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Abstract

Speech retrieval refers to the task of retrieving the information, which is

useful or relevant to a user query, from speech collection. This thesis aims to

examine ways in which speech retrieval can be improved in terms of requiring

low resources - without extensively annotated corpora on which automated

processing systems are typically built - and achieving high computational

efficiency.

This work is focused on two speech retrieval technologies, spoken keyword

retrieval and spoken document classification. Firstly, keyword retrieval - also

referred to as keyword search (KWS) or spoken term detection - is defined as

the task of retrieving the occurrences of a keyword specified by the user in text

form, from speech collections. We make advances in an open vocabulary KWS

platform using context-dependent Point Process Model (PPM). We further

accomplish a PPM-based lattice generation framework, which improves KWS

performance and enables automatic speech recognition (ASR) decoding.

Secondly, the massive volumes of speech data motivate the effort to orga-

nize and search speech collections through spoken document classification. In

classifying real-world unstructured speech into predefined classes, the wildly

collected speech recordings can be extremely long, of varying length, and
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contain multiple class label shifts at variable locations in the audio. For this

reason each spoken document is often first split into sequential segments, and

then each segment is independently classified. We present a general purpose

method for classifying spoken segments, using a cascade of language inde-

pendent acoustic modeling, foreign-language to English translation lexicons,

and English-language classification. Next, instead of classifying each segment

independently, we demonstrate that exploring the contextual dependencies

across sequential segments can provide large classification performance im-

provements. Lastly, we remove the need of any orthographic lexicon and

instead exploit alternative unsupervised approaches to decoding speech in

terms of automatically discovered word-like or phoneme-like units. We show

that the spoken segment representations based on such lexical or phonetic

discovery can achieve competitive classification performance as compared to

those based on a domain-mismatched ASR or a universal phone set ASR.

Primary Reader: Sanjeev Khudanpur

Secondary Reader: Hynek Hermansky
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Chapter 1

Introduction

Nowadays the collections of audio data have been ever-increasing, including

broadcast news, telephone conversations, meetings, lectures, etc, which can

be referred to as “spoken documents”. Storing and digitizing vast amounts

of audio data is commonplace. In providing users with easy access to the

information of their interest, information retrieval (IR) has been a growing

area both in academia and in the market place.

Given the user query, the key goal of the IR system is to retrieve

information that is useful or relevant to the user. [1]

Early developments have focused on text IR, while the rapid growth of

media sources such as audio, image and video has motivated the field of

multimedia IR to support navigating large multi-media collections. Given the

vast quantities of speech recordings, this thesis considers the practical pursuit

of automatic information access to speech archives – speech retrieval.

Speech retrieval refers to the task of retrieving the specific pieces

of spoken audio data from a large collection that pertain to a

query requested by a user. [2]
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The basic application scenario assumes that a user translates their information

need into a query and initiates the query, which can be a set of words in text

or spoken form, and the system will return either a list of rank-ordered docu-

ments, or any specific document segments that are relevant to the query. We

also consider speech retrieval and spoken content retrieval [3] as synonymous,

which includes the tasks of spoken document retrieval, spoken term detection

or keyword search, topic detection1, etc., and we will discuss these tasks in

more detail in subsequent Section 1.1.

Speech retrieval can be approached in ways lying between information

retrieval and automatic speech recognition (ASR), while it can be challenging

to build high-accuracy ASR systems in real-world scenarios, due to the diver-

sity of languages and the requirement of extensively annotated corpora on

which the ASR algorithms are typically built. Additionally, the fact that the

audio data volumes are ever increasing has posted requests for any algorithm

design on the progress of time and space efficiency. Accordingly, these chal-

lenges have led to various speech retrieval techniques beyond cascading ASR

with text IR [3]. The goal of this thesis is to further improve speech retrieval

techniques given the language diversity and low human annotation resources.

1The notion of topic here can be considered as a general cluster or class. The topic
detection task may refer to either an unsupervised learning problem like document clustering,
or a supervised learning task such as document classification. The supervised document
classification is also usually referred to as document categorization, topic classification, topic
identification, etc. [4].
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1.1 Background and motivation

This section provides an overview of a few large-scale evaluations or programs

that have led to significant progress on speech retrieval technologies, and

describes the posed challenges that motivate this thesis.

The National Institute of Standards and Technology (NIST) sponsors an

annual Text REtrieval Conference (TREC), which was started in 1992, to en-

courage research on information retrieval and provide infrastructure for large-

scale text retrieval evaluations. A series of past evaluations, TREC-6 – TREC-8,

began to include a Spoken Document Retrieval (SDR) track, where systems

are posed with queries and attempt to return a list of documents ranked by

decreasing similarity to the queries [5]. Given the sufficiently accurate ASR

on broadcast news speech, SDR was considered to be a “solved” problem [5].

NIST has also run a series of evaluations on another speech retrieval task,

Topic Detection and Tracking (TDT), since 1998 [6]. TDT includes five tasks

named, Topic Tracking, Link Detection, Topic Detection, First Story Detection

and Story Segmentation. TDT was made multilingual by expanding the cor-

pora to include broadcast news of English, Mandarin, and Modern Standard

Arabic. TDT research in general aims to develop algorithms for detecting new

topics in streams of broadcast news, and then tracking these topics over time.

Notable generalizations arised from evaluation, e.g., cross-lingual processing

performance degraded compared to monolingual processing [7]. TDT along

with multilingual modeling have been popular research problems since then.
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Thus far both SDR and TDT focused on the broadcast news domain. In-

stead NIST ran another speech retrieval evaluation – 2006 Spoken Term De-

tection (STD) Evaluation – specifically towards automatically detecting the

occurrences of each given term from audio corpora of heterogeneous speech

material [8]. Compared to processing broadcast news, searching spontaneous

conversational speech posed more challenges and raised pragmatic awareness

of domain robustness, system scalability, out-of-vocabulary (OOV) queries

[9], etc. In addition, we see significant performance degradation on Arabic

and Mandarin data as compared to English [8], and such markedly lower

performance on non-English languages requires developing more effective

language independent solutions.

Following the 2006 STD evaluation, the Intelligence Advanced Research

Projects Activity (IARPA) conducted the Babel Program [10] starting in 2011,

of which the goal is to develop scalable multilingual keyword search (KWS)

capabilities that can be rapidly applied to any human language. However,

most of the world’s languages lack the large amount of manually-transcribed,

manually-translated, or manually-annotated corpora that the standard auto-

mated algorithms strongly rely on, and these languages can be referred to

as underserved or low resource languages. Particularly in developing ASR

and KWS systems for underserved languages, collections of correponding

transcribed speech or phonetic lexicons can be severely limited. Whereas sig-

nificant progress has been made in automatically recognizing and searching

underserved languages, by exploiting various novel techniques such as semi-

supervised training of neural network-based acoustic models [11], building
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language independent acoustic model through sharing a common phone set

[12], learning multilingual neural network-based acoustic features [13], etc.

Also concerned with advancing human language technology performance

for underserved languages, the ongoing Low Resource Languages for Emer-

gent Incidents (LORELEI) Program supported by the Defense Advanced

Research Projects Agency (DARPA) introduces a Situation Frame (SF) task,

which aims to retrieve and aggregate information from text and speech doc-

uments in the context of emergent situations – such as natural disasters or

disease outbreaks – in locations where low-resource languages are spoken

[14, 15]. The relevant documents and associated situational information are

collectively referred to as situation frames (SFs), and each SF consists of the

situation type (also simply referred to as topic), geographic localization, and

situation status. Retrieving SFs from speech can be formulated as component

tasks including topic identification and keyword search [16]. The retrieved

SFs are intended to provide situational awareness for emergent missions such

as humanitarian assistance or disaster relief operations.

In general, we can see a great deal of interest in expanding speech re-

trieval coverage of the world’s languages, while in many cases the resources

available to build the typical automated processing systems, i.e., manually-

transcribed speech or any manual linguistic annotations (e.g., topic labels

per document), are severely limited. Therefore, extensive research efforts on

improving various speech retrieval techniques have thus far been focused on

developing language-independent and scalable solutions that require zero or

low manually-annotated resources for the language of interest, which are also
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the motivating problems of this thesis.

1.2 Problem statement

This thesis touches on three individually challenging tasks that can serve as

basis technologies for speech retrieval – keyword retrieval, automatic speech

recognition (ASR), and spoken document classification.

1.2.1 Keyword retrieval

In this work we consider spoken keyword retrieval, spoken term detection

(STD) and keyword search (KWS) as synonyms. Typically, the input speech

audio waveform is converted into a sequence of fixed-dimensional acoustic

vectors O = o1, ..., oT, by a process called feature extraction. Consider we have

a fixed vocabulary set V , and we treat a sentence as composed of a sequence of

words W = w1, ..., wN, where each wi, for i = 1 . . . N, corresponds to a word

type w ∈ V . Then the keyword retrieval task can be stated as follows. Given

acoustic observations O, assume a word type w is a keyword of interest (in

written form in the native orthography), and each occurrence of word wi is

defined as a triplet (w, tb, te), where w is the word type, tb is the beginning

time of this word occurrence and te is the end time. Spoken keyword retrieval,

STD, or KWS is to find all the occurrences of a keyword type w in acoustics O.

Alternatively, the query keyword can also be a contiguous sequence of words,

i.e., word n-grams with n ≥ 2, and keyword retrieval is to find occurrences of

the same n-grams.

Development of such technique can provide speech retrieval system with
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the functionality that, when the user enters a query keyword, the system can

return the utterances containing the keyword, or the exact occurrence time

spans of the keyword.

1.2.2 ASR

Given each speech utterance parameterized as O = o1, ..., oT, ASR is to find

the underlying word sequence W = w1, . . . , wN. The statistical formulation

can be expressed as:

Ŵ = argmax
W

P(W|O) (1.1)

where optimal word sequence Ŵ is the one most likely to have generated the

acoustic sequence O. We can apply Bayes’ rule to decompose the posterior

probability P(W|O) as:

P(W|O) =
P(O|W)P(W)

P(O)
(1.2)

where P(O|W), the observation likelihood, is computed by the acoustic model,

and P(W) is the prior probability, computed by the language model. Each

major ASR component – i.e. acoustic model, pronunciation lexicon (as a

mapping from words to phoneme strings), and language model – can be

formulated as probabilistic model, and often be represented by weighted

finite state transducer (WFST) [17, 18]. Common methods for combining and

optimizing probabilistic models in ASR can be efficiently implemented by the

well-defined operations on WFSTs [17]. Thus, the individual ASR components

can be integrated and processed into a single WFST, which represents the

composed probabilistic model and is referred to as decoding graph [18, 19].
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Given the acoustic observations, searching through all the possible word

sequences and finding the one which has the highest posterior probability

is referred to as the decoding problem in ASR. In the WFST framework, we

construct an acceptor (or WFSA) for each speech utterance, compose the

acceptor with decoding graph, and obtain a search graph, called S [18]. Then

decoding is equivalent to finding the best path through S, e.g. by the Viterbi

algorithm [20]. In practice, we generate a pruned subset of S, by a process of

lattice generation, and find the best path through the subset. A lattice is an

acyclic directed graph that efficiently represents multiple ASR hypotheses, i.e.

a WFSA with word or phoneme labels.

ASR can be used to convert speech data into plain text, to which standard

text-based retrieval can be applied. However, given the suboptimal ASR

accuracies in many realistic cases, the one-best ASR transcription may have

low recall rates for the important query-relevant words. Instead the efficacy

of indexing ASR lattice has been demonstrated to improve various speech

retrieval tasks, e.g., spoken document retrieval [21] and spoken term detection

[9]. Thus how to efficiently generate ASR lattice, with an optimal trade-off

between a compact lattice size and decoding speed, is also an important line

of research [18, 19].

1.2.3 Spoken document classification

Consider a collection of spoken documents represented as X = {x1, . . . , x|X |},

where each data instance xi ∈ X , for each i = 1 . . . |X |, denotes one document.

The closed set of predefined classes is denoted as K = {1, ..., k, ..., |K|}. Each
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document or data instance xi is associated with a |K|-dimensional binary class

vector yi where each dimension k, for each k = 1 . . . |K|, is assigned to 0 or 1,

and specifies if that class k applies to xi. The document classification is to find

the corresponding binary class vector yi for each xi.

The ‘class’ mentioned above is also referred to as category, label, or topic.

‘Topic’ typically corresponds to the notion of a discourse subject, while in this

work we consider a topic as equivalent to a general document class. Thus

we simply consider document classification, document categorization, topic

classification, and topic identification as equivalent. In addition, document

classification is defined as single-label classification if there is always only

one class that applies to each xi (i.e. there can only be a single 1 in each class

vector yi), and as multi-label classification if there can be an arbitrary number

of classes for each xi.

Document classification has been a key technology in information re-

trieval nowadays [1]. Classification using standing queries can organize

document collections and retrieve the relevant ones, e.g., routing or filtering

emails/voicemails for their own purposes [4], identifying incident-related

audios and emerging needs therein for disaster response planning [15], etc.

1.3 Contributions

The overall contributions of this thesis take a step towards language inde-

pendent and scalable speech retrieval capabilities. In particular we focus on

improving two specific tasks – spoken keyword retrieval and document classi-

fication – in support of the overall goal, and the respective set of contributions
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to each task are enumerated below.

Spoken keyword retrieval with point process modeling. The original

presentation of the point process model (PPM) for keyword search in [22]

detailed the theoretical development, and the subsequent series of works have

improved the model estimation and search algorithms [23, 24]. The first set of

contributions of this thesis begins with the demonstration that PPM frame-

work provides the state-of-the-art OOV keyword search performance, and

posts substantial fusion gains when combined with hidden Markov model

(HMM) based keyword search outputs. In light of the phonetic variations

across differing contexts, the next contribution extends the PPM framework

to operate on context-dependent phonetic event patterns instead of mono-

phone streams considered in the past. The final contribution in this line of

work is the accomplishment of a PPM-based lattice generation framework

that enables both keyword search and ASR decoding. We demonstrate that

combining context-dependent point process modeling and detection-based

lattice generation yields significant improvements in keyword search perfor-

mance compared to the prior monophone-based PPM approach.

Spoken document classification with language-independent ASR. Audio

documents collected in the wild may be extremely long and contain variable

class label shifts at variable locations in the audio, so each audio document

needs to be split into a sequence of speech segments, and then each resulting

segment can be individually classified into predefined classes. The next set
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of contributions in this thesis first explores a general purpose approach for

classifying speech segments, using a cascade of language-independent acous-

tic modeling, foreign-language to English translation lexicons, and English-

language classifiers. Next, instead of classifying each segment independently,

we develop contextual classifiers that additionally encode context depen-

dencies across adjacent segments. While both recurrent neural network and

attention network based approaches can provide performance improvements,

the proposed position-aware attention network that allows for using contexts

via a selective manner can consistently outperform the context-independent

classifiers.

Spoken document classification with unsupervised speech technologies.

The final set of contributions first address the requirement of an acoustic model

in absence of any orthographic lexicon. We exploit unsupervised lexical and

phonetic discovery approaches to inferring the lexical and phonetic inventory

of a language, via dynamic time warping based unsupervised term discovery

and Bayesian acoustic unit discovery (AUD), respectively. We extend a prior

deep generative AUD framework – structured variational autoencoder (VAE)

– to a structured context-sensitive VAE with a hybrid feedforward encoder

and a recurrent decoder, which achieves state-of-the-art AUD performance.

Next, we demonstrate that the bag-of-words representations based on the

automatically learned units from either lexical or phonetic discovery can pro-

vide competitive classification performance when compared with those based

on the word hypotheses from language-independent ASR. Lastly, given the
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acoustic unit sequences, we develop a convolutional neural network based

representation and classification framework, and show, when given sufficient

classification training data, it can significantly outperform the bag-of-words

representation.

1.4 Outline

The rest of this thesis is organized as follows. Chapter 2 examines how to

improve spoken keyword search based on point process modeling. We begin

by briefly describing the prior work of the point process model for keyword

search. Then we discuss how to apply PPM to low-resource settings where

the amount of transcribed speech is severely limited and the pronunciation

dictionary is incomplete. We subsequently present how to perform context-

dependent point process modeling and how to generate the ASR lattice in the

PPM framework. In all cases we evaluate PPM performance in the IARPA

Babel Program framework.

Chapter 3 and 4 are focused on classifying spoken documents, or classify-

ing spoken segments if each document needs to be first split into segments,

where very small amount (minutes rather than hours) or even none of tran-

scribed speech is available to train an ASR system in the language of interest.

Chapter 3 explores a general method of using a language-independent acoustic

model through sharing a common phonemic representation across languages,

translating ASR transcripts to English, and then applying an English classifier.

We first benchmark the performance of context-independent classifiers on the

LORELEI datasets, where each spoken segment is classified independently.
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Then we develop context-dependent classifiers, where to classify each segment

its context segments need to be considered.

In Chapter 4, we shift our focus from supervised training of ASR systems

– i.e. using any available transcribed speech and orthographic lexicons – to

unsupervised learning of acoustic models. We begin with introducing unsu-

pervised term discovery (UTD) and acoustic unit discovery (AUD). Then we

present how to develop a deep generative AUD framework with structured

context-sensitive variational autoencoder, and evaluate the automatically dis-

covered acoustic unit sequences against the orthographic phoneme transcripts

on TIMIT and Switchboard corpus. Next, given the acoustic unit sequences,

we present a convolutional neural network based framework in comparing the

bag-of-words document representation. Finally, we perform comprehensive

topic classification evaluations on the LORELEI datasets using outputs from

UTD, AUD and ASR.

In Chapter 5, we summarize the developed individual components and

their connection to the improved speech retrieval technologies, and discuss

possible directions for future work.

1.5 Related publications

Large portions of Chapter 2, 3, and 4 have appeared in the following papers:

1. Chunxi Liu, Aren Jansen, Guoguo Chen, Keith Kintzley, Jan Trmal, and

Sanjeev Khudanpur, “Low resource open vocabulary keyword search

using point process models,” in Proceedings of Interspeech, 2014.
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2. Chunxi Liu, Aren Jansen, and Sanjeev Khudanpur, “Context-dependent

point process models for keyword search and detection-based ASR,” in

Proceedings of the IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), 2016.

3. Chunxi Liu*, Jinyi Yang*, Ming Sun, Santosh Kesiraju, Alena Rott, Lucas

Ondel, Pegah Ghahremani, Najim Dehak, Lukas Burget, and Sanjeev

Khudanpur, “An empirical evaluation of zero resource acoustic unit

discovery,” in Proceedings of the IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), 2017. (Both authors contributed

equally.)

4. Chunxi Liu, Jan Trmal, Matthew Wiesner, Craig Harman, and Sanjeev

Khudanpur, “Topic identification for speech without ASR,” in Proceed-

ings of Interspeech, 2017.

5. Matthew Wiesner, Chunxi Liu, Lucas Ondel, Craig Harman, Vimal

Manohar, Jan Trmal, Zhongqiang Huang, Najim Dehak, and Sanjeev

Khudanpur, “Automatic speech recognition and topic identification for

almost-zero-resource languages,” in Proceedings of Interspeech, 2018.

