
Efficiently Mapping High-Performance Early Vision

Algorithms onto Multicore Embedded Platforms

A Dissertation

Presented to

The Academic Faculty

by

Senyo Apewokin

In Partial Fulfillment

Of the Requirements for the Degree

Doctor of Philosophy in the

School of Electrical Engineering

Georgia Institute of Technology

May, 2009

 ii

Efficiently Mapping High-Performance Early Vision

Algorithms onto Multicore Embedded Platforms

Approved by:

Dr. D. Scott Wills, Advisor

School of Electrical and Computer Engineering

Georgia Institute of Technology

Dr. Linda M. Wills, Co-advisor

School of Electrical and Computer Engineering

Georgia Institute of Technology

Dr. Jim Hamblen

School of Electrical and Computer Engineering

Georgia Institute of Technology

Dr. Jeff Davis

School of Electrical and Computer Engineering

Georgia Institute of Technology

Dr. Aaron Lanterman

School of Electrical and Computer Engineering

Georgia Institute of Technology

Dr. David Bader

College of Computing

Georgia Institute of Technology

Date Approved : 16
th

 December 2008

 iii

ACKNOWLEDGEMENTS

This dissertation is the culmination of an academic journey spanning several years

in which I was deeply influenced by several people. I will be eternally grateful to them

for their unyielding support.

First of all, I would like to express my deepest appreciation to Dr. D. Scott Wills,

my academic adviser, for his guidance throughout this process. Thank you for allowing

me to expend mental energy on tangential albeit interesting ideas while keeping me

focused enough on the greater goals.

I would also like to acknowledge the tremendous contributions of my co-adviser

Dr. Linda M. Wills. Thank you for teaching me to use the tools of good organization,

clarity of thought and expression, and attention to detail for sound research.

I am sincerely grateful to them for guiding the many insightful discussions, topic

iterations, platform experimentations, and framing progressions throughout this work.

More importantly, I am grateful for the many valuable life-lessons they taught me

throughout my association with them.

I am grateful to Dr. Jim Hamblen, Dr. Jeff Davis, Dr Aaron Lanterman, and Dr.

David Bader for serving on my thesis committee. Thank you for your numerous platform

suggestions and many insightful comments about the general direction of this work. Your

advice has certainly resulted in a higher quality document.

I am also grateful to Dr. Hsien-Hsin Lee and Dr. Doug Bough for giving me to

alternate research perspectives and Dr. Bonnie Heck and Dr. Sudha Yalamanchili for

allowing me to develop educational material.

 iv

I am thankful that several current and former PICA and EASL members provided

a resourceful work environment during the period I spent in the group. Thanks Brian, Jee,

Matt, Krit, and Ryan for the many brain-storming sessions and technical support. Thanks

to Dr. Sek Chai, Dr. Peter Sassone, Dr Cory Hawkins, Dr. Hongkyu Kim, and Dr.

Jongmyon Kim for technical support and encouragement.

Thanks to Priya Benjamin for being a steady source of inspiration. Thanks for

helping navigate through the difficult times during this academic journey.

Finally, I would like to dedicate this thesis to my family for years of support and

encouragement. I am grateful to my parents Mr. Michael Apewokin and Mrs. Esther

Apewokin for providing me with an environment where my curiosity was encouraged. I

am also grateful to my brothers Dr. Senu Apewokin, Sena Apewokin and Edem

Apewokin for challenging me to reach further.

 v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS... III

LIST OF TABLES ..VII

LIST OF FIGURES .. VIII

SUMMARY... IX

INTRODUCTION...1

1.1. MOTIVATION...1
1.1.1. MEMORY AND COMPUTATION CHALLENGES OF EARLY VISION ALGORITHMS ON EMBEDDED

SYSTEMS ..4
1.1.2. PROCESSING AND DATA BANDWIDTH CHALLENGES ON MULTICORE EMBEDDED SYSTEMS6
1.1.3. MEMORY TRANSFER LATENCY CHALLENGES ON MULTICORE EMBEDDED SYSTEMS6

1.2. PROBLEM STATEMENT AND RESEARCH CONTRIBUTIONS..7
1.3. RESEARCH APPROACH SUMMARY...8
1.4. RESULTS SUMMARY..10
1.5. OVERVIEW OF CONTENT ...11

PEDESTRIAN-TRACKING APPLICATION ...12

2.1 INTRODUCTION ...12
2.2 CURRENT PEOPLE TRACKING APPROACHES..14
2.3 OBJECT MODELING RATIONALE ...17
2.4 PEDESTRIAN-TRACKING ALGORITHM ...19

2.4.1 LOCAL HISTORY TRACKER: DEALING WITH CORRESPONDENCE OVER SHORT PERIODS.........21
2.4.2 GLOBAL HISTORY TRACKER: DEALING WITH OCCLUSION, MERGING, AND SPLITS................23

2.5 EXPERIMENT AND ANALYSIS ..25

MULTIMODAL MEAN BACKGROUND MODELING TECHNIQUE ..30

3.1 INTRODUCTION ...30
3.2 THE CASE FOR A FAST ADAPTIVE BACKGROUND MODEL...32
3.3 RELATED BACKGROUND MODELING WORK ...33
3.4 MULTIMODAL MEAN ALGORITHM ..36
3.5 EVALUATION ON EMBEDDED PLATFORM ..38
3.5 RESULTS ...41
3.6 MULTIMODAL MEAN ON HP PLATFORM ...46

REAL-TIME ADAPTIVE BACKGROUND MODELING FOR MULTICORE EMBEDDED

SYSTEMS ..49

4.1 INTRODUCTION ...49
4.2 CELL BROADBAND ENGINE: AN EMBEDDED MULTICORE EXECUTION PLATFORM51
4.3 EMBEDDED MULTICORE COMPUTER VISION...53
4.4 BASELINE PROCESSING OF MULTIMODAL MEAN ON THE CELL BROADBAND ENGINE54
4.5 EVALUATION AND RESULTS..57
4.6 TILE PROCESSING..66

CAT-TAIL DMA: EFFICIENT IMAGE DATA TRANSPORT FOR MULTICORE EMBEDDED

SYSTEMS ..73

5.1 INTRODUCTION ...73
5.2 BACKGROUND WORK ...75
5.3 SINGLE VS. DOUBLE BUFFERED DMA ..79
5.4 CAT-TAIL DMA..85

5.4.1 CORE PROCESSING ...85
5.4.2 STAGGERED EXECUTION ..87

 vi

5.5 EVALUATION AND RESULTS..90

CONCLUSION AND FUTURE WORK...96

6.1 SUMMARY OF RESULTS ...97
6.2 FUTURE WORK..99

REFERENCES ..101

 vii

LIST OF TABLES

Table 1 Test sequences ... 39

Table 2 Algorithm Parameters .. 40

Table 3 Algorithm performance on test platform ... 45

Table 4 Algorithm performance on HP platform.. 48

Table 5 Cache vs. DMA.. 50

Table 6: Memory allocation... 58

Table 7: Image storage requirements.. 70

Table 8: Performance.. 71

Table 9 SPU Maximum block transfer for double-buffered DMA................................... 84

Table 10 Block sizes ... 91

Table 11 Buffering execution times.. 93

 viii

LIST OF FIGURES

Figure 1 Video surveillance system.. 13

Figure 2 Object representations ... 18

Figure 3 Mean-shift tracking iterations... 21

Figure 4 eBox Vesa PC... 26

Figure 5 People tracking result ... 29

Figure 6 Waving tree errors .. 41

Figure 7 Bootstrapping errors ... 42

Figure 8 Outdoors errors... 42

Figure 9 Overall errors.. 43

Figure 10 Image quality comparison of background modeling techniques...................... 44

Figure 11 HP Pavilion Slimline S3220N PC .. 47

Figure 12 Cell architecture.. 52

Figure 13 Sony Playstation 3 with YDL... 55

Figure 14 Algorithm performance in frames per spu seconds, excluding data transfer ... 59

Figure 15 Algorithm performance in frames per second, including data transfer latency 60

Figure 16 Outdoors I errors... 62

Figure 17 Outdoors II errors ... 63

Figure 18 Overall errors.. 63

Figure 19 Image quality on Cell B.E. ... 65

Figure 20 Tiling .. 67

Figure 21 Single-buffered DMA... 80

Figure 22 Double-buffered DMA ... 81

Figure 23 Circular buffering ... 86

Figure 24 Staggered execution.. 88

Figure 25 Performance of buffering techniques ... 92

Figure 26 Performance improvements over time.. 94

 ix

SUMMARY

The combination of low-cost imaging chips and high-performance, multicore,

embedded processors heralds a new era in portable vision systems. Early vision

algorithms have the potential for highly data-parallel, integer execution. However, an

implementation must operate within the constraints of embedded systems including low

clock rate, low-power operation with limited memory. This dissertation explores new

approaches to adapt novel pixel-based vision algorithms for tomorrow’s multicore

embedded processors. It presents:

• An adaptive, multimodal background modeling technique called

Multimodal Mean that achieves high accuracy and frame rate performance

with limited memory and a slow-clock, energy-efficient, integer

processing core.

• A new workload partitioning technique to optimize the execution of early

vision algorithms on multi-core systems.

• A novel data transfer technique called cat-tail DMA that provides

globally-ordered, non-blocking data transfers on a multicore system.

By using efficient data representations, Multimodal Mean provides comparable

accuracy to the widely used Mixture of Gaussians (MoG) multimodal method. However,

it achieves a 6.2x improvement in performance while using 18% less storage than MoG

while executing on a representative embedded platform.

When this algorithm is adapted to a multicore execution environment, the new

workload partitioning technique demonstrates an improvement in execution times of 25%

 x

with a 125 ms system reaction time. It also reduced the overall number of data transfers

by 50%.

Finally, the cat-tail DMA technique reduces the data-transfer latency between

execution cores and main memory by 32.8% over the baseline technique when executing

Multimodal Mean. This technique concurrently performs data transfers with code

execution on individual cores, while maintaining global ordering through low-overhead

scheduling to prevent collisions.

 1

CHAPTER 1

INTRODUCTION

1.1. Motivation

Demand for portable, low-cost, high computation platforms for multimedia and

telecommunications applications is driving today’s and tomorrow’s embedded systems.

Examples range from small systems, such as cellular phones, PDAs, and gaming

consoles, to large, distributed systems, such as multi-node video surveillance systems.

Regardless of the application, embedded computing systems are subject to more rigid

cost, size, power, thermal, and real-time performance constraints than traditional general-

purpose computing systems.

With the development of low cost embedded imagers, there is an opportunity to

integrate early vision algorithms with real-time embedded systems. For example, the

separation of salient foreground objects from uninteresting background is necessary in

important applications such as vehicle collision avoidance, pedestrian tracking, anti-

terrorist surveillance, and autonomous vehicle control. These applications demand real-

time execution in a partially or fully embedded system (e.g. on a moving vehicle).

Embedded systems for real-time execution of early vision algorithms present

unique demands. These algorithms require the transfer of large amounts of data between

the execution units (where the images are processed) and off-chip memory (where the

images are stored). A wide, high-frequency bus is desirable to support the transfer of

high-bandwidth data but this is not typically affordable on an embedded platform. Also, a

 2

large storage area is needed on the computing cores to process data in larger blocks and

reduce the number of transactions. With advances in process technology and the

availability of billions of transistors, larger on-chip memory and ever-improving high-

speed bus structures are staple features on general-purpose processors and will only

improve for future generations. However, embedded platforms will be unable to follow

the same trend due to embedded design constraints such as low-power. Keeping data

readily available for execution on computation cores presents a key challenge.

Early vision workloads are demanding in terms of both memory and

computational requirements. They typically involve extracting context out of a large

quantity of pixel data and having the data readily available on the execution cores is

important for real-time operation. Furthermore, the sheer volume of operations puts

additional constraints on the computational requirements. For example, adding a single

operation per pixel to a given algorithm is magnified by the large number of pixels and

this has direct impact on real-time performance. Similarly, adding a single integer field to

an image reference model is magnified across the image. Redesigning early vision

algorithms to be more efficient in terms of storage and computation will significantly

affect their ability to execute in real-time on embedded platforms.

Unlike general-purpose workloads however, early vision workloads are streaming

in nature and feature very little data reuse. Also, the program control characteristics and

data access patterns of these workloads are very predictable. This means the traditional

solutions employed by general-purpose architects, such as hardware caching and pre-

fetching to reduce memory latency as well as speculative execution and branch prediction

to increase throughput, are not transferable to vision platforms. However, the same

 3

memory and throughput concerns remain for both workloads and new techniques to

address those for early vision workloads are important for designing high performance

systems.

Multicore processing is the future of high performance desk and laptop

architectures (e.g., Intel, AMD processor roadmaps (see PC magazine summary [58])).

Embedded processor development traditionally follows with low power platforms (e.g.,

ARM Cortex A8 [59]). These architectures are well-suited for early-vision algorithms

because they provide hardware support for concurrent execution of these highly data-

parallel workloads. However, caching, speculative execution, branch prediction, and

other latency-reduction techniques that are commonly employed in general-purpose

multicore processors are ill-suited for embedded vision applications. To achieve

efficient, real-time execution of high-bandwidth early vision algorithms, architects must

apply concurrent exploration of both architectural and algorithmic optimizations to

system design.

Thesis Objectives: This dissertation explores mapping early vision algorithms onto

multicore embedded platforms with emphasis on high performance and efficiency.

Specifically, it uses the design of a pedestrian-tracking system as a representative case

and addresses challenges with respect to the following:

• The effect of the modeling and tracking choices employed in the design of

pedestrian-tracking software applications on the memory and computational

requirements of embedded platforms and the implications for real-time

performance.

 4

• The effects of transferring large amounts of data between memory and

computation cores when executing early vision algorithms on multicore

embedded platforms and techniques to optimize the work done per transfer.

• The impact of data transfer memory latency on real-time performance of

early-vision algorithms on multicore embedded systems and optimizations to

minimize the transfer latency without sacrificing utilization of core local

storage area.

The identified issues can have significant impact on the real-time performance of

an embedded pedestrian-tracking system.

1.1.1. Memory and Computation Challenges of Early Vision Algorithms on
Embedded Systems

 Although several pedestrian-tracking applications have been proposed, they

traditionally targeted desktop execution platforms and therefore modeling and tracking

were approached accordingly. Real-time performance in real-world environments was not

the main focus of the algorithms and therefore the implementation costs and complexity

of the algorithms were not key design factors. Also, because they typically run above the

operating system, they are unable to exploit the new multicore general-purpose processor

designs. New approaches are required to achieve real-time performance on multicore

embedded platforms.

Several techniques exist for modeling objects for tracking, such as color

histograms, and shape analysis. The actual tracking algorithms also feature varying

degrees of complexity and heavily employ floating-point computation. As a result, the

 5

techniques are usually computationally and memory intensive and in stable environments

the accuracy improves with more complex modeling. However, in dynamic, real-world

environments complex modeling does not necessarily yield improved accuracy. A

thorough analysis of the individual components of video surveillance applications is

necessary to identify which areas could be redesigned to significantly improve overall

performance for real-world embedded systems.

 A study of video surveillance workloads reveals that a significant portion (up to

95 %) of the execution time for this class of workloads involves running early vision

algorithms, such as background modeling [21]. These memory intensive (and potentially

computation intensive) workloads are particularly challenging for embedded platforms

because they have limited on-chip memory and reduced computational capabilities.

