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A B S T R A C T   

While cropland expansion and demand for woodfuel exert increasing pressure on woody vegetation in East 
Africa, climate change is inducing woody cover gain. It is however unclear if these contrasting patterns have led 
to net fractional woody cover loss or gain. Here we used non-parametric fractional woody cover (WC) predictions 
and breakpoint detection algorithms driven by satellite observations (Landsat and MODIS) and airborne laser 
scanning to unveil the net fractional WC change during 2001–2019 over Ethiopia and Kenya. Our results show 
that total WC loss was 4-times higher than total gain, leading to net loss. The contribution of abrupt WC loss 
(59%) was higher than gradual losses (41%). We estimated an annual WC loss rate of up to 5% locally, with 
cropland expansion contributing to 57% of the total loss in the region. Major hotspots of WC loss and degradation 
corridors were identified inside as well as surrounding protected areas, in agricultural lands located close to 
agropastoral and pastoral livelihood zones, and near highly populated areas. As the dominant vegetation type in 
the region, Acacia-Commiphora bushlands and thickets ecosystem was the most threatened, accounting 69% of 
the total WC loss, followed by montane forest (12%). Although highly outweighed by loss, relatively more gain 
was observed in woody savanna than in other ecosystems. These results reveal the marked impact of human 
activities on woody vegetation and highlight the importance of protecting endangered ecosystems from increased 
human activities for mitigating impacts on climate and supporting sustainable ecosystem service provision in 
East Africa.   

1. Introduction 

Woody vegetation cover in Africa is highly dynamic. Loss from 
deforestation and gain from enhanced atmospheric CO2 concentration, 
changing rainfall patterns, and other local factors (e.g., change in fire 
frequency and herbivore densities) are inducing contrasting woody 
cover change patterns, having a direct impact on terrestrial energy 
fluxes (Forzieri et al., 2020), carbon stock and global CO2 variability 
(Brandt et al., 2017; Venter et al., 2018; Williams et al., 2007). With the 
United Nation Decade on Ecosystem Restoration (2021− 2030) 
demanding every continent to prevent, halt and reverse the degradation 
of ecosystems, Africa is aiming to take the challenges of restoring 100 
million hectares of land by 2030 under the African Forest Landscape 

Restoration Initiative (AFR100). For successful implementation of such 
initiative as well as sustaining ecosystem service provision in the region, 
understanding woody cover dynamics is crucial. 

Particularly in East Africa (EA), changes in woody cover (WC) are 
highly prevalent. While woodfuels (charcoal and firewood) are the 
primary sources of household energy supply, accounting for more than 
70% of the energy source (Sola et al., 2017; UNEP, 2016), their pro-
duction directly affects the extent and quality of WC through defores-
tation and forest degradation (Chidumayo and Gumbo, 2013). Similarly, 
agriculture being the major contributor to the economy (Rippke et al., 
2016), cropland expansion often occurs at the cost of woody vegetation 
(Brink et al., 2014). With projected population expected to double by 
2050, demand for more crop production and woodfuel poses increasing 
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pressure on the already threatened woody vegetation in this region 
(Stévart et al., 2019). 

Conservation of wildlife is increasingly important for maintaining 
biodiversity; but it has also found to locally cause decrease of woody 
cover and above ground carbon stocks (Amara et al., 2020) especially in 
savannah landscape where high wildlife (browsers) density put pressure 
on woody cover. Together with agricultural expansion and rising fuel-
wood demand, there is a trend of decreasing above ground biomass and 
carbon sequestration in the lowlands of East Africa while in highlands 
there is evidence of increase in woody cover at places (Pellikka et al., 
2018). For mitigating these risks, reversing ecosystem degradation, and 
achieving environmental sustainability, improving WC monitoring ca-
pabilities is important. 

Satellite observation data provide a viable option to monitor WC. 
With high spatial resolution, temporal frequency, and multiple spectral 
information, satellite observations support WC monitoring from local to 
global scale efficiently. In this regard, Landsat (with 30 m spatial reso-
lution, 40+ years of data record since its first launch in 1972, and 16-day 
temporal frequency), MODIS (250 m, 500 m, and 1000 m resolution, 
20+ years of data collection since its launch in 1999, and daily temporal 
frequency), Sentinel 1, 2 (6+ years data record since operational in 2014 
for Sentinel-1 synthetic aperture radar with 5 m resolution and in 2015 
for Sentinel-2 multispectral instrument at 10 m and 20 m resolution, and 
5-days temporal frequency), PlanetScope micro-satellites (3.7 m reso-
lution, available since 2016, and daily temporal frequency) are widely 
used (Pickering et al., 2021; Li et al., 2020; Potapov et al., 2019; Zhang 
et al., 2019). Harnessing the high temporal frequency from MODIS and 
the higher spatial resolution from Landsat along with their long data 
record is an advantage for improved WC monitoring (Potapov et al., 
2008). 

Mapping of WC using satellite observation has evolved from discrete 
to continuous fields (Buchhorn et al., 2020; Hansen et al., 2002). In 
savanna ecosystems, different cover types (trees, shrubs, and grasses) 
coexist in single pixels (e.g., at Landsat and MODIS resolution). Finding 
pure pixels represented by single vegetation type is often difficult and 
hence discrete classes suffer from accurate representation of variability 
in such heterogeneous areas. Furthermore, detecting small changes can 
be hard with discrete classes since changes do not necessarily cause shift 
from one class to another (e.g., degraded forest might remain forest 
although WC is less). These and other limitations challenge the accuracy 
of traditional discrete classification approach and its application for 
change detection at medium resolution (Sulla-Menashe and Friedl, 
2018; Hansen et al., 2002). A shift towards continuous vegetation fields, 
which are based on regression rather than classification, are providing 
better representation through estimating fractional cover of vegetation 
types in a pixel (Hansen et al., 2013; Sexton et al., 2013). 

Existing vegetation continuous field (VCF) products such as MODIS 
VCF (DiMiceli et al., 2015), global forest cover and change (Hansen 
et al., 2013), and Landsat VCF (Sexton et al., 2013) are mainly suited for 
monitoring forest, defined as woody vegetation >5 m height. Yet half of 
EA is covered by savanna and woodlands that are often <6 m tall 
(Pellikka et al., 2018; Friis et al., 2010; White, 1983). The height 
threshold in global products under-represents woody vegetation in these 
ecosystems, despite their major role in ecosystem service provision and 
carbon budget (Bouvet et al., 2018). For example, the dominant woody 
vegetation (i.e., Acacia-Commiphora ecosystem) in the region is char-
acterized by shorter trees (3–5 m) (Friis et al., 2010; White, 1983) as 
compared to height thresholds used in the global products. Recognizing 
their importance, some countries in EA started incorporating these trees 
in their operational forest definition for reducing emissions from 
deforestation and forest degradation and the role of conservation, sus-
tainable management of forests, and enhancement of forest carbon 
stocks in developing countries (REDD+) and Monitoring, Reporting, and 
Verification (MRV) implementation (Bekele et al., 2018). For instance, 
Ethiopia updated forest definition to include trees ≥2 m and minimum 
canopy cover of 20% (FAO, 2020; Bekele et al., 2018). Hence, improving 

capability to monitor woody cover change dynamics is important to fill 
this gap in the region. 

