94,129 research outputs found

    Formal analytical solutions for the Gross-Pitaevskii equation

    Full text link
    Considering the Gross-Pitaevskii integral equation we are able to formally obtain an analytical solution for the order parameter Ί(x)\Phi (x) and for the chemical potential ÎŒ\mu as a function of a unique dimensionless non-linear parameter Λ\Lambda . We report solutions for different range of values for the repulsive and the attractive non-linear interactions in the condensate. Also, we study a bright soliton-like variational solution for the order parameter for positive and negative values of Λ\Lambda . Introducing an accumulated error function we have performed a quantitative analysis with other well-established methods as: the perturbation theory, the Thomas-Fermi approximation, and the numerical solution. This study gives a very useful result establishing the universal range of the Λ\Lambda -values where each solution can be easily implemented. In particular we showed that for Λ<−9\Lambda <-9, the bright soliton function reproduces the exact solution of GPE wave function.Comment: 8 figure

    Status of the differential transformation method

    Full text link
    Further to a recent controversy on whether the differential transformation method (DTM) for solving a differential equation is purely and solely the traditional Taylor series method, it is emphasized that the DTM is currently used, often only, as a technique for (analytically) calculating the power series of the solution (in terms of the initial value parameters). Sometimes, a piecewise analytic continuation process is implemented either in a numerical routine (e.g., within a shooting method) or in a semi-analytical procedure (e.g., to solve a boundary value problem). Emphasized also is the fact that, at the time of its invention, the currently-used basic ingredients of the DTM (that transform a differential equation into a difference equation of same order that is iteratively solvable) were already known for a long time by the "traditional"-Taylor-method users (notably in the elaboration of software packages --numerical routines-- for automatically solving ordinary differential equations). At now, the defenders of the DTM still ignore the, though much better developed, studies of the "traditional"-Taylor-method users who, in turn, seem to ignore similarly the existence of the DTM. The DTM has been given an apparent strong formalization (set on the same footing as the Fourier, Laplace or Mellin transformations). Though often used trivially, it is easily attainable and easily adaptable to different kinds of differentiation procedures. That has made it very attractive. Hence applications to various problems of the Taylor method, and more generally of the power series method (including noninteger powers) has been sketched. It seems that its potential has not been exploited as it could be. After a discussion on the reasons of the "misunderstandings" which have caused the controversy, the preceding topics are concretely illustrated.Comment: To appear in Applied Mathematics and Computation, 29 pages, references and further considerations adde

    Analytical Approximation Methods for the Stabilizing Solution of the Hamilton–Jacobi Equation

    Get PDF
    In this paper, two methods for approximating the stabilizing solution of the Hamilton–Jacobi equation are proposed using symplectic geometry and a Hamiltonian perturbation technique as well as stable manifold theory. The first method uses the fact that the Hamiltonian lifted system of an integrable system is also integrable and regards the corresponding Hamiltonian system of the Hamilton–Jacobi equation as an integrable Hamiltonian system with a perturbation caused by control. The second method directly approximates the stable flow of the Hamiltonian systems using a modification of stable manifold theory. Both methods provide analytical approximations of the stable Lagrangian submanifold from which the stabilizing solution is derived. Two examples illustrate the effectiveness of the methods.
    • 

    corecore