58 research outputs found

    Search on speech from spoken queries: the Multi-domain International ALBAYZIN 2018 Query-by-Example Spoken Term Detection Evaluation

    Get PDF
    [Abstract] The huge amount of information stored in audio and video repositories makes search on speech (SoS) a priority area nowadays. Within SoS, Query-by-Example Spoken Term Detection (QbE STD) aims to retrieve data from a speech repository given a spoken query. Research on this area is continuously fostered with the organization of QbE STD evaluations. This paper presents a multi-domain internationally open evaluation for QbE STD in Spanish. The evaluation aims at retrieving the speech files that contain the queries, providing their start and end times, and a score that reflects the confidence given to the detection. Three different Spanish speech databases that encompass different domains have been employed in the evaluation: MAVIR database, which comprises a set of talks from workshops; RTVE database, which includes broadcast television (TV) shows; and COREMAH database, which contains 2-people spontaneous speech conversations about different topics. The evaluation has been designed carefully so that several analyses of the main results can be carried out. We present the evaluation itself, the three databases, the evaluation metrics, the systems submitted to the evaluation, the results, and the detailed post-evaluation analyses based on some query properties (within-vocabulary/out-of-vocabulary queries, single-word/multi-word queries, and native/foreign queries). Fusion results of the primary systems submitted to the evaluation are also presented. Three different teams took part in the evaluation, and ten different systems were submitted. The results suggest that the QbE STD task is still in progress, and the performance of these systems is highly sensitive to changes in the data domain. Nevertheless, QbE STD strategies are able to outperform text-based STD in unseen data domains.Centro singular de investigaciĂłn de Galicia; ED431G/04Universidad del PaĂ­s Vasco; GIU16/68Ministerio de EconomĂ­a y Competitividad; TEC2015-68172-C2-1-PMinisterio de Ciencia, InnovaciĂłn y Competitividad; RTI2018-098091-B-I00Xunta de Galicia; ED431G/0

    Adaptation and Augmentation: Towards Better Rescoring Strategies for Automatic Speech Recognition and Spoken Term Detection

    Full text link
    Selecting the best prediction from a set of candidates is an essential problem for many spoken language processing tasks, including automatic speech recognition (ASR) and spoken keyword spotting (KWS). Generally, the selection is determined by a confidence score assigned to each candidate. Calibrating these confidence scores (i.e., rescoring them) could make better selections and improve the system performance. This dissertation focuses on using tailored language models to rescore ASR hypotheses as well as keyword search results for ASR-based KWS. This dissertation introduces three kinds of rescoring techniques: (1) Freezing most model parameters while fine-tuning the output layer in order to adapt neural network language models (NNLMs) from the written domain to the spoken domain. Experiments on a large-scale Italian corpus show a 30.2% relative reduction in perplexity at the word-cluster level and a 2.3% relative reduction in WER in a state-of-the-art Italian ASR system. (2) Incorporating source application information associated with speech queries. By exploring a range of adaptation model architectures, we achieve a 21.3% relative reduction in perplexity compared to a fine-tuned baseline. Initial experiments using a state-of-the-art Italian ASR system show a 3.0% relative reduction in WER on top of an unadapted 5-gram LM. In addition, human evaluations show significant improvements by using the source application information. (3) Marrying machine learning algorithms (classification and ranking) with a variety of signals to rescore keyword search results in the context of KWS for low-resource languages. These systems, built for the IARPA BABEL Program, enhance search performance in terms of maximum term-weighted value (MTWV) across six different low-resource languages: Vietnamese, Tagalog, Pashto, Turkish, Zulu and Tamil

    Spoken term detection ALBAYZIN 2014 evaluation: overview, systems, results, and discussion

