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ABSTRACT 
A HYBRID CONTROLLER FOR STABILITY ROBUSTNESS,  

PERFORMANCE ROBUSTNESS, AND DISTURBANCE  
ATTENUATION OF A MAGLEV SYSTEM 

 

 

Feng Tian, B.S., M.S. 
 

Marquette University, 2015 
 

 

 

Devices using magnetic levitation (maglev) offer the potential for friction-free, 
high-speed, and high-precision operation. Applications include frictionless bearings, 
high-speed ground transportation systems, wafer distribution systems, high-precision 
positioning stages, and vibration isolation tables. Maglev systems rely on feedback 
controllers to maintain stable levitation. Designing such feedback controllers is 
challenging since mathematically the electromagnetic force is nonlinear and there is 
no local minimum point on the levitating force function. As a result, maglev systems 
are open-loop unstable. Additionally, maglev systems experience disturbances and 
system parameter variations (uncertainties) during operation. A successful controller 
design for maglev system guarantees stability during levitating despite system 
nonlinearity, and desirable system performance despite disturbances and system 
uncertainties. 

This research investigates five controllers that can achieve stable levitation: 
PD, PID, lead, model reference control, and LQR/LQG. It proposes an acceleration 
feedback controller (AFC) design that attenuates disturbance on a maglev system with 
a PD controller. This research proposes three robust controllers, QFT, H , and 
QFT/ H , followed by a novel AFC-enhanced QFT/ H  (AQH) controller. The AQH 
controller allows system robustness and disturbance attenuation to be achieved in one 
controller design.   

The controller designs are validated through simulations and experiments. In 
this research, the disturbances are represented by force disturbances on the levitated 
object, and the system uncertainties are represented by parameter variations. The 
experiments are conducted on a 1 DOF maglev testbed, with system performance 
including stability, disturbance rejection, and robustness being evaluated. Experiments 
show that the tested controllers can maintain stable levitation. Disturbance attenuation 
is achieved with the AFC. The robust controllers, QFT, H , QFT/ H , and AQH 
successfully guarantee system robustness. In addition, AQH controller provides the 
maglev system with a disturbance attenuation feature.  

The contributions of this research are the design and implementation of the 
acceleration feedback controller, the QFT/ H  , and the AQH controller. Disturbance 
attenuation and system robustness are achieved with these controllers. The controllers 
developed in this research are applicable to similar maglev systems. 
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Chapter 1. Introduction 

1.1. Research Background 

Magnetic levitation (or maglev) refers to the methodology in which a ferrous object 

is supported by magnetic forces. This method offers fully contactless support, making it 

possible to eliminate mechanical friction. It has long been known that friction substantially 

deteriorates the performance of mechanical systems, especially motion control systems 

[1-5]. Friction forces between contacting surfaces are the root cause of wear, energy loss, 

and high temperature in mechanical systems. Friction results from many different physical 

mechanisms, making it complicated and hard to control. It has been reported that in the U.S. 

alone, the cost of loss due to imperfect control of friction is more than 500 billion dollars 

every year [1]. Maglev technology can potentially ameliorate some of these losses. 

The idea of using magnetic forces to levitate metallic objects is more than one 

hundred years old [6]. Early experiments turned out to be unsuccessful due to the lack of 

understanding of magnetism. In the past century the development of theories of 

electromagnetism and methods of control engineering converted the idea from science 

fiction into reality in many modern industrial systems [7-9]. The contactless features of 

maglev technology made it possible to build friction-free, high-speed, high-precision 

devices. Maglev technology has applications in frictionless bearings [10-18], high speed 

ground transportation systems [19-27], wafer distribution (or conveyor) systems [28-31], 

high-precision positioning stages [32-36], and vibration isolation devices [37-41]. A brief 

review of each of these applications follows. It will reveal the versatility of maglev 

technology and the benefits to our modern industrial world. A detailed literature review on 
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how to design controllers for maglev systems is deferred to Chapter 2. 

1.1.1. Maglev Technology Applications 

Maglev technology was adopted by the bearing industry about fifty years ago. The 

goal was to replace contact-based bearing forces with non-contact electromagnetic forces. 

Frictionless magnetic bearings have replaced traditional mechanical bearings in many areas. 

They have been implemented in centrifugal blood pumps to avoid contamination of blood 

inside the pumps [42-47]; because the rotor and the stator do not contact, there is no wear 

and no debris caused by friction. Magnetic bearings are also used in gas turbine engines 

[48-51]. The advantages include improved stability and reliability, reduced power loss, 

better fault tolerance, and greatly extended bearing service life [51]. Other applications of 

magnetic bearings are seen in machine tools [52-56], energy storing flywheels [57-65], and 

instruments used in space and physics research [12]. Magnetic bearings allow these 

systems to operate at high angular velocities (500,000 rpm and above) with improved 

positioning accuracy [66]. Also, vibration at critical speeds can be greatly reduced because 

the stiffness and damping of magnetic bearings can be optimized electronically, which is 

not possible using traditional mechanical bearings. 

Another application is found in high-speed ground transportation systems. A 

maglev train is levitated, guided, and propelled from a guideway using magnetic forces. 

The first patent on a maglev train was awarded to Kemper of Germany in 1937 [67]. It 

remained an idea on paper until maglev technology became mature in the 1960s. Maglev 

trains were developed in the United Kingdom, Germany, and Japan. A successful maglev 

train is the Transrapid, which is a high speed monorail maglev train developed and refined 
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in Germany in the late 1960s. It maintained the maglev train speed record for years until 

superseded by a Japanese maglev train in the 1990s. The first generation of the Transrapid, 

was an indoor experimental model built in 1969 [68]. The latest version, Transrapid 09, 

which was released in 2009, can cruise at a speed of 500 km/h and accelerate/decelerate at 

21 m/s [69]. In 2002, a version specially designed for the Shanghai Maglev Train, 

Transrapid SMT, was built and has been operating in Shanghai, China. It was the first high 

speed maglev train in commercial operation [70]. The Japanese maglev train, JR-Maglev, 

reached a world speed record of 581 km/h for maglev vehicles on December 2, 2003 [71]. 

Compared to traditional high speed rail vehicles, maglev trains can achieve higher speeds 

(the highest commercial operating speed record is 350 km/h, held by China Railway as of 

July 2011), have lower energy consumption (the energy consumption of maglev trains is 

less than that of jet aircraft even at the speed of 500 km/h [72]), lower life-cycle costs, and 

produce less noise and vibration [73].  

In semiconductor production lines, a wafer distribution system is a magnetically 

levitated conveyor system. This system uses a container, which is placed on a levitated 

stage that moves over a pair of rails to transfer wafers. The support and thrust forces acting 

on the stage are generated through electromagnets. Wafer distribution systems and maglev 

trains share some similarities. The major difference between these two is the translational 

speed: maglev trains can travel at speeds above 100 m/s, whereas wafer distribution 

systems usually operate at translational speeds of several millimeters per second. 

Wafers transported by maglev technology have brought revolutionary changes to 

the manufacturing industry. The primary benefit is no generation of particles due to contact 
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wear during the transferring process. This is particularly important to semiconductor 

manufacturers, who need to control particle contamination in the fabrication process. In 

2012, the semiconductor manufacturing industry moved from a 32 nanometer (nm) to a 22 

nm specification in making complementary metal-oxide-semiconductor (CMOS) chips, 

following the International Technology Roadmap for Semiconductors (ITRS). In the 

production lines, particles larger than 22nm are considered contaminations. Traditional 

wafer transporting systems use rail carts in delivering the wafer material. Particles are 

unavoidable due to the friction between the cartwheels and the rail. The current particle 

control methods in manufacturing encounter difficulties when the particle size is smaller 

than 25nm. The contactless maglev wafer transporting system generates no particles. Raw 

material contamination in the transporting process is avoided. In addition, the maglev 

wafer transporting system eliminates the bulky lubricant system needed in traditional wafer 

transport, and achieves a higher positioning accuracy. It also reduces system maintenance 

time as there is no mechanical friction wear. Maglev technology has thus provided a novel 

solution to contamination control problems in manufacturing [74]. Another driver of this 

method is cost. It has been reported that the expense of deploying a maglev wafer 

transporting system is less than that of a robotic system [30], and therefore is attractive in 

many manufacturing plants. 

Early research on the use of maglev technology in a wafer transporting system was 

reported by Azukizawa et al. [75]. In 1989, they discussed a system implemented at 

Toshiba Corporation for a delivery task in the automated semiconductor fabrication 

process. The system was developed for an environment that must be kept free from 
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microscopic dust particles and with noise at a minimal level. In 1992, Aik-siong et al. 

reported a platform in which a wafer holder was levitated using electromagnetic forces [76]. 

In this research, gas-bearing and maglev transport systems were implemented on the same 

platform and compared. It was found that both methods resulted in stable levitation. 

However, only the maglev platform could operate in a vacuum. In 1989, Park et al. reported 

a wafer distribution system for a clean room with maglev technology [30]. They 

successfully designed and built a compact maglev wafer distributor. Stability and precision 

requirements were validated experiments. In 2006, Hu and Kim reported a high-precision 

positioning device for wafer processing [29]. They designed and built a device with all six 

degrees-of-freedom (DOF) controlled by electromagnetic forces. It was reported that this 

positioning stage demonstrated a positioning resolution of 20 nm. Compared to 

conventional positioning systems, this positioning stage has the advantages of faster 

response time and multi-dimensional positioning capability. 

Another application using a high-precision maglev stage in semiconductor 

manufacturing is photolithography. Similar to wafer transporting, photolithography is a 

process that requires strict control of dust particles in the manufacturing environment. In 

traditional designs mechanical friction in positioning the stage generates dust particles and 

thus reduces the production throughput [77]. Maglev stages generate no dust particles in 

the positioning process. In addition, the maglev design has a simpler mechanical structure, 

faster dynamic response, and higher mechanical reliability [78]. 

Many maglev positioning stages have been reported in the literature. In 1993 

Williams et al. suggested a linear magnetic bearing stage that controlled a suspended object 
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in six DOF [79]. The intention was to offer a better solution to the traditional mechanical 

X-Y wafer positioning stage in photolithography (the advanced stage design methodology 

is also presented in the same research). In 1998, Kim and Trumper developed a 

high-precision maglev stage for photolithography [78]. Their maglev stage enabled six 

DOF motion control. It also realized large planar motions (up to 50 mm by 50 mm) with 

only one levitated moving part. This design relied on a linear motor to provide contact-free 

forces in both suspension and translation. 

Maglev positioning stages have been implemented on many other systems beyond 

photolithography. In 2000, Holmes et al. reported a magnetically suspended six DOF 

precision motion control stage for scanned-probe microscopy [80]. The stage utilized four 

linear motors to move a platen horizontally and vertically. It was reported that horizontal 

and vertical positioning error was less than 0.6 nm and 2.2 nm, respectively. This device 

provides a means of measuring submicron-scale features with nanometer-scale accuracy. 

High-precision magnetic suspension systems were reported by Shan et al. in 2002 [34], 

Owen et al. in 2005 [33], Jeon et al. in 2006 [32], and Ueda and Ohsaki in 2008 [36]. These 

studies discussed new control design approaches and state-of-the-art electronic 

components for a maglev positioning stage. They also indicated that the maglev positioning 

stage exceeds the traditional positioning stage in accuracy and surmised that it would 

replace it eventually. 

Maglev technology can provide systems with tunable dynamic characteristics. One 

application that exploits this feature is a maglev vibration isolation table. In 1995, Nagaya 

and Ishikawa proposed such a system [39]. The system includes an actuator consisting of a 
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permanent magnet and an electromagnet. The weight of the table is counterbalanced by 

static magnetic forces from permanent magnets, and vibrations and disturbances are 

attenuated by electromagnetic forces. In 1996, Watanabe et al. discussed a control system 

for a vibration isolation system [41]. This paper documented a typical controller design 

approach for non-contact vibration isolation systems. The experimental results showed the 

designed controller successfully isolated vibration in the vertical direction. In 2003 and 

2007, Mizuno et al. reported the design of vibration isolation systems combining magnetic 

suspension with springs [37, 38]. Their design used a magnetic suspension connected in 

series with a mechanical spring, and resulted in high static stiffness against disturbances 

acting on the isolation table. With an isolation system composed solely of mechanical 

springs, it is almost impossible to obtain such characteristics. 

In summary, maglev technology has been applied to many real-world systems, 

bringing unique features and numerous benefits. Maglev devices are typical mechatronic 

devices. The next section will discuss the concept of “mechatronics” and maglev 

technology. 

1.1.2. Mechatronics and Maglev 

Maglev technology has found its applications in various industrial systems. The 

success of maglev technology is based on its “mechatronics” system design approach. The 

term “mechatronics” was first proposed in 1969 by a Japanese engineer Tetsuro Mori. It 

blends together a number of technologies: mechanical engineering, electronic and 

electrical engineering, computer technology, and control engineering. A mechatronic 

design requires a rethinking of the whole system in terms of design requirements, 
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subsystems, available new technologies, and novel control engineering strategies. 

Many products are designed using a mechatronics approach. Examples include 

maglev systems, automatic cameras, and robots on automatic production lines. Craig et al. 

discussed the importance of embedding the mechatronics philosophy into the education of 

future engineers [81-85]. In their research, several systems (an inverted pendulum system, 

a ball-on-plate system, and a desktop maglev system) were developed to demonstrate the 

mechatronics methodology. The design processes of these systems demonstrate how to 

work across disciplinary boundaries and utilize a blend of technologies to develop novel 

engineering solutions. 

The maglev system discussed by Craig et al. includes an electromagnet, a ferrous 

object, electrical components, and a controller. The system is simple enough for 

undergraduate students to build in a laboratory environment, and sophisticated enough to 

provide a platform for advanced controller design. This research investigates multiple 

novel control design methods and classical approaches using this maglev system. 

Although the applications of maglev technology keep growing, it is not likely that 

magnetic bearings will completely take the place of traditional mechanical bearings in the 

near future, nor will maglev trains be a substitute for rail trains. In some cases, the costs of 

implementing maglev systems are more expensive than using traditional mechanical 

systems. More importantly, in comparison to traditional systems, the system dynamics of 

maglev systems change drastically when components are magnetically-levitated. There is a 

need for more research on improving system performance with maglev technology. 

Many research studies have been conducted to improve the overall performance of 
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maglev systems. The goal is to make the system more reliable than its traditional 

counterpart. From a mechatronics point of view, improvement can be made in each of the 

subsystems, as well as in the technology that brings them together. Improvements in 

traditional mechanical or electronic systems require new materials or manufacturing 

technology. In addition to updating the mechanical or electronic components, systems can 

be improved by using advanced control algorithms. It is the most convenient way to 

improve the system. There are many discussions in the literature on various potential 

improvements [12, 19, 23, 86-90]. 

Section 2 of this chapter discusses the motivation for this research. Section 3 

presents the problem statement. Section 4 summarizes the contributions of this research. 

1.2. Motivation 

In maglev systems electromagnetic forces are controlled to achieve levitation. The 

control algorithms determine the stability and system response to disturbances. The control 

algorithm is designed based on the mathematical model of the physical system (‘the plant’). 

An accurate system model and appropriate control algorithm will significantly improve the 

system performance. 

There are several challenges in the control design process due to the nature of the 

maglev system. A first challenge is the need to account for system variation in the design. 

In designing a controller for a maglev system, a traditional approach is to model the plant at 

a certain ‘operating point’ and then design the controller for that particular ‘operating 

point’. However, the working loads may vary over a certain range during the system 

operation. For example, it has been reported that in the compressor industry, manufacturers 
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need to offer magnetic bearing designs in the 60,000 to 150,000 kg capacity range [91]. 

Another example is the maglev transportation system operating in Shanghai. The mass of 

the maglev vehicle is 18,000 kg and can hold up to 60 people, which means the total mass 

of the vehicle could vary between 18,000 kg (no passengers) and 23,100 kg (all passengers). 

For a controller designed for a single nominal ‘operation point’, it is difficult to 

accommodate the large variation.  

A second challenge is the need for the controller to guarantee the system 

performances under all working conditions. Maglev systems usually work at higher speeds 

than traditional systems. As an example, typical magnetic bearing systems work at angular 

speeds above 10,000 rpm (the angular speed of a magnetic bearing is limited by the 

material strength to overcome the stress due to the centrifugal force), while typical 

mechanical bearings work at angular speeds below 7,000 rpm. In the maglev train system, 

the vehicle may operate at a speed of about 500 km/h, almost twice as fast as traditional rail 

trains. The controllers need to maintain and improve the system performance when 

operating at high speeds.  

A third challenge is the need to deal with disturbances and maintain a constant 

operating point. There are various disturbances that maglev systems experience during 

operation. For example, a magnetic bearing may encounter sudden bearing load changes, 

unbalanced rotor loads, and unmodeled rotor dynamics at high rotational speed [92]. A 

maglev train has to accommodate payload variations (change in mass distribution of the 

vehicle), vehicle vibration, changes in terrain features, and air dynamic disturbances (such 

as wind gusts) [93]. The controllers need to drive abruptly disturbed systems to their 
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normal working conditions. Also, there are other challenges common to all control system 

designs, such as how to minimize energy consumption during operation and how to balance 

performance with control effort. The design challenges call for the study of novel control 

design strategies to improve the overall performance of maglev systems.  

Motivated by the design challenges, this research studies how to improve the 

performance of maglev systems with novel control design approaches. Particularly, 

methods to attenuate disturbances and to design robust systems are investigated. Questions 

addressed in this study include: How are disturbances attenuated in maglev systems 

through control design? Will system performance change after disturbance attenuation 

control? What is robustness of a maglev system? Why is the robustness of a maglev system 

important? Is the robustness of a maglev system related to its controller? How can the 

robustness of a maglev system be guaranteed during the control design process? 

This thesis will explore control designs using both time-domain as well as 

frequency-domain approaches. System uncertainties that have been neglected in traditional 

control design methods will be investigated. Control design methods discussed in this 

research will demonstrate: (1) disturbance attenuation can be achieved in a maglev system 

without altering its original controller form; (2) robustness of a maglev system can be 

improved using a proposed control design approach; and (3) a design method to tune the 

controller to the exact amount of model uncertainties of the control plant to achieve desired 

system performance. Control design methods discussed in this research can be used for 

other similar maglev systems, especially when the systems have large parameter 

uncertainties. 
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1.3. Problem Statement 

Maglev systems are challenging to control because of their nonlinear system 

dynamics and their open-loop unstable nature. Maglev systems are difficult to model 

accurately, primarily due to the nature of electromagnetic forces. During operation, maglev 

systems are subject to various disturbances. Additionally, some maglev systems work in 

environments where the systems themselves have large variations. Disturbances and 

system variations plus unmodeled system dynamics can lead to deterioration in 

performance and even failure in some maglev systems. 

In order to deal with model variations, robust control design methods are introduced 

in the controller design process in this dissertation. Many control design methods are 

suggested in the literature to deal with the robustness issues. Some of them have been 

proven to be successful. However, few current control design methods take into 

consideration the actual physical system uncertainties. Moreover, none of the current 

control design approaches is able to claim that the designed controller is tuned to the exact 

amount of uncertainty of the control plant. None of the current design approaches is able to 

show the trade-off between the system performance, controller complexity, and control 

effort. In addition to the robustness issue, disturbance attenuation is an important topic in 

designing controllers for maglev systems. Based on a review of prior literature, there is a 

research void addressing how to achieve disturbance attenuation in a maglev system 

without making changes to the existing controllers. 

This research develops new control strategies for maglev systems. Specifically, 

disturbance attenuation and robustness topics are discussed in this dissertation. A 
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disturbance attenuation control design using acceleration feedback is studied. The 

objective of using this design method is to make a maglev system as insensitive as possible 

to disturbances. The designed controller will achieve this goal without changing the 

original controller form, which is needed to maintain the stability of the maglev system. 

Acceleration feedback control (AFC) has been reported for use in other systems but, to the 

author’s knowledge, it has never been implemented on a maglev system. This research 

demonstrates that the acceleration feedback control provides disturbance attenuation in 

maglev systems. 

To address the robustness issue of the maglev system, this dissertation studies two 

robust control design methods, the Quantitative Feedback Theory (QFT) and the H  

methods. Both methods are particularly successful in designing robust controllers [94, 95]. 

In the designing of a QFT controller, the system uncertainty range and model variation 

range are represented with a finite set. Then the controllers are derived through classical 

loop-shaping techniques based on the finite set, highlighting the trade-off among the 

system performance, controller complexity, and control efforts. In the designing of an H  

controller, the control problem is expressed as a mathematical optimization problem, and 

the controller is derived by solving this optimization. This research presents a QFT 

controller and a H  controller respectively, and then proposes a design approach to 

combine these two controllers into a QFT/ H  controller. The QFT/ H  controller has the 

advantages of both QFT controller and H  controllers. It is not only designed to 

guarantee system performance despite uncertainties and variations, but is optimized to 

minimize the closed loop impact of a perturbation.  
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In an effort to address the disturbance attenuation and the robustness issue with a 

single controller, this dissertation proposes a novel AFC-enhanced QFT/ H  controller. 

This AFC-enhanced QFT/ H  controller introduces an acceleration feedback loop into the 

QFT controller configuration. Then the closed loop system is optimized to achieve 

desirable system stability and robustness using the H  method. The resultant optimized 

controller guarantees system robustness and achieves disturbance attenuation.  

To demonstrate that the proposed AFC-enhanced QFT/ H  controller improves the 

system performance, experiments are conducted to compare the system responses to those 

with traditional controllers. These traditional controllers include a PID controller, a lead 

controller, a model-reference controller (MRC), and a LQG controller. The classic PID 

controller and lead-lag controller are designed with the traditional measurement of system 

robustness. The MRC is designed to improve the system performance by minimizing the 

modeling error. The LQG controller is designed by minimizing the quadratic control cost 

of a linear system disturbed by additive white Gaussian noise. These controllers are 

designed to address one or two specific questions in disturbance attenuation and system 

robustness. None of them provides a solution to both issues. Experimental results prove 

that the system performance is considerably improved with the proposed AFC-enhanced 

QFT/ H  controller. 

1.4. Contributions 

The first contributions of this research are the development and implementation of 

the AFC-enhanced QFT/ H  control design method for the maglev system. This novel 

design approach guarantees the system robustness and achieves disturbance attenuation 
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with a single controller. The second contribution of this research is the implementation of 

an acceleration feedback loop to achieve disturbance attenuation in a maglev system. Prior 

to this research, acceleration feedback control was reported to successfully improve motor 

control, but has never been implemented to attenuated disturbance on a maglev system. The 

third contribution of this research is the implementation of a QFT/ H  controller. Although 

there are other robust control design methods reported in the literature, none of them 

provides a design technique based on a quantitative evaluation of system uncertainties. 

To give background information on this research, a literature review in Chapter 2 

summarizes how the traditional controllers guarantee system robustness and achieve 

disturbance attenuation. And why the system performance needs to be improved. This 

research first implements the AFC to attenuation disturbances, and then continues to 

investigate the QFT and H  robust control design approaches. Similarities and 

differences between the QFT and H  methods are discussed. A control design approach 

combining QFT and H  is proposed. The advantage of this combination is twofold: it 

quantitatively addresses the system uncertainty issue in controller design and it guarantees 

the system robustness by restricting the magnitude of the disturbance/noise triggered 

response. 

All the controllers are experimentally tested with the same maglev system. This 

study evaluates the system performance using indices derived from transient response and 

steady-state of the system. The experimental results validates that the proposed 

AFC-enhanced QFT/ H  controller successfully resolves the robustness and disturbance 

issues with the maglev system. The robust control design methods discussed in this 
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research could be applied to other single DOF maglev systems. 
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Chapter 2. Literature Review 

2.1. Introduction 

The scope of this research, as stated in Chapter 1, is to improve the performance of 

a maglev system by achieving system robustness and disturbance attenuation. This chapter 

reviews the literature relevant to the design of feedback controllers for maglev systems. In 

particular, this review summarizes how system stability, robustness, and disturbance 

attenuation are guaranteed in prior control design methods. In Chapter 3 a PD controller 

will be designed to achieve stable magnetic levitation, and then an AFC will be 

implemented to attenuate disturbance. In Chapter 4 will begin with designing robust 

controllers for the maglev system. A QFT and an H  robust controllers will be designed 

for a maglev system, followed by a discussion on how to combine them into a QFT/ H  

controller. Then a novel controller to achieve disturbance attenuation and robustness, an 

AFC-enhanced QFT/ H  controller, will be proposed. Chapter 5 will discuss the 

experimental validation of improvement on the system performance with the proposed 

controllers. 

In Chapter 3, we attempt to answer the following questions: What is the design of a 

typical maglev system? What is the purpose of using controllers in maglev systems? What 

control methods have been implemented in maglev systems prior to this research? How do 

maglev systems perform with these controllers? Specifically, do these control methods deal 

with robustness in the design process and, if so, how? Is there a need to investigate other 

control design methods? What are the design approaches discussed in this study? 

This chapter is organized as follows: (1) a brief review of the history of maglev is 
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provided, (2) the configurations of typical maglev systems are introduced, (3) an 

experimental platform (referred to as the maglev testbed) that will be used through this 

research is described, and (4) the prior art as well as the state-of-the-art of feedback control 

designs for maglev systems are summarized. Special attention will be given to the system 

robustness of each of the reviewed control design methods. 

2.2. A Brief History of Maglev 

A brief history of magnetic levitation provides a context for this dissertation. 

Although magnetism was first recorded around 545 B.C. [96, 97], there was no record of 

successful levitation using magnetic forces generated by permanent magnets (static 

magnetic forces). In 1842, British mathematician Samuel Earnshaw proved mathematically 

that the stable stationary equilibrium of a point charge could not be maintained solely 

through its electrostatic interactions with other charges [98]. This was later known as 

Earnshaw’s theorem. Earnshaw’s theorem also applies to all the classical inverse-square 

law forces, including gravitational and magnetic forces. In other words, near the earth’s 

surface, the gravitational force acting on a mass cannot be balanced out by any number of 

static magnetic forces, no matter how they are arranged. 

Earnshaw’s theorem does not exclude the possibility of achieving a stable levitated 

state. Several methods to realize magnetic levitation were found after Earnshaw’s theorem 

was published. Commonly reported methods are: maglev using the gyroscopic effect [99, 

100], maglev using diamagnetism [101, 102], maglev using eddy current [103-105], and 

maglev using feedback control [106-108]. Among these methods, maglev with feedback 

control is considered to be practical and cost-effective, and has been used in the current 
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industrial maglev applications. This research, as has been stated previously, will adopt this 

particular method. 

Maglev with feedback control was brought to the public domain with the 

publication of research work of Holmes, Beams, Woodson and Melcher, and Weaver [10, 

11, 18, 108-110]. Early research progress was slow because of the lack of high performance 

control hardware. With the development of microcontroller in the late 1970s, sophisticated 

control algorithms could be tested for maglev control. In 1990 Trumper published his 

doctoral dissertation on the design of a maglev system for precision motion control [35]. He 

designed a linear controller and implemented it with an 8088/8087 microcontroller. 

Microcontrollers specialized for digital signal processing (DSP) were introduced to the 

market in the mid 1980s. They were superior to the general purpose microcontrollers in 

motion control applications. In 1990 Kinichi et al. published a paper on the linear motor 

drive system for the Japanese maglev vehicle HSST-05 [111]. In 1997 Green published his 

doctoral dissertation on the robust nonlinear control design of maglev systems [112]. 

Green’s design was implemented on a MX-31 DSP system. A large number of linear and 

nonlinear controllers have been tested on maglev systems since then.  

Today the research trend is to improve maglev system performance with novel 

control design approaches. However, some questions still remain. Are further 

improvements in maglev system performance possible with novel control algorithm? Have 

system dynamics been neglected in the control design process? If yes, how can they be 

included in design approaches? How does the system performance change after the 

implementation of novel controllers? Is it possible to simplify the controller complexity 
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without sacrificing the performance? How can a balance among the system uncertainties, 

control effort, and controller complexity be achieved? 

This research will address these questions and investigate the design of novel 

controllers. Classical controller designs are also included in this study. They serve as 

benchmarks to compare the performance of a maglev system with the proposed controllers.  

2.3. Configurations of Maglev Bearings and Trains 

The configurations of the two most popular maglev systems, magnetic bearings and 

maglev trains, are introduced in this section. Other maglev systems, such as wafer delivery 

systems [29-31, 76, 113-115] and precision positioning stages [35, 77, 78, 116-118], share 

configurations similar to maglev trains and are not discussed. This section begins with a 

brief review of the history of these two maglev systems. 

An early discussion of magnetic levitation devices appeared in an article published 

by Holmes in 1937 [109]. In this article Holmes described an experimental device in which 

a vertical ferromagnetic needle was supported by an electromagnetic force. This device 

levitated a 6 gram rotor and achieved a rotational speed of 7,200 rpm. The controller was 

built with analog electronic components. It was the first reported device that successfully 

demonstrated the concept of magnetic levitation. In the same year, a magnetically levitated 

transportation device appeared in a patent. In 1937, a patent was awarded to Kemper for an 

overhead suspension railway design [67]. However, due to the technological limitation, 

this concept was never turned into reality. 

From 1942 to 1965, Beams received multiple patents for magnetic bearings and 

magnetically suspended systems [10, 110, 119, 120]. In 1964, Beams built an apparatus 
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with a rotor suspended by electromagnetic forces [11]. This was the first known prototype 

of an axially suspended magnetic bearing. The magnetic bearings were used on 

ultracentrifuges (with an angular speed of 73.1 10  rpm) that separated uranium isotope 

U-235 from other isotopes. 

In 1963, White and Weltin published a paper describing how to construct a tabletop 

electromagnetic levitator. They built this small device for the purpose of demonstrating the 

concept of magnetic levitation in physics education [121].  

Since the early 1970s, magnetic bearings and maglev trains were developed by 

several engineering groups and companies. In 1973, Thornton presented an overview of the 

advantages of maglev trains, including high speed, low noise, less maintenance, and low 

energy consumption [72]. In 1974, Gutberlet summarized the development of a German 

maglev train, which included the most advanced maglev technology at that time [122]. 

Based on the experience gained from operation of the German maglev train, Gotizein et al. 

proposed the “magnetic wheel” concept in 1980, which was applied to maglev trains after 

its publication [21]. 

