
Efficiently Mapping High-Performance Early Vision 

Algorithms onto Multicore Embedded Platforms 

 

 

 

 

 

A Dissertation 

Presented to 

The Academic Faculty 

 

by 

 

Senyo Apewokin 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Partial Fulfillment 

Of the Requirements for the Degree 

Doctor of Philosophy in the 

School of Electrical Engineering 

 

 

Georgia Institute of Technology 

May, 2009 

 

 

 



 ii 

Efficiently Mapping High-Performance Early Vision 

Algorithms onto Multicore Embedded Platforms 
 

 

 

 

 

 

 

 

 

Approved by: 

 

 

 

Dr. D. Scott Wills, Advisor 

School of Electrical and Computer Engineering 

Georgia Institute of Technology 

 

Dr. Linda M. Wills, Co-advisor 

School of Electrical and Computer Engineering 

Georgia Institute of Technology 

 

Dr. Jim Hamblen 

School of Electrical and Computer Engineering 

Georgia Institute of Technology 

 

Dr. Jeff Davis 

School of Electrical and Computer Engineering 

Georgia Institute of Technology 

 

Dr. Aaron Lanterman 

School of Electrical and Computer Engineering 

Georgia Institute of Technology 

 

Dr. David Bader 

College of Computing 

Georgia Institute of Technology 

 

 

 

 

Date Approved : 16
th 

 December 2008 

 



 iii 

ACKNOWLEDGEMENTS 

 

 

This dissertation is the culmination of an academic journey spanning several years 

in which I was deeply influenced by several people. I will be eternally grateful to them 

for their unyielding support. 

First of all, I would like to express my deepest appreciation to Dr. D. Scott Wills, 

my academic adviser, for his guidance throughout this process. Thank you for allowing 

me to expend mental energy on tangential albeit interesting ideas while keeping me 

focused enough on the greater goals.  

I would also like to acknowledge the tremendous contributions of my co-adviser 

Dr. Linda M. Wills. Thank you for teaching me to use the tools of good organization, 

clarity of thought and expression, and attention to detail for sound research. 

I am sincerely grateful to them for guiding the many insightful discussions, topic 

iterations, platform experimentations, and framing progressions throughout this work. 

More importantly, I am grateful for the many valuable life-lessons they taught me 

throughout my association with them. 

I am grateful to Dr. Jim Hamblen, Dr. Jeff Davis, Dr Aaron Lanterman, and Dr. 

David Bader for serving on my thesis committee. Thank you for your numerous platform 

suggestions and many insightful comments about the general direction of this work. Your 

advice has certainly resulted in a higher quality document. 

I am also grateful to Dr. Hsien-Hsin Lee and Dr. Doug Bough for giving me to 

alternate research perspectives and Dr. Bonnie Heck and Dr. Sudha Yalamanchili for 

allowing me to develop educational material. 



 iv 

I am thankful that several current and former PICA and EASL members provided 

a resourceful work environment during the period I spent in the group. Thanks Brian, Jee, 

Matt, Krit, and Ryan for the many brain-storming sessions and technical support. Thanks 

to Dr. Sek Chai, Dr. Peter Sassone, Dr Cory Hawkins, Dr. Hongkyu Kim, and Dr. 

Jongmyon Kim for technical support and encouragement. 

Thanks to Priya Benjamin for being a steady source of inspiration. Thanks for 

helping navigate through the difficult times during this academic journey. 

Finally, I would like to dedicate this thesis to my family for years of support and 

encouragement. I am grateful to my parents Mr. Michael Apewokin and Mrs. Esther 

Apewokin for providing me with an environment where my curiosity was encouraged. I 

am also grateful to my brothers Dr. Senu Apewokin, Sena Apewokin and Edem 

Apewokin for challenging me to reach further.     

 

 

 

 

 

 

 

 

 

 



 v 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS....................................................................................................................... III 

LIST OF TABLES ....................................................................................................................................VII 

LIST OF FIGURES ................................................................................................................................ VIII 

SUMMARY................................................................................................................................................. IX 

INTRODUCTION.........................................................................................................................................1 

1.1. MOTIVATION.................................................................................................................................1 
1.1.1. MEMORY AND COMPUTATION CHALLENGES OF EARLY VISION ALGORITHMS ON EMBEDDED 

SYSTEMS ................................................................................................................................................4 
1.1.2. PROCESSING AND DATA BANDWIDTH CHALLENGES ON MULTICORE EMBEDDED SYSTEMS ....6 
1.1.3. MEMORY TRANSFER LATENCY CHALLENGES ON MULTICORE EMBEDDED SYSTEMS ..............6 

1.2. PROBLEM STATEMENT AND RESEARCH CONTRIBUTIONS..............................................................7 
1.3. RESEARCH APPROACH SUMMARY.................................................................................................8 
1.4. RESULTS SUMMARY....................................................................................................................10 
1.5. OVERVIEW OF CONTENT .............................................................................................................11 

PEDESTRIAN-TRACKING APPLICATION .........................................................................................12 

2.1 INTRODUCTION ...........................................................................................................................12 
2.2 CURRENT PEOPLE TRACKING APPROACHES................................................................................14 
2.3 OBJECT MODELING RATIONALE .................................................................................................17 
2.4 PEDESTRIAN-TRACKING ALGORITHM .........................................................................................19 

2.4.1 LOCAL HISTORY TRACKER: DEALING WITH CORRESPONDENCE OVER SHORT PERIODS.........21 
2.4.2 GLOBAL HISTORY TRACKER: DEALING WITH OCCLUSION, MERGING, AND SPLITS................23 

2.5 EXPERIMENT AND ANALYSIS ......................................................................................................25 

MULTIMODAL MEAN BACKGROUND MODELING TECHNIQUE ..............................................30 

3.1 INTRODUCTION ...........................................................................................................................30 
3.2 THE CASE FOR A FAST ADAPTIVE BACKGROUND MODEL...........................................................32 
3.3 RELATED BACKGROUND MODELING WORK ...............................................................................33 
3.4 MULTIMODAL MEAN ALGORITHM ..............................................................................................36 
3.5 EVALUATION ON EMBEDDED PLATFORM ....................................................................................38 
3.5 RESULTS .....................................................................................................................................41 
3.6 MULTIMODAL MEAN ON HP PLATFORM .....................................................................................46 

REAL-TIME ADAPTIVE BACKGROUND MODELING FOR MULTICORE EMBEDDED 

SYSTEMS ....................................................................................................................................................49 

4.1 INTRODUCTION ...........................................................................................................................49 
4.2 CELL BROADBAND ENGINE: AN EMBEDDED MULTICORE EXECUTION PLATFORM .......................51 
4.3 EMBEDDED MULTICORE COMPUTER VISION...............................................................................53 
4.4 BASELINE PROCESSING OF MULTIMODAL MEAN ON THE CELL BROADBAND ENGINE ................54 
4.5 EVALUATION AND RESULTS........................................................................................................57 
4.6 TILE PROCESSING........................................................................................................................66 

CAT-TAIL DMA: EFFICIENT IMAGE DATA TRANSPORT FOR MULTICORE EMBEDDED 

SYSTEMS ....................................................................................................................................................73 

5.1 INTRODUCTION ...........................................................................................................................73 
5.2 BACKGROUND WORK .................................................................................................................75 
5.3 SINGLE VS. DOUBLE BUFFERED DMA ........................................................................................79 
5.4 CAT-TAIL DMA..........................................................................................................................85 

5.4.1 CORE PROCESSING .................................................................................................................85 
5.4.2 STAGGERED EXECUTION ........................................................................................................87 



 vi 

5.5 EVALUATION AND RESULTS........................................................................................................90 

CONCLUSION AND FUTURE WORK...................................................................................................96 

6.1 SUMMARY OF RESULTS ...............................................................................................................97 
6.2 FUTURE WORK............................................................................................................................99 

REFERENCES ..........................................................................................................................................101 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vii 

 

LIST OF TABLES 

Table 1 Test sequences ..................................................................................................... 39 

Table 2 Algorithm Parameters .......................................................................................... 40 

Table 3 Algorithm performance on test platform ............................................................. 45 

Table 4 Algorithm performance on HP platform.............................................................. 48 

Table 5 Cache vs. DMA.................................................................................................... 50 

Table 6:  Memory allocation............................................................................................. 58 

Table 7: Image storage requirements................................................................................ 70 

Table 8: Performance........................................................................................................ 71 

Table 9 SPU Maximum block transfer for double-buffered DMA................................... 84 

Table 10 Block sizes ......................................................................................................... 91 

Table 11 Buffering execution times.................................................................................. 93 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 viii 

LIST OF FIGURES 

Figure 1 Video surveillance system.................................................................................. 13 

Figure 2  Object representations ....................................................................................... 18 

Figure 3 Mean-shift tracking iterations............................................................................. 21 

Figure 4 eBox Vesa PC..................................................................................................... 26 

Figure 5 People tracking result ......................................................................................... 29 

Figure 6 Waving tree errors .............................................................................................. 41 

Figure 7 Bootstrapping errors ........................................................................................... 42 

Figure 8 Outdoors errors................................................................................................... 42 

Figure 9 Overall errors...................................................................................................... 43 

Figure 10 Image quality comparison of background modeling techniques...................... 44 

Figure 11 HP Pavilion Slimline S3220N PC .................................................................... 47 

Figure 12 Cell architecture................................................................................................ 52 

Figure 13 Sony Playstation 3 with YDL........................................................................... 55 

Figure 14 Algorithm performance in frames per spu seconds, excluding data transfer ... 59 

Figure 15 Algorithm performance in frames per second, including data transfer latency 60 

Figure 16 Outdoors I errors............................................................................................... 62 

Figure 17 Outdoors II errors ............................................................................................. 63 

Figure 18 Overall errors.................................................................................................... 63 

Figure 19 Image quality on Cell B.E. ............................................................................... 65 

Figure 20 Tiling ................................................................................................................ 67 

Figure 21 Single-buffered DMA....................................................................................... 80 

Figure 22 Double-buffered DMA ..................................................................................... 81 

Figure 23 Circular buffering ............................................................................................. 86 

Figure 24 Staggered execution.......................................................................................... 88 

Figure 25 Performance of buffering techniques ............................................................... 92 

Figure 26 Performance improvements over time.............................................................. 94 

 

 

 

 

 

 

 

 

 



 ix

SUMMARY 

 

The combination of low-cost imaging chips and high-performance, multicore, 

embedded processors heralds a new era in portable vision systems. Early vision 

algorithms have the potential for highly data-parallel, integer execution. However, an 

implementation must operate within the constraints of embedded systems including low 

clock rate, low-power operation with limited memory. This dissertation explores new 

approaches to adapt novel pixel-based vision algorithms for tomorrow’s multicore 

embedded processors. It presents: 

• An adaptive, multimodal background modeling technique called 

Multimodal Mean that achieves high accuracy and frame rate performance 

with limited memory and a slow-clock, energy-efficient, integer 

processing core. 

• A new workload partitioning technique to optimize the execution of early 

vision algorithms on multi-core systems. 

• A novel data transfer technique called cat-tail DMA that provides 

globally-ordered, non-blocking data transfers on a multicore system. 

By using efficient data representations, Multimodal Mean provides comparable 

accuracy to the widely used Mixture of Gaussians (MoG) multimodal method. However, 

it achieves a 6.2x improvement in performance while using 18% less storage than MoG 

while executing on a representative embedded platform.  

When this algorithm is adapted to a multicore execution environment, the new 

workload partitioning technique demonstrates an improvement in execution times of 25% 



 x

with a 125 ms system reaction time. It also reduced the overall number of data transfers 

by 50%. 

Finally, the cat-tail DMA technique reduces the data-transfer latency between 

execution cores and main memory by 32.8% over the baseline technique when executing 

Multimodal Mean. This technique concurrently performs data transfers with code 

execution on individual cores, while maintaining global ordering through low-overhead 

scheduling to prevent collisions. 
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CHAPTER 1 
 

INTRODUCTION 

 

1.1. Motivation 

 

 
Demand for portable, low-cost, high computation platforms for multimedia and 

telecommunications applications is driving today’s and tomorrow’s embedded systems. 

Examples range from small systems, such as cellular phones, PDAs, and gaming 

consoles, to large, distributed systems, such as multi-node video surveillance systems. 

Regardless of the application, embedded computing systems are subject to more rigid 

cost, size, power, thermal, and real-time performance constraints than traditional general-

purpose computing systems. 

With the development of low cost embedded imagers, there is an opportunity to 

integrate early vision algorithms with real-time embedded systems. For example, the 

separation of salient foreground objects from uninteresting background is necessary in 

important applications such as vehicle collision avoidance, pedestrian tracking, anti-

terrorist surveillance, and autonomous vehicle control. These applications demand real-

time execution in a partially or fully embedded system (e.g. on a moving vehicle).  

Embedded systems for real-time execution of early vision algorithms present 

unique demands. These algorithms require the transfer of large amounts of data between 

the execution units (where the images are processed) and off-chip memory (where the 

images are stored). A wide, high-frequency bus is desirable to support the transfer of 

high-bandwidth data but this is not typically affordable on an embedded platform. Also, a 



 

 

 2 

large storage area is needed on the computing cores to process data in larger blocks and 

reduce the number of transactions. With advances in process technology and the 

availability of billions of transistors, larger on-chip memory and ever-improving high-

speed bus structures are staple features on general-purpose processors and will only 

improve for future generations. However, embedded platforms will be unable to follow 

the same trend due to embedded design constraints such as low-power. Keeping data 

readily available for execution on computation cores presents a key challenge. 

Early vision workloads are demanding in terms of both memory and 

computational requirements. They typically involve extracting context out of a large 

quantity of pixel data and having the data readily available on the execution cores is 

important for real-time operation. Furthermore, the sheer volume of operations puts 

additional constraints on the computational requirements. For example, adding a single 

operation per pixel to a given algorithm is magnified by the large number of pixels and 

this has direct impact on real-time performance. Similarly, adding a single integer field to 

an image reference model is magnified across the image. Redesigning early vision 

algorithms to be more efficient in terms of storage and computation will significantly 

affect their ability to execute in real-time on embedded platforms.  

