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ABSTRACT 

Monitoring and maintaining civil, space, and aerospace infrastructure is an 

ongoing critical problem facing our nation. As new complex materials and structures, 

such as multilayer composites and inflatable habitats, become ubiquitous, performing 

inspection of their structural integrity becomes even more challenging. Thus, novel 

nondestructive testing (NDT) methods are needed. Chipless RFID is a relatively new 

technology that has the potential to address these needs. Chipless RFID tags have the 

advantage of being wireless and passive, meaning that they do not require a power source 

or an electronic chip. They can also be used in a variety of sensing applications including 

monitoring temperature, strain, moisture, and permittivity.  However, these tags have yet 

to be used as embedded sensors. By embedding chipless RFID tags in materials, 

materials characterization can be performed via multi-bit sensing; that is, looking at how 

the multi-bit code assigned to the response of the tag changes as a function of material. 

This thesis develops this method through both simulation and measurement. In doing so, 

a new coding method and tag design are developed to better support this technique.  

Furthermore, inkjet-printing is explored as a manufacturing method for these tags and 

various measurement methods for tags including radar cross-section and microwave 

thermography are explored.  
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1. INTRODUCTION 

1.1. PROBLEM STATEMENT 

Monitoring and maintaining civil, space, and aerospace infrastructure is an 

ongoing critical problem facing our nation. As new complex materials and structures, 

such as multilayer composites and inflatable habitats, become ubiquitous, performing 

inspection of their structural integrity becomes even more challenging. Thus, novel 

nondestructive testing (NDT) methods are needed that can effectively address a multitude 

of needs, such as being low cost, broadly applicable, and user friendly [1-5]. This work 

seeks to address this through the development of miniaturized embedded wireless passive 

microwave sensors for materials characterization and structural health monitoring 

(SHM). Specifically, this work is in the field of chipless radio frequency identification 

(RFID) and lays the foundation for a new way to perform materials characterization. 

1.2. BACKGROUND 

1.2.1. Overview of Chipless RFID.  RFID is a growing technology with a wide 

variety of applications. As a technology, RFID is a method for retrieving data through 

electromagnetic transmissions. An RFID system typically consists of a tag and a reader. 

In a traditional system, the tag contains a unique ID number as well as memory that can 

store additional information. The reader is then able to read or write data to the tags  

through wireless transmission [6, 7]. This technology was mainly developed for the 

purpose of object tracking and management, but has also been adapted to other 

applications by integrating sensors into the RFID tags and by using different types of tags 

[7-9]. Tags can be active, semi-active, passive, and chipless. Active tags have a battery 
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and an integrated circuit (IC) that stores their information, while semi-active tags rely on 

RF energy from the reader to activate the tag which is then battery powered. Passive tags 

have similar functionality to active and semi-active tags, but they are fully powered by 

RF energy from the reader. Lastly, chipless tags are tags that do not have a power source 

and do not have an IC. Instead, their information is “stored” in their structure, in the 

sense that they produce a frequency response that is dependent on their physical 

geometry after they are interrogated with an electromagnetic wave [7, 10-12]. Chipless 

RFID is a relatively new field, with the first tag report in 2007. However, the field has 

been growing rapidly due to the low cost and versatile nature of chipless tags [13]. Over 

the last decade there have been many developments within the field, especially in the tag 

characteristic aspects of this technology. More specifically, these developments have 

been primarily in the areas of tag architectures, encoding methods, fabrication methods, 

metrics, and applications.  

1.2.1.1. Chipless RFID tag architectures.  Chipless RFID tags typically  

fall into one of three architectural categories: time-domain, frequency-domain, or spatial-

domain. In all cases a binary code is assigned to the response of the tag. This code is then 

used for identification or occasionally in a sensing modality. When using time-domain 

tags, a pulse is sent to the tag and the backscattered signal is analyzed. The received data 

is often filtered and time-gated to isolate the antenna mode from the structural mode. 

Then, the shape and time of occurrence of response signatures are analyzed to extract the 

code of the tag [14-16].    

Frequency-domain tags, also sometimes referred to as spectral-based tags, have 

their response as a function of frequency. Typically, this response is in terms of radar 
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cross-section (RCS) vs. frequency (in dBsm) or the log magnitude plot of a scattering 

parameter (S11 or S21) (in dB). Within the frequency-based tag category, there are two 

main sub-categories: Tx/Rx and backscatter tags. Tx/Rx tags contain two antennas that 

are cross-polarized with respect to each other and then a collection of resonators between 

the antennas that create notches in the response. These resonators are often spiral  

 

 

Figure 1.1. Tx/Rx frequency-based tag [17]. 

 

resonators, but open loop and hairpin resonators have also been used [17-22]. A 

configuration of this type of tag is shown in Figure 1.1.   

In backscatter tags, the geometry of the tag causes it to scatter in a specific way 

when it is interrogated with an electromagnetic wave, creating a specific frequency 

response. To create these tags, a variety of resonators such as, slots, rings, spirals, U-

shaped, and C-shaped, can be used. These resonators can be used individually or 

combined in order to engineer different tag responses [23-27]. Figure 1.2 shows an 

example of a backscatter frequency-based tag from [23] and Figure 1.3 shows an RCS vs. 

frequency response for the tag in Figure 1.2.  
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Figure 1.2. Backscatter frequency-based tag [23].  

 

The tag in Figure 1.2 is associated with the red curve in Figure 1.3. As can be 

seen from Figure 1.3, there are 4 notches in the response in the 6 to 15 GHz frequency 

range. Each of these notches corresponds to one of the circular slot resonators of the tag, 

with the slot with the largest radius being associated with the lowest resonant frequency 

notch in the response [23].  

 

 

Figure 1.3. RCS vs. frequency response for tag in Figure 1.2 [23]. 

 

Spatial-based tags rely on imaging methods to measure them. They consist of a 

collection of conductive features on a dielectric substrate. These conductive features can 

be depolarizing, but are not always, and are typically lines or meander lines spaced based 

on the resolution of the imaging system. The image that is created then has a binary code 

assigned to it. This tag type has the benefit of being easier to use at higher frequencies.  
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However, it requires a more complicated reader system than time-domain or frequency-

domain based tags. Additionally, spatial-based tags are limited by the resolution of the 

reader system and are thus difficult to achieve high bit density (the number of bits in the 

binary code per cm2 of tag area) with [28]. Figure 1.4 shows an example of a spatial 

based tag.  

 

 

Figure 1.4. Spatial-based chipless RFID tag [28]. 

 

Given the relative simplicity and versatility of frequency-based tags, they are the 

most popular type of tag and have been used in this work. Consequently, the subsequent 

background sections focus on additional aspects of frequency-based chipless RFID tags. 

1.2.1.2. Response encoding methods.   As previously mentioned, a binary  

code is often assigned to the spectral response of the frequency-based tags. This binary 

code can be assigned in a variety of ways including the following:   

 Method 1: notches are 1s, removing a notch shortens the code [19]. 

 Method 2: notches are 1s, removing a notch adds a 0 to the code [23]. 

 Method 3: notches are 1s, elsewhere are 0s [17, 29]. 
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 Method 4: Frequency Shift Encoding (FSE) – bit sequences are assigned 

to each notch depending on its position state. Position states refer to the 

user defined set of resonant frequencies a notch can have in a response. 

The assigned bit sequences are concatenated together [30-32]. This 

method is illustrated in Figure 1.5. 

 Method 5: extends Method 3 by adding error-correcting Golay, BCH, or 

majority-rule based codes [33]. 

 Method 6: applies FSE to both amplitude and phase data. This is often 

referred to as a hybrid coding scheme [27].  

 Method 7: Extends FSE to exploit the width of notches. Wider notches are 

associated with more bits than narrower notches [34]. 

 

 

Figure 1.5.  Illustration of FSE coding method [32]. 
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A new coding method based off of Method 7, will be discussed in Section 3. This 

coding method has been specifically designed with embedded chipless RFID for 

materials characterization in mind. Many of these coding methods are subject to user bias 

(i.e., two code assigners using the same method will not always produce the same 

results). The effects of which coding method is selected and how it is implemented are 

seen in the calculation of tag metrics and thus affect how tags are compared to each other. 

Which coding method is used in practice is dependent on the application, tag design, and 

in many cases user preference. 

1.2.1.3. Tag metrics.    A variety of metrics have been developed for  

chipless RFID. The primary metrics used are bit density, coding capacity, data capacity, 

and spectral bit density. These metrics are usually only used for ID applications and not 

sensing applications due to codes typically not being assigned to sensing based tags. 

However, when tags are used for sensing applications, measurand sensitivity has also 

been used as a metric.  

 Bit density is the number of bits in the binary code of a tag per cm2 of tag area. 

The number of bits is dependent on the coding method used. Thus, a tag can have a range 

of bit densities. This makes it difficult to directly compare reported bit densities of tags.  

Coding capacity is another metric that suffers from a similar coding method dependency, 

while also having multiple reported definitions.   

The first definition refers to coding capacity as it relates to the number of total 

combinations, which is mathematically expressed as:  

2𝐶 = 𝑇      (1) 
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In Equation (1) C is the coding capacity and T is the total number of code combinations. 

T can be determined by multiplying the number of possible positions for each resonance 

(i.e., multiplying the number of possible defined positions for the first notch in the 

frequency response by the number of possible positions for the second notch in the 

response and so on). Equation (1) can be rearranged to get the following expression for 

coding capacity:  

𝐶 =
log (𝑇)

log (2)
     (2) 

The definition in Equation (2) takes into account the multiple positions a notch can take 

in the frequency response of a tag (see Figure 1.5), but is also dependent on how the code 

generator determines what constitutes a different position for a resonance [35].  

 The second definition of coding capacity simply provides the total number of 

possible combinations for the code. It can be expressed as: 

𝐶 = 2𝑛      (3) 

In Equation (3), n, refers to the number of bits in the code [36]. This definition is the 

simplest to calculate of those provided and provides insight into how many unique IDs a 

tag design can possess, which succinctly describes capability of the tag for ID 

applications.  

 The third definition of coding capacity involves cases where Method 4 for 

response coding is used. This definition incorporates the number of resonators, the 

bandwidth used for the tag response, and the average bandwidth of the notches in the 

response to determine the coding capacity. This definition can be expressed as follows:  

C = log2 (
𝑓

∆𝑓
)

𝑛

     (4) 
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In Equation (4), f, represents the bandwidth of the tag response, Δf represents the 

frequency difference between two coding locations in the response, n represents the 

number of resonances, and C again represents the coding capacity. This definition is 

dependent on using coding Method 4 and cannot easily be extended to scenarios where 

other coding methods are used [30].  

 A fourth definition divides the tag response bandwidth by the number of positions 

a single resonance in the spectral response of the tag can take. In this sense, coding 

capacity is the maximum possible number of resonances that could be achieved using a 

collection of a single resonator type within a certain bandwidth. The context in which this 

definition was proposed is a scenario where a coding method similar to that of Method 4 

was used [31]. 

 Data density and spectral density are less commonly used metrics than bit density 

and coding capacity. In the cases where data density has been used, it has been referred to 

as the number of bits in the code [37]. This definition does not take into account the size 

of the tag as bit density does or the bandwidth usage as some definitions of coding 

capacity do. It is, however, still highly dependent on the code generation method used, 

similar to the previously-presented bit density and coding capacity definitions. Spectral 

density, is similarly dependent on the coding method and is the number of bits in the code 

per bandwidth needed for encoding [38]. All four of these metrics were designed for 

measuring the suitability of a tag for ID applications and therefore are not typically used 

for sensing-based tags.  

 As previously mentioned, in sensing applications measurand sensitivity is 

sometimes used as a metric for tags. Sensitivity is how significantly a measured 
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parameter changes as a function of the parameter being sensed. An example of this is 

how drastically a measured voltage changes as a function of temperature for a 

temperature sensor. This metric provides insight into how small of changes in the sensing 

parameter a sensor can detect. It can also provide the user with useful information as to 

what ranges of the sensing parameter are best measured [39].  All five of these metrics 

along with new proposed metrics will be further discussed in Section 4.  

1.2.1.4. Tag fabrication methods.  Tags are often made as printed circuit  

boards (PCBs) or through photolithography processes. Inkjet-printing with conductive 

ink has also garnered interest as a method for tag fabrication due to its cost effectiveness 

and quick production features. It is believed that in order for chipless RFID to become 

ubiquitous, tags will need to be manufactured extremely inexpensively through inkjet-

printing [37, 40-45]. Inkjet printing and its practicality for embedded chipless RFID will 

be discussed further in Section 6. 

Additional fabrication methods include, Flexography, gravure printing, screen 

printing, micro-contact printing, transfer printing, and nano-imprinting [46-49].  With all 

of the printing methods previously mentioned, the substrate can be a chemical interactive 

material (CIM). By making the substrate a CIM, chipless tags can easily be turned into 

sensors [50]. An additional manufacturing method involves using direct thermal transfer 

of conductive ribbon to a substrate. This can be done with a SATO printer [37]. 

1.2.1.5. Examples of tag applications.  The primary applications of  

chipless RFID are identification and sensing. In ID applications, the goal is to create a tag 

that essentially performs the function of a barcode, but with greater security. Thus, ID 

applications desire tags with high bit densities and large coding capacities so that more 
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items can have unique IDs [12, 25]. In order to provide insight into the state of the 

chipless RFID tag field in terms of tags for ID applications, Table 1.1 shows a variety of 

tags that have been reported. The table is in chronological order of published date to 

shows the evolution of this technology.    

 

Table 1.1. Chipless RFID tags for ID applications. 

Tag Application Coding 

Method 

Frequency 

(GHz) 

Bit 

Density 

(bits/cm2) 

Year Ref. 

 

 

ID N/A 6.9 – 7.9 N/A 2007 [13] 

 

 

ID 2 1.9 – 2.6 No tag 

size 

given 

2008 [17] 

 

 

ID 2 3 - 7 0.61 2009 [51] 

 

 

ID 2 20 - 40 6.49 2011 [18] 

 

 

ID 6 2 - 7 2.86 2011 [27] 
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Table 1.1. Chipless RFID tags for ID applications (cont.). 

Tag Application Coding 

Method 

Frequency 

(GHz) 

Bit 

Density 

(bits/cm2) 

Year Ref. 

 

 

ID 2 2 - 4 1.14 2012 [52] 

 

 

ID 2 6-15 4.19 2012 [23] 

 

 

ID 4 3 - 9 2.5 2012 [25] 

 

 

ID 2 2 - 8 0.56 2013 [26] 
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Table 1.1. Chipless RFID tags for ID applications (cont.). 

Tag Application Coding 

Method 

Frequency 

(GHz) 

Bit 

Density 

(bits/cm2) 

Year Ref. 

 

ID 2 4 - 10 1.04 2014 [53] 

 

 

ID 4 3.1 – 7.6 No Code 

Assigned 

2015

6 

[31] 

 

 

ID 4 17 – 27 28.57 2016 [32] 

 

 
 

ID 2 3 – 10 4.23  2016 [54] 

 

 

ID 4 3 – 9 3.56 2016 [35] 
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Table 1.1. Chipless RFID tags for ID applications (cont.). 

Tag Application Coding 

Method 

Frequency 

(GHz) 

Bit 

Density 

(bits/cm2) 

Year Ref. 

 

 

ID 2 2 - 4 1.14 2016 [55] 

 

 

ID N/A 4 - 11 No Code 

Assigned 

2016 [56] 

 

 

ID 4 8 – 14 19 2017 [57] 

 

 

ID 2 1.8 – 3.6 1.77 2017 [58] 
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Table 1.1. Chipless RFID tags for ID applications (cont.). 

Tag Application Coding 

Method 

Frequency 

(GHz) 

Bit 

Density 

(bits/cm2) 

Year Ref. 

 

 

ID 2 8 - 20 5.71 2017 [24] 

 

 

ID 2 5 - 19 5.76 2017 [59] 

 

 

ID 2 4.6 – 14.6 9.03 2017 [60] 

 

 

ID 2 3.3 – 5.8 No tag 

size 

given 

2017 [20] 

 

 

ID 2 1 – 5 No tag 

size 

given 

2017 [61] 
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Table 1.1. Chipless RFID tags for ID applications (cont.). 

Tag Application Coding 

Method 

Frequency 

(GHz) 

Bit 

Density 

(bits/cm2) 

Year Ref. 

 

 

ID 2 2.5 – 5.5 1.25 2017 [36] 

 

 

ID 4 4 – 9.5 No code 

given 

2017 [30] 

 

 

ID 2 3.1 – 3.9 0.56 2017 [62] 

 

 

ID 2 2 – 5 1.11 2017 [21] 

 

 

 



 

 

17 

Table 1.1. Chipless RFID tags for ID applications (cont.). 

Tag Application Coding 

Method 
Frequency 

(GHz) 
Bit 

Density 

(bits/cm2) 

Year Ref. 

 

 

ID 2 1.9 – 7.1 2.78 2017 [63] 

 

 

ID 2 3.1 - 10 2.11 2018 [64] 

 

 

ID 2 2 – 10 0.64 2018 [65] 

 

ID 4 2 – 5.5 No Code 

Given 

2018 [66] 

 

 

ID 1 0.85 – 1 0.028 2018 [67] 
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Table 1.1. Chipless RFID tags for ID applications (cont.). 

Tag Application Coding 

Method 

Frequency 

(GHz) 

Bit 

Density 

(bits/cm2) 

Year Ref. 

 

 

ID 2 6.1 – 6.6 1.771 2018 [68] 

 

 

ID 2 3 - 8 5.13 2018 [69] 

 

 

ID 2 1.8 - 3.6 0.7 2018 [38] 

 

 

ID 2 3 - 6 2 2019 [70] 

 

As can be seen, the highest reported bit density found is 28.57 bits/cm2. However, it is 

worth noting that this tag only has two notches in its response and by virtue of using 

FSE-based encoding, achieves a 4 bit code with a small tag area [32]. Methods 2 and 4 
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are the most common coding mechanisms, but the frequency ranges used to encode the 

information vary widely from tag to tag. 

Chipless RFID tags can also be used as sensors. In these cases, the response 

changes as a function of a sensing parameter. An example of this is a humidity sensor in 

which the notches in the response shift as a function of the relative humidity [50].  The 

magnitude of a singular notch in the response has also been used to indicate changes in a 

sensing parameter [71]. In regards to SHM, strain, displacement, rotation, cracks, 

corrosion, and dielectric properties have been sensed with chipless RFID [71-76]. 

Sensing based tags tend to not have codes associated with them and therefore do not 

typically have bit densities. Table 1.2 provides an overview of the reported chipless RFID 

tags for sensing. As can be seen, the frequency range used for interrogating the tag varies 

widely and so do the parameters being sensed.  

 

Table 1.2. Chipless RFID tags for sensing applications. 

Tag Application Coding 

Method 

Frequency 

(GHz) 

Bit 

Density 

(bits/cm2) 

Year Ref. 

 

 

Gas Sensor N/A 0.6 - 1 N/A 2009 [77] 

 

 

Surface Crack 

Sensor 

N/A 1 – 4 N/A 2012 [78] 
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Table 1.2. Chipless RFID tags for sensing applications (cont.). 

Tag Application Coding 

Method 

Frequency 

(GHz) 

Bit 

Density 

(bits/cm2) 

Year Ref. 

 

 

Strain and 

Crack Sensing 

N/A 2.3 – 2.5 N/A 2014 [73] 

 

 

Dielectric 

Property 

Sensor 

N/A 0.9225  N/A 2015 [79] 

 

 

Strain Sensor N/A 2.2 – 2.7 N/A 2015 [72] 

 

 

Dielectric 

Property 

Sensor 

N/A 3.1 – 5.6 N/A 2015 [16] 

 

 

Permittivity 

Sensor 

N/A 1 - 6 N/A 2016 [80] 

 

 

Permittivity 

Sensor 

N/A 0.9225 N/A 2016 [81] 
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Table 1.2. Chipless RFID tags for sensing applications (cont.). 

Tag Application Coding 

Method 

Frequency 

(GHz) 

Bit 

Density 

(bits/cm2) 

Year Ref. 

 

 

Corrosion 

Sensor 

N/A 0.5 – 3  N/A 2016 [76] 

 

 

 

Rotation 

Sensor 

N/A 3 – 6 N/A 2017 [75] 

 

 

 

Temperature 

Sensor 

N/A 3.6 – 5.6 N/A 2017 [82] 

 

 

Humidity 

Sensor 

2 4 – 14 5.54 2017 [83] 

 

 

Resistance 

sensor 

N/A 1.8 - 3 N/A 2017 [84] 

 

 

Angular 

Velocity 

Sensor 

2 3.3 – 4.5 No tag 

size 

given 

2017 [15] 
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Table 1.2. Chipless RFID tags for sensing applications (cont.). 

Tag Application Coding 

Method 

Frequency 

(GHz) 

Bit 

Density 

(bits/cm2) 

Year Ref. 

