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Mispronunciation Detection in Children’s
Reading of Sentences

Jorge Proença , Carla Lopes , Michael Tjalve, Senior Member, IEEE, Andreas Stolcke, Fellow, IEEE,
Sara Candeias, and Fernando Perdigão

Abstract—This paper proposes an approach to automatically
parse children’s reading of sentences by detecting word pronun-
ciations and extra content, and to classify words as correctly or
incorrectly pronounced. This approach can be directly helpful for
automatic assessment of reading level or for automatic reading
tutors, where a correct reading must be identified. We propose a
first segmentation stage to locate candidate word pronunciations
based on allowing repetitions and false starts of a word’s sylla-
bles. A decoding grammar based solely on syllables allows silence
to appear during a word pronunciation. At a second stage, word
candidates are classified as mispronounced or not. The feature that
best classifies mispronunciations is found to be the log-likelihood
ratio between a free phone loop and a word spotting model in
the very close vicinity of the candidate segmentation. Additional
features are combined in multifeature models to further improve
classification, including: normalizations of the log-likelihood ratio,
derivations from phone likelihoods, and Levenshtein distances be-
tween the correct pronunciation and recognized phonemes through
two phoneme recognition approaches. Results show that most extra
events were detected (close to 2% word error rate achieved) and
that using automatic segmentation for mispronunciation classifi-
cation approaches the performance of manual segmentation. Al-
though the log-likelihood ratio from a spotting approach is already
a good metric to classify word pronunciations, the combination of
additional features provides a relative reduction of the miss rate
of 18% (from 34.03% to 27.79% using manual segmentation and
from 35.58% to 29.35% using automatic segmentation, at constant
5% false alarm rate).
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I. INTRODUCTION

IN THE process of learning how to read, children can face
phonological, phonic or rhythmical difficulties in reading

aloud, reflecting different levels of fluency [1], [2]. Oral reading
fluency depends on speed, accuracy, consistency of pace and
expressiveness [2], [3]. The deviations to an appropriate read-
ing include reading syllable by syllable, committing false starts
followed by self-corrections, and severe mispronunciations of
words. The wide range of possible problematic events presents
a substantial challenge for computational systems that aim to
detect these problems automatically.

There are several applications that could benefit from ana-
lyzing a child’s sentence reading using speech recognition and
disfluency detection techniques. Reading tutors, coinciding with
the area of computer assisted language learning (CALL), may
need to track a child’s reading in real time against the written
text, while incorrect pronunciations are identified and disal-
lowed. Projects that have aimed to create automatic reading
tutors include LISTEN [4], Tball [5], SPACE [6] and FLORA
[7]. Another application of reading aloud analysis is automatic
literacy evaluation, where reading level is computed for a child
through the analysis of their reading performance [8]–[11]. Per-
formance metrics based on reading attempts include correct
words per minute and rates of reading errors. Detecting all the
different types of reading events has also been useful for the
automatic annotation of speech databases [12].

Although this study considers children aged 6 to 10 reading
in their primary (native) language, the area of reading analysis is
also relevant for second language learning. However, automatic
analyses of foreign language reading [13], [14] are mostly tar-
geted at adults or young adults for whom speech technologies
are significantly more mature. Moreover, although similar read-
ing problems may be encountered for young and adult readers,
most problems in young children arise from the inability to
follow phonological and phonotactic rules, as well as hesita-
tions, self-corrections and slow reading speed. It is rarer to find
problems of badly realized vowels, often the case in second
language reading.

There are several known methods to detect disfluencies,
such as those based on hidden Markov models (HMMs), max-
imum entropy models, conditional random fields [15] and
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classification and regression trees [16], though most of past
research focusses on spontaneous speech. Applicability to read
speech may not be straightforward since disfluencies vary ac-
cording to different speaking styles [17]. Disfluencies in reading
have different nuances, and some prior work has targeted the au-
tomatic detection of these events in children’s reading, with the
most relevant contributions described below.

Black et al. [5] aim to automatically detect disfluencies in
isolated word reading tasks. They found that human evaluators
rated fluency as important as accuracy when judging reading
ability. The target of detection is mostly sounding-outs, where
a child first reads phoneme by phoneme (which can be whis-
pered) and then reads the complete word. They build HMMs
and a grammar structure specialized for disfluencies, capable
of detecting partial words and allowing silence or noise be-
tween phones. The correct word is compulsorily considered to
be pronounced in the final state of the grammar. They achieved
14.9% miss rate and 8.9% false alarm rate for the detection
of hesitations, sound-outs, and whispering. By comparison, in
our data, no phoneme-by-phoneme sounding-out was found. In-
stead, there are syllable-by-syllable sounding-outs with possible
silence between syllables, which we will address.

Duchateau et al. [9] also target the reading of isolated words.
Based on HMMs, they use a two-layer decoding module, first
with phoneme decoding using phoneme-level finite state trans-
ducers to allow false starts with partial pronunciations, and then
a second lattice to allow for repetitions or deletions of words.
For the detection of reading errors on word reading, a miss
rate of 44% and a false alarm rate of 13% were achieved. For
a pseudoword reading task, they achieved a 26% rate of both
misses and false alarms. In Yilmaz et al. [18], an extension to
the work by Duchateau et al. [9] is developed. The new evalu-
ation is on a mixture of word and sentence reading tasks, and
the models are still based on HMMs. The decoding scheme is
more flexible to allow for the most common substitutions, dele-
tions and insertions of phones in the language, as described by
a phone confusion matrix. This confusion matrix was obtained
by comparing the output of the recognizer with transcripts on a
larger corpus. The final result for the detection of all disfluencies
(word repetitions, stuttering, skipping and mispronunciations)
was 44% miss rate at a 5% false alarm rate.

