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TITLE: CONTRIBUTIONS OF OPTICAL REMOTE SENSING TO PERMAFROST 

MAPPING IN DONNELLY TRAINING AREA, ALASKA  

MAJOR PROFESSOR:  Dr. Guangxing Wang  

Permafrost occupies about a quarter of the northern hemisphere land  with 25.5 million 

ha. Global warming and anthropogenic activities affect the dynamics of permafrost. Snow and 

permafrost, in turn, serve as an indicator of climate change and human activity disturbance. The 

dynamics of permafrost are often estimated using interferometric Synthetic Aperture Radar 

(InSAR) methods. However, acquiring and processing InSAR images is costly and computation 

intensive. Due to various spectral variables and indices available from optical images, Landsat 

satellite images that are free-downloadable provide the potential for studying and monitoring 

changes of permafrost.   

The overall objective of this study was to explore the use of optical images as a cost-

effective method to map permafrost in Donnelly Training Area (DTA) - an installation located in 

Alaska. First, Landsat 8 OLI/TIRS images from January 2014 to December 2018 were used to 

calculate various remote sensing variables. The variables included Land Surface Temperature 

(LST), albedo, Soil Moisture index (SMI), Normalized Difference Vegetation Index (NDVI), 

Normalized Difference Snow Index (NDSI), Normalized Difference Built-up Index (NDBI), 

Normalized Difference Water index (NDWI), Simple Ratio (SR), Soil Adjusted Vegetation 

Index (SAVI), Normalized Burn Ratio (NBR), Triangular Vegetation Index(TVI), Visible 

Atmospherically Resistant Index (VARI), and Active Layer Thickness (ALT). Moreover, 

elevation, slope, and aspect were obtained from a digital elevation model (DEM). The variables 
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were used to estimate the probabilities of permafrost presence (POP) for DTA. The logistic and 

linear models were respectively selected and optimized based on logistic and linear stepwise 

regression for the estimation of and ALT. A total of 414 field observations that were collected 

from 1994 to 2012 were utilized for validation of models. 

The results showed that the POP in DTA was significantly affected by all the factors 

except aspect and EVI. The factor that was most correlated with ln((1-POP)/POP) was elevation, 

then NDVI, albedo, ALT, LST, NDWI, NDSI, slope, TVI, RSR, SMI, NDBI, SR, SAVI, NBR 

and VARI. A total of six prediction models were obtained. The elevation, NDVI, LST, TVI, 

ALT, SLOPE, RSR, SMI, NBR, and NDSI were finally chosen in the best model 5.6 with the 

smallest relative root mean square error (RMSE) and Akaike information criterion (AIC). The 

albedo used in previous studies was excluded in the final model, implying that the albedo was 

not critical to the prediction of POP. In addition to the previously used elevation, NDVI and 

SMI, other predictors including LST, TVI, ALT, SLOPE, RSR, NBR and NDSI could not be 

ignored in the prediction of POP. The model generated reasonable spatial distribution of POP in 

which POP had greater values in the east, northeast, north and northwest parts and smaller in the 

south and southwest parts. Except for NDVI, NDWI, NDSI, aspect and RSR, moreover, all other 

predictors showed significant contributions to prediction of ALT. The SMI, ELEVATION, 

SAVI, NDBI, SLOPE, LST, SR, EVI, VARI and TVI were finally selected in the best model 

5.14 with the smallest relative RMSE and AIC. The ALT highly varied over the study area with 

the spatial patterns inversely consistent with those of POP. 

The results are essential for the governments, policymakers, and other concerned 

stakeholders to estimate the degradation of permafrost in DTA and minimize the risk of policy 

decision-making for land use management and planning. This study will help to understand the 
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global climate change, changing ecosystems, increasing concentration in the atmosphere, and 

human activity induced disturbance. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background  

Permafrost is frozen soil or rock, including ice or organic materials, which remains at or 

below 0 °C for at least two or more consecutive years (Woo, 2012; Van Everdingen, 2005). 

Some permafrost has been frozen for thousands of years. About a quarter of the land in the 

Northern Hemisphere is underlain by permafrost (Zhang et al., 1999), 25.5 million hectares 

(including glaciers) or about 23% of the land area. The remaining landforms such as sand 

wedges, patterned ground pingo scars, and rock glaciers give an indication about where 

permafrost once existed. According to Ferrians (1965) and Swanson (2017), permafrost is 

classified into four classes depending on the percentage underlain by permafrost: continuous 

permafrost-covering more than 90% of the landscapes, discontinuous permafrost-covering 50% 

to 90% of the landscapes, sporadic permafrost-covering 10% to 50% of the landscapes and 

isolated permafrost-land covering less than 10% of the landscapes. Discontinuous permafrost 

constitutes about 7% of the landscapes in the Northern Hemisphere (Brown et al., 1997; Brown 

et al., 2002; Brown and Haggerty, 1998) (Appendix 1). About 80% of Alaska is occupied by 

permafrost, including continuous (32%), discontinuous (31%), sporadic (8%), isolated (10%) 

while other glaciers and ice sheets constitute only 4% of the area (Jorgenson et al., 2008). 