Limited on-chip memory has a direct impact on the performance of early vision

algorithms on embedded systems because a given frame is processed in blocks

constrained in size by the amount of data the processing core can accommodate.

Furthermore, the modeling and data structuring choices made when representing a pixel

in a given algorithm directly affects the block-size. The smaller the block size for the

algorithm, the more iterations are required to completely process a given frame. As a

result, the execution time is inversely proportional to the block size.

The first portion of this thesis provides a framework for designing accurate, high-

performance, pedestrian-tracking application software for embedded systems. It

combines effective, inexpensive object modeling and tracking with fast, adaptive, and

accurate background modeling to achieve high-performance without sacrificing accuracy.

 6

1.1.2. Processing and Data Bandwidth Challenges on Multicore Embedded
Systems

Early vision algorithms that have in the past been developed for uniprocessor

platforms must be redesigned for distribution and concurrent execution on the individual

cores of a multicore embedded platform. Since the algorithms are highly data-parallel, a

naïve solution will be to partition data (each image frame) into equal parts, each of which

is transferred to a computing core for execution. This process can be repeated to complete

the entire video workload. However, this solution does not yield optimal performance

and alternate techniques are required for improving the performance.

1.1.3. Memory Transfer Latency Challenges on Multicore Embedded
Systems

Early vision workloads are highly data-parallel and feature little data reuse.

Existing hardware techniques for reducing memory latency, such as the use of caches and

other pre-fetching mechanisms, are ill-suited for these workloads. As a result, embedded

multicore processors typically feature DMA-based data transfers and no hardware caches.

This feature can result in tremendous performance improvements but also presents

significant software design challenges because data transfers are moved to the domain of

the application programmer. Also, there is inherent difficulty and complexity in

designing efficient parallel programs that can fully exploit multicore hardware resources

on embedded systems.

Efficient data transfer between main memory and execution cores is particularly

important for multicore embedded systems because they have much smaller local storage

areas as compared to multicore general-purpose processors. As a result they require

several more iterations to completely process a single image frame. This increases the

 7

frequency of data exchanges and the potential for collisions on a multicore system, which

in turn can result in high data transfer latency and potentially costly memory bottlenecks.

This work also explores techniques to minimize the data transfer latency between main

memory and execution cores while optimizing utilization of local storage on embedded

multicore systems.

1.2. Problem Statement and Research Contributions

The purpose of this research is to efficiently map early vision algorithms onto

multicore embedded platforms to achieve high-performance execution of applications

without sacrificing accuracy. Pedestrian-tracking is used as a representative workload for

three thesis contributions:

1. A video surveillance software development framework that minimizes

computational and storage requirements on embedded systems by using efficient

object modeling and tracking techniques supported by a fast, accurate, adaptive

background modeling algorithm.

2. A workload organization and processing technique that enhances the

performance of early vision algorithms on multicore embedded platforms by

optimizing algorithm execution on computing cores and minimizing the number

of data transfers required for program execution.

3. A technique to minimize memory latency of image transfers on multicore

embedded systems by performing transparent, global DMA-scheduling with

 8

concurrent program execution while simultaneously ensuring high-utilization of

core local storage areas.

1.3. Research Approach Summary

The research in this dissertation is approached from a systems perspective by

addressing both software and hardware components. Concurrently addressing both the

architectural and algorithmic challenges presented in Section 1.2 is necessary to design

efficient, high-performance embedded systems. From the algorithms perspective, the

research focuses on the development and implementation of efficient execution early

vision algorithms. Because early vision workloads constitute a significant portion of the

overall workload [21], improvements to these algorithms will yield significant overall

program speedup and this dissertation first focuses on improving their performance on

embedded systems.

A new early vision background modeling algorithm that features lower

computational and storage costs on embedded platforms is presented. This adaptive

background modeling technique, called Multimodal Mean, is evaluated against several

existing background modeling techniques on several representative embedded platforms.

The evaluation compares this algorithm with several existing pixel-level background

modeling techniques in terms of their computation and storage requirements, and

functional accuracy for representative real-world video sequences, across a range of

processing and parallelization configurations. The Mulitmodal Mean technique provides

the accuracy of the most popular of the multimodal algorithms (Mixture of Gaussians

 9

[23]) algorithm while executing at frame rates comparable to other less expensive

techniques.

This approach is extended to object modeling and tracking in the video

surveillance applications. This dissertation introduces a framework composed of an

inexpensive kinetic modeling and tracking of objects supported by a fast, accurate

background model for designing surveillance applications. By using this approach, the

surveillance applications feature comparable accuracy to other techniques while

achieving high frame rate execution on embedded computing platforms.

The architectural perspective of this research focuses on optimizations that allow

early vision algorithms to run efficiently on multicore embedded systems. It explores

optimizations with respect to data storage, data transfer latency, and data reuse. As

described previously, the availability of local storage on execution cores is limited, a

problem which is not as dire on multicore general-purpose platforms. As a result,

optimizations that allow the reuse of the background model for processing multiple

blocks of an image significantly improve performance. This dissertation presents such an

approach and shows how several configurations impact the overall execution time.

Finally, the dissertation addresses data transfer efficiency on multicore embedded

systems. The approach is to reduce the memory transfer latency on multicore embedded

systems to ensure high utilization of computing cores. It presents a technique that

leverages the available hardware to perform concurrent data transfer and program

execution and minimize latency. Furthermore, it provides globally ordered data transfers

among cores to prevent collisions and improve efficiency. Finally, it maintains high

utilization of core local storage area while performing concurrent execution.

 10

1.4. Results Summary

These results of this dissertation can be summarized as follows:

• An object modeling and tracking framework [16], [18], and [19] is

presented that achieves 92% tracking accuracy for pedestrian-tracking

applications and operates at 0.78 fps when processing 640x480 pixel

images on a representative embedded platform.

• A background modeling algorithm [17], [30] is introduced that provides

comparable image quality and accuracy to the Mixture of Gaussians

(MoG) algorithm with the performance of other more efficient but less

accurate background modeling techniques. This algorithm executes 6.2×

faster than MoG on a representative embedded platform and 4.23× faster

on a more capable platform. It also requires 18% less storage per pixel

than MoG and uses only integer operations

• A workload partitioning technique [52] is described that optimizes the

execution of background modeling algorithms on multicore systems. The

technique results in a 25% increase in processing frame rates when

executing Multimodal Mean, and a 50% reduction in the number of image

transfers. It also features little overhead (0.023%) in image decoding times

and an overall system delay of 0.125s for 320x240 frames.

 11

• A DMA-transfer technique is presented called cat-tail dma that provides

globally-ordered, non-blocking DMA transfers on a multicore system.

Using this technique, data transfers between main memory and processing

cores are reduced by 32.8% for Multimodal Mean. Also utilization of core

local storage is improved by 60% over other buffering/processing

techniques.

1.5. Overview of Content

This thesis is organized as follows: Chapter 2 introduces a modeling and tracking

framework for pedestrian-tracking on embedded systems that minimizes memory storage

and computation requirements. This chapter examines the components of a pedestrian-

tracking workload and identifies a framework for enhancing application performance

without sacrificing accuracy. Chapter 3 describes the background model that supports the

pedestrian-tracking framework by providing fast, accurate background modeling on

embedded systems. Chapter 4 describes a technique to optimize the processing of

background modeling workloads on multicore embedded systems. It introduces a

workload partitioning/optimization scheme that optimizes performance on multicore

systems. Chapter 5 presents a technique for efficient transfer of images between main

memory and the computing cores on a multicore system. The conclusion and future work

are presented in Chapter 6.

 12

CHAPTER 2

PEDESTRIAN-TRACKING APPLICATION

2.1 Introduction

Tracking pedestrians in a dynamic scene is challenging for several reasons.

People change shape as they move and several blobs may exhibit the same general shape,

making one-to-one correspondence difficult. Also, frequent occlusion, merging of

individual people into groups, and splitting into individuals again makes tracking

complicated. In addition, pedestrians frequently make path adjustments to avoid

collisions that can result in fluctuations in their walking speeds over a large number of

observed frames.

 There is also an increasing desire to perform pedestrian-tracking on embedded

platforms attached to imagers that form sensing nodes. These nodes, which may be part

of a broader surveillance system, must be cheap and power-efficient to make the entire

system feasible. More importantly, the nodes must be able to run the pedestrian-tracking

algorithms accurately and in real-time. Figure 1 illustrates such a system made up of an

embedded platform and a webcam connected through a wireless network to a central

server. Each node has a distinct field of view and the server performs extra processing to

aggregate and analyze the information from each node.

 13

Webcam

+

Embedded

System

server

Figure 1 Video surveillance system

 The goal of the work in this chapter is to develop an accurate pedestrian-tracking

framework that supports real-time performance of software applications on embedded

targets. It begins by describing the key challenges facing the design of pedestrian-

tracking applications in this environment. Then an evaluation of several modeling and

tracking approaches is performed to highlight the advantages and disadvantages of the

approaches. Based on the analysis, a new object modeling and tracking approach is

presented for embedded systems.

 The algorithm is targeted for embedded systems and reduces computational and

storage costs by using an inexpensive kinematic tracking model with only fixed-point

arithmetic representations. It leverages from the observation that pedestrians in a dynamic

scene tend to move with uniform speed over a small number of consecutive frames. As a

result, if foreground objects are clearly identified, they can be tracked with high accuracy

 14

over a short distance. The pedestrian-tracking application is built on an integral of such

incremental tracking over a long period. Accommodations are made for confusing

behavior such as occlusions, merging, and splitting. An accurate, multimodal background

modeling technique is used to segment the foreground (moving people) from the

background. This component offers important support to the framework by providing

accurate segmentation while minimizing processing and storage costs. A connectivity

analysis step is performed concurrently with the background modeling and is used to

identify blobs in the foreground and calculate the center of mass of each blob. Finally,

correspondence is established between the center of mass of each blob in the temporally

closely-spaced frames. The algorithm is evaluated on a real outdoor video sequence

taken with an inexpensive webcam and the implementation successfully tracks each

pedestrian from frame to frame in real-time. The algorithm performs well in challenging

situations resulting from occlusion and crowded conditions, and achieves real-time

performance on an actual embedded system.

2.2 Current People Tracking Approaches

The literature on pedestrian-tracking techniques is extensive and covers a broad

range of applications. Yilmaz, Javed, and Shah conduct a general survey of object

tracking, including articulated object trackers that apply to person tracking [1]. Recent

surveys focused on using articulated object models of human kinematics in particular

have been provided by Aggarwal and Cai [2], Gavrila [3], and Moeslund and Granum

[4]. One large class of applications involves tracking the movement of a few people in a

 15

sparsely populated scene. The goal is to automatically infer the particular activity being

performed in a given scene. Pfinder [5] uses a multi-class statistical model of color and

shape to represent a person in various positions in a scene. After an initialization period

in which several representations are obtained, it is able to interpret the action of the

individual while updating the model to incorporate new actions. The W4 algorithm [6]

completely ignores color and uses a combination of shape analysis and tracking to locate

people and their parts. In [7], a person detector is used to locate a person’s limbs and a

discriminative appearance model is built over a given number of frames for each limb.

Tracking is done by detecting the collective appearance model in each frame. Finally, a

tracking-based event detection CCVT system is described in [8]. With this approach

certain blob and scene basic characteristics such as blob positions, blob speed, and people

density are extracted from the foreground frame. These parameters are compared with

semantic descriptions of prior events for classification. The techniques described above

work well in scenarios where there are very few foreground objects and where the objects

(people) make up a significant portion of the scene making individual features (e.g.

limbs) discernible. These systems have been implemented and reported to perform with

reasonable accuracy.

At the other end of the spectrum, another large class of applications involves

following the trajectory of multiple people as they move through a scene. In some

situations where there is heavy pedestrian traffic there is less feature detail and tracking

multiple people presents new challenges. In [9] a multiple-people-tracker is proposed that

uses a stochastic approach based on the evaluation of the maximum a posteriori

probability (MAP). A state history vector is maintained that contains records of the

 16

position, velocity, acceleration, dimension, and unique identification tag of all blobs

detected in a given frame at time t. An observation state vector is also kept that records

the blob states observed up until frame t. Trajectory tracking is performed by computing

the configuration sequence that maximizes the a posteriori probability distribution over

states conditioned on observations. In [10] a Markov chain Monte Carlo (MCMC)-based

method is used to calculate the MAP for establishing correspondence but objects are

modeled based on shape and color. The authors also present a detailed description of

optimizing the computation of the MAP both for single-object and multiple-object

situations. Similarly, MCMC is used to perform monocular 3D human tracking in [11].

Particle filter based techniques such as [12], [13], and [14] generate multiple predictions

based on a dynamic model from which a likelihood function is used to determine

correspondence.

The techniques described above have been demonstrated to be successful in

experiments on PC platforms. However, their real-time performance capabilities when

implemented on resource-constrained embedded platforms will be challenged due to

computation and storage limitations. For the MAP techniques, expensive floating-point

calculations are required to achieve the desired accuracy, and complex optimizations are

often necessary. Also, color, shape, and appearance modeling as well as memory storage

using such representations can be expensive for embedded platforms. Alternative

kinematic-based algorithms have been proposed [11] that model the velocity and

acceleration of blobs over a long number of frames. However, this information can be

difficult to model because of the interaction of pedestrians which causes blobs to merge

and split.

 17

2.3 Object Modeling Rationale

Tracking by color is a popular technique for a variety of applications [1] but is ill-

suited for pedestrian-tracking in a dynamic scene. Frequent occlusion can make color

information in a particular pedestrian blob inconsistent as a pedestrian traverses the

scene. Also, there are shadowing effects due to other pedestrians and illumination

changes as a pedestrian blob moves to better lit areas of the scene. These effects lessen

the accuracy of the histogram matching techniques employed for color tracking.

Similarly, tracking by shape suffers from the occlusion problem. Also, pedestrian

blob shapes are neither unique enough between frames nor consistent enough across

frames for accurate tracking.

 Another problem with using color and shape for object modeling is the cost in

terms of both computation and storage. Color histogram-based techniques model objects

by creating a histogram using groups of similar pixels in the object and this process can

be computationally expensive. The same problems exist when using shape analysis

because pedestrian shapes are generally more complicated to represent than geometric

shapes and hence more expensive to model.

 Considering the high costs and unpredictable accuracy this work avoids using

color or shape modeling for real-time pedestrian-tracking applications. Instead, it

proposes using a kinematic model based on pedestrian positions that completely discards

color and shape information after foreground extraction. Pedestrians are modeled as a

centroid as shown in Figure 2a.

 18

Source: Yilmaz et al “Object Tracking: A Survey,” ACM Computing Surveys, Vol. 38

Figure 2 Object representations

(a) Centroid, (b) multiple points,(c)rectangular patch, (d) elliptical patch, (e) part-

based multiple patches, (f) object skeleton, (g) complete object contour, (h) control

points on object contour, (i) object silhouette.

The tracking algorithm leverages from the observation that pedestrians in a

dynamic scene tend to move with uniform speed over a small number of consecutive

frames. As a result if foreground objects are clearly identified, they can be tracked with

high accuracy over a very short distance. The pedestrian-tracking application is built on

an integral of such incremental tracking over a long period.

To achieve high accuracy using the kinematic model described above, foreground

objects (people) must be clearly and consistently distinguishable. To support this

kinematic approach, an accurate, adaptive background modeling algorithm, called

multimodal mean [17] has been developed. This algorithm is introduced and discussed in

further detail in Chapter 3.