 

 

Displacement 

Sensor 

N/A 2 - 8 N/A 2017 [74] 

 

 

Humidity 

Sensor 

N/A 2 - 9 N/A 2017 [50] 

 

 

Dielectric 

Property 

Sensing 

 

N/A 3.5 – 4.5 N/A 2018 [71] 

 

 

Pressure 

Sensor 

N/A 20 - 23 N/A 2018 [85] 

 

 

Dielectric 

Property 

Sensor 

N/A 1 - 6 N/A 2018 [86] 

 

 

Salt Water 

Concentration 

Sensor 

N/A 3.5 – 3.6 N/A 2018 [87] 
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Some chipless RFID tags combine ID and sensing functionality. In these cases, a 

sensing bit is added to the ID tag to account for the effect of the material the tag is 

attached to, or ID bits are added to a sensing tag to distinguish multiple sensing tags from 

each other [19, 52, 88-91]. These combinational cases are less common than cases where 

the tag is designed for a singular application. Tags of this type are shown in Table 1.3.   

 

Table 1.3. Chipless RFID tags with dual sensing and ID capabilities. 

Tag Application Coding 

Method 

Frequency 

(GHz) 

Bit 

Density 

(bits/cm2) 

Year Ref. 

 

 

Rotation 

Sensing and 

ID 

4 3.4 – 7.1 0.67 2012 [91] 

 

 

Permittivity 

Sensor with 

ID bit 

N/A 1.4 - 6 N/A 2012 [88] 

 

 

ID with 

Sensing Bits 

2 2 – 4 1.14 2012 [52] 

 

 

ID with 

Sensing Bit 

1 1.5 – 3.5 0.13 2016 [19] 
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Table 1.3. Chipless RFID tags with dual sensing and ID capabilities (cont.). 

Tag Application Coding 

Method 

Frequency 

(GHz) 

Bit 

Density 

(bits/cm2) 

Year Ref. 

 

 

Humidity 

Sensor with 

ID Bits 

4 4 – 7.5 2.67 2018 [89] 

 

 

Metal Crack 

Sensor with 

ID Bits 

1 2 – 6 No tag 

size 

given 

2018 [90] 

 

1.2.2. Materials Characterization Overview.  For the applications being 

considered, materials characterization involves determining the dielectric properties of 

the material (assuming non-magnetic materials). At microwave frequencies, dielectric 

materials are characterized by their complex dielectric constant. When the dielectric 

constant is referenced to free-space it is referred to as the relative dielectric constant. The 

relative dielectric constant can be expressed as follows: 

휀𝑟 = 휀𝑟
′ − 𝑗휀𝑟

′′     (5) 

For this intrinsic electrical property, the real part (relative permittivity) in Equation 6,  휀𝑟
′ , 

represents the ability of the material to store microwave energy, while the imaginary part 

(loss factor),  휀𝑟
′′, represents how well the material absorbs microwave energy [92]. The 

loss tangent, tanδ, is another quantity used to describe material properties [93]. It can be 

expressed as follows: 
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𝑡𝑎𝑛𝛿 =
𝜀𝑟

′′

𝜀𝑟
′      (6) 

 There are a variety of methods to determine dielectric properties of materials 

including: open-ended waveguide, loaded waveguide, modulated scatterer technique, 

loaded transmission lines, coaxial probes, ring resonators, and co-planar waveguides. 

Each method has its own advantages and drawbacks depending on the geometry of the 

material under test (MUT), accuracy needed, and ability to manipulate (i.e., cut or 

destroy) the sample [1, 2, 94-101]. As can be seen from Tables 1.2 and 1.3, there are also 

a variety of chipless RFID tags that have been designed to sense dielectric properties. All 

of these tags look at changes in a singular resonance in the response in terms of both 

resonance frequency shift and change in magnitude [16, 71, 79-81, 86, 88, 102]. In 

practice, this requires very careful measurements so that results are properly associated 

with the correct dielectric properties of the material. Additionally, manufacturing errors 

which cause changes in resonant characteristics can lead to incorrect sensor results. 

Therefore, by moving to a multi-resonant response and looking at changes in the binary 

code of the tag as a function of material rather than a single resonance, greater sensing 

capabilities can be achieved. This will be shown in Section 2 and then further explored in 

Sections 3, 4, and 5.  

1.3. OBJECTIVES    

This work seeks to utilize chipless RFID in order to perform embedded 

microwave materials characterization by associating a multi-bit binary code with 

material properties. This goal involves developing an embedded tag measurement 

methodology, examining coding mechanisms, designing new tags optimized for this 
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application, investigating manufacturing methods for the tags, and finally performing 

measurements to show the utility of this novel NDT technique. In doing so, 

contributions will be made to the fields of chipless RFID and NDT in the areas 

discussed in Sections 1.2.1.1 to 1.2.2 of this introduction. To accomplish this, first a 

proof-of-concept was conducted as this technique has never been explored before. This 

is presented in Section 2. Next, a coding method and a tag design methodology were 

developed. These are presented in Sections 3 and 4, respectively.  In Section 5, a tag 

designed for embedded materials characterization that can also be used for ID 

applications is presented. Section 6 then looks at inkjet-printing as a means of 

fabricating chipless RFID tags. Section 7 looks at measurement methods for tags both 

in free space and embedded in materials, and lastly, Section 8 provides a summary of 

the work as well as future work.  
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2. EMBEDDED CHIPLESS RFID PROOF OF CONCEPT 

2.1. PREMISE 

There is an ever growing need for new and innovative sensing technologies for  

SHM that are easily deployable, inexpensive, minimally invasive, and user friendly. 

Embedded sensors can meet this need and chipless RFID sensors are one such technology 

that has the potential to greatly add to the microwave embedded sensor “toolbox.”  Yet, 

prior to this work, embedding chipless RFID tags in order to perform materials 

characterization has not previously been explored. To this end, a proof of concept of this 

novel approach to materials characterization was conducted. Simulations utilizing a tag 

previously presented in [23] are used to show the utility of this method. Then, a modified 

version of the tag was fabricated and measured to corroborate the simulation results.  The 

results in this section were previously presented in [103]. 

2.2. SIMULATION RESULTS 

To begin, a tag from [23] was modeled in CST Microwave Studio® as is shown 

in Figure 2.1. The tag consists of a TLX-9 low loss substrate disk (휀𝑟
′ = 2.5, 𝑡𝑎𝑛𝛿 =

0.0019) of thickness 0.5 mm and radius 9 mm with 8 circular slot resonators etched onto 

the top conductor. The tag design does not include a ground plane. Then, a monostatic 

RCS simulation was conducted using linearly polarized plane-wave excitation in the 1-

20GHz frequency range and an RCS probe placed 100 mm in front of the tag in free 

space. The free space RCS vs. frequency response is shown in Figure 2.2 with the RCS 

expressed in decibels per square meter (dBsm). With the reference response established, 

the tag was then embedded in a lossless material with 휀𝑟 = 4 and the simulation setup 
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Figure 2.1. 8 circular slot resonator tag model. 

 

 

Figure 2.2. Free space RCS vs. frequency response of 8 circular slot resonator tag. 

 

used previously was used again with the tag, plane-wave, and probe inside the material in 

order to isolate the effect of the material on the tag response. Figure 2.3 shows the 

response of the embedded tag. As can be seen, there is a clear down shift in frequency of 

the response as compared to Figure 2.2 – the first notch in Figure 2.2 moves from ~6 
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GHz to ~4.5 GHz in Figure 2.3. This can be explained by the wavelength in the material, 

𝜆𝑚𝑎𝑡, being smaller than it is in free space by a factor of 1/√휀𝑟, which makes  

the tag appear electrically larger and operate at lower frequencies. This illustrates how a 

change in response could then be associated with the properties of the material that the 

tag is embedded in.  

 

 

Figure 2.3. Response of tag embedded in a material of 휀𝑟
′ = 4. 

 

To further understand this phenomena, another simulation was conducted. For this 

case, the tag was scaled to half of its original size and then again embedded in a material 

with 휀𝑟 = 4.  In this case, the response of this simulation was expected to be similar to 

that of the free space response shown in Figure 2.2. However, Figure 2.4 shows that this 

is not the case. There is a difference between the two responses and this difference is 

believed to be attributed to the effective permittivity between the tag substrate and the 

embedding material. These initial results show the effect of a change in permittivity on 
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the response of the tag, confirming that the response is a function of the material the tag 

is embedded in.  

 

 
Figure 2.4. Comparison of tag in free-space and half size tag in material of 휀𝑟

′ = 4. 

 

To further this investigation, the effect of loss on the response was also examined 

via simulation. First, the tag was embedded in materials with dielectric properties that 

resemble those of ceramics which are low loss. The results in Figure 2.5 show how small 

amounts of loss affect the response: there is a slight distortion of the response especially 

at higher frequencies. Next, another case where the permittivity was held constant while 

the loss increased was simulated. The results of this simulations, shown in Figure 2.6 

show that as loss is increased, the response of the tag experiences greater distortion and 

reduction in the magnitude of the notches in the response.  

All of these changes in response as a function of the material the tag is embedded 

in, would cause a change in the binary code that would be associated with the response.   

These changes in code could then be correlated back to the material properties. With the 



 

 

31 

initial proof of concept complete through simulation, a tag was then manufactured and 

measured to corroborate the simulation results.  

 

 

Figure 2.5. Response of tag in low loss materials. 

 

 

Figure 2.6. Response of tag as loss is increased.  
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2.3. MEASUREMENT RESULTS 

To provide further evidence for the utility of this method, a tag was fabricated and  

then measured. The fabricated tag was made larger than the original design so that it 

could be milled in the Missouri S&T ECE Department Machine Shop and it was 

fabricated on Rogers 4003C.   The manufactured tag was 36 mm in diameter with 4 

circular slot resonators of 0.8 mm width. Only 4 resonators were used rather than 8 due to 

manufacturing limitations. Due to its larger size, the tag operates at lower frequencies (2 - 

5 GHz) than the tag presented in Section 2.2. The CST model of the tag and fabricated 

tag are shown in Figure 2.7 and the simulated free-space RCS response of the tag is 

shown in Figure 2.8. Figure 2.8 was created through an RCS simulation with plane-wave 

excitation and RCS probe, like was done in Section 2.2 above.  

 

 

 Figure 2.7. Tag for embedded measurement proof of concept. a) CST Microwave 

Studio® model. b) Manufactured tag.  

 

a b 
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 The tag was measured in both air and embedded in different materials at different 

depths. The materials used were sand (휀𝑟
′ ≅ 2.5 − 3) and wet sand for easy embedding 

with large differences in dielectric properties. For measuring the tag, an S-band (2.6 – 

3.95 GHz) waveguide was used to measure S11 with an HP8510 vector network analyzer 

(VNA). S11 was measured rather than RCS because it is a simpler measurement to 

perform and produces similar results to RCS. To show this, the S11 of the tag was 

simulated using a plane-wave excitation to allow for the full frequency range to be 

simulated. To create a plane-wave, the boundaries were set in simulation so that the sides 

of the bounding box normal to the x-axis have Et = 0 and the sides normal to the y-axis 

have Ht = 0. These boundary conditions force a TEM wave to propagate from the 

waveguide port that is put in front of the tag. This simulation setup is shown in Figure 2.9 

and the results are shown in Figure 2.10. As can be seen, the result in Figure 2.10 is very 

similar to the RCS simulation in Figure 2.8.  

To examine the effect of using a waveguide rather than an ideal plane-wave (i.e., 

the physical measurement setup) to interrogate the tag, a third simulation was conducted 

with the waveguide exciting the tag. This simulation setup is shown in Figure 2.11 and 

the results are shown in Figure 2.12. In Figure 2.12, the strange behavior from 1-2 GHz 

can be attributed to this frequency range being below the cutoff frequency of the 

waveguide so there is no propagation at these frequencies. The three simulations are 

compared in Figure 2.13 with the RCS simulation normalized to make comparison easier. 

From Figure 2.13, it can be seen that all three cases produce fairly similar results with the 

waveguide simulation response being slightly downshifted in frequency from the others. 
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These results provide justification for measuring S11 rather than performing the more 

complex RCS measurement.  

 

 

Figure 2.8. Free-space RCS response of tag from Figure 2.7. 

 

 

Figure 2.9. Plane-wave S11 simulation setup.  
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Figure 2.10. Simulated plane-wave S11 result of the tag.  

 

 

Figure 2.11. Waveguide S11 simulation setup. 
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Figure 2.12. Simulated waveguide S11 result of the tag. 

 

 

Figure 2.13. Comparison of RCS and S11 simulation results.  

 

All measurements were performed with the waveguide kept stationary and 

pointing into a box lined with microwave absorbers. A box of the embedding material 
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was then placed inside this setup to perform the embedded measurements. In the cases of 

both the embedded and air measurements, the tag was kept the same distance from the 

waveguide aperture (6cm when the tag was on top of the material). The measurement 

setup is shown in Figure 2.14.  

 

 

Figure 2.14. Measurement setup for embedded tag measurements. 

 

 For making the measurements, the material the tag was to be embedded in was 

first measured without the tag. Then, the tag was measured embedded in the materials at 

depths of 0cm (i.e., on top of the material), 1cm, and 2cm due to S11 measurements being 

distance dependent. For each material and depth, multiple measurements were performed 

and results were averaged to remove some of the measurement inconsistencies. The 

response of just the material was then subtracted from the response of the tag in the 
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material. The processed measurement results (i.e., results with material response 

subtracted) of the tag being embedded in sand and wet sand at different depths are shown 

in Figures 2.15 and 2.16, respectively. Due to the tag not having a ground plane, a 

difference can be seen between the results for different materials even when the tag is 

placed on top of the material rather than embedded inside. 

 

 

Figure 2.15. Processed measurement results of tag embedded in sand. 

 

Figure 2.17 shows a comparison of the processed measurement results for the tag 

in air, sand, and wet sand for an embedding depth of 1cm. As can be seen, the responses 

for the three materials are different. If a binary code were to be assigned to these 

responses, the different codes could then be associated to the properties of the different 

materials. 
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Figure 2.16. Processed measurement results of tag embedded in wet sand.  

 

 

Figure 2.17. Comparison of measurement results for tag embedded in materials. 
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2.4. DISCUSSION 

Through simulation and measurement, the utility of the proposed technique for  

materials characterization was shown. It was demonstrated that the response of the tag 

changes as a function of the material by shifting in frequency, compressing, and 

distorting. These response changes can then be translated into binary codes that could 

then be associated with the embedding material’s properties. 
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3. CODING METHOD DEVELOPMENT 

3.1. MOTIVATION 

In Section 1.2.1.2, seven different coding methods were presented. However,  

these coding methods were designed for use in ID applications where the response 

changes in a very predictable manner and so, these methods are not ideal for sensing 

applications. When performing materials characterization by embedding chipless RFID 

tags, the response of the tag shifts, compresses, and distorts as a function of the material 

in which it is embedded in. Therefore, in order to perform dielectric property sensing by 

using a code associated with the response of the tag, this code needs to be sufficiently 

sensitive to reflect small changes in the response. To this end, a new coding method was 

developed. This method was previously presented in [103].  

3.2. CODING METHOD 

By taking into consideration the benefits and limitations of the current coding  

methods, a new coding method has been developed. This new coding method can be used 

for both RCS and S11 measurements and can capture small changes in the response, like 

those that occur when performing embedded tag measurements. The proposed coding 

method, illustrated in Figure 3.1 for the response of the tag used in Section 2.2, is as 

follows: 

I. Use the “normalized” version of the free-space response of the tag, as the 

reference response. A portion of this response is shown in Figure 3.1 for 

illustration purposes. 



 

 

42 

II. Establish a threshold based on the tag’s reference response. For this tag the 

threshold is set at -5dB. This is depicted by the red horizontal line in Figure 3.1 

which illustrates the basic approach.  

III. Identify intersection points (P1 and P2 on Figure 3.1) between the response and 

the threshold for the narrowest peak or notch, to set the frequency window 

width. 

Frequency Window Width = Frequency [(P2) – (P1)]  (7)  

IV. Divide the frequency spectrum of the response from left to right into windows 

with the established window width. The dashed vertical lines in Figure 3.1 

show the window divisions. 

V. Consider the amount of the RCS signal above and below the threshold in each 

window to assign 1s and 0s to the code. A ‘1’ is assigned to a window if the 

signal is primarily above the threshold (i.e., when the signal is moved up in 

magnitude so the threshold is at 0 dB, integration of the signal over the window 

produces a positive result). A ‘0’ is assigned to a window if the signal is 

primarily below the threshold. The assignments are shown at the top of each 

window in Figure 3.1.  

VI. Concatenate the binary values of the windows to form the full code. 

 

One thing to note about this coding method is that whether the narrowest notch or  

peak is used is dependent on the reference response and the sensing resolution needed. In 

general, using the narrowest notch will produce smaller windows and therefore longer 

codes. This coding method creates codes that tend to be longer than those produced by 
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other coding methods, but also provides a mechanism to capture small changes in the 

response. The following section provides examples of this coding method in use.  

 

 

Figure 3.1. Illustration of proposed coding method.  

 

3.3. IMPLEMENTATION OF CODING METHOD 

To show the utility of this coding method, it is applied to the 8 slot tag  

presented in Section 2. The tag has the encoded normalized RCS vs. frequency response 

shown below in Figure 3.2. Using the proposed coding method and coding the full 1 – 20 

GHz response, it has the following 55 bit code:  

[0000000000000011110101010010011001111000000000000000011] 

The extra bandwidth before the first resonance of the reference response is utilized in 

generating the code so that when the tag is embedded in a material and the response 

shifts, that shift is captured in the code. Figure 3.3 shows the encoded response for the 8 
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slot tag when it is embedded in a material of 휀𝑟 = 4. Table 3.1 shows codes for the 8 slot 

tag in a variety of embedding materials with different permittivities. Bit differences 

between the reference and the embedded responses are highlighted and tabulated in the 

Table.  

 

 

Figure 3.2. Encoded response of 8 slot tag in free-space.  

 

Table 3.1. Codes for different embedding materials permittivities for 8 slot tag. 

Dielectric 

Constant 

Code Bit Difference to 

Reference 

휀𝑟 = 1 0000000000000011110101010010011001111000000000000000011 N/A 

휀𝑟 = 2 0000000000111001010101101001110000000000111111111111111 29 

휀𝑟 = 3 0000000011100100101001001100000000001111111111111111111 34 

휀𝑟 = 4 0000000111000100000100100000000000011111111111111111111 32 

휀𝑟 = 5 0000000110000000000000000000000000011111111111111111111 30 

휀𝑟 = 6 0000001100000000000000000000000000011111111111111111111 30 

휀𝑟 = 7 0000001000000000000000000000000000011111111111111111111 29 

휀𝑟 = 8 0000000000000000000000000000000000011111111111111111111 28 
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Figure 3.3. Encoded response for 8 slot tag in a material of 휀𝑟 = 4. 

 

By examining Table 3.1, it can be seen that the number of bit differences does not 

change drastically as permittivity is varied, but the locations of the bit differences do 

change in each case. As the permittivity increases, not as much variation is seen in the 

first half of the code. This is due to the normalized response causing a majority of the 

notches to be below the threshold. This is shown in Figure 3.4. This could mean that 

there is a limit to what range of permittivities this technique can determine or that a more 

limited bandwidth needs to be considered in order to address this normalization issue. 

Figure 3.5 shows the response for the tag when it is embedded in a material with 휀𝑟 = 8 

and only 1 - 16 GHz is used rather than 1 - 20 GHz. As illustrated, the normalized 

response in Figure 3.5 contains more peaks above the threshold than that in Figure 3.4. 

Because of these results, Table 3.3 was constructed that shows the codes for the same tag 

when 1 – 16 GHz is considered rather than 1 – 20 GHz. This limited bandwidth produces 

43 bit codes that tend to have more bit differences from the entries above and below them 
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in Table 3.3. This means that material properties could be more accurately sensed with 

shorter codes by using less bandwidth. Another method for achieving higher sensing 

accuracy would be to use the narrowest notch in terms of 3dB bandwidth to set the 

window width rather than the narrowest peak. This would provide a finer coding 

resolution and could possibly allow for better capturing of smaller changes in material 

properties at the cost of longer codes.  

These factors along with the expected needed sensing range (i.e., what range of 

dielectric constants could potentially need to be measured) need to be balanced when 

selecting a tag to be used for this method and the interrogation bandwidth of the reader 

for that tag. This coding method can then be adjusted to be optimal for the scenario at 

hand.  

 

 

Figure 3.4. Encoded response for 8 slot tag in a material of 휀𝑟 = 8. 
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Table 3.2. Codes for different embedding material loss factors for 8 slot tag. 

Dielectric 

Constant 

Code Bit 

Diff. 

to 

Ref. 

Bit 

diff to 

Er=4. 