Magnetic bearing characteristics were first analyzed by Schweitzer in 1976; he 

studied how to utilize magnetic bearings for vibration control [123]. Based on the work of 

Schweitzer, Studer proposed a “practical magnetic bearing” design in 1977 [16]. This 

design was regarded as a milestone, because it reduced the size, weight, and complexity of 

a magnetic bearing to achieve acceptance in flight systems. The controller in this design 

was built with analog circuits. 

In 1979, Habermann suggested a new magnetic bearing design with the opposite 
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poles of each electromagnet arranged axially [124]. This design turned out to be effective in 

applications requiring high accuracy. In 1980, Habermann summarized his work on an 

ActidyneTM active magnetic bearing system in a paper titled “An Active Magnetic Bearing 

System” [125]. In the paper, Habermann described the principles of the design and 

operation of the magnetic bearing system, and demonstrated high accuracy of a shaft 

position (up to 0.01 mm) through experiments. 

The working principles of magnetic bearings and maglev trains are similar. The 

components carrying loads are magnetically supported by electromagnet forces. The 

magnitudes of the magnetic forces depend on how much current runs through the 

electromagnets (assuming the magnetic cores are not saturated.) The currents are controlled 

based on a difference of the measured and desired positions of the levitated loads. The next 

two sections provide details about the configurations of magnetic bearings and maglev 

trains. 

2.3.1. Magnetic bearings 

Magnetic bearings differ from traditional mechanical bearings in that their rotors 

are suspended by electromagnetic forces. There are two types of magnetic bearings: 

passive magnetic bearings and active magnetic bearings [12, 126]. The passive magnetic 

bearing utilizes static magnetic forces plus other means of support to achieve what is called 

“pseudo-levitation” [127-132]. It has no feedback loop and therefore is not in the scope of 

this research. The active magnetic bearing, which uses a feedback control loop to realize 

stable levitation, is addressed in this research. 
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Figure 2.1: MBC 500 magnetic bearing system [133] 

Figure 2.1 shows an MBC 500 magnetic bearing system built by LaunchPointTM 

Technologies LLC. The electromagnet assembly inside the active magnetic bearing is 

visible. The gap sensors and control circuits are built inside the aluminum housing (which 

cannot be seen in the picture.) 

This system has two radial active magnetic bearings (AMB) and two axial passive 

magnetic bearings (PMB) [133]. Each AMB has four pairs of electromagnets, whose 

current can be controlled individually. A turbine is built in the magnetic bearing system 

(which cannot be seen in the picture). The air-turbine drive is capable of driving the shaft to 

a rotational speed of 10,000 rpm (the speed limitation is preset by the control system for 

safety, and is not the maximum rotational speed the system can achieve.) Several research 

projects have studied the system identification, modeling, and control designs of this 

system [134-138]. The controllers tested for this AMB are usually linear controllers.  
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Figure 2.2: Configuration of one AMB electromagnet with a control loop [139] 

Figure 2.2 shows the configuration of one group of the electromagnets with a 

feedback loop to control the current through one electromagnet. The electromagnets are 

part of one AMB built inside the MBC 500 system. In Figure 2.2, there is a gap distance 

sensor, which is a Hall effect sensor; it is located near the rotor shaft to measure the position 

of the shaft (i.e., the gap distance between the shaft and the electromagnet.) There are 

multiple gap distance sensors in the system. For simplicity, Figure 2.2 shows just one of 

them. 

 

Figure 2.3: Schematic of the electromagnet of AMB [139] 

Figure 2.3 shows a schematic of a typical AMB. In this schematic, the gap sensor 
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measures the gap distance between the rotor shaft and the electromagnets and outputs a 

position signal. This position signal is sent to the controller, which controls the current 

through the electromagnets using a power amplifier to generate an electromagnetic force. 

The electromagnetic force acts on the ferrous rotor shaft and pulls it toward the 

electromagnets (stator.) 

As is seen in Figure 2.3, a typical AMB consists of four major components: a gap 

sensor, an electromagnet (stator of the AMB), a controller, and a rotor. The distance 

between the rotor and the stator is measured by a gap sensor, and controlled by a controller. 

In the next section, the configurations of maglev trains will be discussed. It will be seen that 

the configurations of magnetic bearings and maglev trains are similar. 

2.3.2. Maglev Trains 

Maglev trains utilize electromagnetic forces to levitate the train bodies. There are 

also electromagnets for lateral guidance and propelling, but are not discussed in this 

research. There are three major types of suspensions used in maglev trains: the 

Electromagnetic Suspension (EMS) [107, 140-143], the Electrodynamic Suspension (EDS) 

[144-148], and the Inductrak [149-155]. In EMS, there is one electromagnetic unit that 

controls the “levitation”. A second electromagnet unit, which includes groups of linear 

motors built along the guideway, drives the train forward. This research discusses the unit 

that controls the levitating forces. 
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Figure 2.4 Principle of repulsive-type maglev trains [156] 

Magnetic force between two magnets is either repulsive or attractive depending on 

the how their polarities are arranged. Maglev train operations can be divided into two types: 

repulsive-type and attractive-type based on the levitating magnetic forces. EMS is the 

attractive-type maglev train; EDS and Inductrak are the repulsive-type. Figure 2.4 shows 

the principle of repulsive-type maglev trains. The magnets on the trains and those on the 

guideway are assembled to bring like poles together, generating repelling forces between 

the train and the guideway. The repelling magnetic forces levitate and guide the train. 

Control design for repulsive-type maglev trains is not discussed in this research. (The 

mathematical model is different from that of the experimental testbed.) 

 

Figure 2.5: Schematic of principle of HSST Maglev train [156] 
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Figure 2.5 shows a schematic of the principle of the High Speed Surface Transport 

(HSST) maglev train, which represents the design of a modern attractive-type maglev train 

[156]. Figure 2.5 also shows the configuration of the attractive-type maglev train in detail. 

Electromagnets are assembled on the frame underneath the car body and positioned 

underneath the rail. The rail is made of a ferromagnetic magnetic material. The magnetic 

forces between the electromagnets and the rail are attractive forces. The car body of the 

HSST maglev train, which is made of welded aluminum alloy, is levitated when the 

electromagnets are pulled upward towards the rail. The gap sensor measures the gap 

distance between the car body and the rail. The position signal from the gap sensor is sent to 

the control unit, which controls an amplifier that regulates the current delivered to the 

electromagnets from the power source. The electromagnetic forces vary depending on the 

amount of current through the electromagnets. Thus, the gap distance is controlled by 

electromagnetic forces. 

The first commercial maglev train was the HSST in Japan, which started its service 

on the Tobu Kyuryo Line in the northeastern suburbs of Nagoya city in 2005 [157]. Many 

publications have reported the modeling, analysis, control design, as well as experimental 

validation of the HSST maglev train [158-164]. 

In summary, as shown in Figure 2.5, there are four major components in a maglev 

system: the gap sensor, the maglev train, the rail, and the controller. The position of the 

maglev train relative to the rail is measured with a gap sensor, and controlled by a 

controller. The working principle of maglev trains is the same principle as that of magnetic 

bearings (discussed in the previous section.) 
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2.3.3. Similarities of Systems 

Magnetic bearings and maglev trains have four major hardware components: 

electromagnets, gap sensor, control unit (including the controller and the amplifier), and 

levitated load. The control unit controls the electromagnetic forces and thus the position of 

the levitated load. The behavior of the system is dependent on how the controller reacts to 

the position signal.  

There are several maglev systems sold for educational use. Educational Control 

Products® makes an educational maglev system, in which rare earth magnets move along a 

polished glass bar [165]. Feedback Instruments® offers a maglev experimental apparatus, 

in which a hollow steel sphere is suspended by electromagnetic forces [166]. In 2004 

Lundberg suggested a low-cost maglev project kit [167]. In 2013 Awelewa presented a 

magnetic levitation system for control engineering education [168].  

In this research, the maglev testbed was designed by Scott Green [112]. This testbed 

was chosen for this research because its design is well documented in Green’s dissertation. 

The detailed geometric dimensions and material properties allow an FEA model to be 

created to simulate the magnetic field and magnetic forces. Additionally, Green has 

designed and tested multiple controllers with this system, thereby providing references for 

the control design. In the next section, this maglev system will be described. 

2.3.4. Desktop Maglev Testbed 

This research utilizes a desktop size testbed to investigate the behavior of a maglev 

system with controllers designed with different control design approaches. Like the maglev 

systems discussed above, this maglev testbed consists of four major hardware parts. The 
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details on how the electromagnet is built and how to derive the electromagnetic force are 

included in Appendix A. 

 

Figure 2.6: Maglev testbed used in this research 

Figure 2.6 shows a graphic representation of the maglev testbed used in this 

research. Research work conducted using the same apparatus has been reported by Green et 

al. in 1997, Craig et al. in 1998, Craig in 1998 and in 1999, and Green and Craig in 2001 

[81, 83, 169-171]. Several control design ideas have been successfully demonstrated with 

this testbed [112]. 
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Figure 2.7: Schematic of the maglev testbed 

Figure 2.7 shows the front view of the maglev testbed. A single electromagnet is 

fixed on an aluminum frame. When the current flows, the electromagnet force pulls the 

ferrous ball up. There is a position sensor (optical sensor) mounted on the frame. It 

measures the gap distance between the electromagnet and the ferrous ball and outputs a 

position signal. The signal is sent to the controller that is connected to an amplifier and 

controls the current through the electromagnet. The electromagnetic force is adjusted to 

counterbalance the weight of the ball and achieve stable levitation. This research 

investigates how to design controllers that control the electromagnetic forces to guarantee 

stable levitation despite external disturbances and system uncertainties. 

2.4. Feedback Control Design for the Maglev Systems 

This section summarizes the control design methods that are relevant to this 

research in the literature, and describes how the maglev system stability and system 

robustness were addressed previously. Literature on AFC will be summarized in Chapter 3, 

after the discussion of how to achieve a stable levitation. The following two sections review 
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control design methods that guarantee stable levitation and system robustness, respectively. 

The discussion motivates why robust controllers are needed, and ultimately, how to design 

a robust controller. 

2.4.1. Linearizing a Nonlinear System 

The linear control design methods work with system models described by linear 

differential equations. If the system equations are nonlinear, a mathematical method is used 

to transfer them into a form that works with the linear control design approaches. The 

common method is to linearize the nonlinear system about an operating point. This method 

approximates the nonlinear system behavior with a linear model derived either analytically 

or numerically. A controller is then designed for the linearized approximation, assuming 

the system works in the vicinity of the operating point and the operating range is small 

enough so that the nonlinearities can be ignored. 

The linearization process is described briefly here. The nonlinear system (or plant) 

model is given by: 
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where nx  is the state vector, pu  is the input vector, and my  is the output 

vector. 

To linearize this system, a Taylor series expansion is performed around an 

operating point 0 0( , )x u , where 0x  is the plant state when the input is 0u . Eq. (2.1) 

becomes: 
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Eliminating the higher order terms and changing the notation in Eq. (2.2) with 

0, 0,,  .j j j j j jx x x u u u       

and 

0, 0 0( , )i i i i ix x x x f x u         

the expression of the linearized model is given by: 
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Eq. (2.3) can be rewritten in the standard linear state-space form: 

 x A x B u       (2.4) 

where A and B are the Jacobian matrices: 
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2.4.2. Review of the Linear Control Design Methods 

Several publications summarized the linear control design techniques tested with 

maglev systems similar to the desktop testbed before the 1980s, with the controllers 

implemented using analog electronic components. These publications included the papers 

published by Jayawant [107, 172], the project report by Wong [173], the book published by 

Sinha [174], the articles published by Covert [175], Eastham and Hayes [19], Barie and 

Chiasson [176], and doctoral theses by Trumper [40] and Green [112]. Additionally, 

Scudiere et al., Williams et al., Trumper, and Green discussed digital control designs for 

maglev systems [177, 178]. 

In the abovementioned research publications, the maglev systems were modeled as 

linear systems, i.e., the nonlinear system dynamics were linearized. Classical control 

design methods were used to design the controllers. Designs with the assistance of 

graphical tools such as the Bode plot and the Nyquist plot were reported in the literature. 

PID type controllers, lead-lag type controllers, and a combination of these two types of 

control (such as a PI controller with lead term, which forms a PI-Lead controller) were 

tested. Most research prior to the 1980s implemented the controllers using analog 

electronic components. The design goal was to obtain stable levitation, and these 

controllers successfully achieved this goal. 

In the literature on the linear control design of the maglev system, there is a lack of 

discussion of disturbance attenuation. Two facts contributed to this: (1) The linear control 

design methods were aimed to solve the stability problem. The methods do not deal directly 

with disturbances in the system. (2) With analog electronic components, it is difficult to 
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implement the acceleration feedback algorithm as an acceleration estimator is needed. This 

research introduces a DSP board and implements the acceleration feedback algorithm in 

software. With acceleration feedback control, disturbance attenuation is achieved on the 

maglev system. In Chapter 3, acceleration feedback is added to the maglev system after a 

linear controller is designed.  

2.4.3. Nonlinear Control Techniques 

This literature review of nonlinear control techniques focuses on the nonlinear 

theories that have been applied to the three specific types of maglev systems: (1) maglev 

transportation systems (maglev vehicles and wafer transporting systems); (2) magnetic 

bearing systems; and (3) single DOF experimental systems that are similar to the one 

shown in Figure 2.6. Table 2.1 identifies nonlinear control techniques that were reviewed 

in the doctoral dissertation by Green [112]. Green’s review focused on adaptive control 

design approaches, while this review focuses on robust control design methods. There are 

overlaps in these two reviews since both methods are used to design controllers that 

account for system uncertainties. 

For each method reviewed here, the basic concept of the nonlinear control theory is 

described, and then research related to the particular theory is presented with applications 

to maglev systems. Finally, the advantages and disadvantages of each of the nonlinear 

control design methods are summarized. 

2.4.3.1. Relay control/on-off control/bang-bang control 

A simple discontinuous nonlinear control element (e.g., on and off) can be used to 
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force the system to oscillate in a limit cycle around the required operating point. For a 

nonlinear plant, the controlled system is assumed to be piecewise linear with known 

switching times. Relay control can be applied to both linear and nonlinear plants. The 

systems might behave differently for the different modes (on/off) of the controller (e.g., it 

may present different time constants or process gains). 

A common practice for relay control is to apply a modulation technique that 

manipulates the width of the on/off (pulse) time based on the plant state fed back to the 

controller. This pulse-width modulation (PWM), or pulse-duration modulation (PDM), 

technique is a common method to control motors. Its application to maglev systems has 

been reported in the literature. Hurley et al. described a controller design based on a PWM 

converter in 2004 [179]. Experiments showed that the controller could stabilize a maglev 

system that was similar to the desktop testbed. Another PWM controller for magnetic 

bearings was reported by Zhu and Mao in 2005 [180]. In their research, a two-level 

PWM-based switching power amplifier was utilized for the control design to stabilize a 

magnetic bearing. Issues such as the static input-output characteristic, frequency response, 

and current harmonic distortion were also addressed in this research. 

The advantages of on-off control include: (1) the controller implementation is very 

simple, (2) the delay elements in the system can be treated easily, and (3) the controller 

provides a certain level of robustness despite plant parameter variations. 

The disadvantages of this method are: (1) the dynamics of the system are different 

when the controller is on and when it is off, (2) control signal oscillation is unavoidable, 

and (3) there is no real steady-state of the system. 
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2.4.3.2. Feedback linearization 

The feedback linearization method transforms the nonlinear system into an 

equivalent linear system through a change of variables along with a change of the suitable 

control inputs. By performing this transformation, a stabilized outer-state feedback loop is 

achieved. Oftentimes, the inner feedback loop acts as a dynamic nonlinear parallel 

compensation loop. There are two types of feedback linearization: the input-to-state 

linearization and the input-to-output linearization [181, 182]. 

1. Input-to-state feedback linearization 

Input-to-state feedback linearization finds a control input that renders a linear 

input-state map between the new input and the state [182]. For example, for the nonlinear 

system 

 
( ) ( )

( ),

x f x g x u

y h x

 



  (2.5) 

this method finds a state feedback control 

 ( ) ( )u x x v     

and a change of variables 

 ( )z T x   

that transforms the original system to 
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z Ax Bv

y h T z
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


  (2.6) 
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Table 2.1: Nonlinear control techniques overview by Green [112] 

Nonlinear Control Theory 

Robust Theory Adaptive Theory Stability Theory 

Inversion Methods Non-inversion Methods Direct Indirect 

1. Feedback linearization 
(input-output linearization 
and input-state linearization) 

2. Time-delay control 

3. Variable-structure control 
(sliding-mode control) 

4. Robust-saturation control 

1. Gain scheduling 

2. Energy shaping 
(passivity-based control) 

Adaptive 
control 
parameters 

Adaptive plant parameters 
(adaptive backstepping 
control) 

1. Lyapunov direct method 

2. Input-output stability theory 

3. Phase-plane method 

4. Describing-function method 

5. Linear techniques: 
(Lyapunov indirect method and 
frequency domain methods) 
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The nonlinear system expressed in Eqs. (2.5) is transformed into a linear system 

expressed in Eqs. (2.6). Then a linear controller can be designed using the updated linear 

system equations [182]. 

2. Input-to-output feedback linearization 

Input-to-output feedback linearization is the same as the input-to-state method, 

except the transformation is from the input to the output [183]. Consider the same nonlinear 

system in Eq. (2.5). Taking the derivative of the output, the system equations become: 

  ( ) ( ) ( ) ( )f g

h
y f x g x u L h x L h x u

x


   


   (2.7) 

where 

 ( ) ( )f

h
L h x f x

x





  

is the “Lie derivative” of h along f. If ( ) 0gL h x   in Eq. (2.7), then ( )fy L h x  is 

independent of u. 

Repeating the differentiation for the second derivative of y, 
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f g f

L h
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x


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
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Again, if ( ) 0g fL L h x u   then 2 ( )fy L h x  is independent of u. 

The same process is repeated until  

 
1

1

0 ( ),  ( 1,2, , 1)

0 ( )

i
g f

p
g f

L L h x i p

L L h x





   





  

where u does not appear in the equations of ( 1), , , py y y    . Rewriting the p-th order 

differential equation of y 

 ( ) 1( ) ( )p p p
f g fy L h x L L h x u    (2.9) 

and letting the control signal be  1

1
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u
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, Eq. (2.9) becomes 
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 ( )py v .  (2.10) 

Eq. (2.10) shows a linearized form of the nonlinear system. Controllers can then be 

designed using linear control design techniques [184]. 

There has been significant research on designing controllers for maglev systems 

using feedback linearization methods. In 1991 Hung reported a design using feedback 

linearization control for a maglev system [185]. In this study, the regulation performance 

was compared to that achieved by linear state feedback. Other issues such as feedback 

requirements, computational demands, and system robustness were also discussed. The 

conclusion was that nonlinear control yielded better performance than the linear state 

feedback approach, especially in the reduction of sensitivity to system parameter changes. 

It was also noted that the difference in computational demands between the two types of 

controllers was not significant. 

In 1997 Joo and Seo presented a different feedback linearization controller design 

for a maglev system [143]. In their research, the maglev system was treated as a nonlinear 

SISO system. A class of nonlinear systems with bounded uncertain parameters was 

characterized and then transformed into a group of linear interval matrices. Feedback 

linearization control was proposed for the maglev system. Experiments showed that 

feedback linearization control of the maglev system provided better performance in 

comparison to classical state feedback control under small perturbations. 

In 2001 Filho and Munaro studied the problem of designing tracking controllers for 

a maglev system [186]. The nonlinear system was linearized using the input-state feedback 

linearization technique. They also developed a linear reduced-order observer to estimate 
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the states because of the structure of the linearization transformation. The tracking control 

law for the input-state linearization model was developed using integral control based on 

the estimation obtained by the observer. The derived tracking controller successfully met 

the design requirements. 

In 2001 Yang and Tateishi described a robust control design with feedback 

linearization [187]. Their design was a backstepping controller based on the nonlinear 

system model. Parameter uncertainties were also included during the design process. The 

control design was carried out in two steps. In the first step, a PI controller was designed to 

stabilize the system. In the second step, an adaptive robust nonlinear controller composed 

of an adaptive feedback linearization term and a robust nonlinear damping term was 

designed to attenuate the parameter uncertainty effects. The authors reported that the 

designed system exhibited excellent position tracking performance with the high-gain 

feedback issue of the robust controller and the poor transient performance of the adaptive 

controller overcome by the combination of the adaptive and robust approaches. 

In 2002 Lindlau and Knospe applied the feedback linearization method to a 

magnetic bearing [188]. They designed a feedback linearization controller and then 

proposed a high-performance controller for the system with feedback linearization and 

-synthesis . Their test results showed the controller designed with -synthesis  

guaranteed the design specification of system robustness. 

In 2004 Mizutani et al. studied the stabilization and tracking problems of a maglev 

system [189]. They transferred the nonlinear model of the maglev system into a feedback 

linearized system. Then a controller was developed using the output regulation theory to 
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optimize system tracking performance. Additionally, a stabilizing output feedback 

controller was designed. Experiments proved both controllers achieved the design goals. 

In 2005 Chen and Knospe published a paper on feedback linearization for a 

magnetic bearing system [190]. Their research reported a feedback linearization controller 

with a filter to compensate for the nonlinearities of the amplifier and measurement 

instruments in the maglev system. A robust controller using -synthesis  based on the 

feedback linearization model was proposed. The compensation filter was essential for the 

system to achieve stability and the specified performance. 

The advantages of the feedback linearization method include: (1) the method is 

simple and easy to implement, and (2) after the linearization, linear control design methods 

can be used on the linearized model. 

The disadvantages of this method include: (1) the variable change must be 

invertible, (2) the derived model might be sensitive to parameter changes, and (3) all the 

state variables must be available or otherwise observers are needed. Usually nonlinear 

observers are needed to estimate the states, which increases the complexity of calculation. 

2.4.3.3. Lyapunov redesign 

The Lyapunov redesign method exploits the Lyapunov function for the synthesis of 

nonlinear control systems. To design a controller, first a Lyapunov function V needs to be 

defined for the closed-loop system, then a control law is designed which makes the 

derivative V  negative for the required domain of attraction (for all possible initial 

conditions, disturbances, and uncertainties). The derived control law is usually a nonlinear 
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state feedback law. 

To describe the method, consider a nonlinear system which is affine (linear) in the 

input, i.e., 

 ( ) ( )x f x g x u    (2.11) 

with (0) 0f  . 

The Laypunov candidate function, V, can be found by letting 

 : nV     

be a continuous scalar function (which means the Lyapunov function V is a mapping from 

n  to  ). If V satisfies the locally positive-definite function conditions, i.e., 

 
(0) 0;

( ) 0,  \ {0}

V

V x x U


  

  

with \{0}U  standing for the neighborhood around, but not including the point x=0, it is 

one of the Lyapunov candidate functions. 

Choosing one V(x) Lyapunov candidate function set as the Lyapunov function for 

the system, a stabilizing feedback control law, u(x), can be written using Sontag’s formula 

[191, 192] 
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  (2.12) 

Due to the difficulty in finding a Lyapunov function for the system, this method is often 

used with other control design methods (especially the nonlinear approaches which need to 

find stability conditions) to derive a feasible controller. There are several such designs 
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reported in the literature. 

In 1994 Blanchini and Carabelli presented a study of a design technique for the 

robust stabilization of a maglev system with a Lyapunov function [193]. The nonlinear 

maglev system was linearized and treated as a linear system with time-varying uncertain 

parameters. A polyhedral Lyapunov function (polyhedral Lyapunov functions have been 

discussed by Polanski [194]) was constructed and a linear variable structure stabilizing 

controller was derived. Stable levitation was thus achieved. 

In 2006 Chiang et al. used an integral variable-structure grey (‘grey’ meaning the 

system is partly known) control for a maglev system for position tracking [195]. The 

stability of the system was proved by the Lyapunov function and a sliding mode control 

was derived. This design utilized a mathematically simple but computationally efficient 

grey compensator for the integral variable structure controller to reduce the chattering and 

steady-state error. It was shown that the performance of the system depended on the 

magnitude of the uncertainties and disturbances. Chattering and steady-state error may 

exist if either one of them exceeded their estimated values. 

In 2010 Lin and Chen proposed an intelligent integral backstepping sliding model 

control for the position control of a maglev system [196]. Their design used backstepping 

sliding model control with integral action to track the reference trajectory. Then the 

switching function of the sliding mode control was discarded and the requirement for the 

needed bounds was relaxed. The controller was then implemented using a MIMO recurrent 

neural network estimator. The Lyapunov stability theorem was used to train the parameters 

of the recurrent neural network and finally adaptive learning algorithms were derived. 
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Experiments demonstrated the validity of the control by tracking periodic sinusoidal 

trajectory signals. 

The advantages of this method are: (1) the stability of the nonlinear system can be 

guaranteed, and (2) the robustness of the system can be balanced against the performance 

by the choice of the Lyapunov function. 

The disadvantages of this method are: (1) it might be difficult to find a Lyapunov 

function, and (2) all the state variables need to be measurable, otherwise nonlinear 

observers are needed to estimate the states. 

2.4.3.4. Backstepping 

The backstepping method is based on a Lyapunov function and is a stepwise control 

design approach. The design of a first-order subsystem is performed first. Then an 

additional set (which is referred to as the upper system) is considered and the design for the 

second-order system is performed for incremental orders until the whole system is 

controlled. 

The backstepping procedure can be applied as follows to a system of the form 

 1

1 1 1 1 1 1

( ) ( )

( , ) ( , )
x xx f x g x z

z f x z g x z u

 
  




  (2.13) 

where  1 2, , ,
T

nx x x x  , ( )xf x  and ( )xg x  are function of x , z1 and u1 are scalars for 

all x and z1, 1 1( , )f x z  and 1 1( , )g x z  are functions of x and z1 with 1 1( , ) 0.g x z   

It is assumed that a control input is known for which the Lyapunov function proves 

the stability of the upper system. A new control input is introduced together with the 

variable substitution: 
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which is possible as long as 1 0g  . The system becomes 
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and then the input is designed according to the law 
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with gain 1 0k  . So the final feedback-stabilizing control law is: 
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. 

This input stabilizes the system since the new Lyapunov function 

 2
1 1 1

1
( , ) ( ) ( ( ))

2x xV x z V x z u x    

proves stability of the system with the design of 1 1( , )au x z  and 1 1( , )u x z  above. 

The backstepping control design method utilizes the Lyapunov function to 

guarantee the stability of the nonlinear system. It is possible to combine the method with 

other nonlinear control methods to design the controllers. In the literature, control design 

with backstepping and control design with adaptive backstepping have been reported as 

described below. 

In 1996 De Queiroz and Dawson developed a backstepping nonlinear controller for 

a full-order electromechanical system with a magnetic bearing [197]. Simulation proved 

that the controller guaranteed the stability of the magnetic bearing and achieved global 
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exponential position tracking. However, it also required the measurement of the rotor 

position, velocity, and stator current. In 1996 Long et al. described a backstepping adaptive 

controller to deal with magnetic bearing static load changes and unbalance [92]. Simulation 

studies showed that the performance of the system was satisfactory; no experimental results 

were presented. 

In 2000 Pranayanuntana and Riewruja presented a backstepping nonlinear 

controller to guarantee the position tracking of a maglev system [198]. This research 

suggested using two inputs, the position and the second derivative of the position, to 

generate a piecewise continuous control law and guarantee the asymptotic stability of the 

system. 

In 2007 Lin et al. proposed an intelligent adaptive backstepping controller using a 

recurrent neural network to control the position of a maglev apparatus [199]. Uncertainties 

were also taken into consideration when designing the controller. A dynamic model was 

first derived, and then an adaptive backstepping approach was proposed. Further, a 

recurrent neural network estimator was adopted to deal with the uncertainties. 

Experimental results showed improved transient performance and system robustness 

during tracking of periodic trajectories. 

In 2010 Wai and Chuang reported a backstepping particle-swarm-optimization 

controller for a maglev transportation system [200]. The goal was to design an on-line 

particle-swarm-optimization control method to deal with the control transformation and the 

chattering effect in the system. Experiments proved the effectiveness of the proposed 

controller.  
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The advantages of using the backstepping method are: (1) since this method takes a 

recursive method to derive the controller, if the dimension of the system increases the same 

controller can be extended accordingly, and (2) the stability of the system is guaranteed 

using the Lyapunov function. 

The disadvantages associated with this method are: (1) finding the Lyapunov 

function might be difficult, and (2) all the state variables need to be measured, or otherwise 

nonlinear observers are needed. 

2.4.3.5. Sliding-model control (SMC) 

SMC is a nonlinear control technique that solves the system uncertainty issues. It 

was derived from variable structure control (VSC), a form of discontinuous nonlinear 

control that changes the dynamics of a nonlinear system using a switching controller. The 

stability issue of SMC is addressed using the Lyapunov approach. The modeling 

uncertainties are dealt with by the application of the alternating control signals. Details 

about this technique as well as the theoretical and practical developments of SMC and VSC 

have been summarized by Emelyanov and Utkin in their publications from the 1970s to the 

1990s [201-206]. 

Here a brief description of the method is given. The method divides the control into 

phases in time. In a reaching phase the n-th order system is first driven by a stabilizing 

control law (which could be derived using the Lyapunov function) to a stable manifold of 

order 1.n   In the sliding phase the system “slides” along the manifold towards 

equilibrium. The overall control law switches between several controllers, depending upon 
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the process. Figure 2.8 shows a chattering in the system when it is driven to “slide” along 

the manifold (sliding surface) until equilibrium is reached [207]. 

 

Figure 2.8: Chattering in sliding mode control [207] 

In 1992 an SMC controller for a maglev system was reported by Cho et al. [208]. In 

this research, an experiment was conducted to compare a sliding mode controller with a 

classical controller. During the sliding mode control design, trade-offs were made among 

system robustness, uncertainties, disturbances, and performance. The sliding mode 

controller had a better system response in terms of stability and command following. 

In 2001 El-Hajjaji and Ouladsine proposed a different SMC controller for a maglev 

system [209]. In their work, they used an experimentally validated model to design an SMC 

controller. The controller was synthesized based on the differential geometry of the model. 

Experiments showed that the proposed controller successfully achieved stable levitation. 

In 2004 Al-Muthairi and Zribi designed an SMC for a maglev system [210]. 