6. Chunxi Liu, Matthew Wiesner, Shinji Watanabe, Craig Harman, Jan

Trmal, Najim Dehak, and Sanjeev Khudanpur, “Low-resource contextual

topic identification on speech,” in Proceedings of the IEEE Spoken Language

Technology (SLT) Workshop, 2018.
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Chapter 2

Spoken Keyword Retrieval with
Point Process Models

The goal of this chapter is to develop scalable multilingual keyword search

(KWS) capabilities with limited access to the typical linguistic resources that

state-of-the-art speech recognition technologies strongly rely on. The domi-

nant mode of the KWS research thus far has been adapting the high-resource

large-vocabulary continuous speech recognition (LVCSR) based keyword

search systems that were developed for the NIST 2006 Spoken Term Detec-

tion evaluation [8] to this low-resource setting. However, with the present

restricted availability of transcribed speech for language model estimation and

highly incomplete pronunciation lexicons producing high keyword OOV rates,

the main strengths of LVCSR for search are substantially handicapped. These

programmatic constraints thus provide an opening for previous-generation

lightweight phonetic search methods to play a continued role.
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2.1 Introduction

Originally presented in [22], the point process model (PPM) for keyword

search is a whole-word acoustic modeling and search technique. The PPM is

founded on the hypothesis that the timing of robustly identifiable phonetic

events provides sufficient cues to decode the underlying linguistic message,

which in the present case are occurrences of a given keyword. The PPM trades

pronunciation-derived hidden Markov modeling of frame-level phonetic like-

lihoods for inhomogeneous Poisson process rate parameters characterizing

the likelihoods of phonetic event arrivals throughout the keyword. A series of

past efforts have been focused to improve the model estimation and search

algorithms [25, 26, 23]. Past studies have demonstrated that sparse phonetic

event-driven PPMs permit unprecedented speeds in search collection index-

ing [24] and improved robustness to noise [27]. Moreover, in high-resource

settings the PPM was demonstrated to outperform competing phonetic fast

lattice search methods in both search speed and accuracy [24].

In Section 2.3 of this chapter1, we consider the application of PPM-based

keyword search technology to the low-resource multilingual setting. To par-

ticipate in this challenge space, we consider multiple extensions to the ba-

sic framework. First, like HMM-based lexical models, the PPMs require a

frame-level phonetic acoustic model to generate the phonetic event streams.

Thus, we evaluate PPM performance in conjunction with a truly state-of-the-

art deep neural network (DNN) acoustic model tailored to the present low

resource setting. Second, the original PPM framework required keyword

1Large portions of this chapter have been published in [28, 29].
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training examples to estimate Poisson rate parameters, while the recently

proposed maximum a posteriori (MAP) estimation technique allows back-off

to a dictionary-derived prior [23]. Given the present preponderance of out-

of-vocabulary keywords (which are also out-of-training), we evaluate the use

of a grapheme-to-phoneme conversion tool to seed dictionary-based PPMs.

Additionally, to evaluate LVCSR search complementarity, for the first time

we consider the system combination potential of our PPM keyword search

system.

However, the past comprehensive benchmark evaluations have thus far

been limited to building the PPM search index and parametric models on

monophone event patterns without considering the phonetic variations across

differing contexts, in contrast to common practices employed by context-

dependent (triphone) HMM-based ASR systems [30]. [27] is the only related

work of using acoustic event patterns beyond monophone detectors, where

untied states of whole-word GMM-HMM acoustic models were used to define

the detector set. However, that work considered only a small vocabulary digit

recognition task that required many examples of each word in the lexicon. In

Section 2.4, we exploit DNN acoustic models to generate the tied triphone

state (senone2) events, which enable the application of dictionary-based PPMs

and subsequent MAP estimation for scaling to open vocabulary search tasks.

In addition to open vocabulary search, we also consider in Section 2.5

the use of our context-dependent PPMs for LVCSR, which is possible due to

2Senone refers to the tied triphone HMM state after the tree-based HMM state clustering
[30], and it is also used as the neural network output unit in the hybrid DNN-HMM acoustic
model [31].
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recent advances in the computational efficiency of PPM search algorithms. We

employ the detection-based ASR framework previously considered for small

vocabulary tasks [32, 27]. In contrast to the Viterbi search of HMM systems,

this alternative approach applies a set of parallel word detectors and derives

the most likely word sequence from their combined output. Critical to this

process is the construction of a word lattice from the set of independent word

detections so that language models can be subsequently applied. We first

adapt the confusion network [33] algorithm as our baseline approach and

propose our own lattice construction algorithm specially designed for the

PPM framework. Both data structures can be then composed with a finite

state transducer (FST) based language model and either decoded for LVCSR

or used as the keyword search index for in-vocabulary queries.

Finally, in Section 2.6 we evaluate our proposed approaches with com-

prehensive KWS and LVCSR experiments under the IARPA Babel Program

framework [10, 34], which aims to develop robust low-resource techniques

to facilitate KWS search on massive multilingual speech corpus. We find

the PPM system reaches state-of-the-art OOV search performance at a small

computational cost. Moreover, we show that due to their complementary

methodologies, combining PPM outputs with the LVCSR baseline produces

substantial performance improvements. Finally we find incorporating context-

dependency into the PPM framework produces large improvements over

the original monophone PPM system and demonstrates reasonable LVCSR

performance with a small computational footprint.
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2.2 The Point Process Model for Keyword Search

In this section we begin with a brief review of the point process model for

keyword search.

2.2.1 Poisson process models

Originally proposed in [22], the PPM for KWS is a parametric approach

that assumes observed phonetic events derived from the input speech signal

are generated by underlying keyword-specific Poisson processes. The PPM

KWS framework first transforms input speech signals into smoothed phone

posteriorgram3 trajectories. Each phonetic event, which corresponds to a

single phone occurrence, is subsequently selected as the local maxima of the

smoothed posterior trajectories exceeding a threshold [25], which distills dense

frame-level phonetic likelihood estimates into a minimal set of discrete pho-

netic sequences in time. This collection of extracted phonetic events provides

the phonetic index of the search collection. Formally, given a time interval

(t, t + T], for each phone p in phone set P , we denote its phonetic event set in

time at which phone p occurs relative to time t as Np = {t1, . . . , tnp} = {ti}
np
i=1,

where np is the total number of events within (t, t + T] for phone p. Then the

set of all observed events arriving in (t, t + T] is Ot,t+T = {Np}p∈P .

Thus given a keyword w with its occurrence time t and duration T, Ot,t+T

denotes the set of observed phonetic events during the course of a given

word utterance. The arrival of phonetic events during the word realization is

3Phone posteriorgram refers to each phone posterior probability across a phone set as a
function of time.
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modeled as a collection of inhomogeneous Poisson processes, one per phone.

We approximate the continuous Poisson rate function in interval (t, t + T] as a

piecewise constant function over D uniformly spaced divisions in (t, t + T],

with the inhomogeneous rate parameter for phone p denoted as λp,d for each

d = 1, ..., D. Also we make a corresponding subdivision in each phonetic

event set Np into D equal-size partitions [35] such that, ∀d = 1 . . . D,

Np,d = {ti ∈ Np|ti ∈ (t + (d− 1)∆T, t + d∆T]} (2.1)

where ∆T = T/D, and accordingly

np,d = |Np,d| (2.2)

We denote the set of keyword-specific model parameters as θw, and thus the

likelihood of the entire collection Ot,t+T under θw given T can be expressed as

p(Ot,t+T|T, θw) = ∏
p∈P

D

∏
d=1

(λp,d)
np,d e−λp,d∆T (2.3)

The PPM framework makes the assumption that the phonetic event timing

distributions are independent of the candidate word duration T, and linearly

scales all arrival times in (t, t + T] onto the interval (0, 1] to generate the

transformed event set O′t,t+T. Thus, after a change of variables, the likelihood

function of Eq. 2.3 with O′t,t+T becomes

p(O′t,t+T|T, θw) = ∏
p∈P

D

∏
d=1

(λp,d)
np,d e−λp,d/D (2.4)
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Figure 2.1: Dictionary/Bayesian MAP estimated phone timing models for the key-
word “alo", based on monphone/senone events.

The phonetic event distribution (i.e., the time-varying Poisson rate func-

tion) of each phone instance within a word can be modeled by a single Gaus-

sian distribution, and given the dictionary, a PPM can be constructed by

assigning a Gaussian to each phone in the pronunciation [23]. Each Gaussian

is further transformed to a mixture of Gaussians (GMM) to account for phone
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confusions, where the mixture weights can be estimated over entire corpus

(by aligning the observed/estimated phonetic events and the true phoneme

transcriptions). For example, a dictionary model for the Haitian word “alo"

is shown in Figure 2.1(1). Given the phonetic pronunciation of each key-

word, a PPM can be constructed entirely based on the phonetic pronunciation

provided by a dictionary.

Further, the GMMs – i.e., mixture weights, means and variances – can

be updated by maximum a posteriori (MAP) estimation, benefiting from

the observed phonetic event timing information of any available training

examples [23]. This MAP estimate enables the dictionary model to fold in the

observed event timing patterns of any available word exemplars present in

the training corpus. As an illustration, the resulting MAP updated model for

“alo" is depicted in Figure 2.1(2).

The PPM also requires a background model for likelihood normaliza-

tion; here, we assume that outside the keyword of interest, phonetic events

are generated by a homogeneous Poisson process characterized by a single

independent rate parameter µp for each phone p. Thus, the likelihood of ob-

servation Ot,t+T under the background model with parameters θbg is obtained

as

p(Ot,t+T|T, θbg) = ∏
p∈P

(µp)
np e−µpT

(2.5)
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2.2.2 Point process model detection function

To evaluate an unknown utterance, we define the keyword detection function

dw(t) as the log-likelihood ratio of phonetic events as described under the

keyword and background model. This takes the form

dw(t) = log

[
P(Ot,∞|θw)

P(Ot,∞|θbg)

]

= log

[∫ ∞

0

p(O′t,t+T|T, θw)P(T|θw)

T|Ot,t+T |p(Ot,t+T|T, θbg)
dT

]

≈ max
T

log

[
p(O′t,t+T|T, θw)P(T|θw)

T|Ot,t+T |p(Ot,t+T|T, θbg)

]
(2.6)

where the hypothesis keyword duration T serves as a latent variable with

P(T|θw) modeled by a gamma distribution. For each keyword w we estimate

a discrete set T that has a number of candidate durations. The integral can be

approximated by computing over each candidate duration T ∈ T , and taking

the max (with the corresponding T as the hypothesized duration) [26]. The

detection function is evaluated at each t, and a keyword detection is declared

at each local maximum of dw(t) above a given threshold.

2.3 Low-resource open vocabulary KWS with PPM

In this section we describe the individual components of our low-resource

PPM recipe.
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2.3.1 Deriving phonetic events from low-resource DNNs

Over the past few years, DNN-HMM hybrid acoustic modeling has been

widely used in state-of-the-art speech recognizers. One of our present goals

is to evaluate these acoustic models in the PPM framework based on the

assumption that the published word error rate reductions will translate into

more accurate phone posterior estimates and, in turn, more accurate phonetic

event streams. Now, one of the primary innovations relative to earlier waves

of neural networks for ASR is the use of context-dependent HMM state targets.

To use these DNNs in the PPM framework, we need to derive monophone

posteriorgrams to enable the extraction of the requisite phonetic events. This

is easily accomplished by summing together the posterior trajectories of HMM

states corresponding to the same context-independent center phone. While

we use the DNN trained in the context of an LVCSR system, once we derive

monophone posteriorgrams our processing diverges completely from the

HMM models and finite state machine based decoders.

Compared with the past neural network phonetic acoustic models [22, 24]

evaluated in the PPM framework, our implementation introduces three new

components. First, our DNN is trained on top of acoustic features that are

speaker adapted with constrained maximum likelihood linear regression (CM-

LLR), also known as feature-space MLLR (fMLLR) [36]. Note that during

training, fMLLR transform estimation is done through computing training

alignments using a standard GMM-based, speaker adaptively trained model;

in decoding, fMLLR transforms are obtained through first-pass decoding.
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Thus, for both training alignments and first-pass decoding, the entire knowl-

edge of phonetic context-dependency, pronunciation lexicon and word-level

grammar will be integrated, which is absent from the previously employed

phoneme recognition system that use monophone classes as prediction tar-

gets [37]. Second, in addition to basic Perceptual linear predictive (PLP) [38]

features, we add pitch and probability of voicing (POV) features via the pitch

extraction algorithm described in [39]. Experiments in [39] demonstrate that

these pitch and POV features give substantial performance improvements

on both tonal and non-tonal languages for LVCSR system, which also con-

tributes to better estimation of phone posteriors. Finally, given the recent

success of generalized maxout nonlinear activation functions in DNN mod-

eling, we rely on a DNN acoustic model with p-norm activations [40] of the

form y = ∥x∥p = (∑i |xi|p)
1
p , where x represents a group of neuron inputs.

Experiments in [40] demonstrate that DNNs using p-norm units with p = 2

perform consistently better than various other nonlinearities evaluated in

speech recognition tasks, especially in low-resource conditions.

2.3.2 Searching for out-of-vocabulary keywords

We consider the KWS task in which keywords are provided in written form

in the native orthography and a pronunciation lexicon is given with fixed

vocabulary. However, in the low-resource setting a typical condition is that

the pronunciation of a given keyword is not covered in the available lexicon.

In this case, for the phonetic-based KWS system one standard solution is to

predict the pronunciation of OOV keywords by using grapheme-to-phoneme
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(G2P) conversion [41]. Thus, all OOV keywords become in-vocabulary (IV)

and the updated lexicon would contain the phonetic composition of all key-

words. However, in many applications or evaluation frameworks, redecoding

the search collection is not applicable or allowed after the keywords are known,

so other means are required to search using these new predicted pronunci-

ations. Recently, a novel OOV processing technique called proxy keyword

search [42] was demonstrated to produce state-of-the-art performance for the

task. This method uses the G2P pronunciations of OOV keywords to generate

a list of likely-confusable proxy words from the vocabulary. Using a cascade of

weighted finite state transducer compositions with the original LVCSR lattice

produces putative hits of the OOVs along with lattice posterior confidence

scores. Proxy keyword search serves as the baseline OOV method in our

experiments.

Using the MAP estimation framework of [23] and given a phonetic pronun-

ciation for an OOV keyword produced by the G2P system, we can construct

the dictionary prior PPM. Since we have no examples to estimate the Gaussian

parameters within an OOV keyword, we can either assign Gaussian means

at equal intervals with fixed variance (based on the simplifying assumption

that all phones within the word have equal duration) [23], or estimate the

Gaussian parameters for each phone using average phone durations [43]. In

this chapter, we limit our evaluation to the simple uniform approach, though

we would expect the incorporation of average phone duration statistics to

provide marginal gains. We further introduce additional Gaussians of likely

confused phones that are not in dictionary form using a confusion matrix
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estimated across entire corpus. Moreover, we apply the Monte Carlo sampling

approach explained in [24] to estimate Gamma distribution parameters of

each keyword duration model for unseen words. In this way, we can construct

a reasonably accurate estimate of PPM rate and word duration parameters

without any training exemplars.

2.3.3 System combination

We evaluate the combination of the LVCSR and PPM search results by merging

the respective putative hit lists. Both system use the identical DNN acoustic

model but generate search ranked lists using completely different lexical

models and decoding methodologies. The LVCSR system applies HMM

lexical models on top of DNN-derived emission likelihoods in a WFST-based

decoder that uses a language model. It generates deep word-based lattices that

form the search index used for both IV and OOV keywords. The PPM system

processes posteriors into an extremely sparse phonetic index and performs

a linear-time search. Thus, the system combination evaluation serves to

measure the complementarity of these techniques after the acoustic processing

stages. The resulting putative hit lists from two systems are combined by the

following procedure. First, we perform separate score normalization for each

using the term-specific threshold technique in [44]. Second, we merge the hits

from the two lists that begin and end with less than 0.5 second difference. The

combined score for merged hits smerge is computed as

smerge = (w1s1/r
1 + w2s1/r

2 )r (2.7)
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where s1 and s2 are the individual system scores, w1 and w2 are the weights

assigned to each system such that w1 +w2 = 1, and r is a power factor between

1 and 10. The parameters {wi} and r are optimized on a development set.

Note that given 0-1 normalized input scores, this nonlinear combination rule

will produce 0-1 normalized combination scores. Finally, we apply score

normalization to the merged hit list.

2.4 KWS with context-dependent PPM

This section describes how we extend the PPM framework to operate on

context-dependent phonetic event patterns instead of the previously used

monophone patterns.

2.4.1 Deriving context-dependent phonetic events from DNN

To generate the context-dependent phonetic event streams, we use the DNN

acoustic model as described in Section 2.3.1. We take as our events the set

of tied triphone HMM states (senones), which are derived from traditional

decision tree clustering of triphone states [30]. The DNN forward pass pro-

duces posteriorgrams over the senones which provide the input to the PPM

pipeline described above, but where the monophone category set P is now

replaced with the set of senones. The PPM search index is created by filtering

the posteriorgrams according to the empirical distribution of each senone’s

duration and extracting the local maxima exceeding an empirically assigned

threshold [25].
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2.4.2 Context-dependent PPM construction

The original dictionary PPM is constructed by the monophone sequence pro-

vided by the pronunciation lexicon, so now we need to extend the dictionary

form to that based on triphones, and construct the dictionary PPM based

on the senone sequence. Given the left and right context phones, we can

obtain the senone index for each central phone by answering the questions

in phonetic decision tree. However, for the first and last phones of a single

keyword the left and right context phones, respectively, are unknown without

identifying the adjacent words. Thus, we assume that each phone in the phone

set is equally likely to be the unknown context phones and we accumulate

the senone index count by considering all these possibilities. We normalize

each senone index count to determine the senone probability that is subse-

quently used as the GMM mixture weight in that position. Finally, we smear

and renormalize the mixture weights using a global senone confusion matrix

estimated from the training corpus.

The resulting dictionary PPM of word “alo” consisting of senones indexed

by integers is shown in Figure 2.1(3). MAP estimation including any training

instances of the word is subsequently performed using the observed senone

event streams. The MAP-estimated PPM for “alo” is shown in Figure 2.1(4),

where we see substantial movement of the senone timing distributions.

2.5 Detection-based KWS and ASR with PPM

Our proposed detection-based ASR architecture consists of four steps:
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i. We build a PPM for each in-vocabulary (IV) unigram word.

ii. For each test utterance, run parallel word detectors for the whole vocabu-

lary.

iii. Use the resulting independent word detections to build a confusion net-

work or word lattice.

iv. Use standard techniques to process the confusion network or lattice for

KWS indexing [45] and LVCSR decoding [46].

Below we describe our confusion network and lattice construction methodolo-

gies.

2.5.1 Confusion network construction

The standard confusion network is derived from a decoding lattice as a more

compact representation with relaxed word sequence constraints [33]. It re-

quires that the posterior probability for each arc in the lattice is estimated (by

running forward-backward algorithm), and that the temporal partial order

between arcs is derived via lattice topology. Since there are word identity, start

time, duration, and posterior probability estimates (by a logistic regression

applied to the likelihood ratio detection score of Eq. 2.6) associated with each

PPM detection, we can naturally adapt the algorithm of [33] to build confusion

networks based on PPM detections rather than decoding lattices. For each test

utterance, we first sort the PPM detections of all the IV words according to

their start time, and initialize each detection as an equivalence class (formed by

word identity, start and end times). Second, we perform intra-word clustering
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to merge the equivalence classes of the same word identity, and then perform

inter-word clustering based on phonetic similarity, resulting in a complete

alignment of competing detections as confusion bins.