휀𝑟 = 1 0000000000000011110101010010011001111000000000000000011 0 N/A 

휀𝑟 = 4 0000000111000100000100100000000000011111111111111111111 32 0 

휀𝑟 = 4 − 𝑗0.004 0000000111000010100001000000000000111111111111111111111 27 7 

휀𝑟 = 4 − 𝑗0.04 0000000111000010100001000000000011111111111111111111111 27 9 

휀𝑟 = 4 − 𝑗0.4 0000001111110000000001000000000000000000000000000000000 21 27 

 

 

 

Figure 3.5. Encoded response for 8 slot tag in a material of 휀𝑟 = 8 with limited 

bandwidth. 
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Table 3.3. Codes for different embedding materials permittivities for 8 slot tag with 

limited interrogation bandwidth. 

Dielectric 

Constant 

Code Bit Difference to 

Reference 

휀𝑟 = 1 0000000000000011110101010010011001111000000 N/A 

휀𝑟 = 1.5 0000000000011111001000010011001110000000000 16 

휀𝑟 = 2 0000000000111001010101101001110000000000111 19 

휀𝑟 = 2.5 0000000001110010010010110011000000000011111 21 

휀𝑟 = 3 0000000011100100101001001100000000011111111 23 

휀𝑟 = 3.5 0000000111100001010110011000000001111111111 18 

휀𝑟 = 4 0000000111000000100101100000000011111111111 18 

휀𝑟 = 4.5 0000001110001001001011000000001111111111111 21 

휀𝑟 = 5 0000001110000101010110000000011111111111111 18 

휀𝑟 = 5.5 0000001100000010100100000000011111111111111 15 

휀𝑟 = 6 0000011100001000001000000000111111111111111 22 

휀𝑟 = 6.5 0000011100000101001000000000111111111111111 21 

휀𝑟 = 7 0000011000000000010000000000111111111111111 18 

휀𝑟 = 7.5 0000011000000010000000000000111111111111111 18 

휀𝑟 = 8 0000011000000000100000000000111111111111111 18 

 

3.4. REMARKS 

The results in Tables 3.1, 3.2, and 3.3 and in Figures 3.3, 3.4, and 3.5 show that 

unique codes depending on the material that the tag is embedded in can be produced with 

this method. Changes in both permittivity and loss factor can be captured by this coding 

method, and by comparing the codes to the references it could be possible to extract these 

material properties from the codes themselves. This capability is not afforded by the other 
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current coding methods and thus, there is usefulness in this method. Moving forward, this 

coding method could be further optimized so that it is even more sensitive to changes in 

material properties while having a code that is only as long as is needed.  
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4. TAG DESIGN METHODOLOGY 

4.1. PREMISE 

Chipless RFID tags are typically designed with a specific application in mind,  

namely:  they are to be used for either ID or Sensing. In a few cases, these applications 

have combined, but this is done to enhance performance for the main application rather 

than to give the tag a multifaceted purpose [34, 52]. In all cases, the tags tend to utilize a 

single type of resonator. This is limiting both in terms of versatility and practicality since 

it limits how customizable the response of the tag may become. Alternatively, by using 

multiple types of resonators in combination, greater response diversity and 

customizability can be achieved. The subsequent section presents a tag design 

methodology that is based around the combination of multiple types of resonators. This 

design methodology is also presented in a journal article that is under review at the time 

this is being written [104].   

4.2. TAG DESIGN METHODOLOGY 

By applying a methodical approach, chipless RFID tags can be designed to  

combine multiple types of resonators and be easily adapted to a variety of applications. 

This design methodology involves taking into account the environments the tag could be 

in, understanding the design requirements driven by the potential applications, and 

utilizing design guidelines, like equivalent circuits and equations, to engineer the tag’s 

response.  
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4.2.1. Environmental Concerns.  The environments in which a tag may be in 

and the scenarios it may be in can greatly affect how it performs. One factor to consider 

is what the tag will be attached to, which lends itself to if it is beneficial for the tag to 

have a ground plane or not. It has been shown that if the tag is to be pasted to an object 

(e.g., a product’s packaging), it is beneficial for the tag to have a ground plane so that the 

object does not influence the response of the tag [34, 90]. However, integrating a ground 

plane is difficult with some manufacturing methods such as inkjet-printing, which has 

found popularity in the chipless RFID community for its ability to produce inexpensive 

tags. To illustrate the difference of using tags with and without ground planes in this 

scenario, simulations were conducted.  

For these simulations, the tag used in [103] was used again except the substrate 

was changed to be Mitsubishi paper, which is a common substrate for inkjet-printed tags 

As an aside, the parameters used in inkjet-printing will be explored more in depth in 

Section 6. This tag, shown in Figure 2.1 was placed on a dielectric slab with 휀𝑟 = 4 and a 

thickness of 0.5cm. This permittivity was used so that there would be a more dramatic 

shift in response and the point of these simulations could be better illustrated. The 

simulation setup is shown in Figure 4.1.  

Then, in CST Microwave Studio® the size of the slab was increased in the lateral 

(xy) directions behind the tag as the RCS response was simulated using a plane-wave 

excitation and an RCS probe in a monostatic radar setup. The results of these simulations 

are shown in Figure 4.2, which was also presented in [104].  From Figure 4.2, it can be 

seen that the response is shifted down in frequency as compared to its free-space response 

when the tag is on the slab, similar to how it shifted down when the tag was embedded in  
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Figure 4.1. Simulation setup for tag pasted on dielectric slab of varying sizes.  

 

a material with 휀𝑟 = 4 in Section 2.2. This effect is especially noticeable when 

comparing the free space response to the response when the tag is pasted on a 20 mm x 

20 mm slab.  It can also be seen from Figure 4.2 that as the dimensions of the slab 

increase, it becomes more difficult to discern the response of the tag (i.e., the resonance 

characteristics) from the response of the slab. This masking of the response by the 

material behind the tag is a result of the slab scattering more than the tag and the RCS 

response, which can be thought of as the superposition of the scattering of the slab and 

the tag, becomes dominated by the scattering of the slab. This overall makes performing 

measurements challenging. In order to address this issue, depolarizing tags, various 

measurement techniques, and array strategies have been previously employed. However, 

the challenges still persist [21, 25, 105-107].  
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Figure 4.2. RCS vs. frequency response for tag when it is on a dielectric slab of varying 

sizes.  

  

Another environmental situation to consider is when a tag without a ground plane 

is to be placed in front of an electrically conductive surface (e.g. metal or carbon 

composites). If the tag is sufficiently close to the conductive surface, it can act as a 

ground plane for the tag causing the response of the tag to be dramatically different. In 

the case of the tag in Figure 4.1, the conductor portion will become ring resonators while 

the slots will no longer resonate, which will result in a different from expected response.  

In addition to the previously discussed environmental factors, other factors like 

temperature and humidity can also affect the tag and therefore need to be taken into 

consideration when designing the tag. Inkjet-printed tags are often printed on Mitsubishi 

paper, which turns out to be a material that is sensitive to humidity to the point that 
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humidity sensor tags have been made on it [50, 89]. This means that if a tag were to be 

fabricated on this material, the designer would need to be cognizant of this humidity 

dependency so that responses are correctly interpreted.   

4.2.2. Method.   The practices discussed above can be summarized in a three step 

design methodology that is focused towards the design of frequency-based backscatter 

tags. The three steps are as follows: 

I. Define tag requirements: size, manufacturing method, bit density, etc. 

Understand the current application and possible future applications. 

II. Select resonators and resonator combinations that satisfy the requirements 

determined in step I. 

III. Utilize the design guidelines (i.e., equations, equivalent circuits, design curves, 

etc.) to purposefully modify the resonator geometries to create a desired tag 

response. 

4.3. DEVELOPED TAG   

Utilizing the above design methodology, a tag was designed through simulation in 

CST Microwave Studio®. First presented in [108], this tag combines ring and spiral 

resonators in order to achieve a high bit density tag. Features of the tag can then be added 

or removed to manipulate the response of the tag. The base of the tag consists of a ground 

plane backed substrate disk of diameter 6.8 mm made of TLX-9 (휀𝑟 = 2.5 and 𝑡𝑎𝑛𝛿 =

0.0019). In its most simple configuration, the tag is shown in Figure 4.3. This 

configuration with just a circular patch and a ring resonator produces two distinct notches 

in the response, shown in Figure 4.4, which act as the start and stop bits (~21 and ~34 
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GHz, respectively) of the 18 – 35 GHz response of this tag. This frequency range was 

selected so that the tag could be small and minimally invasive for embedded materials 

characterization applications.  

 

 

Figure 4.3. No spiral configuration of tag. 

 

 

Figure 4.4. RCS vs. frequency response of tag in Figure 4.3. 
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 In creating the spiral elements, first the spiral in top position (see Figure 4.5a) was 

developed. This spiral resonator was designed to have a resonant frequency near that of 

the ring resonator. In order to achieve this, the length, width, and distance of the spiral 

resonator from the ring resonator were manipulated. These manipulations affect the 

effective inductance/capacitance of the resonator and the ability of the ring resonator to 

couple signal into the spiral resonator. Larger effective inductances and capacitances are 

achieved by having longer length spirals and this in turn produces lower resonant 

frequencies [109, 110].  

 The first spiral resonator has a resonance frequency of ~18.5 GHz when it is the 

only spiral resonator on the tag. When additional spiral resonators are added, the 

interactions between the tag features causes this first spiral resonator notch to shift in 

between that of the start and stop bit notches. With the configuration in Figure 4.5a, the 

circular patch can be removed, however, the ring resonator needs to remain if the spiral 

resonator is going to be used. This is because, as previously mentioned, the ring resonator 

is used to couple signal into the spiral resonators. Without the ring resonator, the spiral 

resonators do not add notches to the response. This design constraint is illustrated in 

Figures 4.5 and 4.6. Figure 4.5 shows three different configurations of the tag and Figure 

4.6 shows the responses for each of these configurations. Figure 4.6a shows the response 

for the configuration in Figure 4.5a. As can be seen, there is a notch in the response that 

corresponds with each feature of the tag – the patch, ring, and spiral. Figure 4.6b then 

shows the response for when the patch is removed. In this figure, there are still notches 

for the spiral and ring resonators but the notch associated with the patch at ~34 GHz is  
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  a.               b.           c. 

Figure 4.5. Tag configurations for demonstrating ring resonator dependence. a) Patch, 

ring, and spiral configuration. b) Ring and spiral configuration. c) Patch and spiral 

configuration.  

 

gone. Lastly, in Figure 4.6c only one notch at ~34 GHz can be seen in the response 

despite there being a spiral resonator, as shown in Figure 4.5c, present in the tag 

configuration. These results demonstrate that the ring resonator is necessary when the 

spiral resonators are being used. 

When the spiral resonator is present in this tag design, rotating the spiral around 

the ring resonators or in its position can result in different responses. Figure 4.7 shows 

the four different orientations a spiral can reside in, while Figure 4.8 shows the responses 

for these different orientations. As can be seen, there are four different responses 

depending on the orientation and these different responses could produce different binary 

codes. 

Different responses are also produced when the spiral is moved to different 

locations with the orientation maintained. Figure 4.9 provides a diagram for the different 

locations the spiral can reside in and in all cases Orientation 1 (Figure 4.8a) is used. 

Figure 4.10 shows the three different responses that can occur depending on the location. 

As can be seen, Locations 1 and 5, which are located directly across from each other,  



 

 

58 

 
a. 

 
b. 

 
c.  

Figure 4.6. RCS vs frequency responses of tag configurations in Figure 4.5. a) Response 

for patch, ring, and spiral configuration. b) Response for ring and spiral configuration. c) 

Response for patch and spiral configuration.  
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a.    b. 

  
c.    d.  

Figure 4.7. Orientations of spiral resonator. a) Orientation 1. b) Orientation 2. c) 

Orientation 3. d) Orientation 4. 

 

produce the same response. Location 3 and 7 also produce the same response. Lastly, 

locations 2, 4, 6, and 8 produce the same response. Having multiple locations produce the 

same response is due to how the polarization of the interrogating wave (i.e., a linearly 

polarized plane-wave with the E-field along the x-direction as specified in Figure 4.1) 

interacts with the tag. These response dependencies on orientation and location in relation 

to the interrogating wave’s polarization can make understanding how changes in tag 

configuration or feature geometry can affect the response. However, these dependencies 

can also be exploited to create greater response diversity and to potentially perform 

rotation sensing [75]. With this insight into how location and orientation affect the 

response of the tag, the remaining spiral resonator features of the tag were also designed. 
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a. 

 
b. 

Figure 4.8. RCS vs frequency responses for different orientations. a) Responses for 

orientations 1 and 2. b) Responses for orientations 3 and 4. 
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Figure 4.9. Diagram of spiral resonator location designations.  

 

Four spiral and eight spiral configurations of the tag are shown in Figure  4.11. 

The four spiral configuration of the tag was designed first with the additional spirals 

being added so that there would be more notches between the start and stop bit notches in 

the response. The remaining four spirals were then designed to add additional notches 

among the existing one to increase the bit density of the tag. The responses of the four 

and eight spiral tag configurations are shown in Figure 4.12 and Figure 4.13, 

respectively.  

 This tag can achieve an extremely high bit density and coding capacity due to its 

small form factor and large number of notches. To illustrate this, Table 4.1 presents the 

bit density and the coding capacity of this tag for four different coding methods described  
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a. 

 
b.  

 
c. 

Figure 4.10. RCS vs frequency responses for different spiral locations.  a) Responses for 

spiral in locations 1 and 5. b) Responses for spiral in locations 2, 4, 6, and 8. c) 

Responses for spiral in locations 3 and 7.  
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in Section 1.2.1.2. In this table the coding capacity definition expressed in Equation (3) is 

used. As can be seen, both of these metrics vary widely depending on the coding method 

used. Thus, one needs to be sure to express metrics in the context of the coding method 

used to properly compare the merit of tags, as was discussed in Section 1.2.1.3. 

 

  
  a.      b. 

Figure 4.11. Configurations of tag design. a) Four spiral tag configuration. b) Eight spiral 

tag configuration.  

 

 

Figure 4.12. RCS vs frequency response of four spiral tag.  
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Figure 4.13. RCS vs frequency response of the eight spiral tag. 

 

Table 4.1. Tag metrics for different coding methods.  

Method Bit Density (bits/cm2) Coding Capacity 

1 27.54 1024 

2 27.54 1024 

3 55.07 1048576 

4 55.07 1048576 

 

Due to this tag having a ground plane, it is less sensitive to the material it is 

placed on than tags that do not have a ground plane (i.e., that used for Figure 4.2), are.  

To provide evidence for this claim, simulations with the designed eight spiral tag on a 

dielectric slab were conducted. These simulations were done in the same way as those for 

Figure 4.2 were done and the results of the simulations are shown in Figure 4.14. As can 

be seen from Figure 4.14, the response does not shift down in frequency as much as the 
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results in Figure 4.2 did when the tag is placed on the dielectric slab. Another difference 

between these two cases is that in the case of the tag with the ground plane, there seems 

to be defined notches in the response for larger slab sizes. In summary, tags with ground 

planes are less sensitive to the materials they are pasted on, but the tradeoff for this is that 

manufacturing tags with ground planes tends to be more expensive because inkjet-

printing is not as feasible for this type of tag.  

 

 

Figure 4.14. Effect on response when a tag with a ground plane is placed on a dielectric 

slab of varying sizes.  

 

 In making measurements of this tag, a wide variety of wideband antennas could 

be used to capture the entire response. Alternatively, less bandwidth could be used for 

certain applications like embedded materials characterization because as the material the 

tag is embedded in changes, new notches could shift into the interrogation bandwidth 

changing the code. In the cases simulated above, a linearly polarized plane-wave was 
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used and therefore, linearly polarized antennas would be sufficient for reading the tag. 

However, circularly polarized antennas could also possibly be used if they can capture 

both co-pole and cross-pole measurements. This could help overcome the alignment 

dependency of the tag and the reader antenna encountered in chipless RFID tag 

measurements for tags that are not orientation insensitive.  

In order to adapt this tag’s response to different applications in an informed 

manner, design guidelines are necessary. The subsequent section presents a collection of 

design guidelines for various types of resonators used and their complementary 

resonators (i.e., the type of resonators that is used when there is not a ground plane). 

4.4. DESIGN GUIDELINES 

As previously mentioned, design guidelines, which commonly take the form of  

equations, equivalent circuits, and graphs, are extremely useful for developing tag 

designs. These guidelines can be used to make modifications to tag resonator geometry in 

order to manipulate the tag’s response in a controlled and purposeful manner. 

Additionally, guidelines that compare different types of resonators, like those presented 

in [111], can be helpful when selecting which type or types of resonators to use in a tag 

design. Design guidelines are not prevalent among chipless RFID tag designs. However, 

they are prevalent in microwave filter designs [110, 112-117]. These filter-based 

guidelines can be used to understand basic trends of how the response of a resonator is 

affected by a change in geometry, but they cannot be directly applied to chipless RFID 

tag design. This is due to the resonators being fed in a different manner in filter 

applications than they are in backscatter frequency-based tags. Design guidelines are 
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presented here for resonators that are relevant to the tag design presented in Section 4.3. 

This includes circular slot resonators, ring resonators, and spiral resonators.  

4.4.1. Circular Slot Resonator Design Guidelines.  Circular slot resonators, 

similar to those used in Section 2, have been used for a few different tag designs [23, 56, 

118-120]. However, in only one case are design guidelines presented and used to justify 

the choice of tag dimensions [118]. An example of circular slot resonators is shown in 

Figure 4.15. These resonators are orientation independent and do not have a ground 

plane. When a ground plane is added, the conductive structure that makes the circular slot 

resonators turns into a set of ring resonators. Circular slot resonators are characterized by 

their radius and width (i.e., these are the primary parameters that affect the resonance 

frequency of the resonator). Other factors, such as the substrate material, conductor 

thickness, conductor width between slots, conductivity of the conductor, idealness of the 

circular shape, and proximity to other circular slot resonators can also affect the 

resonance frequency of the resonator [23, 37, 56, 57, 64].  

 

 

Figure 4.15. Circular slot resonator [118]. 
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In [118], the following equation is provided for the resonance frequency of a 

circular slot resonator: 

𝑓𝑟 =
𝑐

2𝜋𝑅𝑖
√

2

𝜀𝑒𝑓𝑓+1
     (8) 

In this equation, c, is the speed of light and 휀𝑒𝑓𝑓 is the effective permittivity of the 

substrate. It is not clear, however, if 𝑅𝑖 is the inner, center, or outer radius of the slot 

resonator and the width of the slot is not taken into consideration. Due to how 

uncomprehensive this equation is and the lack of other design guidelines in literature, 

simulations were performed in CST Microwave Studio®. Figure 4.16 shows the slot 

resonator used for the simulations and the nomenclature used in the subsequent figures. 

In Figure 4.16, the substrate disk is made of Taconic TLX-9 (휀𝑟
′ = 2.5, 𝑡𝑎𝑛𝛿 =

0.0019) and its dimensions are 6.8 mm in diameter and 0.5 mm thick. The conductor is 

PEC and is 0.035 mm thick, which is the thickness of 1 oz. copper. For these simulations, 

a monostatic radar simulation setup with plane-wave irradiation and RCS probe 

interrogation were used in the 14 – 40 GHz frequency range.   

First, the gap was set at 0.1 mm and the ring thickness was set to 0.1 mm. This 

gap width was chosen since it was found to be the minimum gap width that will produce 

a resonance for this simulation. The inner radius of the slot was then increased while the 

gap width and ring thickness were maintained (see Figure 4.16). The effect of increasing 

the inner radius of the circular slot resonator on the resonance frequency is shown in 

Figure 4.17. As can be seen, as the radius is increased the resonance frequency decreases. 

This is consistent with what you would expect from Equation (8). 
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Figure 4.16. Slot resonator annotated with simulation parameters.  

 

 

Figure 4.17. Effect of radius on resonance frequency of circular slot resonator.  
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Next, the gap was again set at 0.1 mm and the ring width was increased rather 

than the inner radius. The inner radius was maintained at 1.4 mm, which corresponds to a 

resonance frequency of ~ 26.4 GHz. This radius was chosen because it produces a 

resonance frequency that is in the middle of the interrogation bandwidth of 14 – 40 GHz, 

allowing for both increases and decreases in the resonance frequency to be examined as 

different parameters are manipulated. It was seen that increasing the thickness of the ring 

with constant gap width and slot radius tends to increase the resonance frequency. This is 

illustrated in Figures 4.18. 

 

 

Figure 4.18. Effect of ring width on magnitude of slot resonator resonance.  

 

 The next simulation involved increasing the gap width for a variety of ring 

thicknesses. The results of these simulations are shown in Figures 4.19 and 4.20. Figure 
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4.19 shows the dependency of the resonant frequency on the ring thickness that Figure 

4.18 did while also showing how increasing the gap tends to decrease the resonance 

frequency. Figure 4.20 represents this data in a different manner. In using these design 

guidelines, one can select a desired ring width and see how varying the gap will affect the 

resonance frequency by using Figure 4.19 or vice versa by using Figure 4.20. This allows 

the tag designer to easily work within their requirements. The demonstrated dependence 

on gap width and ring width illustrates how Equation (8) is not sufficient for describing 

the resonance behaviors of circular slot resonators.  

