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Abstract—The ball and beam system is one of the most used

systems for benchmarking the controller response because it has 

nonlinear and unstable characteristics. Furthermore, in line 

with the increasing of computation power availability and 

artificial intelligence research intensity, especially the 

reinforcement learning field, nowadays plenty of researchers 

are working on a learning control approach for controlling 

systems. Due to that, in this paper, the adaptive PID controller 

based on Q-Learning (Q-PID) was used to control the ball 

position on the ball and beam system. From the simulation 

result, Q-PID outperforms the conventional PID and heuristic 

PID controller technique with the swifter settling time and lower 

overshoot percentage. 

Keywords—ball and beam, reinforcement learning, adaptive 

PID controller, q-learning 

I. INTRODUCTION

The ball and beam system is one of the popular systems 

used for representing and learning the control systems from 

classical control engineering through the modern control 

engineering regime. This system behavior is nonlinear and 

unstable, due to these characteristics, this system can be used 

as a benchmark platform of control design performance 

effectiveness. It is composed of two main parts which are a 

beam and a ball. The beam is designed to whirl in the vertical 

plane by giving torque to it and as well utilized for the place 

of the ball to spin throughout it [1]. The main control 

objective of the ball and beam system is to move the ball 

towards the desired position. 
In line with the rapid growth of the artificial intelligence 

field and the availability of vast computing resources. Lately, 

various control algorithms are combined with machine 

learning methods such as reinforcement learning (RL), one of 

the reinforcement learning algorithms which frequently 

employed towards the control task is Q-Learning. Due to that, 

Pandian et al. [2] has applied Q-Learning and Q-Learning 

with policy function approximation to control the ball and 

beam system. The Q-Learning with policy approximation is 

implementing an Artificial Neural Network (ANN) to obtain 

the policy function for each iteration and use the ANN as the 

controller. Yet, the response still did not meet the 

expectations. Both of the controller settling times are 

relatively slow, 10.21 s for Q-Learning controller, and 11.17 

s for Q-Learning with the policy approximation controller. 

Besides, the steady-state error from those two controllers is 

also high, 2 cm to Q-Learning controller, then 1 cm to Q-

Learning with the policy approximation controller. 

Furthermore, the system is also experiencing large 

oscillations during the simulation. 
From that background, in this paper, instead of merely 

either using the Q-Learning itself or combined with an 

artificial neural network for controlling the ball position. An 

adaptive PID controller based on the Q-Learning (Q-PID) 

algorithm is proposed to control the ball and beam system to 

solve the prior research drawbacks. To the best of the author’s 

knowledge, there are no results in the literature regarding the 

implementation of the Q-PID controller to control the ball 

and beam system.  

Later, the performance and the capability of the Q-PID 

controller are compared and analyzed with two other 

controllers, which are conventional PID controller and 

heuristic controller based on the Adaptive Neuro-Fuzzy 

Inference System inverse control-PID (ANFIS-PID). Thus 

from the performance analysis results, novel insight about the 

effectiveness of the Q-PID controller for the ball and beam 

system will be gotten. The upcoming section of the paper was 

ordered as follows, Section II is presenting the related work 

of ball and beam control problem. Section III is giving a basic 

understanding of ball and beam system modeling, the Q-PID 

controller, and the controller performance analysis workflow. 

Section IV is prepared for the simulation and performance 

comparison results and the discussion of it, and Section V is 

used for the conclusions and the future works. 

II. RELATED WORKS

Few researchers had been working on ball and beam 

control systems, applying several methods of the control 

algorithm to control the ball and beam system from the 

conventional control algorithms to the modern one. Ali et 

al.  [3] have implemented Linear Quadratic Gaussian (LQG) 

for tracking control of the ball and beam system, and the 

response results were excellent. Another researcher [4], have 

used the Fuzzy PID control algorithm to control the ball and 

beam system, the controller applied 49 fuzzy rules based on 

the Mamdani Fuzzy Inference System to adjust the PID 

controller gain. Also, Kharola et al. [5] have employed a 

different fuzzy or soft computing control approach, control 

the ball and beam system using the ANFIS controller. Ezzabi 

et al. [6] are using the nonlinear robust adaptive fuzzy 

backstepping controller to control the ball position. 
In [7], using Nonlinear Model Predictive Control, they 

successfully control the ball and beam systems, which 

achieved superior time domain response compared to the  
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Fig. 1. The Ball and Beam Systems Free Body Diagram [12] 

