242 research outputs found

    Cloud Detection And Information Cloning Technique For Multi Temporal Satellite Images

    Get PDF
    Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2017Thesis (Ph.D.) -- İstanbul Technical University, Institute of Science and Technology, 2017Uzaktan algılanmış uydu görüntülerinde atmosfer etkilerinden kaynaklı olarak ortaya çıkan bölgesel bulutlar ve bu bulutların gölgeleri, yapılan çalışmalarda problem oluşturan temel gürültü kaynaklarındandır. Değişim analizi, NDVI hesaplama gibi önemli dijital işlemlerde bulut ve gölge bölgeleri, genel olarak yanıltıcı sonuçlar veren bölgeler olduğundan dijital işlemler çoğu zaman bu alanlar maskelenerek gerçekleştirilmektedir. Bu problem birçok çalışmada aynı bölgeden farklı zamanlarda elde edilmiş uydu görüntüleri ile mozaikleme yapılarak aşılmıştır. Ancak, mozaikleme sırasında oluşan spektral ve dokusal bozulmalar çalışmaları olumsuz etkilemektedir. Görüntünün çekilme anına bir daha dönülemeyeceğinden, bulutsuz bir görüntü elde etmek önemli bir süreç haline gelmektedir. Google Earth gibi sık kullanılan harita araçları aynı bölgeye ait çekilmiş birçok görüntü kullanarak bu görüntülerin ortalamalarından bulutsuz mozaikler elde ederek kullanıcılara sunmaktadır. Bu çalışmada bulutlu görüntüler çok zamanlı bulutsuz görüntülerden klonlama yapılarak bulutsuz hale getirilecektir. Diğer benzer çalışmalara ek olarak, klonlama süreci bir fotoğraf düzenleme işleminden öte görüntünün spektral özellikleri kullanılarak gerçekleştirilerek en yakın tarih ve spektral benzerlik göz önünde bulundurularak bulutsuz görüntü elde edilecektir. Üretilen bulutsuz görüntüde oluşan kenar bozulma etkileri çeşitli filtreler ile azaltılacaktır. Geliştirilen yöntem farklı zamanlarda çekilmiş Landsat-8 uydu görüntüleri ile test edilmiştir. Görüntüde bulunan bulutların belirlenmesi, bulut klonlama işleminin gerçekleştirilmesi için ilk aşama ve doğruluğu direkt olarak klonlama doğruluğu etkileyen bir süreçtir. Bulutların oluşturduğu parlaklık ve gölgelerinin oluşturduğu kararmalar birçok veri analizini olumsuz etkilemektedir. Bu etkiler, atmosferik düzeltmede oluşacak zorluklar, NDVI değerlerinin yükselmesi, sınıflandırmadaki hatalar ve değişim analizinin yanlış gerçekleştirilmesi şeklinde olabilir. Tüm bu etkilerin doğrultusunda, uzaktan algılama görüntülerinde bulutlar ve gölgeleri önemli bir gürültü kaynağı olduğundan bunların dijital işlemlerden önceki ilk aşamada belirlenmesi önem taşımaktadır. Bu çalışmada, Landsat-8 görüntüleri kullanılarak ve mevcut ısıl bantların da yardımıyla, bulut ve gölgelerinin belirlenmesi için bölütleme tabanlı bir kural dizisi ile uygulanan bir yöntem önerilmiş ve test edilmiştir. Çalışmaya temel olan bulut belirleme algoritması, ACCA ve Fmask algoritmalarının geliştirilmiş, sadeleştirilmiş, otomatize edilmiş ve bölütleme tabanlı uyarlanmış bir sürümü olarak değerlendirilebilir . Bu yöntem sayesinde, spektral özellikler ve geometrik özellikler bir arada kullanılarak Landsat 8 görüntülerinden bulut ve bulut gölgeleri belirlenmiştir. Spektral ve geometrik özelliklerin yanı sıra Landsat ısıl bant verileri ile, bulut-gölge ve soğuk yüzey (kar, buz) ayırımı güçlendirilmiştir. Komşuluk ilişkileri kullanılarak, belirlenen bulut alanları etrafındaki bulut gölgelerinin belirleme doğruluğu arttırılmıştır. Geliştirilen algoritma, dört farklı bölge için farklı zamanlarda çekilmiş Landsat görüntüleri üzerinde test edilerek değerlendirilmiştir. Bulut belirleme algoritmasında temel olarak Landsat 8 görüntülerinin OLI ve ısıl bantları kullanılmaktadır. Landsat-8 verileri, DN değerler olarak işlenmemiş halde sağlanmaktadır. Bu veriler, Landsat verileri ile birlikte gelen meta veri dosyasında (MTL) verilen oranlama katsayıları ile atmosfer üstü yansıtım değerlerine ve radyans değerlerine dönüştürülebilmektedir. Böylece veriler fiziksel anlamı olan birimlere dönüştürülmüş olur. Meta veri dosyasında sağlanan ısıl bant katsayıları ile ısıl bant verileri, parlaklık sıcaklığı bilgisine dönüştürülebilmektedir. OLI bantları atmosfer üstü yansıtım değerlerine (ToA), ısıl bantlar ise parlaklık sıcaklığına dönüştürülerek algoritmada kullanılmıştır. Yansıtım değerlerine dönüştürülen görüntülerde bulut alanlarının belirlenmesi için öncelikle bölütleme algoritması ile görüntü süper-piksellere ayrılmış ve kural tabanlı bir sınıflandırma dizisi uygulanarak bulut alanları görüntü üzerinden belirlenmiştir. Bulut alanlarının belirlenmesinden sonra, spektral testler ve bulut alanlarının komşuluk ilişkileri değerlendirilerek bulut gölgesi alanları da belirlenmiştir. Süper pikseller, pikselleri anlamlı gruplar halinde birleştirerek, piksel grupları oluşturmak için kullanılmaktadır. Görüntüdeki aynı bilgiye sahip olan piksellerin birleştirilmesi ile görüntü işleme amaçlı