 

 

Figure 4.19. Effect of gap and ring width on resonance frequency.  

 

Circular slot resonators can also couple to each other, affecting each other’s 

resonance frequencies. This phenomenon has been briefly mentioned in [23], but has not 

been characterized. To this end, simulations were performed to see the effect of one 

circular slot resonator on another. Figure 4.21 shows the tag used in these simulations. 
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This tag has the same dimensions and substrate characteristics as the tag in Figure 4.16, 

but two slot resonators are present instead of one. The innermost slot is referred to as slot 

1 and the outermost slot is referred to as slot 2. 

 

 

Figure 4.20. Effect of gap and ring width on resonance frequency.  

 

 In the first case, the dimensions of slot 1 were chosen to be as space efficient as 

possible based on the results in Figures 4.19 and 4.20. The gap was chosen to be 0.1 mm 

and the ring thickness was also chosen to be 0.1mm. This combination corresponds to a 
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resonance frequency of  ~27.2 GHz when only one slot is present. The gap and ring 

thickness for slot 2 were then increased. Figure 4.22 shows how the resonance frequency 

of slot 2 changes as the gap and ring width of slot 2 are manipulated. It can be  

seen from Figure 4.22 that the resonance frequency change follows a similar trend as to 

when there is only one slot resonator present.  

 

 

Figure 4.21. Annotated tag used in multi-slot simulations. 

 

Next, the effect of changing slot 2 on slot 1 was examined. Figure 4.23 shows 

how the resonance frequency of slot 1 changes as these slot 2 parameters are 

manipulated. This shows up to 1 GHz of variation in resonance frequency of a slot 

resonator, slot 1, which is not changing in geometry due to changes in another slot 

resonator. This shows that coupling between slot resonators cannot be ignored when 

designing tags to have specific responses.  
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Figure 4.22. Effect of slot 2 gap and ring width on resonance frequency of slot 2. 

 

 

Figure 4.23. Effect of slot 2 gap and ring width on slot 1 resonance frequency.  
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 Typically, eight or more concentric circular slot resonators are used in tag 

designs, meaning that there are a lot of interactions between slot resonators to consider. 

However, the gap and ring thickness of each resonator are usually constant amongst all of 

the resonators which can simplify analysis. In general, if the radius of the slot is 

increased, the resonance frequency will decrease. For a given radius and ring width if the 

gap is increased the resonance frequency will also decrease. Lastly, for a given radius and 

gap, if the ring width is increased, the resonance frequency will increase. All of these 

trends needs to be considered along with the effects of resonator interaction when 

designing tags with circular slot resonators.  

4.4.2. Ring Resonator Design Guidelines.  Ring resonators have also been 

frequently used in chipless RFID tag designs [25]. These resonators require a ground 

plane and are often used in concentric configurations to save space. The parameters that 

characterize a ring resonator are its radius and its width. An annotated ring resonator is 

shown in Figure 4.24. This resonator is also used in the tag presented in Section 4.3 to set 

the start bit of the coded response.  

In terms of design guidelines, [25] presents the following equation: 

𝑓𝑟 =
𝑐

2𝜋𝑅[0.965+19.2𝑅−1372𝑅2]√𝜀𝑒𝑓𝑓
    (9) 

In Equation (9), R is the mean radius of the ring resonator. This is an empirical equation, 

which has an experimental basis, and is considered valid for R’s in the range of 4 to 9 

mm and a ring width of 0.5 mm.  This equation is derived from the equivalent circuit of 

[121] shown in Figure 4.25 and it does not take into account the width of the ring or the 

interactions between ring resonators. 
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Figure 4.24. Ring resonator diagram. 

 

 

Figure 4.25. Ring resonator equivalent circuit of [121] for microwave filters. 

 

 In Figure 4.25, the ring portion of the equivalent circuit is relevant to the 

backscatter-based chipless RFID tags being considered here. In the ring portion of the 
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circuit, the three resistances correspond to radiation, dielectric, and conductor losses. The 

inductance and capacitance, L and C, are chosen within limits based on expected Q-factor 

so that the resonance frequency of the circuit is that of the ring resonator. The 

transmission line equations on which Figure 4.25 is based on can be used to calculate the 

resonance frequency of the ring resonator and the circuit components can be assigned 

values. Equation (10), shown below, can be used for this purpose: 

𝑓𝑟 =
𝑐

𝑙√𝜀𝑒𝑓𝑓(𝑓)
     (10) 

In Equation (10), l is the mean circumference of the ring [121].  This equation and 

therefore the equivalent circuit above do not take into account the width of the ring or the 

interactions between concentric ring resonators. Due to these limitations, simulations 

were again conducted to characterize ring resonator behavior for changes in a variety of 

parameters.  

 First, the ring thickness was set at 0.1 mm and the mean radius was increased 

from 1 mm to 3 mm. Figure 4.26 shows the effect of change in the radius on the 

resonance frequency of the ring resonator. As can be seen, as the radius increases, the 

resonance frequency decreases. This aligns with what one would expect from both 

Equation (9) and Equation (10). However, as the radius increases the depth of the notch 

tends to decreases for a given thickness, as illustrated in Figure 4.27.  

Next, the radius of the ring resonator was maintained at various values from 1 mm 

to 1.3 mm while the ring thickness was increased. As the thickness is increased from 0.1 

mm to 0.5 mm, Figure 4.28 shows that the resonance frequency tends to decrease slightly 

(average decrease of 440 MHz over the plotted ring thickness range). However, as the 
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Figure 4.26. Effect of radius on resonance frequency of ring resonator.  

 

 

Figure 4.27. Effect of radius on depth of notch.   
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radius gets larger, it the resonance frequency decreases less as thickness increases (i.e., 

the slope of the line gets shallower as the radius increases). While this effect is small in 

comparison to that of changing the radius of the ring resonator, it can still produce 

changes in the expected resonance frequency. Therefore, Equations (9) and (10) are not 

sufficient for characterizing the behavior of a ring resonator.  

 

 

Figure 4.28. Effect of ring thickness on resonance frequency of ring resonator.  

 

 As the ring resonator is used with a circular patch in the tag presented above (see 

Figure 4.3), next the effects of radius and ring thickness were examined together with the 

patch present. The patch was maintained with a radius of 1.4 mm as this is the radius in 

the full spiral tag design. Then, for various mean radii of the ring, the thickness was 
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increased from 0.1 mm to 0.3 mm. The results of these simulations are shown in Figure 

4.29. In Figure 4.29a, the result for R = 1.5 mm has the resonance associated with the 

patch shifted up in frequency and no resonance associated with the ring, despite the ring 

and patch not being joined together. When the distance between the ring and patch is 

increased (i.e., the radius of the ring is increased), the resonance associated with the ring 

appears in the responses. For various radii equal to and greater than 1.55 mm, the 

resonance associated with the patch tends to shift down in frequency slightly as the radius 

is increased. This means that there is some interaction between the ring and patch. By 

comparing Figure 4.29 to Figure 4.28, it can also be seen that for the same ring thickness 

and radius, the presence of the patch affects the resonance frequency of the ring 

resonator, as well. In Figure 4.29b, R=1.55 mm is the first radius used because a radius of 

1.5 mm causes the ring and patch to be conjoined. Similarly, the first radius in Figure 

4.29c used is 1.6 mm. The results in Figures 4.29b and 4.29c follow similar trends as that 

of Figure 4.29a. From these results, it can be concluded that the interaction between the 

patch and the ring resonator cannot be discounted when attempting to engineer a specific 

response.  

Lastly, the relationship between ring resonator and circular slot resonators was 

explored since a slot resonator based tag placed on a metallic surface could act like a tag 

with ring resonators. To this end, the tag shown in Figure 4.30 was simulated with and 

without a ground plane. This tag, which is the same as that shown in Figure 4.3, has a 

patch of radius 1.4 mm and a ring of mean radius 1.7 mm and thickness 0.2 mm. This 

corresponds to a slot resonator with a gap width of 0.2 mm and a ring thickness of 0.2 

mm when the ground plane of the tag is removed. Figure 4.31 shows the RCS vs. 
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a. 

 
b. 

 
c. 

Figure 4.29. Effect of ring radius and thickness on resonance frequency with patch. a) 

RCS vs. frequency responses for ring thickness of 0.1 mm. b) RCS vs frequency 

responses for ring thickness of 0.2 mm. c) RCS vs frequency responses for ring thickness 

of 0.3 mm.  
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frequency response for these two tag configurations. As can be seen, the responses for 

these two configurations are dramatically different. Thus, this relationship between tags 

having a ground plane and not having a ground plane is also important to understand. 

 

 

Figure 4.31. RCS vs. frequency response for tag with and without ground plane.  

 

4.4.3. Spiral Resonator Design Guidelines.  Spiral resonators have been used in 

many Tx/Rx based tags, like the one shown in Figure 1.1, as well as in microwave filters 

[18, 19, 110, 122, 123].  This has led to design guidelines in the form of equivalent 

circuits, a transmission line model, and design curves. The principle behind operation of  

spiral resonators is that by changing the effective inductance and capacitance of the spiral 

resonator, the resonance frequency is changed. Longer spiral resonators have higher 

effective inductance and capacitance and therefore have a lower resonance frequency. 
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Other factors, though, like the width of the spiral legs and the spacing between the spiral 

legs, can also play a role in determining the resonance characteristics of the of the spiral 

resonator. The equivalent circuit from [123] is shown in Figure 4.32. In this equivalent  

 

 

Figure 4.32. Equivalent circuit for spiral resonator from [123]. 

 

circuit, 𝐶𝑑 refers to the distributed capacitance, 𝐶𝑓 refers to the dispersion capacitance, 𝐿𝑟 

to the distributed inductance, and 𝑅𝑟 to the resistance of the spiral. The resonance 

frequency can then be determined by Equation (11) from [123]: 

𝑓𝑟 =
1

2𝜋
√

1

𝐿𝑟𝐶𝑟
       (11)  

In this equation, 𝐶𝑟 is the sum of the distributed and dispersion capacitances. [123] does 

not, however, provide a means for extracting the circuit values from the geometry of the 

spiral resonator, which is needed in order to use this circuit as a design guideline. Thus, 

there is not much engineering intuition to be gain from this equivalent circuit.  

 Another equivalent circuit model as well as a transmission line model are 

provided in [12] for the case of a spiral resonator coupled to a microstrip line as is the 
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case in many Tx/Rx based tags. The equivalent circuit model, originally presented in 

[124], is shown in Figure 4.33. In Figure 4.33, 𝐶𝑟 and 𝐿𝑟 are the distributed capacitance 

and inductance, respectively, while 𝑅𝑟 is the resistive loss of the element. Using 

techniques from [125], [12] presents equations for finding the distributed capacitance 

based on the charge distribution on the spiral resonator. This charge distribution can be 

determined using the method of moments or from an EM simulator like CST Microwave 

Studio®. The distributed inductance of the spiral resonator can then be found using an 

approach presented in [126]. By combining the equations and approaches in [125] and 

[126], the values of the circuit in Figure 4.33 can be found and related to the geometry of 

the spiral resonator. This allows this circuit and its associated equations to be used as 

design guidelines. 

 

 

Figure 4.33. Equivalent circuit for spiral resonator coupled to microstrip line [124]. 
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 As previously mentioned, [12] also presents a transmission line model of a spiral 

resonator coupled to a microstrip line. This model was developed to address the issue of 

the above equivalent circuits not allowing for bends in the microstrip line of Tx/Rx tags, 

which provide for greater bit density in the tag design since more spiral resonators can 

then be placed along the microstrip line. The designations used for the transmission line 

model are shown in Figure 4.34 and the model itself is shown in Figure 4.35. According 

to the author of [12], by using this model optimization can be done more quickly than is 

allowed by full wave EM simulators. 

In terms of design curves, [110] presents a set for microwave filters that operate 

in the 0.5 to 3.5 GHz range. The layout of these resonators is shown in Figure 4.36. These 

design curves cover the effect of changing width (w), gap (g), length (L), and distance 

between spirals (s). Figure 4.37 shows an annotated diagram of a spiral resonator that 

indicates these geometric parameters, while Figure 4.38 shows an example of one of 

these design curves from [110]. These design curves cannot be applied directly to the tag 

under consideration, however, because of the different feeding mechanism they use and 

their different frequency range of operation.  

Another set of design curves for a Tx/Rx based tag is presented in [12].  These 

design curves are produced for the 0 to 3 GHz range and cover the effects of length, 

width, gap, spacing, and distance from the microstrip line. These design curves again are 

for a different frequency range and feeding mechanism than is used in the tag in Section 

4.3. This means that these design guidelines again cannot be directly applied to the tag at 

hand. To this end, simulations were conducted to show how one should expect spiral 



 

 

86 

resonators to behave in a backscatter based tag design where the spiral resonators have 

signal coupled into them through a ring resonator.  

First a spiral was constructed with orientation 3 in position 1 (see Section 4.3). 

This spiral resonator has a length of 0.9 mm, a width of 0.05 mm, and a gap of 0.05 mm. 

It is located 0.1 mm away from the ring resonator. The effect of length was examined 

first. Length was removed from the spiral resonator from both the inside and the outside.  

 

 

Figure 4.34. Section designations for transmission line model [12].  

 

Figure 4.39 shows the effect of removing length from the outside while Figure 4.40 

shows the effect of removing length from the inside. By comparing the figures, it can be 

seen that there is a similar trend among them (i.e., as length is removed the resonance 

frequency increases), however, when length from the outside is removed, the coupling 

between the spiral resonator and the ring resonator is changed which results in some 
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cases where no resonance is seen due to the spiral resonator. One of these cases is shown 

in Figure 4.41 where 1.5 mm of spiral length has been removed from the outside of the 

spiral. Another trend to note from Figure 4.40 is that as the amount of length is increased, 

the depth of the notch tends to decrease until it becomes not distinguishable, like the case 

in Figure 4.41b.   

 

 

Figure 4.35. Transmission line model for spiral resonator coupled to microstrip [12].  
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4.36. Microwave filter layout from [110]. 

 

 

Figure 4.37. Diagram of spiral resonator. 

 

 

Figure 4.38. Example design curve from [110]. 
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a. 

 
b. 

 
c. 

Figure 4.39. Effect of removing length from the outside of a spiral resonator. a) 

Designation of length removal. b) RCS vs frequency responses for lengths removed. c) 

Resonance frequency as a function of length removed. 
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a. 

 
b. 

 
c. 

Figure 4.40. Effect of removing length from the inside of a spiral resonator. a) 

Designation of length removal. b) Response for different lengths removed. c) Resonance 

frequency as a function of length removed. 
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a. 

 
b. 

Figure 4.41. Example of non-resonance condition of spiral resonator when removing 

length from outside of spiral. a) State of spiral resonator. b) RCS vs frequency response.   

 

 Next, the effect of changing width for various gaps was examined. For this, the 

length was maintained at 0.9 mm. Then, the width of the spiral leg was changed for 

different gaps. Figure 4.42 shows the results of these simulations. As can be seen from 

Figure 4.42, as both width and gap are increased the resonance frequency also increases. 

This is because the same footprint for the spiral resonator is maintained in all cases, 
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which causes the inner legs of the spiral to be shorter as the width and gap are increased. 

This effect is illustrated in Figure 4.43. The trends seen in Figure 4.42 are consistent with 

those presented in [110]. 

 

 

Figure 4.42. Effect of width and gap on resonance frequency of spiral resonator.  

 

 

Figure 4.43. Illustration of effect of increasing the width of a spiral resonator.  

g=0.05 mm, w=0.05 

mm 

g=0.05 mm, w=0.08 

mm 
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 Lastly, a comparison was conducted for spiral resonators used in Tx/Rx and 

backscatter configurations. For this, the same spiral resonator was simulated in the 

configuration used in the form of Figure 4.5a with the spiral shortened slightly to produce 

a higher resonance frequency that is further away from that of the ring resonator. It was 

also used in the form shown in Figure 4.44. In Figure 4.44, the spiral resonator is placed 

0.1 mm away from a microstrip line of width 1 mm. Waveguide ports were placed on 

either end of the microstrip line and S21 was simulated. Figure 4.45 shows a comparison 

of the RCS result produced for the backscatter case with the S21 result produced from the 

second simulation. Both simulation results are normalized for direct comparison. As can 

be seen from Figure 4.45, the two different configurations produce different responses 

with the resonance frequencies even being offset from each other. This shows that design 

guidelines for backscatter based tags must be developed outside of those for Tx/Rx based 

tags. 

 

 

Figure 4.44. Simulation layout for Tx/Rx configuration using spiral resonator. 
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Figure 4.45. Comparison of configurations with spiral resonator.  

 

4.4.4. Design Guidelines for Resonator Combination.  Previously, the effects of 

location and orientation of the spiral resonator were shown. It was seen that due to 

differences in interaction between the polarization of the interrogating wave and the 

spiral resonator, different responses are produced.  

 Another factor that affects performance is the distance of the spiral resonator from 

the ring resonator. Simulations were conducted in which this distance was increased, as is 

illustrated in Figure 4.46. Figure 4.47 shows the plot of RCS vs. frequency for various 

distances. As can be seen, there is a change in both the resonance frequency and Q-factor 

as the distance changes. These effects are captured in Figures 4.48 and 4.49, respectively. 

From Figure 4.48 it can be seen that as the distance is increased, the resonance frequency 
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of the spiral resonator tends to increase. However, from Figure 4.49 it can be seen that as 

the distance increased, the Q-factor of the spiral related resonance also decreases. The 

distance between the spiral resonator and the ring resonator, also affects the resonance 

characteristics of the ring resonator. This is evidenced by Figure 4.50, which shows how 

the resonance frequency of the ring resonator decreases as the distance between the spiral 

resonator and ring resonator increases.  

 

 

Figure 4.46. Diagram of increasing distance between spiral and ring resonators.  

 

 

Figure 4.47. RCS vs. frequency plots for increasing distance between spiral and ring 

resonators.  
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Figure 4.48. Effect of increasing distance on resonance frequency of spiral resonator.  

 

 

Figure 4.49. Effect of increasing distance on Q-factor of resonance frequency of spiral 

resonator.  
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Figure 4.50. Effect of increasing distance on resonance frequency of ring resonator.  

 

 According to [12], using multiple spiral resonators of the same dimensions in the 

same tag can increase the depth of the notch associated with that size spiral resonator. 

Due to the tag under consideration being a backscatter-based tag rather than a Tx/Rx tag 

and being more polarization sensitive, an investigation was done to see if this 

phenomenon would also apply to this case. For this investigation, the same spiral was 

placed in multiple locations at the same time around the tag. The tag was irradiated with a 

linearly polarized plane-wave and interrogated with an RCS probe as before. Table 4.2 

shows the different configurations and their responses. An inner ring resonator was added 

to better couple signal into the inner spiral resonators. As can be seen, using multiple of 

the same spiral does not always result in a deeper notch. This is due to the polarization of 

the interrogating wave interacting with each spiral on the tag differently.  
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Table 4.2. Responses of tag configurations with multiple of the same spiral. 

Tag RCS vs Frequency Response 
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Table 4.2. Responses of tag configurations with multiple of the same spiral (cont.). 

Tag RCS vs Frequency Response 
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Table 4.2. Responses of tag configurations with multiple of the same spiral (cont.). 

Tag RCS vs Frequency Response 
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Table 4.2. Responses of tag configurations with multiple of the same spiral (cont.). 

Tag RCS vs Frequency Response 

 

 

 

 

 

 

 

 

 

From the simulations conducted in Section 4.4, it can be seen that the interactions 

between multiple types of resonators as well as the effects of changing geometric 

parameters of a single type of resonator are complex. This makes predicting changes in 

response as geometry changes rather difficult. However, with design guidelines the tag 

designer can make informed decisions as to how to change the tag to achieve a desired 

response.  
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4.5. ASSOCIATING TAG GEOMETRY AND RESPONSE 

When combining multiple types of resonators into a tag design, it can be difficult  

to discern which tag feature is responsible for which response characteristic. This in turn 

makes it difficult to know where efforts need to be focused to achieve a desired response. 

One solution to this issue is to utilize surface current density simulations to associate tag 

geometry with response characteristics. The results presented in this section were 

previously shown in [104]. This process is illustrated through the use of an X-band (8.2 – 

12.4 GHz) version of the tag shown in Section 4.3 that is also presented in [104]. Figure 

4.51 shows this X-band version of the tag, while Figure 4.52 shows its RCS vs. frequency  

 

 

Figure 4.51. X-band version of eight spiral tag.  

 

response. Surface current density simulations were then conducted with this tag. Figure 

4.53 shows the results of these simulations for six different frequencies. For all images 

shown in Figure 4.53, the phase is kept consistent and the amplitude is plotted with a 

consistent color scale. Figure 4.53a, shows the surface current density on the tag at 10.2 

GHz. As can be seen, the spiral resonator in position 1 and the ring resonator have high 

surface current density, when comparing this with Figure 4.52, it can be seen that there is  
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Figure 4.52. RCS vs. frequency response of X-band eight spiral tag. 

