that provides globally-ordered, non-blocking data transfers on a multicore system. By using efficient data representations, Multimodal Mean provides comparable accuracy to the widely used Mixture of Gaussians (MoG) multimodal method. However, it achieves a 6.2x improvement in performance while using 18% less storage than MoG while executing on a representative embedded platform. When this algorithm is adapted to a multicore execution environment, the new workload partitioning technique demonstrates an improvement in execution times of 25% with only a 125 ms system reaction time. It also reduced the overall number of data transfers by 50%. Finally, the cat-tail buffering technique reduces the data-transfer latency between execution cores and main memory by 32.8% over the baseline technique when executing Multimodal Mean. This technique concurrently performs data transfers with code execution on individual cores, while maintaining global ordering through low-overhead scheduling to prevent collisions.Ph.D.Committee Chair: Wills, Scott; Committee Co-Chair: Wills, Linda; Committee Member: Bader, David; Committee Member: Davis, Jeff; Committee Member: Hamblen, James; Committee Member: Lanterman, Aaro

    Effective data parallel computing on multicore processors

    Get PDF
    The rise of chip multiprocessing or the integration of multiple general purpose processing cores on a single chip (multicores), has impacted all computing platforms including high performance, servers, desktops, mobile, and embedded processors. Programmers can no longer expect continued increases in software performance without developing parallel, memory hierarchy friendly software that can effectively exploit the chip level multiprocessing paradigm of multicores. The goal of this dissertation is to demonstrate a design process for data parallel problems that starts with a sequential algorithm and ends with a high performance implementation on a multicore platform. Our design process combines theoretical algorithm analysis with practical optimization techniques. Our target multicores are quad-core processors from Intel and the eight-SPE IBM Cell B.E. Target applications include Matrix Multiplications (MM), Finite Difference Time Domain (FDTD), LU Decomposition (LUD), and Power Flow Solver based on Gauss-Seidel (PFS-GS) algorithms. These applications are popular computation methods in science and engineering problems and are characterized by unit-stride (MM, LUD, and PFS-GS) or 2-point stencil (FDTD) memory access pattern. The main contributions of this dissertation include a cache- and space-efficient algorithm model, integrated data pre-fetching and caching strategies, and in-core optimization techniques. Our multicore efficient implementations of the above described applications outperform nai¨ve parallel implementations by at least 2x and scales well with problem size and with the number of processing cores

    Guppy: Process-Oriented Programming on Embedded Devices

    Get PDF
    Guppy is a new and experimental process-oriented programming language, taking much inspiration (and some code-base) from the existing occam-pi language. This paper reports on a variety of aspects related to this, specifically language, compiler and run-time system development, enabling Guppy programs to run on desktop and embedded systems. A native code-generation approach is taken, using C as the intermediate language, and with stack-space requirements determined at compile-time

    Using the High Productivity Language Chapel to Target GPGPU Architectures

    Get PDF
    It has been widely shown that GPGPU architectures offer large performance gains compared to their traditional CPU counterparts for many applications. The downside to these architectures is that the current programming models present numerous challenges to the programmer: lower-level languages, explicit data movement, loss of portability, and challenges in performance optimization. In this paper, we present novel methods and compiler transformations that increase productivity by enabling users to easily program GPGPU architectures using the high productivity programming language Chapel. Rather than resorting to different parallel libraries or annotations for a given parallel platform, we leverage a language that has been designed from first principles to address the challenge of programming for parallelism and locality. This also has the advantage of being portable across distinct classes of parallel architectures, including desktop multicores, distributed memory clusters, large-scale shared memory, and now CPU-GPU hybrids. We present experimental results from the Parboil benchmark suite which demonstrate that codes written in Chapel achieve performance comparable to the original versions implemented in CUDA.NSF CCF 0702260Cray Inc. Cray-SRA-2010-016962010-2011 Nvidia Research Fellowshipunpublishednot peer reviewe