işlemlerin hızı da yüksek oranda artmaktadır. K-ortalamalar (K-means) yönteminin mekânsal özelliklerini de kullanan bir uyarlamasını temel alarak süper pikselleri üreten SLIC algoritması da bu amaçla kullanılan etkin yöntemlerden biridir. Bulut süper piksellerinin üretilmesinde SLIC yöntemi kullanılmıştır. Görüntülerden bulut alanlarının belirlenmesi için, bulutların spektral karakteristiğinin belirlenmesi ile işleme başlanmıştır. Görüntü üzerinden toplanan bulut noktalarının spektral imzaları karşılaştırılmıştır. Algoritma bu imzalar temel alınarak geliştirilmiştir. Bulut özelliklerine benzer şekilde, bulut gölgesi alanlarının sınıflandırılmasında da, görüntü üzerinden toplanan bulut noktalarının spektral imzalarının yorumlanmasını temel alan bir yöntem ile ısıl bandı devre dışı bırakan bir bant oranlama indeksi geliştirilmiştir. Bu indeks ile gölge alanlarının değeri diğer arazi örtüsü özelliklerinden keskin bir şekilde ayrıldığından eşik değeri belirlenmesi dinamik olarak gerçekleştirilebilmektedir. İkinci olarak, farklı gölge alanlarının, bulut gölgeleri ile karışmasını önlemek amacıyla görüntü özniteliklerinden olan güneş azimut açısı kullanılarak tüm bulut bölgelerinin bu açı ile doğru orantılı şekilde belli bir uzaklıkta izdüşümü alınmıştır. Bu izdüşüm alanlar, potansiyel gölge alanlarını ifade etmektedir. Gölge alan belirleme indeksi sonucu ile bu izdüşüm alanların kesişimi final gölge bölgelerinin sınıflandırılmasında kullanılmıştır Bulut ve gölgelerinin belirlenmesi, uzaktan algılamada uzun zamandır üzerinde çalışılan ve birçok yöntemin geliştirildiği bir konudur. Bu yöntemler kimi zaman yeterli doğrulukta sonuçlar verirken, kimi zaman da yeterli doğruluğu sağlayamamaktadır. Piksel tabanlı yöntemlerin yanı sıra, görüntüyü süper-piksellere ayıran bölütleme tabanlı yöntemlerin bulut ve gölge belirlemede kullanılması yeni bir konudur. Bu şekilde, görüntü, homojen özellikler sergileyen piksel gruplarına ayrılarak, hem hesaplama gücü azaltılmakta, hem de nesne tabanlı bir yaklaşım sergilendiğinden, sınıflandırılması hedeflenen özellikler geometrik karakteristikleri bakımından etkin bir şekilde görüntü üzerinden elde edilebilmektedir. Bu çalışmada geliştirilen bulut ve gölge belirleme algoritmaları ile bölütleme tabanlı bir yaklaşım bu kapsamda uygulanmıştır. İlk aşamada elde edilen süper-piksellerin doğruluğu sınıflandırma doğruluğunu doğrudan etkilemektedir. Bu nedenle küçük bir ölçek parametresi seçilerek süper-piksellerin boyutları küçük tutulmuş ve piksel gruplamaları homojen tutularak, heterojen süper-piksellerin oluşması olasılığı azaltılmıştır. Bulut ve gölge gibi nesneler, parlak ve koyu yansıtım değerleri nedeniyle görüntü üzerindeki spektral karakteristikleri belirgin bir şekilde oluşan özelliklerdir. Bu bilgiler esas alınarak SLIC algoritması ile etkin bir bölütleme uygulanarak bulut ve gölge alanları süper-piksellere ayrılmıştır. Spektral tabanlı bir yaklaşımla geliştirilen indeksler ile kural seti şeklinde bir yapı kurularak; parlaklık sıcaklığı, güneş açısı, NDSI, NDWI gibi özellikler de sınıflandırma kural setine eklenerek, çok kriterli bir yapıda bulut ve gölge alanları görüntü üzerinden belirlenmiştir. Burada yeni bir yaklaşım olan bulut-gölge izdüşümü yaklaşımı ile bulut ve gölge arasındaki geometrik bağıntı kullanılarak gölge sınıflandırması doğruluğu arttırılmıştır. Tüm bu sonuçlar farklı bölgelerden alınmış görüntüler üzerindeki aynı parametreler ile koşturularak, yöntemin transfer edilebilirliği test edilmiştir. ACCA, Fmask gibi algoritmaların yanında, burada geliştirilen algoritma, transfer edilebilirliği, süper-piksel tabanlı olması sebebiyle getirdiği işlem kolaylığı ve basitleştirilmiş işlem adımları ile kullanışlılığını kanıtlamıştır. Bulut ve gölge alanlarının tespitinden sonra klonlama işlemine altlık oluşturacak bulut maskeleri elde edilmiştir. Bulut alanlarının, bulutsuz görüntülerden hangisi seçilerek klonlanılmasına görüntüler arasında yapılan spektral benzerlik testleri ile karar verilmiştir. Tüm bu görüntülerin bulutlu görüntüye olan korelesyonları hesaplanarak korelasyonu en yüksek olan görüntü bilgi aktarımı için kullanılmıştır. Görüntülerin klonlanmasında, bulutlu görüntünün çekildiği tarihe en yakın 3 aylık görüntüler girdi olarak alınmıştır. Tespit edilen bulut alanları ayrı ayrı analiz edilerek, öncelikle seçilen alana yakın tarihli görüntülerde aynı bölgenin bulutsuz olup olmadığı görüntülerin kesişimleri alınarak test edilmiştir. Bu testin sonrasında bulutsuz görüntüler ile bulutlu görüntü arasında korelasyonu en yüksek görüntüden taşırma algoritması ile (Flood Fill) bilgi aktarımı yapılarak bulutsuz görüntü elde edilmiştir Görüntülerin klonlanmasından sonra oluşan kenar bozulma etkilerinin düzeltilmesi için, klonlanan bölge sınırlarına ortalama filtresi (mean filter, averaging