291 research outputs found

    Energy shaping control of underactuated mechanical systems with fluidic actuation

    Get PDF
    Energy shaping is a remarkably effective control strategy which can be applied to a wide range of systems, including underactuated mechanical systems. However, research in this area has generally neglected actuator dynamics. While this is often appropriate, it might result in degraded performance in the case of fluidic actuation. In this work we present some new results on energy shaping control for underactuated mechanical systems for which the control action is mediated by a pressurized ideal fluid. In particular, we introduce an extended multi-step energy shaping and damping-assignment controller design procedure that builds upon the Interconnection-and-damping-assignment Passivity-based-control methodology in a modular fashion to account for the pressure dynamics of the fluid. Stability conditions are assessed with a Lyapunov approach, the effect of disturbances is discussed, and the case of redundant actuators is illustrated. The proposed approach is demonstrated with numerical simulations for a modified version of the classical ball-on-beam example, which employs two identical cylinders, either hydraulic or pneumatic, to actuate the beam

    Observation and control of a ball on a tilting

    Get PDF
    The ball and plate system is a nonlinear MIMO system that has interesting characteristics which are also present in aerospace and industrial systems, such as: instability, subactuation, nonlinearities such as friction, backlash, and delays in the measurements. In this work, the modeling of the system is based on the Lagrange approach. Then it is represented in the state-space form with plate accelerations as inputs to the system. These have a similar effect as applying torques. In addition, the use of an internal loop of the servo system is considered. From the obtained model, we proceed to carry out the analysis of controllability and observability resulting in that the system is globally weak observable and locally controllable in the operating range. Then, the Jacobi linearization is performed to use the linearized model in the design of linear controllers for stabilization. On the other hand, analyzing the internal dynamics of the ball and plate system turns out to be a non-minimum phase system, which makes it difficult to design the tracking control using the exact model. This is the reason why we proceed to make approximations. Using the approximate model, nonlinear controllers are designed for tracking using different approaches as: feedback linearization for tracking with and without integral action, backstepping and sliding mode. In addition, linear and nonlinear observers are designed to provide full state information to the controller. Simulation tests are performed comparing the different control and observation approaches. Moreover, the effect of the delay in the measurement is analyzed, where it is seen that the greater the frequency of the reference signal the more the error is increased. Then, adding the Smith predictor compensates the delay and reduces the tracking error. Finally, tests performed with the real system. The system was successfully controlled for stabilization and tracking using the designed controllers. However, it is noticed that the effect of the friction, the spring oscillation and other non-modeled characteristics significantly affect the performance of the control.Tesi

    Flat systems, equivalence and trajectory generation

    Get PDF
    Flat systems, an important subclass of nonlinear control systems introduced via differential-algebraic methods, are defined in a differential geometric framework. We utilize the infinite dimensional geometry developed by Vinogradov and coworkers: a control system is a diffiety, or more precisely, an ordinary diffiety, i.e. a smooth infinite-dimensional manifold equipped with a privileged vector field. After recalling the definition of a Lie-Backlund mapping, we say that two systems are equivalent if they are related by a Lie-Backlund isomorphism. Flat systems are those systems which are equivalent to a controllable linear one. The interest of such an abstract setting relies mainly on the fact that the above system equivalence is interpreted in terms of endogenous dynamic feedback. The presentation is as elementary as possible and illustrated by the VTOL aircraft

    Stabilization of Uncertain Systems using Backstepping and Lyapunov Redesign

    Get PDF
    This article presents stabilization method for uncertain system using backstepping technique and Lyapunov redesign. The design begins by obtaining stabilizing function for unperturbed system using control Lyapunov function. As such, the stabilizing function guarantees asymptotic stability in the sense of Lyapunov. The control Lyapunov function is re-used in the re-design phase whereby the nonlinear robust function is then augmented with pre-designed stabilizing function for robustness toward uncertainties. Lyapunov redesign is used in designing overall robust stabilizing function which guarantees asymptotic stability toward uncertainties and also toward any perturbed states within asymptotic stability region

    Ball and Beam Control using Adaptive PID based on Q-Learning

    Get PDF
    The ball and beam system is one of the most used systems for benchmarking the controller response because it has nonlinear and unstable characteristics. Furthermore, in line with the increasing of computation power availability and artificial intelligence research intensity, especially the reinforcement learning field, nowadays plenty of researchers are working on a learning control approach for controlling systems. Due to that, in this paper, the adaptive PID controller based on Q-Learning (Q-PID) was used to control the ball position on the ball and beam system. From the simulation result, Q-PID outperforms the conventional PID and heuristic PID controller technique with the swifter settling time and lower overshoot percentage

    Vibration attenuation control of ocean marine risers with axial-transverse couplings

    Get PDF
    The target of this paper is designing a boundary controller for vibration suppression of marine risers with coupling mechanisms under environmental loads. Based on energy approach and the equations of axial and transverse motions of the risers are derived. The Lyapunov direct method is employed to formulated the control placed at the riser top-end. Proof of existence and uniqueness of the solutions of the closed-loop system is provided. Stability analysis of the closed-loop system is also included