Simulation results showed the effectiveness of their proposed controller; there were no 

experimental results. Another SMC controller design was reported by Tsai et al. in 2004 

[211]. They designed an SMC controller for the axial motion of a rotor in a magnetic 
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bearing. Their research differed from others in that they reported an embedded prefilter in 

the control loop to provide integral action. The steady-state error of positioning was thus 

eliminated. Their SMC controller provided better stability compared to a conventional PI 

controller. 

In 2007 Alvarez-Sanchez et al. reported a sliding mode control design for a maglev 

system with 3 DOFs [212]. A SMC controller was proposed to regulate the levitation 

position and stabilize the rotational movements. Experimental validation of the controller 

was also included. In 2008 Chen et al. reported an adaptive sliding mode controller [117]. 

The maglev system they studied included a permanent magnet and an electromagnet. The 

permanent magnet brought larger nonlinearity into the system. They reported that the 

designed controller gave a satisfactory system performance in both simulations and 

experiments. 

The advantages of the SMC design methods include: (1) it deals with both 

time-varying and physical system nonlinearities, (2) classical control such as PID control 

or lead-lag control can be combined in designing the overall control law, and (3) the system 

uncertainties are dealt with by a “switching and sliding” process and therefore system 

robustness can be achieved. 

The disadvantages associated with this method include: (1) the system must be 

single-input, (2) there is control law “switching” during operation, which changes the 

system dynamics, and (3) chattering is unavoidable. 



 
 

50

2.4.3.6. Gain Scheduling (open-loop adaptive scheme) 

The idea of gain scheduling control is to design a group of linear controllers, with 

each providing satisfactory system performance around one particular operating point. 

Together the group of controllers guarantees the system performance over a large range of 

operating conditions. To enable the transition among the controllers, one or more observers 

(scheduling variables) are designed to monitor the state of the system (disturbances, 

controller outputs, process outputs, state variables or reference signals) and activate the 

corresponding linear controller. Mathematically, the linear controllers are parameterized as 

a function of the gain scheduler. 

 

Figure 2.9: Gain scheduling block diagram [213] 

Figure 2.9 shows a block diagram of a system with gain scheduling control. The 

auxiliary measurement is the measurement (or observer state) of the scheduling variables. 

A group of linear controllers ( )C   is controlled by the gain scheduler according to the 

auxiliary measurement. 

Several gain scheduling control designs have been reported in the literature. In 1977 

research on gain-scheduling control for a magnetic bearing was reported by Knospe and 

Yang [214]. In their research, the magnetic bearing was modeled as a nonlinear system. 
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The nonlinearity was then formulated as a quasi linear-parameter-varying system 

(quasi-LPV) by linearizing the quadratic terms in system equations and the control input 

saturation nonlinearities. The controller was then designed based on the quasi-LPV model. 

It was reported that this design was able to stabilize the magnetic bearing and reduce the 

bias current and hence the energy loss. 

In 2001 Betschon and Knospe described a gain-scheduling approach with adaptive 

vibration control for a magnetic bearing [215]. In their design, the gain matrix was 

synthesized based on the operating speed of the magnetic bearing. It was shown that a 

significant current reduction was achieved over a wide range of operating speeds. 

The advantage of using the gain scheduling control design method is that linear 

techniques can be used in the design process without introducing complicated nonlinear 

techniques. 

The disadvantages of this method are: (1) the designed system is piece-wise linear, 

meaning transitions between operating points could lead to additional nonlinear system 

behavior, (2) it might be difficult to find a function between the controllers and the 

scheduling variables, and (3) the stability and robustness of the system change over the 

operating range. 

2.4.3.7. Adaptive Control 

Adaptive control is another control design method that can solve the system 

uncertainty issues. This method provides a controller design that is adjustable along with a 

mechanism to adjust the parameters [216]. It was developed based on the concept of 



 
 

52

parameter estimation. The origin of the adaptive control can be traced back to the early 

1950s for the design of autopilots for high-performance aircraft [216]. In the 1960s, the 

introduction of the state-space method and the stability theory contributed to the 

development of the adaptive control technique. Later, Bellman introduced the method of 

dynamic programming, which also helped in the understanding of the adaptive processes 

[217]. A major contribution was made by Tsypkin in the 1970s, who showed that a 

common framework could be used to describe adaptive control and many schemes for 

learning [218-220]. 

In the early 1980s, research work on the stability of adaptive systems led to the idea 

of merging robust control and system identification with adaptive control. The research in 

the late 1980s and early 1990s gave new insights into both control design methods and 

finally these two methods were developed to solve different control problems. In 1991, 

Unbehauen explained the concept of adaptive control in his “Review and Future of 

Adaptive Control Systems” as [221]: 

“In adaptive control the controller settings are automatically adjusted in order to 
achieve better process operation over a wide range of conditions. The controller 
adaptation is necessary either for poorly understood processes or to compensate for 
unanticipated parameter changes of the process due to environmental conditions or 
unpredictable operating point changes. Thus adaptive control provides possibilities to 
control processes with uncertainties, as e.g. nonlinearities and time-varying parameters.” 
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Table 2.2 Comparison of adaptive control and robust control 

Table 2.2 highlights the differences between the adaptive control and robust control 

methods. Although both of these methods can be used to design controllers for systems 

with large uncertainties, their approaches and results are different. 

An adaptive controller adjusts its parameters continuously (hence the name 

“adaptive”) to accommodate relatively slow changes in the process dynamics and 

disturbances. There are two possible methods to realize this parameter adaptation: applying 

it through the feedback loop or the feedforward loop (which, strictly speaking, is not a 

feedback control design). 

There are two classes of adaptive controllers: those based on direct methods and 

those based on indirect methods. For the direct methods, controller parameters are adjusted 

directly according to the data measured during closed-loop operations (e.g., closed-loop 

model reference adaptive control). For the indirect methods, the model parameters are first 

determined online by recursive parameter estimations and then the control parameters are 

derived from the model parameter estimations (e.g., self-tuning regulator). Therefore, the 

Control methods differences 
Adaptive 
Control 

Robust 
Control 

Control design methods for time-varying systems or system with 
parameter uncertainties? 

Yes Yes 

Need information about bounds of the uncertainties or 
time-varying parameters before the design process? 

No Yes 

Will the control law change during the operation? Yes No 
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indirect method can be viewed as a repetitive sequence of model identification and 

controller redesign and update. 

 

Figure 2.10: Adaptive control block diagram [216] 

Figure 2.10 shows the block diagram of a system with an adaptive controller, where 

r is the reference signal,   is the adjustment parameter, u the controller output, my  is the 

reference model output, y  is the plant output, and 0e  is the difference between the 

reference model output and plant output. The adaptive controller included in Figure 2.10 

uses the indirect method to derive the control parameters. The reference model provides the 

model parameter estimations. The estimations are then fed into the adjustment mechanism, 

which determines the control parameters for the controller. The whole process is recursive 

and the controller is updated/re-designed continuously. 

There are several adaptive control designs for maglev systems reported in the 

literature. Green, in his doctoral dissertation in 1997, discussed the application of an 

adaptive backstepping control (ABC) for a desktop maglev system [112]. He concluded 

that the maglev system with a controller derived from a nonlinear design approach of ABC 



 
 

55

exhibited better system robustness than linear controllers and feedback linearization 

controllers. 

In 2001 Yang and Tateishi proposed an adaptive roust nonlinear controller for a 

similar maglev system [187]. Their controller took a feedback linearization approach [222]. 

In 2008 Yang et al. proposed an adaptive robust controller for a maglev system [223]. The 

controller they proposed was designed to solve the tracking problems of the system. They 

concluded that the derived adaptive control law reduced the position tracking error and 

guaranteed the system performance during the parameter transient. 

In 2012 Huang et al. proposed an adaptive controller design for a maglev system 

[224]. They tried to use this control design to accommodate the internal time-varying 

uncertainties and external disturbances in the maglev system. Their experiment included a 

comparison between conventional PID control and adaptive control, and the results showed 

that the adaptive controller allowed the system to deal with larger uncertainties and 

disturbances. 

The advantages of using the adaptive control method are: (1) the controller may 

have a large operating range through the “adaptive” process, (2) since the controller is 

updated/re-designed continuously the system is capable of accommodating parameter 

variation and model uncertainties fairly well. 

The disadvantages of the adaptive control method are: (1) it includes a complicated 

parameter estimation process, (2) there are multiple feedback loops in the system and the 

adaptation loop updates itself only if there is a change in the control loop, (3) the model 

parameter estimation may need a nonlinear state observer, which introduces nonlinearity 
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into the system, and (4) the stability of the system may change during the control parameter 

updating/re-designing process. 

2.4.3.8. Neural network control (NNC) 

A novel nonlinear control design method developed based on the adaptive control 

approach is neural network control proposed by Werbos in 1989 [225] and Narendra in 

1990 [226]. A neural network is a system whose model is based on the structure of 

biological nervous systems. It provides a nonlinear mapping from an input space n  into 

an output space m  [227]. In neural network control (NNC) there is a nonlinear function 

of several input and output variables with a parameter identification procedure called 

“training”. NNC is composed of many similar elements (called neurons or nodes) 

performing the nonlinear operations. The input of one element is connected to the output of 

other elements, and the strengths of the interconnections are denoted by parameters called 

weights. The weights are adjusted based on the control task and the feedback information. 

Typically, the neurons are organized in layers (inputs of neurons of one layer are outputs of 

neurons from another layer). 
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Figure 2.11: Neural network scheme [228] 

Figure 2.11 shows a scheme of a three layer neural network with four inputs and 

one output. Generally, a two-layer NNC has sufficient generality for closed-loop control 

[227]. The choice of the operation implemented in the neuron, such as the threshold, 

number of layers, and number of neurons per layer are the main design parameters. 

Because of its flexibility and adaptability, the application of NNC in the control of 

nonlinear systems is increasing. 

NNC for maglev systems usually incorporates other design approaches to improve 

the performance of the system. A paper discussing a maglev device for modeling and 

controls education, especially for testing NNC, was published by Shiakilas et al. in 2004 

[229]. The system modeling and controller tuning were conducted on a hardware-in-loop 

maglev system. The author reported that it was an excellent demonstration of the NNC 

design. 

In 2008 Aliasghary published a paper on the design of an SMC for the maglev 

system using Radial Basis Function Neural Networks [230]. The purpose of introducing 

SMC was to eliminate the need for the Jacobian matrix of the system, which is needed by 
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the adaptive neural network to adjust the NNC. This research provided simulation results 

without experimental validation.  

In 2008 Aliasghary published another paper on NNC and a feedback error learning 

(FEL) approach for maglev system control design [231]. The FEL was introduced to work 

with the NNC to guarantee the stability of the system. Simulation studies showed that the 

NNC with FEL was more effective than PID control. Again, no experimental results were 

given.  

In 2010 Yasser et al. proposed a control design method based on simple adaptive 

control (SAC) using neural networks to reduce the offset error for a SISO maglev system. 

In this research, the authors proposed an algorithm on using the output of both SAC and 

NNC as the control input. NNC compensates the output error during the linearization of the 

nonlinear system dynamics. SAC performs a model matching for the linear system with 

unknown structures to provide a linear reference model. The author reported that the 

positioning error was reduced by using this method. Both simulation and experimental 

results were given to validate the control design. 

The advantages of using NNC are: (1) The control design process does not need a 

precise model; it could rely on the output data of the system. (2) Since the parameter 

variations and model uncertainties are dealt with by the adjustment of the controller, 

nonlinearities of the system can be accommodated. 

The disadvantages of NNC are: (1) There are many parameter changes needed 

before the final controller can be derived. (2) The structure and size of the controller affect 

the final system performance. (3) Once the NNC is “trained”, it works within the vicinity of 
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the particular system states. If the states change, the NNC needs to be updated. (4) The 

stability of the system is not guaranteed. 

2.5. Summary 

In this chapter, the operation of magnetic bearings and maglev trains are explained, 

followed by an introduction of the maglev testbed that is used in this research. Several 

specific control design approaches, which are closely related to the control design methods 

studied in this research, are reviewed, followed by summaries of the advantages and 

disadvantages of each approach. 

By reviewing the control design methods reported in the literature, the following 

conclusions can be drawn: 

1. Linear control design methods have been tested extensively on maglev systems, and 

can guarantee their stability. Linear controllers have simple mathematical forms and 

are easy to implement. However, there is a lack of discussion of how to improve the 

system performance, especially in terms of disturbance attenuation. 

2. Linear control design methods are based on linear system equations. However, the 

system equations for the maglev system involve nonlinear terms, and the typical 

approaches neglected the nonlinearities. Although this allows the use of a linear 

controller to achieve stability, system robustness cannot be guaranteed. 

3. In the literature, many nonlinear control design approaches have been proposed and 

tested with maglev systems. However, there are performance issues or design 

difficulties with nonlinear controllers. Some of the nonlinear control methods, such as 

relay control, do not provide satisfactory system stability; some of them, such as 
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feedback linearization control, Lyapunov redesign, and backstepping control, need 

complicated stability functions; some of them, such as the gain scheduling method, 

SMC, and adaptive control, involve control parameter changes, which lead to changes 

in the system dynamics, and do not guarantee stability. 

These conclusions lead to the proposal of a novel method, AFC-enhanced QFT/ H  

control design method, to improve system performance of maglev systems. The 

AFC-enhanced QFT/ H  method, which is a blend of AFC, QFT and H  design methods, 

will provide a controller that attenuates disturbance and guarantee system robustness. The 

AFC adds one feedback loop to manipulate the second order term in system transfer 

function, and thus achieves disturbance attenuation. The QFT/ H  controller guarantees 

stability and system robustness. Compared to the Lyapunov function based design 

approaches, the QFT/ H  method does not need a stability function — the controller is 

designed to the system is operating in the stability region in the existence of system 

parameter variation. The parameter uncertainty range is treated as a finite set. There is no 

controller gain rescheduling during the operation, which makes it easier to control internal 

stability. The variations in the system plant are accommodated by a single controller. In 

addition, the H  norm optimization process helps to minimize the impact of 

perturbations. 

Chapter 3 first presents the details of how to design a controller for maglev system 

stability with the linearized system model. Then an acceleration feedback controller is 

designed based on a stable maglev system. Disturbance attenuation with the acceleration 

feedback is proved to be feasible by comparing the input-to-output transfer functions. 
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Robust controller designs are discussed in Chapter 4, where QFT, H , and QFT/ H  

control design methods are investigated. Finally, the AFC-enhanced QFT/ H  controller is 

proposed. They are compared with classical control methods to illustrate how the system 

robustness is improved. 
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Chapter 3. Linear Controller Design 

3.1. Chapter Outline 

Chapter 3 first presents the design of a PD controller to stabilize the maglev system, 

and then an AFC controller is designed to achieve disturbance attenuation. Designs of PID, 

lead, MRC, and LQG controllers are also discussed in this chapter.  

A typical controller design exercise includes six steps: (1) describing the system, (2) 

defining desirable system performance characteristics, (3) modeling the system, (4) 

designing the controllers, (5) choosing/building the control hardware, and (6) simulating 

and experimental validating. The maglev system has been described in Chapter 2. This 

chapter discusses about the control design goal (in terms of system performance), the 

system model, and the designs of controllers. Simulation results will be presented in this 

chapter. Control hardware and experiments are discussed in Chapter 5.  

The workflow of the designing process is illustrated by the flowchart in Figure 3.1. 

This flowchart is originated from Fireland [232] and Yaniv [233] but has been modified 

(with system identification using experimental data skipped) to reflect the work in this 

research.  

This chapter is organized as follows: Section 3.2 presents the maglev system block 

diagram. Section 3.3 discusses the designs of a PD controller and an AFC. Section 3.4 

discusses a PID controller design. Section 3.5 discusses a lead controller design. Section 

3.6 discusses a MRC design. Section 3.7 discusses a LQG controller design. 
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Figure 3.1 Feedback controller design flowchart 
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3.2. Maglev System Transfer Functions 

 

 

Figure 3.2 Maglev system configuration 

Figure 3.2 shows the closed-loop control configuration of the maglev system. As 

shown in the figure, the plant includes an electromagnet, a ferrous sphere, a current servo, 

and some analog components. The sensor is an infrared emitter and detector pair.  

 

Figure 3.3 Block diagram of the maglev system 

Assuming the maglev system is a linear system (which will be discussed in detail in 

Section 4), the block diagram of the system can be created, as shown in Figure 3.3. In the 

block diagram, the output of the plant, P, is the gap distance, x, between the levitated ball 

and the electromagnet. The input to the plant, u, is the current through the electromagnet; u 

plant feedforward 
path 

feedback path 

Electromagnet

Ferrous sphere
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is also the output of the controller. The disturbance is denoted by d, and the reference 

position command by r. The controller C is responsible for (1) maintaining a desirable plant 

output y  for a regulator problem and tracking the reference command r  for a 

servomechanism problem (both will be explained later), (2) reducing the plant output y due 

to the disturbance d, and (3) attenuating the variation of y if the plant deviates from the 

nominal mathematical model P . In the sensor-measuring process, H, the plant output y is 

measured and fed back to the controller C. There may be another signal, the noise n, which 

is not correlated to any of the signals in the system, added to the plant output. Assuming r, 

d, and n are three unrelated inputs with u, y, and v being controller, plant, and sensor 

outputs, respectively, there are nine transfer functions from  T
r d n to  T

u y v : 

 

1 1 1

1 1 1

1 1 1

C PHC CHu r
PHC PHC CHP

CP P HCP
y d

CPH PHC HCP
CPH PH H

v nCPH PHC HCP

               
            
    
            

  (3.1) 

This research studies the system behavior with certain inputs. The transfer function from 

the system input to system output, 
1

y CP

r CPH



, is of primary interest.  

Based on the desired output, control systems are divided into two types. One is a 

process control (or regulator) system. In a regulator system the controlled variables are 

driven to stay as close as possible to a constant desired value, despite disturbances. The 

second type is a servomechanism system. In a servomechanism system, the controlled 

variables are made to follow a time-varying input as closely as possible [234]. 

Based on their applications, maglev systems belong to either regulator or 

servomechanism systems. For example, a magnetic bearing is a regulator system since the 
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position of the levitated bearing shaft is desired to stay (regulated) at a fixed position. In 

comparison, a maglev positioning stage is a servomechanism system since it follows the 

position command during operation. Controllers for a regulator system tend to keep the 

controlled variable constant. They are designed to be insensitive to disturbances (which can 

be regarded as another input signal, as shown in Eq. (3.1).) Controllers for a 

servomechanism system make the controlled variable follow the input signal. They are 

designed to be sensitive to the smallest variations of the reference signal. Both regulator 

and servomechanism designs are addressed in this thesis. This chapter discusses how to 

design controllers to maintain stable maglev systems, which are typical regulator system 

design cases. Chapter 4 discusses how to design robust controllers, which belong to 

servomechanism cases. 

3.3. Feedback Control Designs for System Stability 

Previous discussion has stated a maglev system is open loop unstable. In this 

section, the mathematical model of the maglev system is first derived, followed by a 

discussion of why the open loop system is unstable. Then a PD controller is designed to 

achieve a stable maglev system. Based on the stable maglev system, an AFC is designed.  
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3.3.1. Mathematical model of the electromagnetic force 

 

Figure 3.4 Electromagnet and the ferrous sphere

Figure 3.4 shows a figure of the ferrous sphere and the electromagnet in the maglev 

system, where   is the magnet flux, ( )L x  is the inductance of the electromagnet, i  is 

the current through the electromagnet, R is the resistance of the electromagnet, v is the 

voltage across the electromagnet, x is the gap distance between the ball and the 

electromagnet, and gF  is the force of gravity. The positive direction of x points 

downwards, i.e., when the ball moves away from the electromagnet. The electromagnetic 

force EMF  acting on the ball can be calculated given electromagnet inductance L(x), 

current i, and gap distance x using the equation [235]:  

 21 ( )
( ) ( )

2EM

dL x
F x i x

dx
   (3.2) 

Woodson and Melcher suggested that for a configuration like the one shown in 

Figure 3.4, the electromagnet inductance is approximated by equation [108]: 

 0
1( )

1

L
L x L

x a
 


  (3.3) 

where a is a constant (with units of displacement) determined by the physical parameters of 
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the electromagnet. In Eq. (3.3), L1 is the inductance of the electromagnet with no ferrous 

ball, and L0 is the incremental of inductance the electromagnet due to the ferrous ball being 

positioned at the end of the electromagnet. 

Since the permeability of the electromagnetic core is three orders of magnitude 

larger than that of air, L0 is significantly larger than L1, and Eq. (3.3) can be simplified as: 

 0( )
1

L
L x

x a



  (3.4) 

In Eq. (3.4) the gap distance x  is divided by constant a  and the quotient 
x

a
 can be 

viewed as a normalized gap distance. It allows the performance of the controller to be 

compared in terms of the gap distance using a dimensionless value.  

In Appendix B, a finite element analysis (FEA) is presented, showing that the 

electromagnetic force equation in Eq. (3.2) is a reasonable engineering approximation 

when 6 mm.x   Therefore, the control designs in this research are based on the 

electromagnetic force calculated using Eq. (3.2).  

3.3.2. Modeling the system using Newtonian dynamics 

In the following discussion, the mathematical model for the maglev system is 

derived. The maglev plant in Figure 3.4 includes two parts: the electromagnetic circuit and 

the mechanical component, i.e., the levitated ball. The modeling process starts with the 

electronics. Using Kirchhoff’s voltage law and Ohm’s law, the voltage across the 

electromagnet is: 

 ev Ri p     (3.5) 

where ( )ep L x i  is the magnetic flux. 
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For the mechanical part of the plant, the governing equation is derived using 

Newton’s second law of motion. Choosing the bottom of the electromagnet as the origin of 

the reference frame, and assuming the positive direction is down, the force balance on the 

ferrous ball is: 

 EMmx mg F    (3.6) 

where FEM is the electromagnetic force generated by the electromagnet. The system 

equations become: 

 
21

( )
2

ev Ri p

mx mg L x i

  



  




  (3.7) 

The first derivative of L(x) with respect to x is 

 0
2

( )
( )

aL
L x

a x
 


   (3.8) 

The negative sign in Eq. (3.8) indicates that the first derivative of L(x) decreases as x 

increases. Since the positive direction is chosen to be pointing downwards, Eqs. (3.7) use 

the absolute value of ( ).L x  

The system equations can be simplified by assuming that the electromagnet 

inductance remains constant despite the change of gap distance x . This results in the 

simplified form of the system equations, 

 2

1
2

1

2

Ri Li v

i
mx mg K

K x

 

 

     




  (3.9) 

where 1K  and 2K  are determined by the physical parameters of the electromagnet. 

Previously, it was pointed out that the gap distance x can be normalized to a constant a to 

evaluate the system response with different control designs. However, the system equations 
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in (3.9) with two constant 1K  and 2K  make it easier to identify the modeling uncertainty. 

Hence, this system model is preferable when it comes to robust control design. 

Eqs. (3.9) give the voltage control form of the maglev system equations, in which 

the input is the voltage v  supplied to the electromagnet and the output is the gap distance 

x . From Eqs. (3.9), it is found that the voltage v  appears only in the first equation. The 

electronic part of the maglev system is an RL circuit, which can be viewed as a low-pass 

filter. It transfers the voltage signal v into current i. Comparing the two equations in Eq. 

(3.9), it is found the current i is the only independent variable if x is assumed to be a 

dependent variable. Hence, it is possible to consider making i the control signal and 

modeling the system in a simpler fashion.  

Since the response time of the electronic part is more than 100 times smaller than 

that of the mechanical part, the first equation can be neglected by assuming that the 

electromagnet current i  can be controlled directly. Hence, it results in the current control 

form of the maglev plant: 

 
2

1
2

1

2

i
mx mg K

K x

 
    
   (3.10) 

where the input is the electromagnet current i  and the output is the gap distance .x  

All the parameters in Eq.(3.10) can be measured experimentally. Table 3.1 shows a 

group of experimentally measured values for the parameters. The experiment to measure 

the system parameters is described in Appendix C. 
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Table 3.1 Measured maglev system parameters 

3.3.3. Transfer function and state-space representation model 

Eq. (3.10) represents the maglev system model in nonlinear differential equation 

form. To start the linear controller design process, a linear model is developed first. To 

linearize the model, it is necessary to define an operating point [236]. In this research, the 

operating point is chosen to be a position where the gap distance between the ball and the 

electromagnet equals x0 (where the following conditions are satisfied: i=ieq, xgap=x0, and 

0gapx  ). The Taylor series of equation (3.10) is given as follows (neglecting higher order 

terms): 

System Parameter Experimental Measurement 

m  3(16.1 0.05) 10  kg    

0x   3(4.5 0.2) 10  m   

0x  0 m/s  

R  31.08 0.005    

L  0.16 0.005 H  

0i  0.345 0.0005 A  

1K  
2

5
2

N m
3.9 10  

A
 

   

2K   30.8 10  m   
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   

2 2

1 1 13 2
2 0 2 0 2 0

2 21

2
eqeq eq

gap gap eq

ii i
mx mg K K x K i

K x K x K x
 

    
                

  (3.11) 

At the operating point, when the system reaches its equilibrium state, the following 

condition is satisfied: 

 
2

1
2 0

1

2
eqi

mg K
K x

 
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 (3.12) 

Therefore, equation (3.10) becomes: 
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Dividing both sides of equation (3.13) by m and letting 
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, the equation of motion for the maglev system at a gap distance 0x  

is written as: 

 i xx k i k x    (3.14) 

In Eq. (3.14) there is only one input, the control current i. Eq. (3.14) is referred to as the 

governing equation for the maglev system with current control. 

Using Eq. (3.14), the transfer function of the maglev plant can be derived. Taking 

the Laplace transform on both sides of Eq. (3.14), 

    2 ( )i xs X s k I s k X s     (3.15) 

where ( )X s  and ( )I s  are the gap distance and current in the frequency domain, 

respectively. Rearranging Eq. (3.15), the transfer function of the maglev plant becomes 

 
2

( )

(s)
i

x

X s k

I s k





  (3.16) 

Eq. (3.16) is the transfer function of the maglev plant with current control. 
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To obtain the state-space representation of the maglev plant, the state variables need 

to be defined. In Eq. (3.14) there is one variable x and one input i. The left side of the 

equation is the second order derivative of x. With the state variables chosen to be 

 T
,  x x x  and the output being x, the state-space representation of the plant is written as: 

 

     

0 1 0

0
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x i

x x
i

k kx x

x
x i

x
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                


       


 



  (3.17) 

Eq. (3.17) shows a linearized state space model of the maglev plant with the current as the 

control input. 

The voltage control form of the maglev plant includes the governing equation of the 

RL circuit. Combining the governing equation of the circuit in Eq. (3.18) 

 Ri Li v    (3.18) 

and Eq. (3.14), the linearized system equations are written as: 

 1
i xx k i k x

R
i i v

L L

  


  



   (3.19) 

In a similar fashion, the transfer function of the plant is obtained by taking the 

Laplace transfer function on both sides of Eqs. (3.19), 
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  (3.20) 

Collecting common terms, the above equations become: 
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  (3.21) 

Multiplying the two equations in Eqs. (3.21), the transfer function of the plant 

becomes 
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  (3.22) 

Since the voltage control form includes the RL circuit governing equation, there is one 

additional state variable in the state-space representation of the maglev plant (now the input 

is the voltage v and current i is a secondary variable). Therefore, there are three state 

variables in the system equation. Choosing the state variables to be  T
,  ,  x x x i  , the 

state-space representation of the plant can be written as 
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  (3.23) 

There are four observations when comparing Eq. (3.16) to (3.22): (1) Eq. (3.16) 

shows a transfer function of a second-order system, but there is no first order term in the 

characteristic equation. It indicates that there is no generalized damping in the system. This 

agrees with what has been discovered in the previous section that “there is a lack of 

effective coupling between the electrical and mechanical subsystems.” (2) The 



 
 

75

characteristic equation of Eq. (3.22) has three poles. One single pole results from the RL 

circuit and a pair of conjugate poles results from the electromagnetic force and ferrous ball 

mass. Since the electronic system responds much faster (hence “the faster pole”) than the 

mechanical system, the RL circuit pole is located further away from the origin (which will 

be discussed later.) (3) The electromagnetic force generates a conjugate pair in the solution 

of the characteristic equation. Since there is no generalized damping term in this second 

order system, the generalized stiffness and the generalized mass terms produce a pair of 

conjugate poles. One of the two is in the RHP, which means the system response increases 

without bound when subject to even a small input. Therefore, the system is open-loop 

unstable (how to evaluate the stability and why stability is important will be discussed later.) 

This explains why a maglev system cannot be controlled using an open-loop control 

configuration. (4) The unstable pole is caused by the mechanical subsystem of the system, 

specifically, the lack of damping in the subsystem. The mechanical subsystem is included 

in both voltage control and current control models.  

3.3.4. Property of the maglev system 

3.3.4.1. Stability of the Maglev System 

This section explains why the maglev system is open-loop unstable by examining 

both current control and voltage control models. Taking the transfer function of the current 

control model from Eq. (3.16), and substituting values from Table 3.1 into the equation, the 

maglev system plant (in units of 
m

A
) is given by: 

 
2 2
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( ) 66.03

X s
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The state matrix A in the state-space representation Eq. (3.17) is: 

 
2

0 1 0 1

0 66.03 0i

A
k

   
    

  
  (3.25) 

The roots of the characteristic polynomial in Eq. (3.24) are 1,2 66.03.r    These are 

the eigenvalues of matrix A: 1,2 66.03   . The values of the roots equal the values of the 

eigenvalues. There is a real pole in the RHP (at 66.03), which means the maglev plant has 

one unstable mode. 

In a similar fashion, the roots and eigenvalues of the voltage control model can be 

calculated. The transfer function (in units of 
m

V
) is calculated as follows: 

 
  2 2
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X s
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  (3.26) 

The A matrix is: 

 2

0 1 0 0 1 0

0 66.03 0 56.82

0 0 187.50 0

x iA k k

R
L

                  

   (3.27) 

The roots of the characteristic polynomial in Eq. (3.26) are 1 187.5r   , and 2,3 66.03r   . 

These match the eigenvalues of the A matrix in Eq. (3.27): 1 187.5   , and 2,3 66.03   . 

Both system models give the same system dynamics. 

