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Abstract. Guppy is a new and experimental process-oriented programming language,
taking much inspiration (and some code-base) from the existing occam-π language.
This paper reports on a variety of aspects related to this, specifically language, com-
piler and run-time system development, enabling Guppy programs to run on desktop
and embedded systems. A native code-generation approach is taken, using C as the in-
termediate language, and with stack-space requirements determined at compile-time.
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Introduction

This paper reports on a thread of experimentation in a new process-oriented language named
Guppy, based on and influenced by the occam-π/Transputer/CSP software, systems and mod-
els [1,2,3]. Previous work has successfully seen occam-π process-oriented programs running
on a variety of desktop and embedded systems, employing a range of techniques from inter-
pretation to native code generation.

Of particular interest to the work here is the LEGO® Group’s MINDSTORMS® third
generation of programmable brick, the EV3. Occam-π programs have been run successfully
on the first two generations [4,5], the LEGO® MINDSTORMS® RCX and NXT, using the
Transterpreter [6] — a virtual Transputer emulator1.

Following the trend of process-oriented programming for embedded devices, we are
experimenting with Guppy using the LEGO® EV3 as a target platform, in addition to a
standard Linux desktop. In order to handle target code-generation in a platform independent
way, the (experimental) compiler generates C code, that is further compiled or cross-compiled
for the particular target platform. This is then linked with a suitable run-time system that
manages process scheduling and communication.

This paper reports on this ongoing work, covering language design, compiler and run-
time implementation. The aims of the work are two-fold: firstly, to explore concurrent lan-
guage design, to produce a successor to the occam-π language for a range of platforms; and
secondly, to support process-oriented programming on the LEGO® EV3 platform. The latter
is a more easily reached goal. The paper is arranged as follows: Section 1 gives some back-
ground on the technologies involved, specifically the existing occam-π toolchains and the
LEGO® EV3. The Guppy language is described in Section 2, compiled down to C code using
the “nocc” compiler framework, described in Section 3. The minimal run-time implemented
for the EV3 platform is described in section 4. Section 5 examines a specific example: imple-

1The Transterpreter has greatly improved the accessibility of occam-π programming, having been ported to a
variety of devices (embedded / robotics and desktop). Porting it to the EV3 would not be a significant challenge.
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menting the “dining philosophers”, followed by conclusions and a discussion of future work
in Section 6.

1. Background and Motivation

In creating a successor to occam-π, we wish to preserve all of the positive features. Specif-
ically at run-time, low memory overheads for concurrent processes and efficient scheduling
and synchronisation (communication) between these. Having these properties enables sys-
tems with large numbers of concurrent processes (tens, thousands, millions) and complex
dynamic interactions to be created and studied — an avenue that we and others are keen to
explore.

The lightweight nature of concurrency in occam-π stems from two sources. Firstly, the
Transputer/occam execution model [2,7], that statically allocates and packs together process
memories (workspaces). Secondly, the efficient multicore CCSP run-time system [8]. The
synchronous nature of occam-π, that stems from Hoare’s CSP [3], makes process manage-
ment and communication relatively simple to implement — as was once implemented on the
Transputer in hardware/microcode2.

1.1. The KRoC Toolchain

Figure 1 shows the typical KRoC toolchain for turning an occam-π source file ‘prog.occ’ into
an executable ‘a.out’ for a standard 32-bit Linux platform. Also shown is an occam-πlibrary,
that is ‘#USE’d by the program. The occam-π compiler, occ21, is a heavily modified version
of the occam 2.1 compiler developed at Inmos in the early 1990s. This has been extended
over the years, incorporating a variety of new (and at times, experimental and not entirely
stable) language features; among them the various dynamic extensions inspired by Milner’s
π-calculus [9]. A good overview of the occam-π language enhancements is given in [1].

occam−pi sources virtual transputer binaries platform specific sources platform specific binaries

libsrc.occ libsrc.tce libsrc.s

ilibr

mylib.liblibdefs.inc

#INCLUDE

occ21 tranx86

prog.occ

#INCLUDE

occ21
prog.tce

tranx86
prog.s

#USE

sched.c, ...

GNU as

gcc / ld

GNU as

libccsp.so

libsrc.o
GNU ld

mylib.so

prog.o
gcc / ld

a.out

(run−time
libraries)

Figure 1. The KRoC occam-π toolchain.

The output of the occam-π compiler is a form of Transputer binary, Extended Transputer
Code [10]. Whilst this has been heavily enhanced to support various new language features
(provided largely by the run-time system), the machine occ21 generates code for is still fun-
damentally a Transputer: a stack-based machine, with 3-level deep integer and floating-point
stacks, and a workspace pointer that acts as a moveable process descriptor (similar to a stack
pointer). Communication channels are single words in memory, that are either null3 or hold a

2There are constructs in CSP that are difficult to implement effectively in a language or run-time, such as
resolving multi-way synchronisations. Occam (and occam-π) restrict slightly what is available in CSP terms to
avoid these.

3On the Transputer, this null value was really 0x80 00 00 00, or the most negative signed 32-bit integer.
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process descriptor of a process blocked on communication. The minimum memory footprint
of a non-trivial process is just enough to hold its scheduling state: between 3 and 6 words.
With local variables, internal concurrency structures and parameters, a typical process mem-
ory footprint is at least 32 words (128 bytes). Even with large numbers of concurrent pro-
cesses and communication channels, memory is not usually an issue — this has encouraged
its use on small-memory devices using the Transterpreter (Section 1.2). The binary (machine)
code generated is also highly space-efficient, with most instructions requiring 1 or 2 bytes.
Alongside instructions, the generated code (generally referred to as Transputer bytecode)
includes information such as process memory requirements and debugging records (source
names and line numbers).

One issue that exists with the current system is the fact that the compiler code-generates
for a 3-deep evaluation stack: any complex expressions requiring more than 3 words (regis-
ters) to evaluate are spilled to memory. Modern machines typically have many more registers
available, that if used effectively would reduce the memory footprint and execution efficiency
even further — unfortunately changing the 3-deep stack in the compiler’s code-generator
would require extensive re-engineering.