2.5.2 PPM-based lattice generation

The duration of a PPM detection is hypothesized as the one that gives the max-

imum detection function value of Eq. 2.6, which may not be as accurate as that

derived from the HMMs based on frame likelihood. Since the KWS scoring

metrics can accommodate small time differences between the detections and

the true references, such approximated duration from PPM is generally suffi-

cient for the KWS task. However, the confusion network algorithm relies on

strict temporal order between word components for clustering and inaccurate

durations can lead to suboptimal results. Moreover, the confusion network

algorithm requires word posterior estimates for each detection; the raw PPM

detection score is a likelihood ratio and applying a global logistic regression

for normalization is known to give suboptimal posterior estimates. Therefore,

we propose a lattice construction algorithm for the PPM framework to accom-

modate the duration uncertainties and rely on word acoustic likelihood only,

as described below.

First, for each PPM detection, we express its joint likelihood of acoustic

observations Ot,t+T and hypothesized duration as

p(Ot,t+T, T|θw) = p(Ot,t+T|T, θw)P(T|θw) (2.8)

where p(Ot,t+T|T, θw) is given by Eq. 2.3 and further by Eq. 2.4 with the event
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set normalized in time, and P(T|θw) is a word-specific gamma distribution.

Second, for an arbitrary region between two word detections, e.g. non-speech

silence or noise, we employ a separate silence model of homogeneous Poisson

process for the observed acoustic events in that region that takes the form

p(Ot,t+T, T|θsil) = p(Ot,t+T|T, θsil)P(T|θsil)

= ∏
p∈P

(µp)
np e−µpTP(T|θsil)

(2.9)

where p represents either context-independent monophone or context depen-

dent senone in the event set P , µp is the homogeneous Poisson rate parameter

for each p under the silence model θsil with P(T|θsil) modeled by a gamma

distribution. Thus, we have approaches to compute acoustic likelihoods given

any word hypothesis or an arbitrary region of acoustic observations.

Our strategy is to define “words-on-nodes" lattices, where each word

detection becomes a node and the edges encode the temporal sequence of

detections with directed arcs that can accommodate a sensible amount of

temporal overlap. We define the construction process using the following

notation. We denote the set of all the detections within a given utterance as

D = {wi}N
i=1, and sort D according to each detection’s start time. For each

word detection wi ∈ D with index i in time, we define a node with acoustic

likelihood given by Eq. 2.8, and ts(wi) as its start time. We refer to all observed

acoustic events that have arrived during the course of wi as set ρ(wi), which

is also the set of events used to give the local maximum value of Eq. 2.6.

The goal is to produce a directed acyclic graph, where ϕ(wi) is the set of

word detections (nodes) that wi has an outgoing edge to, such that any word
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in ϕ(wi) can follow wi in the output word sequence. We make each detection

wi (except the final node defined as the end of the utterance) connect to at

least one another next node (in time) wj (j > i), which we require by that: (i)

wj does not consume any acoustic event arrived during wi, i.e., no intersection

between ρ(wj) and ρ(wi), and (ii) the time gap between observations of wi

and wj does not exceed a maximum allowable time gap δ (initialized as 1 sec)

if possible. If we denote t′s(wi) as time of the first phonetic event observed in

time within wi, and t′e(wi) as time of its last observed event, then condition (i)

becomes t′e(wi) < t′s(wj), and condition (ii) becomes (ts(wj)− t′e(wi)) < δ.

Also, if there are no acoustic events between time interval (t′e(wi), ts(wj)),

we connect wi to wj with a free edge. If there is, we add a new node as wsil of

which the acoustic likelihood is computed by Eq. 2.9 on the acoustic events

between interval (t′e(wi), ts(wj)) and the duration is given by (ts(wj)− t′e(wi));

further, we connect wi to wsil and connect wsil to wj.

In this approach, we can finally obtain a directed acyclic graph where each

node is associated with its word identity, acoustic likelihood, start time and

duration. The procedure described thus far is illustrated graphically by an

example in Figure 2.2. By replying on the phonetic event timing information

to determine the temporal order of the word sequence, we relax the accurate

estimation of word start and end times but still enable an appropriate lattice

construction, with the unidentified phonetic events accounted by optionally

added silence nodes.

Finally, we convert the graph into a standard lattice with word and acous-

tic likelihood on each arc, which can be processed by standard FST-based
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t1 t2 t3 t6							t7t4		t5		
t4	- t2<δ

Figure 2.2: An illustration of how we build a words-on-nodes lattice, specifically
in adding outgoing edges for detection w1. First, the phonetic event at t2 arrives
during both w1 and w2, such that we do not connect node w1 to w2. Next, we find
no intersection between ρ(w1) and ρ(w3), such that an edge is added between w1
and w3, and the acoustic likelihood on this edge is computed by Eq. 2.8 on the
events at t1 and t2. Then we also find no intersection between ρ(w1) and ρ(w4),
ts(w4)− t′e(w1) = t4 − t2 < δ, and neither w1 nor w4 consumes event at t3; thus, we
add a new node wsil at t2, and the acoustic likelihood on the edge between w1 and wsil
is given by Eq. 2.8 on the events at t1 and t2, and the acoustic likelihood on the edge
between wsil and w4 is given by Eq. 2.9 on the event at t3. Finally, ϕ(w1) = {w3, wsil}.
We iterate this process for each detection wi, i = 1, . . . , N.

algorithms such as language model composition.

2.6 Experiments

In this section we describe our experimental setup and present the results of

our evaluation.
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2.6.1 Evaluation design

Incorporating the above developments, we perform a comprehensive keyword

search evaluation in the IARPA Babel Program framework [10], which has

released conversational telephone speech corpora for several languages. We

measure our system performance on Haitian4, Lao5, Assamese6, Bengali7

and Zulu8. For each language there are two resource conditions: the full

language pack (FullLP) contains approximately 80 hours of transcribed speech

audio along with a pronunciation dictionary that covers all word types it

contains; the limited language pack (LimitedLP) contains a 10 hour subset

of FullLP. Language model text and pronunciation dictionary entries for

LimitedLP are restricted to those that occur in the given 10 hours. In this

chapter we only consider LimitedLP, which simulates low-resource conditions

for a diverse set of languages. To evaluate system performance, we have a

10-hour development-testing search collection for each language while tuning

on a 2-hour subset. Keyword sets are the official development lists generated

by Babel participants for use before the evaluation period, which consist of

approximately 2000 multi-word queries for each language.

We use two KWS scoring metrics, Actual Term-Weighted Value (ATWV)

and Oracular Term-Weighted Value (OTWV) as described below. ATWV was

developed for the NIST 2006 STD evaluation [8] and is the primary metric

in the Babel program. First, for each hypothesized keyword detection, i.e.

4Language collection release IARPA-babel201b-v0.2b.
5Language collection release IARPA-babel203b-v3.1a.
6Language collection release IARPA-babel102b-v0.5a.
7Language collection release IARPA-babel103b-v0.4b.
8Language collection release IARPA-babel206b-v0.1e.
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each putative hit, the KWS system is required to report its begin and end time,

and a posterior score indicating how likely the putative hit is a true keyword

occurrence. Then a Term-Weighted Value (TWV) is defined as:

TWV(θ) = 1− 1
K

K

∑
w=1

(
NMiss(w, θ)

NTrue(w, θ)
+ β

NFA(w, θ)

T − NTrue(w, θ)

)
(2.10)

where K is the total number of keywords, and θ is the detection threshold

(i.e. only keyword detections with posteriors over θ are considered in scoring

and otherwise are ignored); then given θ, NMiss(w) is the number of missed

detections of keyword w, NFA(w) the number of false alarms of w, NTrue(w)

the number of reference occurrences of w, and β is a constant (specified as

999.9). The range of TWV(θ) is (−∞, 1]. ATWV requires scores to be both

normalized across keyword such that a single global threshold θ can be set,

as well as well calibrated against the true posterior probability of correctness

such that the global threshold θ is 0.5.

Second, Oracular Term-Weighted Value (OTWV) is defined assuming the

keyword-specific optimal threshold θ̂w is used instead of 0.5. Specifically, for

each keyword query, we can choose the detection threshold θ̂w that maximizes

the keyword-specific TWV(w, θw):

θ̂w = argmax
θw

TWV(w, θw)

= argmax
θw

1−
(

NMiss(w, θw)

NTrue(w, θw)
+ β

NFA(w, θw)

T − NTrue(w, θw)

) (2.11)

Thus, OTWV over the complete keyword set is

OTWV =
1
K

K

∑
w=1

TWV(w, θ̂w) (2.12)
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Since OTWV does not require scores to be normalized across keyword, it is

a measure only of ranked list quality. OTWV is also an upper bound on a

system’s ATWV. The NIST F4DE scoring tool is used for reference alignment,

and YES/NO decisions are made based on posterior scores.

In addition, we may decompose search performance into in-vocabulary

and out-of-vocabulary keyword sets.

2.6.2 System implementation details

The DNN infrastructure of the Kaldi toolkit [47] is used as the input pho-

netic acoustic model. Here, we first train a standard GMM-based, speaker

adaptively trained model to obtain HMM-state alignments and fMLLR feature

transforms. Next, we train a 5-layer DNN of p-norm units with p = 2 [40]. The

basic input features are 13-dimensional PLP augmented with 3-dimensional

pitch and POV features, and spliced by 3 frames; then the 48-dimensional

feature is reduced to 40 dimensions using linear discriminant analysis (LDA).

Adaptation with maximum likelihood linear transforms with semi-tied co-

variance (MLLT/STC) and fMLLR is applied, and 9-frame context windows

are stacked to represent the center frame. Thus, the resulting inputs to the

DNN are 360 dimensions, and the outputs are posteriors over context de-

pendent HMM-states where the number and identity depend on the lan-

guage. The context-independent PPM framework operates on monophone

posteriorgrams, which are then derived by summing posterior dimensions

corresponding to the same center phone.

To obtain pronunciations for OOV keywords, we use the Sequitur G2P
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toolkit [41], a data-driven G2P converter based on joint-sequence models. We

use each language’s LimitedLP lexicon with pairwise examples of word and

pronunciations to train a G2P model, and use the trained model to generate

the pronunciation for a given OOV keyword. Each dictionary-based PPM is

synthesized according to the prescription given in [23], and updated by MAP

estimation if training exemplars are available. For multi-word keywords, we

construct the dictionary-based PPM for each unigram in the multi-word key-

word, update each unigram PPM if exemplars for that unigram are available,

and then concatenate unigram PPM into a multi-word PPM, as described

in [24].

For OTWV calculation, we can use the PPM likelihood ratio detection func-

tion directly without tuning any score normalization parameters. However,

for the ATWV calculation we must provide confidence scores normalized

across keywords. Following [24], we use a simple two-parameter logistic

regression (slope and bias) to map PPM detection function scores to poste-

rior probability estimates and apply the term-specific thresholding technique

described in [44]. Following [45], we estimate these logistic regression param-

eters using a 2 hour subset of the 10 hour development set we use for testing.

Separately, we performed cross-validation experiments to confirm that this

minor train-on-test violation did not unfairly impact our results.

Our KWS baseline is the Kaldi LVCSR-based keyword search system [45],

which is outfitted with the identical DNN acoustic model we use for the PPM.

OOV performance is compared against the proxy keyword search [42], which

derives putative hits from LVCSR word lattices.
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2.6.3 Results with context-independent PPM

Table 2.1 shows the LimitedLP KWS results on the five languages using the

Kaldi LVCSR and PPM systems, as well as the combination of the two. Also

listed are the relative fusion gains over the baseline, as well as average perfor-

mance values over the five languages. Consistent with the results in [24], we

find that LVCSR-based search dominates ATWV, with the PPM achieving on

average only 42% of the baseline performance. However, we find that PPM

search gives much more competitive results on OTWV performance, a metric

that evaluates the quality of the ranked list independent of the consistency of

confidence scores across keywords. This OTWV-ATWV divergence is a con-

sequence of the PPM’s suboptimal score normalization, which is performed

using a simple logistic regression applied to the likelihood ratio detection

score of Eq. 2.6. Indeed, the LVCSR search system computes true lattice poste-

rior scores, which normalize each lattice arc likelihood by all the other words

that might have accounted for the same acoustic observations. This is a much

more powerful normalization scheme, but it does come at the larger computa-

tional cost of decoding the whole vocabulary at indexing time. For keyword

applications that do not require score normalization, the PPM system provides

on average 66% of LVCSR baseline OTWV performance with a much smaller

index processing time and size (see [24] for details).

If we consider OOV keyword search ATWV in isolation, we can see that the

dictionary-based PPM achieves comparable results with the state-of-the-art

WFST-based proxy keyword search. The PPM outperforms on Haitian and

Zulu, while falling short on Lao, Assamese and Bengali, so it interesting to
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Table 2.1: LVCSR, PPM, and combined search performance for the five languages,
along with relative gain from combination over the LVCSR baseline alone. Averages
are over the corresponding individual language fields.

OTWV ATWV ATWV ATWV
Language System (All) (All) (IV) (OOV)

Haitian

LVCSR 0.54 0.44 0.49 0.23
PPM 0.36 0.21 0.20 0.25

Comb 0.60 0.48 0.51 0.35
% Gain 11.1 9.1 4.0 52.2

Lao

LVCSR 0.51 0.41 0.43 0.22
PPM 0.32 0.16 0.17 0.12

Comb 0.57 0.44 0.47 0.26
% Gain 11.8 7.3 9.3 18.2

Zulu

LVCSR 0.28 0.17 0.30 0.09
PPM 0.27 0.11 0.06 0.14

Comb 0.41 0.24 0.32 0.19
% Gain 46.4 41.2 6.7 111.1

Assamese

LVCSR 0.37 0.25 0.31 0.10
PPM 0.21 0.08 0.08 0.07

Comb 0.42 0.28 0.34 0.14
% Gain 13.5 12.0 9.7 40.0

Bengali

LVCSR 0.38 0.27 0.35 0.13
PPM 0.22 0.10 0.10 0.09

Comb 0.43 0.30 0.37 0.17
% Gain 13.2 11.1 5.7 30.8

Averages

LVCSR 0.42 0.31 0.38 0.15
PPM 0.28 0.13 0.12 0.14

Comb 0.49 0.35 0.40 0.22
% Gain 19.2 16.1 7.1 50.5

consider what language-specific properties may be driving this variation. For

Zulu, an agglutinative language with a unusually high keyword OOV rate,

the PPM system achieves much closer overall KWS performance with LVCSR,

indicating PPM’s advantage for truly low-resource settings with woefully

incomplete pronunciation dictionaries. Note that the PPM usually gives
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comparable or even higher OOV ATWV results than IV, since we find that

PPM search is more sensitive to keyword length and OOV keywords tend to

be longer.

Given the distinct lexical modeling strategies employed in the LVCSR

baseline and PPM search systems, as well as the substantial relative perfor-

mance variation across language, some degree of complementarity is to be

expected. Even though the PPM overall performance substantially trails the

LVCSR baseline on all five languages, we measured a 16% average relative

improvement of both ATWV and OTWV in combination. Moreover, the com-

parable performance of PPMs and proxy keyword search for OOVs combine

to produce an average ATWV relative increase of 50% over proxies alone.

While in-vocabulary PPM performance lags LVCSR the most, we still post an

average relative gain of 7% in fusion.

In terms of runtime comparison between proxy keyword search and PPM

OOV search on the 10 hour development set, we compare the average runtime

of five languages for the three stages of operation, in terms of CPU time (in

seconds). First, for indexing time on the 10 hour search collection, proxy

keyword search takes 5,736 seconds to make an inverted index from decoding

lattices, while the PPM system takes 256 seconds to extract phonetic events

from monophone posteriorgrams. Second, for model construction, it takes

2.4 seconds to generate word proxies for each keyword, while it takes 0.01

seconds to construct one dictionary prior PPM. Finally, for searching the index,

proxy search takes 0.55 seconds for each keyword, while the PPM search takes

0.08 seconds (computed using the benchmark information provided in [24]).
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In all three categories, we find that OOV search with PPMs is significantly

more efficient in time than proxy keyword search. It does require an additional

phone event index, but as demonstrated in [24], the index construction time

and size are negligible.

2.6.4 Results with context-dependent PPM

We evaluate the efficacy of incorporating context-dependency into the original

context-independent PPM framework (without lattice construction), where the

word posterior is approximated by a logistic regression applied to detection

score of Eq. 2.6. The results of two languages9 are shown in Table 2.2. We see

that context-dependent PPM on senone events significantly outperforms the

monophone baseline in nearly all categories, but remains the same for multi-

word keywords. We can account for this by the fact that more monophone

events are observed in the generally longer multiword queries, which limits

the additional benefit of more detailed triphone patterns.

Finally, it is important to note that even though the senone set (approxi-

mately 2000 units) is much larger than monophone set (∼50 dimension), in

practice the PPM search index size is on average only 2.2 times larger than

before. This is a result of the fact that the increase in posteriorgram units

does not substantially reduce event sparsity since the new units are generally

mutually exclusive. It follows that the PPM’s storage advantages highlighted

in [24] are maintained despite the increased model detail.

9From Table 2.1 we observe that the PPMs perform similarly on Haitian and Lao, and also
similarly on Assamese and Bengali, so that we only choose one from each language pair for
subsequent evaluations; also, the unusually high OOV rate makes Zulu a challenging dataset
and we leave it to future work.
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Table 2.2: PPM search performance for Haitian and Bengali, along with relative gain
from using senone over monophone events.

PPM OTWV ATWV ATWV ATWV ATWV
Language System (All) (All) (IV unigram) (unigram) (multiword)

Haitian

# keywords 1921 1921 418 573 1348
monophone 0.361 0.212 0.119 0.127 0.249

senone 0.380 0.225 0.158 0.159 0.253
% Gain 5.3 6.1 32.8 25.2 1.6

Bengali
# keywords 1967 1967 603 926 1041
monophone 0.222 0.101 0.029 0.041 0.154

senone 0.237 0.111 0.061 0.061 0.155
% Gain 6.8 9.9 110.3 48.8 0.6

2.6.5 Results with PPM-based lattice generation

We refer to the independent keyword-specific PPM search evaluated above

(without lattice construction) as the baseline in Table 2.3, and compare with the

PPM’s confusion network and lattice based KWS. Since keywords tend to have

lower unigram probabilities in training transcript, to increase the keyword

recall we keep more detections for words that occur rarely during training.

To accomplish this we prune PPM detections of each IV unigram based on

its unigram probability using empirically determined thresholds (i.e. tuned

on the 2 hour subset of the 10 hour development-testing set as discussed

in Section 2.6.2). Further, confusion networks and lattices are obtained as

described in Section 2.5, and we compose them with a FST-based language

model to give each arc a trigram language model prior, with a tuned acoustic

scaling factor.

Table 2.3 shows that the adapted confusion network approach does not

outperform baselines, a result of suboptimal duration and posterior estimation
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Table 2.3: KWS performance (IV unigrams) comparisons between keyword-specific
PPM search and lattice-based approach.

Language PPM System OTWV ATWV

Haitian

baseline, monophone 0.241 0.119
confusion network, monophone 0.233 0.066

lattice, monophone 0.257 0.129
% Gain 6.6 8.4

baseline, senone 0.298 0.158
lattice, senone 0.305 0.175

% Gain 2.3 10.8

Bengali

baseline, monophone 0.113 0.029
lattice, monophone 0.122 0.029

% Gain 8.0 0.0
baseline, senone 0.162 0.061
lattice, senone 0.173 0.080

% Gain 6.8 31.1

Table 2.4: WER performance from PPM and HMM lattices.