Although there are many fractional woody cover change (WCC) 
studies locally or in selected sites in EA (e.g., Li et al., 2020; Axelsson 
and Hanan, 2018), only few regional studies that cover wider 
geographic area and timescale occur (e.g., Hansen et al., 2013; Venter 
et al., 2018; Brandt et al., 2017; Sexton et al., 2013). While the passive 
microwave observation studies use vegetation optical depth data (25 km 
spatial resolution) for estimating WCC (Brandt et al., 2017), the optical 
satellite observation studies are largely based on machine learning 
prediction algorithms and Landsat metrics (Hansen et al., 2013; Venter 
et al., 2018). The predictions are often trained on reference woody cover 
data from interpretation of very high-resolution imageries (e.g., Hansen 
et al., 2013) or Google Earth imagery (Venter et al., 2018). In these 
studies, however, contradicting results were reported over Ethiopia. For 
example, dominant WC loss from passive microwave observation studies 
(e.g., Brandt et al., 2017) and dominant WC gain from optical Landsat 
time series metrics (e.g., Venter et al., 2018). Hence, further studies are 
required to clarify WCC in this region. In this regard, utilizing Landsat 
spectral metrics and non-parametric machine learning algorithms 
trained on a high-accuracy reference woody cover data from airborne 
laser scanning offers promising prospect (Potapov et al., 2019). 

While monitoring WCC based on machine learning algorithms is 
important, complementing this analysis with breakpoint detection al-
gorithm is highly valuable for detecting major abrupt changes (i.e., 
intensive WCC hotspots) (De Jong et al., 2013; DeVries et al., 2016; 
Verbesselt et al., 2010). The algorithms can be parametric and based on 
piecewise liner model, which are largely used in detecting abrupt 
change in satellite observation time series (De Jong et al., 2013; DeVries 
et al., 2016; Verbesselt et al., 2010) or non-parametric and based on 
permutation test (Zeileis and Hothorn, 2013). Although the non- 
parametric, distribution-free, methods have better potential in detect-
ing breakpoint in smaller samples (Zeileis and Hothorn, 2013), they are 
not yet used for similar application using satellite observation. 

Despite the important progress made in detecting abrupt changes, 
application of breakpoint detection algorithms in arid environment (e. 
g., in EA) still has challenges in detecting WCC associated with site- 
specific environmental properties and low signal-to-noise ratio in 
vegetation indices (Schultz et al., 2016; Verbesselt et al., 2010). Hence, 
testing several methods and applying novel approaches in WC loss 
hotspot areas is needed to improve the detection of WCC induced by 
human activities and its application for wider geographic area. 

The present research aims to identify major breakpoints and frac-
tional change in WC during 2001–2019 for filling the knowledge gap in 
WCC detection in regions dominated by shorter trees (3–5 m), which are 
below the height threshold of most global products of vegetation 
continuous fields. In addition, the study aims to clarify the controversies 
in the estimates of WCC in EA. Different from earlier studies of break-
point detection using satellite observation time series data based on 
piecewise, parametric liner models, this study presents a non-parametric 
approach based on permutation test for improved breakpoint detection 
in WC using MODIS time series. Furthermore, WC prediction models are 
trained on reference WC data from airborne laser scanning instead of 
high-resolution imagery to improve WCC monitoring capability in EA. 
The study covers Ethiopia and Kenya and complements WC predictions 
with breakpoint detection algorithm to specifically: (1) identify areas 
affected by abrupt/gradual changes, (2) estimate the net WCC for the 
corresponding areas affected by abrupt/gradual changes, and (3) iden-
tify ecosystems most affected by WC loss and whether those are located 
near protected areas. 

2. Study area 

The study region is located in Eastern Africa and comprises Ethiopia 
and Kenya (Fig. 1a). With total surface area of ≈ 1,717,000 km2, the 
region has a population of around 168 million and is characterized by 
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diverse topography, climate, livelihoods, and ecosystems. Elevation 
ranges from 125 m below sea level in the Danakil Depression in Ethiopia 
to around 5199 m above sea level at Mount Kenya summit. While live-
lihoods in the highlands are mainly based on agriculture, the lowlands 
are dominated by pastoral livelihood (Fig. 1b). Climate ranges from arid 
and semi-arid in the lowlands to humid in the highlands of Ethiopia and 
Kenya. 

The region is characterized by multi-modal rainfall pattern and re-
ceives up to three rainfall maxima. Apart from northern Ethiopia, which 
receives unimodal rainfall from June to August, most of the region re-
ceives annual rainfall from two seasons: “long rains” from March to May 
and “short rains” from October to December. Rainfall distribution and 
variability is affected by local topography, regional convergence zone (e. 
g., north–south movement of the Intertropical Convergence Zone), and 
remote climate oscillations (e.g., the Indian Ocean Dipole, El Niño- 
Southern Oscillation, and the Madden-Julian Oscillation) (Nicholson, 
2017). 

Influenced by the wide topographic and climatic gradients, the study 
area is characterized by several ecoregions consisting of various woody 
vegetation types (Fig. 1a). The Acacia-Commiphora bushlands and 
thickets (ACBT) ecosystem is the largest and covers approximately half 
of the entire region. This ecosystem is dominated by 3–5 m tall decid-
uous bushlands and thickets, and mainly occurs in the arid and semi-arid 
parts of the region (Abera et al., 2020a, 2020b; Friis et al., 2010; White, 
1983). The most characteristic species of ACBT ecosystem are the 
drought-resistant Acacia and Commiphora genera (Dinerstein et al., 
2017; Friis et al., 2010). Human activities such as fire-wood extraction, 
charcoal production, and agriculture are the main threats in this 
ecosystem (Friis et al., 2010). 

The Ethiopian montane grassland and woodland (EMGW) or wooded 
grassland ecosystem occurs in the highlands of either side of Ethiopian’s 

main rift valley (Fig. 1a). EMGW comprises of dry evergreen montane 
trees and grass complex and the most common tree species include 
Juniperus procera and Podocarpus (Friis et al., 2010). While the woody 
savanna ecosystem in this paper includes the Sudanian savanna (West-
ern Ethiopia), the Sahelian Acacia savanna (northern and north-western 
Ethiopia) and Victoria-Basin Forest-savanna (western Kenya) ecoregions 
(Dinerstein et al., 2017). This ecosystem is characterized by deciduous 
Combretum-Terminalia woodlands with well-developed grass stratum 
that are susceptible to burning in the dry season (Friis et al., 2010). 

