
Using the High Productivity Language
Chapel to Target GPGPU Architectures

Albert Sidelnik Marı́a J. Garzarán
David Padua

Department of Computer Science
University of Illinois

{asideln2,garzaran,padua}@illinois.edu

Bradford L. Chamberlain
Cray Inc.

bradc@cray.com

Abstract
It has been widely shown that GPGPU architectures offer large
performance gains compared to their traditional CPU counterparts
for many applications. The downside to these architectures is that
the current programming models present numerous challenges to
the programmer: lower-level languages, explicit data movement,
loss of portability, and challenges in performance optimization.

In this paper, we present novel methods and compiler transfor-
mations that increase productivity by enabling users to easily pro-
gram GPGPU architectures using the high productivity program-
ming language Chapel. Rather than resorting to different parallel
libraries or annotations for a given parallel platform, we leverage a
language that has been designed from first principles to address the
challenge of programming for parallelism and locality. This also
has the advantage of being portable across distinct classes of paral-
lel architectures, including desktop multicores, distributed memory
clusters, large-scale shared memory, and now CPU-GPU hybrids.
We present experimental results from the Parboil benchmark suite
which demonstrate that codes written in Chapel achieve perfor-
mance comparable to the original versions implemented in CUDA.

1. Introduction
In the last few years, systems of heterogeneous components, in-
cluding GPGPU accelerator architectures, have become increas-
ingly popular. This popularity has been driven by many emerging
applications in consumer and HPC markets [25]. Significant cost,
power, and performance benefits are derived from executing these
applications on systems containing both SIMD and conventional
MIMD devices. For this reason, the interest in heterogeneous sys-
tems is not a passing fad. It is instead likely that many systems,
from hand-held to large-scale [15], will soon, or already do, con-
tain heterogeneous components.

Programmability and the ability to optimize for performance
and power are considered major difficulties introduced by hetero-
geneous systems such as those containing GPUs which are co-
processors that must be activated from conventional processors.
Heterogeneity is also important for performance since conventional
processors perform much better in certain classes of computations,
particularly irregular computations. These difficulties arise for two
main reasons. First, with todays tools, it is necessary to use a differ-
ent programming model for each system component; CUDA [24]
or OpenCL [17] are often used to program GPGPU architectures,
while C or C++ extended with OpenMP [9] or Intel TBB [26] are
used for conventional multicores, and MPI is used for distributed
memory clusters. This results in a loss of portability across different
parallel architectures, as one must fully port and maintain separate
copies of the code to run on the different architectures. The second

reason is the need to schedule across device classes: the user must
decide how to partition and correctly schedule the execution be-
tween the devices. This difficulty is typically compounded by each
device having separate address spaces, forcing the user to take care
of the allocation, deallocation, and movement of device data.

In this paper we build on the parallel programming language
Chapel’s [6] native data parallel support and provide compiler tech-
niques to increase the programmability of heterogeneous systems
containing GPU accelerator components, while retaining perfor-
mance and portability across other architectures. Chapel is a high-
level general purpose language built from the ground up in order to
increase programmer productivity, while allowing control of work
distribution, communication, and locality. It includes support for
parallel models such as data-, task-, and nested parallelism. Rather
than rely completely on the compiler for performance optimiza-
tions, we leverage Chapel’s multiresolution philosophy of allowing
a programmer to start with an extremely high-level specification (in
this case, with Chapel’s array language support) and drop to lower
levels if the compiler is not providing sufficient performance. This
allows expert programmers the ability to tune their algorithm’s per-
formance with similar capabilities as a lower-level model such as
CUDA.

Evaluations and Contributions We evaluate the performance and
programmability of our compiler prototype against applications
from the Parboil benchmark suite.1 Because the applications in
Parboil are performance-tuned and handed-coded in CUDA, they
make an ideal comparison since the goal of this work is to increase
programmer productivity without sacrificing performance.

The contributions of this paper are as follows:

• We present a high-level and portable approach to developing
applications on GPU accelerator platforms with a single uni-
fied language, instead of libraries or annotations, that can target
multiple classes of parallel architectures. This includes the in-
troduction of a user-defined distribution for GPU accelerators.

• We introduce compiler transformations that map a high-level
language onto GPU accelerator architectures. This also includes
a conservative algorithm for implicitly moving data between
a host and the accelerator device. These techniques would be
applicable to other high-level languages such as Python or Java
with the goals of targeting accelerators.

• Results demonstrate that performance of the hand-coded im-
plementations of the Parboil benchmark written in CUDA are
comparable to the low-level Chapel implementation which is
simpler, and easier to read and maintain.

1 http://impact.crhc.illinois.edu/parboil.php

1 2011/4/25

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4827294?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 #define N 2000000
2 int main() {
3 float *host_a, *host_b, *host_c;
4 float *gpu_a, *gpu_b, *gpu_c;
5 cudaMalloc((void**)&gpu_a, sizeof(float)*N);
6 cudaMalloc((void**)&gpu_b, sizeof(float)*N);
7 cudaMalloc((void**)&gpu_c, sizeof(float)*N);
8 dim3 dimBlock(256);
9 dim3 dimGrid(N/dimBlock.x);

10 if(N % dimBlock.x != 0) dimGrid.x+=1;
11 set_array<<<dimGrid,dimBlock>>>(gpu_b,0.5f,N);
12 set_array<<<dimGrid,dimBlock>>>(gpu_c,0.5f,N);
13 float scalar = 3.0f;
14 STREAM_Triad<<<dimGrid,dimBlock>>>(gpu_b,
15 gpu_c, gpu_a, scalar, N);
16 cudaThreadSynchronize();
17 cudaMemCpy(host_a, gpu_a, sizeof(float)*N,
18 cudaMemcpyDeviceToHost);
19 cudaFree(gpu_a);
20 cudaFree(gpu_b);
21 cudaFree(gpu_c);
22 }
23 __global__ void set_array(float *a, float value,
24 int len) {
25 int idx = threadIdx.x+blockIdx.x*blockDim.x;
26 if(idx < len) a[idx] = value;
27 }
28 __global__ void STREAM_Triad(float *a, float *b,
29 float *c, float scalar, int len) {
30 int idx = threadIdx.x+blockIdx.x*blockDim.x;
31 if(idx < len) c[idx] = a[idx]+scalar*b[idx];
32 }

Figure 1. STREAM Triad written in CUDA

1 config const N = 2000000;
2 const mydist = new dist(new GPUDist
3 (rank=1, tbSizeX=256));
4 const space : domain(1) distributed
5 mydist = [1..N];
6 var A, B, C : [space] real;
7 (B, C) = (0.5, 0.5);
8 const alpha = 3.0;
9 forall (a,b,c) in (A,B,C) do

10 a = b + alpha * c;

Figure 2. STREAM Triad written in Chapel for a GPU

1 config const N = 2000000;
2 const mydist = new dist(new Block
3 (bbox=[1..N]));
4 const space : domain(1) distributed
5 mydist = [1..N];
6 var A, B, C : [space] real;
7 (B, C) = (0.5, 0.5);
8 const alpha = 3.0;
9 forall (a,b,c) in (A,B,C) do

10 a = b + alpha * c;

Figure 3. STREAM Triad written in Chapel for a multicore

Outline This paper is organized as follows: Section 2 gives mo-
tivation for this work. Section 3 describes background information
on Chapel and the GPU architecture. Sections 4 and 5 provide the
implementation details for running on a GPU. In Section 6, we
present some example Chapel codes that target the GPU acceler-
ator. Section 7 describes our initial results using the Parboil bench-
mark suite. Sections 8 and 9 present related and future work. We
provide conclusions in Section 10.

