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Abstract
Energy shaping is a remarkably effective control strategy which can be applied
to a wide range of systems, including underactuated mechanical systems. How-
ever, research in this area has generally neglected actuator dynamics. While
this is often appropriate, it might result in degraded performance in the case
of fluidic actuation. In this work we present some new results on energy
shaping control for underactuated mechanical systems for which the control
action is mediated by a pressurized ideal fluid. In particular, we introduce
an extended multi-step energy shaping and damping-assignment controller
design procedure that builds upon the Interconnection-and-damping-assignment
Passivity-based-control methodology in a modular fashion to account for the
pressure dynamics of the fluid. Stability conditions are assessed with a Lyapunov
approach, the effect of disturbances is discussed, and the case of redundant
actuators is illustrated. The proposed approach is demonstrated with numerical
simulations for a modified version of the classical ball-on-beam example, which
employs two identical cylinders, either hydraulic or pneumatic, to actuate the
beam.
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1 INTRODUCTION

Energy shaping control has been successfully applied to a wide range of systems, including mechanical systems,1,2

electro-mechanical and power systems,3 nonholonomic systems described by kinematic models,4 and recently soft con-
tinuum manipulators.5 The Interconnection-and-damping-assignment Passivity-based control (IDA-PBC) methodology is
particularly popular since it provides a physical interpretation of the control action within the port-Hamiltonian frame-
work, and it does not rely on high gains.6 Initial research on IDA-PBC focused on systems free from disturbances and
from physical damping. The effect of damping was then investigated in References 7 and 8, while the effect of dissipative
forces was accounted for in Reference 9. Recently, more sophisticated designs were proposed to compensate the effects of
matched disturbances10 and of unmatched disturbances under some structural assumptions.11 In addition, the effect of
input saturation was investigated in Reference 12.

Abbreviations: IDA-PBC, interconnection and damping assignment passivity-based control; PDEs, partial differential equations
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Nevertheless, most of the research on IDA-PBC for mechanical systems has neglected actuator dynamics. A notable
result in this respect is the study of weakly-coupled electro-mechanical systems presented in Reference 13. Although
neglecting the actuator dynamics might be appropriate in some cases, provided for instance that the actuators have
higher bandwidth compared to the mechanical system,14 it might result in degraded performance in the case of
fluidic actuation. With the term fluidic actuation we refer to all those cases where the control input acts on the sys-
tem by means of a pressurized ideal fluid, either liquid or gas. Typical examples are hydraulic actuators, which are
ubiquitous in tilt trailers, excavators, and cranes,15,16 and pneumatic actuators, which are commonly employed in fac-
tory automation and in lightweight or compliant robots.17,18 Fluidic actuation typically consists of a pressure source,
supply pipes, a control valve, and a pump producing the control action in the form of a flow rate, and a cylinder
transferring the forces to the mechanism. In some applications, including hydraulic tilt trailers and cranes, two or
more cylinders can be arranged in antagonistic pairs to provide rotational motion while also resulting in redundant
actuation.

From a theoretical viewpoint, fluidic actuation introduces a further challenge in the control of underactuated
mechanical systems, since the control input is mediated by the pressure dynamics of the fluid. The study of sys-
tems characterized by fluid-structure interaction was first approached with a port-Hamiltonian model in Reference
19. Other notable results in this respect are the passivity-based control of a continuous-stirred tank reactor,20 and
the study of the stability conditions for boundary control in a 1-D spatial domain.21 Port-Hamiltonian modeling
and boundary energy shaping control of a compressible fluid in 1-D were presented in Reference 22. More recently,
port-Hamiltonian modeling of two-phase flows was investigated in Reference 23. The passivity based control of a fully
actuated double-acting hydraulic cylinder was outlined in Reference 24 by employing a locally linear dynamic assign-
ment. Finally, the energy shaping control of a fully actuated hydraulic drive was presented in Reference 25, however
the compressibility of the liquid was neglected. Besides energy shaping approaches, the study of fluid-structure inter-
actions has also motivated research on systems characterized by cascades of partial-differential-equations (PDEs) by
employing backstepping transformations and averaging in infinite dimensions.26 Additionally, the open-loop control of
a fluid in a pipe was investigated in Reference 27 by employing a flatness-based approach, while optimal control tech-
niques were employed for the velocity-field control of an autonomous excavator fully actuated by hydraulic cylinders
in Reference 16. In summary, the energy shaping control of underactuated mechanical systems with fluid-structure
interactions has not been fully addressed to date. In our recent work,28,29 we have investigated the energy shap-
ing control of soft continuum manipulators with fluidic actuation. Nevertheless, the resulting controllers are only
applicable to a narrow class of systems, and they do not include damping assignment, which is an integral part of
IDA-PBC.

This work investigates the energy shaping control of underactuated mechanical system with fluidic actuation and
presents the following new results.

• An extended multi-step energy shaping controller design procedure for underactuated mechanical systems with
fluidic actuation is detailed. The proposed approach comprises potential energy shaping, kinetic energy shaping with-
out imposing additional restrictions on the structure of the inertia matrix, and damping assignment, which was
absent in References 28 and 29. In addition, it is applicable in the presence of redundant actuators. As a result,
new matching conditions are obtained, while the PDEs that characterize the IDA-PBC for direct actuation are
preserved.

• A new nonlinear control law, which applies to fluidic actuators characterized by a nonlinear relationship between
volume and position is constructed, thus catering for different arrangements of hydraulic or pneumatic cylinders. Both
isothermal liquids and ideal gases are considered.

• Stability conditions are assessed with a Lyapunov approach. The effect of vanishing bounded disturbances is discussed
and compared to the baseline IDA-PBC.

• The proposed approach is demonstrated with numerical simulations for a modified ball-on-beam system which is
actuated by two identical cylinders. Both hydraulic and pneumatic actuation are illustrated. The controller is compared
with a traditional IDA-PBC design that neglects the pressure dynamics, and with an alternative algorithm constructed
using a backstepping approach.

The rest of this article is organized as follows: the problem formulation is outlined in Section 2; the main result is
detailed in Section 3; simulation results are presented in Section 4; concluding remarks are discussed in Section 5.
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2 PROBLEM FORMULATION

A brief overview of IDA-PBC6 is provided for completeness. Subsequently, the system model considered in this work is
defined.