Hagen et al. [19], targeting partial word pronunciations, found
that syllables were the best subunits to use in a decoding lattice
to detect these events. A 34.6% detection rate of partial words is
achieved for a 0.5% false alarm rate, and the overall word error
rate was similar to using a decoding grammar based solely on
words.

Li et al. [20] aim to track children’s reading of short stories for
a reading tutor. As a language model, they employ a word level
context-free grammar for sentences to allow some freedom in
decoding words. Each word also had a concurrent garbage model
with the most common 1600 words, which allows detecting
word level miscues, but was also able to detect some sub-word
level miscues for short words. On a detection task of all reading
miscues (including breaths and pauses), they achieved a miss
rate 23.07% at a false alarm rate of 15.15%.

It should be mentioned that much of the prior research focuses
on individual word reading tasks—exceptions being [20] and

parts of [18], whereas the present work targets the reading of
sentences and pseudowords. Some studies go further and attempt
to provide an overall reading ability index that should be well
correlated with the opinion of expert evaluators [8], [9]. Overall
reading assessment is also a direct application of our work.

With the objective of automatically detecting the most com-
mon reading miscues in sentences, focusing on mispronuncia-
tions, we propose a first segmentation stage to detect candidate
word pronunciations, while allowing word repetitions and false
starts based on syllable units. A decoding grammar based solely
on syllables allows silence to appear during a word pronuncia-
tion, addressing the problem of intra-word pauses. At the sec-
ond stage, candidate segments are classified as mispronounced
or not by using several proposed features, with the main one
being a log-likelihood ratio between a free phone loop and a
word spotting model in the very close vicinity of the candidate
segmentation. We combine additional features (normalizations
of the log-likelihood ratio, features derived from the likelihoods
of individual phonemes, and Levenshtein distance between the
correct pronunciation and sequence of recognized phonemes) in
multi-feature models to further improve mispronunciation clas-
sification. Although we call the second stage mispronunciation
classification, it is in essence a detection task, since candidate
segments must be detected automatically (as attempted in the
first stage). By using segmentation information from a manual
transcription, it is more clearly a case of classification.

Although incorrect intonations of a word may relate to incor-
rect reading, we will only focus on deviations from the ideal pho-
netic pronunciation, which are those given by the manual tran-
scriptions. In fact, the features we used are derived from speech
recognition/decoding paradigms. Correct prosody is linked to a
good reading performance and we only partially address it by
considering duration metrics. We have shown in previous work
[10], [11] that considering different types of disfluency rates
in addition to reading speed features (without other prosody
metrics) can already improve the prediction of a child’s over-
all reading level (from 0.92 correlation for correct words per
minute to 0.95 using multiple features). The output of the devel-
oped methods is also a full automatic annotation of children’s
read utterances.

Compared to our previous approaches [12], [21], we propose
here a new decoding strategy using only syllables in a semi-
constrained way. We also use and define multiple features for
mispronunciation classification, which we believe is novel in
this scope.

Section II presents the dataset of European Portuguese
children reading sentences and pseudowords that we used,
characterizing the types and frequencies of disfluencies
encountered. Section III presents the two-stage methodology
of automatically detecting disfluencies: segmentation to obtain
candidate units and consequent mispronunciation classification.
Section IV presents results and discussion, including a descrip-
tion of the metrics used.

II. DATA OF CHILDREN READING

To better contextualize the problem of automatic recogni-
tion of children reading, the data used throughout this study is
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TABLE I
FREQUENCY AND DESCRIPTION OF DISFLUENCY TYPES

Relative values are over the total number of prompt words (39826).

presented first. We chose a subset of the LetsRead corpus of
European Portuguese children reading aloud [22]. The material
of the reading tasks given to primary school children (6-10 years
old) include sentences and lists of pseudowords, recorded in pri-
mary school classrooms with low noise and low reverberation.

The sentences present varying length and difficulty, increas-
ing on average for higher school grades. They were extracted
from children’s tales and school books at the level of the target
group. Pseudowords (such as <traba> [tɾˈabɐ], <impemba>
[i ̃pˈẽbɐ] or <culenes> [kulˈɛnɘʃ]1) represent non-existing or
nonsense words in the native language, used to evaluate mor-
phological and phonotactic awareness. Pseudowords of 2 to 4
syllables were created by shuffling the most common syllables in
a lexicon of European Portuguese, maintaining full pronounce-
ability [22].

The manually transcribed data used in this study includes sen-
tences and pseudowords from 213 children totaling 10.5 hours.
The children are approximately equally distributed over four
grade levels. This data was manually annotated in terms of
correct words, mispronunciations and other disfluency events.

1In this document, stress is marked before the vowel of the stressed syllable.

Fig. 1. Schematic of disfluency detection workflow. The segmentation stage,
while allowing extra content, provides candidate segments for words to be
classified as mispronounced or not.

Table I presents the frequencies and descriptions of the different
types of disfluencies encountered.

Both SUB and PHO correspond to mispronunciations and,
although their severity degrees are different, the two will be
considered jointly as the mispronounced class. The training set
used to train acoustic models for word and phone recognizers
and to optimize classifiers comprises 9 hours. The remaining
1.5 hours from separate speakers are used as an independent
test set.

III. DETECTION OF DISFLUENCIES

Automatically detecting all the different types of disfluencies
encountered in children’s reading has proved to be a significant
challenge. In this work, the most frequent types are targeted
for automatic detection – mispronunciations, false starts and
repetitions – as well as intra-word pauses that can occur simul-
taneously with other events. It could be argued that detecting
only correct words is enough to characterize children’s reading
in most applications, for example, to calculate correct words per
minute. In that case, an approach such as word spotting could
be enough to detect correct words, although it is expensive, es-
pecially for large sentences. However, it has been found that the
relative amount of specific disfluencies may also be a relevant
parameter for reading level assessment [10] and the strategy
presented here stems from that goal.

The workflow of disfluency detection with the final goal of
detecting mispronunciations follows the schematic of Fig. 1.