Comparing the roots and eigenvalues found from the two system models, it is found 

that: (1) the unstable mode of the maglev plant is captured by both models, and thus the 

controller design for stability can use either of these two models; and (2) there is one pole 

whose absolute value is three times larger than the other two poles in the voltage control 

model. This pole is a result of introducing the RL circuit into the system model. Because the 

dynamics of this pole decays much faster that the other two, it can be neglected, which 
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results in the current control model. 

3.3.4.2. Internal Stability 

The previous section discussed the system stability based on the input and output 

signals. However, a control design should not only guarantee the stability of the 

input-to-output transfer function, but also the other signals inside the system. In the general 

feedback system structure shown in Figure 3.3, there are three signals e, x, and w that were 

input into the controller C, plant P, and sensor H, respectively. It is also desired that these 

signals are bounded during system operation. This section discusses how to determine if a 

controller design can achieve this goal, which is known as internal stability [237].  

Before discussing how to evaluate a control design through internal stability, the 

definition of well-posedness [237] is introduced. 

Definition 1. The feedback system shown in Figure 3.3 is said to be well-posed if all nine 

closed-loop transfer functions from the input signals to the output signals exist. 

Well-posedness can be determined by the following theorem. 

Theorem 1. The system is well-posed iff the 3 3  matrix 

 

1 0 ( )

( ) 1 0

0 ( ) 1
c

H s

G s

G s

 
  

  

  (3.28) 

is nonsingular, i.e., the determinant of the matrix 1 ( ) ( ) ( )cG s G s H s  does not equal zero. 

Definition 2. The system shown in Figure 3.3 is said to be internally stable if all nine 

closed-loop transfer functions from the inputs to the internal signals are stable. 

The nine transfer functions can be written as: 
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  (3.29) 

Theorem 2. The system is internally stable iff the following two conditions are satisfied: 

1. The transfer function 1 ( ) ( ) ( )cG s G s H s  has no zeros on Re( ) 0s  ; 

2. There is no zero-pole cancellation in ( ) ( ) ( )cG s G s H s  on Re( ) 0s  .  

In the following sections, a PD controller will be designed for the maglev system. 

The internal stability of the systems will be checked to evaluate the designs.  

3.3.5. PD controller design 

This design uses the transfer function (in units of 
m

A
) in Eq. (3.24): 

2 2

( ) 56.82
.

( ) 66.03

X s

I s s


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
 

As has been discussed, there is one pole in the RHP, which indicates this plant is unstable. 

Although the simplest solution is to use pole-zero cancellation to stabilize the system, this 

is impractical. In 1970, Ramaswami and Ramar proved that if the plant has a pole in the 

RHP, pole-zero cancellation will not guarantee the system stability [238]. Practically, it is 

impossible to achieve perfect pole-zero cancellation. Every plant bears some level of 

uncertainties. The cancellation is only achieved with the nominal model. If there is a 

mismatch between the plant and the model, the cancellation fails and the system becomes 

unstable. 

As the first step to initiate a control design process, the design goals are identified. 

Typical design goals involve achieving certain time-domain response and frequency 

domain characteristics. This design starts with a group of design goals in both time-domain 
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and frequency domain, including the peak overshoot, settling time, steady-state error, gain 

margin, and phase margin. 

For a time-domain response, the peak overshoot should be controlled within a 

relatively small range because the linearized magnetic force model is valid around a chosen 

point. Also, it is desired to drive the levitated ball back to equilibrium within a reasonable 

amount of time. In addition, the maximum steady-state error is chosen to be 5% since 

below 5% of the maximum plant operation range the sensor noise becomes dominant with 

this particular testbed. Hence the design goals are chosen as follows: peak overshoot 

PM  15%, 5% settling time 3st  s, and steady-state error 5%.e   For a frequency 

domain response, it is desired to have certain amount of system robustness despite the 

system parameter change. This research chooses a gain margin GM 4.5 dB  and a phase 

margin PM 50 degree  as the design goals. 

With the selected time-domain design goal, the equivalent frequency-domain 

design goals can be calculated.  
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The damping ratio 0.69  , and natural frequency is chosen to be 100 rad/sn   to 

avoid the 66.03 rad/s pole of the plant. Therefore, the 5% settling time with the chosen 

parameters is approximately 
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which satisfies the design goal. 

The desired dominant poles of the system are calculated to be: 
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 2
1,2 1 69 69n nj j            (3.30) 

The dominant poles can be plotted in the complex plane to show their relative positions to 

the plant poles. The graph will also assist to establish the trigonometric equations to solve 

the controller zero(s) and pole(s). 

1. PD gains calculation 

 

Figure 3.5 Zero location of a PD controller 

 

Figure 3.6 Maglev plant open loop Bode plot 
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Figure 3.5 shows one of the desired poles sd in the complex plane. Figure 3.6 shows 

an open loop Bode plot of the maglev plant. In the Bode plot, the phase angle is 180  

degree over the whole frequency domain, indicating an unstable plant. The controller needs 

to provide enough phase lead to achieve the desired phase margin of 50 degree. The phase 

angle can be estimated before the controller is designed. Suppose the phase angle of the 

plant model is 1( )c   at the expected crossover frequency c  , the phase angle of the 

controller at c  should be 1( ) 180 ( )c c c       , where   is the expected phase 

margin of the closed-loop system. For this design, ( ) 50c c    . The magnitude of the 

plant model at c , which is denoted by ( )cA  , can be calculated as: 

 ( ) ( )G( )c c c cA G     (3.31) 

which will be calculated after the controller is designed. 

Assuming the controller is a PD type controller, there is one zero zc on the negative 

real axis. The trigonometric relationship between the desired poles and the controller zero 

is plotted in Figure 3.5. The required phase contribution of a PD regulator can be found 

with the phase contributions of the two plant poles,  

 
1

1 69
tan 1.61 rad/s

69 66.03p        
  (3.32) 

 
2

1 69
tan 2.67 rad/s

69 66.03p        
  (3.33) 

and the triangle relationship 

   1.61 2.67 7.42 rad/sd cs z         (3.34) 

Then the magnitude of a PD controller zero zc can be found from the trigonometry 

equation: 
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  
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tan 7.42
69cz




  (3.35) 

and cz  is solved, 

 
69

69 101
tan 7.42cz      (3.36) 

The abovementioned process only solved for the controller zero. The controller 

gain is not identified in the complex plane. Therefore at this point, the PD controller is 

known to take the following form: 

  ( ) 101cG s K s    (3.37) 

where K  is the gain value that needs to be solved using the pre-defined steady-state error. 

The desired steady-state error is less than 5%. Using the equation 
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1ss s
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e
G G
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  (3.38) 

the controller gain is found to be 5.2K  .Therefore, one possible PD type controller is  

 ( ) 6 606.cG s s    (3.39) 
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Figure 3.7 Bode plot of the maglev plant with a PD controller 

Figure 3.7 shows a Bode plot of the maglev plant with the PD controller. The gain 

margin of the system is 17.9 dB at the phase crossover frequency of 1 rad/s. The phase 

margin is 73.6 degree at the gain crossover frequency of 343 rad/s. Comparing Figure 3.7 

with Figure 3.6, it is found this controller increases the loop gain and provides a 73.6 degree 

of phase lead, which makes the system stable. 

2. Internal stability check 

The internal stability is checked by calculating the poles of the following transfer 

function, 

 
2

2 2 2 2

56.82 6 3E4
1 ( ) ( ) (s) 1 (6 606)

66.03 66.03c

s s
G s G s H s

s s

 
     

 
  (3.40) 

There is no zero on Re( ) 0s   and no zero-pole cancellation in ( ) ( ) ( )cG s G s H s  on 

Re( ) 0s  . Therefore, this system is internally stable. 
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3.3.6. AFC design 

This section proposes an AFC design approach that attenuates disturbances in the 

maglev system. The maglev system has been stabilized with a PD controller. This design 

takes the stable system, and adds the AFC to achieve the design goals. 

Methods to attenuate disturbances and improve the performance of maglev systems 

have been reported, but they are different from the approach discussed in this section. In 

2002 Shan and Menq reported two disturbance-rejection algorithms — internal 

model-based control and sliding mode control — that improved the dynamic stiffness of a 

magnetic suspension stage [239]. In both simulation and experiments the dynamic stiffness 

of the system was increased. Fang, Feemster, and Dawson (2003) reported a position 

regulation control strategy developed for a maglev system operating in the presence of a 

bounded, nonlinear, periodic disturbance [240]. They included simulation results, but no 

experimental data was reported. Another position regulation control strategy, reported by 

the same authors in 2006, required that the disturbance be bounded and the period of the 

disturbance be known. She, Xin, and Tomio described a technique called 

equivalent-input-disturbance estimation [241]. The controller, designed using H  control 

theory, generated an input signal based on the information from a state observer. The input 

signal cancelled the effect of the disturbance. They provided simulation results without 

experimental verification. 

Previous research efforts show that different control strategies can be used to 

increase the overall performance of a maglev system. This research investigates an 

approach that attenuates disturbances while not changing the system response to a 



 
 

85

reference signal. Acceleration feedback has been studied by previous researchers and 

proved to be effective in improving system performance in disturbance rejection [242]. 

However, prior work has not discussed the implementation of acceleration feedback on 

maglev systems. This research shows that acceleration feedback can be used on a maglev 

system to attenuate disturbance. Both analytical and experimental evaluations of the 

acceleration feedback technique are presented. 

The acceleration control type servo system was proposed as a novel design 

paradigm of servo systems by Hori [243, 244], and was further developed as a hybrid 

control method for the position and mechanical impedance of robot actuators [245]. 

Experiments demonstrated the effectiveness of both systems in disturbance suppression.  

In 1992 Schmidt and Lorenz demonstrated the principle, design, and 

implementation of acceleration feedback control to improve the performance of DC servo 

drives. In their research, the acceleration signal was estimated using an acceleration 

observer, scaled, and fed back to the controller. The feedback loop adds “electronic” inertia 

to the system [242]. It allows systems to achieve substantially higher overall stiffness 

without requiring higher bandwidths of the velocity and position loops.  

For a maglev system, it is important to note that acceleration feedback control alone 

does not guarantee stability. For that, the system needs a position regulator. The 

acceleration feedback provides the equivalent effect of an “electronic” inertia for the 

system. It increases the effective inertia of the levitated object for disturbance rejection 

purposes. 
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Figure 3.8 Block diagram of a system subject to disturbance d 

Figure 3.8 shows a block diagram of a feedback control system subject to a 

disturbance d . This design uses the previously discussed maglev system with a PD 

controller, so C  represents the transfer function of a PD controller. 

 

Figure 3.9 Maglev system with a PD controller 

Figure 3.9 shows a block diagram of the maglev system with a PD controller. The 

PD controller serves the purpose of a position regulator. If the levitated ball moves away 

from the designed operating point, the controller adjusts the current passing through the 

electromagnet which provides a restoring force to reduce the position error. It is similar to 

adding a mechanical spring (which generates the “static stiffness”) to the system.  

For the open-loop maglev system, there is no restoring force to correct the position 

error. Therefore, the static stiffness is zero. For a maglev system with a PD controller, the 

stiffness is provided solely by the controller. This type of stiffness is sometimes referred to 

as “active stiffness.” (Active stiffness is added by the stiffness terms resulting from the 

controller gains.) 
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Figure 3.10 Maglev system subject to a disturbance D 

Figure 3.10 shows the block diagram of such a system with a disturbance D . The 

transfer function between the disturbance D and the output position X for this system is 

 
2

( )

( )
i

i d i p x

X s k

D s s k K s k K k




  
 (3.41) 

Eq. (3.41) shows that the frequency response is shaped by the active controller gain Kd and 

Kp. The position regulator is used to achieve a stable levitation as well as reduce the 

response of the system to disturbances. In order to increase the stiffness of the system, a 

larger controller gain is needed.  



 
 

88

 

Figure 3.11 Bode plots of a maglev system with different controller gains 

Figure 3.11 shows the Bode plots of the same maglev systems with different P and 

D controller gains. The Bode plots show that higher controller gains help to attenuate the 

system response to the disturbance. However, for a maglev system, increasing the 

controller gains may result in larger oscillations in the system response and make the 

system unstable. 

The conclusion is that in order to increase the stiffness, the controller gains need to 

be increased, but only certain gain values will maintain the stability of the system. To raise 

the dynamic stiffness curve without changing the controller gains requires the use of 

acceleration feedback. In the following discussion, this research shows how to configure 

AFC into the maglev system.  
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Figure 3.12 Block diagram of the open-loop maglev plant 

Figure 3.12 shows a block diagram of the open-loop maglev system. The system 

transfer function, as discussed before, is 
2

( )

( )
i

x

X s k

I s s k





 where the input is the control 

current and the output is the ball position.  

 

Figure 3.13 Block diagram of the maglev plant with acceleration feedback 

Figure 3.13 shows a block diagram of the maglev plant with an acceleration 

feedback loop. Here the acceleration signal is assumed to be available. It can be calculated 

using Eq. (3.14). Details about acceleration estimation and acceleration feedback loop 

implementation are discussed in Chapter 5. By adding this acceleration feedback loop, the 

error signal e becomes 

 AFBe i k x    (3.42) 

The acceleration signal x  now becomes 

 i xx k e k x    (3.43) 
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Substituting Eq. (3.43) into Eq. (3.42), the acceleration signal can be written as 

 ( )i AFB xx k i k x k x      (3.44) 

Taking the Laplace transform of both sides of Eq. (3.44) and rearranging the terms, the 

open-loop transfer function of a maglev system with an acceleration feedback loop is 

written as: 

 
2

( )

( ) (1 )
i

i AFB x

X s k

I s k k s k




 
 (3.45) 

where the input is the control current and the output is the gap distance. 

In order to ensure the transfer function between the reference single R  and output 

X  remains the same, the PD position control gains must be scaled by a factor of 

(1 )i AFBk k .  

 

Figure 3.14 System with a PD controller and an acceleration feedback loop 

Figure 3.14 shows a block diagram of the closed-loop maglev system with both a PD 

controller and an acceleration feedback loop. The transfer function between the disturbance 

D and the displacement X now becomes: 

 
2

( )

( ) (1 ) [ (1 ) ] [ (1 ) ]
i

i AFB i i AFB d i i AFB p x

X s k

D s k k s k k k K s k k k K k




     
 (3.46) 

The effect of adding acceleration feedback is the same as adding inertia — the so-called 

“electronic” inertia. The electronic inertia makes the disturbance seem like it is driving a 
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larger mass. The resulting effect on the dynamic stiffness is shown in Figure 3.20. (The 

phase shift does not change and is omitted here.) 

 

Figure 3.15 Bode magnitude plot of system with and without acceleration feedback 

The acceleration feedback has caused the dynamic magnitude response curve to 

shift down, which means the stiffness of the system has increased. The concept can be 

understood better by considering the dynamic stiffness change of the system, which is the 

inverse of the transfer function between the disturbance and the system output. For a 

system without acceleration feedback, the dynamic stiffness is 

 
2

( )

( )
i d i p x

i

s k K s k K kD s

X s k

  



 (3.47) 

For a system with acceleration feedback, the dynamic stiffness is 

 
2(1 ) [ (1 ) ] [ (1 ) ]( )

( )
i AFB i i AFB d i i AFB p x

i

k k s k k k K s k k k K kD s

X s k

     



 (3.48) 
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The denominators of Eqs. (3.47) and (3.48) are the same and the numerators are the 

characteristic equations of the systems. Choosing an appropriate acceleration feedback 

gain kAFB, the gains for the double derivative term, derivative term, and constant term can 

be made larger in Eq. (3.48) than those in Eq. (3.47). The factor “1 i AFBk k ” makes the 

mass seem to be “ i AFBk k ” more than its actual value. This additional part is the “electronic” 

inertia added to the system. In addition, the “electronic” damping coefficient i dk K  is 

increased by “ i AFBk k ”. The equivalent spring constant is also increased, meaning more 

“effort” in the disturbance D is needed to achieve the same X. Thus introducing an 

acceleration feedback loop has the effect of increasing the effective mass, damping, and 

stiffness of the system.  

The AFC design discussed in this section is based on the linearized system transfer 

function. Disturbance attenuation is achieved by manipulating the gain of an acceleration 

feedback loop. Using a Bode plot, the AFC gain and the attenuated disturbance are 

visualized, which helps determine the appropriate AFC gain value. In practice, the 

acceleration signal is estimated using a state observer. It requires less effort to generate the 

control effort and therefore is more effective. This AFC is not designed for any particular 

disturbance. Later in this chapter, a LQG controller is designed to attenuate a specific noise 

signal, the Additive white Gaussian noise (AWGN). 

3.3.7. PID type controller design 

This section discusses the design of a PID controller to achieve a stable maglev 

system. This research propsed a PID controller design using the Neimark D-partition 

method [246-248]. This method ensures the desired gain and phase margins are achieved. 
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The gain crossover frequency of this design is 700 Hz (4398 rad/s). Appendix DAppendix 

C explains why the 700 Hz crossover frequency is chosen for this particular system. 

 

Figure 3.16 PID controller configuration 

Figure 3.16 shows the block diagram of the plant with a PID type control. To 

simplify the design process, it is assumed that the configuration has unity feedback. An 

appropriate group of P, I, and D gains needs to be find to stabilize the system. However, the 

derivative gain of the PID controller cannot be zero, which is discussed below. 

If the derivative gain 0Dk  , the controller is a PI type. The transfer function of a 

PI type controller ( )PIC s  is: 

 ( ) I P I
PI P

k k s k
C s k

s s


     (3.49) 

The transfer function for the feedback system becomes: 

 
3

( ) ( )

( ) 1 ( )
PI i P I

PI i P x i I

Y s C P k k s k

R s C P s k k k s k k


  

   
  (3.50) 

The characteristic polynomial of Eq. (3.50) is a cubic polynomial. The discriminant 

of a cubic function 3 2 0ax bx cx d     is 

 3 2 2 3 2 218 4 4 27abcd b d b c ac a d        (3.51) 

Using  , the roots of the cubic function can be found as:  

  01
,  1,2,3

3k k
k

x b u C k
a u C

 
     

 
  (3.52) 
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with 1 1u  , 2

1 3

2

i
u

 
 , and 3

1 3

2

i
u

 
 . C and 0  are calculated using 

 
2 3

1 1 03
4

2
C

    
   (3.53) 

and 

 
2

0

3 2
1

3

2 9 27

b ac

b abc a b

  

   
  (3.54) 

To avoid excessive math, the details of calculating the three roots 1,2,3x  are skipped. 

The conclusion is given directly without proof, that is, ( , ) [0, ),P Ik k    

   Re 0, 1,2,3 .kx k    Hence a PI type controller will not stabilize a maglev system. 

A PD controller was successfully designed to stabilize the system in previous section. The 

system transfer function is examed to see why stability can be achieved. The transfer 

function of a PD type controller is: 

 ( )PD P DC s k k s    (3.55) 

The transfer function for the feedback system becomes: 

 
2

( ) ( )

( ) 1
PD i P D

PD i D x i P

Y s C P k k k s

R s C P s k k s k k k


  

   
  (3.56) 

Using the discriminant 2 4b ac    for the quadratic equation 2 0ax bx c   , the 

solution to the characteristic polynomial can be found: 

 1,2 2

b
x

a

  
   (3.57) 

Again, the mathematical details are skipped here and the conclusion is given without 

proof: ( , ) [0, ),P Dk k    which makes Re( ) 0,  {1,2}.ix i   The Routh-Hurwitz 

stability criterion [249, 250] can be used to find the range of the PD gains ( Pk  and Dk  

values.) The characteristic polynomial is 
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 2( ) i D x i PD s s k k s k k k      (3.58) 

and the coefficient table can be calculated using values in Eq. (3.58), 

Table 3.2 Coefficient table of the characteristic polynomial 

1 i P xk k k  

i Dk k  0 

i P xk k k   

 

The Routh-Hurwitz stability criterion states that the number of sign changes in the 

first column will be the number of non-negative poles. Therefore, it is desired to keep the 

sign of the first column the same. Since the first element is 1, it follows that if two 

conditions, 0i Dk k   and 0i P xk k k  , are satisfied, a stable output will be achieved. 

Solving these two inequalities gives: 

 

0 0

0 76.73

i D D

x
i P x P

i

k k k

k
k k k k

k

  

    
  (3.59) 

Eq. (3.59) gives the ranges of ik  and dk  values. A PD controller formed by values 

chosen from these ranges will achieve stable levitation. This result can also be verified 

using a Nyqusit plot. 
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Figure 3.17 Nyquist plot of the maglev system with a PD controller 

Figure 3.17 shows a Nyquist plot of the maglev system with a PD controller with 

56Pk  , and 0.5Dk  . The Nyquist curve encircles the point 1 0j  . Since the plant has 

one pole in the RHP, the maglev system is found to be stable using Nyquist stability 

criterion [251]. However, a PD type controller cannot eliminate the steady-state error [252]. 

A non-zero Ik  is needed to guarantee zero steady-state error, which means the controller 

needs to have non-zero P, I, and D gains. 

The Neimark D-partition method starts with a general form PID controller transfer 

function. Assuming that the gains of the PID controller are non-zero, its transfer function is 

written as: 

 ( ) I
c P D

k
G s k k s

s
     (3.60) 

The plant transfer function can be written in the following form: 

 
num( )

( )
den( )P

s
G s

s
   (3.61) 



 
 

97

where num(s) stands for the numerator polynomial of the transfer function ( )PG s  and 

den(s) stands for the denominator of ( )PG s . Then the feedforward loop transfer function 

becomes: 

 1 ( ) ( ) 0c PG s G s    (3.62) 

Substituting Eqs. (3.60) and (3.61) into Eq. (3.62), 

 
den( )

num( )
I

P D

k s
k k s

s s
      (3.63) 

Replacing s  with j  in Eq. (3.63), the real part and imaginary part can be 

written as: 

 
den( )

Re
num( )P

j
k

j




 
  

 
  (3.64) 

and 

 
den( )

Im
num( )

I
D

k j
j k j

j


 

 
    

 
  (3.65) 

If the independent variable  0,  , it is possible to solve the frequency 

dependent vector of complex numbers and plot them in the complex plane to create a 

D-curve for parameter .Pk  In a similar fashion, the imaginary part in Eq. (3.65) can be 

used to create Ik  and .Dk   

In order to guarantee the phase margin, a phase shift is added to the original system. 

Suppose   is the desired phase shift. Multiplying the plant transfer function by je   to 

shift its phase curve, the feedforward loop transfer function becomes: 

 1 ( ) ( ) 0j
cG s G s e     (3.66) 

Then Eqs. (3.64) and (3.65) can be written as: 
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den( )

Re
num( )P j

j
k

j e 


 

 
  

 
  (3.67) 

and 

 
den( )

Im
num( )

I
D j

k j
j k j

j e 


  

 
    

 
  (3.68) 

With Eqs. (3.67) and (3.68), the controller parameters are selected directly from the 

D-curves. 

Finally, the PID type controller gains are calculated from the following equation: 

   1
1 2 1 2( ) I I

c D D I D I

k k k
G s k k s k k k k k k k s

s s
        
 

  (3.69) 

The updated PID gains are listed as below: 

 1 2=P D Ik k k k k   (3.70) 

 1=I Ik k k   (3.71) 

 D D Ik k k   (3.72) 

In this study, the frequency range is chosen to be  0,  . To start the control 

design, assume that Ik  is 0. Using Eqs. (3.64) and (3.65), the P and D gain values that 

guarantee the stability of the maglev system can be calculated. Using Eqs. (3.67) and (3.68), 

the P and D gain values that guarantee both stability and phase margin can be calculated.  
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Figure 3.18 D-curves of PD controller calculation 

Figure 3.18 shows the D-curves of P gain values versus D gain values. The figure 

shows that the 50 degree phase margin requirement can be met once the system stability is 

achieved. In other words, if the PD controller gains satisfy Eq. (3.59), stable magnetic 

levitation with at least 50 degree of phase margin is achieved. This study chooses a P gain 

1 300pk   and a D gain 15Dk  . 

The next step assumes that D gain is 0. Then Eqs. (3.64) and (3.65) are used to 

derive the P and I gain values that stabilize the system. Once again, Eqs. (3.67) and (3.68) 

are used to calculate the gain values that stabilize the system and guarantee a 50 degrees 

phase margin.  
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Figure 3.19 D-curves of PI controller calculation 

With these values, the D-curves plotted in Figure 3.19 can be found showing P and 

I values that meet the 50 degree gain margin design goal. This study chooses the gain 

values as: 2 0.2pk   and 17.29Ik  . The PID controller is thus calculated using Eq. (3.69) 

to be: 

 
4511

( ) 284.5 5.3cG s s
s

     (3.73) 
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Figure 3.20 Bode plot of the maglev plant with a PID controller 

Figure 3.20 shows a Bode plot of the maglev plant with the PID controller. It is seen 

that this design meets all the design goals. The gain margin of the system is 7.25 dB at the 

phase crossover frequency at 32.5 rad/s. The phase margin is 63.7 degree at the gain 

crossover frequency at 154 rad/s. Comparing Figure 3.6 with Figure 3.20, it is found this 

controller increases the loop gain and provides a 63.7 degree of phase lead, which makes 

the system stable. 

 

Figure 3.21 Ideal loop-shaping 
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In addition, there is a 20 dB/decade roll-off near on the Bode magnitude plot near 

the phase crossover frequency, whic satisfies the loop-shaping requirements. An ideal 

loop-shaping curve is shown in Figure 3.21. The frequency response curve of a system with 

a PID controller resembles the ideal curve. More about loop-shaping will be discussed in 

Chapter 4 where controllers are designed for system robustness. 

3.3.8. Lead controller design 

The lead-lag controller is designed in a similar way as the PD controller. A lead-lag 

controller differs from a PD controller in its transfer function denominator. The general 

transfer function form of a lead-lag controller is: 

 1 2

1 2

( )( )
( )

( )( )
c c c

c
c c

K s z s z
G s

s p s p

 


 
  (3.74) 

with 1 1c cz p , 2 2c cz p . 

Figure 3.6 has shown the Bode plot of the open-loop maglev plant. In order to meet 

the design goal of crossover frequency around 700 Hz, the controller needs to have a lead 

term to shift the magnitude curve up. 

 

Figure 3.22 Pole and zero locations of a lead-lag type controller 
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Figure 3.22 shows a plot illustrating the relative position of the system and 

controller poles and zeros. The angle contribution by a controller which ensures the desired 

pole ds  belongs to the root locus of desired system is obtained from 

 ( ) ( )c d dG s G s     (3.75) 

which gives 

 
1 1

( ) ( ) ( ) ( )
m n

c d c d c d i d i
i i

s z s p s z s p 
 

               (3.76) 

It indicates that the lead controller needs to provide 7.42 rad of phase contribution 

to the system, i.e., 7.42 radc  . Using the trigonometric relationship in Figure 3.22, it is 

found 

tan 7.42
69

c cp z
  

and the relationship between the controller pole and zero can be written as 

 69 tan 7.42c cp z     

To simplify the calculation, assume that the distance between zero and n  is the 

same as that between the pole and n . Then a lead controller is derived with a zero at 46.2 

rad/s, and pole at 197 rad/s. Therefore the controller transfer function is: 

 
46.2

197c

s
G

s





  (3.77) 

Again, the controller gain needs to be calculated. Let pK  be the desired static position 

error constant. pK  can be written as: 

 
0

lim ( ) ( )p c
s

K G s G s


   (3.78) 

The controller gain can be calculated using Eq. (3.38) and the result is 

 1.6E3K    

The final lead controller is written as: 
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1.6E3( 46.2)

197c

s
G

s





  (3.79) 

Comparing transfer function of the lead controller to that of the PD controller, it is 

found that the lead controller has a relatively larger gain value, and therefore, it may 

introduce oscillation in the system response. The lead controller has a pole in the controller 

transfer function, which has the same effect of including a low-pass filter in the 

feedforward loop. This pole helps to attenuate the high frequency noise. It has also been 

observed that the PD type controller does not provide performance robustness (does not 

guarantee zero steady-state error) while the lead controller does because of its pole. 

 

Figure 3.23 Bode plot of the maglev plant with a PID controller 

Figure 3.23 shows a Bode plot of the maglev plant with a lead controller. The gain 

margin of the system is 13.8 dB at the phase crossover frequency at 0 rad/s. The phase 

margin is 26.8 degree at the gain crossover frequency at 264 rad/s. Comparing Figure 3.6 

with Figure 3.23, it is found this controller increases the loop gain and provides 26.8 degree 
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of phase lead. 

The closed-loop system with the PD and lead controllers are type 0 systems, which 

means the steady-state errors are finite values when tracking a step input signal, but are 

infinite values when tracking ramp and parabolic inputs. Therefore, when comparing the 

performance of the closed-loop systems with PD and lead controllers, the reference signal 

should be a step position change. 

3.3.9. Model-reference control design 

The previous sections presented design techniques of linear, time-invariant 

controllers. In reality, all physical plants have a certain amount of nonlinearity. For 

example, in this research the maglev plant is nonlinear because of the nature of the 

electromagnetic force. For the maglev system, as the ball moves towards the electromagnet 

from the equilibrium point, the electromagnetic force exhibits a quadratic increase. This 

nonlinearity leads to unsatisfactory performance or even failure of linear controllers when 

the system moves away from equilibrium. This research discusses how to use the 

model-reference control (MRC) technique to improve the performance of the maglev 

system near its equilibrium. 

In order to design a MRC system, one mathematical representation of the physical 

plant is chosen as the “reference.” This mathematical model is selected so that a desired 

output is obtained with a given input. The model is chosen to be as simple as possible, and 

efficient enough to be implemented. To build the MRC system, the output of the model and 

that of the plant are compared and the differences (error signal e) are used to generate the 

control signals. Compared to the structurally gain-fixed PID controller, the MRC 
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parameters are continuously adjusted according to the error signal (hence in some literature 

it is also referred to as model-reference adaptive control), so it is capable of handling larger 

plant parameter variations.  

 

Figure 3.24 MRC system configuration 

Figure 3.24 shows the configuration of an MRC system. The reference model is 

used to generate a desired output to the reference signal. There is a set of acceptable 

controller parameters. The parameters chosen to form the controller are determined by an 

internal adjustment mechanism, based on both the reference signal v and the error e. 