Language System WER

Haitian
PPM lattice, monophone 74.1

PPM lattice, senone 69.8
HMM, senone 59.6

Bengali
PPM lattice, monophone 80.5

PPM lattice, senone 77.9
HMM, senone 66.8

issues discussed in Section 2.5. The proposed words-on-nodes lattice genera-

tion algorithm, which incorporates the competing hypotheses and contextual

constraints into the PPM search, leads to consistent KWS improvements for

both monophone and senone event-based systems. We also find that, combin-

ing context-dependency and PPM lattice generation yields significant gains

over the original monophone baseline.

Finally, Table 2.4 shows the lattices generated by PPM framework can also
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provide reasonable ASR performance. Though its WER trails the DNN-HMM

systems, it has obvious computational merit. The PPM index is created about

2x faster than real time (RT), and each IV word can be detected in parallel with

speeds 500,000x faster than RT [26]. The subsequent PPM lattice construction

complexity is of order O(N2), where N is the number of detections in an utter-

ance; since we only consider connecting each detection to its close neighbors

(within a maximum allowable time gap δ like 1 sec in Section 2.5.2), the run-

time in practice is in excess of 1,000x faster than RT. Thus, we find the overall

runtime of PPM decoding and lattice generation much more efficient than the

real-time factor 8.41 of the DNN-HMM based lattice generation (comparing

based on one single core of a 2.40-GHz Intel Xeon processor). The subsequent

operations of language model composition and lattice indexing are efficiently

implemented in a WFST-based framework as before [45].

2.7 Conclusion

In this chapter we have demonstrated that the point process model frame-

work provides a viable keyword search platform for low-resource settings.

It is highly complementary with state-of-the-art LVCSR techniques, posting

substantial fusion gains for every language evaluated. On its own, it provides

state-of-the-art handling of OOV keywords, but also produces dramatics gains

when combined with proxy keyword search outputs. The incorporation of

context-dependent phonetic events into the PPM framework produces sub-

stantial further improvements with only a small increase in computational

complexity.
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Finally, as evidenced by comparatively large gaps between ATWVs and

OTWVs, the substandard score normalization achievable with PPMs remains a

major challenge. Therefore, we have introduced a lattice generation algorithm

specifically tailored to the PPM setting, and demonstrated that KWS via PPM

lattice generation produces further performance improvements by incorpo-

rating language models and better score normalization. Furthermore, lattices

from PPM support LVCSR decoding, which give reasonable performance for

a first attempt on a difficult task.
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Chapter 3

Spoken Document Classification
with ASR

To discover what we are looking for from vast audio collections, the develop-

ment of new computational tools is required to help analyze, organize and

search these extensive amounts of information. Spoken document classifica-

tion is one such human language technology that determines which class(es),

if any, each of a set of documents belongs to. The classes, also called cate-

gories or labels, can be predefined based on themes, sentiments, or any other

attributes. Most retrieval systems today contain multiple components that use

some form of classifier [4], such as:

• In Topic Detection and Tracking [6], each incoming news story needs to

be classified as to whether or not it discusses a previously known topic.

• Given large recording collections of academic lectures, a lecture browser

system can be built to allow users to type a query, search through lec-

tures and receive the relevant portions [48]. Lectures can be classified

into different topic categories, such that queries can be constrained by
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allowing users to specify a topic category before searching.

• In automatically measuring customer satisfaction for phone calls in a

contact center, recorded conversations can be classified into distinct

points, such that dissatisfied customers and areas for service quality

enhancement can be identified [49].

These examples show the general importance of classification in speech

retrieval applications. In this chapter1, we examine spoken document classifi-

cation via automatic speech recognition (ASR) transcriptions.

3.1 Introduction

Since audio data lacks the paragraphs and punctuation markings that natu-

rally define semantically coherent chunks of text, long audio recordings of

varying label/topic shifts are usually first segmented according to some task

specific criteria, manually or by an automatic segmentation system [6, 7]. Then

the standard approach to spoken document classification is to

i. develop ASR systems to decode each speech segment into word se-

quences,

ii. produce intermediate vector representations of the hypothesized word

sequences for each segment, and

iii. learn a classifier from text/label pairs and apply it to the vector represen-

tation of each segment independently.

1Large portions of this chapter have been published in [16, 50].
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However, such standard approach has many drawbacks, especially in a low-

resource scenario: building ASR and document classifiers in a new language

requires a large amount of transcribed speech and class-labeled texts in the

language, neither of which may be present. Furthermore, accurate topic

inference or language understanding in general may require interpretation

from adjacent segments. For instance, tasks such as anaphora resolution or

entity disambiguation critically depend on contextual clues.

To study these challenges, we evaluate our spoken document classification

performance in the DARPA LORELEI (Low Resource Languages for Emergent

Incidents) Program framework. The program’s goal is to develop human

language technologies to support humanitarian assistance and disaster relief

operations in locations where a low-resource language is spoken, also referred

to as an incident language (IL) in the LORELEI terminology [14, 51]. To

provide situational awareness via IL sources, one component task in LORELEI,

called the Situation Frame (SF) task, involves building systems to provide

meta-data for text and speech documents. These documents and associated

meta-data are collectively referred to as situation frames (SFs) and consist of

the following items:

• situation type, also simply referred to as topic,

• geographic localization,

• status (temporal, resolution or urgency) of the situation.

An SF system is required to automatically identify all the SFs covered in the

text or speech collection in the IL. In this chapter, we focus on building topic
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identification (topic ID) technology to enable situation type identification from

speech. Thus, we consider topics as the classes in the document classification

definition through this chapter.

In order to simulate realistic disaster scenarios, the LORELEI speech cor-

pora are divided into IL corpora – corpora which typically contain unlabeled

data in a low-resource language pertaining to one or more emergent disas-

ters – and related language corpora for which annotated data, possibly from

high-resource languages, is provided. In both cases the audio data is collected

“in the wild”, and for a diverse set of languages. These data are collected,

manually segmented, and annotated by APPEN [52] for the LORELEI pro-

gram. We refer to each unsegmented audio file as one spoken document. Since

audio file segmentations are provided, each document consists of a sequence

of segments, and each segment lasts around one minute on average and no

more than 2 minutes. There are 11 predefined topics chosen according to the

Table 3.1: Topic labels defined in the LORELEI Speech SF task.

Topic scope Topic label (Situation Type)
Evacuation
Food Supply
Urgent Rescue
Utilities, Energy, or Sanitation
Infrastructure

In-domain Medical Assistance
Shelter
Water Supply
Civil Unrest or Wide-spread Crime
Elections and Politics
Terrorism or other Extreme Violence

Out-of-domain Out-of-domain
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LORELEI program scope, as shown in Table 3.1. Any speech segment catego-

rized by at least one of these topics is defined as in-domain data, otherwise as

out-of-domain that can be viewed as the 12th topic label. Table 3.2 shows an

example spoken document that is split into 7 segments with varying topic.

In this chapter, we focus particularly on the IL scenario for which the only

annotated data are from related (development) languages in addition to a very

small amount of IL topic labeled data or IL transcribed speech (minutes rather

than hours) which may be obtained.

Table 3.2: An example of a single spoken document that consists of seven spoken
segments in the LORELEI US English corpus.

Doc Segment
ID ID Sampled sentences Topic

turning to Tennessee where eleven people
have now died in historic wildfires ...
hundreds of buildings have been torched ...

080 080_001 Shelter

080 080_002 yeah you have a number of people missing
but we don’t know the exact number ...

Out-of-
domain

... and he said that the search and rescue
effort yesterday ended and now today it is
search and recovery ...

Urgent
080 080_003 Rescue

080 080_004 ... so many homes damaged destroyed ... Shelter
... just looking at the devastation now .
because we saw a few homes and you know
a few cars, it is really bad ...

080 080_005 Shelter

... but people in town it sounds like now are
questioning how fast they were notified to
get out ...

080 080_006 Evacuation

... since they were forced to evacuate so a lot
of them will be seeing their homes and
properties for the first time tonight ...

Evacuation,
080 080_007 Shelter
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3.2 Related work

Prior work of topic ID on speech [53, 54, 55, 56] has focused on conversa-

tional telephone speech such as LDC’s Fisher and Switchboard collections,

where topic ID was performed for each whole conversation. Since the two

participants of each conversation were prompted to speak on one single topic,

no conversation segmentation was needed. Furthermore, since each conver-

sation contains a single topic and lasts 5-10 minutes, the classification task

is relatively straightforward. Document representations are bag-of-words

multinomial representations over word or phone n-grams, with or without

dimensionality reduction like Latent Semantic Analysis (LSA) [57] or Latent

Dirichlet allocation [58]. Topic classifiers are focused on linear classifiers, such

as Naïve Bayes, logistic regression, support vector machine (SVM), etc.

Extensive work on text classification has been explored to date, where each

text data instance can be a sentence or a document. For example, word se-

quences can be mapped to word embedding vectors and used as inputs to con-

volutional neural network with a final softmax classification layer [59, 60, 61].

[62] introduces using recursive neural network and [63] applies recurrent

neural network. Furthermore, [64] examines producing sentence representa-

tions by an attention mechanism that learns attention weight distributions

over words, and [65] proposes to use a hierarchical attention network to learn

both word- and sentence-level attentions. Attention mechanisms demonstrate

efficacy in improving classification performance, through enabling the models

to attend differentially to more and less important contexts [65].
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However, all the above work is focused on performing single-label clas-

sification for each data instance (i.e. each single sentence, conversation, or

document) individually, and independently from the rest of data instances.

Data instances in close proximity to each other may incorporate contextual

information that can be exploited by contextual modeling.

The LORELEI collections provide a challenging and realistic scenario,

where wildly collected audio recordings can be extremely long, of varying

length, and contain multiple topic shifts at variable locations in the audio.

For this reason each audio document in the LORELEI data is first segmented

by APPEN [52], and then topic classification is required on the much shorter

resulting segments. To solve the LORELEI task, prior work [66] used a mis-

matched ASR to directly decode IL speech, while [16] proposed sharing com-

mon phonemic representation among languages and transferring acoustic

models trained on higher-resource (potentially related) language(s). After

ASR, [66, 16] translated both development (dev) and incident languages into

English words, used the translated dev language data along with the given

topic label annotations to learn English-language topic models and then clas-

sify the translated IL data.

Instead of using ASR to convert speech into sequences of words, [67, 16]

also investigated unsupervised techniques to automatically discover and

tokenize IL speech segments into phone-like units via acoustic unit discovery

(AUD) or word-like units via unsupervised term discovery (UTD). However,

only small amount of IL topic labels might be available to learn classifiers

based on AUD/UTD tokenized segments, though [16] showed marginal gains
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by combining them with the above cascade approach that implemented ASR,

machine translation (MT) and operated on English words.

However, in all the approaches above, topic ID was performed on each

speech segment individually, without exploring the contextual information

between adjacent segments. We also note that our topic ID task, which is

formulated as multi-label classification for each speech segment in a spoken

document, is similar to the domain or intent classification in a multi-turn spo-

ken language understanding (SLU) component of a dialog system [68, 69, 70].

One conversation session between user and dialog system, which can be

viewed as one spoken document, may include multiple turns, and the user

query in each turn is a spoken segment; thus, each segment needs to be clas-

sified into one of the supported domains or user intents, as classified into

topic(s). [68, 69, 70] have shown that SLU may require contextual interpreta-

tion from the dialog history, and the SLU models that incorporate the semantic

contexts of preceding user utterances and system outputs outperform those

without context. Therefore, in this chapter, we also investigate if the propaga-

tion of contextual information across spoken segments can improve topic ID,

although the spoken segment that is one minute long on average in our case

is often much longer and more semantically self-contained than the typical

utterance of a few words in SLU systems.

3.3 Universal phone set ASR

This section examines how to build an ASR for an incident language where

little or no transcribed speech data is available and pronunciation lexicon is
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severely incomplete. Previous approach [71] has explored cross-language ASR

transfer assuming shared phonemic representations, using the multilingual

GlobalPhone corpus [72] and manual phone mapping based on the IPA (In-

ternational Phonetic Alphabet) scheme. [12] further uses a set of languages

sharing the X-SAMPA phone sets [73] from Babel corpus [10].

Our approach is similar to [12]. We attempt to provide language universal

acoustic models by training on many languages sharing a common phonemic

representation. We then transfer these models to a new language via a pro-

nunciation lexicon with the same phonemic representation as used in training.

We refer to this ASR as universal phone set ASR. We also use a selection of

BABEL languages for training. Diphthongs and triphtongs are split into their

constituent phones to reduce the number, and enforce sharing, of phonemes.

Also, as in [12], we standardize the representation of tone (tonal trajectory)

across all training languages. The final acoustic models are time-delay neural

networks (TDNNs, [74]) trained with the lattice-free version of the maximum

mutual information (LF-MMI) criterion [75].

During a LORELEI evaluation we may also have access to a few hours

(2-10) of consultation with a native informant (NI), a native speaker of the

IL. From these interactions we can collect an additional 15-30 minutes of IL

speech transcriptions. We use this data to adapt the ASR for both languages

using the same weight transfer approach as in [76]. Since the source languages

and ILs use the same phoneset, all layers of the seed neural network (trained

on the source languages), including the final layer, are transferred and trained

for one epoch on the IL transcribed data.
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3.4 Document representation and classification

To leverage the supervised topic annotations of speech segments in multiple

dev languages, we represent each speech segment in all languages as a bag

of English words. We derive this representation by building ASR systems to

decode the speech and then translate each decoded word into its most likely

English translations. We propose to use the probabilistic bilingual translation

tables employed in the MT systems, i.e. bilingual lexicons, rather than full-

blown MT systems to relax the dependency on fully developed IL-to-English

MT pipeline that could be unavailable for very-low-resource languages.

SVM or neural network (NN) based topic classifiers can then be learned

by using these English word representations of speech segments in foreign

languages along with their associated topic labels. Thus, using only a transla-

tion lexicon, we can always perform topic ID on an IL without its transcribed

or topic-labeled speech by using the unadapted universal phone set ASR to

decode and translate its speech segments into English words.

3.4.1 Learning spoken segment representations

Since English word sequences generated using translation tables lack proper

syntax, we represent speech segments using a bag-of-words model over the

generated English words. Each speech segment is represented by a vector

of unigram occurrence counts over the generated English word sequences

and scaled to produce a term frequency-inverse document frequency (tf-idf)

feature, which is then normalized to ℓ2 norm unit length.

Latent Semantic Analysis (LSA) [57] transformation can then be learned
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from the tf-idf features. This transformation effectively merges the dimen-

sions corresponding to words with similar meanings, and maps the high-

dimensional tf-idf vectors to a much smaller dimension vector space.

We can also append other auxiliary features to the tf-idf or LSA represen-

tations of speech segments. Since our datasets contain segments with music,

many of which are out-of-domain, we found that features indicating the sub-

stantial presence of music are particularly useful. To generate these features,

we build music detectors from the MUSAN dataset [77] and for each speech

segment the music detector produces a posterior probability that a substantial

portion of music is present. Denoting the tf-idf/LSA vector as x ∈ Rd, the

music posterior as δ ∈ (0, 1), and the vector concatenation operation as ⊕, our

new representation can be created as x⊕ δ.

3.4.2 Non-contextual modeling using SVM and NN

Since each speech segment is represented by a vector x and can be associ-

ated with one or multiple topics, we perform topic ID by doing multi-label

classifications. The baseline approach is the binary relevance method, which

independently trains one binary SVM classifier for each label, and a segment

is evaluated by each classifier to determine if the respective label applies. We

use stochastic gradient descent (SGD) based linear SVMs with hinge loss and

ℓ2 norm regularization [78, 79].

Another approach based on feedforward NN2 is to use an output layer

with sigmoid output nodes, one for each label, and train the NN to minimize

2We simply use NN to refer to the multi-layer perceptron in the following sections.
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the binary cross entropy loss defined as

L(Θnn; x, y) = −
K

∑
k=1

(yk log ok + (1− yk) log(1− ok)) (3.1)

where Θnn denotes the NN parameters, y is the target binary vector of topic

labels, ok and yk are the output and the target for label k, and the number of

unique labels K = 12.

3.4.3 Contextual modeling using RNN

We explore using recurrent neural network (RNN) to capture the dependencies

between context segments. Different RNN variants can be used such as the

Elman RNN, long short-term memory (LSTM), or gated recurrent unit (GRU).

We denote an RNN simply as a mapping ϕ : Rd ×Rd′ → Rd′ that takes a d

dimensional input vector x and a d′ dimensional state vector h and outputs a

new d′ dimensional state vector h′ = ϕ(x, h).

Consider a spoken document that consists of n spoken segments, as ex-

emplified in Table 3.2. For each i = 1 . . . n, the segment i is represented by a

vector xi ∈ Rd. The document is represented as X = [x1 . . . xn]. We encode X

using a bidirectional RNN (BiRNN), and the model parameters Θrnn associ-

ated with this BiRNN layer are ϕ f , ϕb : Rd ×Rd′ → Rd′ . Thus the segment

representation vectors are encoded by forward and backward RNNs as

fj = ϕ f (xj, fj−1) ∀j = 1 . . . n

bj = ϕb(xj, bj+1) ∀j = n . . . 1

(3.2)
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We assume zero initial state vectors f0 and bn+1. And a contextual representa-

tion is induced as

hi = fi ⊕ bi ∀i = 1 . . . n.

We denote the entire operation as a mapping BiRNNΘrnn :

(h1 . . . hn)← BiRNNΘrnn(x1 . . . xn).

Therefore, instead of the non-contextual xi, the contextual hi is used as input

to the feedforward fully connected layers for final classification:

oi ← NNΘnn(hi) ∀i = 1 . . . n

where oi denotes the final output vector. The joint loss

L(Θrnn, Θnn) = ∑n
i=1 L(Θnn; hi, yi)

is calculated by Eq. 3.1.

3.4.4 Contextual modeling using attention

Consider a spoken document X as above. For each target segment xi, RNNs

implicitly encode its context segments as fi−1/bi+1, but the RNN non-linear

transformations make it hard to control the interaction between segments.

Instead, we explicitly perform a convex combination of the target and context

segments using an attention mechanism [80].

For each i = 1 . . . n, now consider classifying xi. We aim to produce a

new contextual vector representation ci to replace xi, by combining xi and its

contexts X \ xi. Then each ci is followed by fully connected layers for final

classification as in Section 3.4.2. To do so, let zi be a categorical latent variable

with sample space {1 . . . n}, which encodes the desired selection among X
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based on a query qi. We let the query be xi itself, i.e., qi = xi, since xi has

been produced specifically to encode the semantic information pertaining to

segment i. Then we assume the source position to be selected and attended

to follows a distribution, zi ∼ p(zi = j|qi, X), ∀j = 1 . . . n, and therefore the

contextual representation ci is defined as an expectation:

ci = Ezi∼p(zi|X,qi)
[xzi ] =

n

∑
j=1

p(zi = j|qi, X) xj

=
n

∑
j=1

αijxj

(3.3)

The weight αij of each xj is computed by

αij =
exp(eij)

∑n
k=1 exp(eik)

, ∀j = 1 . . . n (3.4)

where eij = f (qi, xj), called an alignment model [80] that scores how important

the segment j is to help classify the query segment i. We parameterize it with

a single-layer NN,

eij = wTσ(W1qi + W2xj + b1) + b2

= wTσ(W1xi + W2xj + b1) + b2, ∀j = 1 . . . n

(3.5)

where σ is an activation function, and W1, W2 ∈ Rd′×d, w, b1 ∈ Rd′ , b2 ∈ R1

are the weight matrices and jointly learned with all the other NN parameters.