Thawing and settling of ice-rich terrain (thermokarst) are widely spread in the arctic to subarctic 

regions where permafrost is found in a discontinuous form (Jorgenson et al., 2001; Halsey et al., 

1995). Continuous permafrost has been considered stable because of its much lower annual 

temperature (i.e. -12 °C to 6 °C) (Nelson et al., 2001).  
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Permafrost serves as an indicator of possible climate change (Harris et al., 2003). High 

latitudes experience accouterments of climate change that include degradation of permafrost that 

has altered the hydrology (Osterkamp et al., 2005; Serreze et al., 2000). Predicted global 

warming has been focused over the accouterments of increased air temperature and degradation 

of frozen ice (permafrost) worldwide (Smith, 1983; Anisimov, 1989; Zoltai and Vitt, 1990; 

Anisimov and Nelson, 1996; Nelson et al., 1993; Houghton et al., 1996). Continued warming 

will lead to loss of near-surface permafrost in the great aerial extent (Lawrence et al., 2012; 

Koven et al., 2015; Slater and Lawrence 2013; Schuur et al., 2009; Schuur et al., 2015). 

Monitoring of permafrost ground is critical as the active layer responds to global warming, 

relocates snow cover patterns, changes land cover types, and forms thermokarst lakes (Davis, 

2001; Ishikawa, 2003). 

Permafrost mapping and modeling are important in predicting the change in snow cover 

areas, land cover patterns and underlying climatic variation (Davis, 2001; Ishikawa, 2003). 

Permafrost mapping has been initiated in considerable mountainous regions in the world such as 

Salluit in Canada, the Qinghai-Tibet railway, Yukon’s North Alaska Highway. The permafrost of 

Alaska is characterized by degradation in Arctic, Alaska and northwest Territories, Canada 

(Jorgenson et al., 2008; Hegginbottom, 1973; Li et al., 2003; Keller, 1992; Hoelzle et al., 1993; 

Imhof, 1996; Etzelmüller et al., 2001; Gruber and Hoelzle, 2001; Lugon and Delaloye, 2001; 

Tannarro et al., 2001; Heginbottom, 2002; Guglielmin et al., 2003).  

Permafrost degradation due to climate change and human activities in Alaska has caused 

major ecological and environmental issues. Permafrost degradation has led to a disruption risk of 

infrastructures (Smith et al., 2010; Jorgenson et al., 2006), changes in vegetation and hydrology 

(Walter et al., 2006; Schuur et al., 2009; Jorgenson et al., 2010). Top of the permafrost is ice-rich 



  

3 

 

(Mackay, 1983; Burn, 1988) and the melting of ground ice degrades permafrost, which may lead 

to subsidence and accelerate erosion (Mackay, 1970).  In central Alaska, ample permafrost is 

present and is heavily affected by topography and local ecosystems. In addition, the degradation 

of permafrost is also caused by increased near-surface air temperature and change as winter snow 

thickness. Anthropogenic activities such as the removal of vegetation for infrastructure 

construction are most fundamental factors that lead to the degradation of permafrost (Beck et al., 

2015; Everdingen, 1998). Also, there are modified models were developed and POP models were 

validated with permafrost field observation data contain permafrost presence and absence within 

less than one-meter depth. There are total of 414 field observations that were collect from 1994 

to 2012. 

The most important factor of permafrost degradation is active layer thickness (ALT). The 

ALT is the uppermost layer of permafrost that undergoes thawing in summer and freezing in 

winter. Its thickness fluctuates spatially and temporally (Harris et al., 1988; Muller, 1947; Brown 

et al., 2000). The ALT plays an important role in permafrost and surficial processes such as 

ecology and hydrology of permafrost (Liu et al., 2010). The ALT is the rooting zone for plants 

and acts as a seasonal aquifer for near-surface ground water (Burn, 1998). The depth of ALT 

greatly varies from a few centimeters to tens of meters, depending on local climatic conditions, 

thickness of organic layer present, vegetation type, and snow distribution during the winter, and 

the amount of ground ice (French and Shur, 1977). 