First, we found it necessary to obtain alignment information
for any word attempts. This segmentation allows for extra con-
tent for repetitions and false starts. A candidate word segment is
ideally aligned with the pronunciation attempt of its word and,
through the use of several features extracted for that time-frame,
may then be classified as mispronounced or not.

A. Segmentation and Detection of Extra Events

This first stage aims to get the best alignment possible for
both correct words and mispronounced attempts, with the only
metainformation given being the original prompt. The first chal-
lenge for segmentation comes from all the extra content that can
frequently occur (repetitions, false starts and insertions) as well
as deletions. Otherwise, a forced alignment of the prompt word
sequence would suffice. The second challenge is that pronun-
ciations can differ significantly from the reference pronunci-
ation. Any decoding strategy must not be too unconstrained,
since short words might otherwise be detected in false starts
and mispronunciations. Consequently, the proposed decoding
grammars are a mixture of strictly following the prompt with
the added option of word repetition. It is still possible to obtain
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Fig. 2. Example of a prompt (top) and an utterance of its reading attempt (bottom), with segmentation for extra content and correct and incorrect words.
Transcription: REP(vendia) REP (lindos) PRE ([ɡlɐdjɔz]) vendia lindos SUB ([ɡlɐdjɔ . . . luʃ]) e glicı́nias. Expected correct reading: [vẽdiɐ] [lĩduʃ] [ɡlɐdiuluʃ] [i]
[ɡlisinjɐʃ].

a good alignment for a mispronunciation, even if it deviates
substantially from the reference word.

For acoustic models, we found greater success in this seg-
mentation task by simply using triphone hidden Markov models
of Gaussian mixture models (HMM-GMMs), rather than neural
networks for triphone decoding. One possible explanation is that
the amount of training data (9 hours) is not sufficient for neural
network training. For this stage, standard triphone HMMs were
trained with the Kaldi toolkit [23].

Another substantial challenge is the occurrence of intra-word
pauses. These are more common for the lower grades and stem
from reading a word syllable by syllable, with a significant pause
in between. Therefore, pauses usually occur between syllables,
whereas a regular word decoder or aligner is not expecting si-
lence inside of a word. Fig. 2 shows an example of a problematic
utterance: repetitions, a false start, and an incorrect word with
an intra-word pause can be found.

For this stage, we present a baseline and two systems that
deal with intra-word pauses before or during decoding:

1) A baseline system where intra-word pauses are not con-
sidered and a word-based decoding is used, allowing rep-
etitions and false-starts.

2) A system based on previous work [21], cutting silent seg-
ments in the waveform before decoding with full words,
similarly to the baseline.

3) A syllable-based decoding grammar, where silence is op-
tional between all syllables.

The methods are described in the following subsections. For
all methods, the allowed false starts (represented by the suffix
PRE) are based on stopping a word pronunciation at syllable
boundaries, which are common interruption points. For exam-
ple, for a word with four syllables [syl1.syl2.syl3.syl4], the al-
lowed pronunciations for a false start are [syl1], [syl1.syl2] and
[syl1.syl2.syl3]. Allowing deletions was found to provide worse
alignment results from the onset of this study. This is probably
because introducing ‘skip’ arcs in the alignment lattices allows
for a high degree of freedom that allows mispronounced words
to be matched up incorrectly, as previously stated. Therefore,
deletions are not allowed in either approach. Insertions of spo-
ken content not related to the prompted words (including out-
of-vocabulary words) are also not considered, but it is likely that
candidate segments for insertions and deleted words (with an
imperfect alignment) will be detected as mispronounced on the
pronunciation classification stage.

Fig. 3. Schematic of the lattice built for the prompt “ele sonhava muito,” for
the word based-decoding method.

1) Baseline: Word-Based Decoding: With this approach,
only repetitions and false starts are targeted and nothing is done
to address intra-word pauses. For a given utterance, a decoding
grammar (lattice) is built from the original prompt, allowing rep-
etitions and syllable-based false starts. Decoding is performed
using this lattice and HMM models.

The lattice built for a specific prompt is a finite state trans-
ducer (FST) based on the sequence of words of the original
prompt. For each word, two additional elements are added to
the lattice: an arc to go back after a word pronunciation, allow-
ing for repetitions; and a self-loop arc before the word to allow
multiple false starts. The arc weights of the FSTs used in this
work were empirically decided. An example for the lattice built
for the prompt “ele sonhava muito” [ˈelə suɲˈavɐ mˈũj ̃tu] (he
dreamed a lot) is shown in Fig. 3. False starts are represented
by the suffix PRE and, in this example: elePRE can only be
[e]; sonhavaPRE can be [su] or [su.ɲˈa]; muitoPRE can only be
[mũj ̃].

Following the horizontal left-to-right arcs, the original sen-
tence is obtained. By following multiple arcs that transition
backwards (non-consuming <eps>), repetition of sequences
of words are also allowed, such as “ele sonhava ele sonhava
muito”. These occurrences are frequent in the data and typically
represent corrections initiated by repeating every word from the
start of sentence or clause.

2) Word-Based Decoding With Silence Cutting: For this ap-
proach to word alignment based on previous work [21], silence
periods are removed before decoding so that words are expected
to be continuous. A neural network based on long temporal con-
text [24] was also trained, targeted for phoneme recognition and
achieving 27% phone error rate on the test set with a free phone-
loop model. Its outputs are posterior probabilities of phones and
non-speech and it is used in this method to detect non-speech
segments (it will also be used for mispronunciation classifica-
tion). The method follows these steps:

1) Voice activity detection. Significant non-speech segments
(longer than 150 ms) are cut from an utterance to deal with
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Fig. 4. Schematic of the lattice built for the prompt “ele sonhava muito,” for
the syllable based-decoding method. Optional silence is allowed at every node.
Considering ele2:lə/0.01–ele2 is the second syllable of the word “ele”, with
pronunciation [lə] and negative log-probability of 0.01).

intra-word pauses. Non-speech segments are found from
sequences that have a high probability of being silence
based on the posterior probabilities output by the phonetic
recognizer.