For standard x86 machines, tranx86 takes the Transputer bytecode and translates it into
Intel x86 (32-bit) assembler. The evaluation stack is mapped onto general-purpose registers,
along with the other run-time registers (workspace pointer, etc.). Instructions for channel
communication, process scheduling and similar are mapped to calls into the run-time system
(CCSP). The translator performs some small-scale peephole style optimisations, but little
beyond this. These are assembled down to native (x86) binaries and linked with libraries and
the run-time system to produce an executable.

The CCSP run-time system is mostly coded in C, with some portions of in-line assembly
to optimise switching in and out of the run-time system. At the very least, the run-time sys-
tem has to provide for process creation, shut-down and scheduling, channel communication
(including alternatives/choice) and any other features required.

1.2. The Transterpreter

The Transterpreter was created to provide a portable way of running occam-π programs [6].
It is essentially an emulator, written mostly in C, that interprets the Transputer bytecode.
A separate program, slinker or plinker collects up the Transputer bytecode files (including
libraries), resolving cross-references, to produce a single binary image for emulation. The
resulting file is, in many cases, small (a few kilobytes). This makes it highly suited to concur-
rent programming on small-memory devices such as the LEGO® RCX (an 8/16-bit micro-
controller with 32 KiB SRAM) [5], the LEGO® NXT (a 32-bit ARM microcontroller with
64 KiB SRAM and 256 KiB FLASH) and the Arduino (an 8/16-bit microcontroller with up
to 8 KiB SRAM and 256 KiB FLASH). In these embedded environments, the Transterpreter
generally replaces any default firmware on the device.

Even though emulation incurs a performance penalty, this has not been an issue for typi-
cal LEGO® robotics applications — where response times of tens of milliseconds are accept-
able. One place this has been an issue is when programming the Arduino’s serial communi-
cation ports: the device runs at 16 MHz — keeping up-to-speed with serial data transmission
or reception, from the emulated occam-π program, can be problematic.

In addition to embedded environments, the Transterpreter provides a convenient and
portable way to run occam-π programs on a whole range of systems — e.g. Microsoft Win-
dows, Solaris (Oracle), Raspberry Pi, in general any Linux system. This has contributed to
the popularity of occam-π, and for the LEGO® platforms in particular, provides a straight-
forward hands-on (tangible) introduction to concurrent programming. Whilst it would be rel-
atively straightforward to port the Transterpreter to the LEGO® EV3, that would still expect
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Transputer bytecode as input, where we are keen to explore more efficient code-generation
routes.

1.3. The LEGO® EV3

The LEGO® MINDSTORMS® EV3 is a significantly more powerful device than its prede-
cessors, based around an ARM9 core running at 300 MHz, with 64 MiB RAM and 16 MiB
FLASH. More significantly, the EV3 runs a modified version of the Linux kernel (that in-
cludes device-driver support to interface with the various sensor, motor ports and the small
display/buttons). On top of this runs a single application that provides the EV3 user interface,
including communication with the host (over USB using a proprietary, but well-documented,
protocol). The embedded device itself contains a Micro-SD slot, USB host interface (intended
for a WiFi dongle) and Bluetooth, that are handled by Linux in the normal way.

The base kernel build for the particular ARM, and standard GNU/Linux OS layer tools
are provided via “CodeSourcery” from Mentor Graphics — that also provides the cross-
compile environment for a standard Linux desktop. This can be used to create custom images
on an SD card, from which the EV3 will boot when present and correctly configured. Other
open-source efforts have also ported a more recent kernel and further customised it for the
EV34 and is the kernel/OS we are using.

2. Experimenting with Process-Oriented Languages

This section presents an overview of the Guppy language, a potential successor to the existing
occam-π language. The concurrency semantics are the same as occam-π: based on the CSP
concept of synchronising/communicating concurrent processes, augmented with features of
dynamics and mobility, implemented using the existing CCSP run-time system. It should be
noted that the following sections describe the Guppy language in its current state, that may
still be subject to changes in the future.

2.1. General Syntax

The syntax of Guppy is similar in many respects to occam-π, with some notable exceptions.
Firstly, lowercase keywords — syntax highlighting editors are common enough that the need
to distinguish language keywords using uppercase is perhaps redundant. There is some ar-
gument for keeping uppercase keywords (it certainly has some elegance) but the common
preference is for lowercase syntax. Secondly, indentation-based layout. In occam-π (and pre-
viously occam) this was fixed at 2 spaces; languages such as Python, also indentation-based,
are more flexible, allowing the programmer to choose whatever spacing he/she prefers. This
is the approach we have taken for Guppy, even though most code shown here uses 2 or 4
spaces. Comments in Guppy start with the hash character ‘#’ and continue to the end of the
line.

2.2. Primitive, Structured and Named Processes

Given the CSP semantics for processes, the primitive and structured processes of Guppy are
semantically identical to those of occam-π. The two most basic primitive processes are ‘skip’
and ‘stop’ — corresponding to their CSP equivalents: successful termination and deadlock
(or run-time error). The structured processes are ‘seq’, ‘par’, ‘alt’, ‘if’ and ‘while’. As per
occam, the first 4 of these may be replicated. The ‘alt’ and ‘if’ structures contain guarded
processes.

4This kernel (ev3dev) can be found on Github and at http://www.ev3dev.org/.

http://www.ev3dev.org/
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For convenience we allow a shortened version of ‘if’ that takes an expression imme-
diately after the keyword and contains a single indented process (executed if the expression
evaluates to true). Another convenience, though some have argued against it, is an optional
‘seq’. This is primarily to appease programmers more used to languages like C and Java,
where sequential execution is assumed.

Named processes (procedures) are introduced with the ‘define’ keyword — as are other
language artefacts such as structured types and protocols. This is followed by the procedure
name and a list of zero or more parameters. Procedures are also permitted to return zero or
more values. This is a slight difference from occam-π, whereby procedures (assumed to be
side-effecting) can only return values through reference parameters. As an example of the
language syntax, the following shows Guppy definitions for some well-known processes:

define id (chan(int) in?, out!)
while true

int n
seq

in ? n
out ! n

end

id
out!in?

define delta (chan(int) in?, out 0!, out 1!)
while true

int v

in ? v
par

out 0 ! v
out 1 ! v

end

delta
in?

out_1!

out_0!