TABLE I.  SYSTEM PARAMETERS 

Name 
System Variables and State 

Value or Range 

Ball Mass (m) 0.1 𝑘𝑔 

Ball Radius (R)  0.015 𝑚 

Level Arm Offset (d) 0.03 𝑚 

Beam Length (L) 0.8 𝑚 

Gravitational Acceleration (g) 9.8 𝑚/𝑠2 

Moment Inertia of Ball (I) 9.99 x 10-6 𝑘𝑔𝑚2 

   Ball Position Coordinate (𝑟) [-0.4, 0.4] 𝑚 

   Ball Velocity (�̇�) [-15, 15] 𝑚/𝑠 

   Beam Angle Coordinate (𝛼) [-π/4, π/4] 𝑟𝑎𝑑 

Beam Angle Coordinate Change (�̇�)  [-15, 15] 𝑟𝑎𝑑/𝑠 

 

Neural Network controller. The experiment by Liqing et al. 

[8], proposed a Back Propagation Neural Network based 

controller to control the ball and beam systems, the controller 

was trained and designed from the root locus controller 

response. As well, the control algorithm for the ball and beam 

using robust sliding mode control methods have been 

developed by Soni et al. [9]. Later, the other research by 

Aburakhis et al. [10] have applied fractional-order adaptive 

law and fractional order PID controller instead of only using 

the PID controller to cope with the ball and beam system. 

Ding et al. [11], on their research, have analyzed the 

effectiveness of active disturbance rejection control towards 

position control on the ball and beam system. 

III. MATERIAL AND METHODS 

A. Ball and Beam System 

The ball and beam system consists of two main parts 

which are the ball and the beam. The ball and beam system 

was modeled using Lagrangian dynamics. The slipping and 

the friction among the ball were presumed to zero. The ball 

and beam system used was nonlinear and unstable in nature. 

Fig. 1 shows the ball and beam system free body diagram, 

and Table I shows the system parameters, including the 

system variables value and the system states and its range. 

The ball and beam system equation and state were derived as 

(1) – (7), 

 

 

Total torque which applied to the ball rotation  

 

𝐼�̈� = 𝐹. 𝑅  

  

(1) 

The ball rotation angle denoted as 

 

𝛼 = −
𝑟

𝑅
 

  

(2) 

Substituting (1) to (2) yield 

  

𝐹 = −
𝐼

𝑅2
�̈� 

  

(3) 

The total force working on the ball 

 

𝐹 − 𝑚𝑔 sin 𝛼 = 𝑚(�̈� − 𝑟�̇�2)  (4) 

 

Thus, by substituting (4) to (3) the Lagrangian equation for 

the system yield  

 

0 = (
𝐼

𝑅2
+ 𝑚) �̈� + 𝑚𝑔 sin 𝛼 − 𝑚𝑟�̇�2 

  

(5) 

  

Because the torque was applied immediately to the beam 

from the servo, the servo gear angle should be converted to 

beam angle to obtain the system state as (6) 

𝛼 =
𝑑

𝐿
𝜃 

  

(6) 

So, from that then the system state could be defined as 

follows, 

 

[

�̇�(𝑡)

�̈�(𝑡)
�̇�(𝑡)

�̈�(𝑡)

] =  

[
 
 
 
 
 

�̇�(𝑡)

𝑚𝑔 sin 𝛼(𝑡) − 𝑚𝑟�̇�(𝑡)2

(
𝐼
𝑅2 + 𝑚)

�̇�(𝑡)
0 ]

 
 
 
 
 

 (7) 

 

B. Adaptive PID Q-Learning Based Controller 

PID controller is a straightforward control algorithm that 

is widely used in many real-world applications because of its 

simplicity and capability to control a bunch of systems with 

easy tunability. The equation of the PID controller is written 

on (8),  

 

𝑢(𝑘) = 𝐾𝑃𝑒(𝑘) + 𝐾𝐼 ∑ 𝑒(𝑘)∆𝑘
𝑘
𝑖=0 + 𝐾𝐷

𝑒(𝑘)−𝑒(𝑘−1)

∆𝑘
  (8) 

 

Where 𝐾𝑃  is the proportional gain, 𝐾𝐼  the integral gain, 𝐾𝐷 

the derivative gain, ∆𝑘 is the sampling time of the controller, 

and 𝑒(𝑘) is the system error compared to reference on k-th 

sampling time, respectively. Equation (9) is denoting the 

error equation 

 