Multiple mathematical methods have been reported to assist with developing the 

adjustment mechanism; MIT rules [253-257], Lyapunov theory [182, 258-261], and the 

theory of augmented error [216, 262-265] are the most commonly discussed methods in the 

literature. In this research, the Lyapunov method is used to determine adjustment 

mechanism and ultimately determines the stability of the designed system [253, 266-269]. 

The detailed design process is discussed below. 

The design of a MRC control starts with a continuous-time system model. The 

maglev plant can be written in the following state-space form: 

  , ,x f x u t   (3.80) 

where mx  is the state vector, mu  is the control vector and : m mf     is a 
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vector-valued function. 

The design goal is to derive a controller that continuously outputs a signal to force 

the plant states to track the model states. For the maglev system, although the plant is 

open-loop unstable, a controller can be designed to make the state variables track those of a 

stable model and thus obtain a stable system. 

To derive the control law, the reference system is written as: 

 d dx Ax Bv    (3.81) 

where m
dx   is the state vector of the reference model, v is the input vector, m mA   

is the constant state matrix, and mB  is the constant input matrix. In order to achieve 

asymptotic stability at the equilibrium state, the eigenvalues of A are chosen to have 

negative real parts. 

The error vector e  between the reference system and the plant output is given by 

 de x x    (3.82) 

The design goal is to reduce the error vector to zero using control signal u . The error 

function can be obtained by substituting Eqs. (3.80) and (3.81) into Eq. (3.82), 

  
 

, ,

, ,

d

d

e x x

Ax Bv f x u t

Ae Ax f x u t Bv

 

  

   

  
  (3.83) 

Eq. (3.83) is the differential equation of the error vector. 

A Lyapunov function is chosen to be 

 T( )V e e Pe   (3.84) 

where P  is a positive-definite real symmetric matrix. Then the derivative of ( )V e  can be 

calculated: 
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  T T( ) 2V e e A P PA e M     (3.85) 

where 

  T , ,M e P Ax f x u t Bv     .  (3.86) 

By identifying the matrices A  and B  from Eq. (3.81) and choosing the matrix Q  to be  

 11

22

0
positive definite

0

q
Q

q

 
  
 

,  (3.87) 

( )V e  can be expressed as 

 2 2
11 1 22 2( ) ( ) 2V e q e q e M      (3.88) 

where   11 12 1 1
1 2 2 2

12 22 2 2 2

0 1 00 1 0
.

2 ( )n n n

p p x x
M e e

vp p x b a t x x u  
             

                                
 

Carrying out the multiplication, the equation for M is given as follows: 

    2 2 2
1 12 2 22 1 2 22 ( )n n nM e p e p b x x a t x v u              (3.89) 

Now the control effort u  can be chosen to be 

  2 2 2
1 2 2 1 12 2 222 sign( )n n n mu b x x v a x e p e p           (3.90) 

where 

 max ( )ma a t   (3.91) 

Then it follows that 

    2
1 12 2 22 1 12 2 22 2( ) sign( )mM e p e p a t a e p e p x      (3.92) 

is non-positive. 

With the control function u in Eq. (3.90), the equilibrium state 0e   is locally 

asymptotically stable. Thus, Eq. (3.90) defines a nonlinear control law that will guarantee 

an asymptotically stable operating point. 

The P matrix in Eq. (3.84) can be solved using the Riccati Equation 



 
 

109

 TA P PA Q     (3.93) 

which can be written as: 

 
2

11 12 11 12 11 12
2

21 22 21 22 21 22

0 10

21 2
n

n nn

p p p p q q

p p p p q q


 

        
                   

  (3.94) 

where 12 21 0q q   and   and n  are the damping ratio and natural frequency, 

respectively, of the chosen reference model. Eq. (3.94) results in four equations: 

   2
21 12 11np p q    (3.95) 

  12 21 22 224 np p p q      (3.96) 

 2
11 21 22 212 n np p p q      (3.97) 

 2
22 11 12 122n np p p q       (3.98) 

In Eqs. (3.95) through (3.98), 12q  and 21q  equal zero, and 11q  and 12q  are 

random numbers that make Q positive-definite. Therefore, there are four unknowns 11p , 

12p , 21p , and 22p , which can be solved using Eqs. (3.95) through (3.98). 

In order to minimize oscillation, this research chooses 0.69   and 100n  Hz 

as the damping ratio and natural frequency of the reference model [342]. Q is chosen to be 

1 0

0 1
Q

 
   

. 

P can be solved as 

 
0.47 0.101

0.101 1.11
P

 
  
 

.  

A closed-loop system can be built with the derived parameters. 
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Figure 3.25 Block diagram of the maglev system with an MRC controller 

Figure 3.25 shows the block diagram of a maglev system with an MRC controller. 

This system is more complicated compared to the previous designs. There are two 

algebraic functions, multiplication and square, one logic function, and one sign function in 

the closed-loop system. These functions require controller hardware that can handle these 

numeric and logic operations. The implementation of this controller will be discussed in 

Chapter 5. 

3.4. Optimal control design 

This section discusses the design of a linear-quadratic-gaussian (LQG) controller. 

The LQG controller and the H  controller discussed in Chapter 5 are optimal controllers. 

The goal of optimal control is to find a controller that provides the best possible 

performance with respect to certain criteria. This discussion focuses on studying the 

optimal control theory originated from the work of Pontryagin [270-274]. It was 

field-tested in the Apollo Program (1963–1972), where NASA designed controllers that 

optimized fuel consumption when the Lunar Module descended from the lunar orbit on the 



 
 

111

Moon, and was brought back to the orbit to rendezvous with the Command Module 

[275-280]. 

3.4.1. LQR regulator 

This discussion starts with a control design to derive a regulator that achieves stable 

levitation using a Linear Quadratic Regulator (LQR) approach. As a second design, a 

LQR/LQG controller is developed to attenuate Gaussian noise. This design assumes the 

maglev sysem is a linearized system. 

 

Figure 3.26 System configuration of LQR problem 

As discussed in previous sections, a regulator type controller regulates the system 

output to a constant value. There is no reference signal in the system. Figure 3.26 shows the 

configuration of the system, in which mu , lz , and ky . In the state-space 

representation model, not all the state variables are available (the velocity of the ball is not 

available). Therefore, the system equations are written as: 

 

x Ax Bu

y Cx

z Gx Hu

 

 


  (3.99) 

in which nx . The output ( )y t  corresponds to the signal that can be measured directly 

and therefore is available for control. The controlled output, ( )z t , corresponds to the signal 

that needs to be regulated. In this research, it is the position of the levitated ball. The goal is 
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to return it to the equilibrium position when disturbed. 

The first step is to define the design goal. An optimal control design defines its goal 

in the form of an optimality criterion. It usually is a function of the state and control 

variables. This function is also referred to as the cost functional (performance index 

functional) [281-283]. The design process is to solve a set of differential equations to derive 

the control variable paths that minimize the cost functional. In this study, the maglev 

system model is an SISO system. Generally, for an SISO system, the cost functional 

includes both the input and output. This research uses the cost functional: 

 
2 2

0
( ) ( )J z t u t dt


    (3.100) 

where 0   is the weight of 
2

( )u t . The term 

 
2

0
( )z t dt



   (3.101) 

is the energy of the controlled output and the term 

 
2

0
(t)u dt



   (3.102) 

is the energy of the control signal. The goal of the LQR regulator design is to find a 

controller whose transfer matrix makes the sum of these two energies as small as possible 

(with different weight values.) 

With this cost functional, J , an LQR regulator can be developed to achieve stable 

levitation. In order to solve the differential equations to derive the controller, this study 

assumes that all the state variables are measureable and available for control. Later an 

observer is designed to provide state estimation for those state variables that are not 

available.  

This research uses the linearized maglev system model and derives a linear optimal 
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controller. An optimal controller satisfying the optimal criteria in Eq. (3.100) is a matrix 

gain in the form of: 

 u Kx    (3.103) 

where m nK   is the optimal feedback gain matrix. Lewis et al. [284] have discussed 

different approaches to calculate matrix K . The control design problem discussed here is 

the Initial Condition Problem discussed in [284]. K  is chosen to be 

    1
' ' 'K H QH R B P H QG      (3.104) 

in which l lQ   is a symmetric positive-definite matrix, and P is the unique 

positive-definite solution to the following Algebraic Riccati Equation (ARE): 

      1
' ' ' ' ' ' 0A P PA G QG PB G QH H QH R B P H QG          (3.105) 

With a feedback control signal u , a closed-loop system is built with the following 

state-space form: 

  x A BK x    (3.106) 

By properly selecting K , the eigenvalues of matrix A BK  will have negative real parts. 

This K  matrix, which is the LQR controller, makes the closed-loop system asymptotically 

stable. However, because this controller is derived assuming that all state variables are 

available, there are two conditions that need to be satisfied: 

1. The original system in Eq. (3.99) is controllable; 

2. The system in Eq. (3.99) is observable when y  is ignored and z  is assumed to be the 

only output. 

Condition 1 can be verified by calculating the system controllability matrix. Since 

in this study, the maglev plant is SISO, condition 2 can be verified by calculating the 
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system observability matrix. The maglev system controllability and observability matrices 

are calculated to test if the closed-loop system is asymptotically stable. The transformation 

matrix cT  defined by 

 1, , , n
cT B AB A B      (3.107) 

is referred to as the controllability matrix. Using Eq. (3.17) and the parameter values in 

Table 3.1, the controllability matrix is calculated to be: 

 
0 56.82

56.82 0cT
 

   
  

The rank of cT , also known as the controllability index of the system, is 2. It 

indicates there are 2 controllable states in the system. In other words, the maglev system is 

fully controllable. 

The transformation matrix oT  defined by 

 

1

o

n

C

CA
T

CA 

 
 
 
 
 
 


  (3.108) 

is the observability matrix. The observability matrix for the maglev system is 

 
1 0

0 1oT
 

  
 

  

The rank of matrix oT , also known as the observability index, equals 2. It indicates that 

there are 2 observable states in the system. For this case, the system is fully observable. 

Since the state variables are observable and controllable, matrix K  makes the 

closed-loop system asymptotically stable no matter whether the system is open loop stable 

or not. In other words, with an LQR controller matrix K , a stable magnetic levitation can 

be achieved. For this study, the plant is open-loop unstable. The following calculation 
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checks if there exists an analytical solution of matrix K .  

Assuming the feedback gain matrix is: 

  1 2K k k   (3.109) 

and using Eq. (3.17), the closed-loop system Eq. (3.106) can be written as 

  1 22
1 2

0 10 1 0

4360 56.82 56.8266.03 0 56.82
A BK k k

k k

    
              

  (3.110) 

Hence, the characteristic equation becomes 

 
1 2

1

(4360 56.82 ) 56.82

s
sI A BK

k s k

 
       

  (3.111) 

The closed-loop poles are at: 

 2
1,2 2 2 1

1
56.82 ( 56.82 ) 4(56.82 4360)

2
s k k k      

  (3.112) 

By properly choosing 1k  and 2k , the closed-loop poles 1s  and 2s  can be 

allocated as desired. To obtain the optimal controller, matrix K  is solved using Eq. 

(3.104). This study chooses the following Q  matrix: 

 
1 0

0 2
Q

 
  
 

  

which means the weight of the velocity is twice as much as that of the position, and 1  , 

which means the control effort efficiency is not as important as how fast the system 

becomes stable. In other words, it is desired to achieve a faster response even if the 

steady-state error is large, regardless of how much control effort is required. Solving Eqs. 

(3.104) and (3.105), matrix P  is found to be: 

 
17.67 0.014

,
0.014 0.0044

P
 

  
 

  

and the optimal state-feedback controller is found to be:  
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  119.56 22.42 .K    

The designed K  matrix is equivalent to a PD controller with a Pk  equal to 119.56, 

and a Dk  equal to 22.42. These gain values satisfy the minimum gain requirements in Eq. 

(3.59). Gain Dk  is relatively large compared to the other PD controllers designed 

previously (Eqs. (3.73) and (3.39)). This can be explained by the weight factors chosen in 

matrix Q  . 

 

Figure 3.27 Maglev system with an LQR controller K 

Figure 3.27 shows a block diagram of the system with the designed LQR controller 

K. This controller is designed assuming that all the state variables (the position and velocity 

of the levitated object) are available. With the maglev testbed used in this research, the 

velocity of the object is not available. In the next section, an observer is designed to 

estimate the unavailable state variable for the controller to be implemented in hardware. 

3.4.2. Optimal state estimation 

Previous discussion formulated an LQR optimal state feedback control law of 

 ( ) ( )u t Kx t    (3.113) 

which requires that all the state variables are available. This section discusses how to 

design a state estimator so the unavailable state variables are mathematically calculated 

using the available states and the system model. 
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The state estimator design starts by assuming the process state ( )x t  in Eq. (3.113) 

can be substituted by an estimation ˆ( )x t , i.e., 

 ˆ( ) ( )u t Kx t    (3.114) 

instead of Eq. (3.113), where ˆ( )x t  denotes an estimate of the process state ( )x t . This 

estimation, ˆ( )x t , can be constructed by replicating the process dynamics in Eq. (3.99) 

 ˆ ˆx Ax Bu  .  (3.115) 

Defining the state estimator error e to be ˆe x x  , its derivative is 

 ˆe x x      (3.116) 

Substituting Eqs. (3.99) and (3.115) into Eq. (3.116), the derivative of the state estimator 

error e becomes 

 ˆe Ax Ax Ae   .  (3.117) 

Three conclusions can be made with Eq. (3.117): 

1. If matrix A  is asymptotically stable the error e  converges to zero. 

2. Whether the error e converges or not does not depend on the input signal u . 

3. If 0e  , x̂  converges to x  as t  . In other words, x̂  is a good estimation of 

x  as t  . 

For the maglev system discussed in this research, the state matrix A  is not stable 

(as shown in Eq. (3.25)). Therefore, e  becomes unbounded as t  , i.e., the difference 

between x̂  and x  becomes larger as t  . To avoid unbounded growth of e, a classic 

solution is to include a correction term ˆ( )L y y , and then the system equations become:  

 
 ˆ ˆ ˆ

ˆ ˆ

x Ax Bu L y y

y Cx

   




  (3.118) 

where ŷ  is an estimator of y  and n kL   is the correction matrix that needs to be 
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determined. 

The correction term ˆ( )L y y  only takes effect when x̂  deviates from x . When 

x̂  is equal to (or very close) to x , ŷ  equals (or is very close) to y , and hence ˆ( )L y y  

becomes (or is close to) zero. This means the correction term drives the error e to zero. It 

can be explained by re-writing the estimation error e using Eqs. (3.115) and (3.118) as 

 ˆ ˆ( ) ( )e Ax Ax L Cx Cx A LC e        (3.119) 

Eq. (3.119) indicates that e  converges to zero if matrix A LC  is asymptotically 

stable. Generally, a matrix L  can be selected so that A LC  is asymptotically stable 

despite an unstable state matrix A . The sufficient and necessary conditions for the 

existence of matrix L have been discussed by Zhou et al. [285]. 

With the correction term, the system equation in Eq. (3.118) can be re-write as: 

  ˆ ˆx A LC x Bu Ly      (3.120) 

and is referred to as a full-order observer plant. The term full-order refers to the fact that the 

order of the estimated state x̂  is equal to that of the plant state x . Eq. (3.120) shows that 

the full-order observers have two inputs: the control signal u  and the measured output y , 

and a single output the state estimate x . 

 

Figure 3.28 LQR feedback control system 
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Figure 3.28 shows a closed-loop system with a full-order observer. There are two 

matrices that guarantee the stability of the system, i.e., A BK  and A LC . Matrix 

A LC  ensures the estimated states reflect the physical plant state. Based on the state 

estimation, matrix A BK  ensures the system stability. Therefore, it is desired to place 

the poles of A LC  further to the left in the LHP than the poles of A BK  to achieve 

fast observer dynamics. 

3.4.3. LQG estimation 

Previous sections discussed how to develop LQR controllers to achieve stable 

magnetic levitation. This section and the following section discuss how to use control 

design methods to attenuate disturbances in the system. In this section, a 

Linear-Quadratic-Gaussian (LQG) controller is designed. The LQG controller is designed 

for an uncertain linear system which (1) is disturbed and has an additive white Gaussian 

noise, (2) does not have complete state information (i.e., not all the state variables are 

measured and available for feedback), and (3) has a control law subject to quadratic costs.  

 

Figure 3.29 A plant subject to disturbance and noise 

Figure 3.29 shows a block diagram of a plant subject to disturbance d and noise n. 

To facilitate the design process with a state-space system model, an equivalent block 
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diagram is generated.  

 

Figure 3.30 State-space model of a plant subject to disturbance and noise 

Figure 3.30 shows a system, in its state-space representation form, subject to 

disturbance and noise. Suppose a LQR regulator has been designed for the system. From 

the discussion in the previous section, it is known that any choice of L  in Eq. (3.118) for 

which A LC  is asymptotically stable will make x̂  converge to x , as long as the 

process dynamics are given by Eq. (3.99).  

For a system shown in Figure 3.30, the output y  is affected by measurement noise 

n  and the process dynamics are affected by disturbance d . A more complete model for 

the process is re-written to include both n  and d , i.e., 

 
x Ax Bu Bd

y Cx n

  
 


 (3.121) 

Now the estimation error dynamics in Eq. (3.117) need to be updated to reflect the 

change in Eq. (3.121), which leads to: 

 
ˆ ˆ( )

( )

e Ax Bd Ax L Cx n Cx

A LC e Bd Ln

     

   


  (3.122) 

Because of n  and d , the estimation error might not converge to zero. This is especially 
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true for the open-loop unstable maglev system. Therefore, it is desired to attenuate the error 

e  by appropriately choosing the feedback gain matrix L . This motivates the 

Linear-Quadratic-Gaussian (LQG) estimation problem. 

The design goal is thus redefined for this LQG estimation problem. In this design, it 

is intended to find a matrix gain to minimize the asymptotic expectation of the estimation 

error e , which can be expressed as a cost function: 

 
2

lim E ( )
t

J e t


      (3.123) 

In this design, the disturbance ( )d t  and the noise signal ( )n t , assumed uncorrelated to 

each other, are modeled as zero-mean additive white Gaussian noises (AWGN) [286-290]. 

The term white noise indicates these noise signals are random with constant power 

spectral density across the frequency band. Gaussian means each noise has a normal 

distribution in the time-domain. AWGN is a model of the general form of noise that 

control systems experience in real-world applications.  

As noted at the beginning of this section, the LQR/LQG design process uses the 

state-space representation of the system, which relies on matrix algebra to derive the 

controller. Therefore, signals ( )d t  and ( )n t  are transformed to their power spectrum 

matrix forms to facilitate the controller design. The transformation is illustrated using the 

noise signal ( )n t  as an example. Being a zero-mean white noise, the signal ( )n t  has an 

autocorrelation of the form: 

  1 2 1 1 1 2( , ) E ( ) '( ) ( )n NR t t n t n t Q t t   .  (3.124) 

It is also wide sense stationary since its mean is time-invariant and it autocorrelation 

1 2( , )R t t  depends only on the difference of 1 2: .t t    From this it follows that the power 
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spectrum of ( )n t  is frequency-dependent and can be calculated using the Fourier 

transformation of the autocorrelation function: 

 ( ) ( ) j
n NS R e d Q  

 


    (3.125) 

In a similar fashion, the power spectrum of ( )d t  can also be derived. Henceforth, 

( )d t  and ( )n t  are substituted by their power spectrum matrices in the control design: 

 ( ) ,  ( ) ,  for .d N n NS Q S R       (3.126) 

With the noise in the output signal y , using Eq. (3.122), the optimal LQG 

estimator gain can be calculated using: 

 T 1
NL PC R   (3.127) 

with matrix P  being the unique positive-definite solution to the following ARE: 

 T T T 1 0N NAP PA BQ B PC R CP      (3.128) 

The optimal gain L , if implemented in system (3.120), represents a Kalman-Bucy filter 

[291-294]. 

To illustrate the design process, it is assumed that NR  is white noise with 

 
0.3 0.1

0.1 0.3NR
 

  
 

,  

Let  

 
0.01

0
B

 
  
 

 

represent a case in which a small disturbance is injected into the position signal, and 

 
0.1 0

0 0.1NQ
 

  
 

 

represent the power spectrum of the disturbance. Matrix L  can be obtained by solving Eqs. 

(3.127) and (3.128): 
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165.4

.
9.1 3

L
E

 
  
 

 

Thus, the gain in the velocity feedback loop has a large value. It indicates that for 

this open-loop unstable system, with the disturbance is injected into the position channel, 

the observer needs a large velocity gain to guarantee an accurate estimation of the state 

variables. 

Matrix L  is found assuming that all the state variables are available. Therefore, to 

ensure that the system is asymptotically stable, it requires the following two conditions: 

1. The system states in Eq. (3.121) are observable, which means the state variables are 

available for the calculation of matrix L . 

2. The system in Eq. (3.121) is controllable when the reference signal u  is ignored and 

the disturbance d  is regarded as the sole input. This condition guarantees the 

possibility of attenuating the disturbance signal. 

With these two conditions satisfied, the estimator gain L  is determined by the 

magnitudes of NQ  and NR . If NR  is small (compared to NQ ), the measurement noise n  

is small so the optimal estimator interprets a deviation of ŷ  from y  as an indication that 

the estimate is inaccurate and needs to be corrected. This leads to a large matrix L  and 

hence fast A LC  poles. On the other hand, if NR  is large (compared to NQ ), the 

measurement noise n  is large, and the optimal estimator is barely reacts to the deviation of 

ŷ  from y . This generally leads to smaller matrix L  and slow A LC  poles. 

In practice, not all the state variables of the maglev plant are available, and 

therefore an observer is needed. The problem becomes designing an output-feedback 

controller for the system: 
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x Ax Bu

y Cx

z Gx Hu

 

 


  (3.129) 

The designed state-feedback controller is: 

 u Kx    (3.130) 

Previous discussion showed how to design an LQR controller and suggested an 

LQG state-estimator in the form of: 

  ˆ ˆx A LC x Bu Ly      (3.131) 

Therefore, it is possible to obtain an output-feedback controller using the estimated state in 

Eq. (3.131). Substituting Eq. (3.130) into (3.131) the following output-feedback controller 

is derived: 

  ˆ ˆx A LC BK x Ly      (3.132) 

and the control signal becomes 

 ˆu Kx  .  (3.133) 

The negative feedback transfer matrix can be calculated using: 

 1( ) ( )C s K sI A LC BK L    .  (3.134) 

With the state estimator, a LQG/LQR output feedback control system can be built: 

 

Figure 3.31 LQR/LQG feedback control 

Figure 3.31 shows the block diagram of a closed-loop system with an LQR/LQG 
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controller. Since a state estimator is used in the system, it is important to ensure that the 

closed-loop system is stable. To address the stability issue, all the equations that define the 

closed-loop system are listed as follows for investigation: 

 
ˆ ˆ( )

ˆ

x Ax Bu

y Cx

x A LC x By Ly

u Kx

  
 


    
  



   (3.135) 

To check the stability of the system, it is possible to consider the dynamics of the 

estimation error ˆe x x   instead of the state estimate x̂ . If 0e  , ˆx x , and the 

estimator is an accurate replication of state x . To this effect x̂  is replaced by x e  in Eq. 

(3.135), which yields: 

 

( )

( )

( )

x Ax Bu

A BK x BKe

y Cx

e A LC e

u K x e

  
    
 


   




  (3.136) 

From Eq.(3.136), the system equation can be written in matrix notation by choosing 

x

e

 
 
 

 as state variables, which leads to the following state-space model: 

 

 

0

0

x A BK BK x

e A LC e

x
y C

e

     
          

 
  

 




  (3.137) 

In Eq.(3.137), matrix 
0

A BK BK

A LC

 
  

 is triangular. The separation principle 

[295-298] says that the eigenvalues of the matrix are given by the eigenvalues of the 

state-feedback regulator dynamics A BK  together with those of the state-estimator 

dynamics .A LC  If both matrices A BK  and A LC  are asymptotically stable, so is 
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the closed-loop system in Eq. (3.137). 

3.5.Chapter Summary 

This chapter discussed controller design methods that guarantee stable magnetic 

levitation and disturbance attenuation. As a general first step in control design, the 

mathematical model of the plant is derived. Based on the model, controllers are designed. 

With the derived model, multiple controllers are designed using different methods. 

This research discusses the classical linear control design method, the nonlinear 

model-reference control design, and the optimal control design method. Stable levitation 

can be achieved using these design approaches. The issue of how to improve the system 

performance is also investigated. 

Two methods to attenuate disturbances are discussed in this chapter. The first one is 

a novel AFC. This chapter presents an AFC designed based on a system with a PD 

controller. Disturbance is attenuated by manipulating the loop gain in the system. The 

second is a LQG method. The LQG controller is designed to attenuate Gaussian noise. 

This chapter also discusses control designs to satisfy the time-domain (transient 

response) and frequency-domain (gain and phase margins) requirements. All the control 

designs discussed in this chapter are based on a nominal system model. In the next chapter, 

robust controller design is discussed. It is intended to address the system robustness issue 

when the modeling uncertainty exists. 
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Chapter 4. Control Design for Robustness 

4.1. Chapter outline 

Chapter 4 discusses robust controller design and reviews how the robustness issue 

is addressed with the controllers discussed in Chapter 3. In this chapter three robust 

controller design using QFT, H , and a novel QFT/ H  approach are studied. In addition, 

this chapter proposes a design technique that combines the AFC and QFT/ H  controllers 

to obtain an AFC-enhanced QFT/ H  controller.  

This chapter focuses on the discussion of robust controller design. The design 

methods discussed in this chapter, the QFT and the H  methods, take different 

approaches to guarantee system robustness. Each of them has its distinct merits. Based on 

QFT and H  controllers, the research suggests a combined QFT/ H  controller, which 

takes advantage of both and addresses the robustness issue from a new perspective. In an 

effort to provide disturbance attenuation, this research further proposes a novel design to 

embed the AFC into the system with QFT/ H . Experiments are designed to verify both the 

disturbance attenuation feature and system robustness are achieved with the proposed 

AFC-enhanced QFT/ H  controller. Experimental results are presented in Chapter 5. 

This chapter is organized as follows: Section 4.2 provides a brief review of the 

background information of robust control. Section 4.3 discusses robustness of systems with 

controllers designed in Chapter 3. Section 4.4 discusses QFT controller design. Section 4.5 

discusses H  controller design. Section 4.5 proposes a novel QFT/ H  controller design. 

Section 4.6 discusses how to embed an AFC into a QFT/ H  to derive an AFC-enhanced 

QFT/ H  controller. Finally, Section 4.7 summarizes the key finding of this chapter. 
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4.2. Background Information  

The system robustness issue can be understood by reviewing the controller design 

processes in Chapter 3. For all the classical linear controllers discussed, the synthesis 

processes are based on a nominal model of the plant. However, in applications the model 

always bears a certain amount of difference from the physical system. Many factors can 

contribute to this inaccuracy, such as an over-simplified model, a physical plant change 

during operation, ignored high-frequency dynamics, noise, and disturbance. The 

differences between the mathematical model and physical plant raise questions about the 

effectiveness of the designed controller, as Barmish and Jury [299] pointed out: “If we used 

an inexact mathematical model to derive the controller, will the system perform 

satisfactorily?”  

A successful control design should be capable of maintaining system stability and 

performance despite uncertainties associated with system dynamics and/or working 

environments. Multiple design approaches have been proposed to deal with the uncertainty 

issue. Chapter 2 summarized the controllers designed to accommodate maglev system 

uncertainties. From a practical point of view, there are two categories of robust control 

design approaches reported for maglev systems: adaptive control, which is based on 

continuous identification of the plant and adjusting the controller accordingly [300], and 

robust control, which ensures preservation of certain properties of the control loop despite 

system uncertainties [301, 302]. In industrial applications, robust control has some 

advantages over adaptive control because (1) it is capable of dealing with both 

deterministic and stochastic models; (2) it can be designed using both time-domain and 
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frequency-domain methods; and (3) robust controllers for SISO systems can be expanded 

to MIMO systems without much modification.  

There are three principal issues that need to be addressed when it comes to robust 

controller design [303]: the robust stability analysis, robustness margin, and robust 

synthesis. Robust stability analysis checks the stability of the designed closed-loop system 

with the uncertain plant and designed controller. Robust margin analysis finds the maximal 

uncertainty bounds that guarantee the performance specifications. And robust synthesis is 

the process of determining the controller parameters/forms to ensure the closed-loop 

system robustness. This chapter discusses how QFT and H  design approaches address 

these three issues.  

Before starting the robust controller design, this chapter briefly summarizes what 

uncertainties exist in the system models. Generally, there are two classical approaches to 

determine the linear-time-invariant (LTI) model of a physical plant. The first is an analysis 

method based on physical laws. This approach derives the system equations in the ordinary 

differential equation form, determines the appropriate form of the time-delay, and reduces 

the high order set of ordinary differential equations when necessary. The purely 

mathematical procedure of model simplification is an approximation [304-306]. In any 

approximation, it is unavoidable that some characteristics of the physical system are 

ignored. Therefore, the mathematical model is only a partially correct representation of the 

system.  

The second approach to determine the model is generally referred to as “system 

identification.” It determines the mathematical model from experimentally measured 
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output of the system with particular system inputs. However, it is impossible to reproduce 

all of the inputs the system will experience during operation. Although robust identification 

methods [307-309] with classical parameter identification [310-313] have been reported 

and improved, it is still not possible to experimentally measure the system response to 

every possible signal over the entire frequency spectrum. In other words, no matter how the 

mathematical model of the system is derived, there are always uncertainties. 

There are two types of model uncertainties. One is referred to as parametric (or 

structured) uncertainty, occurring when the actual plant parameters are unknown. Another 

is the nonparametric (or unstructured) uncertainty, which represents the ignored system 

dynamics, nonlinearities, and model variations [314]. Both parametric and nonparametric 

uncertainties can be expressed in two forms — the additive form and the multiplicative 

form. In most cases, both forms are present and their combination leads to mixed 

uncertainty [315-317].  