    Virtual actuators with virtual sensors

    Get PDF
    The virtual actuator approach to bond graph based control is extended to use virtual sensor inputs; this allows relative degree conditions on the controller to be relaxed. Furthermore, the effect of the transfer system can be eliminated from the closed loop system. Illustrative examples are given

    A Hybrid Controller for Stability Robustness, Performance Robustness, and Disturbance Attenuation of a Maglev System

    Get PDF
    Devices using magnetic levitation (maglev) offer the potential for friction-free, high-speed, and high-precision operation. Applications include frictionless bearings, high-speed ground transportation systems, wafer distribution systems, high-precision positioning stages, and vibration isolation tables. Maglev systems rely on feedback controllers to maintain stable levitation. Designing such feedback controllers is challenging since mathematically the electromagnetic force is nonlinear and there is no local minimum point on the levitating force function. As a result, maglev systems are open-loop unstable. Additionally, maglev systems experience disturbances and system parameter variations (uncertainties) during operation. A successful controller design for maglev system guarantees stability during levitating despite system nonlinearity, and desirable system performance despite disturbances and system uncertainties. This research investigates five controllers that can achieve stable levitation: PD, PID, lead, model reference control, and LQR/LQG. It proposes an acceleration feedback controller (AFC) design that attenuates disturbance on a maglev system with a PD controller. This research proposes three robust controllers, QFT, Hinf , and QFT/Hinf , followed by a novel AFC-enhanced QFT/Hinf (AQH) controller. The AQH controller allows system robustness and disturbance attenuation to be achieved in one controller design. The controller designs are validated through simulations and experiments. In this research, the disturbances are represented by force disturbances on the levitated object, and the system uncertainties are represented by parameter variations. The experiments are conducted on a 1 DOF maglev testbed, with system performance including stability, disturbance rejection, and robustness being evaluated. Experiments show that the tested controllers can maintain stable levitation. Disturbance attenuation is achieved with the AFC. The robust controllers, QFT, Hinf , QFT/ Hinf, and AQH successfully guarantee system robustness. In addition, AQH controller provides the maglev system with a disturbance attenuation feature. The contributions of this research are the design and implementation of the acceleration feedback controller, the QFT/ Hinf , and the AQH controller. Disturbance attenuation and system robustness are achieved with these controllers. The controllers developed in this research are applicable to similar maglev systems

    Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2001.Includes bibliographical references (leaves 308-316).This thesis is devoted to nonlinear control, reduction, and classification of underactuated mechanical systems. Underactuated systems are mechanical control systems with fewer controls than the number of configuration variables. Control of underactuated systems is currently an active field of research due to their broad applications in Robotics, Aerospace Vehicles, and Marine Vehicles. The examples of underactuated systems include flexible-link robots, nobile robots, walking robots, robots on mobile platforms, cars, locomotive systems, snake-type and swimming robots, acrobatic robots, aircraft, spacecraft, helicopters, satellites, surface vessels, and underwater vehicles. Based on recent surveys, control of general underactuated systems is a major open problem. Almost all real-life mechanical systems possess kinetic symmetry properties, i.e. their kinetic energy does not depend on a subset of configuration variables called external variables. In this work, I exploit such symmetry properties as a means of reducing the complexity of control design for underactuated systems. As a result, reduction and nonlinear control of high-order underactuated systems with kinetic symmetry is the main focus of this thesis. By "reduction", we mean a procedure to reduce control design for the original underactuated system to control of a lowerorder nonlinear or mechanical system. One way to achieve such a reduction is by transforming an underactuated system to a cascade nonlinear system with structural properties. If all underactuated systems in a class can be transformed into a specific class of nonlinear systems, we refer to the transformed systems as the "normal form" of the corresponding class of underactuated systems. Our main contribution is to find explicit change of coordinates and control that transform several classes of underactuated systems, which appear in robotics and aerospace applications, into cascade nonlinear systems with structural properties that are convenient for control design purposes. The obtained cascade normal forms are three classes of nonlinear systems, namely, systems in strict feedback form, feedforward form, and nontriangular linear-quadratic form. The names of these three classes are due to the particular lower-triangular, upper-triangular, and nontriangular structure in which the state variables appear in the dynamics of the corresponding nonlinear systems. The triangular normal forms of underactuated systems can be controlled using existing backstepping and feedforwarding procedures. However, control of the nontriangular normal forms is a major open problem. We address this problem for important classes of nontriangular systems of interest by introducing a new stabilization method based on the solutions of fixed-point equations as stabilizing nonlinear state feedback laws. This controller is obtained via a simple recursive method that is convenient for implementation. For special classes of nontriangular nonlinear systems, such fixed-point equations can be solved explicitly ...by Reza Olfati-Saber.Ph.D
    • ā€¦
    corecore