 

 

Figure 4.53. Surface current density simulations. a) 10.2 GHz. b) 11.1 GHz. c) 12.4 GHz. 

d) 13.9 GHz. e) 15.5 GHz. f) 17.4 GHz.  

a b c 

d e f 
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a notch in the response at 10.2 GHz. This means that high surface current density can be 

correlated to notches in the response. In this way, one can determine which features of 

the tag are creating which characteristics in the response. 

 In some cases, multiple tag features contribute to the same characteristic in the 

response. This is exemplified by the single spiral version of the tag shown in Figure 4.51, 

which is depicted in Figure 4.54. Figure 4.55 shows the RCS vs. frequency response for 

this tag and Figure 4.56 show the surface current density simulations. As can be seen 

from Figure 4.56, both the ring and the spiral possess high surface current densities for 

both notch frequencies in the response in Figure 4.55. This means that while this method 

of using surface current density can be used to associate response characteristics with tag 

features, it cannot necessarily indicate which tag feature should be changed to produce a 

desired change in the response.  

 

 

Figure 4.54. Single spiral version of X-band tag. 
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Figure 4.55. RCS vs. frequency response of single spiral X-band tag.  

 

 

Figure 4.56. Surface current density simulations for single spiral X-band tag. a) 8.4 GHz. 

b) 8.9 GHz.  

 

4.6. APPLICATION ADAPTATIONS OF TAG 

The tag presented in Section 4.3 can be optimized for a variety of applications  

and scaled to operate in a variety of frequency ranges with the help of the previously 

presented design guidelines and surface current density simulations. Below three 

a b 
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different versions of the previously presented tag adapted to different applications are 

shown. These tags and results are also presented in [104]. 

4.6.1. X-band Version of Tag.  In Section 4.5, an X-band version of the eight 

spiral tag was shown. This lower frequency version of the tag was created to allow for 

easier and less expensive fabrication through a PCB fabrication house. In developing the 

X-band version, the substrate was changed to Rogers 4350b since this is a low loss 

substrate available from many PCB manufacturers. The diameter of the tag is 13.6 mm, 

which is double that of the tag presented in Section 4.3.  This tag and its response are 

shown in Figures 4.51 and 4.52, respectively. In its four spiral configuration, this tag is 

very sensitive to rotation and could potentially be used as a rotation sensor. The four 

spiral version is shown in Figure 4.57 and its simulated S11 response is shown in Figure 

4.58. Figure 4.58 was generated from a simulation in which the tag is interrogated with 

an open-ended waveguide. The simulation setup is shown in Figure 4.59. In this setup the 

aperture of the waveguide is parallel to the xy plane. 

 

 

Figure 4.57. Four spiral X-band tag.  
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From Figure 4.58 it can be seen that there are five deep defined notches in X-band that 

correspond to the ring and the four spirals. When the tag is rotated about the z-axis, 

different responses are created. Codes could be assigned to these responses and then used 

for multi-bit rotation sensing.  Figure 4.60 shows the responses for different amounts of 

rotation. As can be seen, there is a different response for every five degrees of tag 

rotation. In Figure 4.61, the effect of rotating the tag in different directions is shown. This 

figure shows that there are different results for the angles of 5˚ and 355˚ (-5˚), which 

means that even direction of rotation could potentially be sensing with this tag. These 

results show promise for potentially using this tag as a rotation sensor.  

 

 

Figure 4.58. Simulated S11 response for four spiral tag.  
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Figure 4.59. Simulation setup for S11 of tag with waveguide. 

 

 

Figure 4.60. Simulated rotation sensing results for four spiral tag.  
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Figure 4.61. Simulated directional rotation sensing for four spiral tag. 

 

4.6.2. ID Application Tag.  The X-band tag presented in Section 4.6.1 was also 

optimized for use in ID applications. In order to perform this optimization, spirals with 

adjacent resonant frequencies (i.e., notches) were not placed adjacently around the ring 

resonator. By employing this detuning technique first suggested in [52], the response is 

more robust to the removal of spirals which in turn removes notches from the response. 

This allows for coding method 2 to be used more reliably. The spirals are numbed with 

respect to their locations according to Figure 4.9. The responses for when various spirals  

are removed are shown in Figure 4.62. Figure 4.62b shows a missing notch around 11 

GHz as compared to the response in Figure 4.62a. This missing notch corresponds to 

spiral 2 which has been removed. Figure 4.62c and Figure 4.62d show missing notches in 
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two other locations that correspond to the spiral that has been removed. In all cases 

shown in Figure 4.62, when a spiral is removed the characteristics of the response not 

associated with this spiral tend to remain stable (i.e., they do not shift or disappear). The 

codes using Method 2 are shown for all four of the cases in Figure 4.62 in Table 4.3. By 

providing so many notches in the response for a relatively small tag area, this tag also has 

a high bit density (6.89 bits/cm2) making it desirable for ID applications.  

 

Table 4.3. Codes for ID tag using coding method 2.  

Description Code 

Eight spiral configuration (Figure 4.62a) 1111111111 

Spiral 2 removed (Figure 4.62b) 1101111111 

Spiral 3 removed (Figure 4.62c) 1110111111 

Spiral 4 removed (Figure 4.62d) 

 

1111011111 

 

4.6.3. Materials Characterization Application Tag.  This tag can also be used 

for materials characterization applications. For this case it is used in its original 18-40 

GHz configuration shown in Section 4.3. This is done since as the permittivity of the 

material in which the tag is embedded increases, the tag response shifts down in 

frequency. This allows for a K-band (18-26.5 GHz) waveguide to be used for 

interrogation and as the response shifts down, new notches will enter the interrogation  

band. Figure 4.63 shows the simulation setup used for testing the utility of this tag for 

materials characterization. In this monostatic radar simulation, the tag, linearly polarized 
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a. 

 
b. 

 
c. 

 
c. 

Figure 4.62. RCS vs. frequency responses of ID application optimized tag. a) Eight spiral 

tag response. b) Response when spiral 2 is removed. c) Response when spiral 3 is 

removed. d) Response when spiral 4 is removed.  
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plane-wave used for interrogation, and RCS probe are placed in the material for 

simplicity. Figures 4.64 and 4.65 show the RCS vs frequency response for various 

embedding materials. In Figure 4.64 only permittivity is changed where as in Figure 4.65 

the complex dielectric constant is manipulated. The trends seen in these figures 

corroborate what was seen in the proof of concept of embedded chipless RFID in Section 

2.  

 

 

Figure 4.63. Simulation setup for embedded materials characterization.  

 

As previously mentioned, most tag metrics are only applied to ID based tags as 

codes often are not assigned to the responses of sensing based tags. Additionally, these 

metrics do not necessarily convey the merit of a tag for a sensing based application. 

Because of this, three new tag metrics were developed and presented in [104].  
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Figure 4.64. RCS vs frequency response for tag embedded in materials with different 

permittivities.  

 

 

Figure 4.65. RCS vs. frequency response for tag embedded in materials with different 

complex dielectric constants.  
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 The first of these new metrics is notch density. This metric is a modification of bit 

density that is defined as the number of response notches per tag area and response 

bandwidth used. For the case of the tag used above for embedded materials 

characterization applications, the notch density would be 10/0.36 cm2/19 GHz. This 

metric has the benefit of concisely communicating the coding potential, the size of the 

tag, and the reader bandwidth specification. Together, this information provides insight 

into the practicality of the tag.  Another benefit of this metric is that it is not coding 

method dependent as bit density is. However, there can still be some user bias when 

determining what the reader bandwidth.  

 A second proposed metric is the average Q-factor which relates to the 

measurability of a tag in terms of how many frequency points are needed to properly 

capture the notches in the response. If too few frequency points are used, there is the 

possibility of missing a notch which will lead to bit generation errors and incorrect codes.  

 The third proposed metric is the maximum RCS value of the response. The higher 

the RCS, the more the tag is scattering and the easier it is to capture the response of the 

tag. Higher RCS’s also make it easier to distinguish the response of the tag from the 

response of the background. Knowing the maximum RCS of a tag will allow the user to 

know the sensitivity needed in the reader system. Conversely, if there is a specific reader 

sensitivity, knowing the maximum RCS will allow the user to know if a certain tag is 

capable of being measured.  



 

 

115 

4.7. MEASUREMENT OF TAG 

This tag was also fabricated in four different configurations and measured. It was 

fabricated in its X-band version due to limitations of PCB fabrication houses. In doing 

measurements, S11 was measured rather than RCS due to the complexity of measuring 

RCS, as was done in Section 2.3. Since S11 was to be measured, first S11 was simulated 

using a waveguide setup like that shown in Figure 4.66. The response for both the eight 

spiral (Tag 1) and single spiral (Tag 2) configurations of the tag are shown in Figure 4.67, 

as both of these configurations were fabricated along with configurations with spiral 3 

(Tag 3) missing and spiral 8 (Tag 4) missing. The fabricated tags are shown in Figure 

4.68. For all four tag configurations, five copies of each tag were fabricated. The copies 

of each tag are indicated by a decimal number (i.e., the tags in the eight spiral set are 

numbered Tag 1.1 to Tag 1.5). 

 

 

Figure 4.66. Simulation setup for S11 of tag.  
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Figure 4.67. Simulation results for S11 of eight spiral and single spiral tags. 

  

  

Figure 4.68. Fabricated eight spiral and single spiral tags.  
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 In doing the measurements, an X-band open-ended waveguide with a modified 

flange (described in [127]) was used with a VNA. For the measurements, the waveguide 

was operated from 7.5 to 12.4 GHz, which is outside its normal 8.2 to 12.4 GHz range, to 

better capture the lower frequency notches. To this end, 3001 points were also used in the 

measurements. The measurement setup is shown in Figure 4.69.  

 

 

Figure 4.69. Measurement setup for fabricated spiral tags.  

 

 All tags were measured at a distance of 0.5 cm from the waveguide aperture. It 

should be noted, that S11 measurements are distance dependent so measurements at 

different distances produce different results. 0.5 cm was used as the distance here because 

it produces the strongest response. In processing the measurements, a measurement of the 

foam that the tag was attached to was subtracted from the measurement of the tag with 
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the foam. This was done to remove the effects of the foam and isolate the response of the 

tag so it could be more directly compared to the free-space simulation. The processed 

measurement results in comparison to the simulation results are shown in Figures 4.70, 

4.71, 4.72, and 4.73. In all cases the associated measurement and simulation notches are 

indicated with ovals. From Figure 4.70 it can be seen that for the single spiral tag the 

measurement and the simulation results agree. However, in Figure 4.71 there is not as 

good of agreement between the simulation and the measurement. This is believed to be 

due to manufacturing defects and misalignment between the waveguide and the tag, as 

this tag is extremely sensitive to misalignment. In Figures 4.72 and 4.73, similar 

disagreement between measurement and simulation can be seen. It should be noted that 

all five copies of the eight spiral tag produced similar measurement results, as is 

exemplified by Figure 4.74. Figures 4.75, 4.76, and 4.77 show comparisons of 

measurements for all five copies of Tag 2, Tag 3, and Tag 4, respectively. For Tags 3 and 

4 all five copies produce similar results. However, for Tag 2, the measurement for Tag 

2.2 is shifted up in frequency from the measurements of the other four tags. This is 

believed to be from a slight manufacturing defect of this particular tag, which was 

verified by examining Tag 2.2 under a microscope.  

It is possible that all five copies of Tags 1, 3, and 4 are subject to the same 

manufacturing inaccuracies (i.e., slight differences in spiral length or placement from the 

simulation model), which could causes changes in response characteristics. To show that 

this could be the case, further simulation was conducted. In these simulations, spirals in 

positions 1, 3, and 5, indicated in Figure 4.78, had 0.076 mm (the manufacturing 

tolerance of the PCB manufacturer used) of length removed from their outside legs.  
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Figure 4.70. Measurement and simulation results for single spiral tag.  

 

 

Figure 4.71. Measurement and simulation results for eight spiral tag.  
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Figure 4.72. Measurement and simulation results for Tag 3.1.  

 

 

Figure 4.73. Measurement and simulation results for Tag 4.1.  
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Figure 4.74. Comparison of processed measurements of five copies of Tag 1.  

 

 

Figure 4.75. Comparison of processed measurements of five copies of Tag 2.  
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Figure 4.76. Comparison of processed measurements for five copies of Tag 3.  

 

 

Figure 4.77. Comparison of processed measurements for five copies of Tag 4.  
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Figure 4.79 shows the response for this modified tag in comparison to the measurement 

and simulation for the intended tag. As can be seen, three of the spirals have their notches 

shift up in frequency showing that slight changes in length of the spirals could causes the 

mismatch between measurement and simulation seen for the eight spiral tag. 

 

 

Figure 4.78. Spirals modified for simulation of manufacturing defects. 

 

 

Figure 4.79. Simulation of modified tag in comparison to original tag simulation and 

measurement.  
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 Following measurement of all four tags, their responses at a distance of 0.5 cm 

were compared to see how well the different responses could be distinguished from each 

other. Figure 4.80 compares the responses for the four tags. As can be seen, Tag 3 is 

missing a notch around 10 GHz that is present in the responses of Tags 1 and 4. This is 

expected based on the spiral that was removed and its associated notch. The response for 

Tag 4 has notches in similar locations to that of Tag 1, as is also expected. In this case, 

the removed spiral has its associated notch outside the frequency range of the 

measurements that were done.  

 

 

Figure 4.80. Comparison of measured responses of four tag configurations. 

 

4.7.1. Misalignment Simulations.  To examine the effects of misalignment, more 

simulations were conducted. Through these waveguide based S11 simulations, the effects 

of tag translation in the x, y, and z directions were examined as well as the effects of tag  
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rotation about the x, y, and z axes. The x direction is along the long a dimension (long 

dimension) of the rectangular waveguide, while the y direction is along the b dimension 

of the waveguide. In all cases, the eight spiral X-band tag was used. In order to overcome 

the effects of misalignment, a circularly polarized antenna could potentially be used [128, 

129]. Another option for overcoming misalignment issues, is a polarization independent 

reading system like that proposed in [130], however, it comes at the cost of added 

complexity. 

4.7.1.1. X translation.  First, the tag was moved in both the –x and +x  

directions, which is along the ‘a’ dimension of the waveguide, in 1 mm increments at a 

distance of 0.5 cm. The tag was only moved up to 5 mm in each direction to look at 

plausible misalignments that could happen in measurement. Figures 4.81 and 4.82 show 

the results of this translation. In both the case of +x and –x translation, it can be seen that 

the notches change in magnitude but do not shift in frequency.  

 

 

Figure 4.81. Translation of tag in –x direction.  
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Figure 4.82. Translation of tag in +x direction.  

 

4.7.1.2. Y translation.  The second case investigated involved moving the  

tag in the –y and +y directions. For these cases, the tag was again moved in 1 mm 

increments at a distance of 0.5 cm from the waveguide aperture. Figures 4.83 and 4.84 

show the results for translation in the –y and +y directions, respectively. From these 

figures it can be seen that for Y-direction translation, the S11 magnitude tends to change, 

but the notches do not shift in frequency. Thus, it can be concluded that Y-direction 

translation misalignment is not the causes of the shifted and missing notches in the 

measured response.  
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Figure 4.83. Translation of tag in –y direction. 

 

 

Figure 4.84. Translation of tag in +y direction. 

 

4.7.1.3. Z translation.  It is known that S11 measurements are distance   

dependent. To examine this dependence first, small z-direction translations were 

examined. For these, the tag was moved toward the waveguide 1 mm (-1 mm translation 
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for a distance of 4 mm from waveguide aperture to tag) and away from the waveguide 1 

mm (+1 mm translation). The results in comparison to the measurement at a 5 mm 

distance are shown in Figure 4.85. From Figure 4.85 it can be seen that the -1 mm  

 

 

Figure 4.85. Translation of tag along z-direction.  

 

translation produces a higher magnitude response. This makes sense because the tag is 

closer to the waveguide aperture. However, in both translation cases, the notches again do 

not shift much in frequency.  While small errors in z distance between the tag and 

waveguide aperture could cause differences between the measurement and the 

simulation, this still does not account for the frequency shift of notches seen in the 

measurement. 

Next, a comparison was done greater z-direction translations. The tag was moved 

away from the waveguide aperture (+z direction) at 5 mm increments up to 20 mm for 
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both simulation and measurement. Only Tag 1.1 was used because as was shown in 

Figure 4.74, all five copies of Tag 1 produce similar responses. The results are reported in 

Table 4.4. From Table 4.4, it can be seen that the measurement and simulation results for  

 

Table 4.4. Effect of z-direction translation on measurement and simulation. 

Distance Plot 

5 mm  

 

10 mm  
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Table 4.4. Effect of z-direction translation on measurement and simulation (cont.). 

Distance Plot 

15 mm  

 

20 mm 
 

 
 

 

all four distances are in disagreement, but each distance also produces a different 

response. Because of this distance dependency, RCS measurements are often used for 

chipless RFID tags. However, as previously mentioned, RCS measurements are more 
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complex to make than S11 measurements. Section 6 will explore methods for making 

RCS measurements.   

4.7.1.4. X-axis rotation.  Next, the tag was rotated about the x-axis from – 

10˚ to 10˚ in 1˚ increments. Figure 4.86 shows -10˚ rotation of the tag with respect to the 

waveguide aperture. Figures 4.87, 4.88, and 4.89 show different cases of x-axis rotation. 

In Figure 4.87, the responses of the tag for -1˚, 0˚, and 1˚ are shown. As can be seen, each 

of these responses is different and the notches shift around as the tag is rotated. Figures 

4.88 and 4.89 show more drastic rotation cases. By examining these three figures, it is 

observed that there is not symmetry between positive and negative rotation angles (i.e., 

+1˚ and -1˚ of rotation do not produce the same response). In all cases, though, the 

notches tend to shift around. This means that x-axis rotation could be contributing to the 

difference between measurement and simulation of the tags seen in Figure 4.71.  

 

 

Figure 4.86. Depiction of x-axis rotation of tag.  
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Figure 4.87. x-axis tag rotation for -1˚, 0˚, and 1˚. 

 

 

Figure 4.88. x-axis tag rotation for -10˚ to -7˚. 
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Figure 4.89. x-axis tag rotation for 7˚ to 10˚. 

 

4.7.1.5. Y-axis rotation.  Rotation about the y-axis was examined next. In  

this case, the tag was again rotated from -10˚ to 10˚ in 1˚ increments. Figure 4.90 shows  

-10˚ of rotation of the tag about the y-axis. In Figures 4.91, 4.92, and 4.93 the same 

rotation cases as Figures 4.87, 4.88, and 4.89, respectively, are explored but for rotation 

about the y-axis rather than the x-axis. Similar to x-axis rotation, y-axis rotation produces 

different responses for each angle and positive and negative rotations of the same amount 

do not produce the same responses. Additionally, the notches shift in frequency again as 

the tag is rotated. This means that y-axis rotation could also contribute to the 

disagreement between measurement and simulation in Figure 4.71.  

 



 

 

134 

 

Figure 4.90. Depiction of tag rotation about y-axis. 

 

 

Figure 4.91. y-axis tag rotation for -1˚, 0˚, and 1˚. 



 

 

135 

 

Figure 4.92. y-axis tag rotation for -10˚ to -7˚. 

 

 

Figure 4.93. y-axis tag rotation for 7˚ to 10˚. 
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4.7.1.6. Z-axis rotation.  Lastly, z-axis rotation was examined. As  

previously discussed in Section 4.6.1, this tag in its four spiral configuration is very 

sensitive to rotation. In its eight spiral configuration it is still sensitive to rotation but less 

so than in its four spiral configuration. The angles provided are for counterclockwise 

rotation. In simulation, the tag was rotated in 5˚ increments from 0˚ to 360˚. Both 0˚ and 

360˚ were simulated as a check to ensure that the results made sense. Figure 4.94 shows 

results for 90˚ rotation increments. As can be seen 0˚, 180˚, and 360˚ produce the same 

results (yellow curve) while 90˚ and 270˚ also produce the same results (green curve). 

These results were unexpected because the tag is not symmetrical, however, the electric 

field of the waveguide interacts with the tag in the same way for these 180˚ offsets. This 

phenomenon was also corroborated with measurement, shown in Figure 4.95 where 

results for 0˚ and 180˚ are exactly on top of each other in simulation and almost on top of 

each other in measurement.  

 

 

Figure 4.94. Simulation of z-axis tag rotation.  



 

 

137 

 

Figure 4.95. Comparison of simulation and measurement for z-axis tag rotation. 

 

 Next, the 45˚ increments were compared and this phenomena of 180˚ pairs 

producing the same response no longer holds. For the case of 45˚ and 225˚ and the case 

of 135˚ and 315˚, shown in Figures 4.96 and 4.97 respectively, there is a slight difference 

between the two simulated responses. This is believed to be due to the lack of symmetry 

in the tag and how the electric field interacts with the spirals in these positions.  

