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Analytical Approximation Methods for the Stabilizing
Solution of the Hamilton–Jacobi Equation

Noboru Sakamoto, Member, IEEE, and Arjan J. van der Schaft, Fellow, IEEE

Abstract—In this paper, two methods for approximating the
stabilizing solution of the Hamilton–Jacobi equation are proposed
using symplectic geometry and a Hamiltonian perturbation tech-
nique as well as stable manifold theory. The first method uses the
fact that the Hamiltonian lifted system of an integrable system is
also integrable and regards the corresponding Hamiltonian system
of the Hamilton–Jacobi equation as an integrable Hamiltonian
system with a perturbation caused by control. The second method
directly approximates the stable flow of the Hamiltonian systems
using a modification of stable manifold theory. Both methods
provide analytical approximations of the stable Lagrangian
submanifold from which the stabilizing solution is derived. Two
examples illustrate the effectiveness of the methods.

Index Terms—Hamilton–Jacobi equation, Hamiltonian systems,
nonlinear control theory, perturbation method, stable manifold
theory, symplectic geometry.

I. INTRODUCTION

F OR the analysis and control of linear systems the Riccati
equation plays a fundamental role. In the case of nonlinear

systems the same holds for the Hamilton–Jacobi equation. For
example, an optimal feedback control can be derived from a so-
lution of a Hamilton–Jacobi equation [25] and feedback
controls are obtained by solving one or two Hamilton–Jacobi
equations [5], [21], [38], [39]. Closely related to optimal control
and control is the notion of dissipativity, which is charac-
terized by a Hamilton–Jacobi inequality (see, e.g., [19], [42]).
Some active areas of research in recent years are the factoriza-
tion problem [6], [7] and the balanced realization problem [15],
[36] and the solutions of these problems are again represented
by Hamilton–Jacobi equations (or, inequalities). Contrary to the
well-developed theory and computational tools for the Riccati
equation, which are widely applied, the Hamilton–Jacobi equa-
tion is still an impediment to practical applications of nonlinear
control theory.

In [16], [17], [27], [30] various series expansion tech-
niques are proposed to obtain approximate solutions of the
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Hamilton–Jacobi equation. With these methods, one can cal-
culate sub-optimal solutions using a few terms for simple
nonlinearities. Although higher order approximations are
possible to obtain for more complicated nonlinearities, their
computations are often time-consuming and there is no guar-
antee that resulting controllers show better performance.
Another approach is through successive approximation, where
the Hamilton–Jacobi equation is reduced to a sequence of first
order linear partial differential equations. The convergence of
the algorithm is proven in [24]. In [9] an explicit technique to
find approximate solutions to the sequence of partial differential
equation is proposed using the Galerkin spectral method and
in [41] the authors propose a modification of the successive
approximation method and apply the convex optimization
technique. The advantage of the Galerkin method is that it is
applicable to a larger class of systems, while the disadvantages
are that it is dependent on how well initial iterate is chosen
and requires the calculation of inner products which can
be significantly time-intensive for higher dimensional systems.
The state-dependent Riccati equation approach is proposed in
[20], [29] where a nonlinear function is rewritten in a linear-like
representation. In this method, feedback control is given in
a power series form and has a similar disadvantage to the
series expansion technique in that it is useful only for simple
nonlinearities. A technique that employs open-loop controls
and their interpolation is used in [28]. The drawback is that the
interpolation of open-loop controls for each point in discretized
state space is time-consuming and the computational cost grows
exponentially with the state space dimension. A partially related
research field to approximate solutions of the Hamilton–Jacobi
equation is the theory of viscosity solutions. It deals with
general Hamilton–Jacobi equations for which classical (differ-
entiable) solutions do not exist. For introductions to viscosity
solutions see, for instance, [8], [11], [13] and for an application
to an control problem, see [37]. The finite-element and
finite-difference methods are studied for obtaining viscosity
solutions. They, however, require discretization of state space,
which can be a significant disadvantage.

Another direction in the research for the Hamilton–Jacobi
equation is to study the geometric structure and the proper-
ties of the equation itself and its exact solutions. The papers
[38] and [39] give a sufficient condition for the existence of
the stabilizing solution using symplectic geometry. In [35], the
geometric structure of the Hamilton–Jacobi equation is studied
showing the similarity and difference with the Riccati equation.
See also [40] for the treatment of the Hamilton–Jacobi equation
as well as recently developed techniques in nonlinear control
theory such as the theory of port-Hamiltonian systems. In [32],
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the solution structure of a nonlinear optimal control problem is
investigated using the inverted pendulum as an example.