 19

After, accurately segmenting foreground objects, the people tracking algorithm

uses center of mass information to model blobs as pedestrians. It uses separate models of

pedestrian activity both in the short term (over a few consecutive frames) and long term

(as the pedestrian traverses the scene) to perform tracking. An added benefit to this

choice is that the tracking algorithm is robust and works in challenging conditions such as

in poorly-illuminated environments or when using cheap, low-resolution imagers where

color information is unreliable.

2.4 Pedestrian-Tracking Algorithm

The pedestrian-tracking algorithm uses accurate position information for both modeling

and tracking of pedestrians. Multimodal mean [17], a fast, adaptive background modeling

technique, is used for the foreground/background segmentation. A connectivity analysis

step is performed within the segmentation procedure to group foreground regions of

interest. Each column tC in a given frame t is identified as a column of interest if

thtc CP 〉. ,

where tcP . is the number of foreground pixels in tC , and thC is a fixed, predetermined

threshold for the column pixel density of a pedestrian.

A pedestrian region is identified when

() ()thtrthtc FFRR 〉∩〉 .. ,

where tcR . is the number of adjacent columns of interest in frame t, and trF . is the total

number of foreground pixels contained in all those columns. thR and thF are

 20

predetermined thresholds for the minimum width of a pedestrian and the minimum pixel

density of a pedestrian respectively.

 After all independent blobs have been identified in each frame, the algorithm

establishes correspondence with previously observed blobs to perform tracking. Each

pedestrian blob tP observed in frame t is modeled as a single point ()
ytxt PP .. , which is the

center of mass of the blob. It should be noted that two pedestrians whose positions

overlap each other may be represented using a single blob. A frame vector tV which

contains each pedestrian blob i observed during frame t is maintained.

()
iytixtt PPV ,=

 Two history records are maintained for tracking pedestrians as they traverse the

scene. One is the local history tracker and the other is the global history tracker. The

local history tracker is used to follow the short term progress of pedestrians from frame to

frame. This tracker uses a variation of the mean-shift tracking algorithm shown in Figure

3 to track short term progress of pedestrians. In the presence of occlusion or blob merges

and splits, which are common patterns when observing pedestrians, the local history is

unable to decipher the scenario because it only has an account of what happened in the

most recent three frames. The global history tracker records additional details about all

blobs over the entire period that they traverse the scene. This enables the tracking system

to recover from blob occlusion or merges and splits.

By separating the long and short term history tracking information, the algorithm

adapts to the changing kinetics of pedestrians without employing complex models.

 21

Source: Yilmaz et al “Object Tracking: A Survey,” ACM Computing Surveys, Vol. 38

Figure 3 Mean-shift tracking iterations

(a) estimated object location at time t −−−− 1, (b) frame at time t with initial location

estimate using the previous object position, (c), (d), (e) location update using mean-

shift iterations, (f) final object position at time t.

2.4.1 Local History Tracker: Dealing with Correspondence over Short
Periods

The local history tracker records position information of pedestrians over three

consecutive frames during which constant velocity and constant acceleration can be

assumed. A blob tP in the current frame t is a candidate for matching using the local

history tracker if

() () thytxtytxt DPPPP 〈− −− .1.1.. ,, ,

and () ()() 0.1. >×− − rnxtxt DPP

 22

where 1−tP is a blob in the immediately preceding frame, t-1. thD is chosen to be about 2x

the average distance traversed by a pedestrian during the processing of the sequence. rnD

is the direction of travel for blob 1−tP , and is obtained from the global history record

which is described further below. The local history record, tL , is made up of the frame

vectors from the three most recently observed frames t-2, t-1, and t.

()tttt VVVL ,, 12 −−= .

During processing of the current frame, the algorithm first attempts to establish

correspondence between candidate blobs and other blobs that have been successfully

tracked from frame t-2 to t-1. Assuming constant velocity for a given blob tP between

the three consecutive frames t, t-1, and t-2, the change in center of mass of a given blob

between frame t and t-1 is approximately equal to that between frame t-1 and t-2.

Specifically () () () ()
ytxtytxtytxtytxt PPPPPPPP .2.2.1.1.1.1.. ,,,, −−−−−− −≈− .

The candidate blob tP in frame t that minimizes the difference in change of center

of mass is matched with the one successfully tracked between frame t-1 and t-2.

() () () ()()
ytxtytxtytxtytxt PPPPPPPPMin

.2.2.1.1.1.1.. ,,,,,, −−−−−−
∆−∆

If a tracked blob is occluded in either frame t-1 or t-2, the matching attempt

described above fails. In this case a match is made with a blob in frame t-1 by selecting

the candidate blob in t that minimizes the center of mass difference between the two

blobs.

() ()()
ytxtytxt PPPPMin

.1.1.. ,,, −−
∆ .

 23

2.4.2 Global History Tracker: Dealing with Occlusion, Merging, and Splits

The local history tracker fails during incidences of blob merges and splits, as well as

during occlusions over a long number of consecutive frames. The global history tracker is

used to address those problems, and is made up of a collection of records kept for each

pedestrian blob within a specified observation window.

The global history tracker is used to match pedestrian blobs that are unmatched

using local history. This tracker contains position and velocity information of pedestrians

over its entire existence and is made up of four fields. The first field Last Pos is a tuple

that records the last observed center of mass point for a given blob identified by field ID.

The direction field, Drn, gives an indication of the general direction of motion of blob ID.

It is initialized to zero when a new blob record is created and increased by one if the blob

is matched to the right of its last position. If it is matched to the left the Drn value is

decreased by one. The last field Frame Num records the frame number when blob ID was

most recently observed.

 The time elapsed from the last update of a given blob is computed by taking the

difference between the current frame and the contents of the Frame Num field recorded in

the blob. Similarly, the change in position as well as the direction of change is computed

from the current unmatched blob position and the last position recorded in the blob. A

given blob tP in the current frame, is a candidate match with an entry tG in the global

history tracker if

() () thytxtytxt GGGPP 〈− ,, ,

and () ()() 0.. >×− rnxtxt DGP .

 24

If there is more than one candidate blob, a match is determined by selecting the candidate

blob that minimizes the difference in center of mass.

() ()()
ytxtytxt GGPPMin

.... ,,,∆

 The global history tracker is routinely maintained to prevent matching of blobs

using stale history and also to prevent the storage structure from overflowing. When a

pedestrian blob in the current frame is matched, the Last Pos, Drn, and Frame Num fields

in the global history tracker are updated. Blob records are removed from the global

history tracker under the following conditions:

thOFrameNummeCurrentFra 〈− and

() ()() ()()ththth EFrameNummeCurrentFraWWidthonLastPositiWonLastPositi 〈−−〉〈 &&||

thO is a frame observation threshold which represents how long a blob can be considered

occluded before it is considered lost and discarded. thW is a width window at the

beginning and end of each frame for which blobs may be leaving or entering the scene.

 By separating the long and short term history tracking information, the algorithm

adapts to changing kinetics of pedestrians without employing complex models. Also, by

giving precedence to the local history tracker, it finds the closest match for a given blob

during regular operation, and has a recovery system for scenarios where there is a

deviation from normal behavior e.g. occlusion. Most importantly, keeping the models

separate provides the option of modeling different scenarios while minimizing the

complexity.

 25

2.5 Experiment and Analysis

The tracking algorithm was evaluated on an outdoor sequence taken with an

inexpensive webcam. The scene involves a busy walkway outlined by trees on a sunny

day. Under those real-world conditions, waving trees and shadows could result in a noisy

background and could affect the segmentation. The video was recorded at 30 frames per

second (fps) and down sampled to 1 fps for processing, and 200 frames where processed

for the experiment. At this reduced rate there was measurable change in pedestrian

locations from frame to frame. Processing was performed at a relatively high resolution,

with the size of each image at 640x480 pixels. The tracking algorithm was implemented

in C and compiled using Microsoft Visual Studio 2005 for Windows CE 6.0 embedded.

The execution platform was an eBox-2300 Thin Client VESA PC running

Windows Embedded CE 6.0 [31], [20]. This was chosen as a baseline platform for

evaluating the pedestrian-tracking application and featured very modest memory and

processing specifications. The eBox, shown in Figure 2, incorporates a fanless Vortex86

SoC (includes a 200MHz x86 processor that dissipates < 3 Watts) plus 128MB SDRAM

(PC133), three USB ports, a 10/100 Ethernet port, and a compact flash slot. The

processor is an integrated version of the Pentium processor which was originally

introduced commercially in 1993 (about 15 years ago). The platform is 11.5 × 11.5 × 3.5

cm in size, weighs 505g, and is designed for low power operation. Because of its limited

128MB internal memory, a customized lightweight kernel occupying approximately

19MB was constructed. Image sequences were downloaded prior to each evaluation run.

 26

Figure 4 eBox Vesa PC

Sequence A shows a long sequence taken from the results where tracking is

performed over a 24s period. The frames are shown at 3 sec intervals. The sequence

shows that the algorithm correctly tracks the pedestrians as they interact and generate

some interesting scenarios while walking across the scene. Pedestrians 1 and 2 are

traveling at different speeds and begin as independent blobs in Frame 68 till they are

merged into a single blob in Frame 77. Pedestrian 4 was initially traveling behind

pedestrian 2 and then stops walking. She is tracked for a while as foreground and enters

the background until she starts walking again. Also, there are several instances involving

occlusion where pedestrians traveling in opposite directions merge into a single blob,

and separate later. In these scenarios the blobs are correctly tracked before and after the

occlusion events.

Sequence B shows results from a very crowded period of the video. Pedestrian 7 and her

companion (from Sequence A) have become almost stationary and are having a

 27

conversation and therefore are now part of the background. They have remained in the

video while a completely new set of pedestrians walk across the scene. Pedestrians 4, 8,

and 9 are tracked among the crowd from frames 150 to 158. Again, the occlusions

involving pedestrians 4, 5, and 1 are handled correctly.

 A ground truth was created to evaluate the accuracy of the algorithm. This process

involved manually observing each pedestrian as they traversed the scene and comparing

the matches produced by the algorithm with those matched by eye. All mismatches were

considered inaccuracies and the program was penalized. Also, identification of blobs

where no actual blobs existed, and failure to identify fully autonomous blobs (where there

was no contact with another blob) were considered inaccuracies and incurred penalties. A

window of 50 pixels was maintained at the beginning and end of each frame where

tracking was ignored to allow pedestrians to leave and enter the scene. Using these

criteria the algorithm achieved an accuracy of 92% for this sequence

 One challenging scenario for the algorithm involved the merging and splitting of

blobs in the same direction. In rare instances where the difference in pedestrian speeds

was large, the pedestrian identities were switched. This can be resolved by reducing the

down sampling rate. Also, in some instances where blobs were not fully formed due to

noise, the algorithm missed blobs in some frames. It usually recovered in the next frame

when the segmentation was cleaner.

 The performance of the algorithm on the eBox was also measured. The

algorithm ran at 0.78 fps when processing 640x480 pixel images. This frame rate is

appropriate for tracking pedestrians walking in real-time, so the resolution at which the

images were processed was increased to achieve better accuracy. Considering the

 28

platform, this frame rate and resolution is very suitable for real-time, pedestrian-tracking.

Run-time memory usage averaged about 33 MB which constituted about 25% of what

was available on the eBox.

 This chapter introduced a framework for designing real-time, pedestrian-tracking

software for embedded systems. By using inexpensive tracking and object modeling

representations the memory and computation requirements of the application are

significantly reduced. However, to preserve accuracy, a fast, multimodal background

modeling algorithm is needed to provide the accurate segmentation on which the kinetic

tracking model can rely. The algorithm must also be designed with careful consideration

to memory and computation costs because it will execute on an embedded platform. The

next chapter presents the Multimodal Mean algorithm which satisfies those requirements,

and is used to support the framework.

 29

Sequence A

Frame 68 Frame 71 Frame 74 Frame 77

 Frame 80 Frame 83 Frame 86 Frame 89

 Sequence B

 Frame 150 Frame 154 Frame 158 Frame 162

Figure 5 People tracking result

 30

CHAPTER 3

MULTIMODAL MEAN BACKGROUND MODELING TECHNIQUE

3.1 Introduction

Techniques for automated video surveillance utilize robust background modeling

algorithms to identify salient foreground objects. Typically, the current video frame is

compared against a background model representing elements of the scene that are

stationary or changing in uninteresting ways (e.g. rippling water or swaying branches).

The foreground is determined by locating significant differences between the current

frame and the background model.

The availability of low-cost, portable imagers and new embedded computing

platforms makes video surveillance possible in new environments. However, situations in

which a portable, embedded video surveillance system is most useful (e.g., monitoring

outdoor and/or busy scenes) also pose the greatest challenges. Real-world scenes are

characterized by changing illumination and shadows, multimodal features (such as

rippling waves and rustling leaves), and frequent, multilevel occlusions. To extract

foreground in these dynamic visual environments, adaptive, multimodal background

models are frequently used that maintain historical scene information to improve

accuracy. These methods are problematic in real-time embedded environments where

limited computation and storage restrict the amount of historical data that can be

processed and stored.

 31

This chapter introduces a new adaptive technique, Multimodal Mean (MM),

which balances accuracy, performance, and efficiency to meet embedded system

requirements. Multimodal Mean models each background pixel as a set of up to K modes,

each represented as a running average pixel value in a structure called a cell. Each cell

consists of running averages for each color component in a three-component color

representation such as RGB or HSI.

Multimodal Mean was evaluated against several representative pixel-based

background modeling techniques on a real embedded platform using data from a real-

time embedded environment. The techniques were evaluated with respect to

computational cost, storage, and extracted foreground accuracy. The techniques ranged

from simple, computationally inexpensive methods, such as frame differencing and

mean/median temporal filters [22], to more complex methods, such as the multimodal

Mixture of Gaussians (MoG) [23] approach.

Commercial-of-the-shelf components were employed to build a low-cost, low-

power, and portable embedded platform to serve as the testbed for the evaluation. The

results demonstrated that the proposed MM algorithm achieved competitive real-time

foreground accuracy under a variety of outdoor and indoor conditions with the limited

computation and storage of a low-cost embedded platform. More specifically,

Multimodal Mean technique achieved accuracy comparable to multimodal MoG

techniques but with a significantly lower execution time.

 32

3.2 The Case for a Fast Adaptive Background Model

Chen et al [21] present a comprehensive analysis of computer vision workloads.

They chose video surveillance as a representative case study of a complex computer

vision application and profiled it with the Intel VTune Performance Analyzer. Their

results showed that foreground/background segmentation was the most expensive module

in the workload and accounted for up to 95% of the execution time. According to their

analyzer, their background modeling algorithm consumed 1 billion micro-instructions for

a frame size of 720x576 pixels and took 0.4s to execute on a 3.2 GHz Intel Pentium 4

processor. Further analysis of the module showed that about 60% of the background

modeling computation time was used for updating and maintaining the background

model. This shows that the choices made for pixel representations and the associated

learning/adaptation techniques greatly influence both performance and storage costs of

the model.

Since a critical component of computer vision applications is background

modeling, speeding up this component will greatly improve the real-time performance

capabilities of the overall system in accordance with Amdahl’s law. This task can be

approached from two directions:

I. Optimizing background modeling algorithms for embedded systems, and

II. Identifying suitable execution platforms and optimizing processing and

partitioning of background modeling data for those systems.

This chapter addresses the first task by introducing a fast adaptive background

modeling algorithm targeted for embedded systems. The next chapter tackles the

 33

second task and explores techniques to optimize the performance of the new algorithm

on a suitable embedded platform.