Unlike general-purpose workloads however, early vision workloads are streaming 

in nature and feature very little data reuse. Also, the program control characteristics and 

data access patterns of these workloads are very predictable. This means the traditional 

solutions employed by general-purpose architects, such as hardware caching and pre-

fetching to reduce memory latency as well as speculative execution and branch prediction 

to increase throughput, are not transferable to vision platforms. However, the same 
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memory and throughput concerns remain for both workloads and new techniques to 

address those for early vision workloads are important for designing high performance 

systems.      

Multicore processing is the future of high performance desk and laptop 

architectures (e.g., Intel, AMD processor roadmaps (see PC magazine summary [58])). 

Embedded processor development traditionally follows with low power platforms (e.g., 

ARM Cortex A8 [59]). These architectures are well-suited for early-vision algorithms 

because they provide hardware support for concurrent execution of these highly data-

parallel workloads. However, caching, speculative execution, branch prediction, and 

other latency-reduction techniques that are commonly employed in general-purpose 

multicore processors are ill-suited for embedded vision applications.  To achieve 

efficient, real-time execution of high-bandwidth early vision algorithms, architects must 

apply concurrent exploration of both architectural and algorithmic optimizations to 

system design. 

 

Thesis Objectives: This dissertation explores mapping early vision algorithms onto 

multicore embedded platforms with emphasis on high performance and efficiency. 

Specifically, it uses the design of a pedestrian-tracking system as a representative case 

and addresses challenges with respect to the following: 

• The effect of the modeling and tracking choices employed in the design of 

pedestrian-tracking software applications on the memory and computational 

requirements of embedded platforms and the implications for real-time 

performance. 
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• The effects of transferring large amounts of data between memory and 

computation cores when executing early vision algorithms on multicore 

embedded platforms and techniques to optimize the work done per transfer.  

• The impact of data transfer memory latency on real-time performance of 

early-vision algorithms on multicore embedded systems and optimizations to 

minimize the transfer latency without sacrificing utilization of core local 

storage area. 

 

The identified issues can have significant impact on the real-time performance of 

an embedded pedestrian-tracking system. 

1.1.1. Memory and Computation Challenges of Early Vision Algorithms on 
Embedded Systems 

 

 Although several pedestrian-tracking applications have been proposed, they 

traditionally targeted desktop execution platforms and therefore modeling and tracking 

were approached accordingly. Real-time performance in real-world environments was not 

the main focus of the algorithms and therefore the implementation costs and complexity 

of the algorithms were not key design factors. Also, because they typically run above the 

operating system, they are unable to exploit the new multicore general-purpose processor 

designs. New approaches are required to achieve real-time performance on multicore 

embedded platforms.  

Several techniques exist for modeling objects for tracking, such as color 

histograms, and shape analysis. The actual tracking algorithms also feature varying 

degrees of complexity and heavily employ floating-point computation. As a result, the 
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techniques are usually computationally and memory intensive and in stable environments 

the accuracy improves with more complex modeling. However, in dynamic, real-world 

environments complex modeling does not necessarily yield improved accuracy. A 

thorough analysis of the individual components of video surveillance applications is 

necessary to identify which areas could be redesigned to significantly improve overall 

performance for real-world embedded systems. 

 A study of video surveillance workloads reveals that a significant portion (up to 

95 %) of the execution time for this class of workloads involves running early vision 

algorithms, such as background modeling [21]. These memory intensive (and potentially 

computation intensive) workloads are particularly challenging for embedded platforms 

because they have limited on-chip memory and reduced computational capabilities. 

Limited on-chip memory has a direct impact on the performance of early vision 

algorithms on embedded systems because a given frame is processed in blocks 

constrained in size by the amount of data the processing core can accommodate. 

Furthermore, the modeling and data structuring choices made when representing a pixel 

in a given algorithm directly affects the block-size. The smaller the block size for the 

algorithm, the more iterations are required to completely process a given frame. As a 

result, the execution time is inversely proportional to the block size. 

The first portion of this thesis provides a framework for designing accurate, high-

performance, pedestrian-tracking application software for embedded systems. It 

combines effective, inexpensive object modeling and tracking with fast, adaptive, and 

accurate background modeling to achieve high-performance without sacrificing accuracy.  
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1.1.2. Processing and Data Bandwidth Challenges on Multicore Embedded 
Systems 

 

Early vision algorithms that have in the past been developed for uniprocessor 

platforms must be redesigned for distribution and concurrent execution on the individual 

cores of a multicore embedded platform. Since the algorithms are highly data-parallel, a 

naïve solution will be to partition data (each image frame) into equal parts, each of which 

is transferred to a computing core for execution. This process can be repeated to complete 

the entire video workload.  However, this solution does not yield optimal performance 

and alternate techniques are required for improving the performance.   

1.1.3. Memory Transfer Latency Challenges on Multicore Embedded 
Systems 

 

Early vision workloads are highly data-parallel and feature little data reuse. 

Existing hardware techniques for reducing memory latency, such as the use of caches and 

other pre-fetching mechanisms, are ill-suited for these workloads. As a result, embedded 

multicore processors typically feature DMA-based data transfers and no hardware caches. 

This feature can result in tremendous performance improvements but also presents 

significant software design challenges because data transfers are moved to the domain of 

the application programmer. Also, there is inherent difficulty and complexity in 

designing efficient parallel programs that can fully exploit multicore hardware resources 

on embedded systems. 

Efficient data transfer between main memory and execution cores is particularly 

important for multicore embedded systems because they have much smaller local storage 

areas as compared to multicore general-purpose processors. As a result they require 

several more iterations to completely process a single image frame. This increases the 
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frequency of data exchanges and the potential for collisions on a multicore system, which 

in turn can result in high data transfer latency and potentially costly memory bottlenecks. 

This work also explores techniques to minimize the data transfer latency between main 

memory and execution cores while optimizing utilization of local storage on embedded 

multicore systems. 

 

 

1.2. Problem Statement and Research Contributions 

 

 

The purpose of this research is to efficiently map early vision algorithms onto 

multicore embedded platforms to achieve high-performance execution of applications 

without sacrificing accuracy. Pedestrian-tracking is used as a representative workload for 

three thesis contributions: 

1. A video surveillance software development framework that minimizes 

computational and storage requirements on embedded systems by using efficient 

object modeling and tracking techniques supported by a fast, accurate, adaptive 

background modeling algorithm. 

2. A workload organization and processing technique that enhances the 

performance of early vision algorithms on multicore embedded platforms by 

optimizing algorithm execution on computing cores and minimizing the number 

of data transfers required for program execution.  

3. A technique to minimize memory latency of image transfers on multicore 

embedded systems by performing transparent, global DMA-scheduling with 
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concurrent program execution while simultaneously ensuring high-utilization of 

core local storage areas.    

 

1.3. Research Approach Summary 

 

The research in this dissertation is approached from a systems perspective by 

addressing both software and hardware components.  Concurrently addressing both the 

architectural and algorithmic challenges presented in Section 1.2 is necessary to design 

efficient, high-performance embedded systems. From the algorithms perspective, the 

research focuses on the development and implementation of efficient execution early 

vision algorithms. Because early vision workloads constitute a significant portion of the 

overall workload [21], improvements to these algorithms will yield significant overall 

program speedup and this dissertation first focuses on improving their performance on 

embedded systems. 

A new early vision background modeling algorithm that features lower 

computational and storage costs on embedded platforms is presented. This adaptive 

background modeling technique, called Multimodal Mean, is evaluated against several 

existing background modeling techniques on several representative embedded platforms. 

The evaluation compares this algorithm with several existing pixel-level background 

modeling techniques in terms of their computation and storage requirements, and 

functional accuracy for representative real-world video sequences, across a range of 

processing and parallelization configurations. The Mulitmodal Mean technique provides 

the accuracy of the most popular of the multimodal algorithms (Mixture of Gaussians 
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[23]) algorithm while executing at frame rates comparable to other less expensive 

techniques.  

This approach is extended to object modeling and tracking in the video 

surveillance applications. This dissertation introduces a framework composed of an 

inexpensive kinetic modeling and tracking of objects supported by a fast, accurate 

background model for designing surveillance applications. By using this approach, the 

surveillance applications feature comparable accuracy to other techniques while 

achieving high frame rate execution on embedded computing platforms. 

The architectural perspective of this research focuses on optimizations that allow 

early vision algorithms to run efficiently on multicore embedded systems. It explores 

optimizations with respect to data storage, data transfer latency, and data reuse. As 

described previously, the availability of local storage on execution cores is limited, a 

problem which is not as dire on multicore general-purpose platforms. As a result, 

optimizations that allow the reuse of the background model for processing multiple 

blocks of an image significantly improve performance. This dissertation presents such an 

approach and shows how several configurations impact the overall execution time. 

Finally, the dissertation addresses data transfer efficiency on multicore embedded 

systems. The approach is to reduce the memory transfer latency on multicore embedded 

systems to ensure high utilization of computing cores. It presents a technique that 

leverages the available hardware to perform concurrent data transfer and program 

execution and minimize latency. Furthermore, it provides globally ordered data transfers 

among cores to prevent collisions and improve efficiency. Finally, it maintains high 

utilization of core local storage area while performing concurrent execution.      
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1.4. Results Summary 

 

These results of this dissertation can be summarized as follows: 

• An object modeling and tracking framework [16], [18], and [19] is 

presented that achieves 92% tracking accuracy for pedestrian-tracking 

applications and operates at 0.78 fps when processing 640x480 pixel 

images on a representative embedded platform. 

• A background modeling algorithm [17], [30] is introduced that provides 

comparable image quality and accuracy to the Mixture of Gaussians 

(MoG) algorithm with the performance of other more efficient but less 

accurate background modeling techniques. This algorithm executes 6.2× 

faster than MoG on a representative embedded platform and 4.23× faster 

on a more capable platform. It also requires 18% less storage per pixel 

than MoG and uses only integer operations 

• A workload partitioning technique [52] is described that optimizes the 

execution of background modeling algorithms on multicore systems. The 

technique results in a 25% increase in processing frame rates when 

executing Multimodal Mean, and a 50% reduction in the number of image 

transfers. It also features little overhead (0.023%) in image decoding times 

and an overall system delay of 0.125s for 320x240 frames.  
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• A DMA-transfer technique is presented called cat-tail dma that provides 

globally-ordered, non-blocking DMA transfers on a multicore system. 

Using this technique, data transfers between main memory and processing 

cores are reduced by 32.8% for Multimodal Mean. Also utilization of core 

local storage is improved by 60% over other buffering/processing 

techniques.  

 

1.5. Overview of Content 

 

This thesis is organized as follows: Chapter 2 introduces a modeling and tracking 

framework for pedestrian-tracking on embedded systems that minimizes memory storage 

and computation requirements. This chapter examines the components of a pedestrian-

tracking workload and identifies a framework for enhancing application performance 

without sacrificing accuracy. Chapter 3 describes the background model that supports the 

pedestrian-tracking framework by providing fast, accurate background modeling on 

embedded systems. Chapter 4 describes a technique to optimize the processing of 

background modeling workloads on multicore embedded systems. It introduces a 

workload partitioning/optimization scheme that optimizes performance on multicore 

systems. Chapter 5 presents a technique for efficient transfer of images between main 

memory and the computing cores on a multicore system. The conclusion and future work 

are presented in Chapter 6.     
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CHAPTER 2 
 

PEDESTRIAN-TRACKING APPLICATION  

2.1 Introduction 

 

Tracking pedestrians in a dynamic scene is challenging for several reasons. 

People change shape as they move and several blobs may exhibit the same general shape, 

making one-to-one correspondence difficult. Also, frequent occlusion, merging of 

individual people into groups, and splitting into individuals again makes tracking 

complicated. In addition, pedestrians frequently make path adjustments to avoid 

collisions that can result in fluctuations in their walking speeds over a large number of 

observed frames.   

 There is also an increasing desire to perform pedestrian-tracking on embedded 

platforms attached to imagers that form sensing nodes. These nodes, which may be part 

of a broader surveillance system, must be cheap and power-efficient to make the entire 

system feasible. More importantly, the nodes must be able to run the pedestrian-tracking 

algorithms accurately and in real-time. Figure 1 illustrates such a system made up of an 

embedded platform and a webcam connected through a wireless network to a central 

server. Each node has a distinct field of view and the server performs extra processing to 

aggregate and analyze the information from each node. 
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Webcam

+

Embedded 

System

server

 

 

Figure 1 Video surveillance system 

  
 The goal of the work in this chapter is to develop an accurate pedestrian-tracking 

framework that supports real-time performance of software applications on embedded 

targets. It begins by describing the key challenges facing the design of pedestrian-

tracking applications in this environment. Then an evaluation of several modeling and 

tracking approaches is performed to highlight the advantages and disadvantages of the 

approaches. Based on the analysis, a new object modeling and tracking approach is 

presented for embedded systems.   

 The algorithm is targeted for embedded systems and reduces computational and 

storage costs by using an inexpensive kinematic tracking model with only fixed-point 

arithmetic representations. It leverages from the observation that pedestrians in a dynamic 

scene tend to move with uniform speed over a small number of consecutive frames. As a 

result, if foreground objects are clearly identified, they can be tracked with high accuracy 
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over a short distance. The pedestrian-tracking application is built on an integral of such 

incremental tracking over a long period. Accommodations are made for confusing 

behavior such as occlusions, merging, and splitting. An accurate, multimodal background 

modeling technique is used to segment the foreground (moving people) from the 

background. This component offers important support to the framework by providing 

accurate segmentation while minimizing processing and storage costs. A connectivity 

analysis step is performed concurrently with the background modeling and is used to 

identify blobs in the foreground and calculate the center of mass of each blob. Finally, 

correspondence is established between the center of mass of each blob in the temporally 

closely-spaced frames.  The algorithm is evaluated on a real outdoor video sequence 

taken with an inexpensive webcam and the implementation successfully tracks each 

pedestrian from frame to frame in real-time. The algorithm performs well in challenging 

situations resulting from occlusion and crowded conditions, and achieves real-time 

performance on an actual embedded system.  