The montane forest ecosystem occurs in the highlands of Ethiopia 
and Kenya (Fig. 1). It is characterized by moist evergreen species with 
broad-leaved and multi-layered canopies (Friis et al., 2010). While the 
coastal forest, which belongs to the northern Swahili coastal forest 
ecosystem, is a moist, semi-deciduous, broad-leaved species and occurs 
along the Kenyan coast in the south part of the study region (Dinerstein 
et al., 2017, Fig. 1). 

The forest loss test site is located near Shakiso town in southern 
Ethiopia (Fig. 1a–d). The site (~ 56 km × 55 km) mainly contains 
montane forest ecosystem. The region is known for its gold minerali-
zation, where the Lega Dembi gold mine is located near Shakiso town 
(Ghebreab et al., 1992). Site details about local climate and forest loss 
identification steps are described in Abera et al. (2018). Similarly, the 
Taita Hills airborne laser scanning (ALS) site comprises montane forest 
and agroforestry in the highlands, and thickets and bushlands of the 
ACBT ecosystem and dryland agriculture in the mountain slopes and 
lowlands, respectively. Being the northernmost part of the Eastern Arc 
Precambrian mountain chain, similarly as with other montane forest 
ecosystems, Taita Hills is an important water resource for the lowlands 
and has high biodiversity (Mittermeier et al., 1998). 

Fig. 1. Panels showing: (a) ecoregion map modified from Dinerstein et al. (2017) based on Friis et al. (2010) with location of woody cover loss test site in Ethiopia 
(S1) and airborne laser scanning (ALS) footprint in Kenya (S2); (b) closer view of elevation (USGS 30 m DEM) and livelihood transect modified from famine early 
warning systems network or FEWS NET, USAID; (c & d) Google imagery of woody cover at Shakiso town in 2001 and 2016, Ethiopia; e) elevation of the ALS site at 
30 m resolution; and f) ALS canopy height model displayed at 30 m resolution in Taita Hills, Kenya. 
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3. Material and methods 

3.1. Datasets 

Several data obtained from airborne and satellite platforms as well as 
multiple sources were used in this study. Airborne laser scanning (ALS) 
data were acquired from several surveys during 2014–2015 (Amara 
et al., 2020; Adhikari et al., 2016). In all surveys, Leica ALS60 sensor 
mounted on an aircraft was used. Flying height varied between surveys 
and due to variable topography from approximately 430 m to 2000 m 
above ground level. Maximum of four returns per pulse were recorded. 
As a result, return density varied in the range of 0.5–5 returns/m2 

depending on the area (mean 2.8 returns/m2). LAStools software was 
used to classify ground, vegetation, and building returns and to create 
digital elevation model (DEM) and canopy height model (CHM) at 1 m 
resolution. Woody vegetations were retrieved from CHM by applying a 
3 m threshold to separate understory and ground returns from woody 
canopy returns. The CHM is not affected by returns from ground and 
lower vegetation at this threshold. The threshold matches with the 
height range (3–5 m) of the dominant ecosystem in the region (Friis 
et al., 2010; White, 1983). Hence, woody cover in this study refers to 
fraction of surface area covered by woody vegetation with minimum 
height of ≥3 m. The CHM was processed to estimate canopy cover 
percentage at 30 m resolution. This data was used for training and 
validation of woody cover prediction model in section 3.2.1. 

Landsat 7 (ETM+) and Landsat 8 (OLI) surface reflectance data were 
used for predicting fractional woody cover in section 3.2. Spectral bands 
in visible (Blue, Green, Red), near infrared (NIR) and shortwave infrared 
(SWIR1 and SWIR2) range were used. Pixels affected by cloud and 
cloud-shadow as well as Landsat 7 SLC-off gaps were masked using flag 
bits of the quality assessment band in GEE. To allow consistent temporal 
continuity of ETM+ and OLI bands, with the latter having a narrower 
wavelength than the former sensor, a band transformation function (i.e., 
from ETM+ to OLI bands) were applied using coefficients from Roy et al. 
(2016). 

MODIS nadir BRDF-adjusted reflectance (NBAR) product from 
collection 6 was used for computing normalized difference vegetation 
index (NDVI). The NBAR product was accessed and processed on Google 
Earth Engine (GEE) cloud computing platform (Gorelick et al., 2017). 
This 500 m resolution combined-product from MODIS Terra and Aqua 
sensors is prepared at daily time step using directional reflectances 
corrected for view angle effect (Schaaf and Wang, 2015). Choice of 
NBAR product over other MODIS products is due to its sensor viewing 
angle fixed to nadir, avoiding artefacts in NDVI associated with sensor 
viewing geometry variation (Franch et al., 2013). We used the quality 
control layer and bit index to retrieve only good quality full BRDF 
inversion pixels. Frequency of good quality pixels is presented in Sup-
plementary Fig. S1. 

NDVI derived from MODIS Multi-angle Implementation of Atmo-
spheric Correction (MAIAC) product (MCD19A3) (Lyapustin and Wang, 
2018) was used as input for testing and selecting break point detection 
algorithms (Supplementary section 3). The product, which is at 1 km 
resolution and 8-day composite, was downloaded from NASA’s Atmo-
sphere Archive and Distribution System (LAADS). MAIAC algorithm – 
through its advanced cloud detection, aerosol retrieval, and atmospheric 
correction – provides cloud-free and low aerosol retrievals (Lyapustin 
et al., 2012). We have corrected the reflectance for the impacts of sun- 
sensor illumination variation by fixing sensor view angle at nadir and 
solar zenith angle at 45◦ using MAIAC Bidirectional Reflectance Distri-
bution Function (BRDF) model parameters. 

For experimental testing of break point algorithms, we used CHIRPS 
(Climate Hazards Group Infrared Precipitation) precipitation data in 
TSS-RESTREND (Time Series Segmentation and Residual Trend anal-
ysis) method. The data was obtained from University of California 
(https://www.chc.ucsb.edu/data/chirps) at 5 km spatial resolution and 
monthly timestep. 

For analysing drivers of woody cover change, cropland extent, 
human population, burned area and livelihood data were used. Cropland 
fraction data at 100 m spatial resolution were obtained from the 
Copernicus Global Land Service Land Cover 100 m (CGLS-LC100) for the 
year 2019. This product was prepared from Project for On-Board Au-
tonomy – Vegetation (PROBA-V) time-series, high quality land cover 
training sites, and ancillary datasets, with an accuracy of around 80% 
(https://land.copernicus.eu/global/products/lc). 

Gridded population of the world (GPW, version 4) data were 
downloaded from NASA Socioeconomic Data and Applications Center 
(SEDAC, 2021) (https://sedac.ciesin.columbia.edu/data/collection/ 
gpw-v4). The GPW data are available at 1 km resolution for the years 
2000, 2005, 2010, and 2020. The 2010 population and housing censuses 
data served as a basis to extrapolate population estimates for the other 
years in GPW v4. 