Both procedure definitions finish with the ‘end’ keyword. This is a convenience and in-
cluded to make the ends of such definitions more obvious (and visually neater). The defini-
tion for ‘id’ is straightforward and looks remarkably similar to the occam-π version of this
process. The definition for ‘delta’ illustrates the optional ‘seq’ as it assumed that the input
and the parallel outputs happen sequentially, and both with the variable ‘v’ in scope.

2.3. Variables and Types

As can be seen in the above code, variables are declared in the usual way: a type followed by
a comma-separated list of names. Although variables must still be declared before the pro-
cess that uses them, the compiler will assume sequential execution of processes (statements)
immediately following a declaration. This permits declarations at any point inside sequential
code, that remain in-scope until the end of the block they appeared in.

The primitive types in Guppy are as they are in occam-π, but also including an 8-bit
signed integer type, explicitly unsigned integer types (uint) and types for strings and charac-
ters. These are summarised in Table 1.

While only partially supported, types in Guppy may also be parameterised. The earlier
code shows this in its channel parameters, that are of type ‘chan(int)’. Channels are a slightly
special case, since a single channel has two logical ends (the inputting end indicated with ‘?’,
and the outputting end with ‘!’). As with occam, there are no explicit pointer types, and no
uncontrolled aliasing.
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Table 1. Primitive types in Guppy.

Type Description Type Description
bool boolean true or false uint8 unsigned 8-bit integer
byte 8-bit byte uint16 unsigned 16-bit integer
int signed integer (32-bit default) uint32 unsigned 16-bit integer
int8 signed 8-bit integer uint64 unsigned 16-bit integer
int16 signed 16-bit integer real floating-point number (32-bit default)
int32 signed 32-bit integer real32 32-bit (single) floating-point number
int64 signed 64-bit integer real64 64-bit (double) floating-point number
uint unsigned integer (32-bit default) string string type (Unicode aware)
char character (Unicode aware)

2.4. Expressions, Communication and Assignment

Expressions in Guppy, as in occam-π, are required to be side-effect free. Certain exceptions
are allowed however, for programmer convenience. The semantics given to these makes ex-
plicit what the operational behaviour is as far as expression evaluation is concerned (i.e. side-
effecting expressions are only permitted in certain and well-defined situations). In a similar
way to occam-π, there is no operator precedence5, so explicit bracketing is typically required.
Unlike occam-π however, associativity is specified for arithmetic operators, so expressions
such as ‘a + b - c’ are valid (and evaluated left-to-right).

As the earlier code example shows, the syntax for channel communication is essentially
the same as in occam and occam-π. That is, a channel name, followed by ‘?’ for input or
‘!’ for output, and a list of variables or expressions respectively. Assignment is also similar
(semantically) to occam-π, and multiple assignment is permitted.

The occam-π language has a very clear distinction about the difference between a proce-
dure and a function — the latter not permitted to contain side-effects (must be deterministic),
but in most cases, is written in a very unfamiliar syntax (using a ‘VALOF ... RESULT’ expression).
The distinction in Guppy is more automatic: procedures are also functions if they do not con-
tain side-effects. To be useful, a procedure (or function) has to be able to return values. For
example:

define genseed () −> int
timer t
int v

t ? v # read current time
return (v >> 2) + 1 # ensure 1..maxint and return

end

This is a procedure that returns a single integer value. Reading the current time (as this
code does with ‘t ? v’) is considered a side-effect and thus ‘genseed()’ is not a pure function
— if it were, it could be optimised away to a constant value (in theory). Alternatively, a
function that returns two integers can be defined with:

# based on ’minimal’ standard described in "Random number generators:
# Good ones are hard to find", K.P. Park & K.W. Miller (1988),
# Comm. ACM 31(10), 1192−1201; implemented in occam by David Morse.
#
define random (val int max, seed) −> int, int
val int magic = 16807

5An exception, again for convenience, is that the two unary operators (minus and bitwise-not) do have a
higher precedence than other operators.
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val int period = 2147483647
val int quot = period / magic
val int rem = period \ magic

int hi = seed / quot
int lo = seed \ quot
int test = (magic ** lo) −− (rem ** hi)
int nseed

if
(test > 0)

nseed = test
true

nseed = test ++ period

return (nseed \ max), nseed
end

This is a pure function, in the sense that the mapping from inputs to outputs is fixed. Re-
garding arithmetic operators, the intention is for them to be checked for arithmetic overflow
(and a run-time error raised in these situations). Three non-overflowing arithmetic operators
are provided, ‘++’, ‘--’ and ‘**’. The various operators are listed in Table 2.

Table 2. Operators in Guppy.

Arithmetic: Bitwise:
- A unary minus ~ X not
A + B addition X & Y and
A - B subtraction X | Y or
A * B multiplication X >< Y exclusive or
A / B division X << Y logical shift left
A \ B remainder X >> Y logical shift right
A >>> B arithmetic shift right
A ++ B addition (no overflow) Boolean:
A -- B subtraction (no overflow) ! V not
A ** B multiplication (no overflow) V &&W and

V ||W or
Relational: V ><W exclusive or
A == B equal to
A != B not-equal Other:
A < B less-than V -> A : B if-then-else
A > B greater-than P ; Q sequence
A <= B less-than or equal P ||| Q parallel
A >= B greater-than or equal

The only operator precedence is for unary minus and bitwise not. Arithmetic, bitwise
and boolean operators are left-associative, with ‘+’ and ‘-’ being considered the same (as well
as ‘++’ and ‘--’). Other combinations of operators must be suitably bracketed.

For convenience, Guppy permits a number of side-effecting and commonly seen (in Java
and C) single-process expressions. For example:

int x = 0, y = 0

seq i = 1 for 100
y += i
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x++

Shortcuts such as ‘+=’ and ‘++’ (as a postfix operator) are merely syntactic replacements
for the complete assignments, i.e. ‘y = y + i’ and ‘x = x + 1’. They are not in themselves
expressions (instead assignment processes) so cannot be used as part of another expression.
For instance, the assignment ‘x = y++’ would be illegal.