In this paper, we focus on so-called stationary Hamilton–Ja-
cobi equations which are related to, for example, infinite
horizon optimal control problems and control problems,
and attempt to develop methods to approximate the stabilizing
solution of the Hamilton–Jacobi equation based on the geo-
metric research in [35], [38], and [39]. The main object of
the geometric research on the Hamilton–Jacobi equation is
the associated Hamiltonian system. However, most approx-
imation research papers mentioned above do not explicitly
consider Hamiltonian systems, although it is well-known that
the Hamiltonian matrix plays a crucial role in the calculation
of the stabilizing solution for the Riccati equation. One of our
purposes in this paper is to fill in this gap.

We will propose two analytical approximation methods for
obtaining the stabilizing solution of the Hamilton–Jacobi equa-
tion. In the first method, we try to explore the possibility of using
integrability conditions on the uncontrolled part of the system
for controller design. Even when one can completely solve the
equations of motion for a system with zero input, most non-
linear control techniques do not exploit the knowledge because
once a feedback control is implemented, the system is not inte-
grable anymore. However, within the geometric framework for
the Hamilton–Jacobi equation, the effect of control can be con-
sidered as a Hamiltonian perturbation to the Hamiltonian system
obtained by lifting the original equations of motion. Here, a cru-
cial property is that if the equations of motion are integrable,
then its lifted Hamiltonian system is also integrable. By using
one of the Hamiltonian perturbation techniques (see, e.g., [2],
[4], [18]) we analyze the behaviors of the Hamiltonian sys-
tems with control effects and try to approximate the Lagrangian
submanifold on which the Hamiltonian flow is asymptotically
stable.

The second method in this paper takes the approach based
on stable manifold theory (see, e.g., [10], [34]). Using the fact
that the stable manifold of the associated Hamiltonian system
is a Lagrangian submanifold and its generating function corre-
sponds to the stabilizing solution, which is shown in [38], and
modifying stable manifold theory, we analytically give the solu-
tion sequence that converges to the solution of the Hamiltonian
system on the stable manifold. Thus, each element of the se-
quence approximates the Hamiltonian flow on the stable man-
ifold and the feedback control constructed from each element
may serve as an approximation of the desired feedback. It should
be mentioned that computation methods of stable manifolds in
dynamical systems are being developed and a comprehensive
survey of the recent results in this area can be found in [22].
The proposed method in this paper, however, is different from
the above numerical methods in that it gives analytical expres-
sions of the approximated flows on stable manifolds, which may
have considerable potential for control system designs that often
lead to high dimensional Hamiltonian systems.

The organization of the paper is as follows. In Section II, the
theory of 1st-order partial differential equations is reviewed in
the framework of symplectic geometry, stressing the one-to-one
correspondence between solution and Lagrangian submanifold.
In Section III-A, a special type of solution, called the stabilizing

solution, is introduced and the geometric theory for the Riccati
equation is also reviewed. In the beginning of Section IV a key
observation on integrability for Hamiltonian lifted systems is
presented. We apply a Hamiltonian perturbation technique (re-
viewed in Appendix A) for the system in which the Hamiltonian
is decomposed into an integrable one and a perturbation Hamil-
tonian that is related to the influence of control. By assuming
that the linearized Riccati equation at the origin has a stabi-
lizing solution, we try to approximate the behaviors on the stable
Lagrangian submanifold. In Section V, an analytical approxi-
mation algorithm for the stable Lagrangian submanifold is pro-
posed, using a modification of stable manifold theory. The proof
of the main theorem in this section will be given in Appendix B.

In Section VI-A, we address some computational issues. One
of the eminent features of the approach taken in the paper is that
we try to obtain not solutions of the Hamilton–Jacobi equation
but submanifolds in the extended state space from which the
solutions are produced by geometric integration (for example,
Poincaré’s lemma). However, only approximations of the
submanifolds are obtained and the integrability condition does
not hold anymore. We circumvent this difficulty, by obtaining
derivatives of the solutions (Section VI-A) or by using integral
expressions of value functions in optimal control problems or
storage functions in dissipative system theory (Section VI-B).
Also in Section VI-C, we touch on one of the advantages of
our analytic approach, by showing that approximate solutions
can be explicitly obtained as polynomial functions when the
system under consideration has only polynomial nonlinearities.
In Section VII-A, we illustrate a numerical example showing
the effectiveness of the proposed methods. Since this is a
one-dimensional system, one can obtain the rigorous solution,
which is convenient to see the accuracy and convergence of
the methods. In Section VII-B, we consider a two-dimensional
problem, an optimal control of a nonlinear spring-mass system,
in which the spring possesses nonlinear elasticity. Lastly, the
Appendix includes the expositions for the variation of constants
technique in Hamiltonian perturbation theory, proof of the main
theorem in Section V and some formulas of the Jacobi elliptic
functions used in Section VII-B.