    Real-time operating system support for multicore applications

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia de Automação e Sistemas, Florianópolis, 2014Plataformas multiprocessadas atuais possuem diversos níveis da memória cache entre o processador e a memória principal para esconder a latência da hierarquia de memória. O principal objetivo da hierarquia de memória é melhorar o tempo médio de execução, ao custo da previsibilidade. O uso não controlado da hierarquia da cache pelas tarefas de tempo real impacta a estimativa dos seus piores tempos de execução, especialmente quando as tarefas de tempo real acessam os níveis da cache compartilhados. Tal acesso causa uma disputa pelas linhas da cache compartilhadas e aumenta o tempo de execução das aplicações. Além disso, essa disputa na cache compartilhada pode causar a perda de prazos, o que é intolerável em sistemas de tempo real críticos. O particionamento da memória cache compartilhada é uma técnica bastante utilizada em sistemas de tempo real multiprocessados para isolar as tarefas e melhorar a previsibilidade do sistema. Atualmente, os estudos que avaliam o particionamento da memória cache em multiprocessadores carecem de dois pontos fundamentais. Primeiro, o mecanismo de particionamento da cache é tipicamente implementado em um ambiente simulado ou em um sistema operacional de propósito geral. Consequentemente, o impacto das atividades realizados pelo núcleo do sistema operacional, tais como o tratamento de interrupções e troca de contexto, no particionamento das tarefas tende a ser negligenciado. Segundo, a avaliação é restrita a um escalonador global ou particionado, e assim não comparando o desempenho do particionamento da cache em diferentes estratégias de escalonamento. Ademais, trabalhos recentes confirmaram que aspectos da implementação do SO, tal como a estrutura de dados usada no escalonamento e os mecanismos de tratamento de interrupções, impactam a escalonabilidade das tarefas de tempo real tanto quanto os aspectos teóricos. Entretanto, tais estudos também usaram sistemas operacionais de propósito geral com extensões de tempo real, que afetamos sobre custos de tempo de execução observados e a escalonabilidade das tarefas de tempo real. Adicionalmente, os algoritmos de escalonamento tempo real para multiprocessadores atuais não consideram cenários onde tarefas de tempo real acessam as mesmas linhas da cache, o que dificulta a estimativa do pior tempo de execução. Esta pesquisa aborda os problemas supracitados com as estratégias de particionamento da cache e com os algoritmos de escalonamento tempo real multiprocessados da seguinte forma. Primeiro, uma infraestrutura de tempo real para multiprocessadores é projetada e implementada em um sistema operacional embarcado. A infraestrutura consiste em diversos algoritmos de escalonamento tempo real, tais como o EDF global e particionado, e um mecanismo de particionamento da cache usando a técnica de coloração de páginas. Segundo, é apresentada uma comparação em termos da taxa de escalonabilidade considerando o sobre custo de tempo de execução da infraestrutura criada e de um sistema operacional de propósito geral com extensões de tempo real. Em alguns casos, o EDF global considerando o sobre custo do sistema operacional embarcado possui uma melhor taxa de escalonabilidade do que o EDF particionado com o sobre custo do sistema operacional de propósito geral, mostrando claramente como diferentes sistemas operacionais influenciam os escalonadores de tempo real críticos em multiprocessadores. Terceiro, é realizada uma avaliação do impacto do particionamento da memória cache em diversos escalonadores de tempo real multiprocessados. Os resultados desta avaliação indicam que um sistema operacional "leve" não compromete as garantias de tempo real e que o particionamento da cache tem diferentes comportamentos dependendo do escalonador e do tamanho do conjunto de trabalho das tarefas. Quarto, é proposto um algoritmo de particionamento de tarefas que atribui as tarefas que compartilham partições ao mesmo processador. Os resultados mostram que essa técnica de particionamento de tarefas reduz a disputa pelas linhas da cache compartilhadas e provê garantias de tempo real para sistemas críticos. Finalmente, é proposto um escalonador de tempo real de duas fases para multiprocessadores. O escalonador usa informações coletadas durante o tempo de execução das tarefas através dos contadores de desempenho em hardware. Com base nos valores dos contadores, o escalonador detecta quando tarefas de melhor esforço o interferem com tarefas de tempo real na cache. Assim é possível impedir que tarefas de melhor esforço acessem as mesmas linhas da cache que tarefas de tempo real. O resultado desta estratégia de escalonamento é o atendimento dos prazos críticos e não críticos das tarefas de tempo real.Abstracts: Modern multicore platforms feature multiple levels of cache memory placed between the processor and main memory to hide the latency of ordinary memory systems. The primary goal of this cache hierarchy is to improve average execution time (at the cost of predictability). The uncontrolled use of the cache hierarchy by realtime tasks may impact the estimation of their worst-case execution times (WCET), specially when real-time tasks access a shared cache level, causing a contention for shared cache lines and increasing the application execution time. This contention in the shared cache may leadto deadline losses, which is intolerable particularly for hard real-time (HRT) systems. Shared cache partitioning is a well-known technique used in multicore real-time systems to isolate task workloads and to improve system predictability. Presently, the state-of-the-art studies that evaluate shared cache partitioning on multicore processors lack two key issues. First, the cache partitioning mechanism is typically implemented either in a simulated environment or in a general-purpose OS (GPOS), and so the impact of kernel activities, such as interrupt handlers and context switching, on the task partitions tend to be overlooked. Second, the evaluation is typically restricted to either a global or partitioned scheduler, thereby by falling to compare the performance of cache partitioning when tasks are scheduled by different schedulers. Furthermore, recent works have confirmed that OS implementation aspects, such as the choice of scheduling data structures and interrupt handling mechanisms, impact real-time schedulability as much as scheduling theoretic aspects. However, these studies also used real-time patches applied into GPOSes, which affects the run-time overhead observed in these works and consequently the schedulability of real-time tasks. Additionally, current multicore scheduling algorithms do not consider scenarios where real-time tasks access the same cache lines due to true or false sharing, which also impacts the WCET. This thesis addresses these aforementioned problems with cache partitioning techniques and multicore real-time scheduling algorithms as following. First, a real-time multicore support is designed and implemented on top of an embedded operating system designed from scratch. This support consists of several multicore real-time scheduling algorithms, such as global and partitioned EDF, and a cache partitioning mechanism based on page coloring. Second, it is presented a comparison in terms of schedulability ratio considering the run-time overhead of the implemented RTOS and a GPOS patched with real-time extensions. In some cases, Global-EDF considering the overhead of the RTOS is superior to Partitioned-EDF considering the overhead of the patched GPOS, which clearly shows how different OSs impact hard realtime schedulers. Third, an evaluation of the cache partitioning impacton partitioned, clustered, and global real-time schedulers is performed.The results indicate that a lightweight RTOS does not impact real-time tasks, and shared cache partitioning has different behavior depending on the scheduler and the task's working set size. Fourth, a task partitioning algorithm that assigns tasks to cores respecting their usage of cache partitions is proposed. The results show that by simply assigning tasks that shared cache partitions to the same processor, it is possible to reduce the contention for shared cache lines and to provideHRT guarantees. Finally, a two-phase multicore scheduler that provides HRT and soft real-time (SRT) guarantees is proposed. It is shown that by using information from hardware performance counters at run-time, the RTOS can detect when best-effort tasks interfere with real-time tasks in the shared cache. Then, the RTOS can prevent best effort tasks from interfering with real-time tasks. The results also show that the assignment of exclusive partitions to HRT tasks together with the two-phase multicore scheduler provides HRT and SRT guarantees, even when best-effort tasks share partitions with real-time tasks