𝑒(𝑘) = 𝑟𝑟𝑒𝑓 − 𝑟𝑘  (9) 

 

With the latter swift expansion and growth of 

reinforcement learning field, marked with several prominent  
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Fig. 2. Markov Decision Processes 

 

 

 

 

 

 

 

 

 

Fig. 3. The Q-PID Controller Block Diagram 

research carried out by many researchers, for instance, the 

success of Google DeepMind AlphaGo to beat the European 

Go champion Fan Hui [13]. It also won against the world 

champion of Go Lee Sedol back in 2016 [14]. From that, 

researchers believed that the reinforcement learning field is a 

promising subject. Following that success, several 

researchers have developed a novel control algorithm that is 

either purely based on reinforcement learning, for example, 

the Deep Deterministic Policy Gradient (DDPG) [15] or 

combined with existing control algorithms such as PID 

controller. Reinforcement Learning (RL) algorithms have 

mainly relied on Markov Decision Processes (MDP), which 

is shown in Fig. 2. 

Q-Learning is one example of value-based, and off-policy 

RL algorithm, off-policy means that instead of following 

current policy the Q-Learning algorithm will immediately 

estimate the action-value function (𝑄) which is optimal by 

using following update rule as denoted in (10) [16], 

𝑄(𝑆𝑡 , 𝐴𝑡) ← 𝑄(𝑆𝑡 , 𝐴𝑡) + 

𝜗 [𝑅𝑡+1 + 𝛾 max
𝑎

𝑄 (𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡 , 𝐴𝑡)] (10) 

Where 𝑄  is the learned action-value function, 𝜗  is the 

learning rate, 𝑆𝑡  the agent state, 𝐴𝑡 is the agent action at 

instance 𝑡 , 𝛾  the discount factor, and 𝑅𝑡+1  the observed 

reward. 

In this paper, the Q-Learning algorithm was used to 

autotune the PID controller gain over sampling time, so the 

gain of the PID controller will change and adapt over time. 

This controller was based on Shi et al. [17]. However, in [17], 

the proposed Q-PID algorithm was applied to a cart pole 

problem, which was the regulator problem. Several 

modifications on the block diagram and algorithm (reward 

scheme) as well on several parameters constant are needed to 

make the Q-PID control algorithm precisely can be used on 

tracking problems such as ball and beam position control. The 

block diagram of the controller (Q-PID) for controlling  

TABLE II.  Q-PID CONTROLLER PARAMETERS 

Notation 
System Variables 

Values or Range 

𝐾𝑃 Variation [0, 200] 

𝐾𝐼Variation [0, 2] 

𝐾𝐷Variation [0, 190] 

Max Episodes 500 

Max Simulation Time 10 s 

Discount Factor 𝛾 0.99 

Learning Rate 𝜗 0.02 

Number Actions for Q-Tables 55 

Discretization Bucket 𝑁 25 

Sampling Time 0.02 s 

Initial Ball Position State 0 m 

 

the ball and beam system is shown in Fig. 3. The Q-PID 

controller training parameters are shown in Table II.  

The Q-PID controller was trained on one fixed position 

with the reference point of step signal which had the position  

reference 𝑟(𝑡)  at 0.38 m. The learning rate of the Q-PID 

controller was updated using the Delta-Bar-Delta rule [18]. 

The Q-Learning reward scheme (𝑅𝑡) was modified as (11).  

 

𝑅𝑡 = {
2, 𝑖𝑓  |𝑒𝑘+1| < 0.001

1, 𝑖𝑓  |𝑒𝑘+1| <  |𝑒𝑘| 𝑎𝑛𝑑 |𝑒𝑘+1| > 0.05
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (11) 

 

Where 𝑒𝑘 is denoting the position error at the time step 𝑘. 

In this problem, there are three trained Q-tables, and each Q-

table represent one PID controller gain that controls the ball 

position, as well for every Q-table takes discretized ball 

position as a state 𝑛1(𝑘) . The following is the learning 

process of Q-PID algorithm on ball and beam system: 

Step 1: Initialize all of the 𝑄𝑤(𝑠, 𝑎) value to zero, episode 

(𝑒𝑝𝑠) to 1, learning rate (𝜗), and the exploration rate (𝜀). 