Note that to classify the target xi, the contexts close to xi can be more relevant

than the distant ones, so we can also use a truncated context window and

only consider its L/R nearest left/right contexts, i.e., for each j = max(0, i−

L) . . . min(i + R, n) in Eq. 3.3, 3.4 and 3.5. The complete modeling framework
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Figure 3.1: Illustration of the proposed contextual modeling using attention, which
operates on a spoken document of 4 segments, and leverages each 1-nearest left and
right context segments to classify the target xi, for each i = 1 . . . 4.

is illustrated in Figure 3.1, which uses the 1-nearest left and right contexts (i.e.

when L = R = 1).

The intuition behind such process is that, although the overall feature

vector xi may not be salient enough to produce high posteriors for the correct

topic labels, certain feature dimensions in xi are indicative of the correct topics,

so that the alignment model of Eq. 3.5 can still capture those informative

feature dimensions and give the useful context segments higher scores eij and

higher weights αij. The weights are used in a convex combination of Eq. 3.3

such that the useful context features are explicitly combined to produce a

contextual representation ci.

In contrast with the deterministic RNN mapping, the attention mechanism

allows for selectively using the contexts in a dynamic manner. Consider that,

given the left contexts of xi, the forward RNN produces a context vector fi−1
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as in Eq. 3.2, and the context vector fi−1 is used in a deterministic function

ϕ f (xi, fi−1) regardless of whatever the xi is. However, given different xi, the

attention model is able to produce different context weights given different

input query vector qi (since qi = xi in Eq. 3.5); i.e., the contexts will be

weighted accordingly for different xi, so that any context can only be effectively

used when the attention model detects its relevance and gives it a high weight

by Eq. 3.4 and 3.5. The alignment model (Eq. 3.5) is explicitly learned as a

selector to dynamically detect relevant and useful contexts over irrelevant

ones.

However, as yet, given a fixed input query qi, the alignment model of

Eq. 3.5 equally considers the other input features xj, for each j = 1 . . . n, in

the attention computation, remaining unaware of that the segment i is being

the target one to classify. Therefore, inspired by the position-based gating

procedure in [81], the scores eij can be penalized based on the relative position

of the context segment j and target i before being normalized to weight αij:

αij =
d(i, j) exp(eij)

∑n
k=1 d(i, k) exp(eik)

, ∀j = 1 . . . n (3.6)

where d(i, j) is a gating function of one hidden layer NN and logistic sigmoid

output ([0, 1]):

d(i, j) =
{

1, j = i
σ2(w2σ1(w1|i− j|+ b1) + b2), ∀j ̸= i

(3.7)

where σ1 is an activation function (tanh), σ2 a sigmoid function, and w1, w2,

b1, b2 ∈ R1. Such additional gating procedure helps favor the weight of target

xi and penalize the effects of any contexts far from the target, so that it can
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presumably prevent ci (Eq. 3.3) from being overwhelmed by context segments

regardless of the target xi.

3.5 Experiments

3.5.1 Experimental setup

3.5.1.1 Data

The LORELEI Situation Frame (SF) task is characterized by extremely limited

training resources. The only available resources for each evaluation language,

called an Incident Language (IL) are:

• Monolingual text, some of which might be related to the incident.

• Untranscribed, unlabeled audio.

• A small amount of IL-English parallel text.

• Optionally, a few hours of consultation with a native informant (NI).

The NI is a native speaker of the IL with at least intermediate proficiency

in English. System developers may ask the NI to perform any annotation

tasks deemed necessary to build a system for identifying SFs from speech,

e.g. transcribing some IL speech or labeling segments with SF topic labels. To

increase the NI’s annotation efficiency, all NI tasks were conducted via a web

browser-based user interface tailored to the specific LORELEI tasks, as shown

in Figure 3.2.

The dev and eval datasets we used are as shown in Table 3.3. For Turkish,

Arabic, Spanish and English, each language is a single dataset and seen as
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Figure 3.2: NI user interface optimized for speech transcription and SF Type labeling.

dev set. Their topic label annotations for all segments are given, and used for

training the topic ID classifiers3.

For Mandarin, Tigrinya and Oromo, each language has one DEV and EVAL

set respectively; true topic labels on these DEV sets are unavailable, so we

selected some segments, collected their hypothesized topic labels from NI, and

included them into the classifier training. Also on these DEV sets, we selected

some segments for the NI to transcribe and used them for ASR adaptation.

The total given NI session for consultation was 2 hours for Mandarin, 10 hours

each for Tigrinya and Oromo. Only on Tigrinya and Oromo DEV sets, we

collected transcribed speech from the NI, 27 mins and 18 mins respectively.

The EVAL sets of these three languages, in addition to the single Russian

dataset, are provided with true topic annotations and are used for evaluating

the system performance.

3Since Spanish set is overwhelmed by the segments of topic “Elections and Politics", we
filtered out all segments that include that topic.

64



Language LDC Topic ASR
Dataset Pack Catalog |Ddoc| |Dseg| Label Corpora

Turkish LDC2016E109 212 2095 LDC BABEL [34]
Arabic LDC2016E123 47 1025 LDC GALE [82]

Spanish LDC2016E127 198 393 LDC HUB4 [83]
Dev US English LDC2017E50 154 842 LDC –

Mandarin DEV LDC2016E108 77 100 NI GALE [84]
Tigrinya DEV LDC2017E35 130 159 NI Universal
Oromo DEV LDC2017E36 241 364 NI Universal

Mandarin EVAL LDC2016E115 119 724 LDC GALE [84]
Eval Russian LDC2016E111 136 787 LDC Universal

Tigrinya EVAL LDC2017E37 116 1095 LDC Universal
Oromo EVAL LDC2017E38 46 709 LDC Universal

Table 3.3: LORELEI speech data description. |Ddoc| denotes the number of docu-
ments. |Dseg| denotes the number of segments. Manual transcripts are provided for
US English corpus. ‘Universal’ refers to the universal phone set ASR described in
Section 3.3.

In sum, when evaluating on Mandarin EVAL or the Russian dataset, the

training data for learning topic ID models consists of Turkish, Arabic, Spanish,

US English and Mandarin DEV. When evaluating on Tigrinya EVAL or Oromo

EVAL, we use the same training data in addition to Tigrinya DEV or Oromo

DEV, respectively.

3.5.1.2 Evaluation metrics

Under the LORELEI Speech SF evaluation framework as described in [51],

topic ID system outputs are evaluated in two layers using average precision

(AP, equal to the area under the precision-recall curve).

The Relevance layer is to separate the segments with at least 1 in-domain

topic from non-relevant out-of-domain segments. Specifically, each segment is

given 11 posteriors over each in-domain topic, and the Relevance scorer takes
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the maximum one as the in-domain posterior. Thus, given each confidence

threshold, the scorer can compute the precision and recall by comparing

against the true binary in-/out-of-domain label. Finally, given the resulting

precision-recall points for each threshold, the scorer computes the area under

the precision-recall curve, i.e. AP, as the Relevance layer score.

The Type layer is to detect all present 11 in-domain topics. First, for a given

confidence threshold, Type scorer computes the micro-averaged precision and

recall across 11 in-domain topics, which calculates precision and recall globally

by counting the total true positives, false positives and false negatives across

11 in-domain topics (i.e., giving equal importance to each data instance). Then,

given the micro-averaged precision and recall at each evaluated threshold, the

scorer computes the AP, as the Type layer score.

3.5.1.3 ASR

Audio transcripts exist only for the LORELEI English speech dataset. For

the Turkish, Arabic, Spanish and Mandarin datasets, we used preexisting

transcribed speech corpora, as shown in Table 3.3, to train ASR systems with

Kaldi [47], and then decoded the LORELEI datasets using the appropriate

ASR. For Russian, Tigrinya and Oromo, transcribed speech corpora were

unavailable and we used the universal phone set ASR to decode each corpus,

by rebuilding the decoding graph using a new pronunciation lexicon and

language model trained on the monolingual texts in the LORELEI datasets.

For experiments on Tigrinya and Oromo, we use a selection of 10 BABEL

languages for ASR training (∼600h), 7 of which were chosen as in [12], with
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3 more chosen arbitrarily (Guarani, Mongolian, Dholuo). We bootstrapped

the lexicon using a G2P trained on a seed lexicon derived from the provided

resources. For Tigriyna the seed was a dictionary of words with IPA pronunci-

ations, and for Oromo the seed was an approximate grapheme-to-phoneme

map. The vocabulary (word list) was generated from the provided monolin-

gual text. We (re)normalized the text according to IL specific punctuation

rules. Additional sources of words were the bilingual gazetteer and tran-

scripts obtained during the NI sessions. The language model was trained on

the same text. Language model hyper-parameters were chosen to minimize

perplexity on a held-out set (i.e. small subset of the monolingual text not used

for training).

For Russian, we use 10h subsets of 21 BABEL languages (∼200h) in training

(all except Haitian, Vietnamese, Amharic, Georgian). This reduces training

time, provides better phoneme coverage, and performs as well or better in

word error rate as the 10-language ASR above on the BABEL Haitian, Amharic

and Georgian dev sets. For Russian, we used wikt2pron4 to generate a seed

lexicon by scraping Wiktionary for XSAMPA pronunciations of all Russian

words found in the provided monolingual text. We also filtered out all words

not written in Cyrillic, and to discard apparent misspellings, we used only the

600k most frequent remaining words.

Note that speech segment lengths vary between 5 seconds and 2 minutes,

with an average duration of about one minute. Since ASR systems have diffi-

culty decoding long segments, we further segmented the audio using either

4https://github.com/abuccts/wikt2pron
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the overlapped segmentation approach as in [85], or voice-activity-detection

(by a DNN-based speech activity detection system that segmented audio into

speech and silence). For the overlapped segmentation, we used chunks 15

seconds long repeated every 10 seconds and then filtered the transcripts by

removing words whose midpoints were within 2.5 seconds to the chunk edge

before combining them into a single transcript.

In addition, we trained two Gaussian mixture models (GMMs) on the

speech and music portions of MUSAN [77]. Each speech segment is split into

15 second chunks but without overlap. Then for each chunk, two average

frame-level log-likelihoods were calculated by the music and speech GMMs

respectively, to further produce a music-to-speech log-likelihood ratio γ. γ

went through a sigmoid function and produced a posterior score. Finally for

each speech segment, we used the maximum posterior score over all chunks

as the music posterior feature δ for that segment, which was then concatenated

to the LSA features (Section 3.4.1).

3.5.1.4 MT

Supervised topic label information in various languages can all be projected

into English topic classifiers through bilingual (i.e., foreign language to En-

glish) translation lexicons. Each bilingual MT table was derived from the

parallel training data with words aligned automatically by the GIZA++ [86]

and Berkeley aligner [87], independently under the MT effort. Any preexisting

training data can be used in addition to the data provided by the LORELEI

program.
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We translated each foreign word in the ASR transcript into its four most

likely English translations. Then we mapped any unicode data into their

nearest ASCII characters, and filtered stop words using the lists from [79, 88],

and any words with three or fewer characters.

3.5.1.5 Classification models

First, the tf-idf or LSA features were learned as described in Section 3.4.1. For

the four eval languages overall, we found LSA dimensions over {300, 600, 900}

can generally produce improvements over tf-idf features, and the ones we

finally used are shown in Table 3.4.

The non-contextual SVM and NN were learned as in Section 3.4.2. Con-

textual RNN and attention based models are described in Section 3.4.3 and

3.4.4 respectively. Also, validation data is needed for model parameter tuning

and during NN training. While evaluating Mandarin, we left a small portion

out of the training data as validation data. While evaluating Tigrinya, Oromo

and Russian, we used the Mandarin EVAL dataset as validation data. The

performance of SVMs did not vary much after 30 SGD epochs. While each

NN-based model was trained for up to 50 epochs, the model with the best

accuracy on the validation data was used for evaluation on the eval data. For

each experiment, we repeated it 5 times, and the means are reported in Table

3.5 (standard deviation is omitted for clarity).

Some parameters were tuned and shared for all languages. SVMs used

ℓ2 regularization constant 0.001 on tf-idf features. All NN-based models had

hidden layer size 512 and rectified linear unit (ReLU) nonlinearities, and were
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Table 3.4: Differing topic ID model parameters across eval languages.

Eval language Russian Mandarin Tigrinya Oromo
LSA dimension 300 900

SVM ℓ2 regularization constant 0.001 0.0001
# hidden layers in NN 1 2

# hidden layers in RNN 0 1
# hidden layers in attention-based 1 2

Dropout rate 0.5 0.25

trained with Adam optimizer [89]. Non-contextual NN used mini-batch size

of 256 spoken segments. Contextual RNN or attention based models used

the mini-batch size of 6 spoken documents. For RNN-based models, we

found GRU slightly outperformed the conventional Elman RNN or LSTM,

and we used the GRU layer that took the LSA features as inputs. All neural

network-based models were implemented with PyTorch [90].

The remaining parameters were the same when evaluating Mandarin,

Tigrinya and Oromo, but differed for Russian, as shown in Table 3.4. When

evaluating Russian, we found using SVM ℓ2 regularization constant 0.001 on

LSA features, one NN hidden layer and dropout rate 0.5 gave much better

results instead; presumably because the universal phone set ASR for Rus-

sian was unadapted, the resulting transcripts were more noisy and required

stronger regularization. Also, we used one GRU layer directly followed by

the output layer. Each contextual vector ci (Section 3.4.4) was followed by one

hidden layer instead of two. Note that we used the above model parameters

different from other three eval languages to obtain optimal results for both

Russian non-contextual and contextual models, so that the comparisons be-

tween the two are fair. In other words, within each eval language, we focus on
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Table 3.5: Topic classification results on LORELEI speech datasets, evaluated by the
average precisions of Type layer and Relevance (Rel) layer (Section 3.5.1.2). LSAδ

is each LSA feature vector concatenated with music posterior δ. Attn1 or Attn2 is
each attention-based contextual model that uses 1 or 2 nearest context segments,
respectively. Attn1

pos or Attn2
pos denotes that the additional position-based gating

procedure in attention model is enabled. Last row shows the 10-fold cross-validation
results on each eval set using ASR transcripts and true topic labels (without using
MT or any other dev set), as oracle results for comparison.

Mandarin Russian Tigrinya Oromo Average
Model Type Rel Type Rel Type Rel Type Rel Type Rel

tf-idf, SVM 0.458 0.702 0.382 0.854 0.371 0.554 0.382 0.772 0.398 0.721
LSA, SVM 0.505 0.739 0.386 0.856 0.392 0.561 0.409 0.782 0.423 0.735
LSAδ, SVM 0.510 0.742 0.408 0.870 0.422 0.600 0.423 0.822 0.441 0.759
LSAδ, NN 0.519 0.743 0.415 0.881 0.451 0.625 0.436 0.819 0.455 0.767
LSAδ, RNN 0.525 0.737 0.430 0.894 0.389 0.578 0.467 0.820 0.453 0.757
LSAδ, Attn1 0.544 0.741 0.466 0.888 0.407 0.597 0.495 0.828 0.478 0.764
LSAδ, Attn1

pos 0.542 0.744 0.449 0.884 0.455 0.618 0.482 0.830 0.482 0.769
LSAδ, Attn2 0.537 0.742 0.461 0.892 0.365 0.557 0.494 0.838 0.464 0.757
LSAδ, Attn2

pos 0.543 0.746 0.448 0.887 0.444 0.611 0.491 0.831 0.482 0.769
10-fold CV 0.576 0.843 0.444 0.838 0.574 0.719 0.419 0.750 0.503 0.788

drawing fair comparisons between its optimal non-contextual and contextual

models.

3.5.2 Non-contextual topic classification results

Table 3.5 first shows the results based on non-contextual model SVM and NN.

The LSA transformation on tf-idf features substantially improved performance

across the board, and also mapped the high-dimensional tf-idf vectors (around

25k) to a dimension small enough for the LSA features to be used as inputs

to NN-based models. Additionally, appending auxiliary music posteriors

(Section 3.4.1) to the LSA features can produce large gains, except on Mandarin;

we found for the Mandarin dataset music was less indicative of out-of-domain
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topics. Finally, feedforward NNs were generally more competitive than linear

SVMs when using the same input LSA features.

3.5.3 Contextual topic classification results

Table 3.5 further shows the results of our experiments using the proposed

contextual RNN and attention models. The GRU-based contextual models

outperformed the best non-contextual NN models on Russian and Oromo, but

not on Mandarin or Tigrinya. For Mandarin, we had a high-performing ASR

system trained on around 600 hrs of transcribed speech from GALE [84], so the

Mandarin transcripts were much more accurate than other languages, which

presumably made it more difficult to improve the non-contextual baseline

results; inference from contexts might be helpful to recover the ASR errors in

the target segment, and thus better ASR transcripts often allow for confident

classification without having to consider additional contexts. For Tigrinya

EVAL set, we found around 72% of the segments were out-of-domain; i.e., if a

target segment is mostly surrounded by out-of-domain segments, using its

contexts can give adverse effects, and the overall results can be worse than

the context-independent counterparts.

We further experimented with contextual attention based models, using

the contexts of 1 or 2 nearest left and right segments, i.e. when L = R = 1

or L = R = 2 in Section 3.4.4. The attention-based models outperformed

the non-contextual models, except on Tigrinya, due to the overwhelming

amount of out-of-domain segments, as discussed above. However, we can

match the performance of the non-contextual models on Tigrinya, with only a
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small performance loss in the other languages, by using the additional gating

mechanism in Eq. 3.6. The gating mechanism partially penalizes the context

effects and makes the model aware of the target segment location. Note

that, the attention-based models consistently outperformed the RNN-based

models, and it demonstrates the efficacy of the gated attention mechanism

that dynamically selects and uses more relevant contexts instead of receiving

contexts in a deterministic manner.

Overall, with respect to the best context-independent models, the contex-

tual attention based models produced comparable performance on Tigrinya,

and produced considerable performance improvements on the rest three eval

languages. Also, the results of using wider contexts, i.e., 2-nearest left and

right segments, were comparable to those of using 1-nearest only. In addition,

the attention function we used in Eq. 3.5 is also called additive attention, and

we found it outperformed the dot-product (multiplicative) attention [91]. We

also experimented with multi-head attention [91] and component (or multi-

dimensional) attention [92], but none of these techniques can give us better

results, presumably due to the small size of our topic model training data.

3.5.4 Ten-fold cross validation analysis

So far, we have only used English translations of each dev and eval language

to resolve the language mismatch, but the training and eval datasets can be

severely mismatched. An oracle result against which we can compare is the

10-fold cross validation (CV) performance on each eval set itself, where each

experiment uses part of the true eval set topic labels for training. For each
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eval language, we split the corresponding eval set into 10 folds, used the

extracted LSA features over the raw ASR transcripts (without translation or

any data from other language), completed 10 monolingual supervised SVM

classifications with true topic labels, and reported the average of each 10

experiments as shown in the last row of Table 3.5.

For each language, such 10-fold CV results give us estimates of the topline

numbers we could achieve with around 700 in-domain training exemplars.

First, the gap between each topline number and the full accuracy (i.e. AP = 1)

mostly indicates the given ASR quality and the intrinsic difficulty of each eval

dataset. Next, comparing our cross-lingual approach with such monolingual

topline, we found using the above contextual topic ID approach had reduced

the gap on Mandarin, and surpassed the topline on Russian and Oromo, while

falling behind on Tigrinya (due to the train-test discrepancy in the amount of

out-of-domain segment occurrences as discussed in Section 3.5.3).