3.3 Related Background Modeling Work

A variety of techniques exist for background subtraction; see [22], [24], and [25]

for recent comprehensive surveys. Frame differencing compares pixels in the current

video frame with corresponding pixels in the previous frame. If the difference between

the pixels is above a given threshold, then that pixel is identified as foreground. While

computationally inexpensive, this method is prone to the foreground aperture problem

[26] and cannot handle dynamic background elements, such as swaying tree branches.

Sliding window-based (or non-recursive [22]) techniques keep a record of the w

most recent image frames. The background is represented as the mean or median of the

frames in the buffer. Foreground is determined either by determining if the current image

pixel deviates by a fixed threshold away from the background model or, if it is within

some standard deviation of the background. Although less sensitive to the aperture

problem, this technique is more memory intensive as it requires w image frames of

storage per processed image.

Recursive techniques [22] utilize only the current frame and parametric

information accumulated from previous frames to separate background and foreground

objects. They typically employ weighted means or approximated medians and require

significantly less memory than the sliding window techniques. An approximated median

algorithm is shown in [27] where the background is initialized by declaring the first

image frame as the median. When a new video frame is acquired, the current image’s

pixel values are compared with those of the approximated median’s pixel values. If a

 34

pixel value is above the corresponding median value, then that approximate median pixel

value is incremented by one, otherwise it is decremented by one. It is assumed that the

approximated median frame will eventually converge to the actual median after a given

number of image frames are analyzed [27]. In [28] and [5], a weighted mean is used,

whereby a percentage of the background pixel is used in combination with a percentage

of the current pixel to update the background model. This percentage is governed by a

user-defined learning rate that affects how quickly objects are assimilated into the

background model.

Issues can arise with the described techniques when there are moving background

objects, rapidly changing lighting conditions, and gradual lighting changes. The Mixture

of Gaussians (MoG) [23] and Wallflower [26] approaches are designed to better handle

these situations by storing multimodal representations of backgrounds that contain

dynamic scene elements, such as trees swaying in the wind or rippling waves. The MoG

approach maintains multiple data values for each pixel coordinate. Each data value is

modeled as a Gaussian probability density function (pdf) with an associated weight

indicating how much background information it contains. With each new image frame,

the current image pixel is compared against the pixel values for that location. A match is

determined based on whether or not the current pixel falls within 2.5 standard deviations

of any of the pixel distributions in the background model [23]

Wallflower [26] uses a three-tiered approach to model foreground and

background. Pixel, region, and frame level information are obtained and analyzed. At the

pixel level, a linear predictor is used to establish a baseline background model. At the

region level, frame differencing, connected component analysis and histogram

 35

backprojection are used to create foreground regions. Multiple background models are

stored at the frame level to handle a sharp environmental change such as a light source

being switched on or off.

These techniques have limitations with respect to either foreground extraction

accuracy or real-time performance when processing busy, outdoor scenes on resource-

constrained embedded computing systems. Frame differencing and recursive background

modeling techniquess do not handle dynamic backgrounds well. Sliding window methods

require significant memory resources for accurate background modeling. The MoG

approach requires significant computational resources for sorting and the computation of

standard deviations, weights, and pdfs.

In this chapter, a new background modeling technique [30] is proposed that has

the multimodal modeling capabilities of MoG but at significantly reduced storage and

computational cost. A related approach [29] implements multimodal background

modeling on a single-chip FPGA using a collection of temporal lowpass filters instead of

Gaussian pdfs. A similar background weight, match, and updating scheme as the MoG is

maintained, with simplifications to limit the amount of floating-point calculations. In

contrast to MoG and [29], the proposed technique uses a linear parameter updating

scheme as opposed to nonlinear updates of weights and pixel values, and it makes use of

information about the recency of background pixel matches. Updating the background

model in this manner allows for efficient storage of a pixel’s long-term history.

 36

3.4 Multimodal Mean Algorithm

Multimodal Mean models each background pixel as a set of average possible pixel

values. In background subtraction, each pixel It in the current frame is compared to each

of the background pixel means to determine whether it is within a predefined threshold of

one of them. Each pixel value is represented using a three-component color

representation, such as an RGB or HSI vector. In the following, It.x represents the x color

component of a pixel in frame t (e.g., It.red denotes the red component of It). The

background model for a given pixel is a set of K mean pixel representations, called cells.

Each cell contains three mean color component values. An image pixel It is a background

pixel if each of its color components It.x is within a predefined threshold for that color

component Ex of one the background means.

In the embedded implementation, K = 4 cells was chosen and the RGB color

representation was used. Each background cell Bi is represented as three running sums for

each color component Si,t.x and a count Ci,t of how many times a matching pixel value has

been observed in t frames. At any given frame t, the mean color component value is then

computed as µi,t.x = Si,t.x /Ci,t.

More precisely, It is a background pixel if a cell Bi can be found whose mean for

each color component x matches within Ex the corresponding color component of It:

()FGtixxtixt

x

TCEI >∧

≤− −−∧ 1,.1,. µ ,

where TFG is a small threshold indicating the number of times a pixel value can be

seen and still considered to be foreground. (In our experiments, TFG = 3 and Ex = 30, for

x∈{R,G,B}.)

 37

When a pixel It matches a cell Bi, the background model is updated by adding

each color component to the corresponding running sum Si,t.x and incrementing the count

Ci,t. As the background gradually changes (for example, due to lighting variations) the

running averages will adapt as well. In addition, to enable long-term adaptation of the

background model, all cells are periodically decimated by halving both the sum and the

count every d (the decimation rate) frames. To be precise, when It matches a cell Bi, the

cell is updated as follows:

() b

xtxtixti ISS 2/..1,., += −

() b

titi CC 2/11,, += − ,

where b = 1 if t mod d = 0, and b=0, otherwise.

Decimation is used to decay long-lived background components so that they do

not permanently dominate the model, allowing the background model to adapt to the

appearance of newer stationary objects or newly revealed parts of the background. It also

plays a secondary role in the embedded implementation in preventing counts from

overflowing their limited storage. (In the experiments reported later in the chapter, the

decimation rate d = 400, so decimation does not come into play in the test sequences.

However, it is necessary for longer-term adaptation.)

When a pixel It does not match cells at that pixel position, it is declared to be

foreground. In addition, a new background cell is created to allow new scene elements to

be incorporated into the background. If there are already K background cells, a cell is

selected to be replaced based on the cell’s overall count Ci,t and a recency count Ri,t

which measures how often the background cell’s mean matched a pixel in a recent

window of frames. A sliding window is approximated by maintaining a pair of counts (ri,t

 38

, si,t) in each cell Bi. The first ri,t, starts at 0, is incremented whenever Bi is matched, and is

reset every w frames. The second si,t, simply holds the maximum value of ri,t computed in

the previous window:

when t mod w = 0

=
0

,ti
r

r

when Bi matches It

and t mod w ≠ 0

when t mod w = 0

=,ti
s

r
s

otherwise.

Recency Ri,t = ri,t + si,t provides a measure of how often a pixel matching cell Bi

was observed within a recent window. The si,t component allows information to be

carried over across windows so that recency information is not completely lost at window

transitions. When a new cell is created and added to a background set that already has K

cells, the cell to be replaced is selected from the subset of cells seen least recently, i.e.,

cells whose recency Ri,t < w/K. From this set, the cell with the minimum overall count Ci,t

is selected for replacement. If all cells have a recency count Ri,t > w/K (in the rare event

that all cells are observed equally often over an entire window), then the cell with lowest

Ci,t is replaced. (In the experiments, w = 32 was chosen.)

3.5 Evaluation on Embedded Platform

Several background modeling techniques were evaluated using three

representative test sequences executing on an embedded execution platform. Each

technique was compared in terms of image quality and accuracy (false positives and false

negatives) as well as execution cost (execution time and storage required). The evaluated

techniques included:

 39

• frame differencing

• approximated median

• sliding window median

• weighted mean

• sliding window mean

• mixture of Gaussians (MoG)

• multimodal mean (MM)

The test suite includes two standard test sequences and a longer outdoor

sequence captured using an inexpensive webcam (see Table 1). All sequences have a

frame size of 160×120.

Table 1 Test sequences

Sequence

Frames

Sampled Frame

Waving Tree

281

247

Bootstrapping

1000

299

Outdoors

201

190

The standard sequences, “Waving Tree” and “Bootstrapping,” are from the

Wallflower benchmarks [26] and use the same sampled frame and associated ground

truth. They contain difficult challenges for background modeling algorithms. Waving

Tree contains dynamic background in the form of a wind-blown tree with swaying

branches and leaves. Bootstrapping lacks a “foreground free” preamble for construction

 40

of the initial background model. This requires learning the background in the presence

of continually changing foreground. These sequences are choreographed to present

specific background modeling problems. A longer sequence with dynamic background

and the continuous presence of foreground objects was also collected. This sequence

contains an outdoor scene with varying illumination, moving trees, and subjects

moving in varying patterns and positions. It was captured at 640×480 resolution at one

frame per second. Afterward, the sequence was resized to 160×120 and a sample frame

and ground truth was manually derived.

Table 2 lists the algorithm parameters used in the experiments. Experiment

parameters and thresholds were held constant for all sequences. The MoG method

incorporated K=4 Gaussians while the MM method utilized K=4 cells. The sliding

window implementations use a buffer size of 4 for comparable memory requirements.

Table 2 Algorithm Parameters

Algorithm Parameters

Mean/Median (SW) |window| = 4

Weighted Mean α=0.1 for ut = (1-α)*ut-1 + αxt

Mixture of Gaussians (MoG)

K=4 modes, initial weight w = 0.02, learning

rate α = 0.01, weight threshold T = 0.85.

Multimodal Mean

K=4, Ex = 30 for x∈{R, G, B},

TFG = 3, d = 400, w = 32

 41

The execution platform used for the evaluation was the eBox-2300 Thin Client

VESA PC running Windows Embedded CE 6.0 from Chapter 2. Each background

modeling technique was implemented in C and compiled for Windows CE using

Microsoft Studio. Algorithm data storage was limited to 40MB. This affected the variable

window size for the sliding window techniques and the number of modes for the

multimodal techniques.

3.5 Results

The accuracy and image quality of each method is compared in Figure 6, Figure

7, Figure 8, and Figure 9.

Waving Trees (160x120) - Total Number of Errors

0 2000 4000 6000 8000

MM

MoG

Mean (SW)

Weighted Mean

Med (SW)

Approx Med

Frame Diff

of incorrectly marked pixels

False Positives

False Negatives

Figure 6 Waving tree errors

 42

Bootstrapping (160x120) - Total Number of Errors

0 500 1000 1500 2000 2500 3000

MM

MoG

Mean (SW)

Weighted Mean

Med (SW)

Approx Med

Frame Diff

of incorrectly marked pixels

False Positives

False Negatives

Figure 7 Bootstrapping errors

Outdoors (160x120) - Total Number of Errors

0 500 1000 1500

MM

MoG

Mean (SW)

Weighted Mean

Med (SW)

Approx Med

Frame Diff

of incorrectly marked pixels

False Positives

False Negatives

Figure 8 Outdoors errors

 43

Overall - Total Number of Errors

0 2000 4000 6000 8000 10000 12000

MM

MoG

Mean (SW)

Weighted Mean

Med (SW)

Approx Med

Frame Diff

of incorrectly marked pixels

False Positives

False Negatives

Figure 9 Overall errors

False positives indicate foreground identified outside the highlighted (white)

regions of the ground truth. False negatives result from background detected in ground

truth identified foreground. While these counts do not provide a complete measure of

foreground usefulness (e.g., often incomplete foreground can be “filled in”), lower

numbers of false positives and negatives are usually desirable. Generally, the MoG and

MM techniques demonstrate comparable accuracy that is superior to the other methods.

Figure 10 displays the image quality for each background modeling technique.

Multimodal methods (MoG and MM) generally exhibit the lowest number of errors

across the sequences. False positives are significantly lower for the multimodal methods.

 44

Figure 10 Image quality comparison of background modeling techniques

 45

 In Waving Trees, only the multimodal techniques incorporate the moving tree

into the background. In Bootstrapping, all techniques are able to detect elements of the

foreground identified in the ground truth. Unfortunately, the sliding window and

weighted mean methods also identify reflected light on the floor (false positives).

Outdoors features a large number of foreground elements as well as moving trees. Both

multimodal techniques have significantly higher false positive accuracy.

Table 3 lists average processing times, average frame rates, and storage

requirements for each method executing on the test platform. Because the sequence

frames originated from standard files rather than camera output, I/O requirements are not

included in these figures.

Table 3 Algorithm performance on test platform

Algorithm
Time

(ms)

Rate

(fps)

Storage

(words/pixel)

Frame

Differencing 7.6 32.0 1: packed RGB

Approximated

Median 8.5 17.3 1: packed RGB

Median (SW) 69.2 4.4 3: 3 char × 4

Weighted Mean 26.8 7.3 1: packed RGB

Mean (SW) 28.2 5.5 3: 3 char × 4

MoG 273.6 .7

22: 5 FP × 4

modes + 2 int

Multimodal

Mean 43.9 2.8

18: (4 int + 2

char) × 4 cells

 46

The results showed that the MM method executes 6.2× faster than the MoG

technique, while providing comparable image quality and accuracy. It also requires 18%

less storage per pixel and uses only integer operations. Although many of the other

methods offered lower execution times and storage requirements, their accuracy is

insufficient for many applications.

3.6 Multimodal Mean on HP Platform

To further highlight the impact of compact representation and algorithmic

complexity on embedded platforms the evaluation was repeated on a more capable

execution platform. The HP Pavilion Slimline S3220N PC shown in Figure 11 was the

chosen platform, and it featured full PC functionality in one third the conventional tower

size. It measures at just over a foot long and less than a foot high. It has an AMD Athlon

64 X2Dual-Core processor with 512 KB cache and a 512 KB L2 cache. It also has an

NVIDIA GeForce 6150 LE graphics processor, 1024 MB of DDR memory and a 250GB

hard drive. The Slimline runs Microsoft Windows Vista as the operating system and

Micrcosoft Visual Studio 2005 was used for application development. This platform has

greater computational throughput, more main memory, and better floating point support

than the eBox. This comparative analysis provides additional insight into algorithm

demands and their performance on different embedded platforms.

 47

Figure 11 HP Pavilion Slimline S3220N PC

For this experiment, two full frame (640 x 480) sequences were used to evaluate

each background modeling technique because the Slimline, unlike the eBox, had enough

memory to accommodate the full resolution test sequences. The first was the outdoor

sequence used previously with a length of 901 frames. The second sequence was a 750

frame (640 x 480) outdoor walkway outlined by trees on a sunny day and was also taken

with an inexpensive webcam. Under those real-world conditions, waving trees and

shadows resulted in a dynamic background.

Table 4 lists average processing times per frame and average frame rates on the

HP Pavilion Slimline test platform. The performance of MM on the HP platform was

4.23x faster than that of MoG, compared with a 6.2x improvement on the eBox.

 48

Table 4 Algorithm performance on HP platform

Algorithm Time (ms) Rate (fps)

Frame Differencing 28.55 57.83

Approximated

Median 34.29 48.16

Median (SW) 174.3 9.47

Weighted Mean 45.96 35.91

Mean (SW) 55.3 29.85

MoG 444.66 3.71

Multimodal Mean 105.07 15.71

While the improvement is partially due to less memory limitations and better

hardware-supported floating-point computation capabilty, it is clear that reducing overall

algorithm complexity and using a more compact data representation offers a significant

performance improvement on higher performance embedded platforms. Therefore, faster

and more capable hardware platforms alone are an insufficient solution to designing

efficient embedded surveillance systems. The first half of this dissertation addressed this

by providing a framework for redesigning software applications for efficient execution on

embedded platforms.