Then, set the maximum episode and the maximum time of the 

simulation. 

Step 2: Set the time step 𝑡 = 0 , next initialize the 

𝑆𝑡(𝑟(𝑡),  �̇�(𝑡), 𝛼(𝑡), �̇�(𝑡)). Decay the exploration rate (𝜀) as 

in Equation (12). 

 

𝜖𝑒𝑝𝑠 = {
1

1 + 𝑒𝑒𝑝𝑠
𝑒𝑝𝑠 < 0.6 ∗ 𝑚𝑎𝑥𝑒𝑝𝑖𝑠𝑜𝑑𝑒

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (12) 

 

Step 3: Increment the time step (𝑡) by 1, discretize the state 

𝑆𝑡 to acquire 𝑛1(𝑡). 

Step 4: From the discretized state 𝑛1(𝑡) iterate 𝑤 = 1 to 𝑤 =
3 , later at every iteration, select the action (𝐴𝑤 ) which 

following the epsilon-greedy policy. 

Step 5: Acquire the total controller output 𝑢(𝑡) according to 

Equation (8). 

Step 6: Observe the new state 𝑆𝑡+1(𝑟(𝑡 + 1),  �̇�(𝑡 + 1),
𝛼(𝑡 + 1), �̇�(𝑡 + 1)) , receive the reward ( 𝑅𝑡 ) for 

𝑄1(𝑠, 𝑎),  𝑄2(𝑠, 𝑎), 𝑄3(𝑠, 𝑎) corresponding to Equation (11). 

Step 7: Discretize the state 𝑆𝑡+1, obtain the 𝑛1(𝑡 + 1). 

Step 8: Update the learning rate (𝜗) to 𝑄1(𝑠, 𝑎),  𝑄2(𝑠, 𝑎),
𝑄3(𝑠, 𝑎). 

Step 9: Update 𝑄1(𝑠, 𝑎),  𝑄2(𝑠, 𝑎), 𝑄3(𝑠, 𝑎)  using the 

obtained reward (𝑅𝑡) and learning rate (𝜗). 

Step 10: Set the 𝑆𝑡 equal to 𝑆𝑡+1, if the time step (𝑡) is equal 

to the maximum simulation time, then back to Step 2, if not  
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Fig. 4. The ANFIS Membership Functions 

 

 

 

 

 

 

 

 

Fig. 5. The ANFIS-PID Controller Block Diagram 

back to Step 3. When the maximum episode is reached; thus, 

the learning process is done. 

C. Performance Analysis 

To make sure that the proposed controller is working 

effectively, the response of the Q-PID controller was 

compared with the PID controller, which was tuned using the 

Ziegler Nichols method [19] and an Adaptive Neuro-Fuzzy 

Inference System inverse control combined with PID 

(ANFIS-PID) controller [20]. The comparison was using 

several time-domain metrics such as rise-time, settling-time, 

steady-state error, and the overshoot percentage. As well, for 

reference signal tracking, the mean square error (MSE) and 

the mean absolute deviation (MAD) were used. 

Furthermore, after the Ziegler Nichols tuning method 

applied to the ball and beam system, the controller gains were 

obtained as follows, 𝐾𝑃 = 6, 𝐾𝐼 = 1.565, and 𝐾𝐷 = 5.859 

also ∆𝑘= 0.02𝑠.  

 

 

 

 

 

 

a.  

 
 

Fig. 6. Step Response with Position Reference 0.2 m 

Alongside that, the ANFIS-PID controller was trained using 

10 epochs and the membership function for the ANFIS, as 

shown in Fig. 4. The triangle membership functions were 

used with a 7x7 rule on it, so the total rule was 49. The ANFIS 

training process resulted in 0.43 on the training set error. 

Also, the PID controller gains which are applied to ANFIS-

PID are equivalent to the aforementioned Ziegler Nichols 

tuned PID controller. Fig. 5 shows the ANFIS-PID inverse 

control block diagram for controlling the ball and beam 

system. 

IV. RESULTS AND DISCUSSION 

Subsequent to the simulation, which was executed using 

MATLAB software, the first simulation was testing the 

controller response using a unit step signal with the ball 

reference position 𝑟(𝑡)  of 0.2 m. Fig. 6 shows the step 

response of each controller tested with unit step reference 

position of 0.2 m.  