2) Decoding using task-specific grammars. For a given utter-
ance, the same word-based decoding as described for the
baseline is employed, allowing repetitions and false-starts
(Fig. 3).

3) Reintroduction of non-speech segments. Finally, informa-
tion pertaining to the segments of non-speech that were
originally cut (either separating words or inside a word)
is used to expand the decoded segmentation to the utter-
ance’s original duration.

3) Syllable-Based Decoding: For this approach, the prob-
lem of silence inside a word is handled differently. Here, the
decoding strategy is based on separating a word into its syllable
components and building a lattice solely with these syllables.
Fig. 4 shows an example of the lattice for the same sentence “ele
sonhava muito” [ˈelə suɲˈavɐmˈũj ̃tu]. The allowable repetitions
and false starts are similar to the previous approach since, after
a given syllable, it is only allowed to return, at most, to the
beginning of the word.

Optional silence is allowed at every node. Sequences of words
can also be repeated, as there are continuous back-transitions
for full words. Although not shown in the example, if multiple
pronunciations are possible for a given word, they are taken into
account as alternate pronunciations of a syllable. After decoding,
a reconstruction step is needed to join adjacent syllables into
their corresponding word, repetition or false start.

The output of both approaches is a per-utterance segmenta-
tion into word-relevant segments, be they false starts, repetitions

or word-candidates, to be classified in the next stage as mispro-
nounced or not.

B. Mispronunciation Classification

The analyzed reading material is extensive, including chal-
lenging words and pseudowords. Therefore, the proposed ap-
proach targets the possibilities of mispronunciation in a general
way, in contrast to considering typical pronunciation errors dur-
ing decoding. Mispronunciations by children can range from a
simple change in one phoneme, or changes in phoneme order,
or phoneme deletion or insertion, to severe changes from the
intended correct reading. Intonation problems are currently not
targeted by our work.

A straightforward possibility to decide if a word pronunci-
ation is correct or not is to compare the uttered sequence of
phonemes to the allowable pronunciations. If there is a match,
the pronunciation would be considered correct. However, the
accuracy of automatic phoneme recognition is not high enough
to support this method, since recognition inaccuracies (inser-
tions, deletions and substitutions) can lead to numerous false
alarms of mispronunciation. Therefore, methods based on the
word likelihood given the correct pronunciation prove to be more
successful. We will still apply phoneme recognition to obtain
additional inputs for mispronunciation classification. In fact, we
will classify word pronunciations based on multiple individual
features and combining them in multi-feature classifiers.

For all features that need to consider the reference pronun-
ciation of a word, we allow multiple acceptable pronunciations
(based on commonly used pronunciation variants) as well as
coarticulation rules depending on neighboring words (where not
surrounded by silence). For this task, a neural network based on
long temporal context [24] was trained, as mentioned in III.A.1.
It is targeted for phoneme recognition and achieved 27% phone
error rate on the test set using a free phone-loop model. Its
output, used here as the basis of likelihood computations, are
state-level posterior probabilities of 34 phones with 3 states
each, including non-speech.

1) Individual Features: Goodness of pronunciation (GOP)
[25], [26] is a common metric to detect phonetic mispronun-
ciations by computing the likelihood of a phone realization to
belong to the ideal phone that should have been pronounced.
We compute GOP-like features on phone posterior probabili-
ties, edit distances of recognized versus ideal phone sequences
and other details about the word. Starting with the segmentation
of the previous stage, the most relevant computed features are
listed in Table II, with brief descriptions that are expanded in
the text. Fig. 5 shows an example of an aligned segment for
a word, forced alignment of phonemes, recognized phonemes
from a bigram model, and how LLR-spotter and LLR-ali are
obtained.

LLR-spotter: A GOP-like accumulated log likelihood ratio
(LLR) from a word spotting approach (LLR-spotter or LLR-s
for short). Although the previous stage provides alignments for
candidate segments, these may not have the ideal boundaries
to calculate likelihood, due to segmentation errors. This can
even be the case if segmentation from manual transcription is
used (e.g., including some silence inside marked boundaries).
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TABLE II
MAIN FEATURES CONSIDERED FOR MISPRONUNCIATION CLASSIFICATION

Fig. 5. Schematic of an automatic alignment for the word eletricidade
[ilɛtɾisidadə], with (top to bottom): waveform signal; forced alignment of refer-
ence pronunciation (Ali), recognized phones from a bigram model (Rec) result-
ing in a Levenshtein distance of 4 (2 deletions and 2 substitutions), LLR from
a spotting approach (flexible beginning and end) and LLR with fixed beginning
and end.

LLR-spotter is extracted from a word-spotting approach, as pre-
sented in Fig. 6 [27], in the near vicinity of the alignment bound-
aries (-50 ms and +50 ms). The keyword model is the sequence
of ideal phones and the filler model is the free phone loop. Peak
LLR between the models of ideal word and free phone loop is
found in the vicinity of the ending time of alignment (-250 ms
and +50 ms, empirically tuned), as shown in Fig. 5. The best
starting time is in the output token of the keyword model at each
frame, as a result of the token-passing decoding approach [28].
The keyword model may also win at different starting times, and
new boundary information is obtained. In essence, if only this
feature were used, the purpose of the initial segmentation stage
would be only to obtain approximate boundaries for candidates.