3. New Compilers for New Languages

To explore and experiment with concurrent languages, and ultimately to develop a viable
successor to occam-π, a new compiler framework is required. Specifically one that allows
us to experiment easily: e.g. to add a new feature to the language, with its particular type,
(parallel) usage checks and code-generation. For our experiments with Guppy, and other less
well-developed languages, we are using the ‘nocc’ compiler framework6.

Nocc was originally written to be a drop-in replacement for the existing ‘occ21’ occam-π
compiler — generating Transputer bytecode from occam-π sources. This particular aspect
of the compiler is still substantially incomplete. Instead of being hard-coded to a particular
language or target architecture, nocc provides a general compiler framework in which various
source languages and/or target architectures can be supported. Part of the reason for this is to
allow experimentation with mixed-language sources, or multiple targets in code-generation
(e.g. CPU and GPU, DSP, etc.).

3.1. Do We Really Need Another Compiler?

This question has been raised several times, and related, if we do need a new compiler, in
what language should it be written? Whilst the existing (and heavily modified) ‘occ21’ com-
piler has sufficed, it is not an easy code-base to work with and is fundamentally the barrier to
further work on occam-π (including bug-fixing). Over the years there have been various ef-
forts to create new occam compilers, with varying degrees of success, and with many undoc-
umented. One of the more successful is Tock [11], written in the Haskell [12] programming
language. A longstanding alternative to the KRoC toolchain, though less developed, is pro-
vided by SPOC [13], where a mostly C compiler translates occam sources into C, with a hard-
coded deterministic scheduler. Attempts have also been made to support occam in existing
compiler frameworks, though these have met with limited success — the strict parallel-usage
and aliasing checks required can be an issue.

Being (mostly) abstract tree manipulation machines, the motivation for writing compil-
ers in high-level (and particularly functional) languages is compelling — tree-transformations
are much easier to express in high-level pattern-matching languages. But there can be draw-
backs: a large memory footprint from frequent object creation and less frequent garbage col-
lection; execution overheads of interpretation (if not compiled down to native code or just-
in-time compiled); a programming environment limited to what the language provides (par-
ticularly regarding libraries); and an extra hurdle for user adoption. Nocc has been written,
for the most part, in plain C. It makes extensive use of function-pointer containing structures,
that allow for object-oriented style behaviours (e.g. function overriding) and aspect-oriented
(e.g. code insertion) [14] ones. The advantages of using C include cross-platform support,
extensive optimisations and meaningful debugging. The disadvantages are principally a large
code-base, and general code-bulk, plus a steep learning-curve to working on the compiler —
though, we suspect, less impenetrable than the existing occam-π compiler.

6Available on Github at https://github.com/concurrency/nocc/.

https://github.com/concurrency/nocc/
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3.2. Compiler Structure

Nocc, as a compiler framework, has a fairly complex start-up procedure. The various lan-
guage and target specific parts of the compiler first ‘register’ themselves. Language defini-
tions include an amount of metadata, including the specific language version, what file-name
suffixes they associate with, and details of the language’s current maintainer. Other initial-
isation activities within the compiler include setting up the cryptographic framework (for
digital signing of compiler output) and setting up the file-system abstraction (that allows,
conveniently or dangerously, program sources to refer to other files using a URL).

Once initialised, the specified source file(s) are opened and processed by a language-
specific lexer (lexical analyser). This, as in other compilers, results in a stream of tokens. The
parser framework provided in nocc is complex (and perhaps over-engineered) but ultimately
supports a type of recursive descent parser. The grammar for a particular language is generally
not built into the compiler, but instead provided in a specific language definition file. When
the compiler initialises for a particular language, these definitions are loaded and incorporated
(along with compiled-in information about parse-tree node types and their structure). This is
examined in more detail in section 3.3.

Once a parse-tree has been successfully generated, a variety of tree-transformation
passes take place. These are broadly divided into two categories: front-end passes, that are
focused on language-specific transforms and have little or no knowledge of the particular tar-
get; and back-end passes, that have full knowledge of the target. A subset of these are shown
in Figure 2. Languages and targets themselves can add extra passes to the compiler, as well
as attach code to existing ones.

front−end back−end

source file(s)

parser

tokens

lexer

parse−trees

scope

usage−checks

type−check

fe−transform

be−transform

allocate

name−map

outputcode−gen

Figure 2. Nocc outline compiler passes.

Throughout the compiler, parse-tree nodes have the same C type, ‘tnode t’. This is a
simple structure in practice:

typedef struct {
ntdef t *tag; // node tag definition
srclocn t *org; // source location

DYNARRAY (void *, items); // subtrees, names, hooks
DYNARRAY (void *, chooks); // compiler hooks

} tnode t;

The ‘DYNARRAY’ macros are used to implement resizeable arrays in C (the macro expands into 3
variable declarations: cur and max counters, and a pointer to the array). The ‘tag’ is a unique
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pointer to a language or target provided structure that defines a particular node tag. These
‘tag’s point to more general node type structures that describe the arrangement of ‘items’ (as
the number of subtrees, names and ‘hook’ pointers contained within). A variety of functions
and macros within the compiler provide access to these (e.g. ‘tnode nthsubof(...)’). The
‘hook’ pointers allow language and target-specific code within the compiler to attach arbitrary
structures to parse-tree nodes.

The ‘org’ component of a tree node provides a reference back to a source location —
primarily for the purpose of reporting errors and warnings. The last, ‘chooks’, is an array of
compiler-hooks that are used to attach compiler-specific data structures to tree nodes (e.g. re-
lated to metadata generation or parallel-usage checks).

3.3. Language Definition and Parsing

Language definitions, that are primarily the concern of the compiler front-end, are presented
to the compiler as a collection of front-end units. Each unit is typically responsible for a
particular aspect of an input language, e.g. process constructors in Guppy. The initialisation
code for these creates the various parse-tree node types and tags within the compiler, attach-
ing locally defined (or generic) functions to them. These function calls are attached to ei-
ther compiler-operations, that implement specific handling for each pass within the compiler
(e.g. “scope-in”), or language-operations, that provide language-specific functionality within
the compiler (e.g. “get-type”). The way this is implemented also allows front-end units to in-
terfere with the way processing on other nodes is performed — usually to intercept a specific
compiler pass on a particular node type or tag, with the option of further calling the displaced
function.