2. Motivation
As a motivating example, consider the implementations of the
STREAM Triad benchmark from the HPCC Benchmark Suite [21]
in Figures 1–3. The comparison between the reference CUDA
implementation in Figure 1 and the Chapel code for a GPU in
Figure 2 clearly shows that the Chapel code has significantly fewer
lines of code, and is simpler and more readable. This is achieved
using Chapel distributions, domains, data parallel computations
through the forall statement, and variable type inference [3, 6].
Furthermore, the Chapel implementation is easier to port. In fact,
by only changing the lines of code that specify the data distribution,
we could target different platforms, such as multicore, distributed
memory, clusters of GPUs, or any hybrid combination of these.
As an example of this, Figure 3 shows the STREAM benchmark
written to run on a muticore platform where the only lines changed
are the ones that declare the type of distribution (lines 2–3). While
it is certainly possible to compile CUDA for other platforms, the
language verbosity makes it less attractive as a general purpose
parallel language.

To demonstrate portability, Figure 4 shows performance re-
sults for the STREAM benchmark running on a 32-node instance
of the Cray XT4 supercomputer and a GPU for a problem size
of n = 85,983,914. In addition to multicores and clusters, this
code has run on large scale configurations achieving over 1.1TB/s
in performance using 2048 nodes [7]. In comparing the perfor-

mance of STREAM written for the GPU, we see that it matches
the equivalent implementation written in CUDA. It’s important to
re-emphasize that for the cluster and Chapel-GPU bar, we used
the same Chapel code where only the distribution was changed,
whereas the CUDA code does not support the same degree of porta-
bility.

3. Background
This section presents a short overview of the programming lan-
guage Chapel with the primary focus on data-parallelism, as we
leverage this when targeting GPU accelerator implementations.
Additionally we describe Nvidia’s CUDA programming model,
which is the language generated by our compiler.

3.1 Chapel Language Overview
Chapel is an object-oriented parallel programming language de-
signed from first principles, rather than an extension to any exist-
ing language. The base language supports modern features such as
iterators, OOP, type inference, and generic programming. Chapel
was designed to improve parallel programmability and productivity
in next-generation parallel machines. Chapel, along with X10 [10]
and Fortress [4], is part of the DARPA High Productivity Comput-
ing Systems (HPCS) program. Support for data parallelism, index
sets, and distributed arrays are derived from ZPL [29] and High Per-
formance Fortran [16]. Chapel’s concepts of task parallelism and
lightweight synchronization are derived from Cray MTA’s exten-
sions to C and Fortran [1]. Lastly, Chapel supports interoperability
to languages such as C, Fortran, and CUDA through C-style extern
mechanisms.

3.1.1 Domains and Distributed Arrays
A core component for data parallelism in Chapel is the concept of
domains, which are an extension to regions first described in ZPL.

2 2011/4/25

A domain describes an index space, where it has a rank and an or-
der on its elements. Furthermore, a domain is used to describe the
size and shape of an array. In addition to dense rectilinear domain-
s/arrays, Chapel supports a number of other domain types including
sparse and unstructured. These domains are a first-class ordered set
of Cartesian indices that can have any arbitrary rank [3].

Consider the following example:

var D: domain(2) = [1..n, 1..n];
var A: [D] real;

D is defined as a 2D domain and is initialized to contain the set of
indices (i,j) for all i and j such that i ∈ 1,2,...,n and j ∈ 1,2,...,n. The
array A is declared against the domain resulting in an n× n array.

3.1.2 Chapel Distributions: Built-in and User-defined
Data distributions in Chapel are essentially a recipe that the com-
piler uses to map a computation and its associated data to a physical
architecture where computation executes. Past languages such as
HPF and ZPL have had support for distributions, but the semantics
of the distributions were tightly coupled with the compiler and run-
time, leaving the programmer without enough flexibility to manip-
ulate many forms of distributed data, such as sparse arrays. Similar
to domains, distributions are first-class objects. They can be named,
manipulated, and passed through functions.

Chapel provides a set of commonly used distributions such as
block, cyclic, and block-cyclic as found in HPF. Additionally, one
can use Chapel’s user-defined distributions [8] to extend or write
their own Chapel distribution. In order for a user to write their
own distribution, a required interface for all the given routines
must be implemented. Interface components include the ability to
create domains and arrays, wholesale assignment of index sets,
iterators supporting sequential and parallel iteration over a domain,
random access to elements of an array, and support for slicing and
reindexing.

In lines 2–3 of Figure 2, a user-defined GPU distribution is
declared. Lines 4–5 show a distributed domain declared against the
distribution. If we want to target a different platform, we only need
to declare a different distribution, as shown in Figure 3, lines 2–3.

3.1.3 Data Parallelism in Chapel
Chapel has rich support for data parallel computation, making it
ideal for SIMD-like architectures such as the GPU. Some of its data
parallel features include parallel iterations, array slicing, array
operations, and reductions and scans.

The main form of data parallel iteration in Chapel is made
through the forall statement. This statement can be used to iter-
ate over all of the indices in a domain’s index set or over all of the
elements of an array. Array slicing is the use of a domain to refer
to a subset of an array’s elements. This domain can be sized differ-
ently than the original domain used to declare the array. Array slic-
ing can be beneficial in stencil computations, especially for deal-
ing with boundary conditions [13]. Similar to Fortran 90, Chapel
supports bulk array operations including the whole-array assign-
ment, and scalar promotion of operators and functions against ar-
rays. This is applicable only when the dimensions of arrays con-
form in size and dimensionality. There is built-in support for the
standard primitives of reduction and scan that apply operators to
combine expressions either into a scalar or an array. Chapel also
supports the ability for a user to provide their own user-defined re-
duction and scan operations [11].