2.1 Overview of IDA-PBC

Consider an underactuated mechanical system with n degrees-of-freedom (DOFs) characterized by the Hamiltonian

H(q, p) = 1
2

pTM(q)−1p + Ω(q), (1)

where the inertia matrix is M(q) = M(q)T > 0, and Ω(q) describes the potential energy. For ease of notation, M and M(q)
are used interchangeably throughout the article. The system states are the position q ∈ Rn and the momenta p = Mq̇ ∈
Rn. The system dynamics expressed in port-Hamiltonian form in the absence of disturbances is

[
q̇
ṗ

]
=

[
0 I
− I −D

][
∇qH
∇pH

]
+

[
0
G

]
u, y = GT∇pH. (2)

The control input is u(t) ∈ Rm and the input matrix is G (q) ∈ Rn×m, with rank (G) = m < n for all q ∈ Rn in case of
underactuation. The term I indicates an identity matrix of appropriate dimension, D = DT ≥ 0 is the damping matrix,
∇qH is the vector of partial derivatives of H with respect to q, and∇pH is the vector of partial derivatives with respect to p.
The control aim of IDA-PBC corresponds to stabilizing the equilibrium (q, p) = (q∗, 0), which can be unstable in open-loop
but satisfies the admissibility condition ∇qΩ(q∗) = 0 (i.e., it is an extremum of Ω), thus it is a regulation problem.

The IDA-PBC control law is constructed to achieve the closed-loop dynamics

[
q̇
ṗ

]
=

[
0 M−1Md

−MdM−1 J2 − Dd

][
∇qHd

∇pHd

]
, (3)

where Hd = 1
2

pTM−1
d p + Ωd, and the closed-loop damping is defined as Dd = (GkvGT + DM−1Md). The design parameters

in (3) are the potential energy Ωd, the inertia matrix Md = MT
d > 0, the matrix J2 = −JT

2 , and the constant gain matrix
kv = kT

v > 0. The potential energy Ωd should be defined such that it admits a strict minimizer q∗ = argmin (Ωd), thus
the conditions∇qΩd (q∗) = 0 and∇2

qΩd (q∗) > 0 should be verified. Introducing the pseudo-inverse G† =
(

GTG
)−1GT , the

IDA-PBC control law that achieves the closed-loop dynamics (3) is expressed as the sum of an energy shaping component
ues, which assigns the closed-loop equilibrium q∗, and a damping-assignment component udi, which injects damping in
the system through the parameter kv, that is

u = ues + udi,

ues = G† (∇qH −MdM−1∇qHd + J2∇pHd
)
,

udi = −kvGT∇pHd.
(4)

To ensure matching between (2) and (3) on the unactuated states, Md, J2, and Ωd should satisfy the set of PDEs

G⊥

(
∇q(pTM−1p) −MdM−1∇q(pTM−1

d p) + 2J2M−1
d p

)
= 0, (5)

G⊥

(
∇qΩ −MdM−1∇qΩd

)
= 0, (6)

where G⊥ is a full-rank left annihilator of G, that is G⊥G = 0 and rank
(

G⊥

)
= n −m. If (5) and (6) are solv-

able for all (q, p) ∈ R2n, the control law (4) can be expressed analytically. Computing the time derivative of Hd and
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substituting (3) yields

̇Hd = −∇pHT
d Dd∇pHd ≤ 0. (7)

It follows that the equilibrium (q, p) = (q∗, 0) is asymptotically stable when D = 0 provided that the output y = GT∇pHd
is detectable, since Dd = GkvGT is rank deficient.6 In addition, asymptotic stability can be concluded if the system has
strong dissipation, that is Dd > 0 (see Lemma 4.2 in Reference 7). This latter condition can be met for some mechanical
systems by setting Md = kTM and kT > 0 provided that D > 0 (see Reference 5 for details). It must be noted that (7) does
not contain a negative-definite term in the position q. Consequently, the IDA-PBC control (4) is not inherently robust to
disturbances, which has motivated research on more sophisticated designs such as Reference 10.

2.2 System model

This work considers a mechanical system with 1 ≤ m < n actuated DOFs indicated as qa = GTq for conciseness, with the
control input acting on the system by means of a pressurized ideal fluid, and satisfying the following assumptions.

Assumption 1. The fluid is isentropic and inviscid, and its bulk modulus Γ0 is known. In addition, the pressure P of the
fluid, its density 𝜌 and speed v are bounded and uniform throughout its volume 𝜆. Finally, the inertia M0 of fluid, valves,
pumps, and cylinders is negligible compared to the inertia M of the mechanism, that is M ≫ M0.

Assumption 2. The volume 𝜆 of fluid, which includes the supply pipes, only depends on the actuated position qa. In
addition, 𝜆 is a known and continuously differentiable function bounded away from zero, that is 𝜆 > 0.

Assumption 3. The PDEs (5) and (6) for the original system (1) with direct actuation are solvable analytically, and
q∗ = argmin (Ωd). The closed-loop damping is either Dd > 0, or Dd = GkvGT ≥ 0 in which case y = GT∇pHd is detectable.
In addition, all trajectories of the closed-loop system (3) are bounded, and (q, p) = (q∗, 0) is an asymptotically stable
equilibrium. Finally, all model parameters are exactly known, and all system states are measurable.

Assuming uniform pressure, uniform density, and uniform speed of the fluid is a reasonable approximation in case
of laminar flow, while neglecting the effect of viscosity is appropriate at low speeds. The assumption made on the vol-
ume 𝜆 is satisfied by a wide range of cylinder arrangements (e.g., see Section 4). Neglecting the inertia of the fluid and
the mass of the moving parts in valves, cylinders, and pumps is a reasonable approximation for hydraulic actuators in
tilt trailers, excavators, and cranes. The analytical solvability of the PDEs is a research topic in itself,3,30 thus it is not
investigated further. Nevertheless, the PDEs (5) and (6) are solvable analytically for several canonical examples including
the acrobot,1 the disk-on-disk,10 the inertia-wheel-pendulum,31 and the ball-on-beam6 which is illustrated in Section 4.
Finally, the boundedness of the states in closed-loop (3) and the stability of the equilibrium for direct actuation follow from
Reference 6.