As an example, the following shows a fragment of code from the Guppy process-
constructor handling file (‘frontend/guppy cnode.c’), that is responsible for handling the ‘seq’
and ‘par’ (and ‘alt’) constructs:

int i;
tndef t *tnd;
compops t *cops;

i = −1;
tnd = tnode newnodetype ("guppy:cnode", &i, 2, 0, 0, TNF LONGPROC);
cops = tnode newcompops ();
tnode setcompop (cops, "prescope", 2, COMPOPTYPE (g prescope cnode));
tnode setcompop (copy, "declify", 2, COMPOPTYPE (g declify cnode));
...
tnd−>ops = cops;

i = −1;
gup.tag SEQ = tnode newnodetag ("SEQ", &i, tnd, NTF IND PROC LIST);
i = −1;
gup.tag PAR = tnode newnodetag ("PAR", &i, tnd, NTF IND PROC LIST);

The call on line 6 to ‘tnode newnodetype’ creates a new parse-tree node type within the com-
piler, specifying the number of sub-trees (2), names (0) and hooks (0). The flag ‘TNF LONGPROC’
is used to instruct the higher-level parser to expect an indented list of processes next. The
calls on lines 8 and 9 attach local functions to node-type definition, that will be called during
the appropriate compiler pass (e.g. pre-scoping). The last few lines of code create the actual
parse-tree node tags, that are stored away in a language-specific global structure (‘gup’).

In addition to the various front-end units, languages must provide a lexer and parser. The
lexers for all languages currently supported are individually coded within the compiler. Nocc
provides an amount of support for keyword and symbol matching however.
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The parsers for nearly all input languages in nocc utilise a generic DFA parser within the
compiler. In the majority of cases, a specific language-definition file describes named DFA
state transition rules, with reductions described as code for an abstract stack machine (that can
manipulate a token-stack, node-stack and create new parse-tree nodes, amongst other things).
These files are read, and parsed, as part of the language-specific initialisation. Although this
will happen each time the compiler is run, it is sufficiently fast as not to cause any perceivable
delay.

The main reason for implementing parsing this way is to allow for easy experimentation
with language syntax and structure. It also gives language implementations a great deal of
control over the way parsing is handled (at the expense of having to describe a language
as DFA state transitions). Language definitions can also describe parsing structures in BNF
where that is more convenient, relevant in particular to lists of things.

As an example, the following shows a fragment of Guppy’s language definition file
(‘addons/guppy.ldef’) that is responsible for parsing channel-output:

.SECTION "guppy−io"

.GRULE "gup:outputreduce" "SN0N+N+V0C[OUTPUT]3R−"

.TABLE "guppy:output ::= [ 0 guppy:name 1 ] [ 1 @@! 2 ]"
"[ 2 guppy:expr 3 ] [ 3 {<gup:outputreduce>} −* ]"

The particular DFA rule for parsing an output (‘guppy:output’) is described as a name
followed by the ‘!’ symbol and an expression. The reduction rule ‘gup:outputreduce’ com-
bines the parsed name and expression into a new ‘OUTPUT’ node and makes this the ‘result’ of
the output parse. For more complex parsing or reductions, language definitions can refer to
named functions within the compiler (that are registered on language initialisation).

3.4. Code Generation for C and CCSP

After the last step in the front-end of the compiler, the parse-tree is assumed to be correct
(i.e. represents a valid program with respect to types, parallel-usage, aliasing, etc.). By this
point, a specific code-generation target should be known. Languages specify by default what
architecture to target, though this can be changed. Importantly, the linkage between an input
language and a particular target architecture for code-generation is handled on the language
side, meaning languages (specifically front-end units) need to be aware of target specifics
regarding back-end processing, but targets need not be aware of their source languages.

The back-end (target) used for Guppy, named “CCCSP”, generates C code to interface
with the existing CCSP run-time system [8] using a version of the CIF (“C interface”) API.
The run-time (via the API) is expected to handle all aspects of process scheduling and com-
munication (including support for event choice through the ‘alt’ language construct). The
API calls themselves are similar in name and structure to the original Transputer C API, ex-
cept that all C processes generated by the compiler (nocc) carry around an explicit workspace
parameter that points to the concurrent process context, separate from the C (and architec-
tural) stack-pointer.

The CCCSP back-end supports two architecture sub-targets. One specifically for the
standard 32-bit Linux environment, using the existing CCSP scheduler, and one specifically
for the LEGO® EV3. The overall code-generation for a C target is not particularly complex
— more or less a case of translating Guppy procedures into C functions that call into the
run-time API where needed. Certain parts of the language, the ‘par’ construct in particular,
have a non-trivial equivalent in C — i.e. allocating and initialising the various sub-processes,
scheduling them, then waiting for them to terminate.
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3.5. Stack Sizing for C Processes

One issue associated with fine-grained concurrent programming in C, in general, is the issue
of unbounded (or unknown) stack sizes. Stacks are expected to be contiguous blocks of (vir-
tual) memory, allocated at the point the process (or thread) is created, and used for local vari-
ables and the call stack. In ordinary threaded C programming this is not generally an issue:
virtual memory is large (especially on 64-bit platforms) and the number of threads is small
(< 100). With user-level (lightweight) threads, scheduled on single cores or across multiple
cores (with multiple run-time threads scheduling these), stack-sizing is generally left to the
programmer (and usually overly generous — e.g. plenty of room for future dependent library
updates).

Generating code for the CIF API, the CCCSP back-end still needs to specify the stack-
size required for processes and allocate this. Fortunately, recent versions of ‘gcc’ (since ver-
sion 4.6, March 2011) include an option, ‘-fstack-usage’, that causes the compiler to emit
stack-usage information to a .su file. This is done on a per-function basis, where the resulting
output looks something like:

armccsp_if.h:209:21:MAlloc 40 static

test_g62.c:68:27:GuppyStringInit 24 static

test_g62.c:388:6:gproc_test_g62 24 static

test_g62.c:394:6:gproc_guppy_main 456 static

test_g62.c:415:5:main 24 static

The first column identifies the particular function and where it is defined; the second
column gives the required stack-frame size, in bytes; and the third column a usage qualifier
(for our purposes we are only considering those “static” or “dynamic,bounded”, in both cases
indicating the function stack size’s upper limit). The stack size given does not include param-
eters, nor the stack required by any other functions called from this one. A main function that
calls ‘printf()’, e.g. hello world, will have a small fixed stack requirement — 32 bytes, even
though ‘printf’ may require much more.