1.2 Research Statement 

Existing studies have focused and investigated the degradation of permafrost resulting 

from global climate change and various anthropogenic activities such as land conversion for 

infrastructure development and industrialization (Houghton et al., 1996; Osterkamp, 1983; 
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Smith, 1983; Anisimov, 1989; Zoltai and Vitt, 1990; Anisimov and Nelson, 1996; Nelson et al., 

1993; Schuur et al., 2009; Osterkamp et al., 1994). Donnelly Training Area (DTA) is one of the 

heavily disturbed areas in terms of anthropogenic activities in Alaska, which is also impacted by 

global climate change that might have resulted in permafrost degradation. The US Army 

performs testing and training activities that alter DTA and its surrounding environment. There is 

a strong need to monitor the dynamics of permafrost in DTA.  

There are two methods for monitoring the dynamics of permafrost at regional scales. The 

first one is the use of InSAR images to estimate surface deformation-including uplifting and 

subsidence (Alasset et al., 2010; Zhang et al., 2019; Strozzi et al., 2018; Manandhar, 2019). 

However, this method is costly since it requires purchasing costly InSAR images in addition to 

the algorithmic and computational complexity. The second method is the use of optical images 

(Wang, 2017; Wang 2008; Yaya et al., 2018). This second method is cost-efficient compared to 

the use of InSAR because the optical images can freely be downloaded. However, there have 

been only few reports (Dagurov and Chimitdorzhiev, 2005). Wang (2017) first time used optical 

images to map permafrost presence in Qinghai-Tibet Plateau and found that elevation, SMI, 

NDVI and albedo were the major driving factors. However, they might not work well in DTA of 

Alaska because of different environment. Moreover, other optical image derived spectral indices 

and environmental variables may also significantly contribute the improvement of mapping 

permafrost presence in DTA. This study will thus concentrate on identifying the main factors or 

predictors and then mapping the permafrost of DTA using the predictors from optical images 

with a combination of other auxiliary attributes such as elevation, slope, and aspect derived from 

a digital elevation model (DEM).  
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1.3 Objectives and Research Questions  

The major objective of this study is to develop a method of mapping permafrost using 

Landsat images and identify the major factors that affect the mapping accuracy. The research 

questions are as follow: 

Research Question 1: What are the important predictors that significantly improve 

mapping the presence of permafrost in DTA? 

Research Question 2: How does the permafrost vary spatially in the study area?   

1.4 Significance of the Study 

This work will add on to already available knowledge and skills on permafrost mapping, 

landscape change, and different factors that account for permafrost accumulation and 

degradation. It will help understand the long-term change of permafrost in Alaska. Expectedly, 

the results of this study will act as a baseline for further research and help planners and policy 

decision-makers to reduce the degradation of permafrost in DTA. In addition, it is also expected 

that the results can be used for understanding the process and prospects of climate change.   
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CHAPTER 2 

 LITERATURE REVIEW 

2.1 Permafrost Distribution in Northern High Latitudes and its Degradation 

There is a permafrost area of 25.5 million hectares (including glaciers) that occupies 

about 23% of the land in the Northern Hemisphere. Specifically, permafrost covers about 80% of 

Alaska including continuous (30%), discontinuous (31%), sporadic (8%), insolated permafrost 

(10%), and ice sheets (4%) (Jorgenson et al., 2001; Zhang et al., 1999; Brown et al., 1997; 

Brown and Haggerty, 1998).  Permafrost is an indispensable component of many Northern 

Hemisphere ecosystems that support the land surface, modifies topography, and affects land 

surface temperature and moisture, subsurface hydrology, rooting zones, and different nutrient 

cycling (Brown and Grave, 1979; Van Cleve and Viereck, 1983). Permafrost is sensitive to 

climate change directly through land surface temperature, air temperature, snow cover, moisture, 

and soil, and indirectly through human turmoil with positive and negative feedbacks (Brown and 

Grave, 1979; Nelson et al., 2001; Jorgenson et al., 2010).  

Permafrost degradation can be influenced by climatic factors in different regions or by 

surface changes at local and regional scales (Czudek and Demek, 1970; Shur and Osterkamp, 

2005). Most studies have mainly focused on the effects of expanded air temperature on 

degradation of permafrost worldwide (Smith, 1983; Anisimov, 1989; Zoltai and Vitt, 1990; 

Anisimov and Nelson, 1996; Nelson et al., 1993). The air temperature in the northern latitudes 

has increased about twice the rate of global mean and is projected to increase further for the 21st 

century (Arctic Climate Impact Assessment (ACIA, 2004). Climate warming increases ground 

temperature, thickening of the active layer which refers to a layer or body of unfrozen ground 

occurring in permafrost regions due to a local anomaly in thermal, hydrological, hydrogeological 
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or hadrochemical conditions as described by Van Everdingen (1998/2005), and thawing of 

permafrost (Vaughan et al., 2013). These physical changes affect different infrastructure 

foundations, hydrology, ecosystems, and overall environment feedbacks (ACIA, 2004). 