3.6 Conclusion

In classifying spoken documents into predefined classes, audio documents

collected in the wild can be extremely long and contain multiple class label

shifts (e.g. topic shifts) at varying locations in the audio, so we need to

perform classification on a sequence of segmented audio. Each resulting

speech segment is of reasonable length and semantically self-contained, such

that each of them can be independently classified. We first presents a general

classification system that combines universal acoustic modeling, evaluation

language to English machine translation and an English-language classifier.
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This combination requires no transcribed speech in the evaluation language,

leading to near language-agnostic operation.

Furthermore, we have performed comprehensive experiments on the

LORELEI datasets in a realistic low-resource scenario, and have found that,

exploiting the context segments can provide considerable topic classification

performance improvements over the context-independent models. Finally,

comparing our contextual modeling frameworks, we demonstrate that the pro-

posed attention-based models which leverage context segments in a selective

approach can consistently outperform the RNN-based alternatives.
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Chapter 4

Spoken Document Classification
without ASR

In the preceding Chapter 3 we have introduced the modern spoken document

classification systems that typically use automatic speech recognition (ASR)

to produce speech transcripts, and perform classification on ASR outputs by

supervised training of classifiers. While under resource-limited conditions

with little or no transcribed speech annotations for a language of interest,

Chapter 3 has demonstrated an universal phone set ASR to produce adequate

speech transcripts that can effectively enable the subsequent classification task.

However, it still requires monolingual text and pronunciation lexicons from

that language to start the processing. In this chapter1, we further explore an

alternative line of approach to decoding speech that removes the above needs,

using unsupervised speech technologies of lexical discovery and phonetic

discovery.

1Large portions of this chapter have been published in [93, 67]
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4.1 Introduction

To date it is very challenging to model many world’s low-resource languages,

most of which are under-documented or unwritten. According to UNESCO

(United Nations Educational, Scientific and Cultural Organization), 80 percent

of African languages have no orthography2 [95], and thus no written record.

In practice, many speakers of such endangered languages are bilingual or

multilingual, so collecting other linguistic annotations, such as spoken trans-

lations or document-level topics, can be more feasible in the absence of an

orthographic lexicon.

After sourcing the recorded speech, we also need to transform the raw

speech data into a format that can be efficiently indexed and searched. Typ-

ically, this format is based on orthographic word, and the transformation

process is automatic speech recognition. However, we can consider ASR as

one of the many ways to transform acoustic signals into written tokens, and

we refer to the general transformation process as tokenization, so that the fixed

set of tokens used to characterize speech can be of any type, such as ortho-

graphic word or any smaller unit like phoneme. As a result, speech is tokenized

into sequences of tokens, on which the subsequent indexing and retrieval is

performed.

Developing general tokenization approaches is particularly useful in the re-

alistic scenario, where the orthographic lexicon of a language is unavailable or

2An orthography is a set of conventions for writing a language, which includes norms of
spelling, hyphenation, capitalization, word breaks, emphasis, and punctuation [94].
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nonexistent so that the supervised training of a standard ASR system is infeasi-

ble. In such case, previous work demonstrates that the language-mismatched

phoneme recognizers can produce cross-lingual tokenizations effectively for

topic classification [96, 97], but the performance is highly dependent on the

level of language mismatch and environmental condition mismatch (channel,

noise, etc.) between the training and testing datasets.

Alternatively, in this chapter, we focus on unsupervised tokenization ap-

proaches that operate directly on the speech of interest.

4.2 Related work

First, unsupervised term discovery (UTD), sometimes also referred to as ‘lex-

ical discovery’ or ‘spoken term discovery’, is one such approach that aims

to identify and cluster repeating word- or phrase-like patterns across speech

[98]. Each resulting cluster represents a discovered word type (i.e. a distinct

lexical entry), and speech can be characterized with these hypothesized word

categories. Most UTD systems are based around segmental dynamic time

warping (DTW) [99, 100, 101], and recent work [98] presents a novel unsu-

pervised Bayesian framework that jointly segments speech into word-like

segments and clusters these segments into hypothesized words.

Thus UTD provides a way of automatically detecting indexable terms

via acoustic repetition, and the indexing terms identified by UTD have been

shown to be effective in spoken document classification [54], spoken docu-

ment retrieval [102], and interactive exploration of speech collections [103].

However, the classification results in [54] are limited since the acoustic features
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on which UTD is performed are produced by acoustic models trained from the

transcribed speech of its evaluation corpus. In this chapter, we further inves-

tigate UTD-based document classification performance when UTD operates

on language-independent speech representations extracted from multilingual

bottleneck networks trained on languages other than the evaluation language.

Another unsupervised tokenization alternative is phonetic discovery, also

known as acoustic unit discovery (AUD), which is the process of automatically

identifying the categorical subword or phonemic inventory and relating it

to the underlying acoustics [104]. Thus far most existing methods focus on

unsupervised learning of hidden Markov model (HMM) based phoneme-like

units from untranscribed speech, where each HMM represents an induced

acoustic unit. For example, [96] presents an approach to initialize the un-

supervised HMM training with the label sequences produced by segmental

Gaussian mixture models (GMMs), using maximum likelihood parameter

estimations. [105] formulates a Dirichlet process mixture model where each

mixture is a GMM-HMM based acoustic unit, using Bayesian inference via

Gibbs sampling. To scale computationally to large speech datasets, [106] ap-

plies the Variational Bayesian inference to the Dirichlet process mixture model,

which allows for parallelized large-scale training. [93] further extends [106] to

a context-rich framework by the self-supervised linear discriminant analysis

that incorporates phonetic contexts into the front-end acoustic features.

Recent success in deep generative modeling, such as deep belief network,

generative adversarial network, etc., motivates a new AUD framework that
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composes the latent graphical models, i.e. HMMs, with neural network obser-

vation likelihoods, known as variational autoencoder HMM (VAE-HMM), or

structured VAE [107, 108, 109]. While HMMs are still used as the structured

dynamics models, acoustic observations (e.g. MFCCs) are first mapped to

a latent space and the resulting latent representations are then modeled by

the Gaussians specific to each HMM state. [107] estimates the parameters of

each state-specific Gaussian (i.e. the priors of the latent space) with maximum

likelihood estimation, while [108, 109] use Gaussians with conjugate prior.

However, [107, 108, 109] all limit VAE to reconstructing each acoustic frame

individually, and the latent representation of each frame is independent of the

context frames. In this chapter we aims to develop a context-dependent VAE

that infers a context-rich latent representation from each set of stacked frames.

Thus far we have three different methods to tokenize speech using index-

ing tokens – orthographic words decoded by ASR, word-like units detected

by UTD, and phoneme-like units identified by AUD. Further, in perform-

ing spoken document classification on these various tokenizations, prior

works [54, 110, 55, 96, 97, 93] are limited to using bag-of-words features as

document representations. While UTD mostly aims to identify relatively long

(0.5 - 1 sec) repeated terms, ASR/AUD enables full-coverage segmentation

of each continuous speech utterance into a sequence of words/units, and

such resulting temporal sequence enables another feature learning architec-

ture based on convolutional neural network (CNN) [59]; instead of treating

the sequential tokens as a bag of words or acoustic units, the whole token

sequence is encoded as concatenated continuous vectors, and followed by

80



convolution and temporal pooling operations that capture the local and global

dependencies. Such continuous space feature extraction frameworks have

been explored in various language processing tasks such as part-of-speech

tagging [59, 60], spoken language understanding [111, 69], and text document

classification [61, 112]. However, three questions are worth investigating in

our AUD-based tokenizations:

i. If such a CNN-based framework can perform as well on noisy automati-

cally discovered phoneme-like units as on orthographic words/characters.

ii. If pre-trained vectors of phoneme-like units from word2vec [113] provide

superior performance to random initialization as evidenced by the word-

based tasks.

iii. If CNNs are still competitive in low-resource settings of hundreds to

two-thousand training exemplars, rather than the large/medium sized

datasets as in previous work [61, 112].

Thus, incorporating different tokenization, i.e. UTD, AUD and ASR, and

different document feature representation approaches noted above, we per-

form comprehensive evaluations on both single-label and multi-label spoken

document classification tasks, and investigate how the performances compare

accordingly.

4.3 Unsupervised term discovery

UTD aims to automatically identify and cluster the repeated terms (e.g. words

or phrases) from speech, via acoustic repetitions. To circumvent the exhaustive
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DTW-based search limited by O(n2) time [99], [100] proposed a scalable UTD

framework which permits search in O(n log n) time, and implemented it in

the Zero Resource Toolkit (ZRTools). In this section, we briefly outline the

essentials of [100] and describe the UTD procedures in ZRTools by four steps

below:

1. Construct the sparse approximate acoustic similarity matrices between

pairs of speech utterances.

2. Identify word repetitions via fast diagonal line search and segmental

DTW.

3. The resulting matches are used to construct an acoustic similarity graph,

where nodes represent the matching acoustic segments and edges reflect

DTW distances.

4. Threshold the graph edges, and each connected component of the graph

is a cluster of acoustic segments, which produces a corresponding term

(word/phrase) category.

Finally, the cluster of each discovered term category consists of a list of term

occurrences.

Note that in the third step above, the weight on each graph edge can be

exact DTW-based similarity, or other similarity based on heuristics more than

DTW distance. For example, we investigate an implementation in ZRTools,

where a separate logistic regression model is used to rescore the similarity

between identified matches by determining how likely the matching pair is the

same underlying word/phrase and is not a filled pause (e.g. “um-hum” and
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“yeah uh-huh” in English). Filled pauses tend to be acoustically stationary with

more phone repeats and thus would match throughout the acoustic similarity

matrix, whereas a contentful word (without too many phone repeats) tend to

concentrate around the main diagonal; thus, the features in logistic regression

contain the numbers of matrix elements in diagonal bands in progressive steps

away from the main diagonal. Feature weights are learned using a portion of

transcribed speech with reference transcripts, and the resulting model can be

used for language-independent rescoring.

4.4 Acoustic unit discovery

In this section, we first briefly describe the variational Bayesian inference

based AUD framework in [106], and then describe the VAE-HMM based AUD

in [107]. Next, we present our extended variant, referred to as a structured

contextual VAE or contextual VAE-HMM. Finally we discuss experimental

results on the intrinsic measurements of our AUD performance.

4.4.1 GMM-HMM

As presented in [106], a phone-loop model is formulated where each phoneme-

like unit is modeled as an HMM with GMM output density (GMM-HMM),

as illustrated in Figure 4.1. Under the Dirichlet process framework, we con-

sider the phone loop as an infinite mixture of GMM-HMMs, and the mixture

weights {πm}∞
m=1 are based on the stick-breaking construction of Dirichlet

process. The infinite number of units in the mixture is truncated by some large

count M in practice, giving zero mixture weight to any unit beyond M, i.e.
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{πm}M
m=1.

s1 …s2 s3 s1 s2 s3 ……

s0

y1 y2 y3

a1 a2

y4 y5 y6

Figure 4.1: An illustration of the directed graphical model as an infinite phone-loop
AUD model. a1 and a2 denote the acoustic unit 1 and 2. si, for each i = 1 . . . 3, denotes
an HMM state.

Following the variational Bayesian inference, we aim to infer both the latent

variables H (i.e., the indices of HMM, HMM state, and GMM component), and

the unknown generative model parameters θ (i.e., GMM/HMM parameters).

The detailed update equations can be found in [106]. We treat such mixture

of GMM-HMMs as a single unified HMM and thus the segmentation of the

data is performed using standard forward-backward algorithm. Training is

fully unsupervised and parallelized across utterances. After a fixed number

of training epochs, we use Viterbi decoding algorithm to obtain acoustic unit

tokenizations of the data, i.e., a = a1, ..., an.

4.4.2 Structured VAE

We first briefly describe the variational inference and then present detailed

theoretical derivations of the VAE-HMM framework in [107].
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4.4.2.1 Variational inference

Consider the observations Y = {yt}T
t=1 consisting of T samples of a continuous

variable y. We assume Y is generated by some random process involving the

hidden variables H. Variational inference uses the distribution q(H|Y; ϕ),

parameterized by the variational parameters ϕ, to approximate the intractable

true posterior p(H|Y; θ), where θ is known as generative model parameters.

The marginal log-likelihood can be written as:

log p(Y; θ) = DKL(q(H|Y; ϕ)∥p(H|Y; θ)) + L(Y; θ, ϕ) (4.1)

where DKL denotes the Kullback–Leibler (KL) divergence, and

L(Y; θ, ϕ) = Eq(H|Y;ϕ) [log p(Y|H; θ)]− DKL(q(H|Y; ϕ)∥p(H; θ)) (4.2)

Since DKL is always non-negative and log p(Y; θ) ≥ L(Y; θ, ϕ), L(Y; θ, ϕ) is

called the variational lower bound on the marginal likelihood of the data Y.

We aim to optimize the lower bound of Eq. 4.2 and it can be done by the

Expectation–Maximization (EM) algorithm by alternating between:

i. E-step: infer q(H|Y; ϕ) to approximate p(H|Y; θ).

ii. M-step: maximize the lower bound L(Y; θ, ϕ) with respect to both the

variational parameters ϕ and generative parameters θ.

4.4.2.2 VAE

We first briefly describe VAE. As above, we consider one speech utterance

characterized by Y = {yt}T
t=1 as a sequence of observations. A Dy dimensional
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vector yt is modeled by a Dx dimensional latent vector x through a non-linear

transformation f (x; γ) with parameters γ:

p(yt|x; γ) = N (yt; f (x; γ), σ2
y IDy) (4.3)

where f (x; γ) is given by a neural network which is referred to as a probabilis-

tic decoder, σy a constant3, and IDy is a Dy dimensional identity matrix. The

latent variable x is assumed to be generated by a normal distribution:

p(x; θ) = N (x; µ, Σ) (4.4)

The unobserved variable x is also called latent representation or code [114]. To

approximate the true p(x|yt; θ), we let the variational approximate posterior

q(x|yt; ϕ) be a multivariate Gaussian with mean vector µt = [µt,1, . . . , µt,Dx ]
T

and diagonal covariance matrix Σt = diag(σ2
t,1, . . . , σ2

t,Dx
) that are given by the

transformation g(yt; ϕ):

(µt; log Σt) = g(yt; ϕ) (4.5)

such that

q(x|yt; ϕ) = N (x; µt, Σt) (4.6)

where g(yt; ϕ) is a neural network with variational parameters ϕ, referred to

as probabilistic encoder. Thus, Y and x along with θ and ϕ form a VAE.

3We use a constant σy instead of modeling it with another decoder.
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z1 …z2 z3 ……

z0

x1 x2 x3

a1 a2

y1 y2 y3

!

θ θ

y4 y5 y6

x4 x5 x6

z4 z5 z6

Figure 4.2: An illustration of the directed graphical model as VAE-HMM. zi denotes
the latent HMM state, xi the latent representation, yi the observation.

4.4.2.3 VAE-HMM

Note that in standard VAE, each latent representation xt is independent of

each other, being drawn from Eq. 4.4. To model the temporal dynamics, we

compose the VAE with HMMs, referred to as VAE-HMM or structured VAE,

as illustrated in Figure 4.2. Each of the U distinct discovered acoustic units

(U ≤ M with M as the truncation level in Section 4.4.1) is modeled by a 3-state

HMM with standard left-to-right typology. Thus, each latent representation

xt is generated by a latent state variable zt, through a state specific normal

distribution:

p(xt|zt = k; θ) = N (xt; µk, Σk) (4.7)

where K = 3U, and θ = {{πu}U
u=1, {µk, Σk}K

k=1} is the set of generative model

parameters; Z = {zt}T
t=1 are related through a Markov process, which con-

trol the HMM state (i.e., acoustic unit) to be selected for each representation
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X = {xt}T
t=1.

VAE-HMM: E-step inference. Given the conditional independence assump-

tions in directed graphical models, we have

p(X, Z, Y; θ, γ) = p(Y|X, Z; θ, γ)p(X, Z; θ) = p(Y|X; γ)p(X|Z; θ)p(Z; θ) (4.8)

The following mean field approximation gives:

log q(Z|Y; θ, γ, ϕ)

= Eq(X|Y;ϕ) [log p(X, Z, Y; θ, γ)] + const

= Eq(X|Y;ϕ) [log p(Y|X; γ) + log p(X|Z; θ) + log p(Z; θ)] + const

= Eq(X|Y;ϕ) [log p(X|Z; θ)] + log p(Z; θ) + const

=
T

∑
t=1

(Eq(xt|yt;ϕ) [log p(xt|zt; θ)] + log p(zt|zt−1; θ)) + const

(4.9)

where const is a normalizing constant. Then by the definition of KL divergence,

Eq(xt|yt;ϕ) [log p(xt|zt; θ)]

= Eq(xt|yt;ϕ) [log q(xt|yt; ϕ)]− DKL(q(xt|yt; ϕ)∥p(xt|zt; θ))

(4.10)

where

Eq(xt|yt;ϕ) [log q(xt|yt; ϕ)] = −H(xt|yt)

= −1
2
(Dx + Dx log(2π) +

Dx

∑
j=1

log σ2
t,j)

(4.11)
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Note that q(xt|yt; ϕ) = N (xt; µt, Σt) and H(xt|yt) is its entropy. And

DKL(q(xt|yt; ϕ)∥p(xt|zt; θ)) =

1
2

Dx

∑
j=1

(
σ2

t,j

σ2
k,j

+
(µk,j − µt,j)

2

σ2
k,j

− 1 + log σ2
k,j − log σ2

t,j)
(4.12)

such that

Eq(xt|yt;ϕ) [log p(xt|zt; θ)] =

− Dx

2
log(2π)− 1

2

Dx

∑
j=1

(
σ2

t,j

σ2
k,j

+
(µk,j − µt,j)

2

σ2
k,j

+ log σ2
k,j)

(4.13)

Then we can compute Eq. 4.9 accordingly, and apply the Viterbi algorithm to

find the most probable HMM state sequence {z̃t}T
t=1, along with the resulting

inferred acoustic unit sequence a = a1, ..., an.

VAE-HMM: M-step to maximize the objective function. The objective

function is given by the variational lower bound of Eq. 4.2 with the hidden

variables H = {X, Z}:

L(Y; θ, γ, ϕ) = Eq(X,Z|Y;ϕ) [log p(Y|X, Z; θ, γ)]− DKL(q(X, Z|Y; ϕ)∥p(X, Z; θ))

(4.14)

where

Eq(X,Z|Y;ϕ) [log p(Y|X, Z; θ, γ)] = Eq(X|Y;ϕ) [log p(Y|X; θ, γ)]

=
T

∑
t=1

Eq(xt|yt;ϕ) [log p(yt|xt; γ)]

≃
T

∑
t=1

(
1
L

L

∑
l=1

log p(yt|x̃
(l)
t ; γ))

(4.15)
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x̃(l)t is drawn from q(xt|yt; ϕ) (Eq. 4.5 and 4.6), and

DKL(q(X, Z|Y; ϕ)∥p(X, Z; θ))

= Eq(Z|Y;ϕ)Eq(X|Y;ϕ)

[
log

q(X|Y; ϕ)

p(X|Z; θ)

]
−Eq(Z|Y;ϕ) [log p(Z; θ)] + const

=
T

∑
t=1

(Eq̃(zt|Y) [DKL(q(xt|yt; ϕ)∥p(xt|zt; θ))]−Eq̃(zt−1,zt|Y) [log p(zt|zt−1; θ)])

+ const
(4.16)

We denote L(Y; θ, γ, ϕ) ≃ ∑T
t=1 L̃(yt; θ, γ, ϕ), and

L̃(yt; θ, γ, ϕ) =
1
L

L

∑
l=1

log p(yt|x̃
(l)
t ; γ)

−Eq̃(zt|Y) [DKL(q(xt|yt; ϕ)∥p(xt|zt; θ))]

+ Eq̃(zt−1,zt|Y) [log p(zt|zt−1; θ)]

+ const

(4.17)

We aim to optimize Eq. 4.17 with respect to θ, γ and ϕ.