Once the resulting C file has been compiled (with incorrect/incomplete allocation within
the generated code) the generated .su file is read back in, and the allocation and code-
generation passes re-run. This is illustrated in Figure 3. In addition to the particular source’s
.su file, other stack-usage information is read in: those of language-specific libraries, and a
separate file (‘api-call-chain-ev3’) that specifies the call-chain for kernel (and library) API
calls. The ‘cc-compile’ pass will also (re-)compile the language-specific libraries (API and
kernel interface) as needed.

The ‘cc-sfi’ pass calculates the stack-size required (in total) for each function generated
by the compiler (nocc). This is, at most, the stack size required for the function, plus the
maximum of the stack size for any functions called, including interaction with the run-time
API. Once calculated, the previously reserved memories for parallel process workspaces and
stacks are re-allocated, the C code re-generated and re-compiled.

Where parallel processes are involved, the compiler will aim to allocate the stacks for
these statically (that it can do in most cases) by declaring explicit arrays to hold these, be-
coming part of the containing process’s stack. As an example of this, and of the C code gen-
erated by nocc, the parallel delta shown on page 5 (that, each cycle, creates and shuts-down
two parallel subprocesses) is coded as follows:

void gproc tmp 1 086fa280 (Workspace wptr3)
{

Channel* out0 = ProcGetParam (wptr3, 0, Channel*);
int* v = ProcGetParam (wptr3, 1, int*);
ChanOut (wptr3, out0, v, 4);
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cc−compile

cc−sfi

reallocate

re−codegen

code−genallocate

prog.su

prog.c guppy_cccsp_lib.c, ...

cc−recompile

prog.oprog.su

prog.o

guppy_cccsp_lib.su, ... guppy_cccsp_lib.o

api−call−chain−ev3

libccsp.so

a.outgcc −fstack−usage ... linker

gcc −fstack−usage ...gcc −fstack−usage ...

prog.c

prog.xlo

Figure 3. CCCSP back-end passes for stack sizing and the standard library.

}

void gproc tmp 2 087094d0 (Workspace wptr4)
{

Channel* out1 = ProcGetParam (wptr4, 0, Channel*);
int* v = ProcGetParam (wptr4, 1, int*);
ChanOut (wptr4, out1, v, 4);

}

void gcf delta (Workspace wptr5, Channel* in,
Channel* out0, Channel* out1)

{
while (1) { {

int v;
ChanIn (wptr5, in, &v, 4);
{

Workspace wptr6;
Workspace wptr7;
word ws8[WORKSPACE SIZE(2,25)];
word ws9[WORKSPACE SIZE(2,25)];

wptr6 = LightProcInit (wptr5, ws8, 2, 25);
ProcParam (wptr5, wptr6, 0, out0);
ProcParam (wptr5, wptr6, 1, &v);
wptr7 = LightProcInit (wptr5, ws9, 2, 25);
ProcParam (wptr5, wptr7, 0, out1);
ProcParam (wptr5, wptr7, 1, &v);
ProcPar (wptr5, 2, wptr6, gproc tmp 1 086fa280,

wptr7, gproc tmp 2 087094d0);
}

} }
}
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The first two (slightly oddly named) functions represent the two parallel sub-processes.
As with all launched parallel processes, the function parameters must be collected via the
workspace (using ‘ProcGetParam’). Whilst this makes parameter handling a bit more cumber-
some (as they must be set and gotten explicitly) it avoids the need to handle anything other
than a single parameter when scheduling a parallel process for the first time. Different archi-
tectures and compilers handle parameter passing in different ways, usually using both reg-
isters and the stack, that can get awkward — though manageable — when interfacing from
assembly.

4. Lightweight Scheduling on the LEGO® EV3

The standard CCSP run-time system currently only supports Intel IA32 (x86) based architec-
tures, although other architectures were supported (to varying degrees) prior to the integra-
tion of multicore scheduling support. This is largely due to the assembly code within it, part
of which is used to interface occam-π with the run-time, and part of which is contained in the
various algorithms that implement the multi-threaded (multicore) work-stealing scheduler,
channel communication, etc. Porting this to the ARM9 architecture (used in the LEGO®
EV3) would be possible, but since this is a single-core device, perhaps excessive. There have
been previous CSP-style run-time systems developed for the StrongARM [15], but these are
comparatively old (1998) — and for a quite different ARM microprocessor.

The specific scheduler developed for the EV3’s ARM9 processor has been engineered
for simplicity (more than execution efficiency in some aspects). The current run-time, imple-
mented almost entirely in C with some inline assembler (for switching between the Guppy
and the run-time), weighs in at a little under 2,000 lines of code7, but is incomplete — no
support for process priority and little optimisation for performance. I.e. the current imple-
mentation represents a worst case in terms of performance, though it is adequate.

Each process incorporates a workspace descriptor that contains the state of the
(lightweight) process. For the Transputer, and the derivative engineered into the KRoC
occam-π system, this ‘descriptor’ (scheduler state) is only used as and when needed. For the
EV3 run-time, this state is fairly extensive, and contributes to a lot of the memory overhead
of processes:

typedef struct TAG ccsp pws {
struct TAG ccsp sched *sched; /* link to scheduler */
void *stack; /* process stack pointer */
void *raddr; /* process return address */

void *stack base; /* process stack (base) */
uint32 t stack size; /* stack size (in bytes) */
struct TAG ccsp pws *link; /* link to next process */
void *pointer; /* to data (I/O) or ALT state */
uint32 t priofinity;
struct TAG ccsp pws *tlink; /* next link on timer queue */
int timeout; /* timeout (absolute time) */

void *pbar; /* termination barrier */
void *iproc; /* address of initial process */
int nparams;
uint32 t params[MAXPARAMS];

} attribute ((packed)) ccsp pws t;

7This includes support for simple round-robin process scheduling, channel communication (including ‘alt’s)
and timeouts.