0

20

40

60

80

100

120

140

160

180

200

Cluster (32 nodes) Chapel - GPU CUDA - GPU

B
an

d
w

id
th

 (
G

B
/s

)

STREAM Triad Performance

Figure 4. Results for the STREAM Triad benchmark compar-
ing a cluster of multicores (Cray XT4 2.1 GHz Quad-Core AMD
Opteron) and GPU (Nvidia GTX280)

3.2 Overview of the CUDA Programming Model and GPU
Architecture

There are numerous programming models currently available that
target GPU architectures. Our prototype compiler generates CUDA
code.

GRID 1

Block
(1,1)

GPU DEVICE

HOST

COMPUTE KERNEL 1

Block
(0,1)

Block
(1,0)

Block
(0,0)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

GRID 2

Block
(1,1)

Block
(0,1)

Block
(1,0)

Block
(0,0)

COMPUTE KERNEL 2

Figure 5. The mapping of compute kernels to the CUDA thread
grid layout

CUDA adopts a “single program, multiple data” (SPMD) pro-
gramming model. CUDA is a C subset with extensions. It exposes
a two-level hierarchy of parallelism consisting of thread blocks and
thread grids that are laid out in a Cartesian coordinate structure. Ev-
ery thread is mapped to a particular location within a thread block,
and each thread block is mapped to a location in the grid of thread
blocks. Figure 5 shows a kernel routine mapped to a unique grid
consisting of a Cartesian grid of 1D or 2D thread blocks, each with
their own block ID coordinate. Each thread block then consists of
a 1-to-3D space of individual threads represented by their thread
ID in each dimension. Other kernel routines in the program can be
mapped to other grid sizes. Before a programmer invokes the GPU
kernel, the number of total thread blocks (in X and Y dimensions),
and the number of threads within a thread block (also in X, Y, and
Z dimensions) need to be specified.

For a user to access data that has been declared on the host, the
data needs to be explicitly copied onto the device, and then vice-
versa if the host program needs the newly computed results.

A simple example is shown in Figure 1. Lines 5-7 and 19-21
allocate and free the GPU arrays respectively. Lines 8-9 specify the
block and grid sizes. Lines 23-32 show the actual routines that are
executed on the GPU device. These routines are invoked on lines

3 2011/4/25

11-12 and 14. In order to use the computed values in host space,
the results need to be copied using the cudaMemCpy() routine
shown in line 17.

To keep data consistent, CUDA provides a set of primitives,
including atomic operations, to guard against race conditions. In
particular, programmers can use syncthreads as a barrier,
but this barrier is restricted only for threads within a thread block.
CUDA currently does not provide any easy means of a global bar-
rier among different thread blocks.

4. Generating Code for GPGPU Accelerators
This section describes our approach for making Chapel target
GPGPU platforms.

4.1 GPU User-Defined Distribution
As mentioned earlier, we utilize Chapel’s user-defined distributions
and implement the required routines which are part of the distri-
bution interface. Some of the necessary interface routines include
those for the allocation and deallocation of arrays residing on the
GPU device, the execution of parallel iteration over a domain and
arrays as part of the forall statement, the indexing of an array,
array slicing, whole array operations, and the support for data trans-
fers between a host and its device. So that a user can use a GPU
distribution, we define a GPUDist() distribution class that takes
the following arguments:

rank An integer value specifying the dimensionality of the prob-
lem.

gridSizeX, gridSizeY A set of integer values specifying
the number of thread blocks in the grid along the X or Y
dimension. These arguments correlate to CUDA’s notion of grid
dimensions.

tbSizeX, tbSizeY, tbSizeZ A set of integer values specify-
ing the thread block size in the X, Y, or Z dimension. These also
correlate to the equivalent thread block size dimensions as used
in CUDA.

4.2 GPU Domains and Distributed Arrays
A GPU domain and its arrays are declared similarly to those de-
clared against standard distributions. When an array is declared
against a GPU domain, the specified memory allocation routines
that are part of the distribution interface are properly invoked (in
this case cudaMalloc() [2] rather than the standard library
malloc()).

Consider the following array declaration:

1 const mydist = new dist(new GPUDist(rank=2));
2 var gpuD: domain(2) distributed mydist=[1..n,1..n];
3 var A: [gpuD] real;

Line 1 defines a GPU distribution with a rank of 2, while lines 2 and
3 declare a 2-D domain and array that are allocated on the GPU.

4.3 Data Movement
Since the GPU typically has a distinct address space from the
host, most GPU programming models require users to manage
the movement of data. This decreases programmability by making
it more difficult for the user and leads to the loss of portability
on other parallel platforms. To address this problem, we provide
two methods of data movement in the Chapel code: implicit and
explicit.

Implicit Data Movement In this approach, the programmer de-
clares a single set of data that can be accessed by the host and
the device. The system automatically creates temporary storage and

transfers the data between the host and the GPU. The implicit data
movement scheme is dependent on compiler analysis to determine
when to move data. An example of Chapel code which utilizes im-
plicit data movement is shown in Figure 6. To the programmer, the
input array declared on line 4 is treated the same no matter if it
is inside or outside of a forall loop. In other words, the array
and its elements can be accessed or manipulated as any typical ar-
ray would throughout the program. In Section 5.3 we discuss our
compiler algorithm that generates the implicit data movement code.

1 const mydist = new dist(new GPUDist(rank=1,
2 tbSizeX=256));
3 const space: domain(1) distributed mydist = [1..m];
4 var input, output : [space] real;
5 input = ... // load input data
6 for 1..n {
7 forall j in space {
8 ...
9 output(j) = input(j);

10 }
11 ... = output;
12 }

Figure 6. Implicit Data Movement Example

Explicit Data Movement If the user wants lower-level flexibility,
they can explicitly transfer the data and thus give the programmer
complete control of movement and overlapping of data and com-
putation [33].

Consider the example in Figure 7. On line 1, we declare a
new type of GPU distribution named GPUExplicitDist(),
which takes in the same parameters as seen with GPUDist(). On
line 2, the distributed domain is declared as we have seen for the
other distributions. On line 3, the user declares the corresponding
host variables. On line 4, the GPU-specific arrays are declared
against the distribution and domain declared on lines 1 and 2. The
assignment operation on line 7 performs the explicit data copy
from host space into GPU space. After the parallel computation
is complete, line 13 copies the results back onto the host.