filter) uygulanmıştır. Görüntülerin klonlanmasının ardından, üretilen bulutsuz görüntülerin yakın zaman ait bulutsuz görüntülere olan benzerliği, Yapısal Benzerlik İndeksi Yöntemi (YBIY) (Structural Similarity Index) ile test edilmiştir. YBIY iki resim arasındaki benzerliğin ölçülmesi için geliştirilmiş, Karesel Ortalama Hata’nın (KOH) geliştirilmiş bir sürümü olan ve sık kullanılan bir yöntemdir. Bu yöntem, karşılaştırılan görüntülerden birisini mutlak doğru olarak kabul ederek, diğer görüntünün bu görüntüden sapmasını tespit etmektedir. Görüntünün kontrast ve spektral özelliklerini yanı sıra, yapısal bozulmalarını da hesaplamaya kattığından çalışma için uygun yöntem olarak belirlenmiş ve uygulanmıştır. Bulutlu görüntülerdeki bulutların giderilmesi uzaktan algılama disiplini üzerinde çalışanların uzun zamandır çalıştığı bir konudur. Sis etkisinin giderilmesi için bazı spektral yöntemler geliştirilmiş olsa da, geçirimsiz bulutların giderilmesi ancak farklı zamanlı uydu görüntülerinden bilgi aktarımı ile gerçekleşmektedir. Bu çalışmada, yapılan diğer çalışmalarda kazanılan bulut belirleme başarımının sonrasında bu bilgi kullanılarak görüntüde bulunan bulutların, aynı bölgeden çekilmiş farklı zamanlı görüntülerden bilgi aktarımı ile bulutsuz hale getirilmesi sağlanmıştır. Diğer bulutsuz görüntü elde etme yöntemlerinin yanı sıra, bulutlu alanların bulutsuz görüntülerden klonlanması sırasında, görüntülerin spektral ve yapısal özelliklerini korumak ön planda tutulmuştur. Farklı görüntü benzerlik ve görüntü kalitesi yöntemleri kullanılarak sadece görsellik önde tutulmadan spektral ve yapısal bilgiyi de koruyan bir yöntem geliştirilmiştir.One of the main sources of noises in remote sensing satellite images are regional clouds and shadows of these clouds caused by atmospheric conditions. In many studies, these clouds and shadows are masked with multitemporal images taken from the same area to decrease effects of misclassification and deficiency in different image processing techniques, such as change detection and NDVI calculation. This problem is surpassed in many studies by mosaicking with different images obtained from different acquisition dates of the same region. The main step of all these studies that cover cloud cloning or cloud detection is the detection of clouds from a satellite image. In this study, clouds and shadow patches are classified by using a spectral feature based rule set created after segmentation process of Landsat 8 image. Not only spectral characteristics but also structural parameters like pattern, area and dimension are used to detect clouds and shadows. Information of cloud projection is used to strengthen cloud shadow classification. Rule set of classification is developed within a transferable approach to reach a scene independent solution. Results are tested with different satellite images from different areas to test transferability and compared to other state-of art methods in the literature. Detection of clouds and cloud shadows features correctly is the main step of cloning procedure to create cloudless image from multitemporal image dataset. Multitemporal image dataset is used to find best image to clone cloud image. Choosing best image for cloning process is an important step for reliable cloning. Statistical and seasonal similarity tests are used to find best image to clone cloud covered image. Vector intersections are used to find cloudless images between multitemporal dataset. Flood Fill method is used to create cloudless image from cloud covered image by using information extraction from cloudless images in dataset. Accuracy of cloning process is tested by using SSIM index to find structural and spectral similarity to cloudless image. All cloning results are tested with different image from different regions to check transferability of study. This study can be regarded as a scientific approach to create cloudless image mosaics for each kind of application. Method in this thesis is a scientific approach to well-known methods of famous cloudless mosaic generation methods of Google, Mapbox Co. etc. for creation of visually good-looking base maps for web maps.DoktoraPh.D

    Remote Sensing of Environment: Current status of Landsat program, science, and applications

    Get PDF