F.R.M. Barnes / Guppy on Embedded Devices 15

This structure is at present dynamically allocated each time a new process is created
(by calling ‘LightProcInit’) and with ‘MAXPARAMS’ set at 16 requires 29 words of memory —
plus the overhead of the run-time kernel’s standard memory allocator (2 words typically). For
short-lived parallel processes, this is a significant overhead, in a situation where the mem-
ory for this structure could be statically allocated (at the bottom of the process’s stack, for
instance). For the time being, there is a debugging benefit to having these separate from the
process stacks.

4.1. Interfacing with the Run-Time System

The interface from the generated code to the run-time system is via a modified version of
the CIF API [16], that itself was based on the Transputer C API [17]. A single C header
file ‘cif.h’ is exported by the run-time system that provides this API — either through pre-
processor macros, ‘extern’ declarations for functions in the run-time itself, or as inlined C
functions.

Since Guppy processes operate in their own (fixed size and allocated) C stack, entry to
the run-time system must switch stacks (this will happen whenever a process is descheduled
due to timeout or communication, for instance). This stack switching activity, and call into
the run-time itself, is handled within the run-time provided interface. When the run-time
schedules a Guppy process, the reverse happens — the stack is switched back to the process’s
own stack.

To avoid issues relating to the passing of multiple parameters, the majority of run-time
calls go via a single entry routine, ‘ccsp entry’. This expects three parameters: a pointer
to the workspace of the calling process (that also contains the state needed to resume it),
an integer kernel-call identifier, and a pointer to an array of parameters. Thus, when the
generated code needs to call into the run-time, the various arguments are collected into an
array, and unpacked again on the other side (when in the run-time kernel stack context). A
constant table describing the various kernel calls, with pointers to functions that implement
them, is defined in the run-time’s ‘kernel.c’ — along with ‘ccsp entry’, that looks up the call
in the table and invokes it. This entry mechanism has some overhead and is a good candidate
for later optimisation.

As an example, the channel output call ‘ChanOut’ is implemented as an inlined function,
provided by the run-time (via ‘cif.h’):

static inline void ChanOut (Workspace p, Channel *c,
const void *ptr, const int bytes)

{
void *dargs[4] = {(void *)p, (void *)c, (void *)ptr, (void *)bytes};
int call = CALL CHANOUT;

ENTER KERNEL (p, call, dargs);
}

The macro ‘ENTER KERNEL’ contains the inline assembler that switches stacks and performs the
actual call into the run-time:

#define ENTER KERNEL(p,c,a) do {
asm volatile (" \n"

" mov r0, %0 \n"
" add r3, r0, #4 @ r3 = &(p−>stack) \n"
" push {lr} @ save link−register \n"
" str sp, [r3, #0] @ p−>stack = sp \n"
" add r3, r0, #8 @ r3 = &(p−>raddr) \n"
" adr r2, 0f \n"
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" str r2, [r3, #0] @ p−>raddr = label 0 \n"
" \n"
" ldr r2, [r0, #0] @ r2 = (p−>sched) \n"
" ldr r3, [r2, #0] @ r3 = p−>sched−>stack \n"
" mov sp, r3 @ switch stacks \n"
" mov r1, %1 \n"
" mov r2, %2 \n"
" bl ccsp entry(PLT) \n"
"0: \n"
" @ note: when we get back\n"
" @ r0 = process−desc \n"
" add r3, r0, #4 @ r3 = &(p−>stack) \n"
" ldr r1, [r3, #0] @ r1 = p−>stack \n"
" mov sp, r1 @ switch back \n"
" pop {lr} @ restore link−register \n"
" \n"
: : "r" (p), "r" (c), "r" (a)
: "memory", "cc", "r0", "r1", "r2", "r3");

} while (0)

A similar (though smaller) macro is used to switch back from the C run-time into the
Guppy (or other lightweight) process. That particular piece of code simply jumps to the
address setup in the assembler block above (label ‘0:’) where the stack switch takes place.

4.2. Interfacing with LEGO® Devices

The “ev3dev” (ev3dev.org) open-source software provides a Debian-based Linux distribu-
tion for the LEGO® EV3. The specific platform drivers for the LEGO® motors and sen-
sors are exposed to applications via ‘/sys’ (and in the current version of the drivers, only
via /sys). The device naming scheme used is a little verbose, but done in a way that
allows the device-tree to be searched easily. For instance, a standard LEGO® EV3 (or
NXT) motor connected to port “outB” can be controlled by writing to files in the direc-
tory ‘/sys/class/tacho-motor/motorNN/’, where the number ‘NN’ is a kernel-assigned counter
— incremented for each motor that is (re-)connected. One of the files in this directory
(‘port name’) yields the physical port name associated with the motor; other files (when read
or written) extract settings/values and/or control the motor in various ways. The specific de-
tails are less important, and well-documented on the ‘ev3dev’ site.

A collection of C functions is used to interact with LEGO® devices (motors and sen-
sors) that present a more convenient abstraction then direct manipulation of files in ‘/sys’,
e.g. “make the motor on port A go forwards at 50% power”. This code also handles the is-
sue of mapping physical port names into logical motor numbers, that is straightforward but
verbose. In order to call these C functions from Guppy, external declarations are made in a
compiler-shipped header file (‘guppy ev3lib.gpi’). Such declarations provide a general way
of interfacing with C code from within Guppy, similar to the external code calling mechanism
in KRoC [18]. For example:

@external "guppy"
"define ev3 mot on fwd (val ev3 outp p, val int pwr) −> bool = −1"

The type ‘ev3 outp’ is an enumerated type with specific values attached to identifiers such as
‘PORT A’. The integer specified at the end of the external declaration represents the amount of
stack space required. The constant −1 indicates that the actual stack requirements must be
provided elsewhere (typically the API call-chain file). For general external code calling, this
must be specific, and accurate. The actual C function called must match how nocc transforms
this prototype, in the case of the above:

http://ev3dev.org/
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void gcf ev3 mot on fwd (Workspace wptr, int *result,
int port, int power)

{
ExternalCallN (igcf ev3 mot on, 3, result, port, power);

}

As is evident, this simply calls through to another C function ‘igcf ev3 mot on’, passing it 3
parameters. The macro/function ‘ExternalCallN’ (part of the CIF API [16]) is used to call a
function using the run-time system’s stack. Despite the overhead of the extra call and stack
switch, this potentially saves on memory — not reserving space in the calling process’s stack.
The file manipulation involved, in this particular function has a relatively large stack require-
ment (kilobytes as opposed to tens of bytes). On a standard PC, with large amounts of paged
virtual memory, this is not typically an issue. However, the LEGO® MINDSTORMS® EV3
has only 64 MiB of RAM, and typically around 20–30 MiB available in general use8. The
swap-space, if available at all, would typically be on the installed SSD (flash-memory) card
— thus, its use should be avoided where possible.