The bulk modulus of a fluid is defined as

Γ0 = −𝜆
dP
d𝜆

= −𝜌dP
d𝜌
. (8)

For isothermal liquids it is realistic to assume that the bulk modulus is constant.32 Instead, computing (8) for an ideal gas
with polytropic index c yields Γ0 = cP. The mechanical energy of an isentropic fluid, if its inertia is neglected, corresponds
to the internal energy

Φ = −
∫

𝜆

𝜆0

Pd𝜆. (9)

Considering at first an isothermal liquid and solving (8) yields 𝜌 = 𝜌0eP∕Γ0 . Defining the specific internal energy 𝜙 = Φ
𝜌𝜆

yields

𝜙 =
∫

𝜌

𝜌0

P
𝜌

2 d𝜌 =
∫

P

0

P
Γ0

e−P∕Γ0 dP, (10)
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where 𝜌0 = 1, for simplicity. Finally, computing Φ = 𝜙𝜌𝜆 from (10) yields33

Φ =
(
−P + Γ0(eP∕Γ0 − 1)

)
𝜆. (11)

The pressure dynamics can be expressed as in Reference 34

̇P = Γ0
u − q̇a∇q𝜆

𝜆

, (12)

where the volumetric flow rate u corresponds to the control input (i.e., u > 0 for inflow, while u < 0 for outflow). In
practice, the flow rate can be provided by a control valve and a pump in response to a corresponding input voltage. Since
the dynamics of pumps and valves is typically much faster than the pressure dynamics, these effects are neglected.

The complete system dynamics can be expressed as

⎡⎢⎢⎢⎣
q̇
ṗ
̇P

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

0 I 0
− I −D Γ0∇q𝜆

𝜆

0 −Γ0∇q𝜆
T

𝜆

0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
∇qW
∇pW
∇PW

⎤⎥⎥⎥⎦
+
⎡⎢⎢⎢⎣
0
0
1

⎤⎥⎥⎥⎦
Γ0

𝜆

u, (13)

where W = H + Φ = 1
2

pTM−1p + Ω + Φ, and the system states are now the position q ∈ Rn, the momenta p ∈ Rn, and
the pressure P ∈ Rm. In case m > 1, the energy of the fluid is computed asΦ =

∑m
i=1Φi. Note that the input matrix G does

not appear explicitly in (13). Instead, the control input affects the pressure dynamics, and the pressure contributes to the
energy of the fluid (11) only with respect to the actuated positions since 𝜆(qa) from Assumption 2, thus rank

(
∇q𝜆

)
= m.

Computing ̇W while substituting (13) yields ̇W = −∇pW TD∇pW + ∇PW T Γ0
𝜆

u. Thus system (13) is passive with respect
to u and y′ = Γ0

𝜆

∇PW , and the product uTy′ has unit of power. Since the aim of this work is to account for the pressure
dynamics of an ideal fluid by building upon the traditional IDA-PBC in a modular fashion, the output y = GT∇pHd of (3)
remains of interest.

Considering an ideal gas with polytropic index c and computing Φ from (9) yields

Φ =
⎧⎪⎨⎪⎩

P𝜆 log
(
𝜆0
𝜆

)
c = 1

− P𝜆c

c−1

(
𝜆

1−c
0 − 𝜆1−c) c ≠ 1,

(14)

where 𝜆0 > 0 is the initial value of 𝜆. Computing the total energy W from (14), the complete system dynamics is still given
by (13), where Γ0 = cP. Thus (13) represents the starting point for the controller design with either isothermal liquids or
ideal gases.

3 MAIN RESULT

This section presents an extended energy shaping and damping assignment procedure that builds upon the IDA-PBC
(4) to account for the pressure dynamics of an ideal fluid. To streamline the presentation, Section 3.1 outlines the con-
troller design for systems without disturbances or redundant actuators, which is the reference condition for IDA-PBC.6
Subsequently, the effect of disturbances is discussed in Section 3.2, while the case of redundant actuation is discussed in
Section 3.3.

3.1 Energy shaping and damping assignment

The control law for system (13) is designed such that the closed-loop dynamics in port-Hamiltonian form becomes

⎡⎢⎢⎢⎣
q̇
ṗ
̇P

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

0 S12 S13

− ST
12 −S22 S23

− ST
13 −ST

23 −S33

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
∇qWd

∇pWd

∇PWd

⎤⎥⎥⎥⎦
, (15)
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where Wd = Hd + 1
2
𝜁

T
𝜁 = 1

2
pTM−1

d p + Ωd + 1
2
𝜁

T
𝜁 is a positive definite storage function, and 𝜁 ∈ Rm is defined as

𝜁 = G†
(
−∇qH − ∇qΦ +MdM−1∇qHd +

Γ0∇q𝜆

𝜆

∇PΦ +
(

GkvGT − J2
)

M−1
d p

)
. (16)

The terms Sij, with 1 ≤ i,j ≤ 3, are computed according to the following procedure in order for the open-loop dynamics
(13) to match the closed-loop dynamics (15) on all DOFs.

Step 1: This step aims to preserve the relationship between the position q and the momenta p. Equating the first rows
of (13) and of (15) yields

M−1p = S12∇pHd + S12𝜁
𝜕𝜁

𝜕p
+ S13𝜁

𝜕𝜁

𝜕P
. (17)

Setting S12 = M−1Md and S13 = −S12
𝜕𝜁

𝜕p

(
𝜕𝜁

𝜕P

)−1
verifies (17). Note that the matrix 𝜕𝜁

𝜕P
∈ Rm×m is a function of 𝜆, thus it

follows from Assumption 2 that it is invertible.
Step 2: This step corresponds to the IDA-PBC energy shaping procedure in Section 2.1, which is modified here to

account for the pressurized fluid and for the damping assignment. Equating the second rows of (13) and of (15) yields

−∇qH − ∇qΦ − DM−1p +
Γ0∇q𝜆

𝜆

∇PΦ = −ST
12∇qHd − ST

12𝜁
𝜕𝜁

𝜕q
− S22∇pHd − S22𝜁

𝜕𝜁

𝜕p
+ S23𝜁

𝜕𝜁

𝜕P
. (18)

