1,066 research outputs found

    Ceramic Sensors for Wireless High-Temperature Sensing

    Get PDF
    A RF resonator for sensing a physical or environmental parameter includes a substrate having a substrate surface. A polymer-derived ceramic (PDC) element is positioned on or within the substrate surface. The RF resonator has a resonant frequency that changes as a function of the physical or environmental parameter. A system for wirelessely sensing at least one physical or environmental parameter includes at least one RF resonator and a wireless RF reader located remotely from the RF resonator first transmitting a wide-band RF interrogation signal that excites the RF resonator. The wireless RF reader detects a sensing signal retransmitted by the RF resonator and includes a processor for determining the physical or environmental parameter at the location of the RF resonator from the sensing signal

    Antenna integration for wireless and sensing applications

    Get PDF
    As integrated circuits become smaller in size, antenna design has become the size limiting factor for RF front ends. The size reduction of an antenna is limited due to tradeoffs between its size and its performance. Thus, combining antenna designs with other system components can reutilize parts of the system and significantly reduce its overall size. The biggest challenge is in minimizing the interference between the antenna and other components so that the radiation performance is not compromised. This is especially true for antenna arrays where the radiation pattern is important. Antenna size reduction is also desired for wireless sensors where the devices need to be unnoticeable to the subjects being monitored. In addition to reducing the interference between components, the environmental effect on the antenna needs to be considered based on sensors' deployment. This dissertation focuses on solving the two challenges: 1) designing compact multi-frequency arrays that maintain directive radiation across their operating bands and 2) developing integrated antennas for sensors that are protected against hazardous environmental conditions. The first part of the dissertation addresses various multi-frequency directive antennas arrays that can be used for base stations, aerospace/satellite applications. A cognitive radio base station antenna that maintains a consistent radiation pattern across the operating frequencies is introduced. This is followed by multi-frequency phased array designs that emphasize light-weight and compactness for aerospace applications. The size and weight of the antenna element is reduced by using paper-based electronics and internal cavity structures. The second part of the dissertation addresses antenna designs for sensor systems such as wireless sensor networks and RFID-based sensors. Solar cell integrated antennas for wireless sensor nodes are introduced to overcome the mechanical weakness posed by conventional monopole designs. This can significantly improve the sturdiness of the sensor from environmental hazards. The dissertation also introduces RFID-based strain sensors as a low-cost solution to massive sensor deployments. With an antenna acting as both the sensing device as well as the communication medium, the cost of an RFID sensor is dramatically reduced. Sensors' strain sensitivities are measured and theoretically derived. Their environmental sensitivities are also investigated to calibrate them for real world applications.Ph.D.Committee Chair: Tentzeris, Emmanouil; Committee Member: Akyildiz, Ian; Committee Member: Allen, Mark; Committee Member: Naishadham, Krishna; Committee Member: Peterson, Andrew; Committee Member: Wang, Yan

    Passive Wireless Temperature Sensing in Extreme Harsh Environments

    Get PDF
    As the technology in the elds of aerospace and the US power generation industry advances, there is a critical need for new extreme high temperature sensing / monitoring technologies to replace the current out-of-date sensing systems. As the operating temperatures of these jet and turbine engines continue to rise over 1000 C, it is vitally important to monitor the extreme high temperatures in these engines for system health monitoring and to achieve greater engine eciencies. We propose a new passive wireless temperature sensor capable of sensing these extreme high temperatures. The sensor uses an LC resonance circuit to measure the temperature through passive wireless communications. A new novel method of capturing large quantities of frequency information from the sensor is proposed and allows for advanced signal processing methods form other applications areas like wireless communi- cations, radar, and radio astronomy to be implemented. The passive wireless LC resonance high temperature sensor was successfully able to sense temperatures up to 700 C

    Performance optimization of lateral-mode thin-film piezoelectric-on-substrate resonant systems

    Get PDF
    The main focus of this dissertation is to characterize and improve the performance of thin-film piezoelectric-on-substrate (TPoS) lateral-mode resonators and filters. TPoS is a class of piezoelectric MEMS devices which benefits from the high coupling coefficient of the piezoelectric transduction mechanism while taking advantage of superior acoustic properties of a substrate. The use of lateral-mode TPoS designs allows for fabrication of dispersed-frequency filters on a single substrate, thus significantly reducing the size and manufacturing cost of devices. TPoS filters also offer a lower temperature coefficient of frequency, and better power handling capability compared to rival technologies all in a very small footprint. Design and fabrication process of the TPoS devices is discussed. Both silicon and diamond substrates are utilized for fabrication of TPoS devices and results are compared. Specifically, the superior acoustic properties of nanocrystalline diamond in scaling the frequency and energy density of the resonators is highlighted in comparison with silicon. The performance of TPoS devices in a variety of applications is reported. These applications include lateral-mode TPoS filters with record low IL values (as low as 2dB) and fractional bandwidth up to 1%, impedance transformers, very low phase noise oscillators, and passive wireless temperature sensors