 Lastly, 5˚ increments of rotation were examined. Figures 4.98 and 4.99 show 

these results. From these figures it can be seen that there are differences in response for 

5˚ changes in rotation and differences depending on the direction of rotation (i.e., +5˚ of 

rotation produces a different response than -5˚ of rotation). In all of these cases shifts in 

notches are seen, meaning that z-axis rotation could also contribute to the differences 

between measurement and simulation seen in Figure 4.71.  
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Figure 4.96. z-axis tag rotation for 45˚ and 225˚. 

 

 

Figure 4.97. z-axis tag rotation for 135˚ and 315˚. 
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Figure 4.98. z-axis tag rotation for 0˚ to 10˚. 

 

 

Figure 4.99. z-axis tag rotation for -5˚ to 5˚. 
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4.8. DISCUSSION 

In this section the work done in [104] and [108] was built on. To this end, a tag 

design methodology was presented and then utilized to develop a tag design. Design 

guidelines that can be used to adapt tags to different applications were then presented 

and utilized to optimize the tag for a different frequency range, rotation sensing, ID 

application, and embedded materials characterization. A method to associate tag 

geometry with response characteristics by using surface current density simulations 

was also discussed. Lastly, the tag of Section 4.3 was fabricated in four different 

configurations and measured. It was found that while the single spiral tag configuration 

agrees well with simulation results, the other three configurations do not. To this end, 

simulations were conducted to examine the effects of manufacturing defects and 

misalignment. It was found that slight changes in the length of spirals as well as slight 

rotations of the tag could cause the shift of notches like was seen in the measurement 

results. Additionally, translational errors in the xy directions can causes changes in the 

magnitude of the response, while translational errors in the z direction can cause the 

response to change shape. To mitigate some of these effects RCS measurements can be 

conducted, however, this comes at the cost of additional measurement complexity. 

RCS measurements will be explored further in Section 6.  
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5. INKJET-PRINTING AS A MEANS OF TAG MANUFACTURING 

5.1. PREMISE 

Inkjet-printing has gained a lot of attention in the chipless RFID community as a 

way to produce tags in a quick and inexpensive manner, making them easily deployable 

and potentially ubiquitous. While many chipless RFID tags claim to be “printable”, very 

few have actually been printed and measured. Many of these “printable” tags are for ID 

applications [21, 29, 35, 52, 54, 59, 68, 131]. However, there have been a few cases of 

printable and printed tags for sensing applications [50, 73, 132]. Additionally, there is a 

lack of consensus on the dielectric properties of common printing papers and a lack of 

information as to the conductivity that should be expected from inkjet-printing.  This 

section seeks to expand the information available in both of these areas and examine how 

these printing parameters can be used in simulation to better predict the responses of 

printed tags. For this work, a Brother® desktop inkjet-printer (MFC-J680DW) is used 

with silver nano-particle ink (Mitsubishi NBSIJ-FD02). This printer was chosen based on 

previous work for its high dpi, ability to print conductive ink, relative inexpensiveness, 

and high ink deposition [40-43, 50, 98, 133, 134]. Work presented in this section is from 

[135], [136], and beyond.  

5.2. PRINTING PAPER DIELECTRIC PROPERTIES 

The dielectric properties of printing papers must be known in order to properly  

simulate the EM properties of tags. Previously, the dielectric properties of some common 

printing papers have been measured using a variety of methods including ring resonators, 

T-resonators, co-planar waveguides, cavities, split ring resonators, and through-reflect 
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lines up to 12.5 GHz [42, 97, 98, 137-139]. These values have then been applied to 

applications up to 24 GHz, despite dielectric properties being frequency dependent [140]. 

Table 5.1 shows the previously reported dielectric properties of common inkjet-printing 

papers and their method of determination. In most of these cases, the type of photo paper 

used was not specified and the type of Mitsubishi paper used in [137] was not stated. 

Since all of these methods except the cavity used in [138], require that a resonator or co-

planar waveguide be fabricated on the paper in order to measure the dielectric properties, 

manufacturing errors can also affect the results.  

 

Table 5.1. Reported dielectric properties of printing papers. 

Method Paper Type Dielectric 

Property Results 

Frequency 

Range (GHz) 

Reference 

T-Resonator 

printed with 

Dimatix Printer 

using silver 

nanoparticle ink 

Photo Paper 휀𝑟 = 2.9 𝑡𝑜 3.2 0.6 - 10 [42] 

Co-planar 

waveguide 

printed with 

Epson printer 

using silver 

nanoparticle ink 

Mitsubishi 

(NB-TP-

3GU100) - 

PET  

휀𝑟 = 6.7 

𝑡𝑎𝑛𝛿 = 0.11 

0 - 3 [97] 

Mitsubishi 

(NB-RC-

3GR120) 

휀𝑟 = 3.6 

𝑡𝑎𝑛𝛿 = 0.14 

0 - 3 

HP Premium 

Plus Photo 

Paper  

휀𝑟 = 5.2 

𝑡𝑎𝑛𝛿 = 0.11 

0 - 3 
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Table 5.1. Reported dielectric properties of printing papers (cont.). 

Method Paper Type Dielectric 

Property Results 

Frequency 

Range (GHz) 

Reference 

Ring resonator 

and Through-

Reflect Lines 

made with 

copper adhesive 

laminate 

Commercial 

paper with 

hydrophobic 

coating 

휀𝑟 = 3.28 

𝑡𝑎𝑛𝛿 = 0.061 

0 - 2 [98] 

Ring resonator Commercial 

paper with 

hydrophobic 

coating 

휀𝑟 = 3.2 

𝑡𝑎𝑛𝛿 = 0.077 

0.5 – 2.5 [44] 

Value reported 

without method 

described or 

cited 

Mitsubishi 

Photo Paper 

휀𝑟 = 2.9 

𝑡𝑎𝑛𝛿 = 0.061 

1  [137] 

Transmission 

line made of 

conductive 

adhesive 

Kodak Photo 

Paper 

휀𝑟 = 3.2 

𝑡𝑎𝑛𝛿 = 0.08 

Not specified [141] 

Damaskos 

Metallic cavity 

Glossy paper 휀𝑟 = 2.85 

𝑡𝑎𝑛𝛿 = 0.08 

5.8 [138] 

T-resonator on 

multilayer 

substrate (paper 

layers bonded 

together), inkjet 

printed with 5 

layers of silver 

nanoparticle ink 

Photo Paper 휀𝑟 = 2.8 

 

10 [41] 

Split ring 

resonator printed 

with Dimatix 

printer 

Commercial 

photo paper 

휀𝑟 = 2.9 𝑡𝑜 3.4 

𝑡𝑎𝑛𝛿 = 0.06 

1 – 10 [139] 
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To the best of the author’s knowledge, the dielectric properties of these papers 

have not been measured and reported above 12.5 GHz. To this end, measurements were 

conducted using the open-ended waveguide method of [95] to determine the dielectric 

properties of four different papers from X-band (8.2 – 12.4 GHz) through K-band (18 – 

26.5 GHz). The four different papers are Mitsubishi® paper (NB-TP-3GU100), 

Mitsubishi® paper (NB-RC-3GR120), HP® Photo Paper (CR758A), and LD® Glossy 

Photo Sticker Paper (HYPSTICK100). The two types of Mitsubishi paper and the photo 

paper are common to inkjet printing, while the photo sticker paper is used because it 

advantageous to be able to easily adhere printed tags to structures when doing SHM. 

Table 5.2 tabulates the thickness of each paper, as this information is necessary for both 

calculation of dielectric properties and for simulation of printed tags.  

 

Table 5.2. Printing paper thicknesses.  

Paper Thickness (mm) 

Mitsubishi® Paper (NB-TP-3GU100) 0.135 

Mitsubishi® Paper (NB-RC-3GR120) 0.177 

HP® Photo Paper (CR758A) 0.267 

LD® Photo Sticker Paper (HYPSTICK100) 0.279 

 

 The open-ended waveguide method described in [95] was used for measurement. 

This method has the benefit of not requiring a conductive circuit to be manufactured on 

the paper, which means that there are fewer sources of potential error. At X-band, Ku-

band, and K-band, the S11 of papers of all 4 types were measured. The measurement 
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setup, shown in Figure 5.1, consists of a waveguide with a flange pointing towards the 

ceiling. For x-band and k-band, a modified flange, like that presented in [127] and shown 

in Figure 5.1, is used because it mimics an infinite flange. For Ku-band, an elliptical 

flange was used because it was what was available. For each paper measurement at each 

frequency band, multiple samples were measured multiple times. The side of the paper 

that is printed on was faced towards the aperture of the waveguide, since this is the side 

the waveguide would see of printed tags.  

 

 

Figure 5.1. Setup for measurement of dielectric properties of paper.  

 

 An example of one of the measurements and the recalculated reflection 

coefficient used to determine the dielectric properties is shown in Figure 5.2. Figure 5.2 

is for a Mitsubishi® paper (NB-TP-3GU100) sample at X-band. Table 5.3 tabulates the 
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dielectric properties for all four papers at the 3 different frequency bands. These results 

except for those for Mitsubishi® Paper (NB-RC-3GR120) were presented previously in 

[135]. 

 

 

Figure 5.2. Measurement and recalculation for dielectric property determination.  

 

Table 5.3. Dielectric properties of papers.  

Paper X-band Ku-band K-band 

Mitsubishi® Paper 

(NB-TP-3GU100) 

2.41-j0.16 2.348-j0.132 2.452-j0.192 

Mitsubishi® Paper 

(NB-RC-3GR120) 

2.47-j0.094 2.23-j0.032 2.23-j0.026 

HP® Photo Paper 2.11-j0.12 1.92-j0.10 2.17-j0.09 

LD® Photo Sticker 

Paper 

2.14-j0.11 2.08-j0.29 2.14-j0.09 



 

 

147 

The results shown in Table 5.3 show that the relative permittivity of the 

Mitsubishi® paper (NB-TP-3GU100) is approximately 2.4. This is reasonable since it is 

made of polyethylene terephthalate (PET) which has a relative permittivity of about 2.3. 

Cellulose paper’s relative permittivity tends to range from 2-3, so the reported values for 

the other papers, which are also cellulose based, are also reasonable. For these types of 

measurements, air gaps between the waveguide aperture and the material being measured 

can introduce some measurement inaccuracies.  It should also be noted that these reported 

values are lower than those reported previously in Table 5.1.  

5.3. CONDUCTIVITY DETERMINATION  

Understanding how the conductivity of printed tags affects their performance is  

also important. Previously, it has been demonstrated that reduced conductivity that is 

inherent to inkjet-printing, in comparison to traditional microstrip line, results in reduced 

magnitude of resonances [37]. This can make measuring the tag difficult and it can affect 

the binary code associated with the tag depending on the coding method used. To this 

end, two different experiments were conducted to evaluate the conductivity of inkjet-

printed tags.  

 In the first experiment, a 4 cm x 4 cm square was printed. This square was then 

measured as a microwave short with an X-band waveguide and the result was compared 

to a calibration kit microwave short. The printed short is shown in Figure 5.3 and the 

results of this experiment are shown in Figure 5.4. From the results it can be seen that the 

printed short does not behave like a perfect short, however, it does behave similarly to the 

calibration kit short.  
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Figure 5.3. Printed microwave short.  

 

 

Figure 5.4. Comparison of printed short to calibration kit short.  

 

 The second experiment involved using a microwave X-band resonant cavity that 

was specifically optimized for measuring surface resistivity [142]. This method has a few 

advantages over four point probe methods, like those used in [42], such as being able to 

be used for bulk features rather than thin traces and not needing to touch the surface of 

the print with probes, as this can easily causes scratches on the print surface and affect 
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conductivity. This susceptibility to scratches and wear will be examined further in 

Section 5.3.1. When using this cavity, the method presented in [143] can be used to 

calculate the conductivity from the surface resistance of cavity lids using Equations (12) 

and (13) below: 

𝑅𝑠 =
1

𝛼
(

1

𝑄𝑖
−

1

𝑄𝑟𝑒𝑓) + 𝑅𝑠
𝑟𝑒𝑓

    (12) 

 

𝜎 =
𝜋𝜇𝑜𝑓

(𝑅𝑠)2
     (13) 

In Equation (12), 𝑅𝑠 is the surface resistance, 𝑄𝑖 is the measured Q-factor of the material 

under test (MUT), 𝑄𝑟𝑒𝑓 is the measured Q-factor of the reference material, and 𝛼 is a 

constant that is related to the mode the cavity is operated in and the dimensions of the 

cavity. 𝛼 can be derived from [144] and [145] and expressed mathematically as Equation 

(14): 

𝛼 =
2

𝑘𝑎𝜂
     (14) 

In Equation (14) 𝑎 is the radius of the cavity, 𝜂 is the intrinsic impedance, and 𝑘 is the 

wave number. Equations (15) and (16) express the intrinsic impedance and wave number, 

respectively, while Equation (17) expresses the resonant frequency for TE 𝑛𝑚𝑙 mode, 

𝑓𝑛𝑚𝑙 : 

𝜂 =
377

√𝜀𝑟
      (15)  

 

𝑘 =
2𝜋𝑓𝑛𝑚𝑙√𝜀𝑟

𝑐
      (16) 
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𝑓𝑛𝑚𝑙 =
𝑐

2𝜋√𝜇𝑟𝜀𝑟

√(
𝑝𝑛𝑚

′

𝑎
)

2

+ (
𝑙𝜋

𝑑
)

2
  (17) 

In Equation (17), 𝑝𝑛𝑚
′  is the nth root of the Bessel function 𝐽𝑛

′  and 𝑑 is the height of the 

cavity.  

 The cavity used is operated in the 𝑇𝐸012 mode which has a resonant frequency of 

11.45 GHz. The dimensions of the cavity are 𝑎=22.5 mm and 𝑑=37.2 mm. A CST 

Microwave Studio® model of the cavity is shown in Figure 5.5. The cavity is made to 

operate at the 𝑇𝐸012 mode since at this mode, the fields circulate around the cavity as is 

illustrated in Figure 5.6. This allows for small gaps between the lid and cavity body to not 

be an issue while also providing maximum interaction between the fields and the surface 

of the lid. This allows for sensitivity to surface resistance and therefore conductivity. The 

S21 response of the cavity is shown in Figure 5.7 for two different lid materials – 

aluminum and perfect electrical conductor (PEC). The two different lid types were  

 

 

Figure 5.5. CST Microwave Studio® model of resonant cavity. 
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Figure 5.6. Operation of cavity at 𝑇𝐸012 mode.  

 

simulated to verify that the aluminum lid of the physical cavity would be sufficient for 

these measurements. From Figure 5.7, agreement between the aluminum and PEC lids 

can be seen around the 11.45 GHz frequency range where the cavity was to be operated.  

 

 

Figure 5.7. Simulated S21 response of resonant cavity.  
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 To show further cause for using this approach for measuring conductivity, 

additional simulations were conducted. In these simulations, the conductivity of the 

cavity lid was changed and the Q-factor of the resonance at 11.45 GHz was examined. 

Figure 5.8 shows these results for three different conductivities. As can be seen, as the 

conductivity increases, so does the Q-factor of the resonance. The results of further 

simulations with different conductivities are summarized in Figure 5.9.  

 

 

Figure 5.8. Simulated effect of conductivity on Q-factor.  

 

Following verification of this measurement approach through simulation, 

measurements were conducted. For these measurements a set of samples were printed 

with a Brother® inkjet printer. The samples (6 cm diameter circles to fit the cavity lid) 

were printed on Mitsubishi® paper (NB-TP-3GU100), subsequently referred to as simply 

Mitsubishi® paper, HP® photo paper, and LD® photo sticker paper with the photo vivid 
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setting, as this setting has been shown to deposit to the most ink and lead to the most 

conductive prints [134]. Both single layer and two-layer prints were also prepared and 

multiple samples of each combination of paper and layer number were produced. 

Examples of printed samples are shown in Figure 5.10. The samples were then adhered to 

the cavity lid with double-stick tape and S21 was measured with a VNA. For the 

measurements the VNA was set up to operate from 11.3 to 11.6 GHz with 10001 

frequency points to best capture high Q-factor resonances. Figure 5.11 shows the 

measurement setup used.  

 

 

Figure 5.9. S21 as a function of conductivity. 

 

 

Figure 5.10. Examples of printed samples for conductivity measurement.  
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Figure 5.11. Measurement setup for conductivity measurements.  

 

 In performing the measurements, the aluminum cavity lid was used as the 

reference measurement and then multiple measurements were made with each sample. 

Figure 5.12 shows a comparison of Mitsubishi® paper and photo paper single layer prints 

with the aluminum lid. As can be seen, the aluminum lid has the highest Q-factor 

resonance of the three cases, as expected. Table 5.4 shows a comparison of measurements 

for the three different printing papers for both single layer and two-layer prints. This table 

demonstrates that for single layer prints, photo sticker paper has the highest Q-factor, but 

the resonance in this case is also shifted down in frequency from where it is supposed to 

be. When another print layer is added, the Q-factor for both the Mitsubishi® paper and 

photo paper increases, while that of the photo sticker paper decreases. However, the 

resonance of the photo sticker paper shifts back up in frequency to closer to where it is 

supposed to occur. This shift of resonance is believed to be attributed to the skin depth of 
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the print being larger than the print thickness, meaning that microwaves see through the 

print to the paper substrate. This effect will be investigated further later in this section. 

These Table 5.4 results show that increasing the number of layers does not always result 

in higher conductivity. Additionally, different papers with the same print settings can 

result in different conductivities, which is possibly a result of how well the paper coating 

causes the ink to adhere to the paper.  

 

 

Figure 5.12. Measurement comparison of different papers with reference.  
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Table 5.4. Measured S21 of different inkjet-printed samples. 

Layers Mitsubishi Photo Paper Photo Sticker Paper 

1 

   
2 

   
 

1
5
6
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The results of Table 5.4 and the other measurement sets gathered are summarized 

in Table 5.5. In Table 5.5 there is a range for both Q-factor and calculated conductivity 

for each type of sample. These ranges show that even samples produced with the same 

settings can have widely varying conductivities. This quality control issue could not be 

tolerated in production, as tags with different conductivities will perform very differently.  

Table 5.5 also shows that single layer photo sticker paper prints have the highest 

conductivity, while adding another print layer increases the conductivity for Mitsubishi® 

and photo paper. 

   

Table 5.5. Summary of conductivity measurement results. 

Type Q range Conductivity Range 

(S/m) 

Aluminum Lids 1389 - 1429 
 

Mitsubishi Paper: 1 layer, 

photo vivid 

64.23 - 163.15 

 

198.42 - 1494.9 

 

Mitsubishi Paper: 2 layer, 

photo vivid 

495.07 - 512.82 

 

25909 - 28941 

 

Photo Paper: 1 layer, photo 

vivid 

183.82 - 210.54 

 

1958.1 - 2696.5 

 

Photo Paper: 2 layer, photo 

vivid 

581.55 - 649.51 

 

43886.8 - 65156.4 
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Table 5.5. Summary of conductivity measurement results (cont.). 

Type Q range Conductivity Range 

(S/m) 

Sticker Paper: 1 layer, 

photo vivid 

746.35 - 1010.1 

 

113386 - 597624 

 

Sticker Paper: 2 layer, 

photo vivid 

77.28 - 78.44 

 

293.14 - 302.63 

 

 

5.3.1.  Influences on Conductivity.  In handling samples, additional influences 

on conductivity were observed. It has previously been reported that bending or stretching 

of inkjet-printed features causes micro-cracking in the conductor. This effect has then 

been exploited for creating one time use strain sensors [73, 132]. To examine the effect of 

handling, one of the photo paper samples was smeared slightly. This effect is visible in 

Figure 5.13 in comparing the un-smeared sample on the left to the smeared sample on the 

right. The smeared sample was then measured again using the resonant cavity. The 

results are reported in Table 5.6. As can be seen from this table, there is a dramatic 

decreases in conductivity after smearing of the sample. These results do not bode well for 

using printed tags for structural health monitoring, as the tags would need to be handled 

to be installed on a structure. Sealants could be used to protect the prints, but one has to 

ensure that the sealant will not affect the scattering abilities of the tag or cause a change 

in tag response [134].  
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Figure 5.13. Effect of handling samples. Left: un-smeared. Right: Smeared.  

 

Table 5.6. Effect of handling prints on conductivity. 

Type Q-factor Conductivity 

Aluminum Lid 1389-1429  

Photo Paper, 1 layer 183.82 – 210.54 1958.1 – 2696.5 

Photo Paper, 1 layer, 

smeared 

43.81 – 55.19 89.25 – 144.15 

 

Print conductivity can also influence skin depth and therefore performance. As 

seen previously in Table 5.4, there was a shift in the resonance frequency for the single 

layer photo sticker paper prints. This is believed to be an effect of skin depth in relation 

to print thickness. Typical prints with silver nano-particle ink vary from 300 to 500 nm 

thick depending on the printer used [42, 134]. Skin depth is a figure of merit that 

describes to what extent microwaves penetrate a conductor. Mathematically, it is 

described as Equation (18): 
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𝛿 = √
2

𝜔𝜇𝜎
      (18) 

As can be seen from Equation (18), skin depth is dependent on both frequency (𝜔) and 

conductivity (𝜎). Figure 5.14, shows how skin depth varies for measured conductivities 

over a frequency range of 4 to 15 GHz. At the lowest conductivity (measured for the 

smeared print) the skin depth is approximately 0.85 mm at 4 GHz, which is 1700 times 

larger than the thickest typical single layer print. As the conductivity increases, the skin 

depth decreases. As previously mentioned, skin depth is a figure of merit rather than a 

microwave penetration cutoff point. This means that even for small skin depths or thick 

prints, the substrate behind the conductor can still play a role in performance.  