Substituting S22 = DM−1Md + GkvGT − J2, the physical damping D on the left side of (18) vanishes. Defining the
pseudo-inverse G⊗ = (G⊥G⊥

T)−1G⊥ and pre-multiplying both sides of (18) by either G⊗ or by G† while refactoring terms
gives the two new matching conditions

G⊗

(
−∇qH + ST

12∇qHd − J2∇pHd
)
= G⊗

(
−ST

12𝜁
𝜕𝜁

𝜕q
− S22𝜁

𝜕𝜁

𝜕p
+ S23𝜁

𝜕𝜁

𝜕P

)
, (19)

G†
(
−∇qH − ∇qΦ +

Γ0∇q𝜆

𝜆

∇PΦ + ST
12∇qHd +

(
GkvGT − J2

)
∇pHd

)
= G†

(
−ST

12𝜁
𝜕𝜁

𝜕q
− S22𝜁

𝜕𝜁

𝜕p
+ S23𝜁

𝜕𝜁

𝜕P

)
. (20)

Equation (19) enforces matching on the unactuated DOFs, and its left-hand side corresponds to the sum of the PDEs (5)
and (6). Instead, Equation (20) enforces matching on the actuated DOFs. The term S23 is thus defined as

S23 = G
(

1 + G†ST
12
𝜕𝜁

𝜕q
+ G†S22

𝜕𝜁

𝜕p

)(
𝜕𝜁

𝜕P

)−1

+ G⊥
T
(

G⊗ST
12
𝜕𝜁

𝜕q
+ G⊗S22

𝜕𝜁

𝜕p

)(
𝜕𝜁

𝜕P

)−1

. (21)

Substituting (21) into (19) yields G⊥

(
−∇qH +MdM−1∇qHd − J2∇pHd

)
= 0, thus preserving the PDEs (5) and (6) as well

as their analytical solutions Md, J2, and Ωd (see Assumption 3). In addition, (21) verifies (20) thus ensuring matching for
the actuated DOFs. In summary, the proposed design procedure yields the new matching conditions (19) and (20) but
results in the same PDEs as the traditional IDA-PBC (4), thus it is applicable to the same class of system that was given
in Reference 6 in terms of solvability of the aforementioned PDEs.

Step 3: Equating the third rows of (13) and of (15) yields

Γ0
u − q̇a∇q𝜆

𝜆

= −ST
13∇qWd − ST

23∇pWd − S33𝜁
𝜕𝜁

𝜕P
, (22)

where S33 is defined as

S33 = Ki

(
𝜕𝜁

𝜕P

T
𝜕𝜁

𝜕P

)−1

, (23)

with Ki > 0 a constant parameter matrix. Computing the control input u from (22) yields

u = q̇a∇q𝜆 −
𝜆

Γ0

(
ST

13∇qWd + ST
23∇pWd + S33𝜁

𝜕𝜁

𝜕P

)
, (24)
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where S12, S13, S22, S23, S33 have been defined previously. Energy shaping of the mechanical system is achieved through
the terms Md, J2, and Ωd in 𝜁 , while damping assignment is achieved through kv in S22 and in 𝜁 . Finally, shaping of the
internal energy of the fluid (11) or (14) is achieved through the parameter Ki.

Proposition 1. Consider the system (13) with Assumptions 1 to 3, in closed-loop with the control law (24). Then the equi-
librium (q, p,P) = (q∗, 0,P∗) is asymptotically stable for all Ki > 0 provided that either Dd > 0 or that Dd = GkvGT ≥ 0 and
the output y = GT∇pHd of the original system (3) is detectable.

Proof. Computing the time derivative of Wd and substituting (15) while recalling that J2 = −JT
2 yields

̇W d = −∇pW T
d Dd∇pWd − 𝜁TKi𝜁

= −xTDdx − 𝜁TKi𝜁 ≤ 0, (25)

where x = (M−1
d p + 𝜁 𝜕𝜁

𝜕p
).

Case 1: If Dd > 0 it follows from (25) that 𝜁, p ∈ 2 ∩ ∞. Computing ṗ from (15) yields ṗ ∈ ∞, thus p is bounded and
converges to zero asymptotically.35 It follows from (15) that ̇P ∈ ∞, thus computing ̇

𝜁 from (16) yields ̇𝜁 ∈ ∞ and conse-
quently 𝜁 converges to zero asymptotically. Substituting ṗ = p = 0 and 𝜁 = 0 in (15) yields∇qΩd = 0, thus the equilibrium
is an extremum of Ωd. In addition, q∗ = argmin(Ωd) by hypothesis. Substituting p = 0 and 𝜁 = 0 in (16) yields

G†
(
−∇qΩ − ∇qΦ +MdM−1∇qΩd +

Γ0∇q𝜆

𝜆

∇PΦ
)
= 0, (26)

which, computed at q = q∗, defines the pressure at the equilibrium P∗. Thus, the equilibrium (q, p,P) = (q∗, 0,P∗) is
asymptotically stable.

Case 2: If Dd = GkvGT ≥ 0 then it follows from (25) that ̇W d ≤ −𝜒min(kv)|GTx|2 − 𝜒min(Ki)|𝜁 |2 ≤ 0, where 𝜒min(⋅) indi-
cates the minimum eigenvalue of a matrix, and GTx = y + GT

𝜁

𝜕𝜁

𝜕p
. Thus p ∈ ∞ and 𝜁, y ∈ 2 ∩ ∞, while computing the

time derivative of p from (15) and of 𝜁 from (16) yields ṗ, ̇𝜁 ∈ ∞ hence y and 𝜁 converge to zero. Asymptotic stability of
the equilibrium can be established in a similar fashion to Reference 6 provided that y is detectable (see Theorem 3.2 in
Reference 36). ▪

Remark 1. The controller design procedure is applicable to systems with non-constant inertia matrix and non-trivial
kinetic shaping. In particular, the design is considerably simplified if kv = 0, J2 = 0, and Md = kTM as in Reference 29,
since 𝜁 would not depend on the momenta p thus resulting in S13 = 0. While it is possible to account for the inertia M0
of fluid, valves, pumps, and cylinders within (13), that would result in a different inertia matrix M′ = M +M0. Therefore,
the analytical solution of the kinetic-energy PDE (5) would have to be computed on a case-by-case basis, depending on
the specific arrangement of the actuators. However, since M0 only depends on the actuated DOFs, the kinetic-energy PDE
would remain solvable analytically for certain classes of systems, including those with underactuation degree n −m = 1
and with M′ that only depends on qa.30 Future work shall focus on the analytical solution of the kinetic-energy PDE
accounting for the inertia of the fluid. A further direction that could be explored corresponds to employing an algebraic
solutions of the PDEs similarly to Reference 3.