    Formal planning and development of what became the first Landsat satellite commenced over 50 years ago in 1967. Now, having collected earth observation data for well over four decades since the 1972 launch of Landsat- 1, the Landsat program is increasingly complex and vibrant. Critical programmatic elements are ensuring the continuity of high quality measurements for scientific and operational investigations, including ground systems, acquisition planning, data archiving and management, and provision of analysis ready data products. Free and open access to archival and new imagery has resulted in a myriad of innovative applications and novel scientific insights. The planning of future compatible satellites in the Landsat series, which maintain continuity while incorporating technological advancements, has resulted in an increased operational use of Landsat data. Governments and international agencies, among others, can now build an expectation of Landsat data into a given operational data stream. International programs and conventions (e.g., deforestation monitoring, climate change mitigation) are empowered by access to systematically collected and calibrated data with expected future continuity further contributing to the existing multi-decadal record. The increased breadth and depth of Landsat science and applications have accelerated following the launch of Landsat-8, with significant improvements in data quality. Herein, we describe the programmatic developments and institutional context for the Landsat program and the unique ability of Landsat to meet the needs of national and international programs. We then present the key trends in Landsat science that underpin many of the recent scientific and application developments and followup with more detailed thematically organized summaries. The historical context offered by archival imagery combined with new imagery allows for the development of time series algorithms that can produce information on trends and dynamics. Landsat-8 has figured prominently in these recent developments, as has the improved understanding and calibration of historical data. Following the communication of the state of Landsat science, an outlook for future launches and envisioned programmatic developments are presented. Increased linkages between satellite programs are also made possible through an expectation of future mission continuity, such as developing a virtual constellation with Sentinel-2. Successful science and applications developments create a positive feedback loop—justifying and encouraging current and future programmatic support for Landsat

    Improved detection of abrupt change in vegetation reveals dominant fractional woody cover decline in Eastern Africa

    Get PDF
    While cropland expansion and demand for woodfuel exert increasing pressure on woody vegetation in East Africa, climate change is inducing woody cover gain. It is however unclear if these contrasting patterns have led to net fractional woody cover loss or gain. Here we used non-parametric fractional woody cover (WC) predictions and breakpoint detection algorithms driven by satellite observations (Landsat and MODIS) and airborne laser scanning to unveil the net fractional WC change during 2001-2019 over Ethiopia and Kenya. Our results show that total WC loss was 4-times higher than total gain, leading to net loss. The contribution of abrupt WC loss (59%) was higher than gradual losses (41%). We estimated an annual WC loss rate of up to 5% locally, with cropland expansion contributing to 57% of the total loss in the region. Major hotspots of WC loss and degradation corridors were identified inside as well as surrounding protected areas, in agricultural lands located close to agropastoral and pastoral livelihood zones, and near highly populated areas. As the dominant vegetation type in the region, Acacia-Commiphora bushlands and thickets ecosystem was the most threatened, accounting 69% of the total WC loss, followed by montane forest (12%). Although highly outweighed by loss, relatively more gain was observed in woody savanna than in other ecosystems. These results reveal the marked impact of human activities on woody vegetation and highlight the importance of protecting endangered ecosystems from increased human activities for mitigating impacts on climate and supporting sustainable ecosystem service provision in East Africa.Peer reviewe

    Remote Sensing of the Aquatic Environments

    Get PDF
    The book highlights recent research efforts in the monitoring of aquatic districts with remote sensing observations and proximal sensing technology integrated with laboratory measurements. Optical satellite imagery gathered at spatial resolutions down to few meters has been used for quantitative estimations of harmful algal bloom extent and Chl-a mapping, as well as winds and currents from SAR acquisitions. The knowledge and understanding gained from this book can be used for the sustainable management of bodies of water across our planet

    CONTRIBUTIONS OF OPTICAL REMOTE SENSING TO PERMAFROST MAPPING IN DONNELLY TRAINING AREA, ALASKA

    Get PDF