 49

CHAPTER 4

REAL-TIME ADAPTIVE BACKGROUND MODELING FOR MULTICORE

EMBEDDED SYSTEMS

4.1 Introduction

Demand for efficient image processing on non-traditional platforms is being fueled

by the proliferation of portable multimedia devices such as cell phones, gaming systems,

media players, and automotive imaging systems. A popular solution among hardware

vendors is scaling down versions of general-purpose processors and repackaging them as

low-power embedded cores. Parameters like video frame rate and image resolution are

scaled down to accommodate real-time performance. These techniques will not be

sustainable as more complex applications are ported to embedded systems. Customized

hardware, specially designed for embedded multimedia, will be required to meet the

demands of this fast-growing market.

Current trends in microprocessor design integrate several autonomous processing

cores onto the same die. Industry efforts, such as the Cell Broadband Engine from Sony,

Toshiba, and IBM [33], Niagara from Sun [34], and Montecito from Intel [35], as well as

university-led designs, such as MIT’s RAW [36] and the University of Texas’s Trips [37]

are representative multicore architectures. Multicore architectures are particularly well-

suited for image processing applications where it is typical to perform the same set of

operations repeatedly over large datasets. However, there are still significant differences

between general-purpose and image-processing workloads. Image-processing

applications exhibit high levels of data parallelism and feature little data reuse.

 50

Conventional general-purpose architectures are limited in this regard because they do

not support the scaling of arithmetic units and registers to the very large numbers

required for the concurrent execution of large groups of image pixels. Also, they have

cached-based memory systems that are tuned for data reuse and hence are ill-suited for

image processing[38]. In [45] an evaluation of a cache-based system and a direct DMA

system is performed on the TI TMS320C6416 DSP [46] which provides support for both

options.

The DMA-based system offers better performance than the cache-based one for

embedded image-processing applications because it offers direct control of data transfers

to the applications programmer and therefore ensures predictable access times. The

results of the evaluation, shown in Table 5, demonstrate that for the performance-

optimized PfeLib function PfeBayerLinearR, the DMA-based system had a 3x speedup

over the cached-based system. In the IRAM configuration all frame buffers were located

in internal memory and the L2 cache was not activated. The ERAM configuration was

similar to the IRAM except that the frame buffers were located in external memory. In

the L2CACHE configuration, 64KB of internal memory was configured as L2 cache, and

the frame buffers were located in external memory. The cache was reset to clean before

starting each run.

 Table 5 Cache vs. DMA

Configuration Performance

(cycles/pixel)

IRAM 5.7

ERAM 860

L2CACHE 18.8

 51

In [47], a similar evaluation is performed with a MAP 1000 processor for four

applications - 2D convolution, affine warp, invert and add, and 2D fast Fourier Transform

- and the results showed that the DMA-based system yielded better results.

Ideal candidate platforms for embedded computer vision must feature a large

number of processing cores, a large register file, and hardware support for transferring

large amounts of pixel data to and from processing cores. Also, they must meet

embedded power, size, and cost constraints. Based on the criteria described the Cell

Broadband Engine was identified as a suitable hardware platform for embedded early

vision algorithms.

4.2 Cell Broadband Engine: An embedded multicore execution platform

The Cell B.E. (Figure 4) is a heterogeneous multicore chip which features one

PowerPC (PPE) computing core and eight Synergistic Computing (SPE) cores on the

same die. The PPE is a fully compliant 64-bit PowerPC RISC architecture with 32 128-

bit vector registers, 32-KB L1 instruction and data caches, and a 512-KB unified L2

cache. It is a modified version of the general-purpose Power architecture and is tuned for

executing general-purpose workloads. Each SPE is a 128-bit RISC processor with 128

128-bit registers and 256 KB of local storage. The SPEs are designed for high-

performance, data-streaming, and data-intensive computation. DMA is the primary

method of communication between the SPEs and main memory. The element

 52

interconnect bus (EIB), which is a very high-speed, high-bandwidth communication

network, provides a critical communication link between the powerful computing cores

and main memory. The entire system is well-suited for embedded image processing

applications with the PPE handling program and data management and flow control,

while the SPEs perform the pixel-level image operations[50].

Figure 12 Cell architecture

 53

4.3 Embedded Multicore Computer Vision

Multicore processor platforms provide tremendous potential to achieve real-time

performance of computer vision applications. However, on embedded multicore systems,

power, size and other constraints limit the availability of hardware resources. Optimizing

algorithms to achieve real-time performance on such systems, while observing embedded

constraints, becomes a challenging but necessary task.

Early vision algorithms typically involve a small number of micro-operations

performed over a large number of pixels. This makes them memory-intensive as well as

computation-intensive. For example, a 720x640 pixel image in a standard RGB format

requires 1.38 MB to store as a raw image for further processing. Applying a single unary

operation to each pixel in the image contributes 460,800 operations to the entire

execution.

Background modeling algorithms, which are a subset of early vision algorithms,

are characterized by high memory requirements, large numbers of micro-operations and

little data reuse. Memory is required to store the current frame being processed as well as

the background model which typically includes representations for each pixel in the

image. For the same image in the example above, adding a single byte field to a given

pixel representation in the background model increases the size by 460KB or a third the

input image size.

For most systems, it will be nearly impossible to perform the entire background

modeling of a typical image without repeated block transfers of image data. A multicore

system allows the processing of different parts of the image to proceed concurrently. On

 54

multicore embedded systems, however, limited memory decreases the processing block

size and therefore more iterations are required.

Data domain parallelization [49], where data is partitioned into independent

pieces which are processed by each core executing the entire algorithm, is most suitable

for background modeling workloads. This is more preferable than dividing the algorithm

into separate functions (function domain parallelization [49]) because the relatively few

number of operations performed per pixel does not offset the modularization overhead.

Also, there will be extra transfer overhead encountered when moving the partially

updated background models between cores for each processing step.

It is also noteworthy that the memory access patterns for this workload are very

predictable. It is therefore more desirable to handle memory transfers to execution cores

directly through the application program rather than through more generalized underlying

hardware such as caches [45].The next section shows the implementation of Multimodal

Mean on the Cell B.E. platform and parallelization and processing optimizations that

result in a 25% increase in performance over a baseline approach.

4.4 Baseline Processing of Multimodal Mean on the Cell Broadband Engine

The Multimodal Mean background modeling algorithm was implemented on the

Cell B.E. and evaluated against the other background modeling techniques listed in

Chapter 3. For this experiment, the test suite comprised of two longer outdoor sequences

captured using an inexpensive webcam. Both sequences contained 700 frames and in

 55

each sequence, frame 453 was sampled for accuracy analysis. Also, the resolution was

increased and both image sequences comprised of images with a resolution of 720×640.

The test sequences were chosen because they contain scenarios that present

difficult challenges for background modeling algorithms. The “Outdoors I” scene

involves a busy pedestrian walkway outlined by trees and was recorded on a sunny day.

Under those real-world conditions the background model must deal with distracting

features and uninteresting motion resulting from waving trees and shadows.

The second outdoor scene “Outdoors II” was chosen for its fluctuating

illumination conditions, which is another key challenge for background modeling

algorithms running in real-world environments. This video also contains the continuous

presence of foreground objects in the periphery of the image which could result in a noisy

segmentation. Both videos were recorded at 30 frames per second (fps) and down

sampled to 1 fps for processing. The various algorithm parameters were kept the same as

those in Table 2.

The execution platform was a Sony Playstation 3 (Figure 13) with the Cell B.E.

multicore processor running Yellow Dog Linux (YDL) 5.0.

Figure 13 Sony Playstation 3 with YDL

 56

The background modeling algorithm was set up to leverage the strengths of the

respective cores on the Cell. The general-purpose PPE was used for image decoding and

encoding, core synchronization, and other book-keeping tasks. The SPEs, which are

designed for high-performance, data-streaming and data-intensive computation, were

used to perform the bulk of the background modeling algorithms. The SPEs are not

cache-based and DMA is the primary method of transferring images between the

computing cores and main memory. The maximum size of each DMA transfer is 16KB.

Although the evaluation is performed on a single platform the results can be

generalized across other multicore embedded platforms. On a homogenous multicore

chip, one of the cores will be dedicated to obtaining the images either through a driver

attached to a camera or by decoding images retrieved from main memory. Most

processing cores should capably handle this dedicated task so there is no added benefit of

having a general-purpose processor like the PPE on the Cell. Also, the SPEs which are

responsible for much of the core processing have only 256 KB of local storage. Limited

on-chip memory on the image-processing cores is representative of a true embedded

system. For systems with smaller on-chip memory the advantages of the reduced storage

features of the algorithm and the benefits of optimizing processing and partitioning

techniques will be more pronounced.

The background modeling algorithms were implemented in C and compiled using

gcc for the PPE and gcc-spu for the SPE. The background model was created and

maintained by the PPE and different parts were transferred to each SPE along with the

corresponding portion of the image to process. This arrangement was necessary because

even the least memory intensive background modeling techniques (e.g. frame

 57

differencing) could not support the entire 720x640 image being processed in a single pass

by all the computing cores. For the Multimodal Mean algorithm, the periodic decimation

and recency resets were performed by the PPE. All other components of the algorithm

were performed on the SPE. For all the other techniques, the entire algorithm was run on

the SPE.

All images from the test sequences were in JPEG format and these were loaded

onto the hard drive before each run. The independent JPEG library [39] was used to

perform the image encoding and decoding.

4.5 Evaluation and Results

In this discussion, block size is the portion of a given image that is processed by a

single SPE without a new iteration of data exchanges. To keep the processing balanced

among cores the chosen block sizes were limited using the following constraint:

Image Size (pixels) mod (Block Size x Number of SPU) == 0.

For the first evaluation, the configuration that maximized block size was chosen.

The SPE storage was divided into two areas; the first held a block of the current frame

and the other held the corresponding portion of the background model. It is noteworthy

that these storage areas are of equal size bytewise for the single mode background models

but vary for the other multi-modal models.

Table 6 shows the memory allocation on each SPU using this configuration.

 58

Table 6: Memory allocation

Algorithm
Block Size

(pixels)

Image Size

(KB)

BG Model

Size (KB)

Frame Differencing 38400

115.2 115.2

Approximated Median 38400

115.2 115.2

Median (SW) 12800

38.4 153.6

Weighted Mean 38400

115.2 115.2

Mean (SW) 12800

38.4 153.6

MoG 1600

4.8 160

Multimodal Mean 3200

9.6 153.6

The multimodal background models require storage for 4 modes per pixel making

them significantly larger than the single-mode models. This minimizes the block size for

those techniques. Also, the MM technique uses only integer storage types as opposed to

MoG, which uses floating-point storage and has half the block size.

Figure 14 and Figure 15 show the performance results obtained from running each

algorithm on the Cell using the configuration described in Table 6. Because the sequence

of frames originates from standard files rather than a camera output, I/O requirements are

not included in these figures.

 59

Core SPU Processing Rates

0
2
4
6
8

10
12
14
16
18
20

F
ra

m
e

D
if
fe

re
n

c
in

g

A
p

p
ro

x
im

a
te

d
M

e
d

ia
n

W
e

ig
h

te
d

M
e

a
n

M
e

d
ia

n
 (

S
W

)

M
e

a
n

 (
S

W
)

M
o

G

M
u

lt
im

o
d

a
l

M
e

a
n

Algorithm

F
ra

m
e

 R
a

te
 (

fp
s

s
)

Figure 14 Algorithm performance in frames per spu seconds, excluding data

transfer

The results in Figure 14 show the core algorithm performance results excluding

data transfer latency for each algorithm. This includes processing times from the time the

data is available on each core and the algorithm begins execution to the time the

algorithm is completed. The spu_decrementer [53] was used to record the time spent

executing the core algorithm on each SPE. Results are given in frames per spu seconds

(fpss).

From the results it can be observed that the techniques with fewer operations,

such as frame differencing and approximated median, generally run faster than the

multimodal ones. MM has comparable performance to other sliding window techniques

 60

and has about 9x better performance than MoG. This is due to MoG’s increased

complexity and more costly floating-point computations. These results are consistent

with results obtained on the uniprocessor eBox 2300 Vesa PC and the dual-core HP

Slimline platforms described in Chapter 3. It also shows that even on a suitable platform

such as the Cell B.E., algorithm design has a significant impact on overall system

performance.

Figure 15 shows the overall algorithm performance in frames per second,

including data transfer.

Overall Processing Rates

0
1
2
3
4
5
6
7

F
ra

m
e

D
if

fe
re

n
c

in
g

A
p

p
ro

x
im

a
te

d

M
e

d
ia

n

W
e
ig

h
te

d

M
e

a
n

M
e
d

ia
n

 (
S

W
)

M
e

a
n

 (
S

W
)

M
o

G

M
u

lt
im

o
d

a
l

M
e

a
n

Algorithm

F
ra

m
e

 R
a

te
 (

fp
s

)

Figure 15 Algorithm performance in frames per second, including data

transfer latency

Overall, the results show that MM achieves a 3.4x speedup over MoG and has

comparable performance to the other techniques. In general, it is observed that the

 61

disparity between the performance of single-mode techniques and that of the multimodal

ones, particularly MM, is narrowed. There are two reasons for the observed disparity.

First, there is a comparatively higher data transfer latency associated with the single-

mode techniques. Table 2 shows that to process each block these techniques transfer

115.2 KB for the image and another 115.2 KB for the background model. Completing the

concurrent transfer of this data to six SPUs in 16KB chunks results in collisions and all

the data must be available on the SPU to begin core processing. Alternatively, the MoG

technique for example, transfers only 4.8KB of image data during each iteration and this

data transfer is completed in a single DMA transaction.

Second, the ratio of core-algorithm execution time to data-transfer latency time is

higher for the single mode techniques. This results in a disproportionate increase in

overall processing times for the single-mode techniques as compared to the multimodal

ones.

The disparities demonstrated between the core kernel execution time of the

algorithm and the overall execution time (including data transfer) highlights the

importance of optimizing the partitioning and processing of workloads for multicore

processors. The performance gains of having several computing cores working

concurrently are quite obvious, but the challenge is to keep the cores constantly working.

The next section describes partitioning and processing techniques that optimize

workloads for each core.

Figure 16, Figure 17, and Figure 18 quantitatively summarize accuracy for each

technique. The same criteria for identifying false positives and false negatives used in the

experiments in Chapter 3 were applied to this experiment. Generally, MoG and MM

 62

demonstrate comparable accuracy that is superior to the other methods as is shown in

Figure 19. The accuracy results of the evaluation were consistent with those from the

eBox and HP evaluations in Chapter 3.

Figure 16 Outdoors I errors

Outdoors 1 (720x640) - Total Number of Errors

0 10000 20000 30000

Weighted Mean

Approx Med

Frame Diff

MM

MoG

Mean (SW)

Med (SW)

of incorrectly marked pixels

False Positives

False Negatives

 63

Figure 17 Outdoors II errors

Figure 18 Overall errors

Overall - Total Number of Errors

0 10000 20000 30000 40000 50000

Weighted Mean

Approx Med

Frame Diff

MM

MoG

Mean (SW)

Med (SW)

of incorrectly marked pixels

False Positives

False Negatives

Outdoors 2 (720x640) - Total Number of Errors

0 5000 10000 15000 20000

Weighted Mean

Approx Med

Frame Diff

MM

Mo

G

Mean (SW)

Med (SW)

of incorrectly marked pixels

False Positives

False Negatives

 64

Figure 19 displays the image quality for each background modeling technique.