LLR-ali: A log likelihood ratio based strictly on the original
segment boundaries. LLR-ali is obtained similarly to the word
spotting method, but the starting time has to be the initial frame
and the ending at the final frame of the original segmentation as
shown in Fig. 5. Although it is considered mainly to compare

Fig. 6. Schematic of obtaining a log-likelihood ratio from a word-spotting
approach, using the keyword model of ideal pronunciation versus a filler free
phone-loop model [27].

to LLR-spotter, it might have alternative information for multi-
feature classifiers.

min-GOP and mean-GOP: Minimum and average GOP of
phones, measured using a posteriori probabilities of phones from
the phonetic recognizer neural network. For a forced alignment
of ideal phones over the new interval from the word spotting
method, the minimum (worst) likelihood of the aligned phones
is obtained as a feature, as well as the average likelihood over
all phones. We expect that low likelihoods for reference pronun-
ciation phones will indicate mispronunciation.

maxBadPhnProb and accBadPhnProb: Maximum proba-
bility and accumulated probability of mismatched phones. As
an approximately inverse idea to min-GOP, a free phone loop
is used over the posterior probabilities to recognize the uttered
sequence of phones. For each recognized phone that does not
match the ideal pronunciation, the average posterior probability
is taken over its alignment. Both the maximum and sum of these
values are taken as features. It is hoped that a mismatched phone
with very high probability from the phonetic recognizer will in-
dicate an increased confidence that the word is mispronounced.

Features from phonetic recognition: Levenshtein distances
are computed between the ideal phone sequence and the out-
put of two phonetic recognition approaches, for each candidate
segment:

� Bigram model. With improved recognition results over a
free phone-loop model, a phonetic bigram language model
is obtained from the training set and used to decode the
best recognized sequence of phones over the candidate
segment.

� Phonetic lattice (PL) based on ideal pronunciation. To over-
come some errors by the recognizer’s output, constrained
decoding models are built for each word, based on the no-
tion that the ideal sequence of phones is the most probable
to be detected on the segment. Loosely based on an im-
plementation of a bigram model, a less probable back-off
with a free phone loop is allowed in addition. The ideal se-
quence of phones has a higher probability, and only where
deviations to this sequence are highly likely does the de-
coder choose the path of additional phones. An example
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Fig. 7. Example of the constrained phonetic lattice (PL) built for the word
azul [ɐzul] (blue).

of the phonetic lattice built for the word azul [ɐzul] (blue)
is shown in Fig. 7. The path through nodes 0-1-2-3-4-5-7
represents the correct word and those transitions are highly
probable (low value of negative log probability). PHN rep-
resents all possible phones concurrently (self-loop at node
6), including silence. At the start or after a certain phone of
the word, the most probable is the next correct one, as can
be expected from a simple bigram model. Although poste-
rior probabilities could also be obtained from the decoded
lattices, they are often close to 1 due to the constrained
decoding.

To compute the Levenshtein distance, phonetic substitutions,
deletions and insertions are considered with the same unitary
weight (cost). For example, ideal [ɐzul] versus recognized [ɐsul]
results in a Levenshtein distance of 1, whereas [zuiS] results in
a distance of 3. For each recognition, this distance is taken as
a feature (LevBigram1 and LevPL1). Additionally, two slightly
different distances are calculated: an edit distance with lower
weights for substitutions among similar phonetic groups (Lev-
Bigram2 and LevPL2) where, for example, a substitution of [f]
for [v] has a lower weight; an edit distance where the substitu-
tion weights are based on the phonetic confusion matrix from
the output of the phonetic recognizer on the training set (LevBi-
gram3 and LevPL3). For example, if the recognizer often detects
[ɔ] for reference [o], this substitution will have lower cost.

Since it is expected that these two phonetic decoding ap-
proaches will have differing outputs, additional features are de-
fined by combining the two edit distances, either by the sum or
product of the values, for the three types of distances (LevSum1,
LevSum2, LevSum3, LevProd1, LevProd2 and LevProd3).

Metrics from LLR-spotter: Based on the best spotted seg-
ment obtained in LLR-spotter, the detected number of frames

(Nframes) and the LLR area (Area) are also included as features.
Area is mostly used for normalizing LLR and is computed by
summing the difference of LLR to the best LLR, frame by frame
from the beginning to end of the best spotted segment [27].

Difficulty and OLD20: Metrics of word difficulty. It is ex-
pected that harder or unfamiliar words are more likely to be
mispronounced. The difficulty of the word based on dubious and
harder pronunciation rules [22] is considered with and without
accounting for word length (Diff1 and Diff2). Additionally, the
OLD20 metric of the word is considered, which is the mean
Levenshtein distance of the word to its 20 closest orthographic
neighbors from a large lexicon [29], which may indicate a degree
of familiarity.

Word length: Additional features include the number of
phones of the closest allowable pronunciation (Nphones),
its number of graphemes (Ngraph) and number of syllables
(Nsylls).

LLR normalizations and interactions: Several normaliza-
tions and interactions of LLR-spotter with other features are
considered, by division or product, represented as, e.g., LLR-
s/Nframes or LLR-s∗LevBigram1.

2) Multi-Feature Models: Our goal is to classify whether a
word is mispronounced or not, with mispronunciation being the
positive class. Therefore, we consider the task a problem of bi-
nary classification. If only one feature is analyzed, a decision
threshold can simply be defined for a hard decision (yes or no).
However, the optimal operating points may vary and it is prefer-
able to analyze the performance of selecting several thresholds,
usually with detecting error trade-off (DET) curves. Toward that
end, multi-feature models that can output continuous values are
preferred. Although continuous outputs could be interpreted as
degrees of correctness of pronunciations, we do not explore this
interpretation here.

To combine the information of several features, aiming to
improve the classification of mispronunciations, we investigate
the following models taking multiple inputs:

� Logistic regression (Logit). A logistic regression model for
a binomial distribution, a case of generalized linear regres-
sion, is trained through maximum likelihood estimation.
The logistic function (1) gives response probabilities by
the linear combination of predictive features.