    Get PDF
    The electronic version of this article is the complete one and can be found online at: http://dx.doi.org/10.1186/s13636-015-0063-8Spoken term detection (STD) aims at retrieving data from a speech repository given a textual representation of the search term. Nowadays, it is receiving much interest due to the large volume of multimedia information. STD differs from automatic speech recognition (ASR) in that ASR is interested in all the terms/words that appear in the speech data, whereas STD focuses on a selected list of search terms that must be detected within the speech data. This paper presents the systems submitted to the STD ALBAYZIN 2014 evaluation, held as a part of the ALBAYZIN 2014 evaluation campaign within the context of the IberSPEECH 2014 conference. This is the first STD evaluation that deals with Spanish language. The evaluation consists of retrieving the speech files that contain the search terms, indicating their start and end times within the appropriate speech file, along with a score value that reflects the confidence given to the detection of the search term. The evaluation is conducted on a Spanish spontaneous speech database, which comprises a set of talks from workshops and amounts to about 7 h of speech. We present the database, the evaluation metrics, the systems submitted to the evaluation, the results, and a detailed discussion. Four different research groups took part in the evaluation. Evaluation results show reasonable performance for moderate out-of-vocabulary term rate. This paper compares the systems submitted to the evaluation and makes a deep analysis based on some search term properties (term length, in-vocabulary/out-of-vocabulary terms, single-word/multi-word terms, and in-language/foreign terms).This work has been partly supported by project CMC-V2 (TEC2012-37585-C02-01) from the Spanish Ministry of Economy and Competitiveness. This research was also funded by the European Regional Development Fund, the Galician Regional Government (GRC2014/024, “Consolidation of Research Units: AtlantTIC Project” CN2012/160)