Permafrost-related threats include floods, mass movement, thaw and frost heave. Climate change 

leads to degradation of permafrost, poses adverse effects on water availability, land subsidence, 

tourism, and land-related socio-economic consequences (Burger et al., 1999; Nelson et al., 2002; 

Ford and Smit, 2004) or global scale problems like methane emission from thawing permafrost. 

Continuous permafrost in the Subarctic has been considered stable due to the much lower mean 

annual temperature (i.e. -12 0C to 6 0C (Jorgenson et al., 2001; Halsey et al., 1995)).  

Permafrost monitoring and mapping using remote sensing techniques in high latitudes 

and cold mountains have been used for long (Kääb, 2008; Burger et al., 1999; Nelson et al., 

2002; Ford and Smit, 2004). Hazards developments and process interactions chain have been 

ongoing a shift due to atmospheric warning. Kääb et al. (2008) have studied permafrost-related 

problems and hazards by applying ground-based, airborne and spaceborne remote sensing 

methods. Digital terrain models (DTMs) were developed from optical stereo, synthetic aperture 

radar (SAR), and laser scanning were used for investigating permafrost related mass movement 

(Harris, 2005; Kääb et al., 2005). Accurate and detailed hazards map permafrost with high-

resolution space-borne methods have also for long been applied. This study only applied the 

short-term forecasting of events. This permafrost hazards study requires knowledge about the 

potential processes (Davies et al., 2006).  

The degradation of Arctic zone of continuous permafrost due to abrupt increase of mean 

annual temperatures. The degradation of ice wedges in northern Alaska indicates the great 

degradation of permafrost. Jorgenson et al. (2006) evaluated the degradation of ice wedges by 
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applying field surveys, photo interpretation of a time-series of aerial photography, and spectral 

characteristics of 1945 and 2001 photography with image-processing software. The study by 

Jorgenson et al. (2006) revealed the abrupt increase of ice-wedge degradation since 1945, which 

is beyond the normal rates of change in landscape evolution. This study only quantified recent 

thermokarst in relatively small areas 

The study was conducted on the Tanana Flats in Central Alaska and revealed that 

permafrost degradation is widespread and rapid causing large shifts in ecosystems. This abrupt 

degradation of permafrost has mainly been as a result of increased air temperatures (Smith, 1983; 

Anisimov, 1989; Zoltai and Vitt, 1990; Anisimov and Nelson, 1996; Nelson et. al., 1993). This 

study was carried out by collecting field surveys. The area maximized the range of possible 

permafrost and vegetation conditions and the surface measured along each transect with auto-

level rod. Next was sampling points representing the varieties of ecosystems, soil-stratigraphy 

using the standard methods (Jorgenson et al., 1999). Another method employed was an 

integrated terrain unit approach for ecosystem classification and mapping that includes separate 

classification of geomorphology and vegetation. The final method was change detection where 

permafrost degradation was performed by interpreting the aerial photographs. The radiocarbon 

dating of the organic material from the base of the peat and tree coring was collected using Beta 

Analytic, Inc. Wood and peat samples underwent radiocarbon dating. Historical data from mean 

annual temperature and winter accumulative total snowfall was also collected (ACRC, 1999; 

D’Arrigo and Jacoby, 1993). 

Regional scale permafrost mapping in Mackenzie region in Canada by use of TTOP 

ground temperature model presented an explicit formulation of climate-permafrost which 

influence climate, terrain and lithologic factors on the temperature condition and distribution of 
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permafrost (Smith and Riseborough, 1996; Henry and Smith, 2001). The TTOP model links the 

ground temperatures to the atmospheric temperature regime with seasonal variations (Lunardini, 

1981). The study by Pilon et al. (1991) utilized the TTOP model for regional/sub-regional 

permafrost modelling and mapping. The TTOP model was calibrated correctly and predicted the 

occurrence of permafrost at 134 of 154 borehole sites (Pilon et al., 1991). The TTOP model 

predictions of presence/absence of permafrost was 85%.  TTOP model predicted better result for 

presence/absence of permafrost based on climate and terrain factor and ground temperature; 

however, TTOP is not fully success due to various factors such as boreholes data, vegetation 

classes, high topographic influences on local slope and aspect and regional elevation (Pilon et al., 

1991).  