5. The Dining Philosophers

As a proof-of-concept, the classic Dining Philosophers problem (reformulated by Hoare from
Dijkstra’s original), has been built in LEGO® and programmed in Guppy. Due to the right-
angled nature of LEGO® construction, and the fact there are only 4 output ports on the
LEGO® EV3, this version of the program has just 4 philosophers and 4 forks. Figure 4 shows
the process network, alongside the LEGO® model.

phil (0)

fork (0)

security

motor (A)

phil (1)

fork (1)

phil (2)

fork (2)

phil (3)

fork (3)

motor (D)

motor (C) motor (B)

Figure 4. Dining-philosophers using the LEGO® EV3.

The operation of the ‘phil’, ‘fork’ and ‘security’ processes is as expected: the forks
are essentially mutual-exclusion semaphores (can be ‘held’ by one of the connected philoso-
phers at a time) and the philosophers cycle through states of thinking, hungry and eating. Be-
fore eating, the philosopher must sit-down then acquire both forks. The security process pre-
vents more than 3 philosophers sitting down simultaneously, avoiding the potential deadlock
where each philosopher has one fork and waits for the other (forever). The ‘fork’ processes
are also connected to ‘motor’ processes, that drive the actual LEGO® motors (and thus the
forks). The interactions between the various processes are more extensive than normal, but
only for appropriate synchronisation with the physical system (Guppy does not yet support
the extended-rendezvous that would mitigate the need for this additional explicit synchroni-
sation).

8More memory can be made available by removing/disabling services such as SSH, bluetooth, etc. and/or
minimising the kernel configuration.
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6. Conclusions and Further Work

This paper has touched on language design, compiler frameworks and run-time system im-
plementation. A short-term aim, to demonstrate a proof-of-concept of process-oriented pro-
gramming on the LEGO® MINDSTORMS® EV3, has achieved successfully. The long-term
objective is to develop a replacement language for occam-π, with the same occam-π/CSP
philosophies. This is on-going; Section 2 gives an (incomplete) overview of the language, but
whether or not the final version looks the same (syntax), or what additional features might
be added, is still open to suggestion: we are experimenting. The compiler framework used
(Section 3) has been specifically engineered to enable language experimentation. This does
not mean that it is straightforward to work with, but offers a reasonable trade-off between
flexibility and performance.

The EV3 (and ARM9) specific run-time, Section 4, is functional though incomplete —
it supports around half of the CIF API calls (compared to the CCSP occam-π run-time).
However, this is sufficient in the short-term to work with the LEGO® EV3. One (presently)
lacking aspect is handling sensor input with the EV3. A polling solution would be trivial
to add (external C function calls) but is not efficient and incurs latency. The better (wait /
interrupt) solution requires the use of blocking system calls (handled in a separate OS thread)
that have not yet been implemented.

6.1. Performance

Table 3 shows comparative figures for the ‘commstime’ micro-benchmark. In terms of ex-
ecution performance, the EV3 run-time described here clearly performs less well than the
CCSP run-time. This is not unexpected, since very little effort has been spent optimising the
EV3 run-time. The EV3’s ARM CPU runs an order of magnitude slower than the typical
PC (300 MHz vs. 3 GHz) but sub-microsecond context switch times should be attainable.
The high cost of the parallel-delta in Guppy is due to the high cost of process creation and
destruction, currently involving dynamic allocation and freeing of the process descriptor —
this is considerably higher for the EV3 run-time (almost 19 microseconds).

Table 3. Micro-benchmark results for Guppy and the EV3 run-time (approximate).

Guppy occam-π
Benchmark PC EV3 PC
commstime par-delta context-switch (ns) 67 12,900 21
commstime seq-delta context-switch (ns) 41 3,500 13
commstime process start-stop (ns) 184 18,800 64
commstime process size (bytes) 1652 1508 496

In terms of memory occupancy, Guppy is comparable with occam-π, requiring approxi-
mately 3–4 times the space for this particular benchmark. This demonstrates how much more
compact the existing occam-π toolchain is in terms of memory-allocation. A lot of the Guppy
memory overhead is the process descriptor, requiring 116 bytes per process currently.

6.2. Current State and Future Directions

This paper has discussed lots of starts, but few ends, and much is still incomplete. The state
of the implementation of Guppy within the ‘nocc’ compiler framework is best described
as work-in-progress. Little has been implemented beyond what is required for the dining-
philosophers, the commstime benchmark and other simple test programs. This includes a
general lack of parallel-usage, aliasing and other semantic checks (though these are currently
under development) — at the moment, programs are required to be semantically correct.
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Other lacking language elements include arrays, records (partially supported), type pa-
rameters, structured protocol definitions and exception handling. The C code generator in
nocc (‘cccsp’) does not yet perform arithmetic overflow checking correctly, and support for
types other than integer or string is limited.

By comparison, the EV3 run-time is in a better state, being functionally half complete.
Once functionally complete (in terms of the API required by compiled Guppy programs) the
focus will shift towards optimisation.

6.3. Source Code and Documentation

The ‘nocc’ compiler framework and EV3 run-time can be obtained from Github:
https://github.com/concurrency/nocc

https://github.com/concurrency/kroc/tree/master/runtime/armccsp

Some documentation on ‘nocc’ can be found at:
https://www.cs.kent.ac.uk/research/groups/plas/wiki/NOCC/
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