3.2 External forces

This section investigates the effect of the external forces 𝛿 affine in the momenta p within (13), that is

⎡⎢⎢⎢⎣
q̇
ṗ
̇P

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

0 I 0
− I −D Γ0∇q𝜆

𝜆

0 −Γ0∇q𝜆
T

𝜆

0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
∇qW
∇pW
∇PW

⎤⎥⎥⎥⎦
−
⎡⎢⎢⎢⎣
0
𝛿

0

⎤⎥⎥⎥⎦
+
⎡⎢⎢⎢⎣
0
0
1

⎤⎥⎥⎥⎦
Γ0

𝜆

u,

which are accounted for in Step 2 of the energy shaping procedure by introducing an additional vector Λ of closed-loop
non-conservative forces, as defined in Reference 11. Thus, the potential-energy PDE (6) can be rewritten as
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G⊥

(
∇qΩ −MdM−1∇q (Ωd − Ω0)

)
= 0, (27)

G⊥

(
𝛿 −MdM−1∇qΩ0

)
= 0, (28)

where Ω0 = ΛT(q − q∗). Again, it is assumed here that both (27) and (28) are solvable analytically for the original system
with direct actuation. Since external forces might not be accurately known, for instance due to sensor noise, a further
assumption is introduced.

Assumption 4. The external forces 𝛿 ∈ Rn are bounded, that is |𝛿| ≤ 𝜖 for some known 𝜖 > 0, and |𝛿 − 𝜖| ≤ |𝜖0(t)|,
with 𝜖0(t) ∈ 2 ∩ ∞ representing a bounded vanishing disturbance. In addition, the equilibrium q∗ is assignable, that is
G⊥(∇qΩ(q∗) + 𝛿) = 0 and the PDEs (27) and (28) are solvable analytically.

The design procedure in Section 3.1 is modified by redefining the term 𝜁 in (16) as

𝜁 = G†
(
−∇qH − ∇qΦ +MdM−1∇qHd − 𝜖 +MdM−1Λ +

Γ0∇q𝜆

𝜆

∇PΦ +
(

GkvGT − J2
)

M−1
d p

)
. (29)

The structure of the control law (24) does not change, however it now contains the constant bound 𝜖 and the vector Λ
within 𝜁 . In addition, the measurement error 𝜖0(t) is accounted for in the closed-loop dynamics (15) as

⎡⎢⎢⎢⎣
q̇
ṗ
̇P

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

0 S12 S13

− ST
12 −S22 S23

− ST
13 −ST

23 −S33

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
∇qWd

∇pWd

∇PWd

⎤⎥⎥⎥⎦
−
⎡⎢⎢⎢⎣

0
𝜖0(t)

0

⎤⎥⎥⎥⎦
.

Proposition 2. Consider the system (13) with Assumptions 1 to 4, in closed-loop with the control law (24), where 𝜁 is defined
in (29). Then the following claims hold.

• The system trajectories are bounded if (Dd − I∕4) > 0 and Ki|𝜁 |2 > |𝜖0(t)|2.
• The equilibrium is asymptotically stable if |𝜖0(t)| ≤ 𝛾|∇pWd| for some 𝛾 > 0 provided that (Dd − 𝛾I) > 0 and Ki > 0.
Proof. Computing the time derivative of Wd and substituting (15) while accounting for the external forces 𝛿 yields

̇W d = −∇pW T
d Dd∇pWd + ∇pW T

d (𝜖 − 𝛿) − 𝜁
TKi𝜁

≤ −∇pW T
d

(
Dd −

I
4

)
∇pWd − Ki|𝜁 |2 + |𝜖0(t)|2, (30)

where the second line has been obtained by using Young’s inequality ∇pW T
d |𝜖0(t)| ≤ 1

4
∇pW T

d ∇pWd + |𝜖0(t)|2.
It follows from (30) that ̇W d ≤ 0 if (Dd − I∕4) > 0 and Ki|𝜁 |2 > |𝜖0(t)|2, with 𝜖0(t) ∈ 2 ∩ ∞ by hypothesis, thus the

trajectories of the closed-loop system are bounded.37 To prove the second claim substitute |𝜖0(t)| ≤ 𝛾|∇pWd| in the first
line of (30), which yields ̇W d ≤ 0 provided that (Dd − 𝛾I) > 0 and Ki > 0. Asymptotic stability is concluded employing
the same arguments as Proposition 1. A similar claim holds if the disturbances are matched (i.e., 𝛿 = G𝛿0) provided that
kv > 𝛾 and Ki > 0, and that y = GT∇pHd is detectable. ▪

Remark 2. If the disturbance 𝜖0(t) is non-vanishing, boundedness of the trajectories of the closed-loop system can be
concluded from Lemma 5.3 in Reference 37. Local asymptotic stability of the equilibrium can be concluded for some
classes of unknown external forces by introducing in the control law either an integral action10 or adaptive observers11 to
compensate the effect of 𝛿. This approach has been illustrated for a specific class of systems in References 5 and 38, thus
it is not discussed further. For comparison purposes, accounting for the external forces 𝛿 within the baseline IDA-PBC
design in Section 2.1 and computing the time derivative of Hd as in (7) yields

̇Hd = −pTM−1
d DdM−1

d p + pTM−1
d (𝜖 − 𝛿)

≤ −pTM−1
d

(
Dd −

I
4

)
M−1

d p + |𝜖0(t)|2. (31)

It is apparent that (31) lacks the quadratic term in 𝜁 which appears instead in (30). Intuitively, this indicates that explicitly
accounting for the pressure dynamics of the fluid has beneficial effects on stability compared to treating this phenomenon
as yet another disturbance or to disregarding it altogether.
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3.3 Redundant fluidic actuation