Permafrost contains about twice as much carbon as the atmosphere (Zhang et al., 1999; 

Zimov et al., 2006). These carbon quantities stored in frozen soils can be released into the 

atmosphere anytime due to warming-induced permafrost degradation, which is further enhanced 

by warming climate (Hodgkins et al., 2014; Hollesen et al., 2015; Schuur et al., 2015). 

Degradation of permafrost regions shifted from being a sink to a source of CO2 by the end of the 

21st century (Koven et al., 2011). Significant research examining vegetation-derived spatio-

temporal response for climate change, permafrost degradation, land surface temperature from 

satellites images, and land surface models should be conducted to map the permafrost (Kim et 

al., 2014; Li et al., 2012; Zhang et al., 2003).  

Growth of remotely sensed information and their progress from terrestrial vegetation 

indices can provide extremely useful applications in environmental monitoring, biodiversity 

conservation, urban green infrastructure, forestry, agriculture, and related fields (Mulla, 2013). 

Remote sensing-derived vegetation is mainly conducted by obtaining the electromagnetic wave 
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reflectance information from canopies using different sensors. The reflectance of light spectra 

from vegetation changes with vegetation type, water content within tissues and other intrinsic 

factors (Chang et al., 2016). The remotely sensed image-derived vegetation is based on the 

ultraviolet region which range from 10 to 380 nm and the visible spectra, and is composed of 

blue (450-495 nm), green (495-570 nm), and red (620-750 nm), and near to mid infrared band 

(850-1700 nm) (Bin et al., 2016; Gruden et al., 2012). Image-derived vegetation indices as well 

as other indices and band 10-TIRS I (10.6-11.19 nm) and band 11-TIRS II (11.50-12.51 nm) of 

Landsat 8 OLI/TIRS were used for calculation of LST.  

2.2 Mapping Methods for Permafrost  

There is a lot of literature on permafrost mapping that needs to be taken into attention 

when developing a methodology that proposes to solve the spatial distribution of permafrost in 

DTA by using remotely sensed data. Yaya et al. (2018) used permafrost influencing factors such 

as DEM, SMI, NDVI, LST, and albedo generated from remotely sensed data to map the presence 

and absence of permafrost regions and seasonally frozen ground. They used the decision tree 

method with other environmental factors to generate a 1 km resolution permafrost map, which 

was later compared with the maps generated from traditional methods using field surveys. The 

result showed that the map generated using remotely sensed data had a higher accuracy than 

those from traditional methods. The mapping accuracy was 85.76% with kappa statistics of 0.71.  

In this research, computed regression relationship of permafrost distribution and other 

influencing factors (elevation, LST, NDVI, SMI, albedo) were analyzed by Wang (2009). The 

results indicated that the correlation coefficients of four factors (that is elevation, LST, NDVI, 

and SMI) gave the highest accuracy and indicated that elevation is a governing factor. This 

method supported the mapping of permafrost by use of certain factors which were good for the 
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results. The main drawback is that the images used are low resolution and high-resolution images 

are recommended for better results (Schober et al., 2018.; Wang, 2009). Permafrost distribution 

study based on GIS and Remote Sensing by Wang (2017) selected model factors (elevation, 

SMI, NDVI, albedo) that were used in multivariate analysis models and mapped the permafrost 

presence and absence in Qinghai-Tibet Plateau. This model gives the probabilities of permafrost 

present in the specified areas. Finally, this method did a comparison of simulation results of 

permafrost mapping with a published permafrost map, ground temperature inversion model, 

multivariate analysis model, elevation model, and frost number model had relative error 16.7%, 

1.98%, 17.6%, and 10.9% respectively (Wang, 2017; Wang, 2009; Yaya et al., 2018). The main 

benefits for this study was well-mapped for the distribution of permafrost with the remotely 

sensed data. The main drawbacks for this study was unable to address more factors. There are 

more factors also influential factors for the distribution of permafrost. This study had high 

relative error (Wang, 2009; Wang, 2017).    

Other studies that conducted permafrost mapping and its degradation assessment due to 

climate change were by Jorgenson et al. (2006), Zhang et al. (2014), and Wright et al. (2003). 

The use of one or more combination of field surveys, satellite images and aerial 

photointerpretation, spectral characteristics of aerial photography, NEST model (inputs: satellite 

images, field data, LULC types, ground types), TTOP ground temperature model. All these 

models have produced better results for permafrost mapping in the high latitudes.  