For burned area data, monthly MODIS (MCD64A1 Version 6) prod-
uct at 500 m resolution was downloaded from NASA Land Processes 
Distributed Active Archive Center (LP DAAC) (Giglio et al., 2015). 
Livelihood zone data (i.e., agriculture, pastoral, and agropastoral zone) 
were obtained from United States Agency for International Development 
(USAID), famine early warning systems network (FEWS NET) (https://fe 
ws.net/east-africa/). 

The various data were harmonized spatially to 500 m resolution. 
Spatial resampling to 500 m resolution was done by applying bilinear 
interpolation. Daily, 16-day, and 8-day composite data were averaged to 
monthly value. 

3.2. Methods 

The overall methodology has two main steps (Fig. 2). First, fractional 
WC was predicted based on ALS, Landsat spectral metrics, and random 
forest algorithm (Section 3.2.1). Second, pixels affected by abrupt or 
monotonic WCCs were identified using MODIS normalized difference 
vegetation (NDVI) (Sections 3.2.2 and 3.2.3). Breakpoint detection al-
gorithms were tested in the forest loss test site to select appropriate 
method for the study area (Supplementary section 3, Fig. S3). The 
selected method was used to identify presence of statistically significant 
abrupt change in each pixel. We were interested in major breaks or a 
single “most important break” (De Jong et al., 2013) during 2001–2019 
as they are important in terms of indicating severe changes in WC. For 
pixels not affected by abrupt changes, we evaluated the presence of 
monotonic changes. Next, for those pixels affected by significant (P <
0.05) abrupt or monotonic changes, the magnitude of WCC was esti-
mated from the trends of predicted fractional WC. Details of each step 
are presented in the below sections. 

3.2.1. Fractional woody cover prediction and change 
For areas affected by significant monotonic change or abrupt change, 

WC was predicted for each pixel applying Random Forest (RF) model in 
GEE. Reference WC data for the RF model were obtained from airborne 
laser scanning (ALS) and predictor variables consisting of Landsat (7 and 
8) spectral-temporal metrics. 

Spectral metrics and various vegetation indices (Table 1) were 
computed using Landsat 7 (ETM+) and Landsat 8 (OLI) as predictors for 
the RF model in GEE. Second, median dry season composites were 
computed for the selected bands. Vegetation indices including NDVI, 
enhanced vegetation index (EVI), soil adjusted vegetation index (SAVI), 
reduced simple ratio (RSR), and tasseled cap greenness (TCG, see Baig 
et al., 2014 for coefficients) were used. These indices are commonly used 
for predicting woody cover fraction (Venter et al., 2018; Adhikari et al., 
2016). While NDVI and TCG are used as they highlight vegetation 
greenness, the others (EVI, SAVI, and RSR) are included as they provide 
enhanced vegetation signal by supressing background effect on canopy 
reflectance (Huete et al., 2002; Brown et al., 2000; Huete, 1988). Ratios 
of spectral bands were also used as these are less sensitive to topographic 
effect. 
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Third, the RF model was built and validated at the ALS footprint site 
(Fig. 1a, e, f) for year 2015 and used to extrapolate the ALS WC to the 
entire study area. For this, a total of 7000 stratified random sample 
points were generated. Stratification was done using ALS WC at 10% 
interval (i.e., 0–10% up to 90–100%). From each WC bin, 700 random 
samples were generated. We used 70% (4900 points) for model training 
and internal cross-validation and 30% (i.e., 2100 points) for indepen-
dent or external validation. The RF regression model was run using these 

parameter settings (number of trees = 500, variables per split = 6, and 
node size = 5). 

The model produced moderate performance, explaining 66% (in-
ternal accuracy on the training data, r2 = 0.66 and root mean square 
error (RMSE) = 16%) and 68% (external accuracy on the testing data, r2 

= 0.68 and RMSE = 13.7%) of the WC variance in the ALS data 
(Fig. 3a–c). The importance of predictor variables was quantified using 
mean decrease in accuracy (%IncMSE) (Supplementary Fig. S4). This 

Fig. 2. Methodology flow diagram. NBAR = nadir BRDF-adjusted reflectance; NDVI = normalized difference vegetation index; MSST-CPI = Maximally Selected 
Statistics Tests - Conditional Permutation Inference; MK = Mann-Kendall; NIR = near infrared; SWIR = shortwave infrared; EVI = enhanced vegetation index; SAVI 
= soil adjusted vegetation index; TCG = tasseled cap greenness; RSR = reduced simple ratio. 
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model was then used to predict WC for each of the years 2001–2019. 
Finally, the magnitude of WCC was computed from the trends of the 
predicted WC, which was detected by MK test, for every pixel affected by 
significant (P < 0.05) abrupt or monotonic changes using Sen’s slope 
(Wilcox, 1998). Sen’s slope is a non-parametric test and an alternative to 
parametric linear regression. It is robust to outliers because the median 
slope is used instead of calculating a mean slope as in parametric tests. 

To increase the consistency and reliability of result across sensors 
(MODIS and Landsat), only pixels that showed agreement in the direc-
tion of trends (i.e., increase or decrease) between monotonic changes 
from MODIS NDVI and WCCs from machine learning algorithm were 
considered. Pixels that showed disagreement in the direction of change 
(e.g., pixels showing an increase in gradual change in MODIS NDVI and 
a decrease in WCC) were approximately 5% and masked from all 
analysis. 

3.2.2. Breakpoint detection in woody cover 
To detect abrupt (or interrupted) changes in vegetation, a novel 

approach based on non-parametric conditional permutation inference 
(CPI) was applied on the NBAR derived NDVI using Maximally Selected 
Statistics Tests (MSST) from “Coin” Package in R (Hothorn et al., 2008). 
CPI approach has a better power in detecting breaks in smaller number 
of observation than the asymptote inference approach (Zeileis and 
Hothorn, 2013). 

Unlike the asymptotic break detection methods, such as Breaks For 
Additive Seasonal and Trend or BFAST (Verbesselt et al., 2010) and its 
derivatives (e.g., Time Series Segmentation and Residual Trend analysis 
(TSS-RESTREND), Burrell et al., 2017), MSST test the independence of 
data distribution between two sets of variables (Yi = short-dry season 
median NDVI and Xi = time; i = 2001, …,2019) and identify best cut 
point using maximally selected test statistics (Tmax) based on 

permutation inference (Zeileis and Hothorn, 2013; Hothorn and Zeileis, 
2008). 

This is done in two steps. First the null hypothesis, which states that 
the distribution of response variable Yi is independent of the covariate 
Xi, is tested against cut point alternatives where the distribution of the 
response variable varies between two groups of observations (Yi) with 
respect to Xi. Cut point alternatives, which range between 0 and 1, are 
calculated from quantiles of Xi. All possible cut points into two groups 
are evaluated, ordering by Xi. Second, the best cut point or break point 
are selected. For this, the test statistics (T) are standardized to common 
scale and the best separating cut point is the one with the maximum 
value of standardized statistics (Tmax) (Eqs. 1–4). Details of the algo-
rithm are provided in Hothorn et al. (2008). 