    AN ABSTRACT OF THE THESIS OFKiran Thapa, for the Master of Science degree in Geography and Environmental Resources, presented on April 8, 2020, at Southern Illinois University Carbondale.TITLE: CONTRIBUTIONS OF OPTICAL REMOTE SENSING TO PERMAFROST MAPPING IN DONNELLY TRAINING AREA, ALASKA MAJOR PROFESSOR: Dr. Guangxing Wang Permafrost occupies about a quarter of the northern hemisphere land with 25.5 million ha. Global warming and anthropogenic activities affect the dynamics of permafrost. Snow and permafrost, in turn, serve as an indicator of climate change and human activity disturbance. The dynamics of permafrost are often estimated using interferometric Synthetic Aperture Radar (InSAR) methods. However, acquiring and processing InSAR images is costly and computation intensive. Due to various spectral variables and indices available from optical images, Landsat satellite images that are free-downloadable provide the potential for studying and monitoring changes of permafrost. The overall objective of this study was to explore the use of optical images as a cost-effective method to map permafrost in Donnelly Training Area (DTA) - an installation located in Alaska. First, Landsat 8 OLI/TIRS images from January 2014 to December 2018 were used to calculate various remote sensing variables. The variables included Land Surface Temperature (LST), albedo, Soil Moisture index (SMI), Normalized Difference Vegetation Index (NDVI), Normalized Difference Snow Index (NDSI), Normalized Difference Built-up Index (NDBI), Normalized Difference Water index (NDWI), Simple Ratio (SR), Soil Adjusted Vegetation Index (SAVI), Normalized Burn Ratio (NBR), Triangular Vegetation Index(TVI), Visible Atmospherically Resistant Index (VARI), and Active Layer Thickness (ALT). Moreover, elevation, slope, and aspect were obtained from a digital elevation model (DEM). The variables were used to estimate the probabilities of permafrost presence (POP) for DTA. The logistic and linear models were respectively selected and optimized based on logistic and linear stepwise regression for the estimation of and ALT. A total of 414 field observations that were collected from 1994 to 2012 were utilized for validation of models.The results showed that the POP in DTA was significantly affected by all the factors except aspect and EVI. The factor that was most correlated with ln((1-POP)/POP) was elevation, then NDVI, albedo, ALT, LST, NDWI, NDSI, slope, TVI, RSR, SMI, NDBI, SR, SAVI, NBR and VARI. A total of six prediction models were obtained. The elevation, NDVI, LST, TVI, ALT, SLOPE, RSR, SMI, NBR, and NDSI were finally chosen in the best model 5.6 with the smallest relative root mean square error (RMSE) and Akaike information criterion (AIC). The albedo used in previous studies was excluded in the final model, implying that the albedo was not critical to the prediction of POP. In addition to the previously used elevation, NDVI and SMI, other predictors including LST, TVI, ALT, SLOPE, RSR, NBR, and NDSI could not be ignored in the prediction of POP. The model generated reasonable spatial distribution of POP in which POP had greater values in the east, northeast, north, and northwest parts and smaller in the south and southwest parts. Except for NDVI, NDWI, NDSI, aspect, and RSR, moreover, all other predictors showed significant contributions to the prediction of ALT. The SMI, ELEVATION, SAVI, NDBI, SLOPE, LST, SR, EVI, VARI, and TVI were finally selected in the best model 5.14 with the smallest relative RMSE and AIC. The ALT highly varied over the study area with the spatial patterns inversely consistent with those of POP.The results are essential for the governments, policymakers, and other concerned stakeholders to estimate the degradation of permafrost in DTA and minimize the risk of policy decision-making for land use management and planning. This study will help to understand the global climate change, changing ecosystems, increasing concentration in the atmosphere, and human activity-induced disturbance

    The influence of environmental parameters on the distribution of Dolly Varden in the Beaufort Sea A remote sensing approach, using Landsat 8 and Sentinel 2 data from 2013 to 2019

    Get PDF