Multimodal methods (MoG and MM) generally exhibit the lowest number of errors

across the sequences and false positives are significantly lower for the multimodal

methods.

In Outdoors I, only the multimodal techniques incorporate the moving trees into

the background. Also, the sliding window techniques are less adaptive to the changing

foreground and leave a trail behind moving objects. Outdoors II features a large number

of foreground elements as well as moving trees, and MoG and MM handle these

scenarios relatively better than the other techniques.

 65

 Original Frame

 Ground Truth

 Frame Differencing

 Approximated Mean

 Approximated Median

 SW Mean

 SW Median

 Mixture of Gaussians

 Multimodal Mean

Figure 19 Image quality on Cell B.E.

 66

4.6 Tile Processing

Making data available to keep the computing cores busy on an embedded

multicore processor is crucial to achieving high performance and efficiency when

executing embedded early vision algorithms. This section introduces a tile processing

workload partitioning arrangement and shows the impact on the overall processing.

Typically, live video input from the webcam is buffered as images by the camera

driver. Rather than divide the workload in the current frame using maximum block size

and available memory on the SPUs, a tiled workload was created from the buffer using

much smaller block sizes called tiles. Tile sizes are selected analogous to block sizes

according to the constraint:

Image Size mod (Tile Size x Number of SPU) = 0,

where Image and Tile Sizes are measured in pixels.

 a. Full images

 67

 b. n x k tiled workloads processed by each core

 Figure 20 Tiling

c. Regular buffering of pixel stream as contiguous block

pixel stream

d. Buffering pixel stream in groups of n x k pixels

nxk

 68

In this discussion a buffer containing m of these images is considered. An n x k

tile is selected from the same location for each image in the buffer as shown in Figure

20a. n is the width of the tile and k is its height. This constitutes the workload for the first

image processing core. The next tile location is used for the next core’s workload and the

process is repeated for all the cores as shown in Figure 20b.

To tile images as described above, the buffering of the current pixel stream from

the imagers has to be modified in the camera driver. Figure 20c shows the stream

buffered in receiving order as a continuous array, and depending on the system and

availability, this could be a contiguous block of memory. Figure 20d shows the stream

broken up into groups of n x k pixels. The first group of n x k pixels in the first image is

stored at the beginning of the storage array, after which (m-1) x n x k pixel locations are

skipped in the array before storing the next group. This process is repeated for the entire

first image stream. For subsequent images, the first group of n x k pixels in an image j,

begins at pixel location ((j-1) x n x k) + 1 in the array which was left blank during the

buffering of the previous j-1 images. This process is repeated for all the images in the

buffer.

Tiling the input images as described above could increase the buffering memory

latency in the driver so the effect of using this technique was evaluated on the Cell B.E.

platform. The tiled buffering method was benchmarked against the regular buffering

method in the jpeg decoder.

The independent jpeg library’s decoder generates pixels in rows called scanlines

each of which is the width of the image. Each scanline was stored using both techniques

 69

described above and the total time taken to decode and buffer each frame was evaluated.

For the evaluation, the resolution of the images was 720 x 640 and the average was taken

from decoding 100 images. The results showed that for different buffer sizes the tile

buffering does not significantly increase the image decode times. On average, a 0.023%

increase in decode time per frame was observed when using tile buffering. Also, there is

no notable increase in total time as the buffer size was increased. Furthermore, the image

retrieval times are significantly less than the actual background modeling processing

times for each frame. Slightly increasing the retrieval time does not impact the overall

performance, since the two processes are concurrent.

The tile processing configuration minimizes data transfers of the background

model between main memory and each SPU by processing a given number of

consecutive frames against a single, shared background model. Because the tiled

workload consists of consecutive frames with the same portion of the image, a single

background model is required for processing as well as updating. This process is

analogous to caching the entire background model and using the cached model to process

successive images in a video sequence while updating the background model. After

processing a given series, the background model on each core is written back to main

memory in a process similar to the operation of a write-back cache. Because different

portions of the background are processed by each core there are no coherency issues and

the associated complexities of a shared-memory model are avoided. Table 7 shows the

storage requirements for each configuration. All configurations use at most 230KB of the

SPU storage to allow for run-time memory requirements.

 70

Table 7: Image storage requirements

 Image Size (KB)

Buffer

Size

Tile =1600

BGM=76.8KB

Tile =2400

BGM=115.2KB

Tile =3200

BGM=153.6KB

1 4.8 7.2 9.6

2 9.6 14.4 19.2

4 19.2 28.8 38.4

8 38.4 57.6 76.8

16 76.8 115.2

32 153.6

Table 8 shows the performance for each configuration. The results show a trend

of increasing frame rates as the buffer size is increased due to the fewer number of

background model transfers to each SPU core. A tile size of 1600 pixels allows the

processing of 32 images in a single transfer and gives the best performance. This

configuration achieves a 25% increase in performance over the single buffered baseline

approach.

 71

Table 8: Performance

 Frame Rate (fps)

Buffer

Size

Tile =1600

BGM=76.8KB

Tile =2400

BGM=115.2KB

Tile =3200

BGM=153.6KB

1 4.46 4.45 4.46

2 4.48 4.54 4.56

4 4.55 4.66 4.69

8 4.65 4.82 4.95

16 4.8 5.3

32 5.6

Using the tile buffering technique will cause a multicore, video-surveillance

system to incur a slight buffering latency due to the temporal buffering. As a

consequence, the reaction time of the system could slightly increase. However, the

resulting increase in processing bandwidth more than compensates for this one time

latency charge, which is a small fraction of the overall processing time. Leveraging the

multicore resources allows the tiling to be done concurrently with processing. This results

in a single temporal buffering latency charge rather than an accumulated latency charge

for each frame processed in a uniprocessor system.

 More importantly, the bottleneck for computer vision applications on embedded

platforms is not the video buffering at the front-end of the system (camera driver).

Rather, it is the transfer of data to execution units and the computation of the kernel of

 72

the early vision algorithm and improvements to this component will significantly impact

overall perfromance.

For example, the Playstation Eye USB Camera for the Playstation/Cell B.E.

platforms buffers full-resolution 640x480 images at 60 fps. Using the tiling technique

with buffer size 32 will result in a delayed system reaction time of 500ms which is

acceptable for a video surveillance system. Depending on the application, the resolution

can be decreased or the buffering frame rate increased to achieve even faster reaction

time. For example, buffering 320x240 images will result in a delay of only 125ms.

However, the benefits of the tiling technique are evident with the increased

processing bandwidth. For example, an end-to-end application running at 32 fps will be

able to run at 24 fps using the tiling technique and a buffer of 32 frames. This is a

significant performance increase and yields real-time performance which is crucial to the

deployment of real-world embedded vision systems.

 73

CHAPTER 5

CAT-TAIL DMA: EFFICIENT IMAGE DATA TRANSPORT FOR MULTICORE

EMBEDDED SYSTEMS

5.1 Introduction

The previous chapter highlighted the importance of efficient data management to

the overall performance of multicore embedded vision systems. It showed how temporal

buffering of images combined with a shared background model reduces the number of

data transfers required for video surveillance algorithms. This data management

technique helps improve efficiency by reducing the number of data transfers but does not

address the actual transfer mechanism. Techniques that reduce the latency of the actual

data transfers could further improve the performance of such systems.

 Typically, image-processing applications require the transfer of large amounts of

data between the execution units, where the images are processed and off-chip memory,

where the images are stored. The high-throughput and low-latency characteristics of these

applications make image transport crucial to the overall program performance especially

on multicore systems where several cores need to be furnished with data.

To fully leverage the concurrent execution of several powerful cores in imaging

applications, a very fast, high-bandwidth communication network is typically provided to

move data throughout the system. Large data transfers are performed over this network

through DMA and each processing core has a DMA-controller to which it can offload

block data transfers to memory as well as to other processing cores. Multiple cores can

potentially generate several DMA transfer requests and regular cache block requests to

 74

memory at once. Arbitration is performed in hardware through the bus arbiter to

determine which core gets access to the bus during contention. In addition, the arbiter

determines when source and destination transfer paths don’t overlap in which case

multiple transfers can be performed concurrently on the bus.

Performing data transfers through direct DMA access places a greater burden on the

programmer to make the best use of the resources provided by multicore architectures.

Partitioning of the multimedia workload to most efficiently utilize all the cores is critical

to overall program performance. In addition, data transfers to and from the cores are now

in the programmer’s domain and efficient management of DMA transfers along with

program execution have a direct impact on execution times. In the presence of multiple

cores, these DMA transfers have to be carefully managed to prevent collisions which may

result in data transfer bottlenecks.

The potential to incur higher data-transfer latency due to collisions is magnified on

multicore embedded systems because of the limited amounts of local storage available on

the execution cores. For applications like image and video processing, which involve

very large datasets, limited local storage means a small portion of a given frame can be

operated upon in a single iteration on each core. Several iterations may be necessary to

process the entire frame but concurrent execution on the individual cores can collectively

yield tremendous speedup. However, processing smaller blocks of an image also

increases the frequency of data transfers between main memory and the local storage on

each core. Furthermore, the presence of several cores requesting data from main memory

simultaneously increases the potential for DMA collisions and can result in higher data-

transfer latency.

 75

This chapter evaluates existing DMA-buffering techniques and identifies the

challenges faced when employing them to execute early vision algorithms on multicore

embedded systems. It presents a new technique called cat-tail DMA, which addresses

some of the shortcomings the previous techniques, and provides low-overhead, globally-

ordered, non-blocking DMA transfers on a multicore system. With this method the data-

transfers times are reduced by 32.8% for the Multimodal Mean background modeling

algorithm while increasing the utilization of core local storage by 60% over existing

double-buffered techniques.

5.2 Background Work

 Parallel image processing on multiprocessor systems was the focus of significant

research even before the advent of multicore processors. Ni et al. [53] present a

multiprocessor system for image processing of office documents and evaluate the

scheduling policies of the processors. They constructed a prototype system with one

master processor and four slave processors connected by a shared bus. They considered

two processor scheduling techniques under this model. The three-step overlapping policy

separately treats the storing of the image segment currently being processed and the

loading of the next image segment to be processed. The two-step overlapping policy

loads the next image segment to be processed immediately after finishing the storing of

the previous image segment.

They concluded that to optimize the performance of the system,

• the processor scheduler should be made as simple as possible;

 76

• the scheduling overhead should be relatively small compared to the image

segment transfer time. In other words, the image segment size should be made as

large as possible;

• if the image processing time is very large compared to the scheduling overhead,

the scheduling overhead will become negligible.

Their conclusions are even more applicable to multicore processors where the

communication latency is much less because it involves chips on the same die. Also,

with much higher processor speeds a complex and slow scheduling process will quickly

and easily lead to data-transfer bottlenecks.

Lee et al. [54] propose a compile-time processor assignment and data partitioning

scheme that optimizes the average run-time performance of task chains with nested loops.

They developed a library of computer vision and image processing operations and built a

model to classify data-dependent and data-independent operations and to tabulate the

costs of many popular pixel and masking operations. Also, they modeled data

redistribution costs through both all-to-all communication primitives as well as between

any two data distribution schemes.

They ran an algorithm at compile time that uses information from the specified tasks

to determine suitable processor assignment and image data-partitioning schemes and

generated parallel codes by employing existing parallel routines such as ScaLAPACK

[55]. They evaluated the partitioning and scheduling schemes and parallel versions of

several CVIP algorithms on MEIKO CS-2, a distributed memory parallel machine with a

fat-tree-based communication network and a SUN SPARC Viking processor at each

node. Their results showed up to a 50% speedup over unscheduled code.

 77

 By performing all optimization at compile-time this approach avoids any

scheduling overhead which could increase program execution time. However, the

drawback to this approach is that the method failed to dynamically capture workload

variations during actual program execution.

 Zhang et al. [57] presented a study on adaptive workload assignment while

performing the Motion Picture Expert Group 2 (MPEG2) video encoding algorithm on a

multiprocessor system. They chose the MPEG2 application because it compresses video

data by macro blocks (MB) and the processing of each MB is fully independent. Since a

frame of video usually contains a large number of MBs, this application was well suited

for fine-grained partitioning.

Because of the non-stationary nature of most video sequences, motion activities

are not distributed uniformly over a frame. The authors ran simulations that showed that

the computational costs of certain MBs in areas with greater motion activity were about

3x those in other areas with little or no motion in the same frame. They measured the cost

of processing a load from an encoded frame. Using this information they estimated

computational load distributions that optimized performance among the processors for

the next frame in the encoding order of the same picture type. This scheme was simple to

implement and therefore resulted in very little overhead. Also, the technique allowed the

program to adapt to changes in data and was not fixed at compile time.

They evaluated the scheme with three video sequences, Football, Claire, and an

industrial experiment EFE, that were typical in terms of the motion activities in their

respective picture scenes. The Football sequence had large fast-motion activities that

were distributed globally across the whole picture scene. In contrast, the Claire sequence

 78

was local in nature and only had small slow-motion activities that were located in a small

part (e.g., face) of the whole picture scene. The degree of motion activities in the EFE

sequence was moderate, between the Football and Claire sequences.

The simulation was run on a single INMOS T805 processor used to simulate a

multiprocessor system of N processors. The values of N used were 2, 4, 8, 16, and 32,

and each video sequence had 100 frames. Their results showed up to 20 % improvement

when using adaptive workload distribution over uniform distribution.

The approach above provided a dynamic workload management scheme but presents

some challenges in a real multicore system. The hosting core will have to wait for

communication from the other computing cores before making a decision about the next

computational load. This could result in a data transfer bottleneck since several cores

might request new data at the end of their computations. Also, this scheme cannot be

extended to other applications that are not segmented into uniform macro blocks.

The discussion above shows highlights some of the data-transfer and scheduling

challenges faced when executing early vision applications on a multi-processor system.

For next-generation multicore systems these issues need to be address to achieve

efficiency and high performance.

 79

5.3 Single vs. Double Buffered DMA

Even with the advantages of using DMA for data transfers when executing image

–processing applications, several techniques have been proposed to hide the memory

latency of the data transfer transactions. In [48] a software prefetch mechanism is

combined with DMA to hide memory latency on multimedia applications. In [45]

optimum resource slicing is performed with double buffering for more efficient

embedded image processing. These techniques apply to uniprocessor systems and DMA-

based image processing on a multicore system offers unique challenges because of the

introduction of multiple computing cores and multiple DMA-controllers.

The 2D block transfer mode is the most popular DMA method used in image

processing. With this method, an image is split into blocks which are transferred from

main memory to the processor and returned after processing. The block size is

determined by the maximum allowable DMA transfer per transaction and the particular

operations being performed on the image. Overlapping portions of a given block is

common in some applications (e.g. edge detection) to compensate for the artificial

boundaries introduced into the image during block segmentation. Extra processing

between blocks is required in some more extreme cases.

Figure 21 illustrates the execution of an image processing application on a

multicore processor using the single-buffered DMA mode. Block n of the input image,

which is located in main memory off-chip, is transferred using DMA to buf_0 of

processing core n for processing. A new DMA transaction is initiated in each core at the

end of the processing for each block, and the processing core waits while the DMA-

 80

controller writes out the processed image and reads in a new one. The processing core

does no useful work while the DMA-controller is performing the transfer.