The first term in Eq. 4.17 is a function of each mean square error (MSE)

between the decoder output f (x̃(l)t ; γ) and observation yt :

log p(yt|x̃
(l)
t ; γ) = −∥ f (x̃(l)t ; γ)− yt∥2

2σ2
y

+ const (4.18)

which also represents the negative scaled reconstruction loss.

To compute the second and third terms in Eq. 4.17, we first perform

Viterbi decoding and find the 1-best sequence {z̃t}T
t=1 via the above E-step
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inference of Eq. 4.9 – 4.13. Then we use {z̃t}T
t=1 to perform Viterbi training

and approximate the expectation as:

Eq̃(zt|Y) [DKL(q(xt|yt; ϕ)∥p(xt|zt; θ))] ≃ DKL(q(xt|yt; ϕ)∥p(xt|z̃t; θ)) (4.19)

which is given by Eq. 4.12.

Finally we alternate between the E-step to infer q(Z|Y; θ, γ, ϕ) (Eq. 4.9) and

the M-step to maximize the objective function (Eq. 4.17).

4.4.3 Contextual VAE-HMM

In the standard VAE, as shown in the Figure 4.2 and Eq. 4.5 – 4.6, the inference

of q(x|yt; ϕ) only depends on yt regardless of Y \ yt. We proceed with our

investigation on incorporating the additional context frames to better estimate

the latent representation and phonetic category of the center frame.

For each time frame t, we use a truncated context window and consider

its L/R nearest left/right context frames. Denote the vector concatenation

operation as ⊕, and the new observation vector y′t for each time t is created

as y′t = yt−L ⊕ yt−L+1 ⊕ · · · ⊕ yt+R−1 ⊕ yt+R. Therefore, given the new ob-

servations Y’ = {y′t}T
t=1, we can use the same feedforward NNs as the VAE

encoder and decoder networks, and perform the same VAE algorithms as

Section 4.4.2.3, referred to as contextual VAE with DNN decoder, as shown in

Figure 4.3. The DNN decoder factorizes the joint distribution p(y′t|x̃t) as:

p(y′t|x̃t) = p(yt−L, yt−L+1, . . . , yt+R−1, yt+R|x̃t) =
t+R

∏
τ=t−L

p(yτ|x̃t) (4.20)

where each yτ is assumed to be independent of each other and is conditioned
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only on x̃t, such that the VAE model has to encode all the information of y′t

into a single vector x̃t to reconstruct y′t.

…!t-L …

……

!t !t+R

DNN

ℎ#

ℎ$

%&

!'t-L !'t !'t+R

ℎ#

ℎ$

Figure 4.3: Contextual VAE with 2-
hidden layer DNN encoder and decoder.
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Figure 4.4: Contextual VAE with 2-layer
LSTM decoder.

Additionally, we can also use an LSTM instead of DNN as the decoder

network in contextual VAE. As described in [115], the LSTM decoder can

factorize p(y′t|x̃t) with the chain rule:

p(y′t|x̃t) = p(yt−L, yt−L+1, . . . , yt+R−1, yt+R|x̃t)

= p(yt−L|x̃t)
t+R

∏
τ=t−L+1

p(yτ|yτ−1, . . . , yt−L, x̃t)
(4.21)

Thus, to reconstruct y′t it allows for capturing the sequential dependencies

across {yτ}t+R
τ=t−L, which relieves the model from encoding every single detail

in the sequence {yτ}t+R
τ=t−L.

Specifically, we first draw x̃t from q(xt|y′t; ϕ), and use x̃t to predict (via an
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affine transformation) the initial hidden states of the decoder LSTM (but not

the cell states); after initialization, the decoder LSTM network takes a zero

vector as input at each time step, and generates a sequence of outputs. Then

each output goes through an affine transformation to predict the mean of yτ,

for each τ = t− L, . . . , t + R. The process is illustrated in Figure 4.4. Note that

we use the historyless decoding technique, i.e. zero vectors as each input to

the decoder LSTM, inspired by [115, 116], such that the decoder is forced to

ignore the history and relies fully on the latent representation x̃t.

4.4.4 Experiments

4.4.4.1 Evaluation metric

To evaluate the quality of the automatically learned acoustic models, we

compute the normalized mutual information (NMI) between the hypothesized

acoustic unit sequences and the orthographic phoneme transcripts. We first

obtain acoustic unit tokenizations, i.e., 1-best HMM unit-level decode, of the

development (dev) data on which AUD training is performed; alternatively,

we can also use the learned models to obtain tokenizations of any evaluation

data that the models do not see during training. Then we align the decoded

acoustic unit sequence a = a1, ..., an with reference phoneme sequence p =

p1, ..., pm, and thus each aj(1 ≤ j ≤ n) is aligned to a pi(1 ≤ i ≤ m), based on

which the mutual information I(p; a) is computed. We normalize it by the

entropy H(p) of p, giving the normalized mutual information:

NMI(p; a) =
I(p; a)
H(p)

(4.22)
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where NMI(p; a) = 0 means a carries no information about p, and NMI(p; a) =

1 means a perfectly predicts p.

4.4.4.2 Datasets

We evaluate our AUD performance on two corpora. First, we perform AUD on

the TIMIT [117] training corpus (∼3.9 hrs), obtain the acoustic unit tokeniza-

tions, and compute NMI on the TIMIT test corpus (∼1.4 hrs). The number of

distinct reference phonemes on TIMIT is 61.

Second, we perform AUD on Switchboard Telephone Speech Corpus [118],

a collection of two-sided telephone conversations. Following [54, 93], we use

the same development (dev, 35.7 hrs) and evaluation (eval, 61.6 hrs) datasets4.

We use manual segmentations provided by the Switchboard corpus to produce

utterances with speech activity, which AUD further operates on. We perform

AUD training only on dev set, and compute NMI on both dev and eval sets.

The number of distinct reference phonemes is 46.

4.4.4.3 Acoustic feature representations

For TIMIT, we parameterize it into 39-dimensional MFCCs with first and

second order derivatives.

For Switchboard, we conduct our multilingual bottleneck (BN) network

training. We use the time delay neural network (TDNN) [74] with two major

modifications. First, hidden layers with rectified linear unit (ReLU) nonlinear-

ity are shared across languages, where 10 language collections5 from IARPA

4More details will be described in Section 4.6.1.1.
5Assamese, Bengali, Cantonese, Haitian, Lao, Pashto, Tamil, Tagalog, Vietnamese and
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Babel Program [10] and about 10-hour transcribed speech of each language are

used. 40-dimensional MFCCs (without cepstral truncation [74]) augmented

with 3-dimensional pitch and probability of voicing features are used as inputs

to the network. The final output layer is a set of individual language-specific

output layers with context-dependent triphone state targets. Second, an addi-

tional 42-dimensional bottleneck layer is added just before the final output

layer, so the final BN features are 42-dimensional. The complete architecture

is illustrated in Figure 4.5.

Finally we apply Cepstral mean and variance normalization (CMVN) per

utterance to the MFCCs of TIMIT, and CMVN per conversation side to the BN

features of Switchboard, on both of which AUD further operates.

…

Triphone targets 
for language 1Linear

bottleneck

Language-independent hidden layers

40 x 11 frame
input

Triphone targets 
for language 2

Triphone targets 
for language N

Figure 4.5: The configuration of our multilingual TDNN-based bottleneck network.

Zulu.

95



4.4.4.4 Model configurations

GMM-HMM. We use the truncation level M = 200, which implies max-

imum 200 different acoustic units can be learned from each corpus. Each

acoustic unit is modeled by 3-state HMM with a left-to-right topology and

2 Gaussians per state. For the stick-breaking construction of Dirichlet pro-

cess, we use concentration parameter γ = 1.0 on TIMIT, and γ = 10.0 on

Switchboard. Unsupervised AUD training is stopped after 10 epochs. Other

hyperparameter values are the same as [106].

VAE-HMM. After we use the GMM-HMM system to do Viterbi decoding

and obtain an HMM state sequence, we use such state-level sequence as

the {z̃t}T
t=1 in Eq. 4.19 for pre-training the VAE-HMM. After pre-training

(3 epochs), the subsequent unsupervised learning proceeds as described in

Section 4.4.2.3. Note that the count U of acoustic units is determined from

the GMM-HMM system, and here we do not continue to update the mixture

weights {πm}U
m=1. Training is stopped with a fixed number of epochs or a

minimal change of the training objective on a small validation set. The encoder

and decoder networks are feedforward NNs of 2 ReLU layers with 256 hidden

units. The latent representation x is 32-dimensional.

Contextual VAE-HMM. We experiment with the context window size from

L = R = 1 to L = R = 5 (Section 4.4.3). The DNN encoder and decoder

networks are feedforward NNs of 2 ReLU layers with 512 hidden units. The

LSTM decoder network is 2-layer with 512-dimensional hidden states where

96



each zero input is 96-dimensional. The latent space of x is 96-dimensional.

Table 4.1: Infinite HMM based AUD performance on TIMIT using MFCCs.

Acoustic Model NMI
GMM 39.09
VAE 41.17

Contextual VAE DNN decoder 44.25
LSTM decoder 44.42

Table 4.2: Infinite HMM based AUD performance on Switchboard using multilingual
bottleneck features.

Dataset Acoustic Model NMI

Dev

GMM 29.61
VAE 34.49

Contextual VAE DNN decoder 35.25
LSTM decoder 35.52

Eval

GMM 29.11
VAE 33.90

Contextual VAE DNN decoder 34.65
LSTM decoder 34.92

4.4.4.5 Results and discussion

The NMI results on TIMIT are shown in Table 4.1. The number of distinct

discovered units on training corpus is 112. The VAE-HMM, which combines

the strengths of deep learning and probabilistic graphical models, significantly

outperforms the GMM-HMM baseline. The contextual VAE-HMM alternative

gives the best results by using context window size L = R = 4, where the

LSTM decoder slightly outperforms the DNN decoder. Overall, the contextual

VAE-HMM produces large gains over the VAE-HMM.
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We find similar results on Switchboard as shown in Table 4.2, and the

number of distinct discovered units on dev set as 199. However, note that to

produce the BN feature for each time frame, its left and right context frames

have been stacked as inputs to the BN network, so that the BN feature of each

center frame has been a context-dependent acoustic representation. This indi-

cates why the contextual VAE-HMM on the BN features of Switchboard does

not produce as large a gain over VAE-HMM as on the context-independent

MFCCs of TIMIT. Also, although the unsupervised AUD training is only

performed on Switchboard dev set, we see little NMI degradation between

dev and eval sets, and it shows that a relatively robust generalization of AUD

models to the unseen data.

Above all, we propose a high-performing contextual VAE-HMM based

AUD framework. First, it is able to automatically learn subword units that are

highly correlated with orthographic phonemes. Second, it segments speech

into sequences of phoneme-like units, and gives an effective approach to

obtaining speech tokenizations that can be used to create spoken document

representations, which we discuss below.

4.5 Document representation and classification

We use document representation to refer to either a vector representation for a

spoken document, or a vector representation for each speech segment if the

document is segmented into a sequence of segments. This chapter focuses on

learning representation and performing classification either for each spoken

document, or for each speech segment independently, in the absence of the
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across-segment contextual modeling effects introduced in the previous Section

3.4.3 and 3.4.4.

4.5.1 Bag-of-words representation

After we obtain the tokenizations of speech by UTD or AUD, each spoken

document/segment is represented by a vector of unigram occurrence counts

over discovered terms, or a vector of n-gram counts over acoustic units,

respectively. Similarly in Section 3.4.1, each vector can be further scaled to

produce a term frequency-inverse document frequency (tf-idf) feature.

Also as described in Section 3.4.2, given the bag-of-words representation,

we use a stochastic gradient descent (SGD) based linear SVM [78, 79] with

hinge loss and L1/L2 norm regularization for single-label classification. In

the setting where each spoken document/segment is associated with multiple

labels, we proceed to perform a multi-label classification task. The baseline

approach is the binary relevance method, which independently trains one

binary classifier for each label, and a test data instance is evaluated by each

classifier to determine if the respective label applies to it. Specifically, we use

a set of SVMs, one for each label.

4.5.2 Convolutional neural network-based representation and
classification

AUD enables full-coverage tokenization of continuous speech into a sequence

of acoustic units, which we can exploit in a CNN-based framework to learn

a vector representation for each spoken document/segment. As shown in
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Figure 4.6, in an acoustic unit sequence a of length m, each unit ai, 1 ≤ i ≤ m,

is encoded as a fixed dimensional continuous vector, and the whole sequence

a is represented as a concatenated vector x. A shared convolutional feature

transform T spans a fixed-sized n-gram window, n≪ m, and slides over the

whole sequence. Then the hidden feature layer h1 with nonlinearities consists

of each feature vector h1
i extracted from the shared convolutional window

centered at each acoustic unit position i. Max-pooling is performed on top of

each h1
i , 1 ≤ i ≤ m, to obtain a fixed-dimensional vector representation for the

whole sequence a, i.e., a vector representation of the whole spoken document,

followed by another hidden layer h2 and a final output layer.

a0						a27 a71						a57					a94 a160 a178						a0

Softmax/Sigmoids

Max-pooling

h1

h2

a

x
T

y

Figure 4.6: CNN-based framework that operates on automatically discovered acoustic
units.

Note that this framework needs supervision for training. The output layer

is a softmax function for single-label classification, and the whole model is
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trained with categorical cross-entropy loss. For multi-label classification, as

similarly in Section 3.4.2, we replace the softmax in the output layer with a

set of sigmoid output nodes, one for each label. Since a sigmoid naturally

provides output values between 0 and 1, we train the network to minimize

the binary cross entropy loss defined as

l(Θ; x, y) = −
K

∑
k=1

(yk log ok + (1− yk) log(1− ok)) (4.23)

where Θ denotes the CNN parameters, x is the concatenated feature vector of

acoustic unit sequence, y is the target binary vector of labels, ok and yk are the

output and the target for label k, and the number of unique labels is K.

Also, the vector representation of each unique acoustic unit can be ran-

domly initialized, or pre-trained from other tasks. Specifically, we apply the

skip-gram model of word2vec [119] to pre-train one embedding vector for each

acoustic unit, via the hierarchical softmax with Huffman codes.

4.6 Experiments

4.6.1 Single-label classification

4.6.1.1 Experimental setup

For our single-label classification experiments, we use the Switchboard Cor-

pus [118], a speech collection of two-sided telephone conversations. We use

the same dev and eval data sets as in [54, 93]. Each whole conversation has two

sides and one single topic, and classification is performed on each individual-

side speech (i.e., each side is seen as one single spoken document). In the 35.7
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hour dev data, there are 360 conversation sides evenly distributed across six

different topics (recycling, capital punishment, drug testing, family finance,

job benefits, car buying), i.e., each topic label has equal number of 60 sides.

In the 61.6 hour eval data, there are another different six topics (family life,

news media, public education, exercise/fitness, pets, taxes) evenly distributed

across 600 conversation sides. Algorithm design choices are explored through

experiments on dev data. We use manual segmentations provided by the

Switchboard corpus to produce utterances with speech activity, and use the

same multilingual bottleneck features as in Section 4.4.4.3, which UTD and

AUD further operate on.

For UTD, we use the ZRTools [100] implementation as described in Sec-

tion 4.3, with the default parameters except that, we use cosine similarity

threshold δ = 0.5, and vary the diagonal median filter duration κ over

{0.6, 0.7}; we try both the exact DTW-based similarity and the rescored sim-

ilarity, and tune the similarity threshold (used to partition the graph edges)

over {0.85, 0.88, 0.90, 0.92}.

For AUD, we experiment with both the GMM-HMM (Section 4.4.1) and

VAE-HMM (Section 4.4.2.3) based models6, with the same configurations as

described in 4.4.4.4; except for the stick-breaking construction of Dirichlet

process, we vary the concentration parameter γ over {1.0, 10.0}.

For SVM-based classification, we use the bag of discovered term unigrams,

or bag of acoustic unit trigrams. On dev data, we try using the features of

6We do not employ contextual VAE-HMM (Section 4.4.3) here, since we observe few gains
when it operates on multilingual bottleneck features, as discussed in Section 4.4.4.5.
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raw counts or the features scaled by inverse document frequency. SVM reg-

ularization is tuned over L1/L2 norm, regularization constant tuned over

{0.001, 0.0001}, and SGD epochs tuned over {30, 50}. We further normalize

each feature to L2 norm unit length. Each experiment is a run of 10-fold

cross validation (CV) on the 360 conversation sides of dev data, or on the

600 sides of eval data, respectively. Note that our data size here is relatively

small (only 360 or 600) and the SGD training may give high variance in the

performance [120]. Therefore, to report classification accuracy for each con-

figuration (when varying features or models), we repeat each CV experiment

5 times, where each experiment again is a run of 10-fold CV; then for each

configuration, the mean and standard deviation of 5 experiments is reported.

For CNN-based classification, we use the same strategy to report classi-

fication accuracy, i.e., repeating experiments 5 times (where each time is a

10-fold CV) for each CNN configuration. Note that the respective 10 folds

of both dev and eval data sets are fixed the same for all the SVM and CNN

experiments. Additionally, for each 10-fold CV experiment, instead of training

on 9 folds and testing on the remaining 1 fold as in SVM, we use 8 folds

for CNN training, leave another 1 fold out as validation data; after training

each CNN model for up to 100 epochs, the model with the best accuracy

on the validation data is used for evaluation on the test set. The acoustic

unit sequence (as CNN inputs) are zero-padded to the longest length in each

dataset. We implemented the CNNs in Keras [121] with Theano [122] back-

end. CNN architectures are determined through experiments on dev data.

For SGD training we use the Adadelta optimizer [123] and mini-batch size
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18. The n-gram window size of each convolutional feature transform T is 7.

The size of each hidden feature vector h1
i (extracted from the transform T) is

1024, with ReLU nonlinearities. Thus, after max-pooling over time, we have

a 1024-dimensional vector again, which then goes through another hidden

layer h2 (also set as 1024-dimensional with ReLU) and finally into a softmax.

Dropout [124] rate 0.2 is used at each layer.

When we initialize the vector representation of each acoustic unit with a

set of pre-trained vectors (instead of random initializations), we apply the

skip-gram model of word2vec [119] to the acoustic unit tokenizations of each

data set. We use the gensim implementation [125], which includes a vector

space of embedding dimension 50 (tuned over {50, 80}), a skip-gram window

of size 5, and SGD over 20 epochs.

4.6.1.2 Results on Switchboard

Table 4.3 shows the document classification results on Switchboard. For UTD-

based classifications, we find that the default rescoring in ZRTools [100], which

is designed to filter out the filled pauses, produces comparable performance

to the raw DTW similarity scores, but the rescoring can result in much faster

connected-component clustering (Section 4.3). Note that this rescoring model

is estimated using a portion of transcribed Switchboard, but it is still a legit-

imate language-independent UTD approach while operating on languages

other than English. While a diagonal median filter duration κ of 0.6 or 0.7

gives similar results, κ = 0.7 produces longer but fewer terms, giving more

sparse feature representations. Therefore, we proceed with rescoring and
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κ = 0.7 for the following UTD experiments in Section 4.6.2.

Table 4.3: Single-label classification accuracies on Switchboard.