    ALBAYZIN Query-by-example Spoken Term Detection 2016 evaluation

    Full text link
    [EN] Query-by-example Spoken Term Detection (QbE STD) aims to retrieve data from a speech repository given an acoustic (spoken) query containing the term of interest as the input. This paper presents the systems submitted to the ALBAYZIN QbE STD 2016 Evaluation held as a part of the ALBAYZIN 2016 Evaluation Campaign at the IberSPEECH 2016 conference. Special attention was given to the evaluation design so that a thorough post-analysis of the main results could be carried out. Two different Spanish speech databases, which cover different acoustic and language domains, were used in the evaluation: the MAVIR database, which consists of a set of talks from workshops, and the EPIC database, which consists of a set of European Parliament sessions in Spanish. We present the evaluation design, both databases, the evaluation metric, the systems submitted to the evaluation, the results, and a thorough analysis and discussion. Four different research groups participated in the evaluation, and a total of eight template matching-based systems were submitted. We compare the systems submitted to the evaluation and make an in-depth analysis based on some properties of the spoken queries, such as query length, single-word/multi-word queries, and in-language/out-of-language queries.This work was partially supported by Fundacao para a Ciencia e Tecnologia (FCT) under the projects UID/EEA/50008/2013 (pluriannual funding in the scope of the LETSREAD project) and UID/CEC/50021/2013, and Grant SFRH/BD/97187/2013. Jorge Proenca is supported by the SFRH/BD/97204/2013 FCT Grant. This work was also supported by the Galician Government ('Centro singular de investigacion de Galicia' accreditation 2016-2019 ED431G/01 and the research contract GRC2014/024 (Modalidade: Grupos de Referencia Competitiva 2014)), the European Regional Development Fund (ERDF), the projects "DSSL: Redes Profundas y Modelos de Subespacios para Deteccion y Seguimiento de Locutor, Idioma y Enfermedades Degenerativas a partir de la Voz" (TEC2015-68172-C2-1-P) and the TIN2015-64282-R funded by Ministerio de Economia y Competitividad in Spain, the Spanish Government through the project "TraceThem" (TEC2015-65345-P), and AtlantTIC ED431G/04.Tejedor, J.; Toledano, DT.; Lopez-Otero, P.; Docio-Fernandez, L.; Proença, J.; Perdigão, F.; García-Granada, F.... (2018). ALBAYZIN Query-by-example Spoken Term Detection 2016 evaluation. EURASIP Journal on Audio, Speech and Music Processing. 1-25. https://doi.org/10.1186/s13636-018-0125-9S125Jarina, R, Kuba, M, Gubka, R, Chmulik, M, Paralic, M (2013). UNIZA system for the spoken web search task at MediaEval 2013. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 791–792).Ali, A, & Clements, MA (2013). Spoken web search using and ergodic hidden Markov model of speech. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 861–862).Buzo, A, Cucu, H, Burileanu, C (2014). SpeeD@MediaEval 2014: Spoken term detection with robust multilingual phone recognition. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 721–722).Caranica, A, Buzo, A, Cucu, H, Burileanu, C (2015). SpeeD@MediaEval 2015: Multilingual phone recognition approach to Query By Example STD. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 781–783).Kesiraju, S, Mantena, G, Prahallad, K (2014). IIIT-H system for MediaEval 2014 QUESST. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 761–762).Ma, M, & Rosenberg, A (2015). CUNY systems for the Query-by-Example search on speech task at MediaEval 2015. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 831–833).Takahashi, J, Hashimoto, T, Konno, R, Sugawara, S, Ouchi, K, Oshima, S, Akyu, T, Itoh, Y (2014). An IWAPU STD system for OOV query terms and spoken queries. In Proc. of NTCIR-11. National Institute of Informatics, Tokyo, (pp. 384–389).Makino, M, & Kai, A (2014). Combining subword and state-level dissimilarity measures for improved spoken term detection in NTCIR-11 SpokenQuery & Doc task. In Proc. of NTCIR-11. National Institute of Informatics, Tokyo, (pp. 413–418).Konno, R, Ouchi, K, Obara, M, Shimizu, Y, Chiba, T, Hirota, T, Itoh, Y (2016). An STD system using multiple STD results and multiple rescoring method for NTCIR-12 SpokenQuery & Doc task. In Proc. of NTCIR-12. National Institute of Informatics, Tokyo, (pp. 200–204).Sakamoto, N, Yamamoto, K, Nakagawa, S (2015). Combination of syllable based N-gram search and word search for spoken term detection through spoken queries and IV/OOV classification. In Proc. of ASRU. IEEE, New York, (pp. 200–206).Hou, J, Pham, VT, Leung, C-C, Wang, L, 2, HX, Lv, H, Xie, L, Fu, Z, Ni, C, Xiao, X, Chen, H, Zhang, S, Sun, S, Yuan, Y, Li, P, Nwe, TL, Sivadas, S, Ma, B, Chng, ES, Li, H (2015). The NNI Query-by-Example system for MediaEval 2015. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 141–143).Vavrek, J, Viszlay, P, Lojka, M, Pleva, M, Juhar, J, Rusko, M (2015). TUKE at MediaEval 2015 QUESST. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 451–453).Mantena, G, Achanta, S, Prahallad, K (2014). Query-by-example spoken term detection using frequency domain linear prediction and non-segmental dynamic time warping. IEEE/ACM Transactions on Audio, Speech and Language Processing, 22(5), 946–955.Anguera, X, & Ferrarons, M (2013). Memory efficient subsequence DTW for query-by-example spoken term detection. In Proc. of ICME. IEEE, New York, (pp. 1–6).Tulsiani, H, & Rao, P (2015). The IIT-B Query-by-Example system for MediaEval 2015. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 341–343).Bouallegue, M, Senay, G, Morchid, M, Matrouf, D, Linares, G, Dufour, R (2013). LIA@MediaEval 2013 spoken web search task: An I-Vector based approach. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 771–772).Rodriguez-Fuentes, LJ, Varona, A, Penagarikano, M, Bordel, G, Diez, M (2013). GTTS systems for the SWS task at MediaEval 2013. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 831–832).Wang, H, Lee, T, Leung, C-C, Ma, B, Li, H (2013). Using parallel tokenizers with DTW matrix combination for low-resource spoken term detection. In Proc. of ICASSP. IEEE, New York, (pp. 8545–8549).Wang, H, & Lee, T (2013). The CUHK spoken web search system for MediaEval 2013. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 681–682).Proenca, J, Veiga, A, Perdigão, F (2014). The SPL-IT query by example search on speech system for MediaEval 2014. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 741–742).Proenca, J, Veiga, A, Perdigao, F (2015). Query by example search with segmented dynamic time warping for non-exact spoken queries. In Proc. of EUSIPCO. Springer, Berlin, (pp. 1691–1695).Proenca, J, Castela, L, Perdigao, F (2015). The SPL-IT-UC Query by Example search on speech system for MediaEval 2015. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 471–473).Proenca, J, & Perdigao, F (2016). Segmented dynamic time warping for spoken Query-by-Example search. In Proc. of Interspeech. ISCA, Baixas, (pp. 750–754).Lopez-Otero, P, Docio-Fernandez, L, Garcia-Mateo, C (2015). GTM-UVigo systems for the Query-by-Example search on speech task at MediaEval 2015. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 521–523).Lopez-Otero, P, Docio-Fernandez, L, Garcia-Mateo, C (2015). Phonetic unit selection for cross-lingual Query-by-Example spoken term detection. In Proc. of ASRU. IEEE, New York, (pp. 223–229).Saxena, A, & Yegnanarayana, B (2015). Distinctive feature based representation of speech for Query-by-Example spoken term detection. In Proc. of Interspeech. ISCA, Baixas, (pp. 3680–3684).Skacel, M, & Szöke, I (2015). BUT QUESST 2015 system description. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 721–723).Chen, H, Leung, C-C, Xie, L, Ma, B, Li, H (2016). Unsupervised bottleneck features for low-resource Query-by-Example spoken term detection. In Proc. of Interspeech. ISCA, Baixas, (pp. 923–927).Yuan, Y, Leung, C-C, Xie, L, Chen, H, Ma, B, Li, H (2017). Pairwise learning using multi-lingual bottleneck features for low-resource Query-by-Example spoken term detection. In Proc. of ICASSP. IEEE, New York, (pp. 5645–5649).Torbati, AHHN, & Picone, J (2016). A nonparametric Bayesian approach for spoken term detection by example query. In Proc. of Interspeech. ISCA, Baixas, (pp. 928–932).Popli, A, & Kumar, A (2015). Query-by-example spoken term detection using low dimensional posteriorgrams motivated by articulatory classes. In Proc. of MMSP. IEEE, New York, (pp. 1–6).Yang, P, Leung, C-C, Xie, L, Ma, B, Li, H (2014). Intrinsic spectral analysis based on temporal context features for query-by-example spoken term detection. In Proc. of Interspeech. ISCA, Baixas, (pp. 1722–1726).George, B, Saxena, A, Mantena, G, Prahallad, K, Yegnanarayana, B (2014). Unsupervised query-by-example spoken term detection using bag of acoustic words and non-segmental dynamic time warping. In Proc. of Interspeech. ISCA, Baixas, (pp. 1742–1746).Hazen, TJ, Shen, W, White, CM (2009). Query-by-example spoken term detection using phonetic posteriorgram templates. In Proc. of ASRU. IEEE, New York, (pp. 421–426).Abad, A, Astudillo, RF, Trancoso, I (2013). The L2F spoken web search system for mediaeval 2013. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 851–852).Szöke, I, Skácel, M, Burget, L (2014). BUT QUESST 2014 system description. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 621–622).Szöke, I, Burget, L, Grézl, F, Černocký, JH, Ondel, L (2014). Calibration and fusion of query-by-example systems - BUT SWS 2013. In Proc. of ICASSP. IEEE, New York, (pp. 621–622).Abad, A, Rodríguez-Fuentes, LJ, Penagarikano, M, Varona, A, Bordel, G (2013). On the calibration and fusion of heterogeneous spoken term detection systems. In Proc. of Interspeech. ISCA, Baixas, (pp. 20–24).Yang, P, Xu, H, Xiao, X, Xie, L, Leung, C-C, Chen, H, Yu, J, Lv, H, Wang, L, Leow, SJ, Ma, B, Chng, ES, Li, H (2014). The NNI query-by-example system for MediaEval 2014. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 691–692).Leung, C-C, Wang, L, Xu, H, Hou, J, Pham, VT, Lv, H, Xie, L, Xiao, X, Ni, C, Ma, B, Chng, ES, Li, H (2016). Toward high-performance language-independent Query-by-Example spoken term detection for MediaEval 2015: Post-evaluation analysis. In Proc. of Interspeech. ISCA, Baixas, (pp. 3703–3707).Xu, H, Hou, J, Xiao, X, Pham, VT, Leung, C-C, Wang, L, Do, VH, Lv, H, Xie, L, Ma, B, Chng, ES, Li, H (2016). Approximate search of audio queries by using DTW with phone time boundary and data augmentation. In Proc. of ICASSP. IEEE, New York, (pp. 6030–6034).Oishi, S, Matsuba, T, Makino, M, Kai, A (2016). Combining state-level and DNN-based acoustic matches for efficient spoken term detection in NTCIR-12 SpokenQuery &Doc-2 task. In Proc. of NTCIR-12. National Institute of Informatics, Tokyo, (pp. 205–210).Oishi, S, Matsuba, T, Makino, M, Kai, A (2016). Combining state-level spotting and posterior-based acoustic match for improved query-by-example spoken term detection. In Proc. of Interspeech. ISCA, Baixas, (pp. 740–744).Obara, M, Kojima, K, Tanaka, K, Lee, S-w, Itoh, Y (2016). Rescoring by combination of posteriorgram score and subword-matching score for use in Query-by-Example. In Proc. of Interspeech. ISCA, Baixas, (pp. 1918–1922).NIST. The Ninth Text REtrieval Conference (TREC 9). http://trec.nist.gov . Accessed Feb 2018.Anguera, X, Rodriguez-Fuentes, LJ, Szöke, I, Buzo, A, Metze, F (2014). Query by Example Search on Speech at Mediaeval 2014. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 351–352).Joho, H, & Kishida, K (2014). Overview of the NTCIR-11 SpokenQuery&Doc Task. In Proc. of NTCIR-11. National Institute of Informatics, Tokyo, (pp. 1–7).NIST. Draft KWS16 Keyword Search Evaluation Plan. https://www.nist.gov/sites/default/files/documents/itl/iad/mig/KWS16-evalplan-v04.pdf . Accessed Feb 2018.Anguera, X, Metze, F, Buzo, A, Szöke, I, Rodriguez-Fuentes, LJ (2013). The spoken web search task. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 921–922).Taras, B, & Nadeu, C (2011). Audio segmentation of broadcast news in the Albayzin-2010 evaluation: overview, results, and discussion. EURASIP Journal on Audio, Speech, and Music Processing, 2011(1), 1–10.Zelenák, M, Schulz, H, Hernando, J (2012). Speaker diarization of broadcast news in Albayzin 2010 evaluation campaign. EURASIP Journal on Audio, Speech, and Music Processing, 2012(19), 1–9.Rodríguez-Fuentes, LJ, Penagarikano, M, Varona, A, Díez, M, Bordel, G (2011). The Albayzin 2010 Language Recognition Evaluation. In Proc. of Interspeech. ISCA, Baixas, (pp. 1529–1532).Tejedor, J, Toledano, DT, Lopez-Otero, P, Docio-Fernandez, L, Garcia-Mateo, C, Cardenal, A, Echeverry-Correa, JD, Coucheiro-Limeres, A, Olcoz, J, Miguel, A (2015). Spoken term detection ALBAYZIN 2014 evaluation: overview, systems, results, and discussion. EURASIP, Journal on Audio, Speech and Music Processing, 2015(21), 1–27.Tejedor, J, Toledano, DT, Anguera, X, Varona, A, Hurtado, LF, Miguel, A, Colás, J (2013). Query-by-example spoken term detection ALBAYZIN 2012 evaluation: overview, systems, results, and