    Flexible Strain Detection Using Surface Acoustic Waves: Fabrication and Tests

    Get PDF
    Over the last couple of decades, smart transducers based on piezoelectric materials have been used as sensors in a wide range of structural health monitoring applications. Among them, a Surface Acoustic Wave sensor (SAW) offers an overwhelming advantage over other commercial sensing technologies due to its passive, small size, fast response time, cost-effectiveness, and wireless capabilities. Development of SAW sensors allows investigation of their potential not only for measuring less-time dependent parameters, such as pressure and temperature, but also dynamic parameters like mechanical strains. The objective of this study is to develop a passive flexible SAW sensor with optimized piezoelectric properties that can detect and measure mechanical strains occurred in aerospace structures. This research consists of two phases. First, a flexible thin SAW substrate fabrication using hot-press made of polyvinylidene fluoride (PVDF) as a polymer matrix, with lead zirconate titanate (PZT), calcium copper titanate (CCTO), and carbon nanotubes (CNTs) as micro and nanofillers’ structural, thermal and electrical properties are investigated. Piezoelectric property measurements are carried out for different filler combinations to optimize the suitable materials, examining flexibility and favorable characteristics. Electromechanical properties are enhanced through a noncontact corona poling technique, resulting in effective electrical coupling. Second, the two-port interdigital transducers (IDTs) deposition made of conductive paste onto the fabricated substrate through additive manufacturing is studied. Design parameters of SAW IDTs are optimized using a second-order transmission matrix approach. An RF input signal excites IDTs and generates Rayleigh waves that propagate through the delay line. By analyzing the changes in wave characteristics, such as frequency shift and phase response, the developed passive strain sensor can measure mechanical strains

    Metamaterials Application in Sensing

    Get PDF
    Metamaterials are artificial media structured on a size scale smaller than wavelength of external stimuli, and they can exhibit a strong localization and enhancement of fields, which may provide novel tools to significantly enhance the sensitivity and resolution of sensors, and open new degrees of freedom in sensing design aspect. This paper mainly presents the recent progress concerning metamaterials-based sensing, and detailedly reviews the principle, detecting process and sensitivity of three distinct types of sensors based on metamaterials, as well as their challenges and prospects. Moreover, the design guidelines for each sensor and its performance are compared and summarized

    Design and fabrication of a MEMS passive pressure sensor

    Get PDF
    Micro-ElectroMechanical Systems is an inter-disciplinary technology field that has seen considerable growth over the years. It utilizes conventional semiconductor fabrication process flow as well as novel micro-fabrication techniques to create highly integrated ElectroMechanical systems such as sensors, actuators, switches, pumps and other devices with a wide range of industrial applications. By providing the capability of creating System-On-A-Chip, MEMS technology offers the prospect of highly sophisticated and integrated systems that are very low cost. The purpose of this project is to design, fabricate, and test a MEMS based, passive pressure sensor as a proof of concept targeted at possible remote sensing applications. For the targeted applications, purely passive sensor is a better alternative to sensors involving active circuitry, since it removes much of the design complexities from the sensor, and no battery is needed. Information such as technology selection, analysis of the sensor\u27s response to pressure, and detailed fabrication process flow will be presented. Results from laboratory testing will also be presented

    Passively-coded embedded microwave sensors for materials characterization and structural health monitoring (SHM)

    Get PDF
    Monitoring and maintaining civil, space, and aerospace infrastructure is an ongoing critical problem facing our nation. As new complex materials and structures, such as multilayer composites and inflatable habitats, become ubiquitous, performing inspection of their structural integrity becomes even more challenging. Thus, novel nondestructive testing (NDT) methods are needed. Chipless RFID is a relatively new technology that has the potential to address these needs. Chipless RFID tags have the advantage of being wireless and passive, meaning that they do not require a power source or an electronic chip. They can also be used in a variety of sensing applications including monitoring temperature, strain, moisture, and permittivity. However, these tags have yet to be used as embedded sensors. By embedding chipless RFID tags in materials, materials characterization can be performed via multi-bit sensing; that is, looking at how the multi-bit code assigned to the response of the tag changes as a function of material. This thesis develops this method through both simulation and measurement. In doing so, a new coding method and tag design are developed to better support this technique. Furthermore, inkjet-printing is explored as a manufacturing method for these tags and various measurement methods for tags including radar cross-section and microwave thermography are explored --Abstract, page iii

    Hydraulic Pressure Ripple Energy Harvesting: Structures, Materials, and Applications

    Get PDF
    The need for wireless condition monitoring and control of hydraulic systems in an autonomous and battery-free manner is attracting increasing attention in an effort to provide improved sensing functionality, monitoring of system health, and to avoid catastrophic failures. The potential to harvest energy from hydraulic pressure ripples and noise is particularly attractive since they inherently have a high energy intensity, which is associated with the hydraulic mean pressure and flow rate. This paper presents a comprehensive overview of the state of the art in hydraulic pressure energy harvesting, which includes the fundamentals of pressure ripples in hydraulic systems, the choice of electroactive materials and device structures, and the influence of the fluid–mechanical interface. In addition, novel approaches for improving the harvested energy and potential applications for the technology are discussed, and future research directions are proposed and outlined
    • …
    corecore