1 const mydist = new dist(new GPUExplicitDist(rank=1,
2 tbSizeX=256));
3 const space: domain(1) distributed mydist = [1..m];
4 var h_input, h_output : [1..m] real;
5 var g_input, g_output : [space] real;
6 for 1..n {
7 h_input = ... // load input data
8 g_input = h_input;
9 forall j in space {

10 ...
11 g_output(j) = g_input(j);
12 }
13 h_output = g_output;
14 ... = h_output;
15 }

Figure 7. Explicit Data Movement Example

4.4 Parallel Execution on the GPU
As discussed in Section 3.1.3, one method to enable data parallel
execution is through forall loops. Here, each iteration of the
loop represents a light-weight GPU thread. Figure 8 is based on our
previous STREAM example. Here, space represents a distributed
domain with a range from 1 through m. Because tbSizeX = 4

4 2011/4/25

and m = 1024, there are d 1024
4
e = 256 thread blocks available for

execution on the GPU.2 This provides the necessary information to
map each iteration i of the forall loop into a particular block
and its associated thread.

1 2 M3

BLOCK (1) BLOCK (2) BLOCK (…) BLOCK (256)

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Grid 1

const m = 1024;

const gpudist = new dist (new GPUDist (rank =1, tbSizeX=4));

const space : domain (1) distributed gdist = [1.. m];

forall i in space { … }

Figure 8. The mapping of a Chapel 1D domain onto CUDA’s
thread blocks

4.5 Code Generation for the GPU

forall over

gpu domain?
No

Yes

Generate C for Host

and CUDA for GPU

Generate C

CUDA source compiled

by nvcc

C compiled by backend

compiler (e.g. gcc)

Chapel source-to-source compiler

Chapel

Source File

Figure 9. Overview of Chapel compile process

To generate code that executes on the GPU we take advantage
of Chapel’s support of user-defined distributions and data parallel
computations through the forall statement. A high-level view
of the compile process is shown in Figure 9. The Chapel source-
to-source compiler takes as input a Chapel source file. Depending
on the type of distribution declared, when the compiler analyzes a
forall loop, it will either generate C source if it’s a non-GPU
parallel execution, or it will generate both C and CUDA source
for the host and GPU respectively. In other words, a forall that
targets a GPU distribution will be translated by the compiler so
that the host portion performs the thread block creation along with
passing in the correct parameters into the CUDA kernel. The body
of the forall is contained within the CUDA kernel. As a final
step, the generated GPU code (for both host and device) is compiled
by Nvidia’s nvcc compiler, and the remaining code is compiled by
the respective backend compiler (e.g. gcc).

In addition to forall expressions, Chapel supports the data
parallel primitives reduce and scan as mentioned in Section 3.1.3.
To provide these primitives on a GPU, we follow the approach oth-
ers have taken [20] by calling a highly-tuned library implementa-
tion of the reduction or scan operation. This approach allows for a
set of the typical associative operations across different primitive
data types. An example using the reduce primitive will be shown
later in Section 6.1.

4.6 Targeting Specialized GPU Memory Spaces
A common strategy to maximize performance for GPUs is to ex-
ploit the different physical memories in cases where locality ex-
ists [27]. On Nvidia-based GPUs, a programmer has access to on-
chip shared memory, read-only constant cache memory, and a read-
only texture memory. The trade-off that occurs from using any of

2 Block size chosen is only for demonstration purposes as there is no
performance benefit to sizes this small.

these specialized memories in Chapel is that the user gives up porta-
bility for performance. However, this GPU-specialized code can be
transformed into code that runs on traditional processors by apply-
ing simple compiler transformations as described in MCUDA [32].
To use any of these specialized memories, the user needs to declare
their arrays against the following distributions:

Shared Memory Nvidia’s CUDA-capable GPUs offer an on-chip
scratch pad memory that is user-programmed to optimize for lo-
cality. Compared with global memory, shared memory has the ad-
vantage of offering much faster access times. Unlike texture and
constant cache memory, shared memory is writable, but only from
within the parallel execution on a GPU. The scope of the data
loaded into shared memory is only visible by threads within a
thread block, and not across different thread blocks. A compiler
error occurs if the user attempts to write or read into their shared
memory array when not executing a forall. In order to lever-
age this memory from Chapel, the user declares the distribution
GPUSharedDist(). The syntax to access the shared memory
array is the same to access any array in Chapel.

Constant Cache Memory Constant memory is a form of read-
only memory typically used to hold constant values. This data is
hardware-cached to optimize for temporal locality when threads are
accessing commonly accessed data such as constants. Even though
constant memory is located off-chip in the device’s DRAM, there
is only one cycle of latency when a cache hit occurs if all the
threads in a warp access the same location. Otherwise, accesses
to constant memory are serialized if threads read from different
locations. With GPUs such as the Nvidia GTX280, up to 64KB of
data may be placed into constant memory. In order to use constant
memory from Chapel, the user must declare the distribution named
GPUCCDist(). Afterward, any arrays that need to be placed
into constant memory must be copied into arrays declared against
GPUCCDist() through an assignment operation.

Based on our previous example from Figure 10, we show how
a user would leverage the GPU constant memory within Chapel.
On lines 3 and 5–6, we create the constant memory distribution,
domain, and the respective constant memory array. Line 8 shows
the array being loaded with data from the host. Finally, on line 12,
the constant memory array is read in as any typical array.

1 const mydist = new dist(new GPUDist(rank=1,
2 tbSizeX=256));
3 const ccdist = new dist(new GPUCCDist(rank=1));
4 const myspace: domain(1) distributed mydist=[1..m];
5 const ccspace: domain(1) distributed ccdist=[1..m];
6 var input: [ccspace] real;
7 var output: [myspace] real;
8 input = ... // load data into constant memory
9 for 1..n {

10 forall j in myspace {
11 ...
12 output(j) = input(j);
13 }
14 ... = output;
15 }

Figure 10. Constant Cache Example

Texture Cache Memory Similar to constant memory, texture
memory is a read-only memory that has hardware caching for local-
ity. Major performance increases are seen when applications have
spatial locality, as in stencil computations. The Chapel compiler
will, but does not yet, support this feature. The implementation of
this feature would be similar to how constant memory is already

5 2011/4/25

supported in terms of code generation and user-defined distribution
support. Some of the benchmarks we will see in Section 7 are im-
plemented using texture memory. As a temporary workaround, we
replace the texture memory arrays with standard arrays.

4.7 Synchronization
As explained in Section 3.2, CUDA uses syncthreads() as a
barrier between threads in a thread block. We are currently imple-
menting a compiler algorithm that performs the automatic place-
ment of the synchronization without requiring programmer inter-
vention. The algorithm is designed to guarantee that, in the pres-
ence of control flow, all the paths meet in the synchronization point.
For this, the compiler needs to compute the dominance frontier
at these join points. For the benchmarks where synchronization is
necessary, we manually insert a call to a thread barrier(),
which is later translated to syncthreads() in the generated
CUDA code.