II. REVIEW OF THE THEORY OF FIRST-ORDER

PARTIAL DIFFERENTIAL EQUATIONS

In this section we outline, by using the symplectic geometric
machinery, the essential parts of the theory of partial differential
equations of the first order.

Let us consider a partial differential equation of the form

where is a function of variables, are in-
dependent variables and with

an unknown function. Since the Hamilton–Jacobi equation in
nonlinear control theory does not explicitly depend on , we
did not include it in (PD). The contact geometry handles the
time-varying case (see, e.g., [26]). Let be an dimensional
space for . We regard the dimensional space
for as the cotangent bundle
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of . is a symplectic manifold with symplectic
form .

Let be the natural projection and
be a hypersurface defined by . Define a submani-

fold

for a smooth function . Then, is a solution of (PD) if
and only if . Furthermore, is a
diffeomorphism and is a Lagrangian submanifold because

and

Conversely, it is well-known (see, e.g., [1], [31]) that for a La-
grangian submanifold passing through on which

is a diffeomorphism, there exists a neighborhood
of and a function defined on such that

Therefore, finding a solution of (PD) is equivalent to finding a
Lagrangian submanifold on which
is a diffeomorphism.

Let . To construct such a Lagrangian submanifold
passing through , and hence to obtain a solution de-
fined on a neighborhood of , it is necessary and sufficient to
find functions on with
such that , where is the
canonical Poisson bracket, and

(1)

Using these functions, equations , ,
define a Lagrangian submanifold . Note

that the condition (1) implies, by the implicit function theorem,
that is a diffeomorphism on some neighborhood of .

Since is the Hamiltonian vector field with Hamil-
tonian , the functions above are first integrals of

. The ordinary differential equations that give the integral
curve of are Hamilton’s canonical equations

(2)

and therefore, we seek commuting first integrals of (2)
satisfying (1).

III. STABILIZING SOLUTION

A. The Stabilizing Solution of the Hamilton–Jacobi Equation

Let us consider the Hamilton–Jacobi equation in nonlinear
control theory

where with an un-
known function, , ,
are all , and is a symmetric matrix for all .
We also assume that and satisfy ,
and . In what follows, we write , as

, where
is an real matrix and is a symmetric matrix.

The stabilizing solution of (HJ) is defined as follows.
Definition 1: A solution of is said to be the sta-

bilizing solution if and 0 is an asymptotically stable
equilibrium of the vector field , where

.
It will be important to understand the notion of the stabilizing

solution in the framework of symplectic geometry described in
the previous section. Suppose that we have the stabilizing solu-
tion around the origin. Then, the Lagrangian submanifold
corresponding to is

is invariant under the Hamiltonian flow generated by

(3)

To see this invariance, one needs to show that the second equa-
tion identically holds on , which can be done by taking the
derivative of (HJ) after replacing with . Note that the
right-hand side in the second equation of (3) restricted to
is . The first equation is exactly the
vector field in Definition 1. Therefore, any stabilizing solution is
a generating function of the Lagrangian submanifold on which

is a diffeomorphism and the Hamiltonian flow associated with
is asymptotically stable.

B. Review of the Riccati Equation

It is also useful to see the same picture for the Riccati equa-
tion;

which is the linearization of (HJ). A symmetric matrix is said
to be the stabilizing solution of (RIC) if it is a solution of (RIC)
and is stable. The matrix

is called the Hamiltonian matrix of (RIC) corresponding to the
Hamiltonian vector field (3). A necessary and sufficient condi-
tion for the existence of the stabilizing solution [3], [14], [23],
[33] is that (i) has no eigenvalues on the imaginary axis,
and (ii) the generalized eigenspace for stable eigenvalues
satisfies the following complementarity condition;
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The condition (i) guarantees that the stable Lagrangian subman-
ifold (subspace) does exist while (ii) corresponds to the dif-
feomorphism assumption of on the Lagrangian submanifold.
More specifically, suppose that the assumptions (i), (ii) are sat-
isfied, then the stabilizing solution exists to (RIC). Take the
solution to the Lyapunov equation

and set

(4)

then it holds that

(5)

A nonlinear (Hamilton–Jacobi) extension of (5) is found in [35].
We assume the following throughout the paper.
Assumption 1: The Riccati equation (RIC) satisfies condi-

tions (i) and (ii), and thus has a stabilizing solution denoted
by .

We note that from Assumptiom 1 and (5) one can deduce that

for all , which shows the invariance of and the linear
Hamiltonian flow restricted to is asymptotically stable.