 

2.2 Current People Tracking Approaches 

 

The literature on pedestrian-tracking techniques is extensive and covers a broad 

range of applications.  Yilmaz, Javed, and Shah conduct a general survey of object 

tracking, including articulated object trackers that apply to person tracking [1].  Recent 

surveys focused on using articulated object models of human kinematics in particular 

have been provided by Aggarwal and Cai [2], Gavrila [3], and Moeslund and Granum 

[4]. One large class of applications involves tracking the movement of a few people in a 
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sparsely populated scene. The goal is to automatically infer the particular activity being 

performed in a given scene. Pfinder [5] uses a multi-class statistical model of color and 

shape to represent a person in various positions in a scene. After an initialization period 

in which several representations are obtained, it is able to interpret the action of the 

individual while updating the model to incorporate new actions. The W4 algorithm [6] 

completely ignores color and uses a combination of shape analysis and tracking to locate 

people and their parts. In [7], a person detector is used to locate a person’s limbs and a 

discriminative appearance model is built over a given number of frames for each limb. 

Tracking is done by detecting the collective appearance model in each frame. Finally, a 

tracking-based event detection CCVT system is described in [8]. With this approach 

certain blob and scene basic characteristics such as blob positions, blob speed, and people 

density are extracted from the foreground frame. These parameters are compared with 

semantic descriptions of prior events for classification.  The techniques described above 

work well in scenarios where there are very few foreground objects and where the objects 

(people) make up a significant portion of the scene making individual features (e.g. 

limbs) discernible. These systems have been implemented and reported to perform with 

reasonable accuracy. 

At the other end of the spectrum, another large class of applications involves 

following the trajectory of multiple people as they move through a scene. In some 

situations where there is heavy pedestrian traffic there is less feature detail and tracking 

multiple people presents new challenges. In [9] a multiple-people-tracker is proposed that 

uses a stochastic approach based on the evaluation of the maximum a posteriori 

probability (MAP). A state history vector is maintained that contains records of the 
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position, velocity, acceleration, dimension, and unique identification tag of all blobs 

detected in a given frame at time t. An observation state vector is also kept that records 

the blob states observed up until frame t. Trajectory tracking is performed by computing 

the configuration sequence that maximizes the a posteriori probability distribution over 

states conditioned on observations. In [10] a Markov chain Monte Carlo (MCMC)-based 

method is used to calculate the MAP for establishing correspondence but objects are 

modeled based on shape and color. The authors also present a detailed description of 

optimizing the computation of the MAP both for single-object and multiple-object 

situations. Similarly, MCMC is used to perform monocular 3D human tracking in [11]. 

Particle filter based techniques such as [12], [13], and [14] generate multiple predictions 

based on a dynamic model from which a likelihood function is used to determine 

correspondence. 

The techniques described above have been demonstrated to be successful in 

experiments on PC platforms. However, their real-time performance capabilities when 

implemented on resource-constrained embedded platforms will be challenged due to 

computation and storage limitations. For the MAP techniques, expensive floating-point 

calculations are required to achieve the desired accuracy, and complex optimizations are 

often necessary. Also, color, shape, and appearance modeling as well as memory storage 

using such representations can be expensive for embedded platforms. Alternative 

kinematic-based algorithms have been proposed [11] that model the velocity and 

acceleration of blobs over a long number of frames. However, this information can be 

difficult to model because of the interaction of pedestrians which causes blobs to merge 

and split. 
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2.3 Object Modeling Rationale 

  

Tracking by color is a popular technique for a variety of applications [1] but is ill-

suited for pedestrian-tracking in a dynamic scene. Frequent occlusion can make color 

information in a particular pedestrian blob inconsistent as a pedestrian traverses the 

scene.  Also, there are shadowing effects due to other pedestrians and illumination 

changes as a pedestrian blob moves to better lit areas of the scene. These effects lessen 

the accuracy of the histogram matching techniques employed for color tracking.  

Similarly, tracking by shape suffers from the occlusion problem. Also, pedestrian 

blob shapes are neither unique enough between frames nor consistent enough across 

frames for accurate tracking.  

 Another problem with using color and shape for object modeling is the cost in 

terms of both computation and storage. Color histogram-based techniques model objects 

by creating a histogram using groups of similar pixels in the object and this process can 

be computationally expensive. The same problems exist when using shape analysis 

because pedestrian shapes are generally more complicated to represent than geometric 

shapes and hence more expensive to model. 

 Considering the high costs and unpredictable accuracy this work avoids using 

color or shape modeling for real-time pedestrian-tracking applications. Instead, it 

proposes using a kinematic model based on pedestrian positions that completely discards 

color and shape information after foreground extraction.  Pedestrians are modeled as a 

centroid as shown in Figure 2a. 
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Source: Yilmaz et al “Object Tracking: A Survey,” ACM Computing Surveys, Vol. 38 

Figure 2  Object representations  

(a) Centroid, (b) multiple points,(c)rectangular patch, (d) elliptical patch, (e) part-

based multiple patches, (f) object skeleton, (g) complete object contour, (h) control 

points on object contour, (i) object silhouette.  
 

The tracking algorithm leverages from the observation that pedestrians in a 

dynamic scene tend to move with uniform speed over a small number of consecutive 

frames. As a result if foreground objects are clearly identified, they can be tracked with 

high accuracy over a very short distance. The pedestrian-tracking application is built on 

an integral of such incremental tracking over a long period.  

 

To achieve high accuracy using the kinematic model described above, foreground 

objects (people) must be clearly and consistently distinguishable. To support this 

kinematic approach, an accurate, adaptive background modeling algorithm, called 

multimodal mean [17] has been developed. This algorithm is introduced and discussed in 

further detail in Chapter 3.  
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After, accurately segmenting foreground objects, the people tracking algorithm 

uses center of mass information to model blobs as pedestrians. It uses separate models of 

pedestrian activity both in the short term (over a few consecutive frames) and long term 

(as the pedestrian traverses the scene) to perform tracking. An added benefit to this 

choice is that the tracking algorithm is robust and works in challenging conditions such as 

in poorly-illuminated environments or when using cheap, low-resolution imagers where 

color information is unreliable.   

 

2.4 Pedestrian-Tracking Algorithm 

 

The pedestrian-tracking algorithm uses accurate position information for both modeling 

and tracking of pedestrians. Multimodal mean [17], a fast, adaptive background modeling 

technique, is used for the foreground/background segmentation. A connectivity analysis 

step is performed within the segmentation procedure to group foreground regions of 

interest. Each column tC  in a given frame t is identified as a column of interest if  

thtc CP 〉.  , 

where tcP .  is the number of foreground pixels in tC , and thC  is a fixed, predetermined 

threshold for the column pixel density of a pedestrian.  

A pedestrian region is identified when  

( ) ( )thtrthtc FFRR 〉∩〉 ..  , 

where tcR .  is the number of adjacent columns of interest in frame t, and trF .  is the total 

number of foreground pixels contained in all those columns. thR  and thF  are 



 

 

 20 

predetermined thresholds for the minimum width of a pedestrian and the minimum pixel 

density of a pedestrian respectively. 

 After all independent blobs have been identified in each frame, the algorithm 

establishes correspondence with previously observed blobs to perform tracking. Each 

pedestrian blob tP  observed in frame t is modeled as a single point ( )
ytxt PP .. ,  which is the 

center of mass of the blob. It should be noted that two pedestrians whose positions 

overlap each other may be represented using a single blob. A frame vector tV  which 

contains each pedestrian blob i observed during frame t is maintained. 

( )
iytixtt PPV .... ,=  

 Two history records are maintained for tracking pedestrians as they traverse the 

scene.  One is the local history tracker and the other is the global history tracker. The 

local history tracker is used to follow the short term progress of pedestrians from frame to 

frame. This tracker uses a variation of the mean-shift tracking algorithm shown in Figure 

3 to track short term progress of pedestrians.  In the presence of occlusion or blob merges 

and splits, which are common patterns when observing pedestrians, the local history is 

unable to decipher the scenario because it only has an account of what happened in the 

most recent three frames. The global history tracker records additional details about all 

blobs over the entire period that they traverse the scene. This enables the tracking system 

to recover from blob occlusion or merges and splits. 

By separating the long and short term history tracking information, the algorithm 

adapts to the changing kinetics of pedestrians without employing complex models.  
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Source: Yilmaz et al “Object Tracking: A Survey,” ACM Computing Surveys, Vol. 38 

Figure 3 Mean-shift tracking iterations  

(a) estimated object location at time t −−−− 1, (b) frame at time t with initial location 

estimate using the previous object position, (c), (d), (e) location update using mean-

shift iterations, (f) final object position at time t. 
 

2.4.1 Local History Tracker: Dealing with Correspondence over Short 
Periods 

 

The local history tracker records position information of pedestrians over three 

consecutive frames during which constant velocity and constant acceleration can be 

assumed. A blob tP  in the current frame t is a candidate for matching using the local 

history tracker if  

( ) ( ) thytxtytxt DPPPP 〈− −− .1.1.. ,, ,    

and                                           ( ) ( )( ) 0.1. >×− − rnxtxt DPP  
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where 1−tP  is a blob in the immediately preceding frame, t-1. thD  is chosen to be about 2x 

the average distance traversed by a pedestrian during the processing of the sequence. rnD  

is the direction of travel for blob 1−tP , and is obtained from the global history record 

which is described further below. The local history record, tL , is made up of the frame 

vectors from the three most recently observed frames t-2, t-1, and t. 

( )tttt VVVL ,, 12 −−= . 

During processing of the current frame, the algorithm first attempts to establish 

correspondence between candidate blobs and other blobs that have been successfully 

tracked from frame t-2 to t-1. Assuming constant velocity for a given blob tP  between 

the three consecutive frames t, t-1, and t-2, the change in center of mass of a given blob 

between frame t and t-1 is approximately equal to that between frame t-1 and t-2. 

Specifically ( ) ( ) ( ) ( )
ytxtytxtytxtytxt PPPPPPPP .2.2.1.1.1.1.. ,,,, −−−−−− −≈− . 

The candidate blob tP  in frame t that minimizes the difference in change of center 

of mass is matched with the one successfully tracked between frame t-1 and t-2.  

( ) ( ) ( ) ( )( )
ytxtytxtytxtytxt PPPPPPPPMin

.2.2.1.1.1.1.. ,,,,,, −−−−−−
∆−∆

 

If a tracked blob is occluded in either frame t-1 or t-2, the matching attempt 

described above fails. In this case a match is made with a blob in frame t-1 by selecting 

the candidate blob in t that minimizes the center of mass difference between the two 

blobs.  

( ) ( )( )
ytxtytxt PPPPMin

.1.1.. ,,, −−
∆ . 
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2.4.2 Global History Tracker: Dealing with Occlusion, Merging, and Splits 

  

The local history tracker fails during incidences of blob merges and splits, as well as 

during occlusions over a long number of consecutive frames. The global history tracker is 

used to address those problems, and is made up of a collection of records kept for each 

pedestrian blob within a specified observation window. 

 

The global history tracker is used to match pedestrian blobs that are unmatched 

using local history. This tracker contains position and velocity information of pedestrians 

over its entire existence and is made up of four fields. The first field Last Pos is a tuple 

that records the last observed center of mass point for a given blob identified by field ID. 

The direction field, Drn, gives an indication of the general direction of motion of blob ID. 

It is initialized to zero when a new blob record is created and increased by one if the blob 

is matched to the right of its last position. If it is matched to the left the Drn value is 

decreased by one. The last field Frame Num records the frame number when blob ID was 

most recently observed. 

 The time elapsed from the last update of a given blob is computed by taking the 

difference between the current frame and the contents of the Frame Num field recorded in 

the blob. Similarly, the change in position as well as the direction of change is computed 

from the current unmatched blob position and the last position recorded in the blob. A 

given blob tP  in the current frame, is a candidate match with an entry tG  in the global 

history tracker if 

( ) ( ) thytxtytxt GGGPP 〈− .... ,, ,    

and                                             ( ) ( )( ) 0.. >×− rnxtxt DGP . 
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If there is more than one candidate blob, a match is determined by selecting the candidate 

blob that minimizes the difference in center of mass. 

( ) ( )( )
ytxtytxt GGPPMin

.... ,,,∆  

 The global history tracker is routinely maintained to prevent matching of blobs 

using stale history and also to prevent the storage structure from overflowing. When a 

pedestrian blob in the current frame is matched, the Last Pos, Drn, and Frame Num fields 

in the global history tracker are updated. Blob records are removed from the global 

history tracker under the following conditions: 

thOFrameNummeCurrentFra 〈−  and 

( ) ( )( ) ( )( )ththth EFrameNummeCurrentFraWWidthonLastPositiWonLastPositi 〈−−〉〈 &&||  

thO is a frame observation threshold which represents how long a blob can be considered 

occluded before it is considered lost and discarded. thW is a width window at the 

beginning and end of each frame for which blobs may be leaving or entering the scene. 

 By separating the long and short term history tracking information, the algorithm 

adapts to changing kinetics of pedestrians without employing complex models. Also, by 

giving precedence to the local history tracker, it finds the closest match for a given blob 

during regular operation, and has a recovery system for scenarios where there is a 

deviation from normal behavior e.g. occlusion. Most importantly, keeping the models 

separate provides the option of modeling different scenarios while minimizing the 

complexity.  
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2.5 Experiment and Analysis 

 

The tracking algorithm was evaluated on an outdoor sequence taken with an 

inexpensive webcam. The scene involves a busy walkway outlined by trees on a sunny 

day. Under those real-world conditions, waving trees and shadows could result in a noisy 

background and could affect the segmentation. The video was recorded at 30 frames per 

second (fps) and down sampled to 1 fps for processing, and 200 frames where processed 

for the experiment. At this reduced rate there was measurable change in pedestrian 

locations from frame to frame. Processing was performed at a relatively high resolution, 

with the size of each image at 640x480 pixels. The tracking algorithm was implemented 

in C and compiled using Microsoft Visual Studio 2005 for Windows CE 6.0 embedded. 