There are variety of methods that have been used to assess uncertainty. Generally, these 

uncertainties can be tracked as they propagate the methods and develop new methods that 

reduces the uncertainties. These mentioned methods use remotely sensed images and different 

vegetation indices are not enough for the research for the distribution of permafrost. To 
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overcome this drawback addition of more factors and more vegetation indices for the mapping 

distribution of permafrost in DTA in this study.  

2.3 Remote Sensing Imagery-Derived Vegetation Indices and Factors Affecting  

       Permafrost Distribution 

2.3.1 Normalized Difference Vegetation Index (NDVI) 

The NDVI is an indicator to quantify the greenness of plants within certain geographical 

areas. It allows enables easy measurement of relative biomass, health of the plants, and indirect 

measurement of climatic conditions (Lillesand, 2015). The absorption of chlorophyll in Red band 

and reflectance of vegetation in NIR are high (ESRI). Lillesand (2015) stated NDVI as “An 

NDVI is often used worldwide to monitor drought, monitor and predict agricultural production, 

assist in predicting hazardous fire zones, and map desert encroachment. The NDVI is preferred 

for global vegetation monitoring because it helps to compensate for changing illumination 

conditions, surface slope, aspect, and other extraneous factors”. Among the several vegetation 

indices, the most frequently used vegetation index is the NDVI (Rouse et al., 1973). Mostly 

satellite data has been used to calculate NDVI.  

2.3.2 Albedo 

In the frame of glacier mass balance modeling, albedo is defined as “the ratio of the 

reflected flux density to the incident flux density, usually referring either to the entire spectrum of 

solar radiation (broadband albedo) or just to the visible part of the spectrum. Spectral albedo is 

the albedo at single wavelengths or, more loosely, over a narrow range of wavelengths” (Cogley 

et al., 2011). The total radiation plays an important role in biophysical processes that involve the 

exchange of energy and mass in the planetary boundary layer and constitutes the main energy 

source in the heating of soil, air, and plant evapotranspiration (Cruden et al., 2012; Silva et al., 
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2005a; Wang & Davison, 2007; Giongo et al., 2010; Lopes et al., 2013; Souza et al., 2014). 

Albedo is one of the many parameters used in studying surface energy budget, weather forecast, 

and many other climatic models such as general circulation model. It is critical for geographical 

parameter and widely used to study in surface energy budget, weather forecast, and general 

circulation models (Dickinson, 1983). Santos et al. (2015) stated that the radiation balance has 

huge relevance in the process of air-soil heating, photosynthesis, and evapotranspiration. Albedo 

in glaciers determines the amount of energy absorbed by snow/ice surfaces throughout the year. 

It is important in high latitudes because it balances surface energy. It has been hypothesized that 

the positive feedback between the changes in surface albedo is associated in snow and ice 

conditions (i.e., thickness, distribution, and wetness) (Kellog 1975; Shine and Henderson-Sellers 

1985; Curry et al. 1995). 

2.3.3 Land Surface Temperature (LST) 

The LST is the temperature of the surface that is measured with direct contact to the 

measuring instrument. This is also called the skin temperature of the land surface. The LST 

varies from place to place as well as seasons and different climatic conditions. Mostly, it is found 

to be varied spatially due to non-homogeneity of land cover and other atmospheric factors (Janak 

et al., 2012). It has also a great implication in climate. Anthropogenic activities play an important 

role in changing the land surface temperature. Thus, LST is an essential factor in many areas like 

global climate change, land use/land cover, geo-biophysical, and input for climate models (Joshi 

et al., 2012).  

Different techniques such as split window technique and single channel technique have 

been developed to calculate the land surface temperature from satellite images using the 
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brightness temperature (Janak et al., 2012; Juan et al., 2914; Sun et al., 2010; Juan-Carlos et al., 

2008; Rajeshwari & Mani, 2014; Xiaolei et al., 2014; Meijun et al., 2015; Offer et al., 2014).  

2.3.4 Soil Moisture Index (SMI) 

Soil moisture is the amount of water contained in soil. Soil moisture has an important role 

in global energy balance, water cycle, and different natural and physiological processes (Mallick 

et al., 2009; Patel et al., 2009; Vicente et al., 2004). Soil moisture acts as the linkage between 

hydrological cycle (water) and ecological regime (plants). Interaction between soil-air coupled 

systems by soil moisture is a most basic phenomenon (Sellers & Schimel, 1993). Land-air 

coupled system that affects local to regional climate change through energy and water transfers 

(Skukla et al., 1982; Skukla et al., 1990). Remote sensing technologies widely estimates the soil 

moisture by using LST and NDVI (Lambin & Ehrlich, 1996).  