IV. THE HAMILTONIAN PERTURBATION APPROACH

It is well-known that any system described by an ordinary dif-
ferential equation can be represented as a Hamiltonian system
by doubling the system dimension (Hamiltonian lifting). In [12]
this technique is extended to control systems with inputs and
outputs and is known to be effective for fundamental control
problems such as factorization [6], [7] and model reduction
problems [15]. We first give a useful observation on a Hamil-
tonian lifted system when the original system is integrable.
Although it is simple, we did not find this observation in the
literature.

Let the system be completely integrable and
be first integrals. Consider its Hamiltonian

lifted system

(6)

with Hamiltonian . Let for
and . Then,

which means that are in involution. Therefore, the
Hamiltonian system (6) is integrable in the sense of Liouville.
This means that if one can obtain general solutions of the orig-
inal system by quadrature, it is also possible for its lifted system.

One may realize that in the analysis of the Hamilton–Jacobi
equation (HJ) Hamilton’s canonical (3) contain the same terms
as the Hamiltonian lifting (6) of the plant system. The purpose
of this section is to show that one can exploit this property of
Hamiltonian lifting for approximation of the stabilizing solution
of (HJ).

Assumption 2: The system under control is com-
pletely integrable in the sense that there exist independent
first integrals, and thus a solution for a general
initial condition at is obtained.

Define the perturbation Hamiltonian by
. The Hamiltonian is considered

to represent the effect of the control inputs on the integrable
system. We first solve the unperturbed Hamilton’s canonical (6)
determined by by means of the Hamilton–Jacobi theory.
We take the Hamilton–Jacobi approach because it automati-
cally produces new canonical variables. It is important to keep
working with canonical variables so as not to cause secular
terms in calculations, by which stability analysis may become
unreliable (see, e.g., [18]). The Hamilton–Jacobi equation to
solve (6) is

(7)

Proposition 2: A complete solution of (7) is obtained as

'

where is the flow of
.
Proof: The characteristic equation for (7) is

Since the general solution is , ,
the independent integrals of the characteristic equation are

. To see this, we note that

The general solution of the Hamilton–Jacobi (7) is an ar-
bitrary function of the integrals . We
choose a linear combination of them with constants .

From , by
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a general solution of the lifted unperturbed system (6) is ob-
tained as

(8)

or

(9)

We note that the time-dependent transformation
is canonical. In the new coordinates the free motion

(without control) is represented as

With control, the perturbation Hamiltonian is in the coordi-
nates

and , obey

(10)

We remark that until now no approximation has been made. If
we plug the solution , of (10) into (8) or (9), we get
exact solutions of Hamilton’s canonical (3) for the original con-
trol Hamilton–Jacobi equation (HJ) (see, Appendix A). How-
ever, it is still difficult to solve (10) and we try to find an ap-
proximate solution of (10). Using the solution in Assumption 2,
we have

(11)

(12)

Proposition 3: The linearized equation of (10) is

(13)

Moreover, this can be explicitly solved as

Proof: The new Hamiltonian in coordinates is
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where we have denoted for simplicity and
is a symmetric bilinear map. Noting (11) and

(12), we collect first order terms of and in (10) to get (13).
To solve (13), we set , . Then, we have

from which the claim is derived using the inverse transforma-
tion.

Substituting the solution in Proposition 3 into (8) or (9), we
obtain approximating flows of the Hamiltonian system (3). Now,
we wish to select, among them, convergent flows to the origin,
which are the approximations of the flows on the stable La-
grangian submanifold.

By Assumption 1, it follows that

Therefore, if we take the initial conditions and satisfying
(stable Lagrangian subspace), then, we have

Let us denote quantities in the left-hand side of the above equa-
tion as and . Then, we have the
following proposition.

Proposition 4: For sufficiently small ,

(14)

converge to the origin as .
Proof: This can be verified from (11), (12) and the fact that

is an asymptotically stable matrix.
From Proposition 4, we think of (14) as approximate behav-

iors on the stable Lagrangian submanifold, and thus, (14) can
be regarded as parameterized approximations of the Lagrangian
submanifold. Summarizing, we propose the following method
to approximate the stable Lagrangian submanifold and the sta-
bilizing solution.

Procedure 1: Solve the uncontrolled system equation
. Form a general solution (8) or (9) of (6) using the solution

of . Find the stabilizing solution of
(RIC) in Assumption 1. Then,

(15)

is a family of approximations of the stable Lagrangian subman-
ifold. That is, is an ap-
proximation of the derivative of the stabilizing solution.

Proof: By eliminating in (14), one can derive (15).
Remark IV.1: The set in (15) includes the linearized so-

lution for . Also, it can be seen that for suffi-
ciently small , each surface in (15) is tangent to , from
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which one can expect that the performance of the feedback con-
trol using (15) is better than that of linear control using
of (RIC). For a practical method of determining the value of ,
see Section VI-D.