    The spatial and temporal heterogeneity of ecosystems plays an important role in species distribution and ecosystem dynamics (Kovalenko et al., 2012). The physical and biochemical properties of the waters of the Mackenzie Shelf in the Beaufort Sea are strongly influenced by the eponymous river and its discharge plume, occasionally causing strong salinity, temperature, and turbidity gradients (Brenkman et al., 2007; Swanson & Kidd, 2009; Jensen et al., 2014), thus affecting the distribution of economically and culturally important organisms, among others. Clarifying how the physical characteristics of marine habitats influence the relative abundance and demographic characteristics of anadromous fishes has an important bearing on management and conservation objectives. The objective of this study was to examine how the timing and catch of Dolly Varden in the nearshore summer subsistence fishery are affected by environmental conditions in the Beaufort Sea. In addition, we examined whether there is a relationship between environmental parameters and the demographic and somatic characteristics of the Dolly Varden caught. The study analysed fisheries-dependent data from two different study sites (Herschel Island and Shingle Point, Yukon Territory, Canada) from 2013 to 2019. Remotely sensed environmental parameters of temperature, chlorophyll-a, turbidity, and sea ice were derived from Landsat-8 and Sentinel-2 imagery and examined along with wind vectors. To provide information on how Dolly Varden abundances respond to stochastic environmental events in marine waters. Measured environmental parameters show that aggregation of Dolly Varden on Herschel Island is spatially correlated with increased chlorophyll-a as well as SST. Stochastic turbidity events showed a negative influence, causing specimens to seek spatial refuge in better water conditions. Results showed similar correlations for SPT, although the parameters here are much more difficult to differentiate due to the high suspended sediment concentration (CDOM). Data obtained from this study indicate that the geographic distribution of Dolly Varden in the Beaufort Sea is dependent on condition and osmoregulation (age/length). In marine waters, adult individuals are clearly influenced by stochastic environmental events (temperature and turbidity), opportunistically seeking out production hotspots for feeding (sea ice and chlorophyll-a)

    Satellite based methane emission estimation for flaring activities in oil and gas industry: A data-driven approach(SMEEF-OGI)

    Get PDF
    Klimaendringer, delvis utløst av klimagassutslipp, utgjør en kritisk global utfordring. Metan, en svært potent drivhusgass med et globalt oppvarmings potensial på 80 ganger karbondioksid, er en betydelig bidragsyter til denne krisen. Kilder til metanutslipp inkluderer olje- og gassindustrien, landbruket og avfallshåndteringen, med fakling i olje- og gassindustrien som en betydelig utslippskilde. Fakling, en standard prosess i olje- og gassindustrien, antas ofte å være 98 % effektiv ved omdannelse av metan til mindre skadelig karbondioksid. Nyere forskning fra University of Michigan, Stanford, Environmental Defense Fund og Scientific Aviation indikerer imidlertid at den allment aksepterte effektiviteten på 98 % av fakling ved konvertering av metan til karbondioksid, en mindre skadelig klimagass, kan være unøyaktig. Denne undersøkelsen revurderer fakkelprosessens effektivitet og dens rolle i metankonvertering. Dette arbeidet fokuserer på å lage en metode for uavhengig å beregne metanutslipp fra olje- og gassvirksomhet for å løse dette problemet. Satellittdata, som er et nyttig verktøy for å beregne klimagassutslipp fra ulike kilder, er inkludert i den foreslåtte metodikken. I tillegg til standard overvåkingsteknikker, tilbyr satellittdata en uavhengig, ikke-påtrengende, rimelig og kontinuerlig overvåkingstilnærming. På bakgrunn av dette er problemstillingen for dette arbeidet følgende "Hvordan kan en datadrevet tilnærming utvikles for å forbedre nøyaktigheten og kvaliteten på estimering av metanutslipp fra faklingsaktiviteter i olje- og gassindustrien, ved å bruke satellittdata fra utvalgte plattformer for å oppdage og kvantifisere fremtidige utslipp basert på maskinlæring mer effektivt?" For å oppnå dette ble følgende mål og aktiviteter utført. * Teoretisk rammeverk og sentrale begreper * Teknisk gjennomgang av dagens toppmoderne satellittplattformer og eksisterende litteratur. * Utvikling av et Proof of Concept * Foreslå en evaluering av metoden * Anbefalinger og videre arbeid Dette arbeidet har tatt i bruk en systematisk tilnærming, som starter med et omfattende teoretisk rammeverk for å forstå bruken av fakling, de miljømessige implikasjonene av metan, den nåværende «state-of-the-art» av forskning, og «state-of-the-art» i felt for fjernmåling via satellitter. Basert på rammeverket utviklet i de innledende fasene av dette arbeidet, ble det formulert en datadrevet metodikk, som benytter VIIRS-datasettet for å få geografiske områder av interesse. Hyperspektrale data og metandata ble samlet fra Sentinel-2 og Sentinel-5P satellittdatasettet. Denne informasjonen ble behandlet via en foreslått rørledning, med innledende justering og forbedring. I dette arbeidet ble bildene forbedret ved å beregne den normaliserte brennindeksen. Resultatet var et datasett som inneholdt plasseringen av kjente fakkelsteder, med data fra både Sentinel-2 og Sentinel-5P-satellitten. Resultatene understreker