Since uncertainties in the system are unavoidable, a controller should be designed 

to accommodate them. As a conventional approach, the robust control design methods 

assume the physical system to be an LTI model plus certain uncertainties. With this 

assumption, many control design methods have been proposed. They can be divided into 

two categories: the algebraic approach and the engineering approach. The algebraic 

approaches rely heavily on using mathematical tools to perform robust stability analysis on 

systems with parameter uncertainties [299, 301, 317, 318]. Advanced theorems have been 

proposed to test the robust stability with interval polynomials. For example, Kharitonov 

[319], Chapella and Bhattacharyya [320], and Barlett et al. [321] proposed different 
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mathematical methods to evaluate the robust stability of systems in differential equation 

form. 

The engineering approaches, on the other hand, rely on the tools and techniques 

developed in classic control theory. The robust stability analysis uses the terms such as gain 

and phase margins. Mathematically, the stability of a closed-loop system depends on the 

norm of the open-loop transfer function. Robust margins are evaluated using the sensitivity 

and complementary sensitivity functions. Robust synthesis uses either the “loop shaping 

technique” [322] or the conventional parameter-based tuning methods. The loop shaping 

technique is discussed later in this chapter. Some of the conventional tuning methods have 

been proven successful in robust controller design, such as the standard Ziegler-Nichols 

method [323-325], Cohen-Coon method, Chien-Hrones-Reswick method, and Naslin 

method [326-329]. Discussion on these tuning methods is outside the scope of this thesis. 

The control design methods discussed in this study use the engineering approaches. 

Sensitivity and complimentary sensitivity functions are used as references in guiding and 

evaluating the controller design. In particular, in designing a QFT controller, gain margin, 

phase margin, sensitivity function and complimentary sensitivity function are all 

transferred into “bounds” on the Nichols Chart. Then the controller transfer function is 

derived through a loop shaping process. In designing an H  controller, a group of weight 

functions are selected based on the design goals. The weight functions are used in solving 

the controller, and they guarantee the frequency response of the designed system meet the 

requirements of sensitivity and complimentary sensitivity functions. 

In the following section, the robustness of the maglev system with controllers 
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developed in Chapter 3 is discussed. The system robust stability is evaluated using gain and 

phase margins. They will be compared to the maglev system with QFT, H , and QFT/ H  

controllers, which not only guarantee the phase and gain margins, but also the sensitivity 

and complimentary sensitivity requirements. 

4.3. Robustness of Linear Controllers 

This section discusses the robustness of the controllers designed in Chapter 3. Three 

types of linear controllers – PID, lead, and LQR controllers – are investigated in this section. 

The MRC is an adaptive controller, and it has a logic function in the controller transfer 

function which makes it impossible to calculate the conventional gain and phase margin 

values. The robustness of the MRC controller is typically evaluated using different 

methods [330, 331] and is not discussed here.  

4.3.1. PD, PID, and Lead Controller Robustness 

For PD, PID, and lead controllers, the system robustness is evaluated using gain and 

phase margins. A gain margin quantitatively determines the magnitude of loop gain change 

a system can accommodate before losing stability. The phase margin quantifies the amount 

of phase lag that can be increased before the closed-loop system goes unstable.  

Table 4.1 lists the gain and phase margins of the maglev system with PD, PID, and 

lead controllers. Three conclusions can be made from this table. (1) The maglev system is 

stable with these three controllers since the open-loop systems all have certain gain and 

phase margins. (2) The desired gain and phase margins are achieved except for the phase 

margin of the system with a lead controller. The pole in the transfer function causes the 
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decrease in phase margin. Future tuning is needed to increase the phase margin to a 

desirable value. (3) The Bode magnitude curve of the maglev system with a PID controller 

resembles the ideal curve, indicating the system with a PID controller has better system 

performance over the frequency spectrum.  

Table 4.1 Gain and phase margins of maglev system with PD, PID, and Lead controllers 

4.3.2. LQR Control Robustness 

In this section, the robustness of a LQR controller is discussed. The robustness of 

the LQR differs from the PD, PID, and lead controllers in that it assumes all the states of the 

maglev plant are available. However, if a state observer is used to estimate the state 

variables, the gain margin is lost. This section also discusses how to recover the loop-gain 

for an LQR/LQG controller with an observer. 

4.3.2.1. Robustness of LQR without an observer 

Although an LQR controller may not be designed specifically for robustness, the 

closed-loop system is inherently robust with respect to process uncertainty [285]. 

Controller 
Controller transfer 

function 

Gain 
Margin 

(dB) 

Phase 
crossover 
frequency 

(rad/s) 

Phase 
Margin 
(degree) 

Gain 
crossover 
frequency 

(rad/s) 

PD 606 6s  17.9 0 73.6 343 

PID 
5187

319.7 3.017s
s

  7.25 32.5 63.7 154 

Lead 
1.6E3( 46.2)

197

s

s




 13.8 0 26.8 264 
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Figure 4.1 Open loop gain of system with an LQR controller 

This study uses a system that has been discussed in Chapter 3 and shown in Figure 3.26, in 

which 

 

x Ax Bu

y Cx

z Gx Hu

  
 
  


  (4.1) 

is a general linear system, and K represents the matrix form of an already-designed LQR 

controller. If the system is open loop at the controller signal line, u becomes the system 

input and u  the controller output. The open-loop transfer matrix from u to u  is derived 

using the block diagram shown in Figure 4.1. The state-space model of the system in Figure 

4.1 is given by: 

 
x Ax Bu

u Kx

  
  


  (4.2) 

Using Eq. (4.2), the open-loop negative feedback transfer matrix of the system can be 

written as: 

   1

oG K sI A B
    (4.3) 

In this research, the plant is a SISO system, for which oG  becomes a scalar transfer 

function. Kalman’s Inequality can be derived based on Eq. (4.3): 

Kalman’s Inequality [302]: When 0TH G  , the Nyquist plot of ( )oG j  does not enter a 

circle of radius one around 1  , i.e., 

 1 ( ) 1,  for .oG j       (4.4) 
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Figure 4.2 Nyquist plot of an LQR controller 

Figure 4.2 shows a plot of Kalman’s Inequality in the complex plane. The graph 

shows some interesting features of the system with a LQR controller: 

(1) Increasing the feedforward loop gain: If the feedforward loop gain is multiplied by a 

constant k ( 1k  ), the Nyquist curve expands radially and hence the number of 

encirclements does not change. This indicates a positive gain margin of  . 

(2) Decreasing the feedforward loop gain: If the system loop gain is multiplied by a 

constant  (1 0.5)k k  , this Nyquist curve contracts radially but the number of 

encirclements still does not change. This indicates a negative gain margin of 

1020log (0.5) 6  dB. 

(3) Phase margin: If the loop phase increases by  60,  60    degrees, this Nyquist 

curve rotates by   but the number of encirclements does not change. This indicates 

a phase margin of 60  degrees. 

If the loop is closed with a certain amount of loop gain uncertainty, a multiplicative 

uncertainty can be added to represent the loop gain uncertainties. 
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Figure 4.3 System with multiplicative uncertainty 

Figure 4.3 shows a block diagram where a multiplicative uncertainty is added into the loop 

gain to represent the uncertainty associated with the system. The following discussion 

explains why the system is robust with the LQR controller. 

Using Kalman’s Inequality, the following inequality can be written: 

 
( )

2
1 ( )

o

o

G j

G j







  (4.5) 

If the maximum norm of the uncertainty block is written as ( )m j , the closed-loop 

system in Figure 4.3 remains stable as long as 

 
( ) 1

1 ( ) ( )
o

o m

G j

G j l


 




  (4.6) 

Comparing Eq. (4.5) and Eq. (4.6), the following bound can be derived: 

 
( ) 1

2
1 ( ) ( )

o

o m

G j

G j l


 

 


   (4.7) 

A conclusion can be drawn from Eq. (4.7): an LQR controller guarantees robust 

stability with respect to any multiplicative uncertainty with magnitude smaller than 
1

2
. 

Since generally multiplicative uncertainty is much larger than additive uncertainty, a LQR 

controller can accommodate additive uncertainty with a magnitude less than 
1

2
, or even 

larger. In other words, the LQR controller derived in Chapter 3 can provide at least 6 dB 

of gain margin. 
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4.3.2.2. Loop-gain recovery 

Section 3.3.1 has shown that the LQR controllers, with state-feedback, can provide 

desirable robustness properties. In order to achieve better system robustness, the open-loop 

gain can be shaped by an appropriate choice of the LQR weight parameter   in Eq. (3.140) 

and the variables in the controlled output z  in Eq. (3.138).  

As has been discussed, the LQR controller robustness is only guaranteed when all 

the state variables are available. If an observer is introduced to form an LQR/LQG 

controller, the feedback controller is not the K matrix shown in Figure 4.3. Thus, the gain 

margin of 6  dB is lost. Fortunately, it turns out that the LQR open-loop gain can be 

recovered to some extent for the LQG/LQR controller. The technique to recover the 

open-loop gain is referred to as loop-gain recovery. 

In the following discussion, the loop-gain of the maglev system with an LQR/LQG 

controller is recovered partially. Since the maglev plant is a SISO system, and its transfer 

function does not contain any zero in the RHP, the disturbance gain matrix B  in Eq. 

(3.161) can be chosen (or tuned) to be the same as the input gain matrix B: 

 B B   (4.8) 

Then for a number 0    

 NR    (4.9) 

the open-loop gain of the output feedback LQR/LQG controller converges to the open-loop 

gain of the state-feedback LQR controller over a range of frequencies  max0, , i.e., 

  0 1
max( ) ( ) ( 1) ,  0,C j P j K j I B           (4.10) 

In general, the larger max  is, the smaller   is needed to have the gains to match. 

In this design, max 1 kHz  . By choosing 0.2  , 3 dB of gain margin can be 
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recovered for the LQR/LQG controller. However, in order to achieve the loop-gain 

recovery gain, RN is chosen to equal   even if it is not an accurate description of the noise 

statics. It means the estimator is no longer optimized to reflect the actual noise. 

The value of   cannot be smaller than what is needed to recover the loop-gain. 

Although small values of   can recover the loop-gain to 20 dB/decade, it does not 

prevent the loop-gain from decreasing as frequency increases. It has been suggested by 

Hespanha [332] that   should be made just large enough to recover the loop gain to right 

above or at the crossover frequency. In this study, the maglev system is designed to have a 

700 Hz crossover frequency; it turns out that 0.25   makes the loop gain recover about 

4.5 dB near the crossover frequency. 

4.4. QFT Controller Design for the Maglev System 

The previous section discussed system robustness with the controllers designed in 

Chapter 3. Two parameters, gain and phase margins, were used to quantify the system 

robustness to unstructured gain and phase variations in the feedback loop. However, the 

input-to-output gain of a nominally-stable uncertain system model will generally degrade 

for specific values of its uncertain element. Moreover, the maximum possible degradation 

increases as the uncertain elements are allowed to further deviate from their nominal values. 

In other words, a closed-loop system with guaranteed gain and phase margin is robustly 

stable (stability robustness), but it may not deliver a robust performance (performance 

robustness). More discussion on the difference between stability robustness and 

performance robustness can be found in Bernstein and Haddad, Doyle et al., and Skogestad 

and Poslehwaite [333-335]. In this research a QFT and an H  controller are designed to 



 
 

139

guarantee performance robustness. A novel method is proposed to derive a robust 

controller based on QFT and H  controllers. This section discusses the design of a QFT 

controller. 

4.4.1. System performance robustness 

A maglev system, regardless of the control methodology used, must: 

1. provide a reliable levitation during the operation of the maglev system, 

2. offer robustness to model uncertainties and external disturbances, and  

3. give repeatable, predictable performance for a variety of possible loading and working 

environment conditions. 

Beside the system stability issue, the control design challenge for a maglev system 

is twofold: system performance robustness needs to be achieved (meaning to maintain the 

same or similar response characters despite system uncertainties) and the external 

disturbance needs to be attenuated.  

A variety of methods have been proposed to deal with these two challenges. Yang et 

al. [336] reported the design of a robust output feedback nonlinear controller to achieve 

excellent output-tracking performance. In their research, a disturbance observer was 

introduced to suppress the effects of uncertainties by exploiting the cascade features of a 

backstepping design. A high-gain observer was included to estimate the immeasurable state 

of the system.  

Vagia [337] reported a robust PID controller coupled with a feedforward 

compensator. In this research, the system was linearized at multiple operating points, and 

the feedforward compensator was utilized to provide nominal bias voltage. The PID 
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controller had multiple gains associated with multiple operating points. Shan [338] 

presented two disturbance rejection algorithms to improve the dynamics stiffness of a 

magnetic suspension stage. Shan suggested using an internal model principle-based control 

together with a frequency estimator based on adaptive-notch filtering to reject narrow-band 

disturbances with unknown frequencies.  

Satoh et al. [339] proposed a Lyapunov function based robust nonlinear adaptive 

controller. The controller consisted of a pre-feedback compensator with an adaptive control 

mechanism and a robust stabilizing controller. Green [112] studied adaptive backstepping 

control (ABC) and feedback linearization control (FLC) for a single DOF maglev system. 

Green concluded that ABC control was superior to FLC in terms of system robustness. 

These researchers focused on designing systems to meet the classical measurement of 

robustness, i.e., gain margin and phase margin.  

Although a controller can be designed to meet the gain and phase margin 

specifications, it might fail to guarantee a reasonable bound on the sensitivity [340]. In 

other words, even if the controller is designed successfully for robust stability, it may not be 

able to guarantee robust performance. 

In order to address this issue, this section presents a control design approach based 

on QFT for maglev systems. This method addresses the performance robustness issue (with 

the bounds on the sensitivity function being guaranteed) despite the system uncertainties. 

QFT is a robust control design method attributed to Horowitz [341]. It was developed to 

design controllers for systems with model uncertainties and/or parameter variations that 

satisfy gain margin specifications and bounds on the sensitivity. The QFT design method 
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gives a variety of choices on the form of the final controller through its loop-shaping 

procedure. 

In this study, a QFT controller is designed using the method proposed by Yaniv and 

Nagurka [340]. Yaniv and Nagurka proved that controllers can be designed to guarantee the 

gain and phase margin specifications and the sensitivity constraints for a set of plants. In 

this research a set of plants are used to represent the system uncertainties. To utilize the 

methods by Yaniv and Nagurka, the SISO maglev system is modeled using the transfer 

function form, plus the uncertainties associated with the model. 

 

Figure 4.4 System block diagram of a system with QFT control 

Figure 4.4 shows a system block diagram of a 2 DOF control architecture, which is 

the system configuration for the QFT controller design. In the block diagram,  P  

represents a set of plants, i.e., the original plant with uncertainties, F  and C  are the 

pre-filter and controller, respectively, that need to be designed, r  is the reference signal, 

e  is the error, u  is the controller output, y  is the system output, and d  and n  are 

disturbance and noise, respectively. Since this control scheme has two unknown transfer 

functions F  and C  to be determined, it is referred to as 2 DOF control scheme. 
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Table 4.2 Displacement and current gain constants 

The system equations were derived in Eq. (3.16). The values of the system 

parameters, m, R, L, K1, and K2, were measured experimentally and are listed in Table 3.1. 

The values of two constants ik  and xk  in Eq. (3.16) can either be calculated using the 

parameters in Table 3.1 (using Eq. (3.13)) or measured experimentally. Table 4.2. shows 

two groups of ik  and xk  values, when 0 4.5 mmx   and 0 0.345 Ai  . The difference 

between the calculated and directly measured ik  and xk  values is approximatly 30%. In 

this research, the direct measured values have larger instrument error because of the 

unreliable reading of the strain gauge in the experiment setup. Therefore, the calculated ik  

and xk  values are used in controller design. 

Many control designs in the literature assumed that ik  and xk are constants. This 

assumption is incorrect if either the gap distance or the levitated load is changed. To 

demonstrate the variations of the values of ik  and xk , five balls with masses equal to 8 

gram, 12 gram, 16 gram, 20 gram, and 24 gram are levitated at gap distances of 3.5 mm, 4.5 

mm, and 55 mm, then values of ik  and xk  are calculated for each case. 

Table 4.3 shows the maglev plant transfer functions calculated with different 

masses at different gap distances. It is found that the values of ik  and xk  vary within two 

sets of values: 

System Parameter Calculated Experimental Measurement 

ki 2

m
56.82

A-s
 

2

m
74.11

A-s
 

kx 3

m
4359.96 

s
 

3

m
5941.62 

s
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   2

m
41.57, 96.24  

A-sik    (4.11) 

and 

 3 3
3

m
3.57 10 , 5.61 10  

sxk        (4.12) 

If the maglev system is designed to operate at a gap distance 0 4.5 mmx  , the 

measured values are 2
m56.82 

A-sik   and 3
3

m4.36 10  
sxk   . Comparing the values 

in Eq. (4.11) to those in Eq. (4.12), it is found that the value of ik  has 69.4% uncertainty 

and the value of xk  has 28.7% uncertainty. Therefore, the designs assuming constant ik  

and xk  values missed a large part of system uncertainty. 

The controllers proposed in this chapter are designed to accommodate the 

uncertainties and variations in the control plant. In other words, the designed controller 

should guarantee: (1) stability, which means the maglev system is able to levitate objects 

with different masses, and (2) robustness, which means the maglev system is able to 

maintain constant responses despite the model uncertainties and load changes (in this case, 

any change in the levitated mass m). 
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Table 4.3 System models variations as gap distance and m change 

P(s) m = 8 g m = 12 g m = 16 g m = 20 g m = 24 g 

x0 = 3.5 mm 2 2

96.24

74.87s




 
2 2

76.13

74.87s




 
2 2

65.93

74.87s




 
2 2

58.97

74.87s




 
2 2

53.83

74.87s




 

x0 = 4.5 mm 2 2

80.42

66.03s




 
2 2

65.66

66.03s




 
2 2

56.86

66.03s




 
2 2

50.86

66.03s




 
2 2

46.43

66.03s




 

x0 = 5.5 mm 2 2

72.01

59.73s




 
2 2

58.79

59.73s




 
2 2

50.92

59.73s




 
2 2

45.54

59.73s




 
2 2

41.57

59.73s



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4.4.2. QFT Control Design 

This section details the design of a QFT controller for the maglev system. The 

parameter variations are shown in Eqs. (4.11) and (4.12). The nominal plant is chosen as 

the model when gap distance 0 4.5 mmx   (where, 2
m56.82 

A-sik   and 

3
3

m4.36 10  
sxk   ). To derive an effective controller for this particular maglev system, 

the system performance specifications are chosen based on the linear control designs in 

Chapter 3 and suggestions in references [112, 342]. The stability margins and tracking 

specifications are listed below. 

1. Stability margins: gain margin is at least 4.5dB, phase margin is at least 50 degrees. 

2. Tracking specifications: 90% rise time [0.01,  0.5]rt   seconds, overshoot 15%PM  , 

and steady-state error 5%sse  . 

To begin the QFT control design, the templates for the control plant must be 

calculated. Templates, as stated in reference [233], are “… the set of all complex numbers 

for a given set of transfer functions, evaluated at a given frequency…” The plant templates 

were determined by plotting the frequency response of the plant with the maximum and 

minimum uncertain values and then finding the boundaries of the responses.  

The templates are built with the plants that cover the range of parameter 

uncertainties. In this research the maximum and minimum values of ik  and xk  are chosen 

to form the corners of the templates. With different combinations, the template corner 

transfer functions are: 

 1 2 2
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
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 2 2 2
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  (4.15) 

 4 2 2

72.01

59.73
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s





  (4.16) 

Green [112] indicated that this maglev system was designed to operate at control 

signal frequencies less than 15Hz. However, research on the apparatus found that the 

infrared sensor noise had a natural frequency of 22Hz [343]. To avoid resonance of the 

sensor noise, the highest control signal frequency is limited to 10Hz, which is 62.8 rad/s. 

Five frequencies are used in this design:  0.1, 0.5, 3, 15, and 60 rad/s. With the four 

chosen corner transfer functions and five frequencies, the templates can be calculated and 

plotted. 

 

Figure 4.5 Plant templates for the QFT design 
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Figure 4.5 shows the templates of the maglev system in an open-loop gain vs. phase 

plot. The model uncertainties at the chosen frequencies have been included by the plant 

templates. The next step is to design for the command following ability, or “tracking,” of 

the system. It guarantees that the system response to the command signal be the same 

despite system changes (such as a change in the operating point). The tracking models are 

determined using specifications discussed at the beginning of this section, with 90% rise 

time between 0.1 and 0.5 seconds and overshoot less than 20%. Using these criteria, the 

transfer functions for the upper bound lbT  and lower bound ubT  are calculated to be: 

 
2 296 4E

4E4

4lbT
s s
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 

  (4.17) 

and 
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.
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s s
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 

  (4.18) 

The bounds need to be reshaped to relax the constraints on the higher frequencies. It 

helps in the design of the pre-filter since the relaxed constraints allow simpler pre-filter 

forms. To reshape the bounds, zeros and poles are added into the upper bound and the lower 

bound transfer functions, respectively. The reshaping process usually changes the response 

curve at higher frequencies. Based on the design goals, the reshaped bounds are updated to 

be: 

 
2

8E3

( 255.4 1E 4)lbT
s s


 
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and 
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Figure 4.6 Bode magnitude plot of bounds 

Figure 4.6 shows the Bode magnitude plot for the original model bounds and the 

“reshaped” model bounds. The tracking requirement has covered the disturbance rejection 

since disturbance can be treated as system changes in the maglev system. Hence, the 

disturbance rejection design is included. 

The stability margin is determined based on the desired gain margin and phase 

margin for all plants in the set {P}. As shown in [233] the stability margin can be calculated 

using: 

 
1

GM 20log 1
SM

   
 

  (4.21) 

and 

 1
2

0.1
PM 180 cos 1

SM
     
 

  (4.22) 

The bounds and stability margins for the chosen frequencies are plotted on a 

Nichols chart for each frequency value using the MATLAB® QFT toolbox, as is shown in 
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Figure 4.7. 

 

Figure 4.7 Design bounds on the Nichols chart 

Using these bounds, the nominal loop transfer function L0 should pass below and to 

the right of the oval bounds (stability bounds) and should lie above the line bounds 

(tracking bounds) at the specific frequencies [233]. To meet these requirements, poles and 

zeros are combined to shift L0 on the Nichols Chart. One controller that ensures that the 

loop transfer function meets the specifications is found to be: 
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  (4.23) 

Controller C(s) in Eq. (4.23) guarantees the system steady-state response meets the 

stability robust specifications. However, it does not ensure the frequency response curves 

stay between the bounds. Figure 4.8 shows a Bode magnitude plot of the bounds and 
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feedforward loop transfer functions. The frequency responses are outside of the bounds. 

 

Figure 4.8 Frequency responses without pre-filter 

In order to guarantee the transient response of the system also meets the design 

requirements, a pre-filter is needed. The pre-filter shapes the loop transfer function on the 

Bode magnitude plot by adding poles and zeros to the system transfer function. Once the 

response curves are inside the region between the upper and lower bounds, the transient 

response requirements are met. Using the traditional loop shaping technique, the pre-filter 

is found to be: 
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  (4.24) 

Figure 4.9 shows the Bode magnitude plot of the maglev system with a QFT 

controller. The plot shows that the design goals in frequency domain have been achieved. 
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Figure 4.9 Frequency responses with pre-filter 

With the derived pre-filter and the controller in Eqs. (4.24) and (4.23), respectively, 

a set of closed-loop systems can be built to represent different uncertainty states. 

Simulations of the whole uncertainty set are used to check if the system responses stay 

inside the predefined bounds in time-domain. If they do, the design is a success; otherwise, 

the controller and pre-filter transfer function need to be derived again. 
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Figure 4.10 Step response of the closed-loop maglev system with uncertainties 

To validate the system response with the derived controller and pre-filter, the step 

input response curves of a set of uncertain plants are plotted in Figure 4.10. It is shown that 

the system has met all the design specifications. In other words, this design successfully 

addresses the system uncertainty issue as well as the disturbance attenuation issue. The 

experiment validation of this design is postponed to Chapter 5. 

4.5. H∞ Controller Design for the Maglev System 

4.5.1. H∞ Control Design Introduction 

In the previous section, robust control design using the QFT method has been 

discussed. With a 2 DOF control scheme, the designed controller has been able to deal with 

system uncertainty as well as attenuate disturbances. In this section, another robust/optimal 

control method, the H∞ control design method, is designed for the same maglev plant. A 

comparison between these two methods is made at the end of this section, and a new 
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control design approach is proposed based on these two design methods. 

H∞ control is a novel robust control design approach introduced by Zames in the 

1970s [344-346]. H∞ control includes a variety of control schemes. To facilitate the system 

robustness issue, this study focuses on one particular H∞ scheme with the name 

“mixed-sensitivity approach.” Controller synthesis is formulated as a closed-loop transfer 

function shaping problem, mainly on the sensitivity function S, complementary sensitivity 

T, or their combination such as CS, where C is the resulting stabilizing controller. The 

combinations of different transfer functions lead to the name “mixed-sensitivity.” 

Although this discussion is based on the SISO maglev system, it can be expanded to MIMO 

system cases.  

4.5.2. H∞ Design Problem Formulation 

This design uses the linearized maglev system transfer function model to derive the 

controller. To illustrate this method, the system configuration shown in Figure 4.11 is 

assumed. 

 

Figure 4.11 Generalized H∞ control configuration 

Figure 4.11 shows a block diagram of a generalized H∞ control system. It consists 

of a generalized plant P , which is connected to a stabilizing controller C. The data in P  
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contain the plant information and all the weight functions, C is the controller that needs to 

be synthesized, w and u are exogenous input and control variables, respectively, z is an 

exogenous output that needs to be minimized, and v is the measured output that is fed back 

to the controller. Inside the feedback system, the signal v and u normally correspond to the 

input and the output of the controller. The signals w and z will be selected when solving the 

control problem. 

 

Figure 4.12 Feedback system signal definitions 

In order to demonstrate how the controller is designed, a typical feedback system is 

introduced. In Figure 4.12, r is the reference signal, d is the disturbance, n is the noise, e is 

the error signal, P is the plant, and u and y are controller input and output, respectively. 

Figure 4.12 shows a system block diagram with three inputs: r, d, and n, and three outputs: 

e, u, and y. The input and output terminals and the block diagram elements can be 

rearranged in a way so that the transfer function from the input signal to the output signal 

can be easily derived.  
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Figure 4.13 Rearranged block diagram of the feedback system 

Figure 4.13 shows the rearranged block diagram of the system. Choosing  

r

w d

n

 
   
  

, 

and  

e

z y

u

 
   
  

, 

and assuming plant P and the three summers are one single plant, the system model of 

Figure 4.13 can be transferred into that of Figure 4.11. Figure 4.13 is more user-friendly for 

the controller design discussion; the rest of this study uses the block diagram in Figure 4.13. 

In the following discussion, noise n is assumed to be zero. As with other control designs, 

the first step of an H∞ controller design is defining the design goals. There are two distinct 

goals, which will be discussed in next two sections. 

4.5.2.1. H∞ Control design for Disturbance Attenuation: 

To attenuate disturbance, it is assumed that the exogenous input is a disturbance 

signal d (with reference signal 0r  ). Normally the disturbance signal has a low frequency 
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spectrum [347]. Low frequency signals can be attenuated if the gain of the sensitivity 

function S  is made small in the low frequency range. A performance weighting function 

1w  can be selected to cast S  into the desired shape. In other words, a stabilizing controller 

is synthesized to minimize 1w S . This goal alone is impractical because there is no 

bandwidth limitation for the closed-loop system. The solution is to impose another 

weighting function 2w  on a suitable transfer function, for example CS. So the goal of this 

mixed-sensitivity S CS  problem is to find a stabilizing controller that minimizes: 

 1

2

w S

w CS


 
 
 

  (4.25) 

 

Figure 4.14 Generalized plant configuration for disturbance attenuation 

With this setup, a generalized plant can be formed as shown in Figure 4.14. With 

properly chosen weighting functions 1w  and 2w , the output of P  due to d  can be 

minimized.  

4.5.2.2. H∞ Control design for Tracking: 

Tracking a reference command is another control system design goal. Being able to 

follow a reference signal is critically important in some maglev applications. For example, 
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in designing a maglev position stage, it is desired to obtain a system that is able to follow 

the position signal closely and quickly. The system should be able to minimize the error 

between the reference signal r  and the plant output .y    

Some of the reference signals change rapidly; others change slowly. In order to 

accommodate the different reference signals, the system is usually designed for the signal 

that changes fastest. Therefore, it is desired that the gain of S  be made small in the low 

frequency range. Thus, for SISO feedback systems the performance requirements for 

disturbance attenuation and tracking are similar, i.e., to minimize 1w S , in which 1w  is a 

performance weighting function. The closed-loop system bandwidth also needs to be 

limited to avoid high frequency noise amplification. In order to derive a similar 

mathematical model as the disturbance attenuation case, the tracking performance design 

cast another weight 2w  on .T  The resulting stabilizing controller is to minimize  

 1

2

w S

w T


 
 
 

  (4.26) 

 

Figure 4.15 Generalized plant configuration for tracking problem 

Figure 4.15 shows the configuration of a generalized plant for the tracking problem. 

Since both the sensitivity and complimentary sensitivity functions appear in the infinity 
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norm, this setup is also referred to as S T  mixed-sensitivity problem. Now that the system 

has been configured, the next step is to select the appropriate weighting functions. 

4.5.2.3. Performance Weight Function Selection  

In the previous section, the performance weight functions 1w  and 2w  have been 

used to shape the transfer functions of S , T , and their combinations. This section 

discusses how the performance weight functions are selected. 

For the performance requirement discussed in the previous sections, the 

minimization of 1 1w S

  is equivalent to 

1

1
( ) , 

( )
S j

w j
 


  . In other words, it is 

desired that the sensitivity gain S  lie below the reciprocal of the weighting function 1w  

on the entire frequency spectrum. The gain 
1

1

w
 can be plotted to verify that the sensitivity 

gain meets the desired requirements. 

 

Figure 4.16 Design criteria for the performance weight reciprocal  

Figure 4.16 shows a plot of the design criteria for the performance weight 

reciprocal. Three parameters related to the system performance are discussed in this 

research. As shown in Figure 4.16, these parameters are: A , the minimum steady-state 
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tracking error; B , the minimum bandwidth (where 
1

1

w
 crosses 

2

2
); and M , the 

maximum peak magnitude of S . Figure 4.16 shows A  and M  values that stay below 

the tracking and disturbance attenuation and stability region, respectively. With the 

abovementioned criteria, a weighting function can be selected as 

 1( ) .
B

B

s
Mw s
s A









  (4.27) 

It is also recommended that an thn  order weight function be used for 1( )w s  if a 

larger slope in the low-frequency region is desired [335], i.e.,  
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The second weighting function, 2w , is chosen to constrain the bandwidth. It can be chosen 

such that the gain of 
2

1

w
 forces a roll-off at a desired frequency. In this study, 2w  is 

selected to have a 20 dB/decade roll-off around the crossover frequency of about 700 Hz .  