4.8 GPU Low-Level Extensions
There are certain cases where a user must leverage certain facil-
ities only offered by the CUDA programming model. For exam-
ple, CUDA provides to the user fast math intrinsics that are im-
plemented in hardware, such as fsinf(), instead of the more
accurate (but slower) sin(). In order to interoperate with these
routines through Chapel, the user can either rely on a provided
Chapel math library that links to the CUDA routines or can ex-
plicitly extern the necessary routine.

5. Compiler Optimizations
This section describes some of the algorithms that the Chapel
compiler performs to either generate necessary accelerator code, or
to enable higher performance from the generated accelerator code.
This also gives the back-end GPU compiler (e.g. nvcc) code that is
easier to optimize.

5.1 Scalar Replacement of Aggregates and Dead Argument
Elimination

Compiling from a higher-level language such as Chapel down to
CUDA opens doors to possible optimizations. Since Chapel is
much higher-level than C, it has support for non-zero based mul-
tidimensional arrays. For this purpose, the Chapel compiler creates
structures containing meta-data about the array, including start and
end points, array strides, and a pointer to the raw data. The program
has additional levels of indirection that it uses to look up the mem-
ber variables of the structure, leading to a decrease in a memory
bandwidth. Since memory bandwidth is a typical limiting factor
on accelerator codes, we reduce bandwidth pressure by perform-
ing scalar replacement of aggregates [23]. This technique replaces
fields from a structure with single scalar elements. In particular, this
is applied on all structures that are used within a forall loop that
executes over an array or domain declared with a GPU distribution.
The scalarized fields are then placed onto the formal argument list
of the calling kernel routine. After this transformation is complete,
we perform dead argument elimination on the original structures
that were passed in as formals, as they are no longer necessary.

5.2 Kernel Argument Spilling to Constant Memory
As a result of the previous optimization of scalar replacement of
aggregates, the number of formal parameters to the GPU kernel will
likely have increased depending on the number of fields from the
original structures. Because shared memory resources are reserved
for arguments up to a maximum size of 256 bytes [2], there will
be more of a performance impact with the more arguments that
are passed. Additionally, if this size limit is exceeded, a compiler

error will get thrown. To get around this, Algorithm 1 describes
a mechanism based on data-flow analysis that will spill scalar
arguments into constant memory after a certain argument list length
has been reached. In lines 6–7, constant memory variables are
declared with the constant modifier and are copied into from
the host using the CUDA routine cudaMemcpyToSymbol().
The default threshold value on whether to spill is set through the
compiler flag (–max-gpu-args=#). It should be noted that, while
this algorithm does not increase performance, it is necessary for
correctness because of the limited number of arguments that are
imposed by the CUDA compiler.

Algorithm 1: Spill scalar arguments into constant memory
Input: List argList containing each formal argument of the

kernel function
Input: Spill threshold threshold

1 foreach i in argList do
2 Compute Def Map DMi for i;
3 Compute Use Map UMi for i;
4 if location of i ≥ threshold then
5 if DMi = Ø then
6 Declare constant memory variable newi outside

of kernel;
7 newi← i;
8 Remove i from argList;
9 foreach ui in UMi do

10 ui← newi;

5.3 Implicit Data Transfers Between Host and Device
As mentioned in Section 4.3, implicit transfers between the host
and the GPU require compiler support. Algorithm 2 gives a con-
servative approach for determining and generating the necessary
code to transfer the data. If the passed-in array has been declared
against a GPU distribution, the compiler will compute the read and
write sets of the array. If the read set is not empty, the compiler
will generate code to copy the data into the kernel. If the write set
is not empty, the compiler will copy the data out after the kernel
completes.

Algorithm 2: Implicit Data Transfer
Input: Array GPUArray declared with the GPU

Distribution
1 Compute GPUArray Use Map UM ;
2 Compute GPUArray Def Map DM ;
3 if UM 6= Ø then
4 Generate statement to copy GPUArray from host to

device before kernel invocation;

5 if DM 6= Ø then
6 Generate statement to copy GPUArray from device to

host after kernel returns;

When we revisit the example from Figure 6, the user never
explicitly copies data between the device and host before calling
the forall loop. To the user, data is treated as a normal array
without the detailed knowledge that it can only be used on the GPU.
Based on the algorithm, the compiler will always copy data from
the host onto the device since input is read in the forall loop
which becomes a GPU kernel. Also, the array output is written
to, causing the compiler to copy that data out to the host. As the

6 2011/4/25

example shows, since the forall loop is nested inside of a for
loop, the array input is copied into the kernel redundantly. An
improvement over the conservative approach taken here would be
to analyze the complete program outside of the kernel to detect
redundant copying.

6. Example Codes
The goal of this section is to illustrate that oftentimes only a small
number of changes are required to port codes across diverse plat-
forms. We make use of two sample codes: a 2-D Jacobi method,
and Coulombic Potential [30]. We present performance results for
execution on a multicore and a GPU. In both cases, the only differ-
ence in code is the declared distribution. For the GPU performance,
we present results using the two approaches to transferring data be-
tween the host and device as discussed in Section 4. The hardware
used for these experiments are the same as described in Section 7.2.

6.1 2-D Jacobi
Figure 11 demonstrates the 2D Jacobi method that targets a GPU.
This algorithm computes the solution of a Laplace equation over
a 2D grid. The point of this code is to show an elegant high-level
implementation of the algorithm rather than present the user with a
low-level highly-tuned for performance implementation. Line 1 of
the algorithm declares a GPU distribution with a rank of 2. Lines
6–8 declare two distributed domains, with lines 10–11 declaring the
associated arrays. On lines 16–20, we perform our parallel stencil
computation on the GPU, with line 21 performing a maximum
reduction also on the GPU. Finally, line 22 performs a sliced array
copy of the inner domain gPSpace.