V. THE STABLE MANIFOLD THEORY APPROACH

A. Approximation of Stable Manifolds

We consider the following system

(16)

We will assume that the linear part of the equation is separated
in stable and anti-stable directions and , are higher order
terms.

Assumption 3: is an asymptotically stable real matrix
and it holds that , for some constants
and .

Assumption 4: are continuous
and satisfy the following.

i) For all , and ,

ii) For all , and ,

where , are continuous and
monotonically increasing on for some constants

.
Furthermore, there exist constants , such that

holds on for .
Let us define the sequences and by

(17)

for , and

(18)

with arbitrary .
The following theorem states that the sequences ,

are the approximating solutions to the exact solution
of (16) on the stable manifold with the property that each ele-
ment of the sequences is convergent to the origin.

Theorem 5: Under Assumptions 3 and 4, and
are convergent to zero for sufficiently small , that is, ,

as for all Furthermore,
and are uniformly convergent to a solution of

(16) on as . Let and be the limits of
and , respectively. Then, , are the

solution on the stable manifold of (16), that is, ,
as .

Proof: See Appendix B.

B. Approximation Algorithm

Extracting the linear part in (HJ), (3) can be written as

(19)
Using the linear coordinate transformation

(20)

where is defined in (4), the linear part of (19) is diagonalized
as

(21)

For (21), Assumption 1 implies Assumption 3 and Assump-
tion 4 is satisfied if , and in (HJ) are sufficiently smooth.
Thus, we propose the following procedure for parameterized ap-
proximation of the stable Lagrangian submanifold.

Procedure 2:
(i) Construct the sequences (17) for (21) and obtain the se-

quences , in the original coordinates
using (20).

(ii) Take a small so as for the convergence of (17) to be
guaranteed for in

Then,

(22)

is an approximation of the stable Lagrangian submanifold
and as , where is the stable Lagrangian
submanifold whose existence is assured by Assumption 1
and the results in [38].

Remark V.1: Procedure 1 applies, compared to Procedure 2,
to a smaller class of systems and does not provide a sequential
method. However, since a nonlinearity is fully taken into ac-
count in Procedure 1, it gives a qualitatively good approximation
with a large valid range (see, Example VII-A). Nevertheless, one
may wish to obtain better approximations in the Hamiltonian
perturbation approach. To this end, we have included the depen-
dence on in (16), so as to be able to apply Procedure 2 to (10).
More specifically, one applies the transformation ,

as in the proof of Proposition 3 to get

where the higher order terms above are dependent on since
is time-dependent. Thus, Procedure 2 can be employed while the
0-th approximation (17) in this case corresponds to the approx-
imation in Procedure 1.
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VI. COMPUTATIONAL ISSUES

One of the unique features of the approach taken in this paper
is to parameterize a certain -dimensional surface (Lagrangian
submanifold) in -dimensional space, which is a graph of the
derivative of the solution. The existence of the solution is guar-
anteed from the integrability property of the surface. For the pur-
pose of the control system design, however, the actual compu-
tation of the solution and/or its derivative as a function of is
necessary.

A. Computation of

In Section IV, the computation for is possible
by eliminating in (14). To obtain an approximation
of in (22), suppose that is parameterized with

. If one eliminates , from equa-
tions , ,
the relation is obtained and will serve as an
approximation of . The elimination of variables in this
case is, however, not easy to carry out in practice. An effective
use of software is required for this purpose. In Section VII,
we interpolate the values of for sample points of to
get the function using MATLAB® commands such as

and .

B. Computation of

in Procedure 1 and in Procedure 2 are merely approx-
imations of the stable Lagrangian submanifold and do not sat-
isfy the integrability condition. Therefore, it is difficult to get
an approximation of the generating function for the Lagrangian
submanifold in a geometric manner. However, since we have an-
alytical expressions of the approximations, we can write down
approximations of the generating function as described below.

1) Optimal Control Problem: Let us consider the following
optimal control problem:

(23)

with the cost function

where is a smooth matrix-valued function and
takes the form of, for example, with
smooth , . The optimal feedback control is
given by

where is the stabilizing solution of the corresponding
Hamilton–Jacobi equation

By Procedure 2, the -th approximation of the Lagrangian sub-
manifold is parameterized as in (22), and the -th approxi-
mation of the optimal feedback can be described with and as

Since the generating function is the minimum value of for
each which is inside of the radius of convergence of (17), its
approximation can be written as

(24)

The same computation is possible in the Hamiltonian perturba-
tion approach, when is integrable, by using (14).