In engineering practice, multiple pressures Pj can be associated to the same actuated DOF. This is the case when two
single-acting cylinders with volumes 𝜆1 and 𝜆2 are employed in an antagonistic pair to achieve bidirectional motion (see
Section 4). Thus, the total energy is W = H + Φ1(𝜆1,P1) + Φ2(𝜆2,P2) and the closed-loop dynamics (15) becomes

⎡⎢⎢⎢⎢⎢⎣

q̇
ṗ
̇P1

̇P2

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

0 S12 S13 S14

− ST
12 −S22 S23 S24

− ST
13 −ST

23 −S33 S34

− ST
14 −ST

24 −ST
34 −S44

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

∇qWd

∇pWd

∇P1 Wd

∇P2 Wd

⎤⎥⎥⎥⎥⎥⎦
, (32)

where Wd = Hd + 1
2
𝜁

T
𝜁 , and 𝜁 is defined as

𝜁 = G†
(
−∇qH − ∇qΦ1 − ∇qΦ2 +MdM−1∇qHd +

Γ0∇q𝜆1

𝜆1
∇P1Φ1 +

Γ0∇q𝜆2

𝜆2
∇P2Φ2 +

(
GkvGT − J2

)
M−1

d p
)
. (33)

The terms S12, S22 are defined as in Section 3.1, while S34 = 0 considering that the pressures in the different actuators do
not interact directly. The matching conditions corresponding to (19) and (20) now include the additional terms S14, S24
which refer to the redundant actuator of volume 𝜆2. Thus S13, S14, S23, S24 are defined as

S13 = −
1
2

S12
𝜕𝜁

𝜕p

(
𝜕𝜁

𝜕P1

)−1

, S14 = −
1
2

S12
𝜕𝜁

𝜕p

(
𝜕𝜁

𝜕P2

)−1

,

S23 =
1
2

G
(

1 + G†ST
12
𝜕𝜁

𝜕q
+ G†S22

𝜕𝜁

𝜕p

)(
𝜕𝜁

𝜕P1

)−1

+ 1
2

G⊥
T
(

G⊗ST
12
𝜕𝜁

𝜕q
+ G⊗S22

𝜕𝜁

𝜕p

)(
𝜕𝜁

𝜕P1

)−1

,

S24 =
1
2

G
(

1 + G†ST
12
𝜕𝜁

𝜕q
+ G†S22

𝜕𝜁

𝜕p

)(
𝜕𝜁

𝜕P2

)−1

+ 1
2

G⊥
T
(

G⊗ST
12
𝜕𝜁

𝜕q
+ G⊗S22

𝜕𝜁

𝜕p

)(
𝜕𝜁

𝜕P2

)−1

. (34)

Note that S13 and S14 have a similar structure, differing only due to their dependence on P1 or P2. The same property
applies to S23 and S24.

The pressure dynamics for each hydraulic actuator is given by

Γ0
u1 − q̇a∇q𝜆1

𝜆1
= −ST

13∇qWd − ST
23∇pWd − S33𝜁

𝜕𝜁

𝜕P1
,

Γ0
u2 − q̇a∇q𝜆2

𝜆2
= −ST

14∇qWd − ST
24∇pWd − S44𝜁

𝜕𝜁

𝜕P2
, (35)

where S33 = Ki

(
𝜕𝜁

𝜕P1

T
𝜕𝜁

𝜕P1

)−1
and S44 = Ki

(
𝜕𝜁

𝜕P2

T
𝜕𝜁

𝜕P2

)−1
. Computing the control input from (35) yields

u1 = q̇a∇q𝜆1 −
𝜆1

Γ0

(
ST

13∇qWd + ST
23∇pWd + S33𝜁

𝜕𝜁

𝜕P1

)
,

u2 = q̇a∇q𝜆2 −
𝜆2

Γ0

(
ST

14∇qWd + ST
24∇pWd + S44𝜁

𝜕𝜁

𝜕P2

)
. (36)

Asymptotic stability of the equilibrium can be concluded following the same reasoning of Proposition 1. The general case
of multiple redundant actuators, although less common in practice, can be treated in a similar fashion and is omitted for
brevity.

Remark 3. In case of pneumatic actuation, the control input can be expressed in terms of the mass flow rate u′, rather
than the volumetric flow rate u. Thus, substituting u1 = u′1

RsT
P1

and u2 = u′2
RsT
P2

in (13), where 𝜌1 =
P1

RsT
and 𝜌2 =

P2
RsT

are the
densities of the ideal gas in either cylinder, and solving (35) with Γ01 = cP1 and Γ02 = cP2 respectively yields the control
laws
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u′1 =
q̇a∇q𝜆1P1

RsT
− 𝜆1

cRsT

(
ST

13∇qWd + ST
23∇pWd + S33𝜁

𝜕𝜁

𝜕P1

)
,

u′2 =
q̇a∇q𝜆2P2

RsT
− 𝜆2

cRsT

(
ST

14∇qWd + ST
24∇pWd + S44𝜁

𝜕𝜁

𝜕P2

)
, (37)

where T is the temperature in Kelvin, Rs is the specific gas constant, and c is the polytropic index. Note that, differently
from (36), the control laws (37) also depend on the temperature.

4 SIMULATION RESULTS

The ball-on-beam system is revisited here by introducing two identical single-acting cylinders that push against the beam
with a sliding contact (see Figure 1). The cylinders form an antagonistic pair and, in case of hydraulic actuation, they are
supplied by two volumetric pumps with flow rates u1 and u2. The volumes 𝜆1, 𝜆2 of fluid in the cylinders are nonlinear
functions of the inclination of the beam q2, that is

𝜆1 = A
(

L0 +
L
2

tan(q2)
)
, 𝜆2 = A

(
L0 −

L
2

tan(q2)
)
. (38)

The pressure of the fluid in the cylinders is denoted by P1 and P2, respectively. The equations of motion of the ball-on-beam
with direct actuation, under some assumptions on the masses for simplicity, are given by (2) with the parameters

M =

[
1 0
0 L2 + q2

1

]
, G =

[
0
1

]
, Ω = gq1 sin(q2), (39)

where q1 is the position of the ball, q2 is the inclination of the beam, L is half the length of the beam, and g is the gravity
constant.6 In practice, |q1| ≤ L and |q2| < 𝜋∕2 with the proposed constructive solution. The prescribed equilibrium is
(q∗1, q