 

 

Figure 5.14. Effect of conductivity on skin depth.  



 

 

161 

5.3.2. Improving Conductivity.  There are a variety of methods that can be used 

to improve conductivity. The two primary methods are sintering and multi-layer printing. 

Multi-layer printing has been used by [41], [42], [134], [146], and [147]. As was 

previously shown, though, printing multiple layers does not always result in higher 

conductivity. Additionally, it can be difficult to obtain alignment between printed layers 

which can then affect performance [134]. In terms of sintering, there are a variety of 

methods that can be employed.  

5.3.2.1. Thermal sintering.  Thermal sintering is one of the simpler, less  

expensive sintering methods that can be employed. This method, however, requires that a 

specific temperature profile be maintained over time and care must be taken so that the 

substrate is not harmed during the sintering process. Many paper- and PET- based 

substrates have their thermal degradation point below the temperatures that are required 

to break down the polymers that surround the silver nano-particles (i.e., the temperatures 

needed for sintering). This leads to plastic deformations and stresses of the substrate 

[147-153]. Figure 5.15 shows an attempt at sintering with imprecisely controlled 

temperature conditions. As can be seen, the sintered print on Mitsubishi® paper curled 

and became unusable. The print sintered on photo paper was still usable and was also 

viewed under a microscope. These microscope images are shown in Figure 5.16 and 

show that sintering provides better connectivity between the silver nano-particle ink 

droplets which in turn should result in better conductivity. Substrates that are more stable 

at higher temperatures can be used to combat this, but these substrates are more 

expensive, more difficult to print on, and need to be characterized before use.  
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Figure 5.15. Sintered prints. Left: photo paper. Right: Mitsubishi paper.   

 

 

Figure 5.16. Microscope images of effect of thermal sintering. 

 

5.3.2.2. Laser and photonic sintering.  Laser sintering can be used to  

selectively thermally sinter prints. In this process the laser heats the print locally as it 

moves over the print. In [151] multiple laser powers and scanning speeds were tested and 

it was found that silver nano-particle inks require high power and fast scanning speed in 

order to avoid harming the substrate in the sintering process.  Photonic sintering is a 

similar process. In photonic sintering, UV to IR pulsed light sources are used to rapidly 

increase the temperature locally. This method has the caveat of only working for 

transparent substrates that will allow the energy from the source to only be absorbed by 
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the ink. It is not clear opaque substrates can be used effectively with this sintering method 

[151]. 

5.3.2.3. Electrical sintering.  Electrical sintering is one of the less common  

techniques. It involves applying a voltage directly to printed features with a controlled 

DC power supply. As voltage is applied, the current going through the print causes 

sintering to occur. This process takes approximately 3 ms for traces that are ~60um wide 

and 900 nm thick [152].  

5.3.2.4. Plasma sintering.  In [151] and [153] plasma sintering was  

explored as a means to increase conductivity. This method is considered to be a selective 

sintering technique that causes sintering to occur gradually from the top to the bottom of 

the print. Because of this top down process, if the print is not sintered long enough, poor 

adhesion between the print and the substrate can occur. Though plasma sintering, 

increased connectivity of silver nano-particles can be seen through microscope images, 

but cracks also sometimes appear in the conductor due to substrate deformation or 

shrinkage. This method has been shown to be effective for increasing conductivity, but it 

requires a plasma chamber, which is an expensive piece of equipment. This 

expensiveness and complexity counteracts some of the advantages of inkjet-printing with 

desktop inkjet printers.  

5.4. SIMULATION WITH PRINTING PARAMETERS 

The paper dielectric properties and print conductivity results measured in the  

previous sections can be applied to EM models to better simulate printed tags. An 

example of a printable tag (i.e., a tag without a ground plane) is shown in Figure 5.17 and 
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its RCS vs. frequency response is shown in Figure 5.18. This tag was presented 

previously in [103] and this Figure 5.17 response is for when the tag is manufactured as a 

PCB (i.e., FR-4 substrate of 0.5mm thickness).  

 

 

Figure 5.17. Example of printable tag.  

 

 

Figure 5.18. Response of printable tag.  
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 The substrate of this tag can then be manipulated so that the tag is simulated as if 

it is printed on the papers that previously had their dielectric properties measured. Figure 

5.19 shows the RCS vs. frequency response for when the tag is simulated on Mitsubishi® 

paper, photo paper, and photo sticker paper. In these cases, the substrate thickness is 

manipulated to be that of the paper used and the conductor is set as PEC. As these papers 

have similar dielectric properties, the responses in Figure 5.19 do not vary much.  

 

 

Figure 5.19. Response of tag on different printing substrates.  

 

 Following this simulation case, the conductor was also manipulated to be not 

ideal. Here it was set to have a conductivity of 3000 S/m and the tag was simulated for 

the same three papers. The results are shown in Figure 5.20. As can be seen, the notches 

in the response are no longer distinguishable. This effect also happens when PCB 

substrates are used. To illustrate this, the tag from Figure 4.51 was simulated with 
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varying conductivity of the conductor. From Figure 5.21 it can be seen that as the 

conductivity is reduced, the notches become less defined until they are no longer 

distinguishable. This further justifies the need for employing techniques to enhance 

conductivity.  

 

 

Figure 5.20. Response of simulated printed tag with non-ideal conductor. 

 

 Next, the non-idealness of print features was examined. Due to the raster scanning 

nature of printers, circular features are printed on a grid resulting in them not being 

perfectly circular. This effect was examined in [118] and [37], and is re-examined here. 

In Figure 5.22 a discretized circular slot resonator is featured. This discretized slot 

resonator tag was then simulated and its response was compared to an ideal circular slot 

resonator of similar dimensions, shown in Figure 5.23. The responses of these two slot 

resonators are shown in Figure 5.24. As can be seen, the responses are not the same; there 
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is a difference in resonance frequency between the two. This effect could causes 

measured responses to not agree with simulation and therefore it is important to consider 

when considering printing for a manufacturing method.    

 

 

Figure 5.21. X-band spiral tag response with variable conductivity. 

 

  

Figure 5.22. Discretized circular slot resonator. 
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Figure 5.23. Ideal circular slot resonator.  

 

 

Figure 5.24. Comparison of response for discretized and ideal circular slot resonator. 
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5.5. MEASUREMENT OF PRINTED TAGS 

Measurement was also done to compare the performance of PCB and inkjet- 

printed tags. For these measurements, an X-band waveguide with an elliptical flange was 

used to measure S11 and the tag was placed on the aperture with the conductive side 

facing the aperture. This measurement setup and the PCB and printed tags used are 

shown in Figure 5.25. This measurement setup was also simulated for PCB and printed 

tags. The printed tags in this simulation use a conductivity of 3000 S/m and the measured 

dielectric properties for the substrates. The simulation setup is shown in Figure 5.26 and 

the simulation results are shown in Figure 5.27. As can be seen from Figure 5.27, the 

simulated responses for the printed tags do not have distinguishable notches. This is also 

reflected in the measurement results shown in Figure 5.28. Overall, the printed tags in 

both simulation and measurement do not produce useful responses. That is, notches are 

not distinguishable making it impossible to assign binary codes. Until conductivity of 

printed tags can be increased, they are not practical for this work.  Thus, measurements in 

subsequent sections will use PCB tags.  

 

  

Figure 5.25. Measurement setup for measurement of PCB and printed tags.  
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Figure 5.26. Simulation setup for tag S11. 

 

 

Figure 5.27. Simulated S11 responses of PCB and printed tags.  
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Figure 5.28. Measurement results of PCB and printed tags.  

 

5.6. DISCUSSION 

Inkjet-printing has the potential to allow tags to be produced quickly and  

inexpensively. However, when using this manufacturing method printing parameters, 

such as the dielectric properties of the paper, the conductivity of the print, and the 

resolution of the printer, need to be understood so that the tag to be printed can be 

accurately simulated.  Additionally, having an understanding of these parameters and 

how they affect tag performance is necessary in order to evaluate if inkjet-printing is a 

suitable manufacturing method for a particular application. 
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6.   TAG MEASUREMENT METHODS 

6.1. MOTIVATION 

Currently, there is a push to increase the read range, the distance a tag can be  

measured from, for chipless RFID tags. Traditional RFID allows for read ranges of 

upwards of 20 m, but many systems that operate at low powers have read ranges on the 

order of a few meters [7, 154, 155]. Chipless RFID tags, on the other hand, tend to have 

read ranges less than 10 cm. Read range is a function of both the characteristics of the 

reader antenna used (i.e., beamwidth, gain, etc.) and the scattering ability of the tag [129, 

156]. In traditional RFID systems, the tag modulates the interrogation signal resulting in 

a backscattered signal that can be isolated from the static reflections [7, 157, 158]. 

However, chipless tags do not have this capability. To this end, depolarizing tags have 

been proposed, but these tend to have lower bit densities and less versatile responses than 

backscatter- and Tx/Rx- based tags [29, 30, 75, 86, 89, 90, 102, 128, 159, 160]. While 

work is being done to increase the bit density and customizability of depolarizing tags, 

many measurement and notch detection methods have also been proposed. Some of these 

measurement techniques were employed for measuring the previously presented tags. 

The theory behind these measurement techniques and measurement results will be 

presented in subsequent sections. Additionally, new methods like microwave 

thermography and embedded measurements for materials characterization will be 

discussed.  
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6.2. RADAR CROSS-SECTION (RCS) MEASUREMENTS 

The RCS of a target is a far-field quantity that is defined as the portion of the 

scattering cross-section for a specified polarization component of a scattered wave. This 

definition assumes that a plane-wave is incident [161, 162]. The value for the RCS, 

expressed as an area, is dependent on the direction of arrival of the incident wave and the 

direction of observation. Mathematically, the RCS can be described as follows: 

𝜎 = 4𝜋𝑅2 |𝐸𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑|2

|𝐸𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡|2
     (19) 

In Equation (19), 𝐸𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑 and 𝐸𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 are electric fields. As previously mentioned, 

RCS is an area, but it is often expressed in dB square meter or dBsm. It should also be 

noted that RCS is frequency and polarization dependent and the definition of RCS 

assumes that the target is in free-space without multipath reflections [162-165]. In 

general, RCS can be reported as a function of frequency (as is done in CST Microwave 

Studio® simulations), as a single area value, as a pattern in the two principal planes, or as 

a far-field 3D pattern. It should also be mentioned that differential RCS is a quantity that 

is often discussed in the RFID field. However, it is defined as the RCS difference 

between two different RFID chip impedance states and is therefore not an applicable 

quantity to chipless RFID [166, 167].  

As previously discussed, RCS measurements have the benefit of being distance  

independent. However, they require a more complex measurement process than S-

parameter measurements do. At small read ranges, S-parameter measurements produce 

similar results to RCS measurements, as was shown in Section 2.3. However, as distance 

increases, the measured S-parameter response can change dramatically, as was illustrated 



 

 

174 

in the S11 measurements in Section 4.7.1.3.  Thus, performing RCS measurements is 

necessary.  

6.2.1. RCS Determination Methods.  A variety of RCS measurement methods 

have been proposed. In the following sections, six of these methods are discussed. Then, 

in Section 6.2.2 Method 6 is employed to determine the RCS of tags from both 

simulation and measurement.  

6.2.1.1. Method 1.  One method of RCS measurement, described in [165]  

and [168], involves employing the radar range equation. This equation is as follows: 

𝑃𝑟 =
𝑃𝑡𝐺𝑡𝐺𝑟𝜎𝑡𝑎𝑟𝑔𝑒𝑡𝜆2

(4𝜋)3𝑅4       (20) 

In Equation (20), 𝑃𝑟 is received power, 𝑃𝑡 is transmitted power, 𝐺𝑟 is the receiver antenna 

gain, 𝐺𝑡 is the transmitter antenna gain, and 𝜎𝑡𝑎𝑟𝑔𝑒𝑡 is the RCS of the target. By 

rearranging Equation (20), the RCS can be solved for. A VNA can then be used with time 

domain analysis and time gating to simulate a pulsed radar and measure the needed 

parameters to find the RCS. In performing measurements, the full polarization matrix, 

depicted in Equation (21) is measured: 

𝑆 = (
𝑆𝑣𝑣 𝑆ℎ𝑣

𝑆𝑣ℎ 𝑆ℎℎ
)       (21) 

Each entry in the matrix in Equation (21) is a combination of different transmit and 

receive polarizations. Note, only linear polarization is supported by this method and it 

assumed that a bistatic configuration or monostatic dual-polarized antenna configuration 

is used for the measurements. Through further calculation, the RCS can be expressed 

similarly to Equation (21) and then the RCS can be expressed in terms of measured 

received and transmitted powers (Equation (23)). 
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𝜎 = (
√𝜎𝑣𝑣 √𝜎ℎ𝑣

√𝜎𝑣ℎ √𝜎ℎℎ

)     (22) 

𝜎 =
𝑃𝑟𝑣+𝑃𝑟ℎ

𝑃𝑡
      (23) 

In Equation (23) 𝑃𝑟𝑣 and 𝑃𝑟ℎ refer to the power received in the vertical and horizontal 

polarizations, respectively.  

 In performing the measurements, calibration can be performed by measuring the 

S21 of a standard reference target with a known RCS, such as a metal plate or a metal 

sphere. This measurement can then be transformed to the time domain where it is then 

range gated. The magnitude of the peak that is associated with the target that appears in 

the time domain data is recorded. Then, S21 measurements can be taken of the target and 

calibration standard in order to calculate the RCS by the following equations derived 

from the radar range equation: 

𝑃𝑠𝑡𝑑

𝑃𝑡
= 10

𝑆21
𝑠𝑡𝑑

10       (24) 

𝑃𝑡𝑔𝑡

𝑃𝑡
= 10

𝑆21
𝑡𝑔𝑡

10       (24) 

𝑃𝑡𝑔𝑡

𝑃𝑠𝑡𝑑
=

𝜎𝑡𝑔𝑡

𝜎𝑠𝑡𝑑
= 10

(
𝑆21

𝑡𝑔𝑡
−𝑆21

𝑠𝑡𝑑

10
)
   (25) 

In Equation (25) 𝜎𝑠𝑡𝑑 (used in 𝑚2) is typically a theoretical value that has been 

calculated.  

This method has been shown to take into account polarization dependence, 

however, it does not take into account frequency dependence. In [165] and [168] this 

method was used to determine a single value for the RCS rather than the RCS over 

frequency. Though it was not shown, by using the S21 measurements of the target and 
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standard reference target over a frequency range, it could be possible to calculate the 

RCS as a function of frequency.  

6.2.1.2. Method 2.  The second method of RCS measurement from [169],  

designed for determining the RCS of antennas, involves utilizing an equation for the 

received signal power. This equation is a combination of the antenna-mode scattered, 

structural-mode scattered, relative phase, and leakage signals. By combining these 

parameters, the equation for the received power can be represented as a regression model 

that takes into account the interference between scattered signals and leakage signals and 

observation error. This regression model can then be solved by using minimum mean 

square error estimation. Lastly, the solution is used with observed responses for short, 

open, and load conditions to find RCS parameters. This method has been shown to 

produce more accurate results than Method 1, however, it comes at the cost of more 

complex processing. Additionally, this method also only provides a single value for the 

RCS rather than the RCS over a frequency range [169].  

6.2.1.3. Method 3.  Method 3 from [170] provides a 12-term error  

correction procedure that utilizes a single reference target and isolation measurement. 

This is in contrast to other 12-term error correction procedures which require three 

independent reference targets [171]. In this method, the relationship between S-

parameters and the RCS is described as follows: 

[𝑆] =
1

√4𝜋𝑅𝑜
2

[√𝜎]    (26) 

In Equation (26), underlined matrices refer to the entries of the matrices being complex 

and 𝑅𝑜 is defined as a “fixed reference radius for the target,” however, it is not clear what 
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exactly this dimension refers to. Equation (26) is used as the basis for extracting the RCS 

from S-parameter measurements in this method. While this method provides the RCS as a 

function of frequency and is simpler than a traditional 12-term error correction procedure, 

it still requires some complex post processing of S-parameter data in order to reconstruct 

the RCS [170].  

6.2.1.4. Method 4.  Method 4 of [158] and [172] was specifically designed  

for measuring the RCS of UHF RFID tags. For this measurement procedure, first an 

isolation measurement is made. This isolation measurement is the S11 of an anechoic 

chamber. Then, the S11 of the tag in the anechoic chamber is measured. These 

measurements are then subtracted coherently. The result of this subtraction, 𝑆11
′ , is then 

approximated in terms of the power transmitted and received, which is shown in Equation 

(27): 

|𝑆11
′ |2 ≈

𝑃𝑟

𝑃𝑡
     (27) 

By combining Equation (27) with the radar range equation, Equation (28) can be derived 

to express RCS: 

𝜎 = |𝑆11
′ |2 (4𝜋)3𝑅4

𝐺𝑡
2𝜆2

    (28) 

This method has the benefits of being able to utilize a monostatic measurement 

configuration and requiring simple processing.  

6.2.1.5. Method 5.  In [106] two different methods for RCS measurement  

for millimeter wave passive RFID are presented. The first method, which is similar to 

Methods 1 and 4, uses the radar range equation.  Using the radar range equation, the 

backscattered power, 𝑃𝑏, of the tag can be represented by Equation (29): 
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𝑃𝑏 = 𝑃𝑡𝐺2 𝜆

(4𝜋)3𝑅4 𝜎𝑡𝑎𝑟𝑔𝑒𝑡 (1 − |𝑆11
𝑇𝑥/𝑅𝑥

|
2

)
2

  (29) 

𝑃𝑇 = (1 − |𝑆11
𝑇𝑥/𝑅𝑥

|
2

)    (30) 

In Equation (29), 𝐺 is the gain of the reader antenna which is often a horn antenna. The 

power transfer factor, PT, is often excluded in RCS measurement procedures that are 

based on the radar range equation since its value is very close to one. However, it is 

included here because it has been shown to play a role when the frequencies get into the 

millimeter wave range. The final equation used to calculate the RCS from measurements 

is Equation (31): 

𝜎 = |𝑆11
𝑡𝑎𝑟𝑔𝑒𝑡

− 𝑆11
𝑚𝑜𝑢𝑛𝑡|

2 (4𝜋)3𝑅4

𝐺2𝜆2(1−|𝑆11
𝑇𝑥/𝑅𝑥

|
2

)
2    (31) 

This method has the advantage of being simple and not requiring any reference 

targets. However, it order for it to produce accurate results, the S11 measurements and 

system parameters like the gain of the reader antenna must be well known [106]. The 

second method presented in [106] is based on the method presented in [25] and [173], 

except it uses a monostatic setup rather than a bistatic setup.  This method will be 

presented as Method 6.   

6.2.1.6. Method 6.  Method 6 from[25] and [173] uses a bistatic setup to  

measure the RCS of chipless RFID tags. It should be noted that this is the first 

measurement method presented that is designed specifically for chipless RFID. This 

method has also become standard for determining the RCS of chipless tags. Figure 6.1 

shows a diagram on which this method is based. From the diagram, it can be seen that 
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this model takes into account the coupling between the two reader antennas, the free-

space path losses, the VNA, and the support the tag will be mounted on [173].  

 

 

Figure 6.1. Diagram of RCS measurement model for Method 6. 

 

 By using the model in Figure 6.1, and bringing in the Friis Transmission equation 

and an approximation for the definition RCS (Equation (32)), a formula for the RCS of a 

tag can be derived. This formula, shown in Equation (33), requires the measurement of 

one reference target, such as a plate or a sphere, and knowing the value of the RCS of the 

reference target (𝜎𝑟𝑒𝑓).  

𝜎 ≈ 4𝜋𝑅2|𝑆21|2     (32) 

𝜎𝑡𝑎𝑔 = [
𝑆21

𝑡𝑎𝑔
−𝑆21

𝑠𝑢𝑝𝑝𝑜𝑟𝑡

𝑆21
𝑟𝑒𝑓

−𝑆21
𝑠𝑢𝑝𝑝𝑜𝑟𝑡]

2

𝜎𝑟𝑒𝑓   (33) 

This method has become very popular for measuring the RCS of chipless RFID tags [25, 

52, 53, 55, 58, 62, 91]. An example of RCS measured with this method is shown in 

Figure 6.2. As can be seen, this method tends to produce less clean responses than RCS 

simulations (e.g., Figure 2.2). However, these reconstructed RCS responses do follow the 

general shape of the simulated responses.  
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Figure 6.2. Measured RCS for a split ring resonator based tag [91]. 