Then, the step response of each controller was calculated 

to found the time domain response. Table III shows the 

controller time-domain response for all controllers. The step 

response results that were gotten shown the proposed 

controller or Q-PID was having the fastest settling time and 

the lowest overshoot percentage. But the Q-PID controller 

steady-state error was greater than the PID controller, which 

was tuned using the Ziegler Nichols method, and also, the Q-

PID controller rise-time was the slowest among the other 

controllers. However, the rise-time and the steady-state error 

of Q-PID were not the best performed compared to the two 

other controllers. Nevertheless, the steady-state error 

percentage of Q-PID was smaller than the ANFIS-PID 

controller. Then after the controllers were tested on the unit 

step signal, the controllers as well examined on the step-wise 

signal with three different ball position references 𝑟(𝑡) (0.2 

m, 0 m, and 0.1 m).  

TABLE III.  CONTROLLER TIME-DOMAIN RESPONSE 

Controller 
Step Response Properties 

Rise-Time 

(s) 
Settling-Time (s) Steady State Error Overshoot 

Q-PID 2.99 4.24 1.44% 1.65% 
PID 1.2 6.97 0.05% 34.4% 

ANFIS-PID 0.42 4.82 2% 78.78% 
 

 

 

 

 

 
 

 

 

 

 

 

Fig. 7. Step Wise Position Reference Tracking 
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Fig. 8. Sinusoidal Position Reference Tracking 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Q-PID Gain Adaption on Sinusoidal Reference Tracking 

TABLE IV.  POSITION TRACKING ERROR  

Controller 
Tracking Error Measurement 

Mean Square Error (MSE) Mean Absolute Deviation (MAD) 
Q-PID 2.7406 x 10-5 0.0045 

PID 0.005 0.0641 

ANFIS-PID 1.8949 x 10-5 0.0036 

 

The outcomes of the examination shown in Fig. 7. The 

last assessment for the controllers was sinusoidal position 

reference tracking with an amplitude of 0.3. The outcomes of 

the tracking were shown in Fig. 8. Q-PID controller gains 

adaption for the sinusoidal reference tracking test, as well as 

shown in Fig. 9.  

Moreover, in the sinusoidal signal reference tracking 

case, the controllers tracking response were also analyzed 

more in-depth by calculating the MSE and MAD of the 

controlled response as opposed to the given sinusoidal 

reference signal. The yielded results were shown in Table IV. 

The Q-PID controller MSE and MAD were less than the PID 

controller but greater if it was compared to ANFIS-PID. 

However, the tracking error of the Q-PID controller was 

nonetheless small because it was nearly zero. 

Furthermore, after the outcomes were evaluated, it 

demonstrated that the Q-PID controller response for 

controlling the ball and beam system was outstanding, even 

though the controller was not entirely exceptional in every 

tested aspect. Yet, the controller did not require prior 

information about the system at all. Conversely, the ANFIS-

PID needed the model of the plant or the ball and beam 

system in the controller design.  

Although the ANFIS-PID had prior information about the 

system model, the controller accomplishment was not too 

significant compared to the Q-PID controller. Compared to 

the other RL-based controller (Q-Learning controller and Q-

Learning with policy function approximation controller) 

response for controlling the ball and beam system in [2]. The 

Q-PID response in this experiment is far smoother and also 

superior in every tested time-domain criteria (settling time 

and rise time). Hence, from that, the proposed Q-PID 

controller successfully applied to control the position of the 

ball on the ball and beam system and outperformed the other 

tested controller in several metrics. 

V. CONCLUSIONS AND FUTURE WORK 

To sum up this paper, the ball and beam system was 

effectively controlled with the Q-PID controller. Even though 

it was initially trained on one fixed position reference point, 

the Q-PID controller can be used on every position reference 

point. The response of the Q-PID controller outperforms the 

conventional PID controller and heuristic method controller 

(ANFIS-PID) in several aspects, with detail the overshoot 

percentage and the settling time. In addition, though the 

ANFIS-PID controller tracking error (MSE and MAD) was 

smaller than the Q-PID, the overshoot of the ANFIS-PID 

controller was quite significant, and a response like this is 

undesired. 
In forth work, our RL-based controller for the ball and 

beam system will be developed. With intention, the response 

result of our controller will be compared with the other RL-

based controller, such as Deep Deterministic Policy Gradient 

(DDPG), Q-PID, and the other heuristics control method so 

our RL based controller effectiveness can be compared and 

benchmarked.  
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