∗
2) = (0, 0). The IDA-PCB design (4) for direct actuation yields

Md =
(

L2 + q2
1
) ⎡⎢⎢⎣

√
2

(L2+q2
1)

1

1
√

2
(

L2 + q2
1
)⎤⎥⎥⎦ , J2 =

(
p1 − p2

√
2(

L2 + q2
1
)
)[

0 1
− 1 0

]
,

Ωd = g − g cos(q2) +
kp

2

(
q2 −

1√
2

arcsinh
(q1

L

))2

, (40)

where kp is a positive tuning parameter and the damping assignment is governed by the parameter kv.6 Since the two
cylinders result in redundant actuation, the control law is computed using (36) for isothermal liquids, and using (37) for
ideal gases. According to Assumption 1, the inertia M0 of fluid, valves, cylinders, and pumps is neglected. Additionally,

 

 

 

 

 

/2 /2 

 

 

F I G U R E 1 Simplified schematic of the ball-on-beam system with fluidic actuation. Each single-acting cylinder is supplied by a control
valve and a pump providing the flow rates u1 and u2. The cylinders push against the beam with a sliding contact.
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no physical damping is present, that is D = 0. The control laws (36) and (37) employ the parameters (40), which are the
solutions of the PDEs (5) and (6) for the ball-on-beam system with direct actuation.6 The IDA-PBC for direct actuation
(4) and a backstepping algorithm (see Appendix A) are employed for comparison purposes.

4.1 Hydraulic actuation

Simulations have been conducted in Matlab with an ode23 solver using the model parameters in SI units L =
0.5, g = 9.81,A = 10−5

,L0 = 1,Γ0 = 2 × 109 (i.e., corresponding to water, assumed isothermal), with the initial conditions
(q1, q2, q̇1, q̇2,P1,P2) = (0.45, 0, 0, 0, 2 × 106

, 2 × 106). The time history of the states and of the control input computed with
(36), where 𝜕𝜁

𝜕P1
= − 𝜕𝜁

𝜕P2
= AL

(
1 + tan (q2)2

)
∕2, using the tuning parameters kp = 1, kv = 1,Ki = 1 is shown in Figure 2 for

different values of L0. The position converges to (q∗1, q
∗
2) = (0, 0) in a smooth fashion, and the pressures P1 and P2, in [bar],

converge to their initial values at equilibrium. The control input increases with L0, while the time history of the position
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F I G U R E 2 Simulation results with hydraulic actuation and controller (36) for different values of L0: (A) Position q1; (B) position q2;
(C) pressure P1; (D) pressure P2; (E) control input u1 during the initial transient; (F) control input u2
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shows no noticeable difference. This indicates that reducing the dead volume of fluid (e.g., by mounting the control valves
near the cylinders) can reduce the control effort, in accordance with engineering practice.

For comparison purposes, the system response with the traditional IDA-PBC controller (4) and the parameters (40)
is shown in Figure 3. In this case the tuning parameters were chosen empirically as kp = 50, kv = 100 to obtain a similar
transient to that in Figure 2, while u1,u2 were computed as

u1 =
2u

ALK0
, u2 = −

2u
ALK0

, (41)

where K0 = 2 × 107 is an additional tuning parameter that accounts for the bulk modulus of the fluid, and u is given in
(4). The simulations indicate that neglecting the pressure dynamics in the controller results in an oscillatory response and
in larger pressure variations, which are particularly noticeable for a larger L0 and might lead to loss of contact between
the cylinders and the beam (e.g., in case P1 = 0 or P2 = 0). Note also that the pressures P1 and P2 at the equilibrium
vary with L0 and are larger than with the controller (36) in some cases (e.g., for L0 = 1), which indicates a higher energy
consumption. While a smoother transient can be achieved in this case by reducing kp or increasing kv, this also results in
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F I G U R E 3 Simulation results with hydraulic actuation and controller (41) for different values of L0: (A) Position q1; (B) position q2;
(C) pressure P1; (D) pressure P2; (E) control input u1; (F) control input u2
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a slower response. In addition, simultaneously increasing kp, kv, and K0 slightly reduces the amplitude of the oscillations
on the position. However, using high gains could amplify the effect of sensor noise on the measured states in practice.
Conversely, simultaneously decreasing kp, kv, and K0 results in larger oscillations on the position and in higher peak
pressures.

In summary, the new controller (36) yields a smoother response and a reduced magnitude of the control input com-
pared to the baseline IDA-PBC (41), which does not take into account the pressure dynamics of the fluid. This could be
beneficial in engineering practice, since a smaller control action could allow employing smaller and less expensive control
valves, and smoother movements could reduce vibrations in the mechanism. Nevertheless, the improved performance
comes at the cost of having to provide pressure measurements with suitable sensors.

4.2 Pneumatic actuation

The simulation results for pneumatic actuation are shown in Figure 4. In this case, the control law is computed using
(37), where Rs = 287,T = 293, and the polytropic index is c = 1.5, corresponding to adiabatic expansion for an ideal gas.
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F I G U R E 4 Simulation results with pneumatic actuation and controller (37) for different values of Ki: (A) Position q1; (B) position q2;
(C) pressure P1; (D) pressure P2; (E) control input u′1 during the initial transient; (F) control input u′2
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In this case the internal energy of the gas is given by (14), thus 𝜕𝜁

𝜕P1
= − 𝜕𝜁

𝜕P2
= AL∕

(
2 cos (q2)2

)
. The area of the cylinders is

set to A = 3 × 10−5 so that the pressures vary within a range representative of industrial air supply (i.e., P1,P2 ≤ 10 bar).
The remaining model parameters and the tuning parameters are the same as for the hydraulic actuation (i.e., L0 = 100
in this case), and the initial conditions are (q1, q2, q̇1, q̇2,P1,P2) = (0.45, 0, 0, 0, 6 × 105