discussion. EURASIP, Journal on Audio, Speech, and Music Processing, 2013(23), 1–17.Tejedor, J, Toledano, DT, Lopez-Otero, P, Docio-Fernandez, L, Garcia-Mateo, C (2016). Comparison of ALBAYZIN query-by-example spoken term detection 2012 and 2014 evaluations. EURASIP, Journal on Audio, Speech and Music Processing, 2016(1), 1–19.Méndez, F, Docío, L, Arza, M, Campillo, F (2010). The Albayzin 2010 text-to-speech evaluation. In Proc. of FALA. UniversidadeVigo, Vigo, (pp. 317–340).Billa, J, Ma, KW, McDonough, JW, Zavaliagkos, G, Miller, DR, Ross, KN, El-Jaroudi, A (1997). Multilingual speech recognition: the 1996 Byblos Callhome system. In Proc. of Eurospeech. ISCA, Baixas, (pp. 363–366).Killer, M, Stuker, S, Schultz, T (2003). Grapheme based speech recognition. In Proc. of Eurospeech. ISCA, Baixas, (pp. 3141–3144).Burget, L, Schwarz, P, Agarwal, M, Akyazi, P, Feng, K, Ghoshal, A, Glembek, O, Goel, N, Karafiat, M, Povey, D, Rastrow, A, Rose, RC, Thomas, S (2010). Multilingual acoustic modeling for speech recognition based on subspace gaussian mixture models. In Proc. of ICASSP. IEEE, New York, (pp. 4334–4337).Cuayahuitl, H, & Serridge, B (2002). Out-of-vocabulary word modeling and rejection for Spanish keyword spotting systems. In Proc. of MICAI. Springer, Berlin, (pp. 156–165).Tejedor, J (2009). Contributions to keyword spotting and spoken term detection for information retrieval in audio mining. PhD thesis, Universidad Autónoma de Madrid, Madrid, Spain.Tejedor, J, Toledano, DT, Wang, D, King, S, Colás, J (2014). Feature analysis for discriminative confidence estimation in spoken term detection. Computer Speech and Language, 28(5), 1083–1114.Li, J, Wang, X, Xu, B (2014). An empirical study of multilingual and low-resource spoken term detection using deep neural networks. In Proc. of Interspeech. ISCA, Baixas, (pp. 1747–1751).NIST. The Spoken Term Detection (STD) 2006 evaluation plan. http://berlin.csie.ntnu.edu.tw/Courses/Special%20Topics%20in%20Spoken%20Language%20Processing/Lectures2008/SLP2008S-Lecture12-Spoken%20Term%20Detection.pdf . Accessed Feb 2018.Fiscus, JG, Ajot, J, Garofolo, JS, Doddingtion, G (2007). Results of the 2006 spoken term detection evaluation. In Proc. of SSCS. ACM, New York, (pp. 45–50).Martin, A, Doddington, G, Kamm, T, Ordowski, M, Przybocki, M (1997). The DET curve in assessment of detection task performance. In Proc. of Eurospeech. ISCA, Baixas, (pp. 1895–1898).NIST. Evaluation Toolkit (STDEval) software. https://www.nist.gov/itl/iad/mig/tools . Accessed Feb 2018.Union, IT. ITU-T Recommendation P.563: Single-ended method for objective speech quality assessment in narrow-band telephony applications. http://www.itu.int/rec/T-REC-P.563/en . Accessed Feb 2018.Rajput, N, & Metze, F (2011). Spoken web search. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 1–2).Metze, F, Barnard, E, Davel, M, van Heerden, C, Anguera, X, Gravier, G, Rajput, N (2012). The spoken web search task. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 41–42).Szöke, I, Rodriguez-Fuentes, LJ, Buzo, A, Anguera, X, Metze, F, Proenca, J, Lojka, M, Xiong, X (2015). Query by Example Search on Speech at Mediaeval 2015. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 81–82).Szöke, I, & Anguera, X (2016). Zero-cost speech recognition task at Mediaeval 2016. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 81–82).Akiba, T, Nishizaki, H, Nanjo, H, Jones, GJF (2014). Overview of the NTCIR-11 spokenquery &doc task. In Proc. of NTCIR-11. National Institute of Informatics, Tokyo, (pp. 1–15).Akiba, T, Nishizaki, H, Nanjo, H, Jones, GJF (2016). Overview of the NTCIR-12 spokenquery &doc-2. In Proc. of NTCIR-12. National Institute of Informatics, Tokyo, (pp. 1–13).Schwarz, P (2008). Phoneme recognition based on long temporal context. PhD thesis, FIT, BUT, Brno, Czech Republic.Varona, A, Penagarikano, M, Rodríguez-Fuentes, LJ, Bordel, G (2011). On the use of lattices of time-synchronous cross-decoder phone co-occurrences in a SVM-phonotactic language recognition system. In Proc. of Interspeech. ISCA, Baixas, (pp. 2901–2904).Eyben, F, Wollmer, M, Schuller, B (2010). OpenSMILE—the munich versatile and fast open-source audio feature extractor. In Proc. of ACM Multimedia (MM). ACM, New York, (pp. 1459–1462).Lopez-Otero, P, Docio-Fernandez, L, Garcia-Mateo, C (2016). Finding relevant features for zero-resource