Dataset Feature Config Topic Model Accuracy

Dev

UTD – SVM 0.863 ± 0.010
UTD rescoring SVM 0.876 ± 0.008

SVM 0.682 ± 0.007
GMM-HMM AUD # units 184 CNN 0.657 ± 0.017

CNN w/ word2vec 0.728 ± 0.011
SVM 0.686 ± 0.005

GMM-HMM AUD # units 199 CNN 0.749 ± 0.008
CNN w/ word2vec 0.763 ± 0.011

VAE-HMM AUD # units 199 SVM 0.730 ± 0.006
CNN w/ word2vec 0.793 ± 0.010

Eval

UTD – SVM 0.851 ± 0.003
UTD rescoring SVM 0.875 ± 0.003

SVM 0.710 ± 0.005
GMM-HMM AUD # units 184 CNN 0.708 ± 0.013

CNN w/ word2vec 0.762 ± 0.007
SVM 0.700 ± 0.005

GMM-HMM AUD # units 199 CNN 0.690 ± 0.015
CNN w/ word2vec 0.767 ± 0.013

VAE-HMM AUD # units 199 SVM 0.777 ± 0.003
CNN w/ word2vec 0.823 ± 0.005

For the classifications that use the units from GMM-HMM based AUD,

CNN without word2vec pre-training usually gives comparable results with

SVM; however, using word2vec pre-training, CNN substantially outperforms

the competing SVM in all cases. Also as the concentration parameter γ in

AUD increases from 1.0 to 10.0 (yielding less concentrated distributions), we

have more unique acoustic units in the tokenizations of both data sets, from

184 to 199, and γ = 10.0 usually produces better results than γ = 1.0.

Also, the results based on VAE-HMM AUD are dramatically better than
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those based on GMM-HMM AUD, and such classification performance gains

are consistent with the NMI improvements shown in Section 4.4.4.5. Thus,

the progress in the intrinsic NMI measure of our AUD model development is

demonstrated to predict the improved efficacy of our AUD-based real speech

applications.

4.6.2 Multi-label classification

4.6.2.1 Experimental setup

We further evaluate our classification performance on the same speech corpora

released by the DARPA LORELEI (Low Resource Languages for Emergent

Incidents) Program, as introduced in Section 3.5.1.1 of Chapter 3. For each

language there are a number of speech segments, and each speech segment is

viewed as either in-domain or out-of-domain. In-domain data is defined as any

speech segment relating to an incident or incidents, and in-domain data will

fall into a set of domain-specific topic categories; these categories are known as

situation types, or in-domain topics, as shown in Table 3.1 of Chapter 3. There

are 11 situation types: “Civil Unrest or Wide-spread Crime”, “Elections and

Politics”, “Evacuation”, “Food Supply”, “Urgent Rescue”, “Utilities, Energy, or

Sanitation”, “Infrastructure”, “Medical Assistance”, “Shelter”, “Terrorism or

other Extreme Violence”, and “Water Supply”. We consider “Out-of-domain”

as the 12th topic label, so each speech segment either corresponds to one or

multiple in-domain topics, or is “Out-of-domain”.

In this chapter, classification is always performed on each speech segment

independently. As similarly in Section 3.5.1.2, we use average precision (AP,
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equal to the area under the precision-recall curve) as the evaluation metric.

However, we not only compute the micro-averaged precisions and recalls

across 11 in-domain topic labels, but also compute them across the overall

12 labels (including the “Out-of-domain” label). Thus, we report both the

AP across 11 in-domain topics, and the AP across overall 12 labels, as the

evaluation results.

For each configuration, only a single 10-fold CV result is reported, since

we observe less variance in results here than in Switchboard. We have 16.5

hours in-domain data and 8.5 hours out-of-domain data for Turkish, 7.7 and

7.2 hours for Mandarin, and the splits of rest three languages, Tigrinya, Oromo

and Russian, are shown in Figure 4.7, 4.8 and 4.9. We use the same CNN archi-

tecture as on Switchboard but make the changes as described in Section 4.5.2.

Also we use mini-batch size 30 and fix the training epochs as 100. All CNNs

use word2vec pre-training.

Additionally, we implement another set of classification baselines using the

standard ASR systems built with transcribed speech. Turkish ASR is trained

with 80 hour transcribed Turkish telephone conversational speech from Babel

corpus [10]. One Mandarin ASR is trained with about 170 hour transcribed

HKUST Mandarin telephone speech (LDC2005T32 and LDC2005S15), and the

other is trained with about 600 hour GALE Chinese Broadcast News Speech

[84]. The acoustic models are the sequence-trained TDNNs based on lattice-

free maximum mutual information (LF-MMI) [75]. Note that most LORELEI

speech is broadcast news, so there is severe domain and channel mismatch

between LORELEI datasets and the ASR systems built with telephone speech.
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Thus we also experiment with including the monolingual text provided by

the LORELEI language packs into the language model training data, and

rebuilding the decoding graph with the new language model, such that the

vocabulary size is expanded to mitigate the domain mismatch issue.

Also, for Tigrinya, Oromo and Russian of which transcribed speech is

unavailable to us, we employ the universal phone set ASR introduced in

Section 3.3 and 3.5.1.3 of Chapter 3 as another baseline.

Again, the acoustic features on which UTD and AUD operate are multilin-

gual bottleneck features as described in Section 4.4.4.3, while here we conduct

the multilingual BN network training with 24 Babel language collections7,

and about 10 hours per language.

4.6.2.2 Results on LORELEI datasets

As shown in Table 4.4, we note that on LORELEI datasets, UTD-based systems

do not always outperform AUD-based ones as what we find on Switchboard

(Section 4.6.1.2), presumably because LORELEI speech is much more noisy

and as compared to the model-based AUD, the frame-wise cosine similarity

computations in DTW-based UTD are less robust to noisy speech frames.

Note that CNN-based systems dramatically outperform SVMs on the larger

sized Switchboard datasets (35.7/61.6 hours, Section 4.6.1), while the CNNs

on LORELEI corpora do not produce as a gain over SVMs as on Switchboard.

Since each 15-25 hour LORELEI corpus with 12 topic labels is a relatively

7Cantonese, Assamese, Bengali, Pashto, Turkish, Tagalog, Vietnamese, Haitian, Swahili,
Lao, Tamil, Kurmanji, Zulu, Tokpisin, Cebuano, Kazakh, Telugu, Guarani, Igbo, Amharic,
Mongolian, Javanese, Dholuo and Georgian.
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Table 4.4: Multi-label classification average precisions on two LORELEI languages.
Vocab expansion denotes the use of a new language model that includes additional
monolingual text during training. ‘In-domain’ denotes the ASR built with about 600
hour transcribed Chinese broadcast news speech.

Dataset Feature Model Overall In-domain topics

Turkish
UTD SVM 0.627 0.577
AUD SVM 0.672 0.614

(24.96 hours, AUD CNN 0.673 0.608
2095 segments) ASR SVM 0.644 0.598

ASR, vocab expansion SVM 0.707 0.672

Mandarin
UTD SVM 0.478 0.277
AUD SVM 0.469 0.232

(14.89 hours, AUD CNN 0.463 0.231
724 segments) ASR SVM 0.568 0.410

ASR, vocab expansion SVM 0.602 0.464
ASR, in-domain SVM 0.677 0.558

small amount of data compared to the 35.7/61.6 hour Switchboard corpus

with 6 labels, it indicates more supervised labeled data is needed to enable

competitive CNNs.

Furthermore, UTD/AUD-based systems achieve comparable results with

a domain mismatched Turkish ASR, while falling short on Mandarin. Both

ASR systems with vocabulary expansion (i.e. more in-domain language model

training data) show substantial improvements, and the in-domain ASR trained

with sufficient supervised data gives the topline results.

For Tigrinya, Oromo and Russian where no sufficient transcribed training

data is available to build a standard ASR, we employ the universal phone

set ASR without adaptation or with adaptation on very small amount of data

(Section 3.5.1.3; we use around 10 hour transcribed read speech from VoxForge

corpus [126] as the Russian adaptation data). We compare the performance
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Figure 4.7: 10-fold CV APs on Tigrinya when varying the number of training folds.
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Figure 4.8: 10-fold CV APs on Oromo when varying the number of training folds.
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Figure 4.9: 10-fold CV APs on Russian when varying the number of training folds.

among UTD, AUD and ASR on each individual language by varying the

amount of training data; we split each dataset into 10 folds, and perform

10-fold CV 9 times (with SVMs), varying the number of folds for training

from 1 to 9. As illustrated in Figure 4.7, 4.8 and 4.9, as we use more folds

for training, performance improves across the board. Adapted ASR-based

systems still give the best results in most cases, while UTD and AUD based

ones achieve comparable numbers.

Furthermore, we find in Table 4.4, AUD-based SVMs are more competitive

than UTD-based SVMs on the larger corpus, i.e. Turkish, while being less com-

petitive on the smaller sized Mandarin. We also find AUD more competitive

on the larger sized Tigrinya in Figure 4.7, while being comparable on smaller

sized Oromo and Russian in Figure 4.8 and Figure 4.9.
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4.7 Conclusion

We first present a state-of-the-art phonetic discovery approach using con-

textual VAE-HMM. Then we demonstrate that both UTD and AUD are vi-

able technologies for producing effective tokenizations of speech that enable

spoken document classification performance comparable to using a domain-

mismatched ASR or a universal phone set ASR. Importantly, such unsuper-

vised approaches remove dependency on the typical linguistic resources that

standard ASR alternative strongly relies on.

We find that the classifications with DTW-based UTD outperform the per-

formance with VAE-HMM based AUD on the cleaner Switchboard corpus,

while generally falling behind on the more noisy LORELEI corpora. More-

over, given sufficient training data on Switchboard, AUD-based CNNs with

word2vec pre-training outperform AUD-based SVMs.
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Chapter 5

Conclusion

The body of work contained in this dissertation records the many signifi-

cant improvements to various speech retrieval techniques which enable the

evolution from proof-of-concept experiments on clean and extensively an-

notated corpora into low-resource efficient systems operated on real-world

unstructured speech. Current state-of-the-art speech retrieval technologies

strongly rely on various annotated linguistic resources, e.g. transcribed speech

and pronunciation lexicons. Given the vast language diversities, sourcing

such annotated collections can be difficult or restricted, especially for large

quantities of unwritten languages without orthography. Also, the massive

volumes of streaming data from sites like YouTube present large challenges to

the scalability of the automated processing systems. Therefore, the aim of our

work has been to identify effective ways to advance scalable speech retrieval

techniques in resource-scarce scenarios.

113



5.1 Summary

This thesis has been focused on two lines of research, spoken keyword retrieval

and spoken document classification.

5.1.1 Low-resource efficient keyword retrieval

The central theme of the first research area – keyword retrieval – is to address

the technological challenges necessary to extend the point process model for

keyword search in the low-resource settings where the amount of transcribed

speech is severely limited and the pronunciation dictionaries are incomplete.

In Chapter 2, we began with introducing the context-dependent DNNs

in the context of an LVCSR system, and proceeded to translate the improved

DNN acoustic models into more accurate phone posterior estimations, so as to

replace the old-fashioned phoneme recognizer that use monophone classes as

training targets. In turn, the more accurate phonetic event estimations given

to the PPM framework were demonstrated to make for state-of-the-art OOV

search performance; also, though the PPM overall performance trailed the

HMM-based search, they combined to post dramatic fusion gains over the

LVCSR alone.

Furthermore, in order to capture the acoustic variations in differing pho-

netic context, DNN-HMM based LVCSR is built with the triphone HMMs,

and the DNN serves to estimate the tied triphone state (known as senone)

posteriors. Also to that end, we aim to enable PPM’s compatibility with such

context-dependent phonetic modeling. First, we defined the new phonetic

event as each tied triphone state event, and extract the event streams from the
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same DNN output posteriors as in LVCSR. Second, we developed a procedure

to build PPMs based on the tied triphone state labels (instead of the dictionary

phonemes used as before), which allowed PPM to decode on the new context-

dependent event streams. Experiments of the PPM modeling on such new

search index have demonstrated substantially improved search performance.

Finally, we developed a PPM-based lattice generation algorithm. We first

ran parallel word detectors for entire vocabulary and used the independent

detections to construct a “words-on-nodes” lattice that accommodated the

duration uncertainties in PPM decoding. Then we converted it to a standard

lattice with word and PPM acoustic likelihood (as acoustic score) on each

arc, and processed it with standard FST-based algorithms such as language

model composition, KWS indexing and ASR decoding. We showed that such

detection-based lattice generation framework provided competitive keyword

search and ASR performance, and compared with HMM-based ASR, it is still

a computationally light model and being an alternative path to LVCSR.

5.1.2 Spoken document classification for almost-zero-resource
languages

The theme of the second research area is to perform spoken document classifi-

cation for languages where the resources of transcribed speech are scarce.

To transform audio into indexable tokens, we first employed a universal

phone set ASR which used a common phonemic representation shared across

languages in Chapter 3. After decoding speech into orthographic words,

we translated each word into English by looking up a bilingual lexicon that
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was either preexisting or derived from the word alignments via a machine

translation system; we did not apply a MT system to explicitly decode the

speech transcripts, so as to simulate the realistic setting where no parallel

training data exists to build the standard MT system. Thus, we were able

to build an English-language topic classifier by obtaining English text/topic

pairs from multiple resourceful languages, which allows for a near language-

agnostic operation. We showed that our systems achieved very competitive

results in the NIST LoReHLT 2017 Evaluations [16].

Note that audio collected in the wild can be extremely long, of variable

length, and contain multiple class label shifts (e.g. topic shifts) at variable

locations in the audio, so each audio instance, known as a spoken document,

often needs to be split into a sequence of speech segments. Our above system

proceeded to classify each segment individually. However, in Chapter 3 we

further outlined novel contextual modeling frameworks that encoded context

dependencies across adjacent segments into the classification process. We

demonstrated the progression of models from context-independent to context-

aware provided considerable performance improvements. Also, our proposed

attention based contextual classifiers, which were able to selectively detect

and use relevant contexts over irrelevant ones, consistently outperformed the

recurrent neural network based alternatives.

In Chapter 4, other than supervised training of a universal phone model

as above, we began our investigation of transforming audio into indexable

tokens via unsupervised alternatives. The first examined approach was to

automatically detect indexable terms via acoustic repetitions, referred to as
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UTD. The second exploited approach was to jointly identify a phonemic in-

ventory and segment speech into sequences of phoneme-like units, known as

AUD. We demonstrated a proposed context-sensitive variational autoencoder

composed with HMMs to achieve the state-of-the-art AUD performance in the

intrinsic normalized mutual information measures. To further quantify the

effect of our improved AUD models in creating document representations, we

proceeded with topic classification experiments on Switchboard datasets. We

observed that the classification performance progressed consistently with the

NMI improvements, and the proposed CNN based representation learned on

the acoustic unit sequences significantly outperformed the bag-of-words rep-

resentation. Next, we found that, the the classifications via VAE-HMM based

AUD trailed the DTW-based UTD results on the cleaner Switchboard, while

generally being more competitive on the more noisy LORELEI speech corpora.

Unquestionably, the standard ASR systems trained via hundred hours of

transcribed speech still gave the topline results. However, we have observed

that UTD and AUD based classifications achieved comparable results against

the universal phone set ASR. Importantly, the viable unsupervised speech

technologies – lexical or phonetic discovery – are able to automatically identify

indexing tokens regardless of the language orthography that standard ASR

strongly relies on.

5.2 Future directions

We outline a number of promising future directions on further improving the

various techniques described in the preceding chapters.
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Supporting PPM with language-independent acoustic modeling. In Chap-

ter 2, DNNs via the supervised monolingual ASR training have been used

in support of producing the phonetic event streams as PPM search index.

Another natural alternative is to use the universal phone set ASR from Chap-

ter 3 to produce the phone/triphone posteriorgrams for the phonetic event

selection. Going forward, we aim to enables PPM’s viability in language-

independent processing. Additionally, [127, 128] showed that the mismatched

crowdsourcing in which nonspeakers of the language write what they hear

could provide useful probabilistic transcripts, and cross-lingual ASR adap-

tation on such noisy transcripts has demonstrated improved phoneme error

rates. This suggests a way to improve the universal phone modeling for a new

language of interest.

Weakly supervised learning for AUD. In Chapter 4, both lexical and pho-

netic discovery approaches have been examined but the synergies between

the two have yet to be explored. [129, 130] similarly assumed that repetitions

of the same word shared the same or similar sequence of subword units. Thus

[130] used the GMM-HMM based AUD models to decode pairs of repeated

words, and constrained the two acoustic unit sequences decoded from each

word pair to be similar, which demonstrated marginal NMI improvements

in AUD performance. Toward this end, we would also suggest that the word

pairs detected via UTD could provide weak but useful supervision informa-

tion for the unsupervised acoustic model learning, and the state-of-the-art
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deep generative AUD might likely benefit more from it. Vice versa, the im-

proved acoustic unit sequences can also aid in different UTD approaches by

being segmented into terms [131, 108], or by providing initial speech segmen-

tation for the subsequent clustering process [132].

Using AUD for spoken document retrieval. [102] has showed that UTD

could be useful in the ranked retrieval of spoken documents, without the need

for traditional transcription or ASR. A promising next step is to look to if the

n-gram acoustic units identified by AUD can be similarly effective indexing

units for the same or similar retrieval tasks, and provide complementary use.

Also, the search engine presented in [103] demonstrated UTD could facilitate

corpus exploration by linking similar content in different recordings, and we

could instead consider AUD to be applicable to the same functionality.
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J. Černockỳ, and S. Gangashetty, “Topic identification of spoken doc-

uments using unsupervised acoustic unit discovery,” in Proc. ICASSP,

2017.

[98] H. Kamper, A. Jansen, and S. Goldwater, “Unsupervised word seg-

mentation and lexicon discovery using acoustic word embeddings,”

IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP),

vol. 24, no. 4, pp. 669–679, 2016.

[99] A. S. Park and J. R. Glass, “Unsupervised pattern discovery in speech,”

IEEE Transactions on Audio, Speech, and Language Processing, vol. 16, no. 1,

pp. 186–197, 2008.

[100] A. Jansen and B. Van Durme, “Efficient spoken term discovery using

randomized algorithms,” in Proc. ASRU, 2011, https://github.com/

arenjansen/ZRTools.

[101] V. Lyzinski, G. Sell, and A. Jansen, “An evaluation of graph clustering

methods for unsupervised term discovery,” in Proc. Interspeech, 2015.

133

https://github.com/arenjansen/ZRTools
https://github.com/arenjansen/ZRTools


[102] J. White, D. Oard, A. Jansen, J. Paik, and R. Sankepally, “Using zero-

resource spoken term discovery for ranked retrieval,” in Proceedings

of the 2015 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, 2015, pp.

588–597.

[103] D. W. Oard, R. Sankepally, J. White, and C. Harman, “Vapor Engine:

Demonstrating an early prototype of a language-independent search

engine for speech,” in Proceedings of the 2016 ACM on Conference on

Human Information Interaction and Retrieval. ACM, 2016, pp. 301–304.

[104] A. Jansen, E. Dupoux, S. Goldwater, M. Johnson, S. Khudanpur,

K. Church, N. Feldman, H. Hermansky, F. Metze, R. Rose et al., “A

summary of the 2012 JHU CLSP workshop on zero resource speech tech-

nologies and models of early language acquisition,” in Proc. ICASSP,

2013.

[105] C.-y. Lee and J. Glass, “A nonparametric bayesian approach to acoustic

model discovery,” in Proc. ACL, 2012.
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