, 6 × 105). The system response is
similar to that in Figure 2, and the pressures P1 and P2 converge to their initial values at equilibrium, in [bar]. However,
the control input is considerably smaller, since in this case it corresponds to the mass flow rate of gas into the cylinders.
The effect of the model parameter L0 is similar to the case of hydraulic actuation, thus it is not shown. Increasing the value
of the tuning parameter Ki yields a slightly faster response and slightly smaller peak pressures, and it also considerably
reduces the control effort during the initial transient (see Figure 4E,F). This can be explained by noting that Ki introduces
a dissipative effect on the pressure dynamics in (15). Finally, the transient response depends also on the tuning parameters
kp and kv in (40) according to the IDA-PBC design (4). Employing the IDA-PBC controller (4) with (40) while computing
u′1 and u′2 in a similar fashion to (41) yields similar results to those in Figure 3, which are omitted for brevity. Compared to
the ball-on-beam system with direct actuation and with the IDA-PBC (4) (see Appendix B), the proposed controller yields
a similar transient response with the same values of kp and kv. The initial overshoot and the slightly longer settling time
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F I G U R E 5 Simulation results with pneumatic actuation and backstepping algorithm (A1) for different values of Ki: (A) Position q1;
(B) position q2; (C) pressure P1; (D) pressure P2; (E) control input u′1 during the initial transient; (F) control input u′2
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observed in Figure 4A for Ki = 1 are due to the pressure dynamics and can be reduced by increasing Ki (e.g., see Ki = 100
in Figure 4A).

For comparison purposes, a backstepping algorithm has been constructed based on the IDA-PBC (4) to account for
the pressure dynamics of the ideal gas (see Appendix A). Figure 5 shows that the backstepping algorithm (A1) with
the tuning parameters kp = 1, kv = 10,Ki = 1, chosen empirically to achieve a similar response to that of controller (37),
is superior to the baseline IDA-PBC (41). However, the system response is more oscillatory than with the controller
(37), which is agreement with our prior work.28 Increasing the value of Ki in the backstepping algorithm also slightly
improves the responsiveness, but differently from Figure 4, it does not reduce the control effort. Finally, the effect of a
bounded vanishing disturbance acting on the ball, that is 𝛿 = 𝜖0[cos(q2) tanh(q̇1) 0]with 𝜖0 = −0.1, is shown in Figure 6.
The new controller (37) yields a similar response to that in Figure 4 with the same tuning parameters (i.e., in this case
Ki = 100 and 𝜖 = 0 in (29)). Instead, the backstepping algorithm (A1) and the baseline IDA-PBC result in oscillations
of increasing amplitude, with the baseline IDA-PBC eventually leading to instability hence confirming the analysis in
Remark 2.
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F I G U R E 6 Simulation results with pneumatic actuation and bounded vanishing disturbances comparing the traditional IDA-PBC (4),
the backstepping algorithm (A1), and the new controller (37): (A) Position q1; (B) position q2; (C) pressure P1; (D) pressure P2; (E) control
input u′1 during the initial transient; (F) control input u′2
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5 CONCLUSION

This article presented some new results on the energy shaping control for underactuated mechanical systems for which
the control action is mediated by a pressurized ideal fluid. Building upon the IDA-PBC methodology in a modular fash-
ion, an extended multi-step energy shaping and damping-assignment controller design procedure was outlined for both
isothermal liquids and ideal gases. In addition, the effect of bounded vanishing disturbances and the case of redundant
actuators were discussed.

Simulation results for a ball-on-beam system actuated by two identical cylinders, either hydraulic or pneumatic, indi-
cate that the controller is effective in achieving the prescribed regulation goal, while yielding a smoother transient and
a reduced control effort compared to the baseline IDA-PBC. The performance improvement is particularly noticeable in
the presence of larger dead volumes of fluid. Further reductions of the control effort, together with moderate improve-
ments in responsiveness, can be achieved by appropriately tuning the additional parameter introduced in the controller
design procedure. The proposed controllers also yield a smoother response compared to an alternative backstepping
algorithm based on IDA-PBC for direct actuation. The difference in performance is particularly noticeable in the presence
of bounded vanishing disturbances.

Future work will aim to extend these results by accounting for the inertia of the fluid in the energy shaping procedure,
and eventually for the internal dynamics of different types of actuators, including valves and pumps.
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APPENDIX A

A backstepping procedure39 is employed to design an alternative controller for the ball-on-beam system (39) with pneu-
matic actuation based on the IDA-PBC (4). To this end, we define the virtual control input u∗ = 2u

AL
representing the

pressure differential between the two cylinders, where u is given in (4) with the design parameters (40). We introduce
the terms 𝜍1 = P1 − P0 − u∗ and 𝜍2 = P2 − P0 + u∗, where P0 is a constant representing the pressure at equilibrium. The
control laws u′1 and u′2 are defined as

u′1 = −
ALq̇2P1

(
1 + tan (q2)2

)
2RsT

+
A
(

u̇∗ − Ki𝜍1 +
ALGT M−1

d p
2 cos (q2)2

)(
L0 + L

2
tan(q2)

)
RsTc

u′2 =
ALq̇2P2

(
1 + tan (q2)2

)
2RsT

+
A
(
−u̇∗ − Ki𝜍2 +

ALGT M−1
d p

2 cos (q2)2

)(
L0 − L

2
tan(q2)

)
RsTc

, (A1)

where Ki is a constant tuning parameter and u̇∗ is the time derivative of u∗ computed by substituting q̇ and ṗ from (2).
Defining the Lyapunov function candidate Ψ = Hd + 1

2
𝜍

2
1 +

1
2
𝜍

2
2 and computing its time derivative along the trajecto-

ries of (13) while substituting u′1 and u′2 from (A1) yields thus

̇Ψ = −∇pHT
d Dd∇pHd − Ki

(
𝜍

2
1 + 𝜍

2
2
)
≤ 0, (A2)

which has a similar structure to (25). Nevertheless, in this case the closed-loop dynamics is not port-Hamiltonian.28

APPENDIX B

System response for the ball-on-beam system with direct actuation obtained with the traditional IDA-PBC design (4) and
the parameters (40). The tuning parameters are kp = 1, kv = 1 and the initial conditions are (q1, q2, q̇1, q̇2) = (0.45, 0, 0, 0)
(Figure B1).
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F I G U R E B1 Simulation results for ball-on-beam system with direct actuation and IDA-PBC (4): (A) Position q1; (B) position q2
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