query-by-example search on speech. Speech Communication, 84(1), 24–35.Zhang, Y, & Glass, JR (2009). Unsupervised spoken keyword spotting via segmental DTW on Gaussian posteriorgrams. In Proc. of ASRU. IEEE, New York, (pp. 398–403).Povey, D, Ghoshal, A, Boulianne, G, Burget, L, Glembek, O, Goel, N, Hannemann, M, Motlicek, P, Qian, Y, Schwarz, P, Silovsky, J, Stemmer, G, Vesely, K (2011). The KALDI speech recognition toolkit. In Proc. of ASRU. IEEE, New York, (pp. 1–4).Muller, M. (2007). Information retrieval for music and motion. New York: Springer.Szöke, I, Skacel, M, Burget, L (2014). BUT QUESST 2014 system description. In Proc. of MediaEval. Ruzica Piskac, New Haven, (pp. 621–622).Brümmer, N, & van Leeuwen, D (2006). On calibration of language recognition scores. In Proc of the IEEE Odyssey: The speaker and language recognition workshop. IEEE, New York, (pp. 1–8).Brümmer, N, & de Villiers, E. The BOSARIS toolkit user guide: Theory, algorithms and code for binary classifier score processing. Technical report. https://sites.google.com/site/nikobrummer . Accessed Feb 2018.Meinedo, H, & Neto, J (2005). A stream-based audio segmentation, classification and clustering pre-processing system for broadcast news using ANN models. In Proc. of Interspeech. ISCA, Baixas, (pp. 237–240).Morgan, N, & Bourlard, H (1995). An introduction to hybrid HMM/connectionist continuous speech recognition. IEEE Signal Processing Magazine, 12(3), 25–42.Meinedo, H, Abad, A, Pellegrini, T, Trancoso, I, Neto, J (2010). The L2F broadcast news speech recognition system. In Proc. of FALA. UniversidadeVigo, Vigo, (pp. 93–96).Abad, A, Luque, J, Trancoso, I (2011). Parallel transformation network features for speaker recognition. In Proc. of ICASSP. IEEE, New York, (pp. 5300–5303).Diez, M, Varona, A, Penagarikano, M, Rodriguez-Fuentes, LJ, Bordel, G (2012). On the use of phone log-likelihood ratios as features in spoken language recognition. In Proc. of SLT. IEEE, New York, (pp. 274–279).Diez, M, Varona, A, Penagarikano, M, Rodriguez-Fuentes, LJ, Bordel, G (2014). New insight into the use of phone log-likelihood ratios as features for language recognition. In Proc. of Interspeech. ISCA, Baixas, (pp. 1841–1845).Abad, A, Ribeiro, E, Kepler, F, Astudillo, R, Trancoso, I (2016). Exploiting phone log-likelihood ratio features for the detection of the native language of non-native English speakers. In Proc. of Interspeech. ISCA, Baixas, (pp. 2413–2417).Rodríguez-Fuentes, LJ, Varona, A, Peñagarikano, M, Bordel, G, Díez, M (2014). High-performance query-by-example spoken term detection on the SWS 2013 evaluation. In Proc. of ICASSP. IEEE, New York, (pp. 7819–7823).Vesely, K, Ghoshal, A, Burget, L, Povey, D (2013). Sequence-discriminative training of deep neural networks. In Proc. of Interspeech. ISCA, Baixas, (pp. 2345–2349).Ghahremani, P, BabaAli, B, Povey, D, Riedhammer, K, Trmal, J, Khudanpur, S (2014). A pitch extraction algorithm tuned for automatic speech recognition. In Proc. of ICASSP. IEEE, New York, (pp. 2494–2498).Povey, D, Hannemann, M, Boulianne, G, Burget, L, Ghoshal, A, Janda, M, Karafiat, M, Kombrink, S, Motlicek, P, Qian, Y, Riedhammer, K, Vesely, K, Vu, NT (2012). Generating exact lattices in the WFST framework. In Proc. of ICASSP. IEEE, New York, (pp. 4213–4216).Garcia-Mateo, C, Dieguez-Tirado, J, Docio-Fernandez, L, Cardenal-Lopez, A (2004). Transcrigal: A bilingual system for automatic indexing of broadcast news. In Proc. of LREC. ELRA, Paris, (pp. 2061–2064).Stolcke, A (2002). SRILM—an extensible language modeling toolkit. In Proc. of Interspeech. ISCA, Baixas, (pp. 901–904).Lopez-Otero, P, Docio-Fernandez, L, Garcia-Mateo, C (2016). GTM-UVigo systems for Albayzin 2016 search on speech evaluation. In Proc. of Iberspeech. Springer, Berlin, (pp. 65–74).Chen, G, Khudanpur, S, Povey, D, Trmal, J, Yarowsky, D, Yilmaz, O (2013). Quantifying the value of pronunciation lexicons for keyword search in low resource languages. In Proc. of ICASSP. IEEE, New York, (pp. 8560–8564).Pham, VT, Chen, NF, Sivadas, S, Xu, H, Chen, I-F, Ni, C, Chng, ES, Li, H (2014). System and keyword dependent fusion for spoken term detection. In Proc. of SLT. IEEE, New York, (pp. 430–435).Can, D, & Saraclar, M (2011). Lattice indexing for spoken term detection. IEEE Transactions on Audio, Speech and Language Processing, 19(8), 2338–2347.Miller, DRH, K