Tmax = max
|T − μ|

√diag(M)
(1)  

T = vec

{
∑n

i=1
g(Xi)h(Yi)T

}

∈ Rpq×1 (2)  

where μ is mean; M is covariance matrix; h is an influence function 
applied to the response Yi (i.e., h : Y → Rq×1) and g is a set of candidate 
cut points or partitions (p) defined by g(X) = {g1(X), … , gp(X)}; 
vec is an operator which stacks the columns of a matrix. 

μ = E(T|S) ∈ Rpq×1 (3)  

M = V(T|S) ∈ Rpq×pq (4)  

where μ and M are obtained by conditioning on all possible permuta-
tions (S) of the response variable Yi (i = 2001, …, 2019) under null 
hypothesis; E is the conditional expectation. 

Reference conditional distribution of test statistics was computed 
directly from the data without any distributional assumption. For this, 
we used a conditional Monte Carlo procedure in MSST from all admis-
sible permutations of the response variable. To detect presence of sta-
tistically significant (P < 0.05) break in short-dry season NDVI median 
composites from 2001 through 2019 (i.e., maximum of 19 sample points 
for each pixel) 

3.2.3. Monotonic trend detection 
For identifying direction of monotonic (or gradual) changes in WC, 

NDVI calculated from MODIS NBAR product was used. Significant 
monotonic changes were identified using non-parametric Mann-Kendall 
trend test (Kendall, 1975; Mann, 1945) (Eqs. 5–7). 

For better detection of WCCs, we used short-dry season (January and 
February) median NDVI, which has the best contrast between woody 

Table 1 
Spectral metrics and vegetation indices derived from Landsat (7 and 8). NIR =
near infrared; SWIR = shortwave infrared; NDVI = normalized vegetation index; 
EVI = enhanced vegetation index; SAVI = soil adjusted vegetation index; RSR =
reduced simple ratio; TCG = tasseled cap greenness.  

Predictors Metrics/Formula 

Surface 
reflectance 

Dry season median: Blue, Green, Red, NIR, SWIR1, SWIR2 bands 
Ratios: Red/NIR, SWIR1/NIR, Blue/Green, Blue/NIR, Green/ 
Red, Green/NIR, SWIR1/SWIR2 

NDVI NIR–Red/ NIR + Red 
EVI 2.5 × (NIR – Red) / (NIR + 6 × Red – 7.5 × Blue +1) 
SAVI (NIR – Red) × (1 + 0.5) / (NIR + Red+0.5) 
RSR (NIR/Red) × (SWIR1max – SWIR1) / (SWIR1max – SWIR1min) 

TCG − 0.2941 × Blue – 0.243 × Green – 0.5424 × Red +0.7276 × NIR 
+ 0.0713 × SWIR1–0.1608 × SWIR2  

Fig. 3. Spatial distribution of (a) fractional woody cover predictions based on random forest model, (b) fractional woody cover estimates from airborne laser 
scanning (ALS) data in Taita Taveta County, Kenya, and (c) the comparison between the two. 
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cover and herbaceous grass cover (Borges et al., 2020). In this season, 
leaves remain intact in comparison to the leaf-off situation in the long- 
dry season from mid-May to September (see details about phenology 
of the dominant Acacia-Commiphora trees in Fenner, 1982). Impact of 
herbaceous cover (e.g., grasses) on the vegetation indices is minimal in 
dry season compared to wet season as precipitation masks woody 
changes through enhanced vegetation productivity (Abera et al., 2018). 
A comparison of monotonic trends in a known forest loss site (Shakiso, 
Supplementary Fig. S2) further showed a clear advantage of using short- 
dry season than wet season composite for capturing WCCs in the region. 

S =
∑n− 1

i=1

∑n

j=n+1
sgn(X(j) − X(i) ) (5)  

⎧
⎨

⎩

sgn(X) = 1 if X > 0
sgn(X) = 0 if X = 0

sgn(X) = − 1 if X < 0
(6)  

where S = test statistics; X = short-dry season median NDVI time series 
(2001–2019); sgn = signum function; n = length of time series. A pos-
itive and negative value of S indicates an upward and downward trend, 
respectively. The mean of S is μ = 0 and the variance var. (S): 

var (S) =
1
18

(

n(n − 1)(2n+ 1) −
∑p

i=1
tji(i − 1)(2i+ 5)

)

(7)  

where p is the number of tied groups and tj is the number of data points 
in the i-th tied group. The null hypothesis, which is there is no trend, is 
rejected if the absolute value of standardized test statistics (Z) is bigger 
than the theoretical value (Z1-α/2), where α is the statistical significance 

level. 

3.2.4. Exploratory analysis on causes of woody cover change 
To identify relation of WCC with anthropogenic (cropland expan-

sion, livelihood, and population growth) and natural factors (fire), a 
simple exploratory analysis method is presented. Spatial association 
between cropland expansion and WC change was explored using 2019 
cropland fraction data from Copernicus CGLS LC100. The spatial asso-
ciation was assessed by first masking cropland extent with WCC result 
and computing summary statistics on percentage of WC replaced by 
cropland pixels. The association was further explored by superimposing 
livelihood zone data from FEWS NET. 

For assessing relation between WCC and population growth, popu-
lation data from GPW was used. Since data are available for the only 
years 2000, 2005, 2010, and 2020, we linearly interpolated the 
remaining years, computed 2001–2019 population density trend, and 
intersected with WCC. 

Relation of naturally occurring fire events with WCC was assessed 
using MODIS burned area data. For this, first fire frequency was calcu-
lated for each pixel by converting burn date into binary (i.e., 0 = no fire 
detected; 1 = fire detected). The fire frequency data were then masked 
by WCC to identify their links in the region. 

4. Results 

4.1. Pixels affected by abrupt or gradual woody cover changes 

The total area affected by abrupt WCCs between 2001 and 2019 was 
3% larger than areas affected by gradual changes (Fig. 4). From the total 
surface area of the study region (≈ 1,717,000 km2), significant (P < 

Fig. 4. Abrupt and gradual woody cover changes during 2001–2019. Only significant breaks and monotonic trends are displayed.  
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0.05) abrupt changes accounted for approximately 8%. Of these, 6% 
showed interrupted decrease and 2% interrupted increase (Fig. 4). On 
the other hand, around 5% of the study region exhibited gradual or 
monotonic changes. Of this, 4% experienced monotonic decrease and 
the remaining 1% increase. High resolution Google imageries show 
evidences of WC increase (e.g., panel G1 in Medni, Ethiopia) and 
decrease (e.g., panel L1 in Debre Sina, Ethiopia, and panel L2 in Mwingi, 
Kenya) in these sites. 