ŷ =
1

1 + eaT x+b
(1)

In (1), ŷ is the predicted output, ranging between 0 and 1,
corresponding to the probability of the sample being in the
mispronounced class based on a linear combination of features
where x is the feature vector, a is the coefficient vector (weights)
of the input features and b is the intercept (bias) term.

� Neural networks (NNs). Networks are built with one hid-
den layer with variable number of neurons and one output,
trained with Levenberg-Marquadt backpropagation [30]
and optimizing cross-entropy. The transfer function for
the hidden neurons is the hyperbolic tangent sigmoid and
at the output layer a logistic sigmoid function is used, pro-
viding output between 0 and 1.
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TABLE III
OVERALL WORD ERROR RATE (WER) AND MISS AND FALSE ALARM RATES

FOR THE DETECTION OF REPETITIONS AND FALSE-STARTS, FOR THE TEST SET,
USING THE OPTIMAL INSERTION PENALTY OF THE TRAIN SET AND THE BEST

ONE ON THE TEST SET (BEST)

� Support vector machines (SVMs). SVMs for binary classi-
fication are trained with a second order polynomial kernel,
C parameter of 0.1 and an automatic heuristic kernel scale.
To obtain continuous values, the considered output is not
the binary decision but the classification score, which is
the distance of the input vector to the decision boundary.

The hyperparameters for NNs and SVMs were chosen em-
pirically. To avoid over-fitting to the training set, an alternative
to using the entire set of features is analyzed. Stepwise feature
selection is applied [31], through two approaches: adding fea-
tures step by step when no features are included (Step-add) and
removing features step by step when all features are included
(Step-remove). For Step-add, we select the feature that mini-
mizes deviance2 when a logistic regression is applied. However,
a feature is only added if the decrease in deviance is statistically
significant according to a chi-square test (p < 0.05). Similarly,
for Step-remove, features are removed if, with their presence,
the increase in deviance has a p > 0.10. This usually leads to
different features being selected by the two approaches, with a
logistic regression applied at the end. NN and SVM are again
analyzed by using only the selected features as input (NN-step
and SVM-step).

IV. RESULTS AND DISCUSSION

A. Segmentation

Using both the word-based decoding with silence cutting and
the syllable-based decoding for the segmentation stage, the over-
all word error rate (WER) and the detection of extra speech
events (repetitions and false starts) can be analyzed.

WER is analyzed by comparing the decoded sequence of
words and events to the reference transcription. Using the full
text of the original prompts as hypothesis, WER is 9%, where
errors correspond to repetitions, false starts, insertions and dele-
tions. Since the decoding strategies do not take insertions and
deletions into account, these will always appear as errors. WER
values for the test set, when using the optimal insertion penalty
for the training set, for the baseline without cutting silence and
both segmentation approaches are presented in Table III, as well
as results when using the optimal penalty for the test set.

2Deviance can be computed by the sum of unit deviances given for a bi-
nomial distribution by 2{y log(y/µ) + (1 − y) log((1 − y)/(1 − µ))} with
observation y and prediction µ [32].

Fig. 8. Detection error tradeoff (DET) for the detection of repetitions and
false starts on the test set, for both decoding approaches. Operating points are
with the best train insertion penalties.

We consider recognition of repetitions and false starts as a
detection task, lumping both into a single class. Although the
false starts allowed are up to the last syllable, in the transcribed
data some are complete mispronunciations of a word, with a
subsequent attempt of correction. Those are possibly detected
as repetitions with these methods and motivate analyzing the
detection of both repetition and false start events as one class.
To evaluate a system’s performance in the detection of these
events, we stipulate that:

� Extra events (insertions) are false alarms;
� Undetected events (deletions) are misses;
� Events detected as belonging to a different word (substi-

tution) are also misses. For example, a false start of one
word may be detected as a repetition of the previous one.

These specifications are similar to the ones used in NIST
evaluations [33]. However, to calculate false alarm rates, the
number of false alarms are divided by the total number of orig-
inal words. Fig. 8 shows the detection error trade-off (DET) for
the segmentation approaches on the test set, obtained by using
a wide search beam during decoding and various word inser-
tion penalties and lattice rescoring weights. Operating points
correspond to using insertion penalties and lattice weights that
resulted in the best WER on the training set.

The equal error rate (EER) for the systems is not of interest
since it corresponds to relatively high false-alarm rate (equal
to the miss error rate) and higher WER, far from the targeted
operating points. Table III presents the resulting values at these
points, as well as the best possible ones by optimization on the
test set.

Comparing the WER results as well as the DET values, it is
clear that the second approach – syllable-based decoding with-
out cutting silent segments – performs better than the alternative
method of cutting silent segments and aligning full words. Still,
the above results do not take into account the time-wise align-
ment information. Comparing the decoded hypotheses to the
manual transcription (reference), three metrics for alignment
match are analyzed and presented in Table IV:

� overlapRef – percentage of frames that overlap per event
over the length of the reference word, averaged for all
events.
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TABLE IV
METRICS ANALYZING FRAME-WISE ALIGNMENT MATCH BETWEEN THE

MANUAL TRANSCRIPTION AND DECODED HYPOTHESES

� overlapOverMax – percentage of frames that overlap per
event over the maximum interval between the reference
and hypothesis start and end frames, averaged over all
events. This metric penalizes longer hypotheses.

� overlapUtt – percentage of overlap frames per utterance
over the length of all events of the sentence, averaged over
all utterances.

For each event of the reference, only one hypothesis is com-
pared: the one that corresponds to the same word and with the
largest overlap if more than one exists. Therefore, all the metrics
penalize shorter hypotheses.

The alignment metrics also show that the syllable-based
decoding performed better overall, although a smaller over-
lapOverMax shows that it may have provided slightly larger seg-
ments. Subsequently, only this automatic segmentation method
will be used to analyze mispronunciation classification results.
The improved alignment accuracy justifies the added complex-
ity and computation in decoding. It also has the advantage of
skipping a non-speech removal step that needs to decide a min-
imum duration for non-speech segments to be cut. Leaving this
decision as optional silence in the decoder seems to be ideal.