2) Control Problem: Let us consider the nonlinear
system (23) with disturbances

where is a smooth matrix function. The state feedback
control problem is to find a feedback control law

such that the closed loop system is asymptotically stable and has
the -gain (see, e.g., [39] for definition) from to
less than or equal to .

A sufficient condition for the solvability of the problem
is that there exists a stabilizing solution to

and the feedback law is given by

Procedure 2 can be applied if the linearized problem is
solvable and we can construct -th approximation as in (22).
From Pontryagin’s minimum principle, one can show that

where

is the worst disturbance, and is the
solution of the system .
Then, -th approximation for is given, by replacing ,
with , respectively, as

(25)

where .
When one designs a feedback control law and only the deriva-

tive of the solution of (HJ) is necessary, we recommend to em-
ploy the method in Section VI-A. This is because the operations
in (24) or (25) have no effect of approximating the exact solu-
tion and the derivatives of these functions may be less accurate
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than those obtained by the method inSection VI-A for the same
. The accuracy can be increased by taking larger and the two

kinds of approximate derivatives coincide when .

C. A Special Case-Polynomial Nonlinearities

When (HJ) contains only polynomial nonlinearities, compu-
tations for and are carried out with elementary func-
tions in the stable manifold theory approach in Section V. In this
case, the higher order terms in (19) are second or higher order
polynomials, and so are , in (17).

The first approximations, corresponding to the linear solu-
tion, are , consisting of exponential and
trigonometric functions. They are substituted in (17) yielding
also exponential and trigonometric functions since and
are polynomial. The second approximations are obtained by in-
tegrating them after multiplication of the matrix exponential

, thus consisting of exponential and trigonometric functions.
This continues for all . Moreover, the integrands in (24) and
(25) are also polynomials of and , and therefore, ’s are
obtained as polynomial functions of .

D. Determination of Parameters and the Radius of
Convergence

In the perturbation methods, one needs to determine the
value of so that (15) gives a good approximation of
in some sense. We propose a practical method of doing that
using the value of Hamiltonian . If is a solution of (HJ),

. Thus, if is an approximation of
with parameter , it may be reasonable to chose so as

to be minimized.
In the stable manifold approach, on the other hand, one needs

to estimate the radius of convergence of the sequence (17).
Since obtaining a theoretical estimation for such a convergence
domain is quite difficult and it tends to be conservative, we pro-
pose a practical method using the values of for each iter-
ation. If is such that the iteration (22) is convergent, then

is small. However, as grows beyond
the radius of convergence, the value may rapidly increase. By
looking at this change of for each , one can reasonably es-
timate the radius of convergence.

The radius of convergence in the stable manifold approach
is generally small, meaning that the resultant solution surface
(22) is small around the origin if only positive is used. To
enlarge the domain of the solution, one may try to use negative
. This, however, is an unstable direction of the flows and

creates a divergent effect. We employ a similar idea to the
above to see how much negative can be substituted in (22).
For a fixed value of , where is the radius of convergence,
calculate . Then, for negative , as long as

stays near the exact solution (Lagrangian
submanifold), the value is small. By looking at the growth of
this value with respect to , one can see how much negative

can be substituted. If the domain thus obtained is not large
enough, raise and use smaller .

All of these methods are effectively applied using analytical
expressions. We will demonstrate them in the next example.

VII. EXAMPLES

A. A Numerical Example

Let us consider the 1-dimensional nonlinear optimal control
problem;

(26)

The Hamilton–Jacobi equation for this problem is

(27)

and Hamilton’s canonical equations are

(28)

1) The Hamiltonian Perturbation Method: The Hamiltonian
is split into the integrable and perturbation parts;

The solution of (26) with the initial condition at
without control is obtained from

(29)

and is denoted as . The solution of the canonical
equations for corresponding to (8) is

where is an arbitrary constant and the last equation is derived
from (29).

Based on the linearization of (26), the linearized canonical
equations for perturbation that correspond to (10) are

The solution of the above equations for the initial condition in
the stable Lagrangian subspace of the linearized Riccati equa-
tion of (27) is

where is the stabilizing solution of the Ric-
cati equation and is the closed loop matrix
(eigenvalue). The family of approximations of the stable La-
grangian submanifold in Procedure 1 is
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Fig. 1. Perturbation and Taylor expansion solutions.

Fig. 2. Integration of error.

The feedback function with is shown in Fig. 1. Also,
we showed the result by the Taylor series expansion of order

for the sake of comparison. Since the integrable nonlinearity is
fully taken into account in this approach, the feedback function
is better approximated in the region further from the origin.

The value was chosen by the method described
in the first paragraph of Section VI-D, which means that the
nonzero value can be thought as an error from
the exact solution and its integration may play the role of a norm.
Fig. 2 shows that takes the minimum value
at .