1 const gdist = new GPUDist(rank=2,
2 tbSizeX=16,
3 tbSizeY=16);
4 const PSpace = [1..n, 1..n],
5 BigDom = [0..n+1, 0..n+1];
6 const gPSpace : domain(2) distributed
7 gdist = PSpace;
8 const gDomain : domain(2) distributed
9 gdist = BigDom;

10 var X, XNew : [gDomain] real;
11 var tempDiff : [gPSpace] real;

13 /* initialize data */
14
15 do {
16 forall ij in gPSpace {
17 XNew(ij) = (X(ij+north) + X(ij+south) +
18 X(ij+east) + X(ij+west)) / 4.0;
19 tempDiff(ij) = fabs(XNew(ij) - X(ij));
20 }
21 delta = max reduce tempDiff;
22 X(gPSpace) = XNew(gPSpace);
23 } while (delta > epsilon);

Figure 11. Chapel Implementation of Jacobi 2D

In Figure 12 we measure the performance of the 2D Jacobi
method, by having three grouped comparisons. First, we measure
the performance of the algorithm on a multicore using 4 tasks. We
then compare the performance of the algorithm on a GPU using
both the implicit and explicit data transfer algorithm. It’s important
to note that, in this example, only the line declaring the distribution
was changed between the multicore and GPU run. We can see from
the results that only the GPU case using explicit data transfers
performs better than multicore version. The Chapel GPU version
of the code that uses the implicit data transfer algorithm shows
degradation in performance due to the redundant data transfers that

0

5

10

15

20

25

30

35

40

45

50

Chapel Multicore (4 tasks) Chapel GPU w/ Explicit
Transfer

Chapel GPU w/ Implicit
Transfer

Ex
e

cu
ti

o
n

 T
im

e
 (

se
co

n
d

s)

Jacobi 2D Performance (n = 200x200)

Figure 12. Performance of Jacobi 2D

occur. This is the result of the conservative approach taken in the
compiler algorithm.

6.2 Coulombic Potential
The code for the Coulombic Potential (CP) application is shown in
Figure 13. On lines 2 and 4, we declare two different GPU distribu-
tions. On lines 5, 7, and 9, distributed domains are declared against
the previously declared distributions. Lines 13 and 15 declare our
input and output arrays. Lines 15–24 performs the parallel forall
computation on the GPU. It should be mentioned that on line 15,
each iteration of the forall returns a two-tuple containing x and
y coordinates.

Figure 14 presents the results for CP running on both a GPU
and on a multicore. As in the previous example, the only change
in source code was in the distribution declaration. As the results
show, both GPU implementations run about 1.85x faster than the
multicore implementation using 4 tasks. The additional time spent
in the implicit transfer version was negligible in this case.

1 const volmemsz_dom = [1..VOLSIZEY,1..VOLSIZEX];
2 const gdst = new dist(new GPUDist(rank=2,
3 tbSizeX=BLOCKSIZEX, tbSizeY=BLOCKSIZEY));
4 const gdst2 = new dist(new GPUDist(rank=1));
5 const space : domain(2) distributed
6 gdst = volmemsz_dom;
7 const energyspace : domain(1) distributed
8 gdst = volmemsz_dom;
9 const atomspace : domain(1) distributed

10 gdst2 = [1..MAXATOMS];
11 var energygrid : [energyspace] = 0.0;
12 /* initialize atominfo from input file */
13 var atominfo : [atomspace] float4 = ...;

15 forall (xindex,yindex) in space do {
16 var energyval = 0.0;
17 var (coorx,coory) = (gspacing*xindex,
18 gspacing*yindex);
19 for atom in atominfo {
20 var (dx,dy) = (coorx-atom.x, coory-atom.y);
21 var r_1 = 1.0 / sqrt(dx*dx + dy*dy + atom.z);
22 energyval += atom.w * r_1;
23 }
24 energygrid(yindex, xindex) += energyval;
25 }

Figure 13. Coulombic Potential in Chapel

7 2011/4/25

0

100

200

300

400

500

600

700

800

900

1000

Chapel Multicore (4
tasks)

Chapel GPU w/ Explicit
Transfer

Chapel GPU w/ Implicit
Transfer

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

Coulombic Potential Performance

Figure 14. Performance of CP

7. Evaluation
7.1 Parboil Benchmarks
In this section, we evaluate the performance of the Parboil bench-
mark suite, which was performance-tuned and hand-coded for
CUDA. We compare the CUDA implementation with the same
benchmarks ported into Chapel. The Parboil codes that we look
at are Coulombic Potential (CP), MRI-FHD and MRI-Q [31], Rys
Polynomial Equation Solver (RPES) [28], and the Two Point An-
gular Correlation Function (TPACF) [19]. The benchmark Sum of
Absolute Differences (SAD) relies on texture memory which we
do not currently have results for as texture memory support is cur-
rently on going work. Petri Net Simulation (PNS) was not ported
due to time constraints. The Chapel codes that are compared use
both implicit and explicit data transfers to see what additional over-
head results from the conservative implicit data transfer algorithm
introduced in Section 5.3. The version of CP discussed in this sec-
tion is different from the version shown in Section 6.2. The CP used
here uses constant memory and explicit loop unrolling which was
not applied in the previous case. It’s also important to note that, in
the following results, we don’t explicitly measure the impact of the
previously discussed scalar replacement of aggregates and kernel
argument spilling algorithms. We have seen that in the case of very
simple codes such as STREAM, there is a 50% increase in perfor-
mance by having those optimizations enabled. Therefore, we leave
those optimizations enabled when measuring the benchmarks.

7.2 Environmental Setup
All of the benchmarks were run on a Nvidia GTX280 GPU with
the CUDA 2.3 compiler as the backend for the Chapel generated
source code. The Nvidia GTX280 consists of a number of stream-
ing multiprocessors (SM), with each SM containing 8 streaming
processors (SP). Additionally, each SM contains a 16KB scratch-
pad memory, an 8KB read-only constant cache, and an 8KB texture
cache. Each SM executes groups of threads, commonly referred to
as warps, in batches of 32, where the same instruction is applied to
every thread inside of a warp in a SIMD-like fashion.

The host code was executed on an Intel Quad-core 2.83GHz
Q9550 using Linux 2.6.30. For timing measurements, we used
CUDA’s kernel profiling mechanism (i.e. CUDA PROFILE=1) that
measures the execution time spent in the kernel along with execu-
tion time spent on data transfers between the host and the device.

7.3 Experimental Results
Figures 15(a)–15(e) demonstrate the performance of the bench-
marks. Each bar is broken down into two portions: the total time
spent performing data transfers and time performing the computa-
tion. In Figures 15(c)–15(e), the difference in compute performance

Parboil Benchmark # Lines (CUDA) # Lines (Chapel) # of Kernels
CP 186 154 1
MRI-FHD 285 145 2
MRI-Q 250 125 2
RPES 633 504 2
TPACF 329 209 1

Table 1. Parboil Benchmark Source Code Comparison (Chapel vs
CUDA)

was minimal between the CUDA and the Chapel implementations.
When we look solely at the compute performance in Figures 15(a)
and 15(b), we see that the CUDA reference implementations have
better performance when compared with both of the Chapel im-
plementations. In these cases, the performance difference was due
to additional overhead, such as for loops being generated ineffi-
ciently. As the Chapel compiler matures, we should expect these
changes in compute performance to decrease.