Figure 21 Single-buffered DMA

The double-buffering technique hides the data transfer latency by continuing

execution on the processor while the DMA transfer is being handled by the DMA-

controller. Figure 22 illustrates how the image processing application is executed in

B
u

s
 A

rb
ite

r

Core 0 Core 1

Core 2 Core 3

Core 4 Core 5

Core 6 Core 7

Main Data Bus

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Off Chip Memory

Image 0 divided
into blocks

buf buf

buf buf

buf buf

buf buf

Multiprocessor

Processing and Transfer

 81

double-buffering mode. With this method, the memory transfer latency that occurs when

a processing core is stalled for an old image to be written and a new one to be read is

hidden by overlapping the execution of a given block with the transfer of the next.

Figure 22 Double-buffered DMA

B
u

s
 A

rb
ite

r
Core 0 Core 1

Core 2 Core 3

Core 4 Core 5

Core 6 Core 7

Main Data Bus

Off Chip Memory

Image 0 divided
into blocks

buf0

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Image 1 divided
into blocks

buf0

buf0 buf0

buf0 buf0

buf0 buf0

buf1 buf1

buf1 buf1

buf1 buf1

buf1 buf1

Multiprocessor

Processing

Transfer

Processing

Transfer

 82

Two buffers, each of which can store a block of the image, are allocated on each

core. During the processing of block n of the current image in buffer j, a DMA transfer is

initiated to concurrently write out the processed data in buffer j+1 and fill it with block n

of the next image. Typically, the total time to process the entire block is greater than the

latency of the DMA transfer in both directions, therefore a new block is available in

buffer j+1 by the time the processing of the old block in buffer j is complete. The steps

to perform the double-buffered dma are as follows:

Read image into buffer j

Write tag 0

For i in 1->loopend:

Poll status of tag (i&1)

 Read image into buffer j + (i&1)

 Write tag (i&1)

 Poll status of tag ((i-1)&1)

 Process buffer j+((i-1)&1)

 Write image from buffer j + ((i-1)&1)

 Write tag ((i-1)&1)

A tag is associated with each batch of data transfers and polling the status of a

transfer channel for a given tag informs the processor whether that channel has completed

the transfer. In the main loop, the processor checks for completion of the previous write

transaction to the transfer buffer, schedules a new read transaction to that location,

processes the data in the processing buffer, and schedules a write out of the processing

 83

buffer. Processing the data between the read and write transactions ensures that the

likelihood of the read transaction being completed before scheduling the write is very

high. This results in minimal waiting, if any. Similarly there is some loop overhead

between the last write and the next read in an iteration which again minimizes the wait

time.

For early vision algorithms such as background modeling, double-buffered dma

presents several challenges for multicore embedded systems. Typically, they involve

comparing the current image to a reference model, both of which have to be present on

the cores for processing iteration. As a result, these algorithms require the transfer of

multiple sets of data for each processing iteration, and require explicit management by

the processor to ensure correctness.

Table 9 shows the block configurations partitioned to store the image and

background model that maximized the local storage utilization on the Cell SPE. Frame

differencing, approximated median, and weighted mean share the same background

modeling data structure and are represented by a single mode. Similarly, both sliding

window techniques are represented by sliding window. The multimodal algorithms were

limited to 4 modes and the maximum-size of DMA transfers on the Cell B.E. is 16KB.

Each SPE local storage area is 256KB and this is divided into two equal-sized image

storage areas and two equal-sized background storage areas for double-buffered DMA.

 84

Table 9 SPU Maximum block transfer for double-buffered DMA

Algorithm
Block Size

(Pixels)

Image Size

(Bytes)

BG Model

Size (KB)

Single Mode

19200

57600 57600

Sliding Window

6400

19200 76800

MoG

800

2400 80000

Multimodal Mean

1600

4800 76800

From the table it can be inferred that to process a given block for a technique like

MOG, a single DMA transaction is needed to transfer the image but 5 transactions are

required to transfer the background model. Also, the entire background model must be

available on the SPE to process the block. Similarly, the frame differencing technique

requires 4 image transfer transactions and 4 background model transfer transactions.

The requirement for multiple data transfers of different datasets to complete one

block of processing for computer vision applications is vastly different from traditional

double-buffered DMA where a single read/write transactions pair is overlapped with

processing. This inherently serializes the data transfer transactions because the processor

must verify the completion of all block write transactions before scheduling block reads

since both operations share the same buffer. Also, using double-buffered DMA decreases

the maximum block size that can be processed because the local storage area must be

split. This increases the frequency of block transfers and thus increases the probability for

collisions which can lead to high data transfer latency for entire block transfers.

 85

Furthermore, this problem can be exacerbated as the number of cores is increased on

multicore systems where those cores are executing the same program and there is a high

potential for several simultaneous DMA requests from competing cores.

5.4 Cat-Tail DMA

Cat-tail DMA addresses the issues discussed in section 5.3 by providing a

technique for low-overhead, globally-ordered DMA transfers among processing cores

that minimize collisions and reduce data transfer latency. This is achieved through:

1. Dividing the processing of blocks into two phases: the processing/transfer

scheduling phase and the processing phase.

2. Staggering the execution on the computing cores to ensure that there is a

contention free period to schedule transfers for each core.

The main concept with this technique is to reserve a unique period on each core

where a series of large data transfers can be performed by the DMA controller with

minimal input from the microprocessor.

5.4.1 Core Processing

In this discussion the transfer of two datasets dataset A and dataset B is

considered. Two circular buffers, one for each dataset, are maintained in the local store

area of each core. Unlike double-buffered DMA, the size of the circular buffers is

constrained by the available local storage on the processing core and not the maximum

DMA transfer block size.

 86

The circular buffer is divided into two dynamic regions called the transfer region

and the processing region as shown in Figure X. The processing is also divided into two

phases. In the first phase the transfer/processing mode is used where a given portion of

the processing region is processed while the data in the transfer region is written out and

new data read in. The second phase uses the processing mode where the remainder of the

processing region is processed and there is no data exchange. Two pointers are

maintained for the circular buffers: a processing pointer points to the beginning of the

next processing region and a transfer pointer points to the beginning of the next transfer

region.

Figure X shows the progression of both pointers along the circular buffer in each

core and the process is the same for both image and background. In this discussion a

pointer is moved to the beginning of the buffer once it reaches the end (circular buffer).

Figure 23 Circular buffering

 87

At initialization, the entire circular buffer is filled with data and the transfer

pointer updated to the end of the buffer (beginning of next transfer region) as shown in

Figure 23a. The entire processing region is then processed in processing mode (no data

exchange) and the processing pointer is moved to the beginning of the next processing

region to complete the initialization as shown in Figure 23b.

After initialization the two-phase processing is used. Figure 23c shows the first

phase processing using transfer/processing mode. A portion of the processing region is

processed concurrently with the exchange of data in the transfer region. The transfer

pointer is then updated to the beginning of the next transfer region and the processing

pointer is updated to the beginning of the second phase of the processing region. The

second phase of processing using processing mode is shown in Figure 23d. The

remainder of the processing region is processed and the processing pointer is updated.

However, there is no data exchange during this phase and the transfer pointer remains

unchanged. This process is repeated in each core until the end of the program.

5.4.2 Staggered Execution

Execution on the cores is staggered to provide individual cores with a unique time

slot to schedule data transfers in the first phase of processing described in Section 5.4.1.

Figure 24 illustrates the staggered execution on the multicore system.

 88

Figure 24 Staggered execution

A token is passed around cores in a round robin fashion to signal which core is

scheduled for data-transfer. During the first phase processing, the processor on the core

that possesses the token schedules all its data writes (dataset A and dataset B) interleaved

with the processing of the image. The processor is not stalled to wait for completion of

the transfer and the processing is continued. On the kth iteration of processing in the

phase, the processor checks for completion of the scheduled writes and proceeds to

schedule reads. On the 2kth iteration the token is released to the next core and the process

is repeated.

B
u

s
 A

rb
ite

r

Core 0
Core 1

Core 2
Core 3

Core 4
Core 5

Core 6

Core 7

Main Data Bus

Off Chip Memory

Image set 0

Image set 1

Multiprocessor

E
x

e
c

u
tio

n
 S

ta
rt T

im
e

Img 0
Img 0

Img 0
Img 0

Img 0
Img 0

Img 0
Img

0

Img 1

Img 1
Img 1

Img 1 Img 1

Img 1 Img 1

Img 1

Processing

Transfer

T
ra

n
s
fe

r B
lo

c
k

s

B
u

s
 A

rb
ite

r

Core 0
Core 1

Core 2
Core 3

Core 4
Core 5

Core 6

Core 7

Main Data Bus

Off Chip Memory

Image set 0

Image set 1

Multiprocessor

E
x

e
c

u
tio

n
 S

ta
rt T

im
e

Img 0
Img 0

Img 0
Img 0

Img 0
Img 0

Img 0
Img

0

Img 1

Img 1
Img 1

Img 1 Img 1

Img 1 Img 1

Img 1

Processing

Transfer

Processing

Transfer

T
ra

n
s
fe

r B
lo

c
k

s

 89

The execution is summed up as follows:

Phase 1:

 Initialize process_counter

For i in 0 -> blocks in dataset A transfer region:

 Schedule write dataset A block

 Write datasetA_write_tag

 Process data in processing region

 process_counter++

For i in 0 -> blocks in dataset B transfer region:

 Schedule write dataset B block

 Write datasetB_write_tag

 Process data in processing region

 process_counter++

For i in process_counter->k

 Process data in processing region

Poll status of datasetA_write_tag && datasetB_write_tag

For i in 0 -> blocks in dataset A transfer region:

 Schedule read dataset A block

 Write datasetA_read_tag

 Process data in processing region

For i in 0 -> blocks in datasetB transfer region:

 Schedule read dataset B block

 Write datasetB_read_tag

 90

 Process image in processing region

For i in k + process_counter->2*k

 Process data in processing region

Release token

 For i in 2*k-> processing region

 Process data in processing region

Phase 2:

 For i in processing region

 Process data in processing region

Unique dataset A read, dataset B read, dataset A write, and dataset B write tags

are maintained for data transfers as a mechanism to verify that transfer of data to a

particular region is complete before attempting to process it. Also barrier options are used

with the DMA transfer to ensure proper ordering.

5.5 Evaluation and Results

An experiment was designed to evaluate the performance of cat-tail buffering on

the The Playstation 3 featuring the Cell B.E. For this experiment, the data structures for

the background modeling algorithms described in the previous sections, as well as the

associated portion of the image to process constituted the datasets. The entire background

model was initialized by the PPE and held in main memory, and during processing

selected portions were transferred as a dataset to each core. Similarly, images were

decoded by the PPE and stored in a buffer in main memory at startup and during

processing selected portions were transferred to each core. The resolution of the images

 91

was 640 x 480 pixels. The single buffering technique was used as the baseline. Both

buffering techniques were implemented in C and the data transfers were evaluated for the

data structures described. Table 10 shows the total size of blocks (in pixels) held on each

core using cat-tail buffering. It shows that the utilization of local storage is improved by

60% when compared to ping-pong buffering (Table 9) because the separate buffers

reserved to transfer and process images are not of equal size. Also shown is the transfer

region which is the portion of the block that is exchanged in a data transfer as described

above.

Table 10 Block sizes

Algorithm

Blocks Held

(Pixels)

Blocks

Transferred

(Pixels)

Single Mode

38400

30720

Sliding Window

12800

10240

MoG

1600

1280

Multimodal Mean

3200

2560

All data transfers were 128-byte block aligned for transfer on the Cell. This influenced

the maximum size of blocks held on each SPE core. For the single-buffering technique

the same sized blocks were used for data transfers.

Mailboxes were used to communicate between SPEs and the PPU and signals

were used for inter-SPU communication [50]. This allowed DMA transfers of data to be

performed with minimum intrusion and very little communication overhead.

 92

Figure 25 and Table 11 show the performance of both techniques the single and

cat-tail buffering techniques.

Processing Time (40,000 Frames)

0

20

40

60

80

100

120

140

160

Single Mode Sliding

Window

MoG Multimodal

Mean

Algorithm

T
im

e
 (

s
)

Single

Cat-tail

Figure 25 Performance of buffering techniques

 93

Table 11 Buffering execution times

Single

Cat-tail

Single Mode

28.11s

25s

Sliding Window

51.67s

42.94s

MoG

144.09s

132.55s

Multimodal Mean

88.19s

59.53s

From the results the cat-tail DMA technique showed a 32.8% reduction in total

data transfer time over the baseline for multimodal mean. For the other techniques it

showed an average reduction of 11.9% in data transfer times. In general, the techniques

that featured larger blocks had shorter data transfer times because fewer iterations were

needed per frame to transfer data and run those algorithms.

Cat-tail DMA performs better than the baseline because it provides a low-

overhead software mechanism to manage data transfers. It employs circular buffering to

maximize the block sizes stored in SPU local storage while accommodating concurrent

transfer and processing on the cores. Also, by performing the data transfers in much

larger block sizes, the communication overhead between SPUs is minimized. This also

 94

provides longer processing periods during which the shared bus is available for other

cores to schedule and perform data exchanges.

Staggering the execution cores results in a fixed one-time latency applied to the

execution time of the program. This charge is a small fraction of a single block transfer

and is insignificant in the context of the several transfers that are required to process a

single frame. Also, typical programs process several frames during execution. Also, the

reduction in overall execution times due to cat-tail buffering more than compensates for

this charge. Figure 26 shows the performance of cat-tail buffering for multimodal mean

for an increasing number of frames. The results show a steady reduction in total

execution times as the number of frames is increased.

Multimodal Mean Performance Projection

0

20

40

60

80

100

120

140

160

180

200

0 20000 40000 60000 80000 100000

Number of Frames

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
)

Single

Cat-tail

Figure 26 Performance improvements over time

 95

This chapter introduced cat-tail DMA as a technique for efficient data transport for

computer vision applications on multicore systems. Through experiments on the Cell BE

this technique significantly reduces data-transfer times and in general overall processing

times.

 96

CHAPTER 6

CONCLUSION AND FUTURE WORK

This dissertation explored techniques to efficiently map high performance early

vision algorithms onto multicore embedded systems. Using the design of a pedestrian-

tracking system for real-world embedded environments as a case-study it presented

techniques to ensure high-performance of such a system. The systems approach

encapsulated several components ranging from application software to hardware

platforms. The first contribution presented an object modeling and tracking framework

that minimizes computational and storage requirements of pedestrian-tracking

applications while maintaining overall program accuracy. This framework was supported

by a new background modeling technique called Multimodal Mean that provided fast and

accurate segmentation of background/foreground content in embedded vision

applications. Background modeling is the most expensive component of surveillance

applications [21] and is responsible for up to 95% of surveillance workloads. Speeding up

this component through Multimodal Mean algorithm results in a significant speedup of

the overall software application

The second contribution involved optimizing early vision workloads on multicore

embedded systems which are identified as ideal hardware platforms for executing

pedestrian-tracking applications. Specifically, it addressed the very important issue of

data reuse which helps reduce potential memory bottlenecks for early vision applications

on multicore systems. It provided a technique for minimizing the number of data

exchanges between the computing cores and main memory by introducing a temporal

 97

buffering step at the beginning of the processing. This resulted in a significant increase in

the processing framerates of the application.