The execution platform was an eBox-2300 Thin Client VESA PC running 

Windows Embedded CE 6.0 [31], [20]. This was chosen as a baseline platform for 

evaluating the pedestrian-tracking application and featured very modest memory and 

processing specifications. The eBox, shown in Figure 2, incorporates a fanless Vortex86 

SoC (includes a 200MHz x86 processor that dissipates < 3 Watts) plus 128MB SDRAM 

(PC133), three USB ports, a 10/100 Ethernet port, and a compact flash slot. The 

processor is an integrated version of the Pentium processor which was originally 

introduced commercially in 1993 (about 15 years ago). The platform is 11.5 × 11.5 × 3.5 

cm in size, weighs 505g, and is designed for low power operation. Because of its limited 

128MB internal memory, a customized lightweight kernel occupying approximately 

19MB was constructed. Image sequences were downloaded prior to each evaluation run.  
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Figure 4 eBox Vesa PC 
 

Sequence A shows a long sequence taken from the results where tracking is 

performed over a 24s period. The frames are shown at 3 sec intervals. The sequence 

shows that the algorithm correctly tracks the pedestrians as they interact and generate 

some interesting scenarios while walking across the scene. Pedestrians 1 and 2 are 

traveling at different speeds and begin as independent blobs in Frame 68 till they are 

merged into a single blob in Frame 77. Pedestrian 4 was initially traveling behind 

pedestrian 2 and then stops walking. She is tracked for a while as foreground and enters 

the background until she starts walking again. Also, there are several instances involving 

occlusion where pedestrians traveling in opposite directions merge into a single blob, 

and separate later. In these scenarios the blobs are correctly tracked before and after the 

occlusion events.  

 

Sequence B shows results from a very crowded period of the video. Pedestrian 7 and her 

companion (from Sequence A) have become almost stationary and are having a 
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conversation and therefore are now part of the background. They have remained in the 

video while a completely new set of pedestrians walk across the scene. Pedestrians 4, 8, 

and 9 are tracked among the crowd from frames 150 to 158. Again, the occlusions 

involving pedestrians 4, 5, and 1 are handled correctly.  

 A ground truth was created to evaluate the accuracy of the algorithm. This process 

involved manually observing each pedestrian as they traversed the scene and comparing 

the matches produced by the algorithm with those matched by eye. All mismatches were 

considered inaccuracies and the program was penalized. Also, identification of blobs 

where no actual blobs existed, and failure to identify fully autonomous blobs (where there 

was no contact with another blob) were considered inaccuracies and incurred penalties. A 

window of 50 pixels was maintained at the beginning and end of each frame where 

tracking was ignored to allow pedestrians to leave and enter the scene. Using these 

criteria the algorithm achieved an accuracy of 92% for this sequence 

 One challenging scenario for the algorithm involved the merging and splitting of 

blobs in the same direction. In rare instances where the difference in pedestrian speeds 

was large, the pedestrian identities were switched. This can be resolved by reducing the 

down sampling rate. Also, in some instances where blobs were not fully formed due to 

noise, the algorithm missed blobs in some frames. It usually recovered in the next frame 

when the segmentation was cleaner. 

   The performance of the algorithm on the eBox was also measured. The 

algorithm ran at 0.78 fps when processing 640x480 pixel images. This frame rate is 

appropriate for tracking pedestrians walking in real-time, so the resolution at which the 

images were processed was increased to achieve better accuracy. Considering the 
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platform, this frame rate and resolution is very suitable for real-time, pedestrian-tracking. 

Run-time memory usage averaged about 33 MB which constituted about 25% of what 

was available on the eBox.  

 This chapter introduced a framework for designing real-time, pedestrian-tracking 

software for embedded systems. By using inexpensive tracking and object modeling 

representations the memory and computation requirements of the application are 

significantly reduced. However, to preserve accuracy, a fast, multimodal background 

modeling algorithm is needed to provide the accurate segmentation on which the kinetic 

tracking model can rely. The algorithm must also be designed with careful consideration 

to memory and computation costs because it will execute on an embedded platform. The 

next chapter presents the Multimodal Mean algorithm which satisfies those requirements, 

and is used to support the framework.   
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Sequence A 

 
Frame 68         Frame 71      Frame 74           Frame 77 

 

 

 
 Frame 80         Frame 83   Frame 86      Frame 89 

 

                 

       Sequence B 

 
 Frame 150         Frame 154  Frame 158           Frame 162 

 

Figure 5 People tracking result 
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CHAPTER 3 
 

MULTIMODAL MEAN BACKGROUND MODELING TECHNIQUE 

 

3.1 Introduction 

 

Techniques for automated video surveillance utilize robust background modeling 

algorithms to identify salient foreground objects. Typically, the current video frame is 

compared against a background model representing elements of the scene that are 

stationary or changing in uninteresting ways (e.g. rippling water or swaying branches). 

The foreground is determined by locating significant differences between the current 

frame and the background model.  

The availability of low-cost, portable imagers and new embedded computing 

platforms makes video surveillance possible in new environments. However, situations in 

which a portable, embedded video surveillance system is most useful (e.g., monitoring 

outdoor and/or busy scenes) also pose the greatest challenges. Real-world scenes are 

characterized by changing illumination and shadows, multimodal features (such as 

rippling waves and rustling leaves), and frequent, multilevel occlusions. To extract 

foreground in these dynamic visual environments, adaptive, multimodal background 

models are frequently used that maintain historical scene information to improve 

accuracy. These methods are problematic in real-time embedded environments where 

limited computation and storage restrict the amount of historical data that can be 

processed and stored. 
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This chapter introduces a new adaptive technique, Multimodal Mean (MM), 

which balances accuracy, performance, and efficiency to meet embedded system 

requirements. Multimodal Mean models each background pixel as a set of up to K modes, 

each represented as a running average pixel value in a structure called a cell.  Each cell 

consists of running averages for each color component in a three-component color 

representation such as RGB or HSI.  

Multimodal Mean was evaluated against several representative pixel-based 

background modeling techniques on a real embedded platform using data from a real-

time embedded environment. The techniques were evaluated with respect to 

computational cost, storage, and extracted foreground accuracy. The techniques ranged 

from simple, computationally inexpensive methods, such as frame differencing and 

mean/median temporal filters [22], to more complex methods, such as the multimodal 

Mixture of Gaussians (MoG) [23] approach.  

Commercial-of-the-shelf components were employed to build a low-cost, low-

power, and portable embedded platform to serve as the testbed for the evaluation. The 

results demonstrated that the proposed MM algorithm achieved competitive real-time 

foreground accuracy under a variety of outdoor and indoor conditions with the limited 

computation and storage of a low-cost embedded platform. More specifically, 

Multimodal Mean technique achieved accuracy comparable to multimodal MoG 

techniques but with a significantly lower execution time. 
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3.2 The Case for a Fast Adaptive Background Model 

 

Chen et al [21] present a comprehensive analysis of computer vision workloads. 

They chose video surveillance as a representative case study of a complex computer 

vision application and profiled it with the Intel VTune Performance Analyzer. Their 

results showed that foreground/background segmentation was the most expensive module 

in the workload and accounted for up to 95% of the execution time. According to their 

analyzer, their background modeling algorithm consumed 1 billion micro-instructions for 

a frame size of 720x576 pixels and took 0.4s to execute on a 3.2 GHz Intel Pentium 4 

processor.  Further analysis of the module showed that about 60% of the background 

modeling computation time was used for updating and maintaining the background 

model. This shows that the choices made for pixel representations and the associated 

learning/adaptation techniques greatly influence both performance and storage costs of 

the model.  

Since a critical component of computer vision applications is background 

modeling, speeding up this component will greatly improve the real-time performance 

capabilities of the overall system in accordance with Amdahl’s law. This task can be 

approached from two directions: 

I. Optimizing background modeling algorithms for embedded systems, and 

II. Identifying suitable execution platforms and optimizing processing and 

partitioning of background modeling data for those systems. 

This chapter addresses the first task by introducing a fast adaptive background 

modeling algorithm targeted for embedded systems. The next chapter tackles the 
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second task and explores techniques to optimize the performance of the new algorithm 

on a suitable embedded platform.  

3.3 Related Background Modeling Work 

 

A variety of techniques exist for background subtraction; see [22], [24], and [25] 

for recent comprehensive surveys. Frame differencing compares pixels in the current 

video frame with corresponding pixels in the previous frame. If the difference between 

the pixels is above a given threshold, then that pixel is identified as foreground. While 

computationally inexpensive, this method is prone to the foreground aperture problem 

[26] and cannot handle dynamic background elements, such as swaying tree branches.  

Sliding window-based (or non-recursive [22]) techniques keep a record of the w 

most recent image frames. The background is represented as the mean or median of the 

frames in the buffer. Foreground is determined either by determining if the current image 

pixel deviates by a fixed threshold away from the background model or, if it is within 

some standard deviation of the background. Although less sensitive to the aperture 

problem, this technique is more memory intensive as it requires w image frames of 

storage per processed image. 

Recursive techniques [22] utilize only the current frame and parametric 

information accumulated from previous frames to separate background and foreground 

objects. They typically employ weighted means or approximated medians and require 

significantly less memory than the sliding window techniques. An approximated median 

algorithm is shown in [27] where the background is initialized by declaring the first 

image frame as the median. When a new video frame is acquired, the current image’s 

pixel values are compared with those of the approximated median’s pixel values. If a 
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pixel value is above the corresponding median value, then that approximate median pixel 

value is incremented by one, otherwise it is decremented by one. It is assumed that the 

approximated median frame will eventually converge to the actual median after a given 

number of image frames are analyzed [27]. In [28] and [5], a weighted mean is used, 

whereby a percentage of the background pixel is used in combination with a percentage 

of the current pixel to update the background model. This percentage is governed by a 

user-defined learning rate that affects how quickly objects are assimilated into the 

background model. 

Issues can arise with the described techniques when there are moving background 

objects, rapidly changing lighting conditions, and gradual lighting changes. The Mixture 

of Gaussians (MoG) [23] and Wallflower [26] approaches are designed to better handle 

these situations by storing multimodal representations of backgrounds that contain 

dynamic scene elements, such as trees swaying in the wind or rippling waves. The MoG 

approach maintains multiple data values for each pixel coordinate. Each data value is 

modeled as a Gaussian probability density function (pdf) with an associated weight 

indicating how much background information it contains. With each new image frame, 

the current image pixel is compared against the pixel values for that location. A match is 

determined based on whether or not the current pixel falls within 2.5 standard deviations 

of any of the pixel distributions in the background model [23]  

Wallflower [26] uses a three-tiered approach to model foreground and 

background. Pixel, region, and frame level information are obtained and analyzed. At the 

pixel level, a linear predictor is used to establish a baseline background model. At the 

region level, frame differencing, connected component analysis and histogram 
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backprojection are used to create foreground regions. Multiple background models are 

stored at the frame level to handle a sharp environmental change such as a light source 

being switched on or off. 

These techniques have limitations with respect to either foreground extraction 

accuracy or real-time performance when processing busy, outdoor scenes on resource-

constrained embedded computing systems. Frame differencing and recursive background 

modeling techniquess do not handle dynamic backgrounds well. Sliding window methods 

require significant memory resources for accurate background modeling. The MoG 

approach requires significant computational resources for sorting and the computation of 

standard deviations, weights, and pdfs.  

In this chapter, a new background modeling technique [30] is proposed that has 

the multimodal modeling capabilities of MoG but at significantly reduced storage and 

computational cost. A related approach [29] implements multimodal background 

modeling on a single-chip FPGA using a collection of temporal lowpass filters instead of 

Gaussian pdfs. A similar background weight, match, and updating scheme as the MoG is 

maintained, with simplifications to limit the amount of floating-point calculations. In 

contrast to MoG and [29], the proposed technique uses a linear parameter updating 

scheme as opposed to nonlinear updates of weights and pixel values, and it makes use of 

information about the recency of background pixel matches. Updating the background 

model in this manner allows for efficient storage of a pixel’s long-term history.  
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3.4 Multimodal Mean Algorithm 

 

Multimodal Mean models each background pixel as a set of average possible pixel 

values. In background subtraction, each pixel It in the current frame is compared to each 

of the background pixel means to determine whether it is within a predefined threshold of 

one of them. Each pixel value is represented using a three-component color 

representation, such as an RGB or HSI vector. In the following, It.x represents the x color 

component of a pixel in frame t (e.g., It.red denotes the red component of It). The 

background model for a given pixel is a set of K mean pixel representations, called cells. 

Each cell contains three mean color component values. An image pixel It is a background 

pixel if each of its color components It.x is within a predefined threshold for that color 

component Ex of one the background means.  

In the embedded implementation, K = 4 cells was chosen and the RGB color 

representation was used. Each background cell Bi is represented as three running sums for 

each color component Si,t.x and a count Ci,t of how many times a matching pixel value has 

been observed in t frames. At any given frame t, the mean color component value is then 

computed as µi,t.x = Si,t.x /Ci,t.  

More precisely, It is a background pixel if a cell Bi can be found whose mean for 

each color component x matches within Ex the corresponding color component of It: 

( )FGtixxtixt

x

TCEI >∧







≤− −−∧ 1,.1,. µ , 

where TFG is a small threshold indicating the number of times a pixel value can be 

seen and still considered to be foreground. (In our experiments, TFG = 3 and Ex = 30, for 

x∈{R,G,B}.) 
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When a pixel It matches a cell Bi, the background model is updated by adding 

each color component to the corresponding running sum Si,t.x and incrementing the count 

Ci,t. As the background gradually changes (for example, due to lighting variations) the 

running averages will adapt as well. In addition, to enable long-term adaptation of the 

background model, all cells are periodically decimated by halving both the sum and the 

count every d (the decimation rate) frames. To be precise, when It matches a cell Bi, the 

cell is updated as follows: 

( ) b

xtxtixti ISS 2/..1,., += −  

( ) b

titi CC 2/11,, += − , 

where b = 1 if t mod d = 0, and b=0, otherwise. 

Decimation is used to decay long-lived background components so that they do 

not permanently dominate the model, allowing the background model to adapt to the 

appearance of newer stationary objects or newly revealed parts of the background. It also 

plays a secondary role in the embedded implementation in preventing counts from 

overflowing their limited storage. (In the experiments reported later in the chapter, the 

decimation rate d = 400, so decimation does not come into play in the test sequences. 

However, it is necessary for longer-term adaptation.) 

When a pixel It does not match cells at that pixel position, it is declared to be 

foreground. In addition, a new background cell is created to allow new scene elements to 

be incorporated into the background. If there are already K background cells, a cell is 

selected to be replaced based on the cell’s overall count Ci,t and a recency count Ri,t 

which measures how often the background cell’s mean matched a pixel in a recent 

window of frames. A sliding window is approximated by maintaining a pair of counts (ri,t 
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, si,t) in each cell Bi. The first ri,t, starts at 0, is incremented whenever Bi is matched, and is 

reset every w frames. The second si,t, simply holds the maximum value of ri,t computed in 

the previous window: 

when t mod w = 0 





=
0

,ti
r

r

 

when Bi matches It 

and t mod w ≠ 0 

when t mod w = 0 





=,ti
s

r
s

 

otherwise. 