forskjellene i dekningen mellom Sentinel-2- og Sentinel-5P-data, en faktor som potensielt kan påvirke nøyaktigheten av metanutslippsestimater. De anvendte forbehandlingsteknikkene forbedret dataklarheten og brukervennligheten markant, men deres effektivitet kan avhenge av fakkelstedenes spesifikke egenskaper og rådatakvaliteten. Dessuten, til tross for visse begrensninger, ga kombinasjonen av Sentinel-2 og Sentinel-5P-data effektivt et omfattende datasett egnet for videre analyse. Avslutningsvis introduserer dette prosjektet en oppmuntrende metodikk for å estimere metanutslipp fra fakling i olje- og gassindustrien. Den legger et grunnleggende springbrett for fremtidig forskning, og forbedrer kontinuerlig presisjonen og kvaliteten på data for å bekjempe klimaendringer. Denne metodikken kan sees i flytskjemaet nedenfor. Basert på arbeidet som er gjort i dette prosjektet, kan fremtidig arbeid fokusere på å innlemme alternative kilder til metan data, utvide interesseområdene gjennom industrisamarbeid og forsøke å trekke ut ytterligere detaljer gjennom bildesegmenteringsmetoder. Dette prosjektet legger et grunnlag, og baner vei for påfølgende utforskninger å bygge videre på.Climate change, precipitated in part by greenhouse gas emissions, presents a critical global challenge. Methane, a highly potent greenhouse gas with a global warming potential of 80 times that of carbon dioxide, is a significant contributor to this crisis. Sources of methane emissions include the oil and gas industry, agriculture, and waste management, with flaring in the oil and gas industry constituting a significant emission source. Flaring, a standard process in the Oil and gas industry is often assumed to be 98% efficient when converting methane to less harmful carbon dioxide. However, recent research from the University of Michigan, Stanford, the Environmental Defense Fund, and Scientific Aviation indicates that the widely accepted 98% efficiency of flaring in converting methane to carbon dioxide, a less harmful greenhouse gas, may be inaccurate. This investigation reevaluates the flaring process's efficiency and its role in methane conversion. This work focuses on creating a method to independently calculate methane emissions from oil and gas activities to solve this issue. Satellite data, which is a helpful tool for calculating greenhouse gas emissions from various sources, is included in the suggested methodology. In addition to standard monitoring techniques, satellite data offers an independent, non-intrusive, affordable, and continuous monitoring approach. Based on this, the problem statement for this work is the following “How can a data-driven approach be developed to enhance the accuracy and quality of methane emission estimation from flaring activities in the Oil and Gas industry, using satellite data from selected platforms to detect and quantify future emissions based on Machine learning more effectively?" To achieve this, the following objectives and activities were performed. * Theoretical Framework and key concepts * Technical review of the current state-of-the-art satellite platforms and existing literature. * Development of a Proof of Concept * Proposing an evaluation of the method * Recommendations and further work This work has adopted a systematic approach, starting with a comprehensive theoretical framework to understand the utilization of flaring, the environmental implications of methane, the current state-of-the-art of research, and the state-of-the-art in the field of remote sensing via satellites. Based upon the framework developed during the initial phases of this work, a data-driven methodology was formulated, utilizing the VIIRS dataset to get geographical areas of interest. Hyperspectral and methane data were aggregated from the Sentinel-2 and Sentinel-5P satellite dataset. This information was processed via a proposed pipeline, with initial alignment and enhancement. In this work, the images were enhanced by calculating the Normalized Burn Index. The result was a dataset containing the location of known flare sites, with data from both the Sentinel-2, and the Sentinel-5P satellite. The results underscore the disparities in coverage between Sentinel-2 and Sentinel-5P data, a factor that could potentially influence the precision of methane emission estimates. The applied preprocessing techniques markedly enhanced data clarity and usability, but their efficacy may hinge on the flaring sites' specific characteristics and the raw data quality. Moreover, despite certain limitations, the combination of Sentinel-2 and Sentinel-5P data effectively yielded a comprehensive dataset suitable for further analysis. In conclusion, this project introduces an encouraging methodology for estimating methane emissions from flaring activities