2) The Stable Manifold Approximation Method: The coordi-
nate transformation that diagonalizes the linear part of (28) is

Fig. 3. � � ���� and extended to the negative time ����.

The equations in the new coordinates are

where

We construct the sequences (17) with

and , . From and , the relation of
and is obtained by eliminating , which will be denoted as

. We note that depends on . The approximated
feedback functions are .

Figs. 3–5 show the results of calculation for . To guar-
antee the convergence of solution sequence (17), has to be
small enough (Theorem 5). If is too large, the sequence is
not convergent (compare Figs. 3 and 5). We have estimated the
radius of convergence using the method in the second paragraph
of Section VI-D. From Fig. 6, one can see that may
be a reasonable estimation.

If is small and only positive is used in and
, then the resulting trace in the plane is short, hence,

the function is defined in a small set around the origin.
Therefore, we substitute negative values in to extend the trace
toward the opposite direction. This, however, creates a diver-
gent effect on the sequence and this effect becomes smaller as

increases (see, Fig. 4). We employed the approach in the third
paragraph of Section VI-D to see how much negative time can be
used in (22) to create a larger domain of validity for . From
Fig. 7, one can see that the domain of may be enlarged up
to . If this domain is not large enough, one should raise

and substitute smaller . It can be seen that gives a good
approximation for (domain of validity,
see also Fig. 3), where is from Procedure 2, and that the
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Fig. 4. � � ���� and extended to the negative time ����.

Fig. 5. � � ��� and extended to the negative time ����.

domain of validity for would be
(Fig. 4) which is larger than that of .

B. Optimal Control of a Nonlinear Spring-Mass System

In this example, let us consider an optimal control problem
for a spring-mass system with input :

(30)

where, is the mass of an object attached to the spring, is the
displacement of the object from rest (at rest, ; the spring
generates no force), and are the linear and nonlinear spring
constants, respectively. Hereafter, we set , for
the sake of simplicity. The Hamilton–Jacobi equation for this
problem is

(31)

Fig. 6. Errors ��� ��� �	� � ��� �		.

Fig. 7. Errors ��� ��� �	� � ��� �		.

1) The Perturbation Approach: Equation (30) with initial
condition , and no input is integrated as follows:

(32)

where, with
, is the Jacobi elliptic function, and
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Fig. 8. ����� with the perturbation method and the first entry of the linear
solution.

is the elliptic modulus. is a constant
of integration and can be expressed using and as follows

Note that , , are functions of , . To express as a
function of , and , we substitute , ,

into (32) and use the addition formulas of the Jacobi
elliptic functions (see, Appendix C). Thus, in Section IV
is given as

The family of approximations of the stable Lagrangian subman-
ifold in Procedure 1

is calculated with

(33)

where is the stabilizing solution of

(34)

and we have written , .
For the calculation of , it is necessary to differentiate the

Jacobi elliptic functions with respect to the elliptic modulus,
because is differentiated by initial states , and in (32)
is dependent on , . We have listed some of the formulas
required for this calculation in Appendix C.

In Figs. 8 and 9, approximations of and with
are illustrated with the linear solution . The

semi-transparent surfaces represent . It is seen that the
approximate functions are tangent to the linear functions at the
origin.

Fig. 9. ���� �� with the perturbation method and the second entry of the linear
solution.

2) The Stable Manifold Theory Approach: The associated
Hamiltonian system to (31) is

(35)

The matrix that diagonalizes the linear part of (35) is

� � �
�
���

���
�
����
�
�
�
���

�

� � � � �

�

�
�
�
���

�
�
���

�
�

�
��� �

�
�

�
���

�

�
�
�
���

�
��� �

�
��� � �

�
�����

�
����

���
�
����
�
�
�
���

�

�

�

In the new cordinates , (35) is represented as

(36)

where , are in (33), (34) and , are obtained, using

, as

Now, Procedure 2 can be applied to (36), and sequences (17)

are transformed into the original coordinates with

. Fig. 10 shows the second-order approximation

of and the second entry of the linear solution (semi-
transparent surface). Also, Fig. 11 shows the surfaces repre-
senting with the perturbation and stable manifold

methods to compare the two methods. The semi-transparent
surface corresponds to the one with the perturbation method (the
same surface in Figs. 9). Figs. 9–11 are drawn from the same di-
rections with the same scales to compare the surfaces. Since the
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Fig. 10. ���� �� with the stable manifold method and the second entry of the
linear solution.

Fig. 11. ���� �� with the perturbation and stable manifold methods.

optimal feedback law of this problem does not require ,
the surface for this derivative is not presented.