 

 

Recency Ri,t = ri,t + si,t provides a measure of how often a pixel matching cell Bi 

was observed within a recent window. The si,t component allows information to be 

carried over across windows so that recency information is not completely lost at window 

transitions. When a new cell is created and added to a background set that already has K 

cells, the cell to be replaced is selected from the subset of cells seen least recently, i.e., 

cells whose recency Ri,t < w/K. From this set, the cell with the minimum overall count Ci,t 

is selected for replacement. If all cells have a recency count Ri,t > w/K (in the rare event 

that all cells are observed equally often over an entire window), then the cell with lowest 

Ci,t is replaced. (In the experiments, w = 32 was chosen.)  

3.5 Evaluation on Embedded Platform 

 

 

Several background modeling techniques were evaluated using three 

representative test sequences executing on an embedded execution platform. Each 

technique was compared in terms of image quality and accuracy (false positives and false 

negatives) as well as execution cost (execution time and storage required).  The evaluated 

techniques included: 
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• frame differencing 

• approximated median 

• sliding window median 

• weighted mean 

• sliding window mean 

• mixture of Gaussians (MoG) 

• multimodal mean (MM) 

The test suite includes two standard test sequences and a longer outdoor 

sequence captured using an inexpensive webcam (see Table 1). All sequences have a 

frame size of 160×120. 

Table 1 Test sequences 

 

Sequence 

 

# Frames 

 

Sampled Frame 

 

Waving Tree 

 

281 

 

247 

 

Bootstrapping 

 

1000 

 

299 

 

Outdoors 

 

201 

 

190 

 

 
 

The standard sequences, “Waving Tree” and “Bootstrapping,” are from the 

Wallflower benchmarks [26] and use the same sampled frame and associated ground 

truth. They contain difficult challenges for background modeling algorithms. Waving 

Tree contains dynamic background in the form of a wind-blown tree with swaying 

branches and leaves. Bootstrapping lacks a “foreground free” preamble for construction 
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of the initial background model. This requires learning the background in the presence 

of continually changing foreground. These sequences are choreographed to present 

specific background modeling problems. A longer sequence with dynamic background 

and the continuous presence of foreground objects was also collected. This sequence 

contains an outdoor scene with varying illumination, moving trees, and subjects 

moving in varying patterns and positions. It was captured at 640×480 resolution at one 

frame per second. Afterward, the sequence was resized to 160×120 and a sample frame 

and ground truth was manually derived. 

Table 2 lists the algorithm parameters used in the experiments. Experiment 

parameters and thresholds were held constant for all sequences. The MoG method 

incorporated K=4 Gaussians while the MM method utilized K=4 cells. The sliding 

window implementations use a buffer size of 4 for comparable memory requirements. 

Table 2 Algorithm Parameters 
 

Algorithm Parameters 

Mean/Median (SW) |window| = 4 

Weighted Mean α=0.1 for ut = (1-α)*ut-1 + αxt 

Mixture of Gaussians (MoG) 

K=4 modes, initial weight w = 0.02, learning 

rate α = 0.01, weight threshold T = 0.85. 

Multimodal Mean 

K=4, Ex = 30 for x∈{R, G, B},  

TFG = 3, d = 400, w = 32 
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The execution platform used for the evaluation was the eBox-2300 Thin Client 

VESA PC running Windows Embedded CE 6.0 from Chapter 2. Each background 

modeling technique was implemented in C and compiled for Windows CE using 

Microsoft Studio. Algorithm data storage was limited to 40MB. This affected the variable 

window size for the sliding window techniques and the number of modes for the 

multimodal techniques. 

3.5 Results 

 

The accuracy and image quality of each method is compared in Figure 6, Figure 

7, Figure 8, and Figure 9. 

 

Waving Trees (160x120) - Total Number of Errors 

0 2000 4000 6000 8000
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Figure 6 Waving tree errors 
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Bootstrapping (160x120) - Total Number of Errors 
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Figure 7 Bootstrapping errors 
 

Outdoors (160x120) - Total Number of Errors 
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Figure 8 Outdoors errors 
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Overall - Total Number of Errors 
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Figure 9 Overall errors 

 
 

False positives indicate foreground identified outside the highlighted (white) 

regions of the ground truth. False negatives result from background detected in ground 

truth identified foreground. While these counts do not provide a complete measure of 

foreground usefulness (e.g., often incomplete foreground can be “filled in”),   lower 

numbers of false positives and negatives are usually desirable. Generally, the MoG and 

MM techniques demonstrate comparable accuracy that is superior to the other methods. 

Figure 10 displays the image quality for each background modeling technique. 

Multimodal methods (MoG and MM) generally exhibit the lowest number of errors 

across the sequences. False positives are significantly lower for the multimodal methods. 
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Figure 10 Image quality comparison of background modeling techniques 
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 In Waving Trees, only the multimodal techniques incorporate the moving tree 

into the background. In Bootstrapping, all techniques are able to detect elements of the 

foreground identified in the ground truth. Unfortunately, the sliding window and 

weighted mean methods also identify reflected light on the floor (false positives). 

Outdoors features a large number of foreground elements as well as moving trees. Both 

multimodal techniques have significantly higher false positive accuracy. 

 

Table 3 lists average processing times, average frame rates, and storage 

requirements for each method executing on the test platform. Because the sequence 

frames originated from standard files rather than camera output, I/O requirements are not 

included in these figures. 

Table 3 Algorithm performance on test platform 
 

Algorithm 
Time 

(ms) 

Rate 

(fps) 

Storage 

(words/pixel) 

Frame 

Differencing 7.6 32.0 1: packed RGB 

Approximated 

Median 8.5 17.3 1: packed RGB 

Median (SW) 69.2 4.4 3: 3 char × 4 

Weighted Mean 26.8 7.3 1: packed RGB 

Mean (SW) 28.2 5.5 3: 3 char × 4 

MoG 273.6 .7 

22: 5 FP × 4 

modes + 2 int 

Multimodal 

Mean 43.9 2.8 

18: (4 int + 2 

char) × 4 cells 
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The results showed that the MM method executes 6.2× faster than the MoG 

technique, while providing comparable image quality and accuracy. It also requires 18% 

less storage per pixel and uses only integer operations. Although many of the other 

methods offered lower execution times and storage requirements, their accuracy is 

insufficient for many applications. 

 

3.6  Multimodal Mean on HP Platform 

 

To further highlight the impact of compact representation and algorithmic 

complexity on embedded platforms the evaluation was repeated on a more capable 

execution platform. The HP Pavilion Slimline S3220N PC shown in Figure 11 was the 

chosen platform, and it featured full PC functionality in one third the conventional tower 

size. It measures at just over a foot long and less than a foot high. It has an AMD Athlon 

64 X2Dual-Core processor with 512 KB cache and a 512 KB L2 cache. It also has an 

NVIDIA GeForce 6150 LE graphics processor, 1024 MB of DDR memory and a 250GB 

hard drive. The Slimline runs Microsoft Windows Vista as the operating system and 

Micrcosoft Visual Studio 2005 was used for application development. This platform has 

greater computational throughput, more main memory, and better floating point support 

than the eBox. This comparative analysis provides additional insight into algorithm 

demands and their performance on different embedded platforms. 

 

 

 

 



 

 47 

 

                       

Figure 11 HP Pavilion Slimline S3220N PC 
 

For this experiment, two full frame (640 x 480) sequences were used to evaluate 

each background modeling technique because the Slimline, unlike the eBox, had enough 

memory to accommodate the full resolution test sequences. The first was the outdoor 

sequence used previously with a length of 901 frames.  The second sequence was a 750 

frame (640 x 480) outdoor walkway outlined by trees on a sunny day and was also taken 

with an inexpensive webcam. Under those real-world conditions, waving trees and 

shadows resulted in a dynamic background. 

Table 4 lists average processing times per frame and average frame rates on the 

HP Pavilion Slimline test platform. The performance of MM on the HP platform was 

4.23x faster than that of MoG, compared with a 6.2x improvement on the eBox.  
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Table 4 Algorithm performance on HP platform 
 

Algorithm Time (ms) Rate (fps) 

Frame Differencing 28.55 57.83 

Approximated 

Median 34.29 48.16 

Median (SW) 174.3 9.47 

Weighted Mean 45.96 35.91 

Mean (SW) 55.3 29.85 

MoG 444.66 3.71 

Multimodal Mean 105.07 15.71 

 

While the improvement is partially due to less memory limitations and better 

hardware-supported floating-point computation capabilty, it is clear that reducing overall 

algorithm complexity and using a more compact data representation offers a significant 

performance improvement on higher performance embedded platforms. Therefore, faster 

and more capable hardware platforms alone are an insufficient solution to designing 

efficient embedded surveillance systems. The first half of this dissertation addressed this 

by providing a framework for redesigning software applications for efficient execution on 

embedded platforms.  
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CHAPTER 4 

REAL-TIME ADAPTIVE BACKGROUND MODELING FOR MULTICORE 

EMBEDDED SYSTEMS 

4.1 Introduction 

 

Demand for efficient image processing on non-traditional platforms is being fueled 

by the proliferation of portable multimedia devices such as cell phones, gaming systems, 

media players, and automotive imaging systems. A popular solution among hardware 

vendors is scaling down versions of general-purpose processors and repackaging them as 

low-power embedded cores. Parameters like video frame rate and image resolution are 

scaled down to accommodate real-time performance. These techniques will not be 

sustainable as more complex applications are ported to embedded systems. Customized 

hardware, specially designed for embedded multimedia, will be required to meet the 

demands of this fast-growing market.  

Current trends in microprocessor design integrate several autonomous processing 

cores onto the same die. Industry efforts, such as the Cell Broadband Engine from Sony, 

Toshiba, and IBM [33], Niagara from Sun [34], and Montecito from Intel [35], as well as 

university-led designs, such as MIT’s RAW [36] and the University of Texas’s Trips [37] 

are representative multicore architectures. Multicore architectures are particularly well-

suited for image processing applications where it is typical to perform the same set of 

operations repeatedly over large datasets. However, there are still significant differences 

between general-purpose and image-processing workloads. Image-processing 

applications exhibit high levels of data parallelism and feature little data reuse. 



 

 50 

Conventional general-purpose architectures are limited in this regard because they do 

not support the scaling of arithmetic units and registers to the very large numbers 

required for the concurrent execution of large groups of image pixels. Also, they have 

cached-based memory systems that are tuned for data reuse and hence are ill-suited for 

image processing[38]. In [45] an evaluation of a cache-based system and a direct DMA 

system is performed on the TI TMS320C6416 DSP [46] which provides support for both 

options. 

The DMA-based system offers better performance than the cache-based one for 

embedded image-processing applications because it offers direct control of data transfers 

to the applications programmer and therefore ensures predictable access times. The 

results of the evaluation, shown in  Table 5, demonstrate that for the performance-

optimized PfeLib function PfeBayerLinearR, the DMA-based system had a 3x speedup 

over the cached-based system. In the IRAM configuration all frame buffers were located 

in internal memory and the L2 cache was not activated. The ERAM configuration was 

similar to the IRAM except that the frame buffers were located in external memory. In 

the L2CACHE configuration, 64KB of internal memory was configured as L2 cache, and 

the frame buffers were located in external memory. The cache was reset to clean before 

starting each run. 

 

 Table 5 Cache vs. DMA 
 

 

 

Configuration Performance 

(cycles/pixel) 

IRAM 5.7 

ERAM 860 

L2CACHE 18.8 
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In [47], a similar evaluation is performed with a MAP 1000 processor for four 

applications - 2D convolution, affine warp, invert and add, and 2D fast Fourier Transform 

- and the results showed that the DMA-based system yielded better results. 

Ideal candidate platforms for embedded computer vision must feature a large 

number of processing cores, a large register file, and hardware support for transferring 

large amounts of pixel data to and from processing cores. Also, they must meet 

embedded power, size, and cost constraints. Based on the criteria described the Cell 

Broadband Engine was identified as a suitable hardware platform for embedded early 

vision algorithms. 

 

4.2 Cell Broadband Engine: An embedded multicore execution platform 

       

The Cell B.E. (Figure 4) is a heterogeneous multicore chip which features one 

PowerPC (PPE) computing core and eight Synergistic Computing (SPE) cores on the 

same die. The PPE is a fully compliant 64-bit PowerPC RISC architecture with 32 128-

bit vector registers, 32-KB L1 instruction and data caches, and a 512-KB unified L2 

cache. It is a modified version of the general-purpose Power architecture and is tuned for 

executing general-purpose workloads. Each SPE is a 128-bit RISC processor with 128 

128-bit registers and 256 KB of local storage. The SPEs are designed for high-

performance, data-streaming, and data-intensive computation. DMA is the primary 

method of communication between the SPEs and main memory. The element 
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interconnect bus (EIB), which is a very high-speed, high-bandwidth communication 

network, provides a critical communication link between the powerful computing cores 

and main memory. The entire system is well-suited for embedded image processing 

applications with the PPE handling program and data management and flow control, 

while the SPEs perform the pixel-level image operations[50].  

 

 

Figure 12 Cell architecture 
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4.3 Embedded Multicore Computer Vision 

 

Multicore processor platforms provide tremendous potential to achieve real-time 

performance of computer vision applications. However, on embedded multicore systems, 

power, size and other constraints limit the availability of hardware resources. Optimizing 

algorithms to achieve real-time performance on such systems, while observing embedded 

constraints, becomes a challenging but necessary task. 

Early vision algorithms typically involve a small number of micro-operations 

performed over a large number of pixels. This makes them memory-intensive as well as 

computation-intensive. For example, a 720x640 pixel image in a standard RGB format 

requires 1.38 MB to store as a raw image for further processing. Applying a single unary 

operation to each pixel in the image contributes 460,800 operations to the entire 

execution. 