within the oil and gas industry. It lays a foundational steppingstone for future research, continually enhancing the precision and quality of data in combating climate change. This methodology can be seen in the flow chart below. Based on the work done in this project, future work could focus on incorporating alternative sources of methane data, broadening the areas of interest through industry collaboration, and attempting to extract further features through image segmentation methods. This project signifies a start, paving the way for subsequent explorations to build upon. Climate change, precipitated in part by greenhouse gas emissions, presents a critical global challenge. Methane, a highly potent greenhouse gas with a global warming potential of 80 times that of carbon dioxide, is a significant contributor to this crisis. Sources of methane emissions include the oil and gas industry, agriculture, and waste management, with flaring in the oil and gas industry constituting a significant emission source. Flaring, a standard process in the Oil and gas industry is often assumed to be 98% efficient when converting methane to less harmful carbon dioxide. However, recent research from the University of Michigan, Stanford, the Environmental Defense Fund, and Scientific Aviation indicates that the widely accepted 98% efficiency of flaring in converting methane to carbon dioxide, a less harmful greenhouse gas, may be inaccurate. This investigation reevaluates the flaring process's efficiency and its role in methane conversion. This work focuses on creating a method to independently calculate methane emissions from oil and gas activities to solve this issue. Satellite data, which is a helpful tool for calculating greenhouse gas emissions from various sources, is included in the suggested methodology. In addition to standard monitoring techniques, satellite data offers an independent, non-intrusive, affordable, and continuous monitoring approach. Based on this, the problem statement for this work is the following “How can a data-driven approach be developed to enhance the accuracy and quality of methane emission estimation from flaring activities in the Oil and Gas industry, using satellite data from selected platforms to detect and quantify future emissions based on Machine learning more effectively?" To achieve this, the following objectives and activities were performed. * Theoretical Framework and key concepts * Technical review of the current state-of-the-art satellite platforms and existing literature. * Development of a Proof of Concept * Proposing an evaluation of the method * Recommendations and further work This work has adopted a systematic approach, starting with a comprehensive theoretical framework to understand the utilization of flaring, the environmental implications of methane, the current state-of-the-art of research, and the state-of-the-art in the field of remote sensing via satellites. Based upon the framework developed during the initial phases of this work, a data-driven methodology was formulated, utilizing the VIIRS dataset to get geographical areas of interest. Hyperspectral and methane data were aggregated from the Sentinel-2 and Sentinel-5P satellite dataset. This information was processed via a proposed pipeline, with initial alignment and enhancement. In this work, the images were enhanced by calculating the Normalized Burn Index. The result was a dataset containing the location of known flare sites, with data from both the Sentinel-2, and the Sentinel-5P satellite. The results underscore the disparities in coverage between Sentinel-2 and Sentinel-5P data, a factor that could potentially influence the precision of methane emission estimates. The applied preprocessing techniques markedly enhanced data clarity and usability, but their efficacy may hinge on the flaring sites' specific characteristics and the raw data quality. Moreover, despite certain limitations, the combination of Sentinel-2 and Sentinel-5P data effectively yielded a comprehensive dataset suitable for further analysis. In conclusion, this project introduces an encouraging methodology for estimating methane emissions from flaring activities within the oil and gas industry. It lays a foundational steppingstone for future research, continually enhancing the precision and quality of data in combating climate change. This methodology can be seen in the flow chart below. Based on the work done in this project, future work could focus on incorporating alternative sources of methane data, broadening the areas of interest through industry collaboration, and attempting to extract further features through image segmentation methods. This project signifies a start, paving the way for subsequent explorations to build upon
    corecore