The third contribution further addressed the data-transfer bottleneck problem by

exploring the actual scheduling of the data transfers by the individual cores. It presented a

technique to minimize memory latency of image transfers on multicore processors by

performing transparent, global DMA scheduling with concurrent program execution.

With this technique, the data transfer times were significantly reduced as well as the wait

times between processing of consecutive blocks of the image on each computing core.

All contributions were evaluated using experiments that were designed to be close to

real-world scenarios using commercial-off-the-shelf components. Test sequences were

carefully selected to feature real-world conditions and were collected with inexpensive

devices such as webcams. In addition, the evaluations were performed on actual

platforms rather than using simulators.

6.1 Summary of Results

The results from the contributions of this dissertation are summarized below:

6.1.1 Pedestrian-tracking application software

• Presented a fast, accurate object modeling framework [16], [18], and [19] that

combines accurate background modeling with efficient object tracking.

� Pedestrian-tracking application using this model ran at 0.78 fps when

processing 640x480 pixel images on eBox 2300 Vesa PC.

 98

� Tracking accuracy of 92% for pedestrian-tracking application using this

framework which is similar to other published results using other methods

6.1.2 Multimodal mean background modeling technique

• Developed Multimodal Mean [17],[30], a fast, accurate, background modeling

technique targeted for embedded systems

� MM method executes 6.2× faster than the MoG technique on the eBox

2300 Vesa PC.

� MM method executes 4.23× faster than the MoG technique on the HP

Slimline Pavilion platform

� On both platforms MM requires 18% less storage per pixel and uses only

integer operations.

� MM provides comparable image quality and accuracy to MoG at the cost

of other less accurate background modeling techniques

6.1.3 Fast, adaptive background modeling for multicore embedded Systems

• Presented a workload partitioning technique [52] to optimize the execution of

background modeling algorithms on Multicore systems using temporal buffering

� The technique results in a 25% increase in processing framerates for

Multimodal Mean

 99

� The technique has very little overhead: a 0.023% increase in image

decoding times and 125ms overall system delay for 320x240 images.

� The technique reduces the number of image transfers by 50% for

Multimodal Mean.

6.1.4 Fast, efficient image transport on multicore embedded systems

• Developed cat-tail DMA, a technique which provides globally ordered non-

blocking DMA transfers on a multicore system.

� This technique reduced data transfer times between main memory and

processing cores by 32.8% for Multimodal Mean on the Cell B.E.

� The technique increased utilization of core local storage by 60% over

existing double-buffering techniques.

6.2 Future Work

In the future, contributions from this work will be extended to design a parallel,

video surveillance driver for multicore systems. This driver will incorporate the ideas

from the Multimodal Mean background modeling techniques into the segmentation

component. Also, it will use the temporal buffering and cat-tail buffering techniques to

improve processing framerates.

 100

The current goal is to have an open-source driver for the commercially available

Sony Paystation Eye webcam which will be extended for other devices at a later time.

Individual SPU cores on the Cell B.E will be used to buffer and process different points

of view which will be aggregated and displayed by the PPU. Currently, there are no

known parallel vision platforms and this will represent a significant addition to the

computer vision research community. With the emergence of multicore platforms such a

tool will encourage development of parallel algorithms to leverage the computing

resources available. Also, the driver can provide real-time benchmark suites for architects

to fine-tune hardware designs.

The second area of future work is to continue with the development of real-time

versions of other computer vision algorithms specifically targeted for embedded

multicore systems. Particular areas of interests include 3D processing, video

compression, and robotics/artificial intelligence.

 101

REFERENCES

[1] Yilmaz, A., Javed, O., and Shah, M., “Object Tracking: A Survey,” ACM

Computing Surveys, Vol. 38, No. 4, Article 13, pp. 1-45, December 2006.

[2] Aggarwal, J. K. and Cai, Q, “Human motion analysis: A review,” Computer Vision

and Image Understanding Vol. 73, No. 3, pp. 428–440, March 1999.

[3] Gavrila, D. M., “The visual analysis of human movement: A survey,” Computer

Vision and Image Understanding Vol. 73, No. 1, pp. 82–98, Jan. 1999.

[4] Moeslund, T. and Granum, E., “A survey of computer vision-based human motion

capture,” Computer Vision and Image Understanding, Vol. 81, No. 3, pp. 231–268,

March 2001.

[5] C.R. Wren, A. Azarbayejiani, T. Darrel, A.P. Pentland, “Pfinder: Real Time

Tracking of the Human Body,” IEEE Trans. PAMI, vol.19, no.7, 1997.

[6] I. Haritaoglu, D. Harwood, and L. S. Davis. “W4: realtime surveillance of people

and their activities,” IEEE TPAMI, 22(8):809–830, 2000.

[7] Ramanan, D., Forsyth, D. A., Zisserman A., "Strike a Pose: Tracking People by

Finding Stylized Poses," Proc. CVPR 2005.

[8] L.M. Fuentes, S.A. Velastin, “Tracking-based event detection for CCVT systems,”

Pattern Analysis Application, vol. 7, pp.356-363, 2005.

[9] O.T. Dapos, M. Leo, P. Spagnolo, P.L. Mazzeo, N. Mosca, M. Nitti, “A Visual

Tracking Algorithm for Real Time People Detection,” IEEE WIAMIS 2007.

[10] T. Zhao, R. Nevatia, “Tracking Multiple Humans in Crowded Environment,”

Proc. of the 2004 IEEE Computer Society Conf. on Computer Vision and Pattern

Recognition.

[11] C. Sminchisescu, and B. Triggs, “Kinematic Jump Processes for Monocular 3D

Human Tracking,” Proc. CVPR, 2003.

[12] C. Bregler and J. Malik. “Tracking people with twists and exponential maps,”

Proc CVPR, pages 8–15, 1998.

[13] M. Isard and J. MacCormick. Bramble: “A bayesian multipleblob tracker,” Proc

ICCV, pages 34–41, 2001.

[14] H. Sidenbladh, M. J. Black, and D. J. Fleet. “Stochastic tracking of 3d human

figures using 2d image motion,” Proc ECCV, 2000.

[15] P. Viola, M. Jones, and D. Snow. “Detecting pedestrians using patterns of motion

and appearance,” Proc ICCV, 2003.

[16] Apewokin, S., Valentine, Bales, R., B., Wills, L., Wills, S., “Tracking Multiple

Pedestrians in Real-Time Using Kinematics,” IEEE Embedded Computer Vision

Workshop (ECVW08) June 2008.

[17] Apewokin S., Valentine, B., Wills, S., Wills, L., and Gentile, A., “Multimodal

Mean Adaptive Backgrounding for Embedded Real-Time Video Surveillance,”

 102

Embedded Computer Vision Workshop (ECVW07), in Proceedings of CVPR 2007

June 2007.

[18] Valentine, B., Apewokin, S., Wills, S., Wills, L., and Gentile, A., “Midground

Object Detection in Real World Video Scenes,” IEEE Conf. on Advanced Video and

Signal Based Surveillance (AVSS07), Sept. 2007.

[19] Valentine, B., Choi, J., Apewokin, S., Wills, S., Wills, L., “Bypassing

BigBackground: An Efficient Background Model for Embedded Video Surveillance,”

IEEE Int. Conf on Distributed Smart Cameras, Sept. 2008.

[20] Silicon Integrated Systems Corp., “SiS55x Family Datasheet”, Rev 0.9, 14 March

2002.

[21] T.P. Chen, H. Haussecker, A. Bovyrin, R. Belenov, K. Rodyushkin, A. Kuranov,

V. Eruhimov, “Computer Vision Workload Analysis: Case Study of Video

Surveillance Systems”, Intel Tecnology Journal 2005.

[22] Cheung, S. and Kamath, C. “Robust techniques for background

subtraction in urban traffic video,” Video Communications and Image Processing,

Volume 5308, pp. 881-892, SPIE Electronic Imaging, San Jose, January 2004.

[23] C. Stauffer and W.E.L Grimson, “Adaptive background mixture models for real-

time tracking”, Computer Vision and Pattern Recognition, pp 246-252, June 1999.

[24] Radke, R.J., Andra, S., Al-Kofahi, O., Roysam,B., “Image change detection

algorithms: A systemic survey,” IEEE Trans. on Image Processing, 14(3) pp. 294-

307, March 2005.

[25] Piccardi, M., “Background subtraction techniques: a review,” IEEE International

Conference on Systems, Man and Cybernetics, Vol 4., pp. 3099-3104, October 2004.

[26] Toyama, K., Krumm, J., Brummitt, B., and Meyers, B., “Wallflower: Principles

and Practices of Background Maintenance,” in Proc. of ICCV (1), pp. 255-261, 1999;

Wallflower benchmarks available online at

research.microsoft.com/~jckrumm/WallFlower/TestImages.htm.

[27] N. McFarlane and C.Schofield, “Segmentation and tracking of piglets in images,”

Machine Vision and Applications 8(3), pp. 187-193, 1995.

[28] Jabri, S., Duric, Z., Wechsler, H., and Rosenfeld, A., “Detection and location of

people in video images using adaptive fusion of color and edge information,” IEEE

International Conference on Pattern Recognition, pp. 627-630, vol 4., September

2000.

[29] Appiah, K., Hunter, A., “A single-chip FPGA implementation of real-time

adaptive background model,” IEEE International Conference on Field-

Programmable Technology, pp. 95-102, December 2005.

[30] Apewokin, S., Valentine, B., Forsthoefel, D., Wills, S., Wills, L., and Gentile, A.,

“Embedded Real-Time Surveillance Using Multimodal Mean Background

Modeling,” Advances in Pattern Recognition, Embedded Computer Vision, Springer

2009.

[31] DMP Electronics Inc., “VESA PC eBox-2300 Users Manual”, September 2006.

[32] Silicon Integrated Systems Corp., “SiS55x Family Datasheet”, Rev 0.9, 14 March

2002.

 103

[33] M. Gschwind, “The cell broadband engine: exploiting multiple levels of

parallelism in a chip multiprocessor”, International Journal of Parallel

Programming., vol. 35, no 3, pp. 233 – 262, June 2007.

[34] P. Kongetira, K. Aingaran, K. Olukotun, “Niagara: a 32-way multithreaded Sparc

processor”, IEEE Micro., vol. 25, no. 2, pp. 21 – 29, March-April 2005.

[35] C. McNairy, R. Bhatia, “Montecito: a dual-core, dual-thread Itanium processor,”

IEEE Micro., vol. 25, no. 2, pp. 10-20, March-April 2005.

[36] M. B. Taylor, et al., “The raw microprocessor: a computational fabric for software

circuits and general purpose programs,” IEEE Micro., vol. 22, no. 2, pp. 25-35,

March -April 2002.

[37] K. Sankaralingam, et al., “Exploiting ILP, TLP, and DLP with the polymorphous

TRIPS architecture,” in Proc. 30
th

 Annual Int. Symp. On Computer Architecture, pp.

422 – 433, June 2003.

[38] Brucek Khailany, William J. Dally, Ujval J. Kapasi, Peter Mattson, Jinyung

Namkoong, John D. Owens, Brian Towles, Andrew Chang, Scott Rixner, "Imagine:

Media Processing with Streams," IEEE Micro, vol. 21, no. 2, pp. 35-46, Mar/Apr,

2001.

[39] T.G. Lane. Using the IJG JPEG Library. Independent JPEG Group, 6b edition,

March 1998.

[40] Cell Broadband Engine Programming Tutorial http://www-

01.ibm.com/chips/techlib/techlib.nsf, 2
nd

 January, 2009.

[41] J. Fritts, “Multi-level memory prefetching for media and stream processors,” in

Proc. Int. Conf. Multimedia Expo (ICME), 2002, pp. 101–104.

[42] R. Cucchiara, A. Prati, and M. Piccardi, “Improving data prefetching efficacy in

multimedia applications,” Multimedia Tools Appl., vol. 20, no. 2, pp. 159–178, June

2003.

[43] C. Xia and J. Torrellas, “Improving the data cache performance of multiprocessor

operating systems,” in Proc. 2
nd

 IEEE Symp. High-Performance Comput. Arch.

(HPCA), 1996, pp. 85–94.

[44] N. P. Jouppi, “Improving direct-mapped cache performance by the addition of a

small fully-associative cache and prefetch buffers,” in Proc. Int. Symp. Comput.

Arch., 1990, pp. 363–373.

[45] C. Zinner, W. Kubinger, “ROS-DMA: A DMA double buffering method for

embedded image processing with resource optimized slicing,” in Proc. 12
th

 IEEE

Real-Time and Embedded Technology and Applications Symposium (RTAS), pp. 361-

372, April 2006.

[46] Gene A. Frantz, Kun-Shan Lin, Jay B. Reimer, and Jon Bradley. "The Texas

Instruments TMS320C25 Digital Signal Processor," IEEE Micro. Vol. 6, No. 6, pages

10-28, December, 1986

[47] D. Kim, R. Managuli, Y. Kim, “Data cache and direct memory access in

programming mediaprocessors,” IEEE Micro, vol. 21, no. 4, pp. 33-42, July-Aug.

2001.

[48] M. Dasygenis, et al., “A combined DMA and application-specific prefetching

approach for tackling the memory latency bottleneck,” IEEE Transactions on Very

Large Scale Integration Systems (VLSI), vol. 14, no. 3, pp. 279 – 291, March 2006.

 104

[49] T. Chen, D. Budnikov, C. Hughes, Y.-K. Chen, “Computer Vision Workloads on

Multi-Core Processors: Articulated Body Tracking”, ICME 2007, Beijing, China, July

2007.

[50] M. Gschwind et al., "A Novel SIMD Architecture for the Cell Heterogeneous

Chip Multiprocessor," Hot Chips 17, Aug. 2005.

[51] Yellow Dog Linux v 5.0. http://www.terrasoftsolutions.com/, 2
nd

 January, 2009.

[52] Apewokin, S., Valentine, B., Choi, J., Wills, L., Wills, S., “Real-Time Adaptive

Background Modeling for Multicore Embedded Systems”, Journal of Signal

Processing Systems, Springer 2008.

[53] M. Kistler et al., "Cell Multiprocessor Communication Network: Built for

Speed," IEEE Micro, May/June 2006, pp. 10–23.

[54] L. M. Ni, K. Y. Wong, D. T. Lee, and R. K. Poon, "A microprocessor-based

office image processing system," IEEE Trans. Comput., vol. C-31, pp. 1017-22, Oct.

1982.

[55] C. Lee, T. Yang, Y-F. Wang, “Partitioning and scheduling for parallel image

processing operations,” Proceedings of the 7th IEEE Symposium on Parallel and

Distributeed Processing, p.86, October 25-28, 1995.

[56] L.S. Blackford, J. Choi, A. Cleary, J. Demmel, I. Dhillon, J. Dongarra, S.

Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, R.C. Whaley,

“ScaLAPACK: A Portable Linear Algebra Library for Distributed Memory

Computers - Design Issues and Performance,” Proceedings of the 1996 ACM/IEEE

Conference on Supercomputing 1996 Page(s):5 – 5.

[57] N. Zhang, C.-H. Wu, "Study on adaptive job assignment for multiprocessor

implementation of MPEG2 video encoding," Trans. on Industrial Electronics, vol.

44, no. 5, pp. 726-734, Oct. 1997.

[58] CPU Road Map 2008: Maxing Out Moore's Law, PC Magazine

http://www.pcmag.com/article2/0,2817,2222910,00.asp

[59] ARM limited. White Paper: Architecture and Implementation of the ARM

Cortex-A8 Processor. http://www.arm.com/products/CPUs/ARM Cortex-A8.html.