B. Mispronunciation Classification

Given candidate word segments with information about start
and end times and corresponding prompt word label, an auto-
matic classifier decides whether the word was mispronounced
(positive class, 1) or not (negative class, 0). Using continuous
values for predictions or probabilities of belonging to a class,
we can use each output value as a threshold for decision and
derive DET curves.

Two sources of candidate segments will be analyzed: manual
segmentation from the manual transcription and automatic seg-
mentation from the syllable-based automatic decoding. We ex-
pect that manual segmentations provide the best results and the
clearest analysis of which features are important to classify mis-
pronunciations. With automatic segmentation, we expect some
misalignments with the ground truth (manual segmentation).
However, there must be an overlap of alignment in order for
them to be considered a match.

Two groupings for mispronounced classes will be analyzed:
� SUB+PHO: all mispronunciations as the positive class;
� SUB: only severe mispronunciations (SUB) as the pos-

itive class, without considering slight mispronunciations
(PHO), since the latter are usually harder to detect.

To compare classifications, given continuous output values
for candidates, we will be analyzing false alarm and miss rates.
Since positive samples (mispronunciations) occur much less

TABLE V
COST RESULTS FOR THE CLASSIFICATION OF SUB+PHO CLASS VERSUS

CORRECT WORDS, USING INDIVIDUAL FEATURES

frequently than negative ones (correct words), the maximum
accuracy measure would often relate to very low false alarm
rates but with miss rates higher than 50%. Other measures such
as F-score do not take into account the number of true positives.
To target more interesting operating points, we found it best to
combine false alarm rate (FA) and miss rate in a weighted cost
metric (2), where minimal cost is better

Cost = w1 · FA + w2 · Miss. (2)

In (2), w1 is the weight given to false alarms and w2 is the
weight of misses. This way, more weight can be given to false
alarms, moving toward fewer false alarms than an equal error
rate, but not so much as to reach miss rates higher than, for
example, 50%. We decided to target optimal cost around 5%
false alarm, with w1 defined as 1 and w2 defined as 0.33.

The point of minimum cost in the training set will define the
decision threshold. For all the considered groupings (manual
and automatic segments, SUB and SUB+PHO as classes), two
separate analyses of classifier model training and testing will be
done:

� Cross-validation over the training set (CV-train). A 5-fold
cross-validation is done using the training data used for
acoustic models. The results are obtained by aggregating
the outputs on the test data in each fold.

� Test. Predictions on the test set are made by training a
model over the entire training set.

For models that depend on random initialization (NN weights
and SVM automatic heuristic kernel scale), results will be of the
model of minimum cost over 10 runs on training data.

Table V summarizes the results of the obtained cost metric
when using only the individual features for classification of the
SUB+PHO class. Features that are not shown, such as diffi-
culty and number of phones, provide comparatively very poor
results individually. Further normalizations and interactions pro-
vide either similar or slightly worse results compared to the
displayed ones. LLR-spotter proves to be the best performing
feature, with a significant improvement over the similar LLR-ali



1216 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 26, NO. 7, JULY 2018

TABLE VI
PHONE ERROR RATES (PER) OF THE TWO PHONE DECODING APPROACHES

Fig. 9. DET of Levenshtein edit distance features, for the classification of the
SUB class, on the test set.

metric, where the initial alignment is used, even for the manual
segmentation.

LevPL1, the Levenshtein distance by using the constrained
phonetic lattices (PL), provides a better cost metric than the
bigram one (LevBigram1), with their combination proving suc-
cessful (LevSum1). Analyzing the phone error rate (PER) for
the two phone decoding systems over candidate segments (man-
ual transcription), for correct words and for mispronunciations,
as shown in Table VI, provides an interesting insight. As ex-
pected, the constrained phonetic lattice results in a low PER for
correct words, since the sequence of correct pronunciation is
much more probable. On the other hand, for mispronunciations,
the PER is higher using phone lattices since it has less freedom
to recognize mispronounced phones. For the bigram, the higher
PER on mispronunciations than correct words may reflect some
problems of the manual transcription, as it is often hard to decide
which sequence of phones was uttered in mispronunciations.

Returning to classification results, we can show the effect of
selecting multiple thresholds of Levenshtein distance to classify
candidates as mispronounced or not by plotting the DET of
LevBigram1, LevPL1 and LevSum1 (their sum), as in Fig. 9. As
can be seen, PL performs worse at finding all mispronunciations,
never going below 43% miss rate (with a threshold of distance
1). However, PL seems better for lower false alarms and the
combination of both features clearly provides improved results.

Comparing the use of manual segmentation versus automatic
segmentation, the automatic one does result in slightly worse,
albeit close, results, as shown in Fig. 10. For a 5% false alarm
rate, a 33.51% miss rate is obtained by LLR-spotter from man-
ual segmentation, versus a 35.32% miss rate using automatic
segmentation.

Table VII summarizes the results of using the multi-feature
models described in Section III-B.2), with the goal of combining

Fig. 10. DET of LLR-spotter for the SUB+PHO classification on the test set
by using manual or auto segmentations.

TABLE VII
COST AND MISS RATES AT A 5% FALSE ALARM FOR THE CLASSIFICATION OF

SUB+PHO CLASS VS. CORRECT WORDS, USING MULTI-FEATURE MODELS

(LLR-SPOTTER INCLUDED FOR COMPARISON)

the information of several features to improve classification.
NN-step and SVM-step represent the use of the selected features
by the best feature selection method for the same conditions
(either Step-add or Step-remove). In addition to the cost obtained
by the optimal thresholds from training, miss rates for the same
5% false alarm rate are indicated, although the operating points
for the given costs vary slightly from 4% to 6% false alarm rate.