4.2. Fractional woody cover change 

For pixels that have experienced significant abrupt or monotonic 
changes, the WCC from 2001 through 2019 is presented for every pixel 
across the study area (Fig. 5b, c). The overall result showed net loss of 
WC in the study region. Over the 19-years (2001–2019), the region 
experienced a total WC loss of 21,432 km2 area. Of this, abrupt WC 
losses accounted for ~59% and gradual losses ~41% (Fig. 5c). The WC 
loss rate varies across the region with the maximum being around 5% 
per year. On the other hand, the total WC gain was relatively small in 
area (5168 km2) with larger contribution (64%) coming from areas of 
abrupt changes than gradual changes. The maximum rate of gain was 
2.6% per year, which was approximately two-times smaller than the 
maximum rate of loss. Overall WCC were highly dominated by loss (i.e., 
total loss was >4-times higher than total gain) leading to net loss of 
16,264 km2. 

4.3. Timing of the occurrence of abrupt woody cover changes 

Around 72% of the abrupt WCCs observed in our study area occurred 
between 2002 and 2010 (Fig. 6). During this period, the strongest 
changes happened in 2008 (13%), 2007 (12%), and 2010 (11%). The 
remaining 28% occurred between 2011 and 2017 with a declining trend 
since 2011. The changes in the first three years of the 2011–2017 period 
were more widespread (20%) than towards the end, where areas 
affected by abrupt changes reduced considerably (< 1%) in 2017. 

The direction of WCC can be negative (e.g., loss due to clearing of 
woody vegetation for agriculture) or positive (e.g., gain in cases of 

afforestation or reforestation), and thus timing of break years were 
analyzed separately for WC loss and gain areas (Fig. 7). The result 
showed that intensive woody cover loss happened mainly in 2007 and 
2008 (each ~16%), 2010 (13%), and 2004 (12%), and strongly declined 
after 2010. Whereas significant (P < 0.05) breaks from woody cover 
gains were detected during 2006 (17%), 2012 (15%), and 2013 (14%), 
and declines afterwards. Except in 2006, breaks were dominated by loss 
between 2002 and 2011 (i.e., clearing of woody vegetation were prev-
alent throughout this period). By contrast, breaks due to significant 
woody cover gain dominated since 2012 except for 2016, where gain 
and loss were comparable in extent. 

4.4. Woody cover loss hotspots near protected area 

A closer view on woody cover loss hotspots near protected areas is 
displayed in Fig. 8. Woody cover clearing was intensified near Meru 
National Park in central Kenya over the last 10-years (2009–2019), 
mainly due to agricultural expansion (Fig. 8b1–b3). Similarly, near 
Tsavo East National Park, adjacent Athi river in east of Kibwezi town in 
southern Kenya, agriculture spread extensively at the cost of woody 
cover between 2002 and 2012 (Fig. 8c1–c3). 

In Ethiopia, woody cover clearings inside and outside protected areas 
were identified (Fig. 8d, e). In Bore-Anferara forest reserve, WC loss 
occurred during 2001–2019 (Fig. 8d1–d3). The loss could be related to 
logging as evidence of agricultural actives are lacking from closer 
investigation of imageries. The Shakiso WC loss test site, which is 
described in section 2 (see high resolution imageries in Fig. 1c, d), is 
located ~16 km south of Bore-Anferara forest reserve boundary. Agri-
cultural and mining activities are related to the clearing of WC in Sha-
kiso (see Supplementary Fig. S7). 

Additional WC loss hotspot was identified between two national 
forest reserves in Ethiopia (Fig. 8e1–e3). The hotspot is located ~9 km 
east of Kenicho town in Ethiopia, within 30 km radius from boundaries 
of Bulki-Melakoza and Gidole-Kemba national forest reserves. Extensive 
clearing of WC took place between 2009 and 2017 associated with 
agricultural expansion in the region. 

Woody cover loss hotspots and corridor were compared against 

Fig. 5. Panel showing (a) average predicted fractional woody cover during 2001–2019, and (b) fractional woody cover change over the last 19-years. Only sig-
nificant (P < 0.05) changes are displayed. Protected area boundaries (i.e., national parks and forest reserves) are from World Database on Protected Areas (WDPA). 
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global forest loss product from Hansen et al. (2013) (Fig. 9). More areas 
that have experienced loss were identified by the prediction of ours than 
the global product by Hansen et al. (2013) between 2001 and 2019. For 
example, in southern Ethiopia, the total number of pixels with at least 
5% woody cover loss were 7-times higher than the global product esti-
mate, considering both abrupt and gradual losses. When accounting 
losses to abrupt changes only, the estimate is 4-times higher. Similarly, 
strong underestimation of woody cover loss by global product was 
prominent in northern Ethiopia and southern Kenya when compared to 
the predicted loss (Fig. 9b, c). 

4.5. Fractional woody cover change across ecosystems 

To identify ecosystems facing considerable WCC, the result was 
analyzed per ecosystem type. We observed net loss in all biomes 
(Fig. 10). Particularly the ACBT ecosystem was the most threatened and 
exhibited the highest net loss (4.7%), followed by montane forest (2.7%) 
and montane grassland and woodland ecosystem in Ethiopia (2.5%) 
(Fig. 12). In terms of total woody cover loss area (km2), 69% of the total 
loss occurred in ACBT ecosystem in the region, 12% in montane forest, 
and 11% in Ethiopian montane grassland and woodland ecosystem (see 
Supplementary Fig. S5 for WC loss area in km2 across ecosystems). 

The smallest net loss (1.1%) occurred in wooded savanna, which is 
mainly located in western Ethiopia, and contributed to 8% of total WC 
loss area in the region. Relatively more WC gain occurred in savanna 
ecosystem than in others. While the contributions of abrupt and gradual 
changes to net loss were comparable in ACBT ecosystem, abrupt losses 
were dominant over gradual losses in the rest of ecosystems. 

4.6. Causes of fractional woody cover change 

The total contribution of cropland expansion to the WC loss was 
estimated using spatial association between WCC and 2019 cropland 
extent (Fig. 11a). Based on the ratio of cropland area to the total WCC 
area, the contribution of cropland expansion was around 57% during 
2001–2019. This is equivalent to around 3% per annum assuming a 
linear rate of change. 

The spatial association between WCC and livelihood zone map 
further indicated intensive woody cover loss concentrated mainly in 
agricultural areas close to agropastoral/pastoral zones (Fig. 11b). The 
North-South running WC loss corridor in Ethiopia and the hotspot in 
Kenya are located in agricultural lands near pastoral zones. Similarly, 
the WC hotspot in Ethiopia occurred near both agropastoral and pastoral 
zones. The result show that WCs in those areas are under intense pres-
sure coming from multiple livelihoods. 