 

6.2.2. Employment of Method 6.  Due to its popularity, Method 6 was used in its 

monostatic configuration from [106] (shown in Equation (34) which is similar to 

Equation (33)) for reconstructing the RCS of the eight spiral X-band tag shown in Section 

 𝜎𝑡𝑎𝑔 = [
𝑆11

𝑡𝑎𝑔
−𝑆11

𝑠𝑢𝑝𝑝𝑜𝑟𝑡

𝑆11
𝑟𝑒𝑓

−𝑆11
𝑠𝑢𝑝𝑝𝑜𝑟𝑡]

2

𝜎𝑟𝑒𝑓     (34) 

4.5 from measurements of the tag. To begin with, simulations were conducted to 

determine the best approach for measuring the RCS of the tag with this method (i.e. what 

distances to measure at, what to mount the tag on during the measurement, and what to 

use for a reference target). For these simulations, an X-band waveguide was used as the 

reader antenna and the S11 of the tag on a foam support, a metal plate, and just the foam 

support were simulated at a distance of 5 cm between the object and the waveguide 
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aperture. The simulation setup is depicted in Figure 6.3. Three different metal plates of 

different sizes were used as reference targets in the simulations to determine what would 

be appropriate for the experiments. In using Equation (34) for the purpose of verifying it 

for the spiral tag and plate reference, 𝑆11
𝑡𝑎𝑔

 is the simulated S11 of the tag on the foam 

support (see Figure 6.3), 𝑆11
𝑠𝑢𝑝𝑝𝑜𝑟𝑡

 is the simulated S11 of just the foam support, and 𝑆11
𝑟𝑒𝑓

 

is the simulated S11 of the different size metal plates. For the 𝜎𝑟𝑒𝑓 both calculated and 

simulated values were used. For the calculated values, Equation (35) was used: 

𝜎𝑝𝑙𝑎𝑡𝑒 = 4𝜋
𝑆2

𝜆2      (35) 

In Equation (35), S is the area of the plate [106]. For the simulated 𝜎𝑝𝑙𝑎𝑡𝑒 CST 

Microwave Studio® was used to conduct a monostatic RCS simulated with a plane-wave 

excitation and RCS probe interrogation. From this, the plate RCS as a function of 

frequency was found. Figure 6.4 shows the simulated S11 response of the tag at a distance 

of 5 cm. As can be seen, the notches are not very defined for the tag at this distance. 

Figures 6.5, 6.6, and 6.7 then show the reconstructed RCS (using Equation (34)) when a 

plate of different sizes is used as the reference target, which affects 𝑆11
𝑟𝑒𝑓

 and 𝜎𝑟𝑒𝑓 in 

Equation (34). In these three figures, the reconstructed RCS is shown for both the 

scenario where the value for 𝜎𝑟𝑒𝑓 is calculated using Equation (35) and where the value 

of 𝜎𝑟𝑒𝑓 is simulated using CST Microwave Studio® to compare their results. The three 

different plate sizes that are used are 8 x 8 cm (Figure 6.5), 20 x 20 cm (Figure 6.6), and 

30 x 30 cm (Figure 6.7).  From these figures it can be seen that the reconstructed RCS 

from S11 simulations for the two different 𝜎𝑟𝑒𝑓 determination methods, provide similar 

results (i.e., the notches are in the same locations, but amplitudes are slightly different). 
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In all cases the reconstructed RCS shows a slight downshift in frequency from the 

simulated RCS response and a higher magnitude. The higher magnitude is due to the 

multiplication of 𝜎𝑟𝑒𝑓 in Equation (34). As the plate gets larger, it increases the value of 

𝜎𝑟𝑒𝑓 in accordance to Equation (35) and increases the magnitude of the reconstructed 

RCS. The downshift seen could be due to the foam used in the simulations to support the 

tag. 

 

 

Figure 6.3. Simulation setup for RCS calculation. 

 

 

Figure 6.4. S11 of the tag at a distance of 5 cm. 
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Figure 6.5. Reconstructed RCS of tag from simulation data using 8 x 8 cm plate as 

reference.  

 

 

Figure 6.6. Calculated RCS of tag from simulation data using 20 x 20 cm plate as 

reference.  
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Figure 6.7. Calculated RCS of tag from simulation data using 30 x 30 cm plate as 

reference.  

 

Having shown that this method can reconstruct the RCS for this tag via 

simulation, measurements were then conducted. For these measurements, the setup used 

previously for tag measurements was used. This setup is shown in Figure 4.69. A metal 

plate that was 20 x 20 cm was used as the reference target. Measurements were taken at 

0.5 cm increments from 0.5 cm to 6 cm. The results of tag measurement at the various 

distances are shown in Table 6.1 and the results of RCS reconstruction are shown in 

Table 6.2 for the different distances. For the results in Table 6.2, a measurement of the 
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plate was used for 𝑆11
𝑟𝑒𝑓

 and 𝜎𝑟𝑒𝑓 was calculated using Equation (35). 𝑆11
𝑡𝑎𝑔

was measured 

as the tag on the foam support and 𝑆11
𝑠𝑢𝑝𝑝𝑜𝑟𝑡

 was measured as just the foam used to 

support the tag as was done in simulation. 

 

Table 6.1. S11 of eight spiral tag for different distances. 

Distance (cm) S11 

0.5 
 

 

1 
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Table 6.1. S11 of eight spiral tag for different distances (cont.). 

Distance (cm) S11 

1.5 
 

 

2 
 

 

2.5 
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Table 6.1. S11 of eight spiral tag for different distances (cont.). 

Distance (cm) S11 

3 
 

 

3.5 
 

 

4 
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Table 6.1. S11 of eight spiral tag for different distances (cont.). 

Distance (cm) S11 

4.5 
 

 

5 
 

 

5.5 
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Table 6.1. S11 of eight spiral tag for different distances (cont.). 

Distance (cm) S11 

6 
 

 

 

 

Table 6.2. Reconstructed RCS for measured plate reference target. 

Distance (cm) RCS 

0.5 
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Table 6.2. Reconstructed RCS for measured plate reference target (cont.). 

Distance (cm) RCS 

1 
 

 

1.5 
 

 

2 
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Table 6.2. Reconstructed RCS for measured plate reference target (cont.). 

Distance (cm) RCS 

2.5 
 

 

3 
 

 

3.5 
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Table 6.2. Reconstructed RCS for measured plate reference target (cont.). 

Distance (cm) RCS 

4 
 

 

4.5 
 

 

5 
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Table 6.2. Reconstructed RCS for measured plate reference target (cont.). 

Distance (cm) RCS 

5.5 
 

 

6 
 

 

 

From Table 6.2, it can be seen that reconstructing the RCS from measurements 

does not lead to perfect agreement between the measured and simulated RCS. However, 

it does allow notches that were not discernable form the S11 measurements to be seen, 

especially at distances greater than 3 cm.  Additionally, the reconstructed RCS varies 

with distance. It was suspected that these variations had to do with inaccuracies in the 

plate measurement and the manufacturing inaccuracies that were seen through 
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measurements of the tag in Section 4.7. To this end, S11 simulation data for the plate was 

substituted for the plate S11 measurement into Equation (33). Table 6.3 shows the results 

tabulated for this variation of the reconstruction method.  

 

Table 6.3. Reconstructed RCS with plate simulation for reference.  

Distance (cm) RCS (dBsm) 

0.5  
 

 

1 
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Table 6.3. Reconstructed RCS with plate simulation for reference (cont.). 

Distance (cm) RCS (dBsm) 

1.5  
 

 
2 

 

 

2.5 
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Table 6.3. Reconstructed RCS with plate simulation for reference (cont.). 

Distance (cm) RCS (dBsm) 

3 
 

 
3.5 

 

 

4 
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Table 6.3. Reconstructed RCS with plate simulation for reference (cont.). 

Distance (cm) RCS (dBsm) 

4.5 
 

 
5 

 

 

5.5 
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Table 6.3. Reconstructed RCS with plate simulation for reference (cont.). 

Distance (cm) RCS (dBsm) 

6 
 

 
 

 

As can be seen from Table 6.3, when the plate simulation is used the 

reconstructed and simulated RCS responses still do not completely agree. However, at 

distances above 3 cm, the reconstructed RCS maintains a similar shape. This provides 

evidence for the theory that the plate measurements being inaccurate are contributing to 

the disagreement between the simulated and reconstructed responses. Additionally, it is 

still believed that the manufacturing inaccuracies of the tag are contributing to the 

disagreement seen in Tables 6.2 and 6.3. Furthermore, inaccuracies in the tag 

measurement (i.e., tag/reader misalignment like what was shown in Section 4.7.1) could 

also contribute.  

While performing RCS measurement can theoretically remove the distance 

dependency of chipless RFID measurement, in practice it is difficult to accurately 

measure the RCS. This difficultly mostly comes from the challenges associated with 

measuring a reference target. Additionally, these methods do not translate well from a lab 

setting to a practical setting. In the field, one would not necessarily be able to accurately 
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measure a reference targets and it would also be difficult to place the reference target in 

the same location as the tag in some applications (e.g., SHM applications where a tag 

would be attached to or embedded in a structure). These issues limit the practicality of 

RCS measurement in the field.  

6.3. BISTATIC MEASUREMENTS 

Bistatic measurements are often used in chipless RFID tag measurements. Thus,  

a limited set of bistatic measurements were also conducted. For these measurements, two 

horn antennas that operate from 6.5 – 14 GHz were used and they were placed 18 cm 

from the tag.  The measurement setup is shown in Figure 6.8. The tag measured was the 

eight circular slot resonator tag that was used for measurements in Section 5.5. This tag 

was used in a 4 x 4 array configuration for both PCB and inkjet-printing manufacturing 

methods to raise the signal level so that no post processing would need to be done on the 

measurement [107]. A 4 x 4 configuration was used after it was seen that the response of 

a single tag configuration couldn’t be seen with this measurement setup when operating 

in the far-field of the horn antennas. The tags used are shown in Figure 6.9. Figure 6.10 

shows the simulated response of the 4 x 4 PCB tag. As can be seen, it is very similar to 

the response of a single eight circular slot resonator tag like is shown in Figure 2.2. 

Figure 6.11 then shows the measurement results for the PCB tag and Figure 6.12 and 6.13 

show the unsintered and sintered inkjet-printed tag responses, respectively. From Figure 

6.11, it can be seen that the measured response for the PCB 4 x 4 tag array is very similar 

to the simulated response. The responses for the unsintered and sintered tags, however, 

do not agree well with the simulated response. In these measured responses no notches 
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are discernable and sintering does not produce a definite improvement in the response. 

These indistinguishable responses are most likely due to low conductivity of prints as 

was discussed in Section 5.  

 

 

Figure 6.8. Bistatic measurement setup. 

  

 

Figure 6.9. PCB and inkjet-printed tag arrays.  
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Figure 6.10. Simulated response of 4 x 4 PCB tag array. 

 

 

Figure 6.11. Measured response of 4 x 4 PCB tag array. 

 

 

Figure 6.12. Measured response of 4 x 4 unsintered inkjet-printed tag array. 

 



 

 

202 

 

Figure 6.13. Measured response of 4 x 4 sintered inkjet-printed tag array.  

 

6.4. MICROWAVE THERMOGRAPHY 

After conducting the measurements in Section 4.7 and seeing how the measured  

tag response did not agree with the simulated tag response, microwave thermography was 

employed in an attempt to determine if manufacturing inaccuracies of the tag were the 

root cause of the disagreement. Microwave thermography involves heating an object or 

structure selectively with microwaves and then using a thermal camera to examine how 

the heating occurs [174-176].  Based on the surface current density simulations 

conducted in Section 4.5, it was believed that microwave thermography could be used to 

show a higher heat concentration on tag features where one would expect a high surface 

current density for a certain frequency. To this end, a microwave source connected to an 

amplifier and a horn antenna was used to interrogate the eight spiral and single spiral tags 

at different frequencies corresponding to notches in the tags’ responses. A Flir IR camera 

was then used to see if the expected features of the tag were heating up. Figure 6.14 

shows the images taken with the thermal camera when the tag was interrogated with 8 
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GHz and 9.2 GHz, which correspond to two notches in the tag’s response. In Figure 

6.14a, the center circular patch is the brightest element when one would expect for the 

ring to be the brightest. In Figure 6.14b, the spiral on the right (the spiral in location 1 of 

the tag), is the brightest. In this case, the thermal image results match what would be 

expected from the RCS response and surface current density simulations. However, for 

frequencies of other notches in the response, no one spiral stood out as brighter than the 

others. This may be related to the other notches in the response not being as deep as the 

notch associated with the first spiral and the temperature raise not being sufficient.   

 

 
Figure 6.14. 8 spiral tag microwave thermography results. a) Thermal camera image for 8 

GHz. b) Thermal camera image for 9.2 GHz. 

 

 To further examine this method, the single spiral tag was also examined. Figure 

6.15 shows the thermal camera images for 8.7 and 9.25 GHz which correspond to the 

notch and spiral resonances in the response. In both images in Figure 6.15 the whole tag 

seems to glow when interrogated rather than a single feature. Referring back to the results 

in Figure 4.56, it was seen that both the spiral and the ring have high surface current 

density at these two frequencies and therefore both features contribute to the two notches 

a. b. 
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in the response in the 8 – 10 GHz frequency range. Based on this information, the images 

seen in Figure 6.15 could corroborate the surface current density simulations, however, 

the results are not consistent enough to prove the utility of this method for identifying 

manufacturing inaccuracies in tags.  

 

 
Figure 6.15. Single spiral tag microwave thermography results. a) Thermal camera image 

for 8.7 GHz. b) Thermal cameral image for 9.25 GHz. 

 

6.5. EMBEDDED TAG MEASUREMENTS 

The last phase of this work revolved around completing additional embedded  

measurements with the eight spiral tag. For these measurements, the tag was placed on a 

dowel rod in a container. Due to the tag having a ground plane, the dowel rod is not seen 

and does not affect the measurements. The waveguide was then placed 1 cm from the tag. 

The measurement setup is shown in Figure 6.16. The tag was then measured both with 

and without the container filled with materials. When materials were added to the 

container, the container was filled so that material came to the surface of the tag 

(embedded 0 cm) and covered the tag by 0.5 cm (embedded 0.5 cm). The materials used 

b. a. 
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for these measurements were canola oil and sand. An example of the measurement setup 

with added material is shown in Figure 6.17. S11 measurements were then done of just the 

material without the tag and of the tag with the material. The measurement for just the 

material was subtracted from that of the tag, as was done in Section 2.3, in an attempt to 

isolate the response of the tag. The results for the two different embedding depths are 

shown in Figures 6.18 and 6.19. At the 0 cm embedded depth shown in Figure 6.18, a 

shift in response is seen for the two materials in comparison to the tag with no material. 

 

 

Figure 6.16. Embedded tag measurement setup.  
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Figure 6.17. Embedded tag measurement setup for tag embedded 0 cm in oil. 

 

 Canola oil has a permittivity of ~ 2.9 and sand is ~3.5. This would explain why 

the response for sand is downshifted further than that for oil. In Figure 6.19, when the tag 

is embedded 0.5cm below the surface of the material, the responses for oil and sand are 

indistinguishable. In the oil response, one notch at ~8 GHz could potentially be said to be 

present. This would be a downshift from the free-space response. A reason for the sand 

response not having defined notches could be that the sand was slightly damp which 

would make it lossy. Additionally, because the tag is so small, its scattered signal is small 

in comparison to the tag that was used in Section 2.3. This makes it more difficult to 

discern the tag’s response from that of the background even when background subtraction 

is done in post processing. By the notches not being discernable, a code cannot be 

assigned to these measured responses. Thus, materials characterization cannot be 

performed based on these measurements. Overall, these results show that some 

measurement challenges need to be overcome in order for this method be used for 

sensing purposes.  
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Figure 6.18. Responses for tag embedded 0 cm in free-space, oil, and sand. 

 

 

Figure 6.19. Responses for tag embedded 0.5 cm in free-space, oil, and sand. 



 

 

7.  SUMMARY AND FUTURE WORK 

7.1. BACKGROUND 

Chipless RFID is a relatively new, yet versatile technology that has great potential  

in both the identification and sensing application spaces. Tags have been developed for 

many different sensing purposes, but until this work, using chipless RFID tags for 

embedded materials characterization has yet to be explored. The goal of this thesis was to 

explore the utility of embedded materials characterization with chipless RFID and 

develop a tag design methodology so that tags could be created for this sensing 

application. Inkjet-printing was also explored as a method for manufacturing in order to 

create tags in an inexpensive quick manner. Though addressing these goals, the 

foundation for a new nondestructive testing method was laid.  

7.2. MATERIALS CHARACTERIZATION METHODOLOGY 

In Section 2, a proof of concept was conducted to show that embedded chipless  

RFID tags could be used to perform microwave materials characterization. In this proof 

of concept, both simulation and measurement were conducted and it was shown that the 

tag response changes as a function of the material it is embedded in. As permittivity 

increases the response tends to shift down in frequency and compress and as the loss 

tangent increases the response tends to distort more. By assigning a binary code to the 

response, one can observe how this code changes as the material the tag is embedded in 

changes. However, previously presented coding methods are designed for ID applications 

where the response is rather stable and predictable. Thus, the codes produces by these 

methods do not capture shifts and distortions in response well. For this reason a new 
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coding method was developed and demonstrated in Section 3. Through examples it 

was shown that the bandwidth coded and the threshold chosen can both have a large 

effect on the codes that are produced. Therefore, the code assigner needs to select these 

on a tag by tag basis.  

 Lastly, additional embedded measurements were conducted in Section 6.5. These 

measurements showed that there are still some measurement challenges that need to be 

overcome in order for embedded chipless RFID materials characterization to be a 

practical method.  

7.3. APPLICATION-ADAPTABLE DESIGN METHODOLOGY 

Many chipless RFID tags consist of a single type of resonator which limits their  

versatility. By combining multiple types of resonators, a greater variety of responses can 

be achieved which then allows tags to be used for more purposes. In Section 4, a 

methodology for designing tags by combining multiple types of resonators was 

developed. This methodology relies on design guidelines such as equations, equivalent 

circuits, and design curves to allow for manipulation of tag geometry in a purposeful 

manner. This then allows the tag designer to engineer their tag’s response rather than 

develop it through trial and error. This methodology can then be coupled with surface 

current density simulations in the manner described in Section 4.5 to gain greater insight 

into how different tag designs will perform. Furthermore, tags can easily be adapted for 

different applications by employing this process.  

 The developed tag design methodology was then used to create a tag that 

combines ring and spiral resonators. By doing so, this tag achieves a very high bit 



 

 

210 

density. The tag can then be adapted to work for a variety of applications including 

ID and materials characterization and to operate in different frequency ranges. It can also 

be adapted for different manufacturing techniques, such as inkjet-printing which was the 

subject of Section 5.  

 In Section 5, inkjet-printing for chipless RFID tags was explored. Different 

popular printing papers had their dielectric properties determined and the conductivity of 

printed features were determined. These printing parameters were then fed into 

simulations to predict how printed tags would perform and explain why measurements of 

prints were not showing the expected response characteristics. Through this investigation 

of inkjet-printing, it was found that while this method does have many advantages like 

being quick and inexpensive, it tends to suffer from low conductivity. The low 

conductivity can prevent tags from being measurable. Thus, it is important for 

conductivity enhancing methods like sintering and multi-layer printing to be investigated 

so that this method can be employed in the chipless RFID field.  

7.4. FUTURE WORK 

While the utility of the embedded materials characterization methodology  

presented in this work was shown, there are many aspects of this method that could be 

refined and improved. First, the coding method could be further optimized so that it is 

more sensitive to small changes in dielectric properties while only the needed number of 

bits are used so that the codes do not become too long and unwieldly.  Next, the 

measurement method could be refined so that changes in material are detected correctly. 

Doing this would involve further investigation into different measurement setups, such as 
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using a bistatic setup or different reader antenna, and also looking at different post 

processing methods. Furthermore, more materials with a wider variety of dielectric 

properties could be used for embedded tag measurements. This information could then be 

fed into a model or database, with the goal of creating a system that could determine 

dielectric properties from the code associated with the tag response.  

 Another aspect of the future work would be to address some of the issues 

associated with inkjet-printing as a manufacturing method. More specifically, techniques 

for increasing the conductivity without counteracting the advantages of inkjet-printing 

being quick and inexpensive would have to be developed. To this end, different inks and 

sintering methods could be explored. Sealants for printed tags could also be investigated 

in order to increase their durability. Additionally, more printing substrates could be 

characterized so that tags can be better simulated.  

Finally, measurement challenges associated with chipless RFID need to be  

addressed. These include increasing the read range, overcoming the need for precise 

tag/reader alignment, minimizing the effects the background can have on tag responses, 

and avoiding distance dependency. These issues could be addressed by employing 

different reader antennas, such as ones with high gain and circular polarization, and by 

refining the RCS measurement process to make it both more accurate and easier to use in 

the field. Furthermore, new post processing methods could be developed to address these 

issues.  
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