    Subword lexical modelling for speech recognition

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references (p. 155-160).by Raymond Lau.Ph.D

    Mispronunciation Detection in Children's Reading of Sentences

    Get PDF
    This work proposes an approach to automatically parse children’s reading of sentences by detecting word pronunciations and extra content, and to classify words as correctly or incorrectly pronounced. This approach can be directly helpful for automatic assessment of reading level or for automatic reading tutors, where a correct reading must be identified. We propose a first segmentation stage to locate candidate word pronunciations based on allowing repetitions and false starts of a word’s syllables. A decoding grammar based solely on syllables allows silence to appear during a word pronunciation. At a second stage, word candidates are classified as mispronounced or not. The feature that best classifies mispronunciations is found to be the log-likelihood ratio between a free phone loop and a word spotting model in the very close vicinity of the candidate segmentation. Additional features are combined in multi-feature models to further improve classification, including: normalizations of the log-likelihood ratio, derivations from phone likelihoods, and Levenshtein distances between the correct pronunciation and recognized phonemes through two phoneme recognition approaches. Results show that most extra events were detected (close to 2% word error rate achieved) and that using automatic segmentation for mispronunciation classification approaches the performance of manual segmentation. Although the log-likelihood ratio from a spotting approach is already a good metric to classify word pronunciations, the combination of additional features provides a relative reduction of the miss rate of 18% (from 34.03% to 27.79% using manual segmentation and from 35.58% to 29.35% using automatic segmentation, at constant 5% false alarm rate).info:eu-repo/semantics/publishedVersio

    A keyword search system using open source software

    Full text link

    Low Resource Efficient Speech Retrieval

    Get PDF
    Speech retrieval refers to the task of retrieving the information, which is useful or relevant to a user query, from speech collection. This thesis aims to examine ways in which speech retrieval can be improved in terms of requiring low resources - without extensively annotated corpora on which automated processing systems are typically built - and achieving high computational efficiency. This work is focused on two speech retrieval technologies, spoken keyword retrieval and spoken document classification. Firstly, keyword retrieval - also referred to as keyword search (KWS) or spoken term detection - is defined as the task of retrieving the occurrences of a keyword specified by the user in text form, from speech collections. We make advances in an open vocabulary KWS platform using context-dependent Point Process Model (PPM). We further accomplish a PPM-based lattice generation framework, which improves KWS performance and enables automatic speech recognition (ASR) decoding. Secondly, the massive volumes of speech data motivate the effort to organize and search speech collections through spoken document classification. In classifying real-world unstructured speech into predefined classes, the wildly collected speech recordings can be extremely long, of varying length, and contain multiple class label shifts at variable locations in the audio. For this reason each spoken document is often first split into sequential segments, and then each segment is independently classified. We present a general purpose method for classifying spoken segments, using a cascade of language independent acoustic modeling, foreign-language to English translation lexicons, and English-language classification. Next, instead of classifying each segment independently, we demonstrate that exploring the contextual dependencies across sequential segments can provide large classification performance improvements. Lastly, we remove the need of any orthographic lexicon and instead exploit alternative unsupervised approaches to decoding speech in terms of automatically discovered word-like or phoneme-like units. We show that the spoken segment representations based on such lexical or phonetic discovery can achieve competitive classification performance as compared to those based on a domain-mismatched ASR or a universal phone set ASR
    • …
    corecore