Several physical and statistical models are used to compute soil moisture. The most well-

known physical model for soil moisture is Advanced Integral Equation Model (AIEM) that 

simulates the radar backscattering coefficient from SAR and various soil parameters (i.e. radar 

wavelength, polarization, incident angle, soil dielectric constant, and surface roughness) (Chen et 

al., 2003). Importantly, there are several statistical models that are used to estimates soil moisture 

developed by Oh et al., and they include the inversion diagram based on the cross-polarized ratio 

(Y. Oh, 2004; Oh et al., 1992; Oh et al., 2002).  

2.3.5 Normalized Difference Snow Index (NDSI)  

Snow is the most basic global and meteorological aspect because it plays a significant 

role in influencing heat regime in local, regional, and global radiation balance. Snow also 

changes soil characteristics, plant composition, plant community and its structure (Darmody et 

al., 2004; Löffler 2005). In addition, it is one of the important components of the hydrological 
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cycle and considered as a major source of fresh water globally (Brown 2000; Yang et al., 2003 & 

2010; Zhou and Li 2003; Tong and Velicogna 2010). Snow affects several soil parameters like 

temperature, moisture, biological activity, soil permeability, and carbon sequestration (Monson 

et al., 2006; Isard et al., 2007).  The NDSI is computed by dividing the difference of reflectance 

in the Landsat 8 green band (0.53-0.59μm) and the shortwave infrared (1.57-1.65μm). The NDSI 

threshold of greater than 0.4 is the presence of snow (Hall et al., 1995; Kulkarni et al., 2006; 

Xiao et al., 2002). Commonly, field surveys data have been used to develop snow maps (Brown 

and Braaten 1998). Generating snow maps using field data is expensive, time consuming, and 

tedious. So, remotely sensed datasets are becoming popular during these days, which are open 

source, freely available, less time consuming, and less expensive (Foody, 2002; Gillanders et al., 

2008).  

2.3.6 Normalized Difference Water Index (NDWI) 

Water is an essential component of ecosystem balance for the sustainability of life on the 

Earth. Water balances the whole ecosystem and maintains the carbon cycle, climatic variations, 

etc. It is very important for human and other forms of life that helps to increase the forest and 

grassland and fluctuation of water amount can affect the land use system (Rover et al., 2012; 

Alsdorf et al., 2007). Availability of water is conducted by determining the productivity of land, 

hydropower energy, and irrigation (Wang et al., 2004). The NDWI is the most important and 

widely used index in measuring how much water is present on the ground. It is a satellite derived 

index from NIR and SWIR which reflects the water content on land and vegetation canopies, and 

helps to monitor the drought conditions (Gao, 1996). 
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2.3.7 Normalized Difference Built-Up Index (NDBI) 

Aerial photo and satellite images have become an extensively available source of data for 

mapping and monitoring land use and land cover change in recent decades. Due to the rapid 

change of land from forest, agriculture, and bare land turned into urbanization. Data acquired 

from remote sensing to provide accurate information clues about landscape characteristics and 

changes into urban areas (Zha et al., 2003). Some of the researchers used Landsat 8 imagery and 

calculated NDBI by applied Dry-Built-Up Index (DBI) and Dry Bareness Index (DBSI) (As-

syakur et al., 2012; He et al., 2010; Bhatti et al., 2014; Faisal et al., 2016). This gives the NDBI 

in urban areas and bare soil gives low accuracy due to high intensity of homogeneity (Syakur et 

al., 2012).   

2.3.8 Digital Elevation Model (DEM) 

The DEM continuously details the elevation and roughness of the Earth surfaces (cf. 

Evans, 1972; Dikau et al., 1995; 2000) and affects spatial distribution of temperature, vegetation 

and soil. The thickness of active layer thus varies greatly depending on elevation.  
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CHAPTER 3 

STUDY AREA AND DATASETS 

3.1 Study Area 

Donnelly Training Area (DTA) is located about 172 kilometers Southeast of Fairbanks, 

North Star, and west side of Southeast Fairbanks. The total area of DTA is 1,009 Sq. miles. It is 

bordered by Alaska Range on the south and Fairbanks North Star and Yukon Flats on the north, 

east, and west (see Figure 3.1 below), which are mostly open land. The southern and western 

areas of DTA are characterized by steep uplands and alpine environments. This area is bisected 

by deep streams and wetter lowland environments. The most northern part is characterized by 

open lowland forests and wetlands (see Figure 3.1).  
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Figure 3.1: Location map of the study area shown by a Landsat 8 OLI (color composite red, 

green, and blue: 4, 3, and 2). 