4.5.3. H∞ Controller Design for the Maglev System 

The maglev system is designed as a tracking problem using S T  mixed-sensitivity 

H  synthesis. The goal is to synthesis a stabilizing controller that yields good tracking 

performance. Like the other control design cases, the design goals are chosen before 

beginning the controller design: 

1. Normalized tracking error is less than 0.01 degree at all frequencies below 0.1 Hz; 

2. Closed-loop bandwidth is within 1 kHz; 

3. Gain margin is at least 4.5 dB, phase margin is at least 45 degrees. 
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The first step of the design is to choose a system model. This design uses the same 

model as the QFT design, i.e., the transfer function in Eq. (3.24). The parameter 

uncertainties have been defined in Eqs. (4.11) and (4.12). As a second step, the weight 

functions are selected. Using the above specifications, this study uses the following 

weighting functions: 

 1

0.5 100
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s
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s


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
  (4.29) 

and 

 2

2
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1
300

s

w
s





  (4.30) 

The reciprocals of Eqs. (4.29) and (4.30) can be plotted on a Bode magnitude graph.  

 

Figure 4.17 Bode magnitude plot of the weight function reciprocals 

Figure 4.17 shows a Bode plot of the weight function reciprocals. The design goals 
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are plotted as constraint areas on the same plot. The chosen weight functions satisfy the 

design specifications. 

The third step in this design is to form a generalized plant so the analytic form of the 

controller can be solved. To facilitate the controller solving process, this research 

constructs the generalized plant in a 4-block formulation [348-351]. Then the 

Glover-Doyle algorithm [352, 353] is used to solve for the H  controller. With the 

maglev plant model and chosen weight functions 1w  and 2w , the generalized plant is 

constructed as follows: 
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  (4.31) 

The fourth step is to synthesize the controller using Eq. (4.31). The solution to this 

design is derived by simultaneously solving two Ricatti equations, one for the controller 

and one for the observer. 

It is assumed that the control law 

 ˆcu K x    (4.32) 

guarantees the system performance, where x̂  is the observer state. The state estimator 

equation is given by 

 
1 2

ˆ ˆ ˆ( )P w P w P ex A x B C w B C u Z K y y       (4.33) 

where 
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and 

  
1 1

T2ˆ ˆw w Py A B C X x 
   (4.35) 

The controller gain cK  can be solved using the LQG design method discussed 

previously, and the estimator gain becomes eZ K  with 

   2 1

T T
12c w P w PK D B C X A C    (4.36) 
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 . In addition, 

   12Z I Y X


      (4.38) 

The terms X  and Y  are the solutions to the controller and estimator Ricatti 

equations, respectively: 
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and 
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  (4.40) 

Eqs. (4.33) through (4.40) are solved with MATLAB® robust control design toolbox 

routines. The H  controller is solved to be (in its state-space form): 
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  (4.41) 

The stability and performance check for this design will be discussed in the next section. 
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4.5.4. Stability and Performance Check 

For a quick check of the H  control design, the follow three steps are taken: 

1. Closed-loop system is stable. 

The closed loop stability is checked by calculating the eigenvalues of the 

closed-loop system. The eigenvalues for this design are: 
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  (4.42) 

Since all the eigenvalues have negative real parts, this closed-loop maglev system is 

asymptotically stable.  

2. Frequency response meets performance specifications. 

 

Figure 4.18 Bode magnitude plot of sensitivity and complimentary sensitivity functions 

The frequency response of the system is checked by plotting the S  and T  
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transfer functions on the Bode plot. Figure 4.18 shows a Bode magnitude plot of the 

sensitivity and complimentary sensitivity functions for this design. The plot shows that all 

the design goals on the frequency domain are met with the designed H  controller. 

3. Time-domain response is satisfactory 

A time-domain check is postponed to Chapter 5, where the results of simulation 

studies and experiments are reported. 

4.6. QFT/H∞ Controller Design for the Maglev System 

4.6.1. Background information of QFT/H   control design 

Previous sections discussed two robust design techniques: QFT and H  methods. 

These methods take two different approaches to derive robust controllers. There were 

discussions in the control engineering community about the advantages and disadvantages 

of these two methods. For example, Doyle intended to prove that the QFT theory is 

unjustified by providing several counterexamples [354]. Yaniv and Horowitz replied to 

Doyle’s criticisms and explained in detail why QFT is more efficient than other LTI 

controllers [355].  

Sidi proposed a novel design method that combines the QFT and H  methods, 

called the QFT/ H  design approach [356-361]. This method takes the 2DOF control 

design architecture and uses the uncertainty template from the QFT method along with the 

weighting functions from the H  method. It has all the advantages of both methods. 
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4.6.2. Comparing QFT and H   methods 

Since the QFT/ H  method is based on QFT and H , it is necessary to compare 

these two methods to find out how they can be merged into a single design process. This 

discussion first summarizes the difference between these two methods. The major 

difference between the methods is that the H  technique does not specify the acceptable 

closed-loop tracking input/output tolerance on the system response for all plant conditions 

in the set of {P}. Therefore, the controller is not tuned for all possible plant models.  

The two methods also share some similarities:  

(1) The QFT method specifies the desired output according to the bounds on the Bode 

plot, and uses the Nichols chart to derive the controller transfer function. On the other 

hand, the H  method specifies the weighting functions to guarantee the magnitude 

of the output signal H  norm, and derives the controller transfer function based on 

the weighting functions. 

(2) The QFT method uses plant templates on the Nichols chart to quantitatively determine 

the uncertainties of the system. The H  method calculates the maximum gain 

changes of the plant at all frequencies, and derives the limiting weighting function. 

However, only using the maximum gain changes of the plant may lead to over-design. 

(3) The maximum peaking in  T j  and  S j ,   and  , is used by the QFT 

technique, which manipulates the plant templates and guarantees they do not cross the 

standard closed-loop specification contours of   and   in either the Nichols chart 

or inverted Nichols chart. The same effect is achieved by the H  method by 
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defining the weighting function of 
 1

1

w j
 and 

 2

1

w j
 to have maximum 

peaking resembling   and  , respectively. 

(4) With the H  technique, the sensor noise is minimized by specifying  2w s . With 

the QFT method, the sensor noise is minimized by manipulating the nominal 

open-loop transfer function  L j  in the Nichols chart. The noise gain at the high 

frequency range is minimized while the tracking sensitivity bound, which is also 

frequency-dependent, is satisfied. 

(5) Both the QFT and H  methods can provide multiple analytic controller forms. The 

QFT controller is derived using the loop shaping technique, with the plant uncertainty 

and input-output sensitivity specified, and a trade-off between system performance 

and controller complexity. The boundaries of  L j  can be derived from the 

Nichols chart. The H  controller is designed by solving the two Riccati equations in 

Eqs. (4.39) and (4.40) simultaneously. If different weighting functions are chosen, 

different H  controllers are derived. The design process is a trade-off between the 

controller complexity and the weighting functions while the system performance is 

guaranteed. 

(6) Finally, the system architecture of these two design approaches are different: the QFT 

controller uses a second DOF with a pre-filter F(s) in the system, whereas the H  

controller uses a 1DOF architecture. 

In summary, the QFT and H  methods both solve the robustness problem using 

system performance specifications. QFT emphasizes the quantitative system variation and 

minimizes the change in response due to system uncertainties with two control blocks. H  
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embeds the analytical weighting function in solving the Riccati equations and 

mathematically minimizes the norm of undesirable signals. 

4.6.3. QFT/H   Control Design 

This study adopts an approach that combines the QFT and H  methods. In order 

to facilitate using both QFT and H  methods, the system configuration is updated to form 

a 2DOF control system, as shown in Figure 4.4.  

The design process is divided into three stages: (1) identifying the system model 

and uncertainties, along with the frequency range for frequency-domain analysis, (2) 

calculating the tracking input-output sensitivity specifications, i.e., the acceptable changes 

in  T j , and then designing for robust system performance using the H  norm 

optimization, and (3) shaping the closed-loop gain into the tracking bounds (i.e. maximum 

and minimum of  T j ) using the pre-filter  F s . 

In the second stage, the tracking input-output sensitivity (robust performance) 

specifications are calculated and thus the sensitivity weighting function can be determined. 

This study provides a brief discussion on how the sensitivity function, input-output 

sensitivity specification, and model uncertainties are related to each other. 

The original definition of the sensitivity function ( )S s  is given by Bode [362] as 

 
ln( ) 1 1

ln( ) 1 ( ) ( ) 1 ( )
T
P

T
d TTS

P d P G s P s L s
P



   
  

  (4.43) 

Bode explained Eq. (4.43) as “The variation in the final gain characteristic in dB, per dB 

changes in the gain of P, is reduced by feedback in the ratio of 1 ( )L s .” In other words, 
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the sensitivity function ( )S s  evaluates how the change in plant P  affects the closed-loop 

system output, and it is determined by loop gain ( )L s .  

Eq. (4.43) includes two partial differential terms, making it difficult to calculate 

T
PS . As an alternative, Horowitz and Sidi [360, 361] suggested that Eq. (4.43) can be 

replaced by 

  
  
  

max

max

T j
S j

P j










  (4.44) 

in which   max T j  is the maximum acceptable change between the system 

performance bounds, and   max P j  is the maximum change in the plant gain (i.e., 

the maximum uncertainty.) 

In the following discussion, a QFT/H   controller is designed following the seven 

steps suggested by Sidi [360]: 

1. Determine a nominal plant. 

This study uses the maglev plant defined in Eq. (3.51) with the parameter changes 

in Eqs. (4.11) and (4.12).  

2. Determine the design goals. 

This study uses the design goals defined in Section 4.2. The time-domain 

specifications have been transferred into their frequency domain equivalences in Eqs. 

(4.17) and (4.18). 

3. Find the weight function for robust stability. 

In this design, the frequency vector is chosen to be 

  0.1,  0.5,  1,  5 ,10,  50,  100,  200,  500,  1000QFT   rad/s,  (4.45) 

to cover a broader operation range. The acceptable sensitivity function value at each 
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frequency is calculated using Eq. (4.44) and listed in Table 4.4. 

Table 4.4 Calculate the sensitivity values over the frequency spectrum 

By plotting the S  values on a Bode plot, the sensitivity function can be 

determined by the loop shaping technique.  

 

Figure 4.19 Sensitivity bounds and the w1 in previous design 

Figure 4.19 shows a plot of the desirable sensitivity function values from Table 4.4, 

along with the weighting function 1w  used in Section 5, the H  control design. The 1w  

provide too much attenuation in both low and high frequency ranges. This study uses the 

QFT (rad/s) 0.1 0.5 1 5 10 50 100 200 500 1000 

T (dB) 4.11 4.11 4.11 4.37 5.95 10.84 19.35 25.06 30.51 40.48

P (dB) 6.43 6.43 6.45 6.81 7.22 16.45 25.50 30.95 41.20 55.45

S (dB) 2.32 2.32 2.34 2.44 1.27 5.61 6.15 5.89 10.69 14.97
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loop shaping technique to find a new 1w  weighting function. 

4. Find a new sensitivity weight functions based on the sensitivity values. 

 

Figure 4.20 Update the w1 function for H∞ norm calculation 

Figure 4.20 shows a plot of the updated weighting function 1w  along with the 

original 1w  and the sensitivity function values. The transfer function for the updated 

weighting function is: 

 1

1.5 100

19 155

s
w





   (4.46) 

5. Solve the H  norm optimization. 

In this design, 2w  uses the same transfer function as in Eq. (4.30), since 2w  is 

proved to be appropriate in Figure 4.17. With 1w  and 2w , the H  controller can be 

solved using Eqs. (4.33) through (4.40). The solved H  controller is: 
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   

1 1

1

130 1 0 110 130

52E2 45 82E5 14E4 96E4

0 0 10E2 0 110

30 0 0 10E2 4.4

12 0.59 11E4 19E2 13E3

c c

c

x x y

u x y

     
               

         
    


  (4.47) 

Comparing the two H  controllers in Eqs. (4.41) and (4.47), it is found that the 

controller in Eq. (4.47) has smaller feedback gains in the plant state feedback loop. This is 

due to the change in the weighting function. Figure 4.20 shows that 1w  has been shifted up 

in the Bode magnitude graph to derive 1w , which means the constraints on the weighting 

function are relaxed. Therefore, the feedback loop gains can be reduced. 

6. Use the derived H  controller to evaluate the closed loop system. 

 

Figure 4.21 Response of the uncertain systems along with the bounds 

With the derived H  controller, the system response is evaluated with the 

extremes in the plant transfer function variations. If the system response is between the 
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specified upper and lower bound, there is no need for a prefilter. If not, a prefilter needs to 

be designed to shift the system response into the acceptable region. If the system response 

variation exceeds the difference between the upper and lower bounds, the weighting 

function needs to be reconsidered. 

Figure 4.21 shows a plot of the responses of the uncertain system, along with the 

desirable upper and lower bounds. It indicates that system responses need to be shifted in 

between the lower and upper bounds. Therefore, for this design, a prefilter is necessary. 

7. Use the loop shaping technique to design a pre-filter. 

The prefilter design process has been discussed in Section 4.2. One of the pre-filters 

that can shift all the curves between the bounds takes the following form 

  
 9.5E 2 1

70

1 1
45 605

s

F s
s s

   
 

     
  

  (4.48) 
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Figure 4.22 Closed-loop system response with a prefilter 

Figure 4.22 shows a plot of the closed-loop system with the prefilter in Eq. (4.48). 

The plot shows that the frequency responses of the closed-loop systems are inside the 

bounds. Therefore the design goals have been achieved. 

4.6.4. Evaluation of the Closed Loop System Performance 

Finally, the closed loop system is checked to see if all the design goals are met. 

1. System stability: 

The closed loop system stability is checked by calculating the eigenvalues of the 

closed-loop system. The eigenvalues for this design are: 

 

1000

502.34 861.86

502.34 861.86

40.25

66.99 1.71

66.99 1.71

i

i

i

i



 
   
  

   
  
   

  (4.49) 
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All the eigenvalues have negative real parts. Therefore, the closed loop maglev 

system with the QFT/ H  controller is asymptotically stable. 

2. Frequency-domain response 

Since the QFT/ H  controller is designed according to the frequency-domain 

specifications, its frequency-domain response automatically satisfies all the design 

requirements. 

3. Time-domain response.  

 

Figure 4.23 Step responses of the closed-loop system with uncertainties 

Figure 4.23 shows a plot of the step responses of the closed-loop system with 

uncertainties. The plots shows that the time-domain system response curves are in the 

upper and lower bounds. Therefore, the design goals are achieved. The experiment 

validation with the QFT/ H  design is postponed to Chapter 5. 
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4.7. AFC-enhanced QFT/H∞ Controller Design 

In the previous section, a QFT/ H  method was designed to guarantee the 

performance robustness of the maglev system. This section proposes a method to embed 

the AFC into the QFT/ H . The derived AFC-enhanced QFT/ H  method not only 

guarantees the stability and performance robustness, but also provides a disturbance 

attenuation feature to the maglev system. The desired characteristics of a maglev system 

(as discussed in Section 4.4.1) are achieved with this single controller. To the best of the 

author’s knowledge, the AFC-enhanced QFT/ H  controller has never been reported 

previously. 

The design of this controller starts with plant with uncertainty and a disturbance, as 

shown in Figure 4.24. 

 

Figure 4.24 A plant with uncertainty and a disturbance 

This system can be modeled using the following equations: 

 
( )x Ax Bu f x Dd

y Cx

   



  (4.50) 

where ( )f x  is an uncertainty term, d is the external disturbance, u is the input signal, y is 

the system output, A, B, C, and D  are constant matrices. A QFT/ H  controller can be 
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designed for this system using the techniques discussed previously. The QFT portion of the 

controller deals with the uncertainty term ( )f x , and the H  portion of the controller 

stabilizes the following system, 

 
x Ax Bu Dd

y Cx

  



  (4.51) 

4.7.1. Controller Design with Known Disturbance d 

If the disturbance d is a known signal (such as one measured from an 

accelerometer), Eq. (4.51) can be written as: 

 

 

0 1 0 0

0 1

1 0

x x

x x
i d

k kx x

x
y

x

        
                  

 
  

 


 



  (4.52) 

where 
0 1

0x

A
k

 
  
 

, 
0

x

B
k

 
   

, 
0

1
D

 
  
 

 , and  1 0C  . 

The H  portion of the controller takes the form of  1 2

x
i Kx k k

x

 
   

 
. 

Therefore Eq. (4.52) can be written as: 

 

 

1 2

0 1 0

1

1 0

x i i

x x
d

k k k k kx x

x
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x

      
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 


 



  (4.53) 

Eq. (4.53) shows that the disturbance d is not explicitly addressed with a feedback signal 

i Kx . This research proposes the following design to directly attenuate the disturbance d. 

Assuming signal i Kx v   is the feedback signal, it can be written as 

  1 2

0

1

x
i k k v

x

   
    

   
  (4.54) 

Subtituting Eq. (4.54) into Eq. (4.52)  



 
 

177

 
1 2

0 1 0
.

x i x i

x x

k k k k k k v dx x

      
                


 

  (4.55) 

Eq. (4.55) shows if signal v is chosen to be 
i

d
v

k
 , the disturbance signal d will be 

attenuated.  

4.7.2. Controller Design with Unknown Disturbance d 

If the disturbance d is unknown, it is impossible to calculate v directly. In this 

research, an AFC is proposed to attenuate the disturbance d, and the loop gain is recovered 

using the previously discussed QFT/ H  method. The system transfer function of a maglev 

plant with a disturbance d can be derived from its state-space form in Eq. (4.52): 

 x ix k x k i d     (4.56) 

Introducing an AFC as being described in Figure 3.13 and Eq. (3.44), Eq. (4.56) becomes 

 ( )x i AFBx k x k i k x d       (4.57) 

Rearrange Eq. (4.57) to get the system equation 

 
1 1 1

x i

AFB AFB AFB

k x k i d
x

k k k
  

  
   (4.58) 

The third term in Eq.(4.58) shows that the disturbance d  is attenuated by a gain of 

1 AFBk . However, the loop gain from ( )I s  to ( )X s  is also attenuated by 1 AFBk . The 

loop gain can be recovered with a QFT/ H  controller to recover the loop gain.  

The transfer function from ( )I s  to ( )X s  is:  

 
2

( )

( ) (1 )
i

AFB x

kX s

I s k s k




 
  (4.59) 

Comparing Eq. (4.59) to Eq. (3.16), it is found the coefficient of 2s  term becomes 1 AFBk . 

The system uncertainties can be updates using this new transfer function, as is shown in 
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Table 4.5. To simplify the design, this research assumes AFBk  is a constant. However, a 

QFT/ H  controller can also be designed to a variable AFBk  by treating it as another 

uncertainty in the system transfer function. 

The updated uncertainty ranges are: 

   2
29.37,  48.25  

m

A-sik    (4.60) 

and 

 3 3
3

m
2.07 10 , 3.64 10  

sxk        (4.61) 

Comparing the uncertainty ranges in Eqs. (4.60) and (4.61) to the original 

uncertainty range in Eqs. (4.11) and (4.12), it is found the uncertainties in the system with 

an AFC have smaller variation ranges. In other word, the gain 1 AFBk  also attenuates the 

uncertainties.  

 

Figure 4.25 Updated plant templates  
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Figure 4.25 shows the updated plant templates. The four template corner transfer 

functions are: 

 1 2

48.25

53.86
G

s





  (4.62) 

 2 2 2

41.86

45.54
G

s





  (4.63) 

 3 2 2

29.37

50.20
G

s





  (4.64) 

 4 2 2

34.99

60.37
G

s





  (4.65) 

The QFT/ H  controller design process has be discussed in Section 4.6, and will 

not be repeated here. The designed controller is given below. The controller transfer 

function is: 

 

   
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u x y

     
               

         
     


  (4.66) 

and the prefilter is 

  
1.65 1

73

1 1
58 745

s

F s
s s

  
 

     
  

  (4.67) 
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Figure 4.26 Block diagram of a system with an AFC-enhanced QFT/H∞ controller 

Figure 4.26 shows a block diagram of the system with an AFC-enhanced QFT H  

controller. Experiments to test this controller are discussed in Chapter 5. 
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Table 4.5 Maglev plant transfer functions with acceleration feedback 

Pacc(s) m = 8 g m = 12 g m = 16 g m = 20 g m = 24 g 

x0 = 3.5 mm 2 2

48.25

53.86s




 
2 2

43.22

56.42s




 
2 2

39.73
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


 
2 2

37.09

59.38s


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2 2

34.99

60.37s


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x0 = 4.5 mm 2 2

44.57
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


 
2 2

39.64
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
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2 2
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52.72s


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2 2
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53.76s


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2 2
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54.57s



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45.54s


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2 2

37.03

47.40s


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2 2

33.74

48.62s


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2 2

31.29

49.51s




 
2 2

29.37

50.20s



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4.8. Chapter Summary 

This chapter discusses the robust controller design for a maglev system. The 

discussion begins with a review of the system robustness with classical controls. The 

robustness of a maglev system with a PD, PID, and lead type control are studied. These 

conventional controllers guarantee the system robustness using gain and phase margins. 

These two values indicate how much tolerance a system has toward feedforward loop gain 

changes, but only at the crossover frequencies. For the steady-state operation of the maglev 

system, gain and phase margins are effective to evaluate the system performance. However, 

to guarantee the system transient performance, gain and phase margins are not sufficient. 

This chapter studied robust controller designs using the QFT and H  methods. 

With these two design approaches, the transient response of the system is guaranteed even 

with system uncertainties. This is achieved by using the sensitivity function and 

complimentary sensitivity functions to evaluate controllers. The system performance 

robustness is guaranteed across the frequency spectrum. 

This chapter proposed a QFT/ H  method and an AFC-enhanced QFT/ H  design 

method for control of the maglev system. The QFT design approach provides a quantitative 

evaluation of system uncertainties. The H  approach mathematically guarantees the 

signal norm stays within predefined bounds. Their combination, the QFT/ H  method, 

offers advantages of both methods. It takes into consideration the system uncertainties, and 

results in a controller which is mathematically proved to be able to guarantee the system 

performance. This chapter also discussed how to add an AFC loop in the system and then 

design a QFT/ H  controller, which results in an AFC-enhanced QFT/ H  controller. This 
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novel controller provides the system with a disturbance attenuation feature along with 

guaranteed system robustness. 
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Chapter 5. Simulations and Experimentations 

5.1. Chapter Outline 

Chapters 3 and 4 discussed how to design controllers for the maglev system. 

Chapter 5 discusses how to evaluate the designs through simulations and experiments. 

Sections 2 and 3 of this chapter give a brief introduction of simulation and experimentation 

in control engineering, and how the simulation studies in this research are set up, followed 

by an introduction to the experimental platform. In this study, multiple hardware platforms 

were used during controller tests. A TI® TMS320 DSP platform was used to implement the 

designed controllers. A brief introduction of the TI® TMS320 DSP board is included in 

Appendix E. Section 4 discusses the experiments to validate that the control design goals 

are met. Simulations and experimental results prove that stable levitation can be achieved 

using the following controllers: PD, PID, lead, MRC, LQG, and AFC-enhanced QFT/ H  

(AQH). Experiments show that the noise in the maglev system is attenuated with an 

acceleration feedback controller (AFC) and system robustness is guaranteed with the 

proposed AQH controller. Section 5 summarizes the experiments and presents a 

conclusion. 

5.2. Simulation versus Experimentation 

In Chapters 3 and 4, multiple controllers were designed. Conventionally, the 

controller designs are evaluated via software simulation before implementation. In deriving 

the controllers, both the maglev system and the controllers are modeled as linear ordinary 

differential equations (LODEs). Therefore, they are deterministic systems, and hence the 

system responses to different inputs can be simulated by solving the LODEs with different 
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initial conditions. 

After the simulations, experiments are conducted with the closed-loop system. This 

chapter evaluates the controller designs using both simulation and experiments. 

Simulations serve two purposes: (1) they are theoretical validations of the designs, and (2) 

they can identify potential issues and solve them through iteration on the design process 

before the controllers are implemented.  

During the simulation, the system model is converted from differential equations to 

difference equations so that the simulation can be performed with digital computers. The 

details on conversion between differential equations and difference equations are not 

discussed here. However, the conversion introduces differences between simulation and 

experimental results, which will be discussed later. 

There are many publicly available software packages for controller simulation. For 

example, Maplesim®, VisSim®, MATLAB®, and LabVIEW® all provide software 

environments to test and verify controller designs. In this research, MATLAB® is chosen to 

run the simulations since: (1) it provides a user interface which allows user-defined scripts 

and block diagrams and is intuitive for controller design, and (2) MATLAB® has an 

interface library that can transfer scripts and block diagrams directly into lower level 

computer languages (executable codes), and the latter can be downloaded to either 

microcontrollers or DSP units for experimentation. These two features help to reduce the 

time needed for the design-verification-modification cycle in this project. 

5.3. Controller Platform 

The controllers are implemented with a DSP platform. During the study, several 
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platforms have been investigated. Most of them work directly with MATLAB® through 

software-hardware interface libraries.  

Table 5.1 Comparison among different platforms 

Table 5.1 lists four platforms, the dSpace® controller design suit, the RT-CON® 

system, the NI® FlexRIO suit, and the TI® TMS320 DSP system. All the above platforms 

have been tested with controllers designed in this research. Both the dSpace® and NI® 

FlexRIO platforms provide powerful data processing units, high performance input buffers, 

and high resolution 16 bit A/D and D/A converters. However, these two platforms are cost 

prohibitive. The RT-CON® platform lacks the power to process the large amount of 

real-time data generated by the advanced control algorithms. The TI® TMS320 DSP 

platform was chosen to implement the controllers in this research. Its DSP unit can handle a 

relatively large amount of calculations and its price is reasonable. The DSP board has four 

12-bit A/D and D/A converters. TI® TMS320 DSP provides a comprehensive, 

cost-effective, and adaptable platform to test the closed loop systems. More details on the 

TI® TMS320 DSP board are included in Appendix E. 

Platform 
Control 

Unit 
Development 
Environment 

User Interface Cost 

dSpace® DSP MATLAB SIMULINK Very expensive 

RT-CON® PIC MATLAB SIMULINK Medium 

NI® FlexRIO FPGA LABVIEW LABVIEW Expensive 

TI® TMS320 DSP MATLAB SIMULINK Inexpensive 
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5.4. Simulation Studies and Experiments 

This section discusses the simulations and experimental studies for the controller 

designs. This discussion includes one group of simulations and three groups of experiments. 

(1) System stability simulations. Controllers are simulated with a nonlinear maglev model. 

The system responses to a finite energy reference signal (   , 0, 0tAe A t   ) and an infinite 

energy reference signal ( ( ) 1, 0u t t  ) are simulated. (2) System stability and robustness 

experiments. The goal of this group of experiments is to find if system robustness is 

achieved with the designed controllers. First different masses are tested to find if stable 

levitation can be achieved. Then experiments are conducted on the stable systems to find 

their responses to a finite energy reference signal (   , 0, 0tAe A t   ) and an infinite 

energy reference signal ( ( ) 1, 0u t t  ). (3) Disturbance attenuation experiments. The goal 

of these experiments is to find if acceleration feedback control is feasible on a maglev 

system. Experiments are conducted on a maglev system with an AFC to find if a 

disturbance signal (sine signal) can be attenuated in the response. (4) Disturbance 

attenuation experiments with an AQH controller. Experiments are conducted to find if 

disturbances at different frequencies (sine signal with different frequencies) can be 

attenuated with an AQH controller.  

5.4.1. System Stability Simulation 

This section discusses simulations of different controllers to investigate the system 

stability. 
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Table 5.2 Controllers to simulate and their transfer functions 

Table 5.2 lists the controller transfer functions. A nonlinear Simulink® model of the 

maglev plant is built for the simulations, as shown in Figure 5.1. Figure 5.2 shows a block 

diagram of the closed-loop maglev system. 

 

Figure 5.1 Simulink® model for the maglev plant 

 

Figure 5.2 Block diagram of the closed-loop maglev system 

Controller Type Controller Transfer Function 

PD controller 606 6cG s   

PID controller 
4511

( ) 284.5 5.3cG s s
s

    

Lead controller 
1.6E3( 46.2)

197c

s
G

s





 

MRC controller Not available 

LQG controller Not available 

AQH controller Eqs. (4.66) and (4.67) 
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5.4.1.1. Case 1: system response to a finite energy reference signal 

In this simulation case, the reference signal is a finite energy signal with the transfer 

function: 

 
0.001

( )
1

R s
s




  (5.1) 

The mass and initial conditions for this simulation are: 16 gramm  , 0 4.5 mmx  , 

0 0x  , 0 0.345 Ai  .  

 

Figure 5.3 Simulation result of a system with PD controller responses to R(s) 

Figure 5.3 shows a plot of the response of a system with PD controller to the 

reference signal ( )R s . In the simulation, the reference signal ( )R s  commands the gap 

distance to change from 4.5 mm to 3.5 mm.The plot shows a rapid position change near 

0t  , then the system response closely follows the reference signal. The simulation result 

indicates that the system with a PD controller restores equilibrium after it is disturbed by a 
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signal ( )R s . In other words, a PD controller guarantees system stability. 

Table 5.3 shows the simulation results of case 1. All the controllers discussed in this 

research are able to guarantee stability when the maglev system is subjected to a finite 

energy position command. 

Table 5.3 Stability simulations with a finite energy reference signal 

5.4.1.2.Case 2: system response to an infinite energy reference signal 

 

Figure 5.4 Step response of a maglev system with PD controller 

In this simulation group, the reference signal is an infinite energy signal with the 

transfer function: 

( )R s  Controller PD PID Lead MRC LQG AQH 

0.001

1s 
 

Maglev system 
(m=16 g) 

stable stable stable stable stable stable
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0.001

( )R s
s

   (5.2) 

( )R s  is a step position command in this case. The mass and initial conditions are the same 

as those in Case 1: 16 gramm  , 0 4.5 mmx  , 0 0x  , 0 0.345 Ai  . Figure 5.4 shows 

the step response simulation result. The plot shows that the system is stable after the step 

position command is executed. The rest of the simulation results are summarized in Table 

5.4. 