Links of WC loss hotspots with population growth and fire frequency 
is presented in Fig. 12. Areas having high population growth rate 
overlap with WC loss hotspots largely in Ethiopia and partially in Kenya, 
indicating possibility of population pressure on WC (Fig. 12a). While the 
distribution of fire frequency showed that the impact of fire in inducing 
WC loss was minimum (Fig. 12b). Around 82% of the total area affected 
by abrupt WCC had zero fire occurrence. Particularly, the WC loss hot-
spots were the least affected by fire incident and the remaining 18% 
mainly clustered in the savanna ecosystem in western Ethiopia. 

5. Discussion 

Changes in WC were dominated by net loss across ecosystem during 
2001–2019. Compared to previous studies, which reported contrasting 
result over Ethiopia (e.g., dominant loss in Brandt et al. (2017) and 

Fig. 6. Spatial distribution of the timing of major breaks in woody cover time series during 2001–2019.  
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dominant gain in Venter et al. (2018)), our results agree with those 
studies reporting dominant loss (Brandt et al., 2017). However, in terms 
of the spatial extent and location of WC loss, there are small in-
consistencies that could arise from differences in data (type and reso-
lution), method, and length of analyzed periods used among studies. 
Over Kenya, there is relatively better agreement between our results and 
previous studies (e.g., Brandt et al., 2017; Venter et al., 2018). 

Despite the net WC loss, different spatio-temporal patterns emerged 
in 2001–2019. The spatial patterns revealed WC loss hotspots. The 
hotspots are mainly concentrated in Acacia-Commiphora ecosystem as 
also identified by a fine-scale study by Pellikka et al. (2018) in Taita 
Hills, Kenya. Particularly their occurrence in this ecosystem needs 
further attention. First hotspots are marked by major abrupt change that 
might signal severe ecosystem degradation and beginning of turning 
points or irreversible changes. Second, Acacia-Commiphora trees provide 
important socio-economic (e.g., as sources of livelihood through gum, 
resin, woodfuel provision) and environmental values (e.g., food source 
and habitat for organisms, improves soil fertility, and modulates 
climate, etc) (Mesfin and Menbere, 2020; Abera et al., 2020a) and hence 
sustaining ecosystem service provision from these trees is important in 
the region. Third, the hotspots are located adjacent or in some places 
inside protected areas (Figs. 8 and 9), which have global importance in 
terms of carbon stock, biodiversity and wildlife protection (Mesfin and 
Menbere, 2020; Bouvet et al., 2018), although in places protected areas 
also have negative consequences (Amara et al., 2020). 

The temporal pattern exhibited contrasting trends of loss and gain 
after 2010. While WC loss showed a gradual decrease and slowing down 
of intensive clearing, WC gain exhibited an increase in recent decade. 
This divergent temporal pattern could be attributed to several factors. 
The observed temporal pattern in the recent decade (2011− 2020) match 
with the approval and onset of global initiatives such as REDD+

program in Ethiopia and Kenya (Bekele et al., 2018; Bernard et al., 
2014). Although the REDD+ initiatives in these countries are still 
ongoing and establishing direct link to the observed WCC patterns 
require detailed investigation, the awareness created at high level could 
have a cascading effect locally and these could contribute to the con-
trasting patterns obtained. Furthermore, government strategies that 
support green economy can contribute to this end. For instance, the 
2011 Ethiopia’s Climate Resilient Green Economy (CRGE) strategy, 
which aims in building an economy low in its greenhouse gas emissions 
and avoid natural resources degradation, can help in curbing WC loss 
and promote afforestation/reforestation and restoration in the region 
(Bekele et al., 2018; Kassa et al., 2017). Similarly, the 2009 Agriculture 
(Farm Forestry) Rules of Kenya, which stipulates a farm tree cover of at 
least 10% of any agricultural land, can promote WC increase in the re-
gion (Pellikka et al., 2018). 

5.1. Anthropogenic causes of fractional woody cover change 

Clearing of woody vegetation for agriculture is one of the main direct 
causes of abrupt changes in WC in East Africa (Brink et al., 2014; 
Figs. 8,11). In line with previous studies, our regional analysis showed 
important contribution of cropland expansion (57%) to WC loss asso-
ciated with existing livelihood. The remaining unexplained portion 
(43%) can be induced by different factors. 

Wood fuel (firewood and charcoal) extraction is an important 
anthropogenic factor that can induce WC loss in the region. Wood fuel 
accounts for >80% of household energy supply in Ethiopia (UNEP, 
2016) and > 70% of national energy need in Kenya (Githiomi and 
Oduor, 2012). Woody vegetation, particularly Acacia trees, are main 
sources of charcoal production in the region. Production of charcoal, for 
example from Acacia, consumes 6-times more wood than its actual 

Fig. 7. Frequency of break years classified by woody cover loss and gain pixels.  
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weight (Vuorinen et al., 2016). Hence, in addition to pressure from 
cropland expansion, the stronger reduction in WC in Acacia- 
Commiphora bushland and thicket (ACBT) ecosystem can be related to 
the huge demand for wood fuel in the region, which grows at a rate of 
3% per year (Iiyama et al., 2014). While other factors such as cattle 
grazing land expansions could have important impact on WC loss, role of 
settlement or urbanization, timber logging, construction (e.g., dams, 
airports, etc), mining activities (Supplementary Fig. S7) were likely 
smaller (Vuorinen et al., 2016). Locally, it was also shown in Amara 
et al. (2020) that protected areas have less woody cover compared to 
non-conserved areas in lowlands of Taita Taveta County, Kenya. Over 
the past decade, protected areas as such are not expanding but improved 
wildlife protection has seen growth in populations of key species such as 
elephants. The wildlife increment, together with agricultural expansion, 
has posed a growing pressure on woody cover, leading to an escalation 
of conflict between people and wildlife (Munyao et al., 2020). 

Population growth is considered the underlying driver behind the 
anthropogenic factors in the region (Brandt et al., 2017). Our results 
showed spatial link between WCC hotspots and population growth and 
support earlier findings. Particularly, with high population growth rate 
in the region (> 2% per year), demand for more crop production and 
wood fuel increases in the future and this could lead to accelerated 
deforestation and degradation (UNEP, 2016). 

5.2. Natural causes of fractional woody cover change 

The role of fire in inducing WCC was minimum in the study region. 
WC loss hotspot occurred mainly in Acacia-Commiphora ecosystem, 
which are tolerant to fire (Mesfin and Menbere, 2020). High frequency 
of fire incidents were rather observed in areas of WC gain in savanna 
ecosystem in western Ethiopia (Fig. 12b; Fig. 1a). The naturally occur-
ring fire in savanna ecosystem, which is dominated by deciduous Com-
bretum-Terminalia woodlands and grasslands, is associated with the 
frequent burning of the perennial grass stratum that are susceptible to 
fire (Friis et al., 2010). The grasses sprout again after burning and this 
process increases the frequency of fire by providing new biomass that 
can burn again (Friis et al., 2010; van Breugel et al., 2016). This in turn 
could favour WC gain by reducing competition from the grass stratum 
and might increase Combretum–Terminalia woodlands in Western 
Ethiopia associated with fire-regime (van Breugel et al., 2016). 