We now look at the overhead due to the conservative implicit
data transfer algorithm. Figures 15(a), 15(c), 15(d), and 15(e) ex-
hibit extra overhead, with the RPES algorithm showing the highest
amount of overhead. These four benchmarks demonstrate the de-
ficiencies in our conservative approach for selecting which data to
transfer into and out of the kernel. In the RPES algorithm, there is
a parallelizable forall loop nested inside of a for loop. In the
CUDA and Chapel explicit data transfer implementations, data is
not transferred across the top-level for loop iterations, but in the
case of the implicit data transfer algorithm this occurs. The TPACF
algorithm in Figure 15(b) has no overhead associated with the im-
plicit data transfer scheme, thus appearing negligible in the results.

Table 1 shows an additional comparison between the Chapel and
CUDA implementations with the primary metric being the differ-
ence in lines of source code. In order to compute the total number
of lines of code in the source files, we removed all comments and
any of the timing mechanisms. While only looking at the total num-
ber of lines is not a precise measurement in productivity, it should
show to the reader that these benchmarks when ported to Chapel
required less code.

These results demonstrate that when using a language such
as Chapel, we achieve performance that is comparable to that of
a GPU specific language such as CUDA, while making the pro-
grammability easier for the user.

8. Related Work
Improving the programmability of accelerator architectures is cur-
rently an active area of research. The works of MCUDA [32] and
Ocelot [12] take the approach of having the programmer implement
their algorithms in CUDA, and then having the compiler target a
multicore platform. The Chapel approach differs these compilers
in that Chapel starts with higher-level language, especially when
compared with CUDA or OpenCL. This allows for more general
purpose code, compared with the strictly data-parallel code that
one is forced to use when writing CUDA. Another approach that
some have taken in translating their application code into the GPU
accelerator space is through the use of annotations or compiler di-
rectives on existing languages [5, 14, 20, 22, 34]. Our approach
differs in that we do not depend on annotations to induce the par-
allelism over a GPU, resulting in what we believe to be a cleaner
approach. There has been some work providing language bindings
to target the GPU [18, 35], but in essence, the compute kernels
typically are written as embedded CUDA, which does not increase
programmability. Lastly, natural competitors to Chapel are the lan-
guages X10 and Fortress, but to the best of our knowledge, neither
have publications or official releases supporting GPGPU support.

8 2011/4/25

0

20

40

60

80

100

120

140

160

180

200

CUDA Tuned Chapel w/
Explicit Transfer

Tuned Chapel w/
Implicit Transfer

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

Data Transfer

Compute

(a) Coulombic Potential

0

200

400

600

800

1000

1200

1400

CUDA Tuned Chapel w/
Explicit Transfer

Tuned Chapel w/
Implicit Transfer

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

Data Transfer

Compute

(b) TPACF

0

10

20

30

40

50

60

70

80

CUDA Tuned Chapel w/
Explicit Transfer

Tuned Chapel w/
Implicit Transfer

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

Data Transfer

Compute

(c) MRI-FHD

0

5

10

15

20

25

30

CUDA Tuned Chapel w/
Explicit Transfer

Tuned Chapel w/
Implicit Transfer

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

Data Transfer

Compute

(d) MRI-Q

0

200

400

600

800

1000

1200

1400

1600

1800

2000

CUDA Tuned Chapel w/
Explicit Transfer

Tuned Chapel w/
Implicit Transfer

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

Data Transfer

Compute

(e) RPES

Figure 15. Performance of the Parboil Benchmarks comparing
Chapel to CUDA

9. Future Work
As an extension to user-defined distributions, we are working to
increase portability by introducing the concept of a high-level
“meta”-distribution (e.g. metaDist()) that is an aggregate dis-
tribution consisting of lower-level distributions. This new meta-
distribution gets instantiated through a compiler flag or a sys-
tem run-time check that determines which one of the distributions
should be used based on the hardware where the code is running.
This meta-distribution allows for full portability by having just a
single source code that runs efficiently in different platforms, by
having the programmer specify all the appropriate distributions for
the different targets, or by using a default distribution when one
does not exist for the target platform.

One weakness that we are looking to alleviate deals with expos-
ing too much of the GPU low-level centric code to the programmer.
This includes still relying on CUDA’s thread blocks, grids, etc. One
possible method to fix this and increase programmability is to raise
the level of abstraction and add array operation support. Having
support for these operations will increase programmability, espe-
cially when targeting these devices. Currently the language sup-
ports bulk-array operations that convert to parallel forall loops.
We hope to expand on this by having the compiler optimize these
operations through techniques such as loop fusion, where we can
fuse multiple forall loops into a single kernel.

Our algorithm for implicitly transferring data between the de-
vices is too conservative (as shown in Section 7.3) and that there is
room for improvement. We are investigating new optimizations (ei-
ther runtime or at compile time) to increase the performance of the
implicit scheme so that it is much closer to the explicit scheme. One
possible method that we are exploring to prevent redundant/unnec-
essary copies would be to perform a compiler analysis that looks
across multiple forall statements and based on the usage of the
data, the compiler can generate the necessary transfer code when
required.

Lastly, we are investigating compiler techniques for automat-
ically detecting the ideal forms of GPU memory to target based
on locality analysis. For example, if there is sufficient locality,
the compiler should be able to automatically generate code to use
shared memory rather than global.

10. Conclusion
In this paper, we presented a methods to increase programmer pro-
ductivity, by leveraging a new programming language built for par-
allelism and locality control to target GPU-based architectures. In
addition to GPUs, we show that it is possible to be portable across
distinct parallel architectures, and yet retain performance without
resorting to different parallel libraries or language annotations such
as pragmas or directives.

Acknowledgments
This material is based upon work supported by the National Sci-
ence Foundation under award CCF 0702260, by Cray Inc. under
Agreement No. Cray-SRA-2010-01696, and a 2010-2011 Nvidia
Research Fellowship Award.

References
[1] Cray MTA-2 Programmer’s Guide. 2005.

[2] NVIDIA CUDA Compute Unified Device Architecture - Programming
Guide, 2009.

[3] Chapel Specification 0.795, April 2010. http://chapel.cray.com.

[4] Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-Willem
Maessen, Sukyoung Ryu, Guy L. Steele Jr., and Sam Tobin-Hochstadt.

9 2011/4/25

The Fortress Language Specification. Technical report, Sun Microsys-
tems, Inc., 2007.

[5] Francois Bodin and Stephane Bihan. Heterogeneous Multicore Par-
allel Programming For Graphics Processing Units. Sci. Program.,
17(4):325–336, 2009.

[6] Bradford L. Chamberlain, David Callahan, and Hans P. Zima. Parallel
Programmability and the Chapel Language. International Journal of
High Performance Computing Applications, 21:291–312, 2007.