Background modeling algorithms, which are a subset of early vision algorithms, 

are characterized by high memory requirements, large numbers of micro-operations and 

little data reuse. Memory is required to store the current frame being processed as well as 

the background model which typically includes representations for each pixel in the 

image. For the same image in the example above, adding a single byte field to a given 

pixel representation in the background model increases the size by 460KB or a third the 

input image size.   

For most systems, it will be nearly impossible to perform the entire background 

modeling of a typical image without repeated block transfers of image data. A multicore 

system allows the processing of different parts of the image to proceed concurrently. On 
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multicore embedded systems, however, limited memory decreases the processing block 

size and therefore more iterations are required.  

Data domain parallelization [49], where data is partitioned into independent 

pieces which are processed by each core executing the entire algorithm, is most suitable 

for background modeling workloads. This is more preferable than dividing the algorithm 

into separate functions (function domain parallelization [49]) because the relatively few 

number of operations performed per pixel does not offset the modularization overhead. 

Also, there will be extra transfer overhead encountered when moving the partially 

updated background models between cores for each processing step.  

It is also noteworthy that the memory access patterns for this workload are very 

predictable. It is therefore more desirable to handle memory transfers to execution cores 

directly through the application program rather than through more generalized underlying 

hardware such as caches [45].The next section shows the implementation of Multimodal 

Mean on the Cell B.E. platform and parallelization and processing optimizations that 

result in a 25% increase in performance over a baseline approach. 

 

4.4 Baseline Processing of Multimodal Mean on the Cell Broadband Engine 

 

The Multimodal Mean background modeling algorithm was implemented on the 

Cell B.E. and evaluated against the other background modeling techniques listed in 

Chapter 3.  For this experiment, the test suite comprised of two longer outdoor sequences 

captured using an inexpensive webcam. Both sequences contained 700 frames and in 
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each sequence, frame 453 was sampled for accuracy analysis. Also, the resolution was 

increased and both image sequences comprised of images with a resolution of 720×640. 

The test sequences were chosen because they contain scenarios that present 

difficult challenges for background modeling algorithms. The “Outdoors I” scene 

involves a busy pedestrian walkway outlined by trees and was recorded on a sunny day. 

Under those real-world conditions the background model must deal with distracting 

features and uninteresting motion resulting from waving trees and shadows.  

The second outdoor scene “Outdoors II” was chosen for its fluctuating 

illumination conditions, which is another key challenge for background modeling 

algorithms running in real-world environments. This video also contains the continuous 

presence of foreground objects in the periphery of the image which could result in a noisy 

segmentation. Both videos were recorded at 30 frames per second (fps) and down 

sampled to 1 fps for processing. The various algorithm parameters were kept the same as 

those in Table 2. 

The execution platform was a Sony Playstation 3 (Figure 13 ) with the Cell B.E. 

multicore processor running Yellow Dog Linux (YDL) 5.0.  

 

 

                                         

Figure 13 Sony Playstation 3 with YDL 
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The background modeling algorithm was set up to leverage the strengths of the 

respective cores on the Cell. The general-purpose PPE was used for image decoding and 

encoding, core synchronization, and other book-keeping tasks. The SPEs, which are 

designed for high-performance, data-streaming and data-intensive computation, were 

used to perform the bulk of the background modeling algorithms. The SPEs are not 

cache-based and DMA is the primary method of transferring images between the 

computing cores and main memory. The maximum size of each DMA transfer is 16KB.  

Although the evaluation is performed on a single platform the results can be 

generalized across other multicore embedded platforms. On a homogenous multicore 

chip, one of the cores will be dedicated to obtaining the images either through a driver 

attached to a camera or by decoding images retrieved from main memory. Most 

processing cores should capably handle this dedicated task so there is no added benefit of 

having a general-purpose processor like the PPE on the Cell. Also, the SPEs which are 

responsible for much of the core processing have only 256 KB of local storage. Limited 

on-chip memory on the image-processing cores is representative of a true embedded 

system. For systems with smaller on-chip memory the advantages of the reduced storage 

features of the algorithm and the benefits of optimizing processing and partitioning 

techniques will be more pronounced. 

The background modeling algorithms were implemented in C and compiled using 

gcc for the PPE and gcc-spu for the SPE. The background model was created and 

maintained by the PPE and different parts were transferred to each SPE along with the 

corresponding portion of the image to process. This arrangement was necessary because 

even the least memory intensive background modeling techniques (e.g. frame 
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differencing) could not support the entire 720x640 image being processed in a single pass 

by all the computing cores. For the Multimodal Mean algorithm, the periodic decimation 

and recency resets were performed by the PPE. All other components of the algorithm 

were performed on the SPE. For all the other techniques, the entire algorithm was run on 

the SPE. 

All images from the test sequences were in JPEG format and these were loaded 

onto the hard drive before each run. The independent JPEG library [39] was used to 

perform the image encoding and decoding.   

4.5 Evaluation and Results 

 

In this discussion, block size is the portion of a given image that is processed by a 

single SPE without a new iteration of data exchanges. To keep the processing balanced 

among cores the chosen block sizes were limited using the following constraint: 

Image Size (pixels)  mod (Block Size x Number of SPU) == 0. 

For the first evaluation, the configuration that maximized block size was chosen. 

The SPE storage was divided into two areas; the first held a block of the current frame 

and the other held the corresponding portion of the background model. It is noteworthy 

that these storage areas are of equal size bytewise for the single mode background models 

but vary for the other multi-modal models.  

Table 6 shows the memory allocation on each SPU using this configuration. 
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Table 6:  Memory allocation 
 

 

Algorithm 
Block Size 

(pixels) 

Image Size 

(KB) 

BG Model 

Size (KB) 

Frame Differencing 38400 

 

115.2 115.2 

Approximated Median 38400 

 

115.2 115.2 

Median (SW) 12800 

 

38.4 153.6 

Weighted Mean 38400 

 

115.2 115.2 

Mean (SW) 12800 

 

38.4 153.6 

MoG 1600 

 

4.8 160 

Multimodal Mean 3200 

 

9.6 153.6 

 

 

 

The multimodal background models require storage for 4 modes per pixel making 

them significantly larger than the single-mode models. This minimizes the block size for 

those techniques. Also, the MM technique uses only integer storage types as opposed to 

MoG, which uses floating-point storage and has half the block size. 

Figure 14 and Figure 15 show the performance results obtained from running each 

algorithm on the Cell using the configuration described in Table 6. Because the sequence 

of frames originates from standard files rather than a camera output, I/O requirements are 

not included in these figures. 
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Figure 14 Algorithm performance in frames per spu seconds, excluding data 

transfer 
 

 
The results in Figure 14 show the core algorithm performance results excluding 

data transfer latency for each algorithm. This includes processing times from the time the 

data is available on each core and the algorithm begins execution to the time the 

algorithm is completed. The spu_decrementer [53] was used to record the time spent 

executing the core algorithm on each SPE.  Results are given in frames per spu seconds 

(fpss).  

From the results it can be observed that the techniques with fewer operations, 

such as frame differencing and approximated median, generally run faster than the 

multimodal ones. MM has comparable performance to other sliding window techniques 
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and has about 9x better performance than MoG. This is due to MoG’s increased 

complexity and more costly floating-point computations. These results are consistent 

with results obtained on the uniprocessor eBox 2300 Vesa PC and the dual-core HP 

Slimline platforms described in Chapter 3. It also shows that even on a suitable platform 

such as the Cell B.E., algorithm design has a significant impact on overall system 

performance.  

Figure 15 shows the overall algorithm performance in frames per second, 

including data transfer. 
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Figure 15 Algorithm performance in frames per second, including data 

transfer latency 
 

Overall, the results show that MM achieves a 3.4x speedup over MoG and has 

comparable performance to the other techniques.  In general, it is observed that the 
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disparity between the performance of single-mode techniques and that of the multimodal 

ones, particularly MM, is narrowed. There are two reasons for the observed disparity.  

First, there is a comparatively higher data transfer latency associated with the single-

mode techniques. Table 2 shows that to process each block these techniques transfer 

115.2 KB for the image and another 115.2 KB for the background model. Completing the 

concurrent transfer of this data to six SPUs in 16KB chunks results in collisions and all 

the data must be available on the SPU to begin core processing. Alternatively, the MoG 

technique for example, transfers only 4.8KB of image data during each iteration and this 

data transfer is completed in a single DMA transaction.   

Second, the ratio of core-algorithm execution time to data-transfer latency time is 

higher for the single mode techniques.  This results in a disproportionate increase in 

overall processing times for the single-mode techniques as compared to the multimodal 

ones. 

The disparities demonstrated between the core kernel execution time of the 

algorithm and the overall execution time (including data transfer) highlights the 

importance of optimizing the partitioning and processing of workloads for multicore 

processors. The performance gains of having several computing cores working 

concurrently are quite obvious, but the challenge is to keep the cores constantly working. 

The next section describes partitioning and processing techniques that optimize 

workloads for each core.  

Figure 16, Figure 17, and Figure 18 quantitatively summarize accuracy for each 

technique. The same criteria for identifying false positives and false negatives used in the 

experiments in Chapter 3 were applied to this experiment. Generally, MoG and MM 
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demonstrate comparable accuracy that is superior to the other methods as is shown in   

Figure 19. The accuracy results of the evaluation were consistent with those from the 

eBox and HP evaluations in Chapter 3.  

 

 

 
 

 

Figure 16 Outdoors I errors 
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Figure 17 Outdoors II errors 
 

 
 

 
 

Figure 18 Overall errors 
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Figure 19 displays the image quality for each background modeling technique. 

Multimodal methods (MoG and MM) generally exhibit the lowest number of errors 

across the sequences and false positives are significantly lower for the multimodal 

methods. 

In Outdoors I, only the multimodal techniques incorporate the moving trees into 

the background. Also, the sliding window techniques are less adaptive to the changing 

foreground and leave a trail behind moving objects. Outdoors II features a large number 

of foreground elements as well as moving trees, and MoG and MM handle these 

scenarios relatively better than the other techniques.  
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Figure 19 Image quality on Cell B.E. 
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4.6 Tile Processing 

 

Making data available to keep the computing cores busy on an embedded 

multicore processor is crucial to achieving high performance and efficiency when 

executing embedded early vision algorithms. This section introduces a tile processing 

workload partitioning arrangement and shows the impact on the overall processing.  

Typically, live video input from the webcam is buffered as images by the camera 

driver. Rather than divide the workload in the current frame using maximum block size 

and available memory on the SPUs, a tiled workload was created from the buffer using 

much smaller block sizes called tiles. Tile sizes are selected analogous to block sizes 

according to the constraint: 

Image Size  mod (Tile Size x Number of SPU) = 0, 

where Image and Tile Sizes are measured in pixels. 

 

                                    
                                    

 

                                    a. Full images 
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 b. n x k tiled workloads processed by each core 

 
                   

 
 

                    Figure 20 Tiling 

 

 

c. Regular buffering of pixel stream as contiguous block 

pixel stream 

d. Buffering pixel stream in groups of n x k pixels 

nxk 
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In this discussion a buffer containing m of these images is considered. An n x k 

tile is selected from the same location for each image in the buffer as shown in Figure 

20a. n is the width of the tile and k is its height. This constitutes the workload for the first 

image processing core. The next tile location is used for the next core’s workload and the 

process is repeated for all the cores as shown in Figure 20b.  

To tile images as described above, the buffering of the current pixel stream from 

the imagers has to be modified in the camera driver. Figure 20c shows the stream 

buffered in receiving order as a continuous array, and depending on the system and 

availability, this could be a contiguous block of memory.  Figure 20d shows the stream 

broken up into groups of n x k pixels. The first group of n x k pixels in the first image is 

stored at the beginning of the storage array, after which (m-1) x n x k pixel locations are 

skipped in the array before storing the next group. This process is repeated for the entire 

first image stream. For subsequent images, the first group of n x k pixels in an image j, 

begins at pixel location ((j-1) x n x k) + 1 in the array which was left blank during the 

buffering of the previous j-1 images. This process is repeated for all the images in the 

buffer. 

Tiling the input images as described above could increase the buffering memory 

latency in the driver so the effect of using this technique was evaluated on the Cell B.E.  

platform. The tiled buffering method was benchmarked against the regular buffering 

method in the jpeg decoder.  

The independent jpeg library’s decoder generates pixels in rows called scanlines 

each of which is the width of the image. Each scanline was stored using both techniques 
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described above and the total time taken to decode and buffer each frame was evaluated. 

For the evaluation, the resolution of the images was 720 x 640 and the average was taken 

from decoding 100 images. The results showed that for different buffer sizes the tile 

buffering does not significantly increase the image decode times. On average, a 0.023% 

increase in decode time per frame was observed when using tile buffering. Also, there is 

no notable increase in total time as the buffer size was increased. Furthermore, the image 

retrieval times are significantly less than the actual background modeling processing 

times for each frame. Slightly increasing the retrieval time does not impact the overall 

performance, since the two processes are concurrent. 

The tile processing configuration minimizes data transfers of the background 

model between main memory and each SPU by processing a given number of 

consecutive frames against a single, shared background model. Because the tiled 

workload consists of consecutive frames with the same portion of the image, a single 

background model is required for processing as well as updating. This process is 

analogous to caching the entire background model and using the cached model to process 

successive images in a video sequence while updating the background model. After 

processing a given series, the background model on each core is written back to main 

memory in a process similar to the operation of a write-back cache. Because different 

portions of the background are processed by each core there are no coherency issues and 

the associated complexities of a shared-memory model are avoided. Table 7 shows the 

storage requirements for each configuration. All configurations use at most 230KB of the 

SPU storage to allow for run-time memory requirements.   
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Table 7: Image storage requirements 

 

             Image Size (KB) 

Buffer   

Size 

Tile =1600 

BGM=76.8KB 

Tile =2400 

BGM=115.2KB 

Tile =3200 

BGM=153.6KB 

1 4.8 7.2 9.6 

2 9.6 14.4 19.2 

4 19.2 28.8 38.4 

8 38.4 57.6 76.8 

16 76.8 115.2  

32 153.6   

 

Table 8 shows the performance for each configuration. The results show a trend 

of increasing frame rates as the buffer size is increased due to the fewer number of 

background model transfers to each SPU core. A tile size of 1600 pixels allows the 

processing of 32 images in a single transfer and gives the best performance. This 

configuration achieves a 25% increase in performance over the single buffered baseline 

approach.  
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Table 8: Performance 

 

             Frame Rate (fps) 

Buffer   

Size 

Tile =1600 

BGM=76.8KB 

Tile =2400 

BGM=115.2KB 

Tile =3200 

BGM=153.6KB 

1 4.46 4.45 4.46 

2 4.48 4.54 4.56 

4 4.55 4.66 4.69 

8 4.65 4.82 4.95 

16 4.8 5.3  

32 5.6   

 

 

Using the tile buffering technique will cause a multicore, video-surveillance 

system to incur a slight buffering latency due to the temporal buffering.  As a 

consequence, the reaction time of the system could slightly increase. However, the 

resulting increase in processing bandwidth more than compensates for this one time 

latency charge, which is a small fraction of the overall processing time. Leveraging the 

multicore resources allows the tiling to be done concurrently with processing. This results 

in a single temporal buffering latency charge rather than an accumulated latency charge 

for each frame processed in a uniprocessor system. 