A significant improvement was obtained by considering mul-
tiple features, and the best classifiers vary from neural networks
to SVMs, with similar results. For the manual segmentation,
neural networks provided better results, and using feature se-
lection was greatly helpful for CV-train. For the other cases,
stepwise feature selection was not helpful and the best results
for automatic segmentation were obtained with SVMs. For the
same 5% false alarm rates, the improvement of miss rate rel-
ative to the best individual feature (LLR-spotter) are 22% and
13% in CV-train (manual: 27.17% to 21.35%; auto: 29.23% to
25.29%) and 18% on the test set (manual: 34.03% to 27.79%;
auto: 35.58% to 29.35%).

Even if stepwise feature selection was only helpful for manual
segmentation, analyzing which features are consistently selected
may give an insight into the most relevant ones. For the Step-
add feature selection, these are the features that are consistently
selected for all the folds of cross-validation on the training set,
for SUB+PHO:
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Fig. 11. DET curves of LLR-spotter and multi-feature neural network using
manual (left) and automatic (right) segmentations, for SUB+PHO CV-train
classification.

� LLR-spotter;
� LLR-ali;
� mean-GOP;
� maxBadPhoneProb;
� LevDistPL1 or LevDistPL3;
� 1 combination of Levensthein distances - either LevSum3

or LevProd3;
� 1 normalization of LLR-spotter - LLR-s/Nchars, LLR-

s/Nframes or LLR-s/Area;
� 1 interaction of LLR-spotter with phone lattice distance -

LLR-s∗LevPL1 or LLR-s∗LevPL3.
� Area (LLR area from the spotting approach).
Most of the designed features prove to be relevant and ap-

parently carry complementary information that enhances mis-
pronunciation classification. Curiously, LLR-ali was always se-
lected, even though it performs worse than LLR-spotter. It may
be useful for cases where something extra is said at the beginning
or end of words (for example, adding a plural suffix) and where
by using the spotting approach on these segments, a correct pro-
nunciation is found (LLR-spotter would hurt the classification),
whereas the original segmentation encompassed the mispronun-
ciation. Furthermore, mean-GOP and maxBadPhoneProb were
chosen over min-GOP and sumBadPhoneProb. Effectively, even
if min-GOP and sumBadPhoneProb are better individually (in
minimum cost and in the stepwise criterion of deviance), after
the first step when LLR-spotter is added to the stepwise model,
mean-GOP and maxBadPhoneProb would provide better results
if added. This is due to these two selected features having less
correlation or sharing less information with LLR-spotter and
other important features, and helping the model with alternative
information.

To further analyze the improvement of using multi-feature
models over LLR-spotter, Fig. 11 shows the DET curves com-
paring the use of the individual LLR-spotter feature versus a
multi-feature model, in this case, the neural network using all
features.

Overall, be it only LLR-spotter or a multi-feature model, we
observe from the edges of the DET curves that there are cases
of mispronunciation that are hardly detected, only with very
high false alarm rates. There are also cases of correct word
pronunciations that easily result in false alarms. Most of these,
where the manual annotator did not indicate mispronunciation,

were found to be due to two factors: noise simultaneous with
speech and words with low vocal effort (whispering). Words
with a low vocal effort often occur at the end of sentence with
the final syllables of the word appearing unvoiced. We attempted
to add as features the word position in the sentence and a binary
feature for being the last word, but they were never helpful.

There are two further main problems to tackle. The first is that
the output of the phonetic recognizer is prone to errors, otherwise
the match of the recognized phones to reference pronunciation
would suffice. This was addressed by including several features
that compensate for misrecognitions in some fashion (e.g., prob-
ability of mismatched phones and Levenshtein distance from a
constrained phone decoding where the ideal sequence is highly
probable). Nevertheless, by improving the accuracy of the pho-
netic recognizer, better results can be expected. The second
problem is the subjective manual annotation of correct words
and mispronunciations, where many cases are dubious for dif-
ferent manual annotators. Fixing annotator errors could have an
effect on results but the methodology itself might not change.
Not much can be done from an automatic perspective other than
improving the reference by combining the opinions of multiple
annotators.

V. CONCLUSION

We have proposed a system for automatically detecting com-
mon mispronunciations and disfluencies in children’s reading.
Automatic processing in two steps – segmentation to obtain
candidate word pronunciation segments, and classification as
mispronounced or not – provides small differences compared
to manual transcriptions. We address the common problem of
intra-word pauses with a syllable-based decoding, giving better
segmentations than our previous methods. For mispronunciation
detection, combining several features that may have alternative
information improved results significantly, compared to using
only one log-likelihood ratio metric. Combining the output of
two phone recognition models (a bigram and a constrained pho-
netic lattice) provided more information about mispronunciation
than one strategy alone.

We note that some aspects of our work may be optimized
for the conditions of the data being analyzed. For example,
not allowing deletions of words during segmentation worked
better than allowing them in the alignment lattice, but it may not
be so for less controlled scenarios with more unprompted and
incomplete utterances. Still, there are other clear enhancements
to pursue: dealing with utterances with low vocal effort and
improving phonetic recognition models. The segmentation stage
might also be improved to account for the need to align ideal
pronunciations to incorrect attempts, possibly by allowing a
garbage model to match mispronounced phones or unrelated
extra segments. Speaker adaptation might also be useful at all
stages, including adjusting phonetic recognition to individual
reading speeds.

It has been shown in previous work [10], [11] that using rates
of disfluencies in addition to reading speed metrics can improve
the prediction of a child’s reading performance, and the impact
of the improvements given by the methodology proposed in the
current work needs to be investigated. Applying the proposed
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methods to children older than 10 years would probably mean
that new acoustic models would have to be built due to severe
changes in the children’s voices. Additionally, the frequency of
disfluent events (such as intra-word pauses) could be different,
which would mean that the probabilities in models should be
adjusted and that the features relevant for classification may
even change.
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