VIII. CONCLUSION

In this paper, we proposed two analytical approxima-
tion approaches for obtaining the stabilizing solution of the
Hamilton–Jacobi equation using a Hamiltonian perturbation
technique and stable manifold theory. The proposed methods
give approximated flows on the stable Lagrangian subman-
ifold of the associated Hamiltonian system as functions of
time and initial states. The perturbation approach provides
a set of approximations for the derivative of the stabilizing
solution. On the other hand, in the stable manifold approach,
parametrizations of the stable Lagrangian submanifold are
given. Since these methods produce analytical expressions
for approximations, it is possible to compute the solution of
the Hamilton–Jacobi equation using its integral expressions
(Section VI-B). Moreover, in the case of polynomial nonlinear
systems, each approximation step yields the Hamiltonian flows
with exponential and trigonometric functions in the stable man-
ifold method, providing approximate solutions as polynomial
functions (Section VI-C). In this case, the calculations are all
algebraic, that is, no numerical integration is required and no
equations need to be solved. Since these methods focus on the
stable manifold of the Hamiltonian system, the closed loop
system stability is guaranteed and can be enhanced by taking

higher order approximations. A one-dimensional example
shows that they are effective in that the optimal feedback is
well approximated and that, compared to the Taylor expansion
method, they give better results especially further from the
equilibrium. An example of a nonlinear spring-mass system
is illustrated to show how they work for a higher dimensional
system.

APPENDIX

The Variation of Constants Technique in Hamiltonian Per-
turbation Theory: We review, in this section, one of the Hamil-
tonian perturbation techniques which is a simple consequence
of the Hamilton–Jacobi theory (see, e.g., [4], [18]).

Let

be the Hamiltonian with the integrable part and the pertur-
bation . By the integrability condition, the Hamilton–Jacobi
equation

(37)

has a complete solution , where
are arbitrary constants. By the canonical coordinate

transformation defined by

(38)

the unperturbed Hamiltonain in the coordinates becomes
0 and the unperturbed equations of motion

are converted into

By the canonical transformation (38), the new Hamiltonian for
the perturbed equations of motion is since by (37)
satisfies

Therefore,

are converted into

where, from (38), and .
Proof of Theorem 5: From Assumptions 3 and 4, the fol-

lowing inequalities are derived. (In this section, we leave out the
dependence of and on for the sake of simplicity.)



SAKAMOTO AND VAN DER SCHAFT: STABILIZING SOLUTION OF THE HAMILTON–JACOBI EQUATION 2347

• If , then

(39)

If , then

(40)

• If and for some positive constants
, satisfying , then

(41)

If and for some positive constants
, satisfying , then

(42)

(a) First, we show that the limits of sequences (17) and
(18) satisfy (16). By taking limit in (17), we have the
integral equations for and

from which one can see that and satisfy (16).
(b) For each , and have the

following estimates;

(43)

where and are the constants defined by

(44)

Indeed, from Assumption 3 and
from which the claim for follows.

Let us assume that the claim holds for .

where we have used (39) and (40). Similar calcula-
tions give

Thus, (43) for holds with and in (44).
(c) Next, we show that for sufficiently small ,

and are bounded and monotonically in-
creasing sequences and therefore, ,

exists. Furthermore, we show
that , when . Let ,

, and . Then, it
follows that

therefore, and if and
, which is readily verified. We next claim that

the equation

(45)

has a solution for sufficiently small . To prove the
claim, define a map by

Since

it follows that for small , and
is a contraction map in a neighborhood of .

Therefore, has the unique fixed point in ,
which is a solution of (45). We note that when ,

and . It can be shown, in the same
way as the monotonicity proof of and , that

and as long as and ,
which is obvious from (44) and (45). Thus, we have
shown that and are bounded. Therefore,
their limits exist and coincide with since there
is no other solution of (45) in . Because is
the solution of (45), it is clear that as

.
(d) Next, we show that

(46)

(47)
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where , are the positive sequences defined
by

Indeed, for , using (41) and (42), we have

Let us assume (46) and (47) for . For , using
(41) and the monotonicity of

and using (42) and the monotonicity of

(e) Lastly, we prove that for sufficiently small ,
and are monotonically decreasing sequences and

. As a matter of fact,
it can be easily seen, from the definition of the se-
quences, that and for all

if and . However, these
can be verified from

and from the fact that , as . Therefore,
the limits , exist and coincide
with the solution of

which has the unique solution .
The Jacobi Elliptic Functions:
Derivation of (32): Let be the solution of

. Then, from
,

where we have set ,
and is Jacobi’s amplitude function. Thus, we get (32) from

.
Formulas: Differentiations with respect to :
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Addition formulas:

Differentiation with respect to the elliptic modulus :

where and are the complete elliptic integrals of the
first and second kind, respectively, defined by

and zn is Jacobi's zeta function defined by
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