  More importantly, the bottleneck for computer vision applications on embedded 

platforms is not the video buffering at the front-end of the system (camera driver). 

Rather, it is the transfer of data to execution units and the computation of the kernel of 
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the early vision algorithm and improvements to this component will significantly impact 

overall perfromance.  

For example, the Playstation Eye USB Camera for the Playstation/Cell B.E. 

platforms buffers full-resolution 640x480 images at 60 fps. Using the tiling technique 

with buffer size 32 will result in a delayed system reaction time of 500ms which is 

acceptable for a video surveillance system. Depending on the application, the resolution 

can be decreased or the buffering frame rate increased to achieve even faster reaction 

time. For example, buffering 320x240 images will result in a delay of only 125ms. 

However, the benefits of the tiling technique are evident with the increased 

processing bandwidth. For example, an end-to-end application running at 32 fps will be 

able to run at 24 fps using the tiling technique and a buffer of 32 frames. This is a 

significant performance increase and yields real-time performance which is crucial to the 

deployment of real-world embedded vision systems. 
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CHAPTER 5 
 

CAT-TAIL DMA: EFFICIENT IMAGE DATA TRANSPORT FOR MULTICORE 

EMBEDDED SYSTEMS 

5.1 Introduction 

 

The previous chapter highlighted the importance of efficient data management to 

the overall performance of multicore embedded vision systems. It showed how temporal 

buffering of images combined with a shared background model reduces the number of 

data transfers required for video surveillance algorithms. This data management 

technique helps improve efficiency by reducing the number of data transfers but does not 

address the actual transfer mechanism. Techniques that reduce the latency of the actual 

data transfers could further improve the performance of such systems. 

 Typically, image-processing applications require the transfer of large amounts of 

data between the execution units, where the images are processed and off-chip memory, 

where the images are stored. The high-throughput and low-latency characteristics of these 

applications make image transport crucial to the overall program performance especially 

on multicore systems where several cores need to be furnished with data.    

To fully leverage the concurrent execution of several powerful cores in imaging 

applications, a very fast, high-bandwidth communication network is typically provided to 

move data throughout the system. Large data transfers are performed over this network 

through DMA and each processing core has a DMA-controller to which it can offload 

block data transfers to memory as well as to other processing cores. Multiple cores can 

potentially generate several DMA transfer requests and regular cache block requests to 
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memory at once. Arbitration is performed in hardware through the bus arbiter to 

determine which core gets access to the bus during contention. In addition, the arbiter 

determines when source and destination transfer paths don’t overlap in which case 

multiple transfers can be performed concurrently on the bus.  

Performing data transfers through direct DMA access places a greater burden on the 

programmer to make the best use of the resources provided by multicore architectures. 

Partitioning of the multimedia workload to most efficiently utilize all the cores is critical 

to overall program performance. In addition, data transfers to and from the cores are now 

in the programmer’s domain and efficient management of DMA transfers along with 

program execution have a direct impact on execution times. In the presence of multiple 

cores, these DMA transfers have to be carefully managed to prevent collisions which may 

result in data transfer bottlenecks.  

The potential to incur higher data-transfer latency due to collisions is magnified on 

multicore embedded systems because of the limited amounts of local storage available on 

the execution cores. For applications like image and video processing, which involve 

very large datasets, limited local storage means a small portion of a given frame can be 

operated upon in a single iteration on each core. Several iterations may be necessary to 

process the entire frame but concurrent execution on the individual cores can collectively 

yield tremendous speedup. However, processing smaller blocks of an image also 

increases the frequency of data transfers between main memory and the local storage on 

each core. Furthermore, the presence of several cores requesting data from main memory 

simultaneously increases the potential for DMA collisions and can result in higher data- 

transfer latency. 
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This chapter evaluates existing DMA-buffering techniques and identifies the 

challenges faced when employing them to execute early vision algorithms on multicore 

embedded systems. It presents a new technique called cat-tail DMA, which addresses 

some of the shortcomings the previous techniques, and provides low-overhead, globally-

ordered, non-blocking DMA transfers on a multicore system. With this method the data-

transfers times are reduced by 32.8% for the Multimodal Mean background modeling 

algorithm while increasing the utilization of core local storage by 60% over existing 

double-buffered techniques. 

 

5.2 Background Work 

 

 

 Parallel image processing on multiprocessor systems was the focus of significant 

research even before the advent of multicore processors. Ni et al. [53] present a 

multiprocessor system for image processing of office documents and evaluate the 

scheduling policies of the processors. They constructed a prototype system with one 

master processor and four slave processors connected by a shared bus. They considered 

two processor scheduling techniques under this model. The three-step overlapping policy 

separately treats the storing of the image segment currently being processed and the 

loading of the next image segment to be processed. The two-step overlapping policy 

loads the next image segment to be processed immediately after finishing the storing of 

the previous image segment. 

 

They concluded that to optimize the performance of the system, 

• the processor scheduler should be made as simple as possible; 
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• the scheduling overhead should be relatively small compared to the image 

segment transfer time. In other words, the image segment size should be made as 

large as possible; 

• if the image processing time is very large compared to the scheduling overhead, 

the scheduling overhead will become negligible. 

Their conclusions are even more applicable to multicore processors where the 

communication latency is much less because it involves chips on the same die. Also, 

with much higher processor speeds a complex and slow scheduling process will quickly 

and easily lead to data-transfer bottlenecks.   

Lee et al. [54] propose a compile-time processor assignment and data partitioning 

scheme that optimizes the average run-time performance of task chains with nested loops. 

They developed a library of computer vision and image processing operations and built a 

model to classify data-dependent and data-independent operations and to tabulate the 

costs of many popular pixel and masking operations. Also, they modeled data 

redistribution costs through both all-to-all communication primitives as well as between 

any two data distribution schemes.  

They ran an algorithm at compile time that uses information from the specified tasks 

to determine suitable processor assignment and image data-partitioning schemes and 

generated parallel codes by employing existing parallel routines such as ScaLAPACK 

[55]. They evaluated the partitioning and scheduling schemes and parallel versions of 

several CVIP algorithms on MEIKO CS-2, a distributed memory parallel machine with a 

fat-tree-based communication network and a SUN SPARC Viking processor at each 

node. Their results showed up to a 50% speedup over unscheduled code. 
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 By performing all optimization at compile-time this approach avoids any 

scheduling overhead which could increase program execution time. However, the 

drawback to this approach is that the method failed to dynamically capture workload 

variations during actual program execution. 

 Zhang et al. [57] presented a study on adaptive workload assignment while 

performing the Motion Picture Expert Group 2 (MPEG2) video encoding algorithm on a 

multiprocessor system. They chose the MPEG2 application because it compresses video 

data by macro blocks (MB) and the processing of each MB is fully independent. Since a 

frame of video usually contains a large number of MBs, this application was well suited 

for fine-grained partitioning. 

Because of the non-stationary nature of most video sequences, motion activities 

are not distributed uniformly over a frame. The authors ran simulations that showed that 

the computational costs of certain MBs in areas with greater motion activity were about 

3x those in other areas with little or no motion in the same frame. They measured the cost 

of processing a load from an encoded frame. Using this information they estimated 

computational load distributions that optimized performance among the processors for 

the next frame in the encoding order of the same picture type. This scheme was simple to 

implement and therefore resulted in very little overhead. Also, the technique allowed the 

program to adapt to changes in data and was not fixed at compile time. 

They evaluated the scheme with three video sequences, Football, Claire, and an 

industrial experiment EFE, that were typical in terms of the motion activities in their 

respective picture scenes. The Football sequence had large fast-motion activities that 

were distributed globally across the whole picture scene. In contrast, the Claire sequence 
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was local in nature and only had small slow-motion activities that were located in a small 

part (e.g., face) of the whole picture scene. The degree of motion activities in the EFE 

sequence was moderate, between the Football and Claire sequences.  

The simulation was run on a single INMOS T805 processor used to simulate a 

multiprocessor system of N processors. The values of N used were 2, 4, 8, 16, and 32, 

and each video sequence had 100 frames. Their results showed up to 20 % improvement 

when using adaptive workload distribution over uniform distribution. 

The approach above provided a dynamic workload management scheme but presents 

some challenges in a real multicore system. The hosting core will have to wait for 

communication from the other computing cores before making a decision about the next 

computational load. This could result in a data transfer bottleneck since several cores 

might request new data at the end of their computations. Also, this scheme cannot be 

extended to other applications that are not segmented into uniform macro blocks.   

The discussion above shows highlights some of the data-transfer and scheduling 

challenges faced when executing early vision applications on a multi-processor system. 

For next-generation multicore systems these issues need to be address to achieve 

efficiency and high performance. 
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5.3 Single vs. Double Buffered DMA 

 

Even with the advantages of using DMA for data transfers when executing image 

–processing applications, several techniques have been proposed to hide the memory 

latency of the data transfer transactions. In [48] a software prefetch mechanism is 

combined with DMA to hide memory latency on multimedia applications. In [45] 

optimum resource slicing is performed with double buffering for more efficient 

embedded image processing. These techniques apply to uniprocessor systems and DMA-

based image processing on a multicore system offers unique challenges because of the 

introduction of multiple computing cores and multiple DMA-controllers.    

The 2D block transfer mode is the most popular DMA method used in image 

processing. With this method, an image is split into blocks which are transferred from 

main memory to the processor and returned after processing. The block size is 

determined by the maximum allowable DMA transfer per transaction and the particular 

operations being performed on the image. Overlapping portions of a given block is 

common in some applications (e.g. edge detection) to compensate for the artificial 

boundaries introduced into the image during block segmentation. Extra processing 

between blocks is required in some more extreme cases. 

 

Figure 21 illustrates the execution of an image processing application on a 

multicore processor using the single-buffered DMA mode. Block n of the input image, 

which is located in main memory off-chip, is transferred using DMA to buf_0 of 

processing core n for processing. A new DMA transaction is initiated in each core at the 

end of the processing for each block, and the processing core waits while the DMA-
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controller writes out the processed image and reads in a new one. The processing core 

does no useful work while the DMA-controller is performing the transfer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                          
 

Figure 21 Single-buffered DMA 

 

The double-buffering technique hides the data transfer latency by continuing 

execution on the processor while the DMA transfer is being handled by the DMA-

controller. Figure 22 illustrates how the image processing application is executed in 
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double-buffering mode. With this method, the memory transfer latency that occurs when 

a processing core is stalled for an old image to be written and a new one to be read is 

hidden by overlapping the execution of a given block with the transfer of the next. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 22 Double-buffered DMA 
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Two buffers, each of which can store a block of the image, are allocated on each 

core. During the processing of block n of the current image in buffer j, a DMA transfer is 

initiated to concurrently write out the processed data in buffer j+1 and fill it with block n 

of the next image. Typically, the total time to process the entire block is greater than the 

latency of the DMA transfer in both directions, therefore a new block is available in 

buffer j+1  by the time the processing of the old block in buffer j is complete. The steps 

to perform the double-buffered dma are as follows: 

Read image into buffer j 

Write tag 0 

For i in 1->loopend: 

Poll status of tag (i&1)  

   Read image into buffer j + (i&1) 

             Write tag (i&1) 

             Poll status of tag ((i-1)&1) 

             Process buffer j+((i-1)&1) 

             Write image from buffer j + ((i-1)&1) 

             Write tag ((i-1)&1) 

             

A tag is associated with each batch of data transfers and polling the status of a 

transfer channel for a given tag informs the processor whether that channel has completed 

the transfer. In the main loop, the processor checks for completion of the previous write 

transaction to the transfer buffer, schedules a new read transaction to that location, 

processes the data in the processing buffer, and schedules a write out of the processing 
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buffer. Processing the data between the read and write transactions ensures that the 

likelihood of the read transaction being completed before scheduling the write is very 

high. This results in minimal waiting, if any. Similarly there is some loop overhead 

between the last write and the next read in an iteration which again minimizes the wait 

time.    

For early vision algorithms such as background modeling, double-buffered dma 

presents several challenges for multicore embedded systems. Typically, they involve 

comparing the current image to a reference model, both of which have to be present on 

the cores for processing iteration. As a result, these algorithms require the transfer of 

multiple sets of data for each processing iteration, and require explicit management by 

the processor to ensure correctness.  

Table 9 shows the block configurations partitioned to store the image and 

background model that maximized the local storage utilization on the Cell SPE. Frame 

differencing, approximated median, and weighted mean share the same background 

modeling data structure and are represented by a single mode. Similarly, both sliding 

window techniques are represented by sliding window. The multimodal algorithms were 

limited to 4 modes and the maximum-size of DMA transfers on the Cell B.E. is 16KB. 

Each SPE local storage area is 256KB and this is divided into two equal-sized image 

storage areas and two equal-sized background storage areas for double-buffered DMA.  
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Table 9 SPU Maximum block transfer for double-buffered DMA 
 

 

Algorithm 
Block Size 

(Pixels) 

Image Size 

(Bytes) 

BG Model 

Size (KB) 

Single Mode 

 

19200 

 

57600 57600 

Sliding Window 

 

6400 

 

19200 76800 

MoG 

 

800 

 

2400 80000 

Multimodal Mean 

 

1600 

 

4800 76800 

   

 

From the table it can be inferred that to process a given block for a technique like 

MOG, a single DMA transaction is needed to transfer the image but 5 transactions are 

required to transfer the background model. Also, the entire background model must be 

available on the SPE to process the block. Similarly, the frame differencing technique 

requires 4 image transfer transactions and 4 background model transfer transactions.  