    A Co-Processor Approach for Efficient Java Execution in Embedded Systems

    Get PDF
    This thesis deals with a hardware accelerated Java virtual machine, named REALJava. The REALJava virtual machine is targeted for resource constrained embedded systems. The goal is to attain increased computational performance with reduced power consumption. While these objectives are often seen as trade-offs, in this context both of them can be attained simultaneously by using dedicated hardware. The target level of the computational performance of the REALJava virtual machine is initially set to be as fast as the currently available full custom ASIC Java processors. As a secondary goal all of the components of the virtual machine are designed so that the resulting system can be scaled to support multiple co-processor cores. The virtual machine is designed using the hardware/software co-design paradigm. The partitioning between the two domains is flexible, allowing customizations to the resulting system, for instance the floating point support can be omitted from the hardware in order to decrease the size of the co-processor core. The communication between the hardware and the software domains is encapsulated into modules. This allows the REALJava virtual machine to be easily integrated into any system, simply by redesigning the communication modules. Besides the virtual machine and the related co-processor architecture, several performance enhancing techniques are presented. These include techniques related to instruction folding, stack handling, method invocation, constant loading and control in time domain. The REALJava virtual machine is prototyped using three different FPGA platforms. The original pipeline structure is modified to suit the FPGA environment. The performance of the resulting Java virtual machine is evaluated against existing Java solutions in the embedded systems field. The results show that the goals are attained, both in terms of computational performance and power consumption. Especially the computational performance is evaluated thoroughly, and the results show that the REALJava is more than twice as fast as the fastest full custom ASIC Java processor. In addition to standard Java virtual machine benchmarks, several new Java applications are designed to both verify the results and broaden the spectrum of the tests.Siirretty Doriast