[7] Bradford L. Chamberlain, Steven J. Deitz, David Iten, and Sung-Eun
Choi. HPC Challenge Benchmarks in Chapel. Technical report, Cray,
Inc., 2009.

[8] Bradford L. Chamberlain, Steven J. Deitz, David Iten, and Sung-Eun
Choi. User-defined Data Distributions in Chapel: Philosophy and
Framework. In HotPar ’10: Proc. 2nd Workshop on Hot Topics in
Parallelism, 2010.

[9] Robit Chandra, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff
McDonald, and Ramesh Menon. Parallel Programming in OpenMP.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2001.

[10] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher
Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and
Vivek Sarkar. X10: An Object-oriented Approach To Non-uniform
Cluster Computing. In OOPSLA ’05: Proceedings of the 20th annual
ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pages 519–538, New York, NY, USA,
2005. ACM.

[11] Steven J. Deitz, David Callahan, Bradford L. Chamberlain, and
Lawrence Snyder. Global-view Abstractions for User-defined Reduc-
tions and Scans. In PPoPP ’06: Proceedings of the eleventh ACM
SIGPLAN symposium on Principles and practice of parallel program-
ming, pages 40–47, New York, NY, USA, 2006. ACM.

[12] Gregory Diamos, Andrew Kerr, Sudhakar Yalamanchili, and Nathan
Clark. Ocelot: A Dynamic Compiler for Bulk-synchronous Applica-
tions in Heterogeneous Systems. In PACT ’10: The Nineteenth Inter-
national Conference on Parallel Architectures and Compilation Tech-
niques, 2010.

[13] Jia Guo, Ganesh Bikshandi, Basilio B. Fraguela, and David Padua.
Writing Productive Stencil Codes with Overlapped Tiling. Concurr.
Comput. : Pract. Exper., 21(1):25–39, 2009.

[14] Tianyi David Han and Tarek S. Abdelrahman. hiCUDA: A High-
level Directive-based Language for GPU Programming. In GPGPU-
2: Proceedings of 2nd Workshop on General Purpose Processing on
Graphics Processing Units, pages 52–61, New York, NY, USA, 2009.
ACM.

[15] Paul Henning and Andrew B. White Jr. Trailblazing with Roadrunner.
Computing in Science and Engineering, 11:91–95, 2009.

[16] High Performance Fortran Forum. High Performance Fortran lan-
guage specification, version 1.0. Technical Report CRPC-TR92225,
Houston, Tex., 1993.

[17] Khronos OpenCL Working Group. The OpenCL Specification, version
1.0.29, 8 December 2008.

[18] Andreas Klöckner, Nicolas Pinto, Yunsup Lee, Bryan C. Catanzaro,
Paul Ivanov, and Ahmed Fasih. Pycuda: GPU Run-Time Code Gener-
ation for High-Performance Computing. CoRR, abs/0911.3456, 2009.

[19] Stephen D Landy and Alexander S. Szalay. Bias and Variance of
Angular Correlation Functions. Astrophysical Journal, 412(1):64–71,
1993.

[20] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. OpenMP to
GPGPU: A Compiler Framework for Automatic Translation and Op-
timization. In PPoPP ’09: Proceedings of the 14th ACM SIGPLAN
symposium on Principles and practice of parallel programming, pages
101–110, 2009.

[21] Piotr R Luszczek, David H Bailey, Jack J Dongarra, Jeremy Kepner,
Robert F Lucas, Rolf Rabenseifner, and Daisuke Takahashi. The HPC
Challenge (HPCC) benchmark suite. In SC ’06: Proceedings of the
2006 ACM/IEEE conference on Supercomputing, page 213, 2006.

[22] Michael D. McCool, Kevin Wadleigh, Brent Henderson, and Hsin-
Ying Lin. Performance Evaluation of GPUs Using the RapidMind

Development Platform. In SC ’06: Proc. 2006 ACM/IEEE conference
on Supercomputing, page 181, 2006.

[23] Steven S. Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufmann, 1997.

[24] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scal-
able Parallel Programming with CUDA. Queue, 6(2):40–53, 2008.

[25] James C. Phillips and John E. Stone. Probing Biomolecular Machines
With Graphics Processors. Commun. ACM, 52(10):34–41, 2009.

[26] James Reinders. Intel Threading Building Blocks. O’Reilly & Asso-
ciates, Inc., 2007.

[27] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S.
Stone, David B. Kirk, and Wen-mei W. Hwu. Optimization Principles
and Application Performance Evaluation of a Multithreaded GPU
using CUDA. In PPoPP ’08: Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel programming, pages
73–82, 2008.

[28] J. Rys, M. Dupuis, and H. F. King. Computation of Electron Repul-
sion Integrals Using the Rys Quadrature Method. Journal of Compu-
tational Chemistry, 4(2):154–157, 1983.

[29] Lawrence Snyder. A Programmer’s Guide to ZPL. MIT Press, 1999.
[30] John E. Stone, James C. Phillips, Peter L. Freddolino, David J. Hardy,

Leonardo G. Trabuco, and Klaus Schulten. Accelerating Molecular
Modeling Applications with Graphics Processors. Journal of Compu-
tational Chemistry, 28(16):2618–2640, 2007.

[31] Samuel S. Stone, Justin P. Haldar, Stephanie C. Tsao, Wen-mei W.
Hwu, Zhi-Pei Liang, and Bradley P. Sutton. Accelerating Advanced
MRI Reconstructions on GPUs. In CF ’08: Proc. 5th conference on
Computing frontiers, pages 261–272, 2008.

[32] John A. Stratton, Vinod Grover, Jaydeep Marathe, Bastiaan Aarts,
Mike Murphy, Ziang Hu, and Wen-mei W. Hwu. Efficient compilation
of fine-grained spmd-threaded programs for multicore cpus. In CGO
’10: Proceedings of the 8th annual IEEE/ACM international sympo-
sium on Code generation and optimization, pages 111–119, New York,
NY, USA, 2010. ACM.

[33] Sundaresan Venkatasubramanian and Richard W. Vuduc. Tuned and
Wildly Asynchronous Stencil Kernels for Hybrid CPU/GPU systems.
In ICS ’09: Proc. of the 23rd int. conference on Supercomputing, pages
244–255.

[34] Michael Wolfe. Implementing the PGI Accelerator model. In GPGPU
’10: Proc. 3rd Workshop on General-Purpose Computation on Graph-
ics Processing Units, pages 43–50, 2010.

[35] Yonghong Yan, Max Grossman, and Vivek Sarkar. JCUDA: A
Programmer-Friendly Interface for Accelerating Java Programs with
CUDA. In Euro-Par ’09: Proc. 15th International Euro-Par Confer-
ence on Parallel Processing, pages 887–899, 2009.

10 2011/4/25