The requirement for multiple data transfers of different datasets to complete one 

block of processing for computer vision applications is vastly different from traditional 

double-buffered DMA where a single read/write transactions pair is overlapped with 

processing. This inherently serializes the data transfer transactions because the processor 

must verify the completion of all block write transactions before scheduling block reads 

since both operations share the same buffer. Also, using double-buffered DMA decreases 

the maximum block size that can be processed because the local storage area must be 

split. This increases the frequency of block transfers and thus increases the probability for 

collisions which can lead to high data transfer latency for entire block transfers. 
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Furthermore, this problem can be exacerbated as the number of cores is increased on 

multicore systems where those cores are executing the same program and there is a high 

potential for several simultaneous DMA requests from competing cores.   

 

5.4  Cat-Tail DMA  

 

Cat-tail DMA addresses the issues discussed in section 5.3 by providing a 

technique for low-overhead, globally-ordered DMA transfers among processing cores 

that minimize collisions and reduce data transfer latency. This is achieved through: 

1. Dividing the processing of blocks into two phases: the processing/transfer 

scheduling phase and the processing phase. 

2. Staggering the execution on the computing cores to ensure that there is a 

contention free period to schedule transfers for each core.  

The main concept with this technique is to reserve a unique period on each core 

where a series of large data transfers can be performed by the DMA controller with 

minimal input from the microprocessor.  

 

5.4.1 Core Processing 

 

In this discussion the transfer of two datasets dataset A and dataset B is 

considered. Two circular buffers, one for each dataset, are maintained in the local store 

area of each core. Unlike double-buffered DMA, the size of the circular buffers is 

constrained by the available local storage on the processing core and not the maximum 

DMA transfer block size.  
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The circular buffer is divided into two dynamic regions called the transfer region 

and the processing region as shown in Figure X.  The processing is also divided into two 

phases. In the first phase the transfer/processing mode is used where a given portion of 

the processing region is processed while the data in the transfer region is written out and 

new data read in. The second phase uses the processing mode where the remainder of the 

processing region is processed and there is no data exchange. Two pointers are 

maintained for the circular buffers: a processing pointer points to the beginning of the 

next processing region and a transfer pointer points to the beginning of the next transfer 

region.   

Figure X shows the progression of both pointers along the circular buffer in each 

core and the process is the same for both image and background. In this discussion a 

pointer is moved to the beginning of the buffer once it reaches the end (circular buffer). 

 

 

Figure 23 Circular buffering 
 



 

 87 

At initialization, the entire circular buffer is filled with data and the transfer 

pointer updated to the end of the buffer (beginning of next transfer region) as shown in 

Figure 23a. The entire processing region is then processed in processing mode (no data 

exchange) and the processing pointer is moved to the beginning of the next processing 

region to complete the initialization as shown in Figure 23b. 

After initialization the two-phase processing is used. Figure 23c shows the first 

phase processing using transfer/processing mode. A portion of the processing region is 

processed concurrently with the exchange of data in the transfer region. The transfer 

pointer is then updated to the beginning of the next transfer region and the processing 

pointer is updated to the beginning of the second phase of the processing region. The 

second phase of processing using processing mode is shown in Figure 23d. The 

remainder of the processing region is processed and the processing pointer is updated. 

However, there is no data exchange during this phase and the transfer pointer remains 

unchanged. This process is repeated in each core until the end of the program.     

5.4.2 Staggered Execution 

 

Execution on the cores is staggered to provide individual cores with a unique time 

slot to schedule data transfers in the first phase of processing described in Section 5.4.1. 

Figure 24 illustrates the staggered execution on the multicore system.  
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Figure 24 Staggered execution 
 

 

A token is passed around cores in a round robin fashion to signal which core is 

scheduled for data-transfer. During the first phase processing, the processor on the core 

that possesses the token schedules all its data writes (dataset A and dataset B) interleaved 

with the processing of the image. The processor is not stalled to wait for completion of 

the transfer and the processing is continued. On the kth iteration of processing in the 

phase, the processor checks for completion of the scheduled writes and proceeds to 

schedule reads. On the 2kth iteration the token is released to the next core and the process 

is repeated.    
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The execution is summed up as follows: 

Phase 1: 

 Initialize process_counter 

For i in 0 -> blocks in dataset A transfer region: 

 Schedule write dataset A block 

 Write datasetA_write_tag 

 Process data in processing region 

           process_counter++  

For i in 0 -> blocks in dataset B transfer region: 

 Schedule write dataset B block 

 Write datasetB_write_tag 

 Process data in processing region 

           process_counter++  

For i in process_counter->k 

          Process data in processing region 

Poll status of datasetA_write_tag && datasetB_write_tag 

For i in 0 -> blocks in dataset A transfer region: 

 Schedule read dataset A block 

 Write datasetA_read_tag 

 Process data in processing region  

For i in 0 -> blocks in datasetB  transfer region: 

 Schedule read dataset B block 

 Write datasetB_read_tag 
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 Process image in processing region 

For i in k + process_counter->2*k 

          Process data in processing region 

Release token 

 For i in 2*k-> processing region 

                   Process data in processing region 

Phase 2: 

 For i in  processing region 

                   Process data in processing region 

Unique dataset A read, dataset B read, dataset A write, and dataset B write tags 

are maintained for data transfers as a mechanism to verify that transfer of data to a 

particular region is complete before attempting to process it. Also barrier options are used 

with the DMA transfer to ensure proper ordering.  

5.5 Evaluation and Results 

 

An experiment was designed to evaluate the performance of cat-tail buffering on 

the The Playstation 3 featuring the Cell B.E. For this experiment, the data structures for 

the background modeling algorithms described in the previous sections, as well as the 

associated portion of the image to process constituted the datasets. The entire background 

model was initialized by the PPE and held in main memory, and during processing 

selected portions were transferred as a dataset to each core. Similarly, images were 

decoded by the PPE and stored in a buffer in main memory at startup and during 

processing selected portions were transferred to each core. The resolution of the images 
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was 640 x 480 pixels. The single buffering technique was used as the baseline. Both 

buffering techniques were implemented in C and the data transfers were evaluated for the 

data structures described.  Table 10 shows the total size of blocks (in pixels) held on each 

core using cat-tail buffering. It shows that the utilization of local storage is improved by 

60% when compared to ping-pong buffering (Table 9) because the separate buffers 

reserved to transfer and process images are not of equal size. Also shown is the transfer 

region which is the portion of the block that is exchanged in a data transfer as described 

above.   

Table 10 Block sizes 
 

Algorithm 

Blocks Held 

(Pixels) 

Blocks 

Transferred 

(Pixels) 

Single Mode 

 

38400 

 

30720 

Sliding Window 

 

12800 

 

10240 

MoG 

 

1600 

 

1280 

Multimodal Mean 

 

3200 

 

2560 

 

 

All data transfers were 128-byte block aligned for transfer on the Cell. This influenced 

the maximum size of blocks held on each SPE core. For the single-buffering technique 

the same sized blocks were used for data transfers. 

Mailboxes were used to communicate between SPEs and the PPU and signals 

were used for inter-SPU communication [50]. This allowed DMA transfers of data to be 

performed with minimum intrusion and very little communication overhead.   
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Figure 25 and Table 11 show the performance of both techniques the single and 

cat-tail buffering techniques.  
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Figure 25 Performance of buffering techniques 
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Table 11 Buffering execution times 
 

  

 

Single 

 

 

Cat-tail 

 

 

Single Mode 

 

 

28.11s 

 

 

25s 

 

 

Sliding Window 

 

 

51.67s 

 

 

42.94s 

 

 

MoG 

 

 

144.09s 

 

 

132.55s 

 

 

Multimodal Mean 

 

 

88.19s 

 

 

59.53s 

 

From the results the cat-tail DMA technique showed a 32.8% reduction in total 

data transfer time over the baseline for multimodal mean. For the other techniques it 

showed an average reduction of 11.9% in data transfer times. In general, the techniques 

that featured larger blocks had shorter data transfer times because fewer iterations were 

needed per frame to transfer data and run those algorithms. 

Cat-tail DMA performs better than the baseline because it provides a low-

overhead software mechanism to manage data transfers. It employs circular buffering to 

maximize the block sizes stored in SPU local storage while accommodating concurrent 

transfer and processing on the cores. Also, by performing the data transfers in much 

larger block sizes, the communication overhead between SPUs is minimized. This also 
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provides longer processing periods during which the shared bus is available for other 

cores to schedule and perform data exchanges.  

Staggering the execution cores results in a fixed one-time latency applied to the 

execution time of the program. This charge is a small fraction of a single block transfer 

and is insignificant in the context of the several transfers that are required to process a 

single frame. Also, typical programs process several frames during execution. Also, the 

reduction in overall execution times due to cat-tail buffering more than compensates for 

this charge. Figure 26 shows the performance of cat-tail buffering for multimodal mean 

for an increasing number of frames. The results show a steady reduction in total 

execution times as the number of frames is increased.   
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Figure 26 Performance improvements over time 
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This chapter introduced cat-tail DMA as a technique for efficient data transport for 

computer vision applications on multicore systems. Through experiments on the Cell BE 

this technique significantly reduces data-transfer times and in general overall processing 

times.  
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CHAPTER 6 
 

CONCLUSION AND FUTURE WORK 

 

This dissertation explored techniques to efficiently map high performance early 

vision algorithms onto multicore embedded systems. Using the design of a pedestrian-

tracking system for real-world embedded environments as a case-study it presented 

techniques to ensure high-performance of such a system. The systems approach 

encapsulated several components ranging from application software to hardware 

platforms. The first contribution presented an object modeling and tracking framework 

that minimizes computational and storage requirements of pedestrian-tracking 

applications while maintaining overall program accuracy. This framework was supported 

by a new background modeling technique called Multimodal Mean that provided fast and 

accurate segmentation of background/foreground content in embedded vision 

applications. Background modeling is the most expensive component of surveillance 

applications [21] and is responsible for up to 95% of surveillance workloads. Speeding up 

this component through Multimodal Mean algorithm results in a significant speedup of 

the overall software application 

The second contribution involved optimizing early vision workloads on multicore 

embedded systems which are identified as ideal hardware platforms for executing 

pedestrian-tracking applications. Specifically, it addressed the very important issue of 

data reuse which helps reduce potential memory bottlenecks for early vision applications 

on multicore systems. It provided a technique for minimizing the number of data 

exchanges between the computing cores and main memory by introducing a temporal 
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buffering step at the beginning of the processing. This resulted in a significant increase in 

the processing framerates of the application.  

The third contribution further addressed the data-transfer bottleneck problem by 

exploring the actual scheduling of the data transfers by the individual cores. It presented a 

technique to minimize memory latency of image transfers on multicore processors by 

performing transparent, global DMA scheduling with concurrent program execution. 

With this technique, the data transfer times were significantly reduced as well as the wait 

times between processing of consecutive blocks of the image on each computing core. 

All contributions were evaluated using experiments that were designed to be close to 

real-world scenarios using commercial-off-the-shelf components. Test sequences were 

carefully selected to feature real-world conditions and were collected with inexpensive 

devices such as webcams. In addition, the evaluations were performed on actual 

platforms rather than using simulators. 

 

6.1 Summary of Results 

The results from the contributions of this dissertation are summarized below: 

6.1.1 Pedestrian-tracking application software 

• Presented a fast, accurate object modeling framework [16], [18], and [19] that 

combines accurate background modeling with efficient object tracking. 

� Pedestrian-tracking application using this model ran at 0.78 fps when 

processing 640x480 pixel images on eBox 2300 Vesa PC. 
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� Tracking accuracy of 92% for pedestrian-tracking application using this 

framework which is similar to other published results using other methods  

6.1.2 Multimodal mean background modeling technique  

• Developed Multimodal Mean [17],[30], a fast, accurate, background modeling 

technique targeted for embedded systems 

�  MM method executes 6.2× faster than the MoG technique on the eBox 

2300 Vesa PC. 

� MM method executes 4.23× faster than the MoG technique on the HP 

Slimline Pavilion platform 

� On both platforms MM requires 18% less storage per pixel and uses only 

integer operations. 

� MM provides comparable image quality and accuracy to MoG at the cost 

of other less accurate background modeling techniques 

6.1.3 Fast, adaptive background modeling for multicore embedded Systems 

• Presented a workload partitioning technique [52] to optimize the execution of 

background modeling algorithms on Multicore systems using temporal buffering 

� The technique results in a 25% increase in processing framerates for 

Multimodal Mean 
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� The technique has very little overhead: a 0.023% increase in image 

decoding times and 125ms overall system delay for 320x240 images. 

� The technique reduces the number of image transfers by 50% for 

Multimodal Mean. 

6.1.4 Fast, efficient image transport on multicore embedded systems 

• Developed cat-tail DMA, a technique which provides globally ordered non-

blocking DMA transfers on a multicore system. 

� This technique reduced data transfer times between main memory and 

processing cores by 32.8% for Multimodal Mean on the Cell B.E.  

� The technique increased utilization of core local storage by 60% over 

existing double-buffering techniques.  

 

 

6.2  Future Work 

 

 

In the future, contributions from this work will be extended to design a parallel, 

video surveillance driver for multicore systems. This driver will incorporate the ideas 

from the Multimodal Mean background modeling techniques into the segmentation 

component. Also, it will use the temporal buffering and cat-tail buffering techniques to 

improve processing framerates.  



 

 100 

The current goal is to have an open-source driver for the commercially available 

Sony Paystation Eye webcam which will be extended for other devices at a later time. 

Individual SPU cores on the Cell B.E will be used to buffer and process different points 

of view which will be aggregated and displayed by the PPU. Currently, there are no 

known parallel vision platforms and this will represent a significant addition to the 

computer vision research community. With the emergence of multicore platforms such a 

tool will encourage development of parallel algorithms to leverage the computing 

resources available. Also, the driver can provide real-time benchmark suites for architects 

to fine-tune hardware designs.  

The second area of future work is to continue with the development of real-time 

versions of other computer vision algorithms specifically targeted for embedded 

multicore systems. Particular areas of interests include 3D processing, video 

compression, and robotics/artificial intelligence. 
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