    A TrustZone-assisted secure silicon on a co-design framework

    Get PDF
    Dissertação de mestrado em Engenharia Eletrónica Industrial e ComputadoresEmbedded systems were for a long time, single-purpose and closed systems, characterized by hardware resource constraints and real-time requirements. Nowadays, their functionality is ever-growing, coupled with an increasing complexity and heterogeneity. Embedded applications increasingly demand employment of general-purpose operating systems (GPOSs) to handle operator interfaces and general-purpose computing tasks, while simultaneously ensuring the strict timing requirements. Virtualization, which enables multiple operating systems (OSs) to run on top of the same hardware platform, is gaining momentum in the embedded systems arena, driven by the growing interest in consolidating and isolating multiple and heterogeneous environments. The penalties incurred by classic virtualization approaches is pushing research towards hardware-assisted solutions. Among the existing commercial off-the-shelf (COTS) technologies for virtualization, ARM TrustZone technology is gaining momentum due to the supremacy and lower cost of TrustZone-enabled processors. Programmable system-on-chips (SoCs) are becoming leading players in the embedded systems space, because the combination of a plethora of hard resources with programmable logic enables the efficient implementation of systems that perfectly fit the heterogeneous nature of embedded applications. Moreover, novel disruptive approaches make use of field-programmable gate array (FPGA) technology to enhance virtualization mechanisms. This master’s thesis proposes a hardware-software co-design framework for easing the economy of addressing the new generation of embedded systems requirements. ARM TrustZone is exploited to implement the root-of-trust of a virtualization-based architecture that allows the execution of a GPOS side-by-side with a real-time OS (RTOS). RTOS services were offloaded to hardware, so that it could present simultaneous improvements on performance and determinism. Instead of focusing in a concrete application, the goal is to provide a complete framework, specifically tailored for Zynq-base devices, that developers can use to accelerate a bunch of distinct applications across different embedded industries.Os sistemas embebidos foram, durante muitos anos, sistemas com um simples e único propósito, caracterizados por recursos de hardware limitados e com cariz de tempo real. Hoje em dia, o número de funcionalidades começa a escalar, assim como o grau de complexidade e heterogeneidade. As aplicações embebidas exigem cada vez mais o uso de sistemas operativos (OSs) de uso geral (GPOS) para lidar com interfaces gráficas e tarefas de computação de propósito geral. Porém, os seus requisitos primordiais de tempo real mantém-se. A virtualização permite que vários sistemas operativos sejam executados na mesma plataforma de hardware. Impulsionada pelo crescente interesse em consolidar e isolar ambientes múltiplos e heterogéneos, a virtualização tem ganho uma crescente relevância no domínio dos sistemas embebidos. As adversidades que advém das abordagens de virtualização clássicas estão a direcionar estudos no âmbito de soluções assistidas por hardware. Entre as tecnologias comerciais existentes, a tecnologia ARM TrustZone está a ganhar muita relevância devido à supremacia e ao menor custo dos processadores que suportam esta tecnologia. Plataformas hibridas, que combinam processadores com lógica programável, estão em crescente penetração no domínio dos sistemas embebidos pois, disponibilizam um enorme conjunto de recursos que se adequam perfeitamente à natureza heterogénea dos sistemas atuais. Além disso, existem soluções recentes que fazem uso da tecnologia de FPGA para melhorar os mecanismos de virtualização. Esta dissertação propõe uma framework baseada em hardware-software de modo a cumprir os requisitos da nova geração de sistemas embebidos. A tecnologia TrustZone é explorada para implementar uma arquitetura que permite a execução de um GPOS lado-a-lado com um sistemas operativo de tempo real (RTOS). Os serviços disponibilizados pelo RTOS são migrados para hardware, para melhorar o desempenho e determinismo do OS. Em vez de focar numa aplicação concreta, o objetivo é fornecer uma framework especificamente adaptada para dispositivos baseados em System-on-chips Zynq, de forma a que developers possam usar para acelerar um vasto número de aplicações distintas em diferentes setores
    • …
    corecore