Climate induced changes can affect fractional WC. Whether this had 
an impact on WC loss was assessed using the association between fre-
quency of drought and frequency of break years (Supplementary 
Figs. S6a, b). When maximum number of WC breaks occurred in 2008 
and 2007, frequencies of drought-affected areas were minimum for the 
corresponding years in the region. This could indicate that droughts had 
small role in inducing abrupt WC changes in the region. 

The dominant Acacia-Commiphora tree species in this arid region are 

Fig. 8. Woody cover loss hotspots and fractional woody cover change (WCC) inside and near protected areas in Kenya and Ethiopia. Panel (a) shows closer view of 
WCC and location of hotspot sites with protected areas displayed in black. Panels (b and c) show Google imagery and WCC with national park boundary highlighted 
red in Meru (b1–b3) and Tsavo (c1–c3), Kenya, and in Bore-Anferara forest reserve (d1–d3) and between Bulki-Melakoza and Gidome-Kemabin national forest 
reserves (e1–e3) in Ethiopia. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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tolerant to droughts (Friis et al., 2010). In addition, evergreen forests in 
East Africa are less sensitive to drought events (Abera et al., 2020b; 
Abera et al., 2018) as they regulate water loss through stomatal closure 
and are able to access sub-surface water using their deep rooting systems 
(Kramer and Boyer, 1995). In times of severe and prolonged drought, 
however, forests can be vulnerable to hydraulic failure and tree mor-
tality may occur (Williams et al., 2012; Choat et al., 2012). Nonetheless, 

whether this has occurred in the region and its links to WC loss require 
further studies. 

5.3. Limitations, uncertainties, and future directions 

Although our approach and results demonstrated improved detec-
tion of breakpoints and prediction of WC, there are limitations and 

Fig. 9. Comparison of global forest loss product (Hansen et al., 2013) and predicted fractional woody cover loss during 2001–2019 over hotspot regions in Ethiopia 
and Kenya. Protected area boundaries are from World Database on Protected Areas (WDPA). Only protected areas near loss hotspots are displayed. 

Fig. 10. Woody cover change (%) across four ecosystems (Acacia-Commiphora bushland and thicket or ACBT, montane forest, woody savanna, and Ethiopian 
montane grassland and woodland) in 2001–2019. 
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uncertainties related to data and algorithms. Our ALS data cover a wide 
range of vegetation types, large elevation gradient, and relatively large 
area, but it does not include the complete topographic and climatic 
gradient in the region. This can limit the predictive performance of the 
model in extreme elevations (i.e., highest and lowest areas outside ALS 
elevation ranges) and ecosystems not covered by the data. Availability 
of additional ALS data would increase the number of representative 
samples and improve WC prediction performance in the region. None-
theless, over ALS site, our WC prediction and three global products 
(MODIS continuous vegetation fields, Landsat continuous vegetation 
fields from Global Forest Cover Change Tree Cover (GFCC), and Project 
for On-Board Autonomy – Vegetation (PROBA-V) tree cover) were 
compared against ALS woody cover (Fig. 13a–d). The comparison 
showed better performance of our model (r2 = 0.77 and RMSE =12.9%) 
than global products, indicating improved capability of our approach in 
estimating WC. Strong underestimation of tree cover was displayed for 
MOD44B and GFCC Landsat continuous vegetation fields products in 
comparison to our prediction and PROBA-V tree cover. Yet for robust 
comparison in the region, reference ALS data that cover wider topo-
graphic and climatic gradient is needed in the future. 

The non-parametric machine learning regression algorithms are 
important for extrapolating fractional WC. However, as regression uses 
central or mean values, extreme WC fraction values (i.e., 0% and 100%) 
are difficult to predict using regression model (Masiliūnas et al., 2021; 
Fig. 13). To minimize this problem and increase model performance, we 
trained the model using random samples stratified by ALS fractional WC 
bins. Despite its better performance, our result still underestimates 
higher values (>80%) when aggregated at 250 m resolution (Fig. 13c). 
In this regards, further studies towards improved machine learning 

algorithms are important in the future. 
The fractional WCC result considers only areas that have underwent 

statistically significant (P < 0.05) changes. There could be degraded 
areas not included for statistical reason, yet important from manage-
ment purpose. The choice of appropriate statistical threshold for 
detecting WC changes will be something to explore in the future. 

The contribution of cropland expansion on WCC was estimated using 
2019 crop fraction data at 100 m resolution from CGLS due to lack of 
temporally consistent, continuous fields of cropland fraction time series 
at 30 m resolution for the years 2001 to 2019. However, for better 
estimation of the contribution of cropland expansion on WCC, avail-
ability and use of such data is important in the future as changes occur at 
smaller scale in heterogeneous landscape such as in our study area. 

Detailed quantitative analysis on the relative contribution of natural 
and anthropogenic factors to WCC is an important topic for future 
studies. Whether these factors have linear or non-linear relation with 
WCC, presence of complex interactions among predictor variables, and 
presence of causal links and strength of relationships need to be explored 
further considering additional factors, such as enhanced atmospheric 
CO2 concentration and change in herbivore densities. 

6. Conclusion 

In this study, we analyzed fractional WCCs in East Africa during 
2001–2019. New WC loss hotspots and degradation corridor, which 
were not captured in global products, were identified near protected 
areas and in agricultural lands located close to pastoral and agropastoral 
boundaries. 

The study revealed that WC dynamics are dominated by abrupt 

Fig. 11. Spatial association of fractional woody cover change with (a) cropland extent from the Copernicus Global Land Service Dynamic Land Cover Map (CGLS- 
LC100), (b) livelihood zone data modified from USAID, famine early warning systems network (FEWS NET). 
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changes. Woody cover losses strongly outweigh gains in both abrupt and 
gradual changes. Consequently, changes in fractional WC were domi-
nated by net loss across all ecosystems. Comparatively, Acacia- 
Commiphora ecosystem experienced the highest WC loss and is the 
most threatened ecosystem in the region. While cropland expansion 
played major role (57%) in inducing WC loss, fuelwood extraction could 
have important impact as it mainly uses Acacia-Commiphora trees. Pro-
moted by high population growth, cropland expansion and fuelwood 
extraction are likely to pose strong pressure on woody vegetation cover 
in the coming decades if not managed properly. 

Applying satellite observation timeseries (MODIS and Landsat) with 
machine learning and non-parametric breakpoint detection algorithm 
helps to improve monitoring of woody cover change in the region. 

Overall, our results highlight, on one hand, the importance of improved 
approach for detecting and measuring the impact of human activities 
and livelihoods on woody vegetation cover and on the other hand, the 
necessity of protecting woody vegetation and evaluating existing land 
use practices in and around protected areas for assuring sustainable 
ecosystem service provision in the region. 
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