Table 5.4 Step response simulation result 

Simulation results indicate all the controllers guarantee system stability. 

5.4.2.Stability and Robustness Experiments 

5.4.2.1.Stability and Stability Robustness Experiments 

This group of experiments checks if stability is achieved with the designed 

controllers, and further, if the system is robust against system uncertainties when stability is 

achieved. In these experiments, different masses are placed at an initial position with a gap 

distance 0 4.5x  mm, and then the support is removed to test if levitation can be achieved.   

Table 5.5 shows the results of the stability and robustness experiments. The results 

show that all the controllers can guarantee system stability when m is 16 gram and 20 gram. 

This indicates (1) system stability is achieved with the designed controllers, and (2) all the 

controllers guarantee system robustness against system variation. However, the results also 

( )R s  Controller PD PID Lead MRC LQG AQH 

0.001

s
 

Maglev system
(m=16 g) 

stable stable stable stable stable stable
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show that system stability is achieved with an AQH controller for all the tested masses. 

Besides the AQH controller, the MRC and Lead controllers guarantee system stability for 

four out of five tested masses. With a PD controller, the system only levitates two masses. 

In conclusion, among all the discussed controllers, AQH controller exhibits the best 

stability robustness, while PD controller shows the poorest stability robustness. 

Table 5.5 Results of stability and robustness experiments 

5.4.2.2.Performance Robustness Experiments 

This group of experiments checks the system performance robustness. The system 

configurations for this group of experiments are shown in Figure 5.5 and Figure 5.6. 

 

Figure 5.5 Experiment configuration for PD, PID, lead, MRC, and LQG controllers 

mass 
Controller 

8 g 12 g 16 g 20 g 24 g 

PD unstable unstable stable stable unstable 

PID unstable stable stable stable unstable 

Lead stable stable stable stable unstable 

MRC stable stable stable stable unstable 

LQG unstable unstable stable stable stable 

AQH stable stable stable stable stable 
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Figure 5.6 Experiment configuration for the AQH controller 

Table 5.6 Performance robustness experiment cases 

 Referenc signal Initial gap distance

Case 1 
0.002

( )
1

R s
s




 0 5.5 mmx   

Case 2 
0.001

( )R s
s

  0 5.5 mmx   

Case 3 
0.001

( )R s
s

  0 4.5 mmx   

Case 4 
0.002

( )R s
s

  0 5.5 mmx   

 

This group of experiments uses four different reference signals ( )R s  with different 

initial conditions. The four experiment cases are listed in Table 5.6. Three indices are 

calculated from the experimental results to assess the system performance. They are the 

integral of the absolute magnitude of the error (IAE) index, which is 

 
0

IAE ( )t dt


  ,  (5.3) 

the integral of the square of the error (ISE) index, which is 

 2

0
ISE ( )t dt


  ,  (5.4) 

and the integral of time weighted absolute value of error (ITAE) index, which is given by 

 
0

ITAE ( )t t dt


    (5.5) 

where ( )t  is the error between the reference and the system response. 

The three indices assess the system performance from different perspectives [363]. 

IAE integrates the absolute error over time. It gives an evaluation of how close the response 
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follows the reference. ISE integrates the square of the error over time, which penalizes 

larger errors. ITAE integrates the absolute error multiplied by the time over time. It weights 

errors which exist after a long time. The indices for the four cases are presented below, 

followed by an assessment of the system performance using these indices. 

Case 1 results: 
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Figure 5.7 Maglev system step response (from 5 mm to 3mm) IAE index  
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Figure 5.8 Maglev system step response (from 5 mm to 3mm) ISE index 
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Figure 5.9 Maglev system step response (from 5 mm to 3mm) ITAE index 

Case 2 results: 
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Figure 5.10 Maglev system step response (from 5 mm to 4mm) IAE index 
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Figure 5.11 Maglev system step response (from 5 mm to 4 mm) ISE index 
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Figure 5.12 Maglev system step response (from 5 mm to 4 mm) ITAE index 
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Case 3 results: 
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Figure 5.13 Maglev system step response (from 4 mm to 3 mm) IAE index 
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Figure 5.14 Maglev system step response (from 4 mm to 3 mm) ISE index 
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Figure 5.15 Maglev system step response (from 4 mm to 3 mm) ITAE index 

Case 4 results: 
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Figure 5.16 Exp(-t) response IAE index 
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Figure 5.17 Exp(-t) response ISE index 
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Figure 5.18 Exp(-t) response ITAE index 

In cases 1 through 3, the levitated masses were following a step reference signal. 

The initial gap distances were 5.5 mm and 4.5 mm. The magnitudes of the step reference 

signal are 1 mm and 2 mm. In case 4, the levitated masses were following an exponential 

signal te . The initial gap distance was 5.5 mm.  

Four conclusions can be drawn from the calculated indices: 

(1) The error indices are smallest when the levitated mass is 16 gram. As the mass 

changes, the error indices begin to increase. This is because all the controllers are 
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designed for the system model with a 16 gram mass. 

(2) In all the cases, the error indices of the AQH controller have smaller variations 

compared to those of the other controllers. In other words, the system with an AQH 

controller exhibits better performance robustness.  

(3) In cases 2 and 3, where the magnitude of the step reference signal is 1 mm, the IAE, 

ISE, and ITAE indices show little differences between cases. Therefore, system 

robustness has been achieved between gap distances of 5.5 mm and 3.5 mm. The 

indices in case 1 are larger than those in cases 2 and 3. This is due to the 2 mm 

magnitude of the step reference in case 1. Larger position changes resulted in larger 

error indices. 

(4) In case 4, the IAE, ISE, and ITAE indices are more uniform compared to the other 

three cases, which means the system responses are more uniform when the reference 

signal is a finite energy signal. In other words, the maglev system exhibits better 

performance robustness with finite energy reference signals. 

5.4.3. Disturbance Attenuation with AFC 

This section discusses experiments to validate effective noise attenuation with AFC. 

For the maglev system discussed in this research, the position signal is available for 

measurement, and the control current is assumed known (which is the output of the 

controller). Eq. (3.14) gives the mathematical expression of the acceleration signal based 

on the position feedback signal and control current. Figure 5.19 shows the block diagram of 

a maglev system with an acceleration feedback loop, in which the acceleration signal is 

calculated from the measured position signal and control current. Note that there is also a 
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position feedback loop to achieve stable levitation. 

 

Figure 5.19 Block diagram of a maglev system with an acceleration feedback control 

Table 5.7 Input signals of the two experiments 

Two experiments are conducted to prove that disturbances can be attenuated by 

AFC. The first experiment compares the responses of the maglev system with and without 

acceleration feedback to a sinusoidal reference signal. The second compares the responses 

of the maglev system with and without acceleration feedback to a sinusoidal disturbance 

signal. The configurations of the systems for these two experiments are shown in Figure 

5.20 and Figure 5.21. Input signals are listed in Table 5.7. 

 ( )R s  ( )D s  

Experiment 1 2 2

1E( 3)
, {0.1,0.2,0.5,1,2,5}

k
k

s k





0 

Experiment 2 0 2 2

1E( 4)
, {0.2,0.5,1, 2,5}

k
k

s k





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Figure 5.20 Configuration of a system without AFC 

 

Figure 5.21 Configuration f a system with AFC 

 

Figure 5.22 System outputs of a maglev system tracking a sine command signal 

Figure 5.22 shows the result of the first experiment. It can be seen that the maglev 

system responds almost the same whether the acceleration feedback is used or not. The 

experiment was repeated for reference sinusoidal signals with frequencies from 0.1 Hz to 

10 Hz. Experimental results show that the system can track a reference signal up to about 9 
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Hz. If the reference signal has a frequency larger than 10 Hz, the system fails to track the 

signal or loses stability. (This is because the linearized system does not take into 

consideration the nonlinear character of the components at high frequencies.)  

 

Figure 5.23 System outputs of a maglev system subject to a sine disturbance 

Figure 5.23 shows the comparison between the system outputs with and without the 

acceleration feedback loop. The disturbance is greatly attenuated in the system with the 

acceleration feedback loop. Figure 3.15 shows the magnitude ratio of the disturbance signal 

is about 60 dB smaller in the system with an acceleration feedback loop. The amplitude of 

the system with acceleration feedback is five times smaller than that of the system without 

it. (The signal becomes noisy when the amplitude of the system output becomes small.) 

The experiment proves that an acceleration feedback loop in the system successfully 
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attenuates the disturbance. 

5.4.4. Disturbance Attenuation with AQH 

This group of experiments verifies that disturbance attenuation is achieved with the 

proposed AQH controller. The response of the maglev system with an AQH controller is 

compared to those with PD, PID, Lead, MRC, and LQG. To further investigate the noise 

attenuation feature of a robust AQH controller, the experiments are conducted with 

different masses. The error index is calculated to assess the controllers. The configurations 

of the systems are shown in Figure 5.24 and Figure 5.25. 

 

Figure 5.24 Block diagram of system with PD, PID, Lead, MRC, and LQG controllers 

 

Figure 5.25 Block diagram of system with an AQH controller 

Table 5.8 Signals used in the experiments 

Signal ( )R s  ( )D s  

Transfer function 2 2

5

5s 
 

2 2
10 , {10,15,30}

k
k

s k



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This group of experiments tests a disturbance signal at three different frequencies. 

The signals used in the experiments are list in Table 5.8 

The integral of the absolute magnitude of the error (IAE) indices are calculated 

from the experimental data. The error between a system response with a disturbance and 

one without a disturbance are integrated over time, as is shown in Figure 5.26. 

 

Figure 5.26 System responses to calculate IAE 

The experimental results are shown in Figure 5.27 through Figure 5.29. 
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Figure 5.27 IAE index of 10 Hz disturbance 
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Figure 5.28 IAE index of 10 Hz disturbance 
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Figure 5.29 IAE index of 10 Hz disturbance 

The following conclusions can be drawn from the experimental results shown in 

Figure 5.27 through Figure 5.29: 

(1) The IAE indices of the AQH controller are smaller than those of other controllers. In 

other words, the AQH controller successfully attenuates the disturbance signals, so the 

system outputs are close to the reference signal. 

(2) The IAE indices are smallest when the levitated mass is 16 gram. As the mass changes, 

the IAE indice increases. This indicates the disturbance attenuation is influenced by 
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system uncertainties. A system with large uncertainties may encounter poor 

disturbance attenuation when system parameters change. 

(3) At low frequencies, the IAE indices are larger, and have a larger range of variation. As 

the disturbance signal frequency increases, the IAE indices decrease. This is due to 

the mass in the maglev system filters high frequency disturbances. 

To sum up the experiments in this section, an AQH controller guarantees the 

maglev system stability robustness, and the system performance robustness. In addition, 

the AQH controller provides a disturbance attenuation feature. Therefore, design goals of 

guaranteed system robustness and disturbance attenuation can be achieved in a single 

AQH controller design. 

5.5. Summary 

This chapter discusses the software simulation and experimental validation of the 

controller designs. The simulation and experiment platforms are introduced at the 

beginning of this chapter. Validation experiments are presented. Both simulation and 

experimentation proved: 

(1) The control designs to achieve maglev system stability are successful. All the 

controllers studied in this research, i.e., PD, PID, Lead, MRC, LQG, and AQH, can 

guarantee stable levitation.  

(2) Disturbance attenuation is observed with the implementation of an AFC. The feedback 

loop gain is increased with an AFC so the disturbance signal is attenuated. 

(3) System robustness and disturbance attenuation can be achieved with a single AQH 

controller. 
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Chapter 6. Summary and Future Work 

Maglev technology is used in frictionless bearings, high-speed trains, and 

high-precision machines. This technology balances two basic forces: the electromagnetic 

force and the gravity. There are multiple methods to achieve this balance, but there is only 

one that has found its way to industrial applications — maglev with feedback control. 

Technically, using feedback control to balance these two forces means: (1) finding 

an equilibrium point where the magnitudes of the two forces are equal and their directions 

are opposite, and (2) providing a restoring force that is always pointing towards the 

equilibrium point if the balance between the two forces is compromised.  

Achieving a balance between the electromagnetic force and gravity is challenging. 

When no feedback is provided, these two forces cannot be balanced because of the 

nonlinear nature of the electromagnetic force. Although this force can be approximated by 

a parabolic function near the magnetic source, it is impossible to find a local minimal for 

the error between the two force functions. In other words, the difference between these two 

forces diverges, and to make things worse, their difference diverges in a nonlinear fashion. 

In control engineering terms, this case is referred to as open-loop unstable. 

To design a feedback loop to stabilize the open-loop unstable system is not a simple 

task. In addition, when a maglev system is designed for industrial applications, there are at 

least two issues that need to be considered during the design process: (1) The mathematical 

model of the electromagnetic force is only an approximation at a certain location near the 

magnetic source. If the balance is broken, and the nominal model is still used to calculate 

the electromagnetic force, there is a model mismatch. How to compensate for this modeling 
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error needs to be considered. (2) In the harsh industrial working environment, the system 

experiences unexpected disturbances and noise. Some of these disturbances and noise can 

be modeled mathematically, others may just be unpredictable. How to design a controller 

that guarantees the system performance is another issue to be addressed.  

Multiple methods have been proposed for the design of feedback controllers for the 

maglev system. Some of them are intended to achieve stable levitation with a certain 

amount of tolerance in the loop gain change, such as the classic PID type controller and 

lead-lag controller, while some of them are designed to accommodate the nonlinearity in 

the system model, such as the gain-scheduling controller, feedback-linearization controller, 

sliding-model controller, etc. With these controllers, stable magnetic levitation can be 

achieved. However, there are issues that previous research failed to investigate: (1) the 

system performance robustness is neglected in most designs, (2) using a controller to 

realize noise/disturbance attenuation is not discussed. 

In this research, these issues are addressed by developing and experimentally 

implementing multiple control design techniques. Particularly, this research introduces 

AFC to achieve disturbance attenuation and three robust control design approaches: the 

QFT method, the H  method, and the QFT/ H  control design method. This research 

then proposes a novel AQH controller, which can obtain system stability, system 

robustness, and disturbance attenuation in one single design. 

This research has provided the mathematical model of the maglev plant. The classic 

Newtonian dynamic plus Maxwell equations are used to develop the system model. With 

the system model, multiple control design methods are discussed. With a linearized version 
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of the nonlinear model, PD, PID, and lead controllers are designed to achieve stable 

magnetic levitation while guaranteeing the stability robustness of the system. The system 

performance with these three different types of controllers is compared through simulation 

and experiments. 

To accommodate the nonlinearity in the system, a model reference adaptive 

controller (MRC) is proposed. This controller is derived based on the linearized model but 

provided a switch mechanism to deal with the unmodeled nonlinearity. Experimental 

results proved that the system with MRC exhibits excessive overshoot in a step response. 

However, the MRC controller requires a fair amount of difference between the system 

output and model output because the control effort is adaptively determined by the amount 

of error.  

Next an optimal LQR controller was designed for the maglev system. One 

advantage with the optimal LQR design approach is that the derived system is inherently 

robust to a certain degree. However, in order to estimate the unavailable system state, an 

observer is introduced to form an LQR/LQG controller and the robustness is lost. 

Techniques that can partially recover the system robustness are introduced but the optimal 

estimator is sacrificed. Experimental results show that a system with the LQR/LQG control 

has a certain amount of steady-state error in the existence of uncertainties. However, the 

LQR/LQG controller provides a method of balancing the transient response and the control 

effort. 

Besides addressing the system stability, this research investigated how to guarantee 

the system response robustness. The stability robustness of the system with linear 
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controllers is investigated first. Then the performance robustness issue is discussed and the 

QFT, H , and QFT/ H  controllers are derived. Further, an AFC-enhanced QFT/ H  

(AQH) controller is proposed to address disturbance attenuation and robustness issues in 

one controller design. 

The QFT method provides a design strategy that quantitatively defines the system 

uncertainty, and then derives a controller that satisfies the conventional stability criteria. 

The controller can be tuned to avoid over-complexity. The H  method provides a 

mathematically oriented design approach in which the magnitude of the response to noise 

and disturbance is constrained. The QFT/ H  method combines the advantages of these 

two methods, and develops a controller that is tuned to the exactly amount of system 

uncertainty. Then an acceleration feedback loop is added into the QFT/ H  controller to 

obtain an AQH, which not only attenuates disturbance and noise but guarantees system 

robustness.  

All of the controllers are implemented with a DSP platform, and tested with a 

maglev apparatus that controls the vertical position of five steel balls with different masses. 

The controllers are compared using the system response data. In particular, this research 

compared the error indices calculated from the systems responses with the designed 

controllers, and focused on how the system robustness is guaranteed. Experiments found 

that all of the designed controllers guarantee stable magnetic levitation. For the disturbance 

rejection experiment, the controller with acceleration feedback loop exhibits better 

disturbance attenuation ability than conventional linear controllers. 

When comparing the transient response with system uncertainty, a maglev system 
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with an AQH controller exhibits better robust performance than system with conventional 

controllers. Systems with an AQH controller have advantages compared to AFC, QFT, and 

H  controllers. The QFT controller quantitatively defines the system uncertainty while 

the H  controller assumes a generalized uncertainty model. Therefore, the system with 

the QFT controller shows better robustness and the system with the H  controller 

guarantees the magnitude of disturbance-triggered-response be confined within a certain 

range. The QFT/ H  controller combines the design approaches of the above two 

controllers and provides a system whose uncertainty is quantitatively defined. Then an 

acceleration feedback loop is added to the QFT/ H  controller for disturbance and noise 

attenuation purposes. With the proposed AFC-enhanced QFT/ H  controller, system 

stability, robustness, and disturbance attenuation are all achieved. 

The development, simulation, and experimentation proved that with the novel AFC 

and AQH design strategies, the performance of the maglev system has been improved in 

terms of stability, noise attenuation, and performance robustness. However, the maglev 

system discussed in this study is a prototype for conceptual purposes. The next logical step 

would be to implement these novel control strategies on an industrial system. An active 

magnetic bearing (AMB), for example, would be the ideal candidate platform to test all the 

controllers discussed in this research. AMB requires the position of its shaft to be 

controlled accurately despite disturbance and noise during operation. The robust 

controllers discussed in this research can guarantee these requirements to be met. In 

addition, AMB controls 5 DOF of a bearing shaft. Although the controllers discussed in 

this research are designed for SISO systems, the QFT and H  controllers can be 
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transferred to MIMO controllers with minimal effort. In the past, linear controllers were 

developed to control multiple electromagnets in a “loop-around” fashion. With the novel 

controllers suggested in this research, it is possible to control multiple electromagnets 

simultaneously.  

In closing, this research offers a sound foundation for future advances in designing 

robust controllers for maglev systems. The control design methods discussed in this 

research can be applied to other open-loop unstable systems. It has been proved with the 

maglev system that the novel control design approaches discussed in this research provide 

satisfactory system performance in terms of stability, noise attenuation, and significant 

improvement in system robustness.  
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Appendix A. Electromagnetic Force Calculation 

The design of the maglev testbed is described by Green [112] and is shown in the 

photograph of Figure A.1. Green [112] also derived the equation for the electromagnetic 

force of the testbed using the Maxwell equations. 

 

Figure A.1 Maglev testbed 

The electromagnet, as documented by Green [112], has a core made of a standard 

one quarter inch alloy 20 (nickel-chromium-molybdenum) stainless steel screw. 

Approximately 3000 turns of 26 gauge copper wire are wound around the core.  
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Figure A.2 Dimensions of the electromagnet (in the units of mm) 

Figure .2 shows a schematic of the electromagnet with dimensions. The 

electromagnet was originally designed to operate below a voltage of 15 V. The measured 

resistance of the copper wire is 31  , and as such the maximum current during operation 

is 0.48 A. Table 3.1 shows the measured current when a 8 gram levitated object is at the 

desired position is 0.289 A, which is about 60% of the maximum value. 

In this study, the levitating force is an attractive force between the electromagnet 

and the steel ball. The magnitude of the force can be derived using Ampere’s circuit law 

and Farady’s inductive law. Both laws are included in the Maxwell equations. 
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Figure A.3 One magnetic flux path 

Figure A.3 shows a schematic of one of the magnetic flux paths. To simplify the 

calculation, flux leakage is assumed to be zero. This study briefly reviews two methods of 

calculating the electromagnetic force. They have been discussed by Corson and Lorrain 

[364] and Woodson and Melcher [108], respectively. 

 Hdl i


   (A.1) 

Eq. (A.1) is the integral form of Ampere’s circuit law, where H


 is the magnetic 

field intensity, l


 is the flux path length, and i  is the current. In the electromagnet, the 

flux travels through the stainless steel core, then through the air gap, continues through 

ferrous ball, and returns to the stainless steel core to close the path. The integral in Eq. (A.1) 

gives: 

 
4

1
k k c

k

H l Ni


   (A.2) 

where 1,2,3,4k   represents the flux path in the stainless steel core, air gap, ferrous ball, 

and ambient air, respectively, N  is the total turns of the coil, and ci  represents the current 
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through the coil. 

Since the flux leakage is neglected, the flux through the magnetic circuit is a 

constant. The magnetic flux density B  is a constant through the cross-sectional area of the 

magnetic circuit. Therefore, 

 1 1 2 2 3 3 4 4B A B A B A B A     (A.3) 

where the subscripts 1, 2, 3, and 4 represent the stainless steel core, air gap, ferrous ball, 

and ambient air, respectively. 

The magnetic flux density and the magnetic field intensity are related through the 

permeability, i.e., 

 0 rB H    (A.4) 

where 0  is the permeability of free space, and r  is the relative permeability.  

Substituting Eqs. (A.3) and (A.4) into (A.2), the flux density 2B  in the air gap can 

be solved as: 

 0 0
2 3

1 3 4
0 22

11 2 3 4

c c

j
jr r

Ni Ni
B

l x l l A R xA
A A A A

 


  

 
     
 


  (A.5) 

where x  is the gap distance, and 
0

j
j

r j

l
R

A 
  is the magnetic reluctance in the magnetic 

circuit. Eq. (A.5) gives the flux density in an ideal case, where the flux leakage is assumed 

to be zero. 

There are two methods of deriving the attractive magnetic force acting on the 

ferrous ball. One is to calculate the force from the magnetic pressure from the magnetic 

field, as suggested by Corson and Lorrain [364]. The magnetic force F  is written as: 
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2
2 2

02

B A
F


    (A.6) 

The second method is based on the Faraday induction law of 

 
C

d
Edl

dt


 


   (A.7) 

In Eq. (A.7) shows the electromotive force is equal to the rate of magnetic flux change in 

the magnetic circuit. 

Assuming the flux leakage is zero, the flux linkage is calculated as: 

 2 2CS
B nda NB A  
    (A.8) 

The total energy W stored in the air gap can be calculated using: 
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  (A.9) 

The magnetic force F can be derived by taking the derivative of W  with respect to the gap 

distance x : 
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  (A.10) 

Substituting Eq. (A.5) into (A.10), the electromagnetic force can be written as: 
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  (A.11) 

Eq. (A.11) gives the attractive electromagnetic force F  as a function of coil current ci  

and gap distance .x  1K  and 2K  are two constants determined by the physical structure of 

the electromagnet. 
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Appendix B. Electromagnetic Force FEA 

This appendix describes how to use finite element analysis (FEA) to calculate the 

electromagnetic force. Two cases are studied: case 1 calculates the electromagnetic force 

when the ball is levitated at the equilibrium point, and case 2 calculates the electromagnetic 

force assuming the coil current in case 1 reaches its maximum value. 

 

Figure B.1 FEA model of the electromagnet and steel ball 

Figure B.1 shows the FEA model. Because the electromagnet and the steel ball are 

axially symmetric, the calculation can be simplified by running a simulation with a model 

of the cross-sectional area. In this analysis, the number of turns of wires is assumed to be 

3384 [112].  

Coil core 

Coil wire 

Steel ball 

Aluminum frame 

Air 



 
 

220

Table B.1Material properties for the FEA 

Table B.1 lists the material properties used in the FEA. The permeability of air, 

aluminum, and copper are the same. The permeability of the coil core and steel ball are 

larger than those of air, aluminum, and copper. Therefore, the magnetic flux density has a 

larger value in the coil core and steel ball. 

Geometry Material Permeability
H

m
 
 
 

 

Air Air 61.26 10  

Coil core Alloy 20 stainless steel 44.61 10  

Steel ball 304 stainless steel 41.24 10  

Aluminum frame Aluminum 61.26 10  

Coil wire Copper 61.26 10  
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Figure B.2 Magnetic flux lines when steel ball is levitated 

Figure B.2 shows simulation results of the magnetic flux lines when the steel ball is 

levitated at its equilibrium position. The figure also shows that the magnetic flux density is 

higher in the coil core and the steel ball. The FEA simulation results are summarized in the 

following table: 

Table B.2 Summary of the FEA simulation results 

FEA simulation results 

Maximum magnetic flux density is 1.7 T Saturation happens at about 2 T 

Electromagnetic force calculated at equilibrium 

state is 0.081 N 

Electromagnetic force found by FEA is 0.08 N 

(tensor integration) / 0.079 N (virtual work) 

The magnetic flux density at nominal current is 

0.9 T 
Force at maximum current is 0.35 N 
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Appendix C. Measuring the System Parameter 

In this research, the system parameters of the maglev plant are measured using the 

experiment setup shown in Figure C.1. It includes an aluminum cantilever beam, an 

electromagnet, and a steel ball. The frame to support the electromagnet is not shown in the 

picture. This experiment uses the cantilever beam to measure the displacement of the ball, 

and thus calculate the electromagnetic force.  

 

Figure C.1 Experiment to measure the system parameters  

Parameters 1K  and 2K  in Table 3.1 can be calculated using the following steps: 

(1) First place the steel ball underneath the electromagnet, then adjust the current i  so 

the strain of the cantilever beam is zero (strain gauge reading is zero). This is one 

equilibrium point. 

(2) Measure the gap distance x  with a micrometer, and record the current i . 

(3) Repeat steps 1 and 2 to find a second equilibrium point and get another group of x  

and i  values.  

(4) With two groups of x  and i  values, 1K  and 2K  can be calculated using Eq. 
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(3.12) 

xk  and ik  can be calculated using 1K  and 2K  (using Eq. (3.13)). They also can 

be experimentally measured using the following steps: 

(1) Adjust the current i  to get a small beam deflection y . Record the current i , gap 

distance x  and deflection y  values. 

(2) Repeat step 1 to get a second group of i , x , and y  values.  

(3) For each step, the force acting on the cantilever beam can be calculated using 

3

3yEI
F

L
 . This is also the force acting on the steel ball. Multiplying steel ball mass 

m  through Eq. (3.14) to get a force equation: 

 x imx mk x mk i F     

Then xk  and ik  can be calculated using two groups of x , i  , and F  values. 
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Appendix D. Crossover Frequency Selection 

This appendix discusses how the crossover frequency of about 700 Hz is chosen. In 

Chapter 3, the plant transfer function is derived as: 

 
2 2

( ) 78.48

( ) 66.03

X s

I s s





  

The pole at 66.03 rad/s makes the plant unstable. 

Chapter 3 also derives the plant transfer function in terms of gap distance and the 

bias current, i.e., 
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. The unstable pole is located at 

 

2

1
3

2 0

2
eq

iK

m K x


 
    

. Assuming m, 1K , and 2K  are constants, the unstable pole   is a 

function of bias current eqi  and gap distance 0x . If the equilibrium point is made closer to 

the electromagnet, 0x  will decrease and eqi  will increase. Hence, the unstable pole   

will increase, i.e., the positive pole will move right into the RHP. This indicates that there is 

a trade-off between the equilibrium position and the loop gain. In this study, excessively 

large positive   is undesirable. Figure 3.14 shows that as a pole moves into the RHP, the 

unstable dynamics increase rapidly in the system response.  

In testing the maglev testbed, it is found that the position sensor gives a linear 

output when the gap distance is around 4.5 mm. Therefore, a gap distance of 4.5 mm is 

chosen as the equilibrium point for the maglev system design, and   is calculated to be 

66.03 rad/s (10.05 Hz). The sampling rate of the DSP controller is about 20 kHz. From the 
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Nyquist’s Theorem, the system bandwidth should be designed below 10 kHz. Murray et al. 

[365] suggested the following equation for systems with digital controllers:  

 0.15 to 0.5c

f


   

where c  is the gain crossover frequency in rad/s and f  is the sampling rate of the 

digital controller in Hz. The crossover frequency of the system is determined using 

0.45c

f


 , which is roughly 700 Hz. 

 

 

 

 



 
 

226

Appendix E. TI® TMS320C6713 DSP Board 

This appendix briefly introduces the DSP board, the Texas Instrument 

TMS320C6713 DSP board, used in this research. The TMS320C6x series are special 

purpose microprocessors with specialized architecture targeted for intensive numerical 

calculations. Applications include image processing, communications, and automation, 

such as cellular phones, printers, digital cameras, and MP3 players. 

The 6713 DSK board includes following hardware: 

(1) A C6713 DSP operating at 225 MHz 

(2) 4 Kbytes memory for L1D data cache 

(3) 4 Kbytes memory for L1P program cache 

(4) 256 Kbytes memory for L2 memory 

(5) 8 Mbytes of onboard SDRAM (Synchronous Dynamic RAM) 

(6) 512 Kbytes of flash memory 

(7) 16-bit stereo codec AIC23 with sampling frequency of 8 KHz to 96 KHz 

A Code Composer Studio (CCS) software tool can be downloaded from the TI® 

website. It generates TMS320C6x executable files. CCS includes the assembler, linker, 

compiler, and simulator and debugger utilities. CCS also provides a software interface 

library to transfer MATLAB code into executable files for TMS320C6x. 
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Figure E.1 TMS320C6713 DSP board 

Figure E.1 shows a picture of the TMS320C6713 DSP board. In order to process a signal in 

real time, an Evaluation Module (EVM) is used. 

 

Figure E.2 TMS320C6713 DSP board with a daughter card 

Figure E.2 shows a picture of the TMS320C6713 DSP board with a daughter card for signal 

interfacing. This DSP board is used in this study to implement the controllers.  
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