According to national land cover database (NLCD, 2016), the major land covered in the 

study area is dominated by open water, perennial ice/snow, low to high-developed intensity, 

woody wetlands, some grasslands, shrub, and deciduous to evergreen forest described in Multi-

Resolution Land Characteristics (Figure 3.2 below) (https://www.mrlc.gov/data). 

https://www.mrlc.gov/data
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Figure 3.2: Land Cover in Donnelly Training Area (NLCD, 2016). 

The nearest weather station is located in the Fairbanks Alaska, which is northwest of the 

study area. Average monthly temperature for the years 2014 to 2018 was downloaded from 

Western Regional Climate Center (https://wrcc.dri.edu/). The maximum recoded monthly 

temperature from 2014 to 2018 is 64.38 °F while the minimum temperature is 10.64 °F. The 

monthly average temperature trend from 2014 to 2018 shows normal distribution. The study area 

depicts the short summertime and has a long cold winter (see Figure 3.3 below). 

https://wrcc.dri.edu/
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Figure 3.3: Average Monthly Temperature in Fairbanks, Alaska from 201-2018 (Source:  

      Western Regional Climate Center). 

The total precipitation was also downloaded from Western Regional Climate Center from 

2014 to 2018 showing the maximum total precipitation as 135.85 millimeter on October 2017 

with the lowest being 0 millimeter, which occurred in many months in every year from 2014 to 

2018. Precipitation has varied greatly from 2014 to 2018 (Figure 3.4). 

 

Figure 3.4: Monthly precipitations in Fairbank, Alaska from 2014-2018 (Source: Western  

       Regional Climate Center). 
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3.2 Datasets 

3.2.1 Landsat Images  

In this study, Landsat 8 OLI/TIRS Level-1 datasets of paths 67 and 68 with row15 were 

downloaded from the USGS Earth Explorer website (https://earthexplorer.usgs.gov/) (Figure 

3.5). The temporal range of dataset varies from January 2014 to December 2018 (Table 3.1). The 

geographic projections of datasets were WGS 1984_UTM_Zone_6N. The data used in this study 

were cloud cover less than 10% of each row and path. The Landsat 8 OIL/TIRS consists of 11 

bands. The spatial resolutions of band 1 through 7 and 9 are 30 meters, bands 10 and 11 are 100 

meters, and band 8 is 15 meters. The details of Landsat 8 OIL/TIRS are shown in Table 3.2 

below.  

Table 3.1: Landsat datasets were used with different periods. 

Dates January 

 

February March 

 

April 

 

May June July August  September October November December 

2014 X X X X X X   X  X  

2015  X  X X X  X     

2016   X    X X  X, X X  

2017 X X  X X        

2018  X  X     X X   

 

 

 

 

 

 

 

https://earthexplorer.usgs.gov/
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Table 3.2: Summary of band designations and pixel size for Landsat 8 Satellite Sensor.  

Landsat 8 OLI/TIRS 

Wavelengths 

(Micrometers)  

Pixel Size 

(m) 

Band I – Ultra Blue (coastal/aerosol) 0.43-0.45 30 

Band 2 – Blue 0.45-0.51 30 

Band 3 – Green 0.53-0.59 30 

Band 4 – Red 0.64-0.67 30 

Band 5 – Near Infrared (NIR) 0.85-0.88 30 

Band 6 – Shortwave Infrared (SWIR) I 1.57-1.65 30 

Band 7 – Shortwave Infrared (SWIR) II 2.11-2.29 30 

Band 8 – Panchromatic 0.50-0.68 15 

Band 9 – Cirrus 1.36-1.38 30 

Band 10 – Thermal Infrared (TIRS) I 10.6-11.19 100 * (30) 

Band 11 – Thermal Infrared (TIRS) II 11.50-12.51 100 * (30) 

Note: The table shows each band number and the corresponding wavelength range (in 

parentheses, micrometers).  The exact spectral ranges of each band vary among sensors but are 

comparable for many applications.  This table was adapted from USGS (2017). (Note: TIRS 

Band 10 and Band 11 are acquired at the 100-meter spatial resolution but are resampled to 

30 meters in data product). 
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Figure 3.5: Landsat 8 images acquired in different years (2014 to 2018) (color composite red, 

green, and blue: 4, 3, and 2). a) Color composite image of January 30th, 2014, b) 

Color composite image of April 23rd, 2015, c) Color composite image of March 

24th, 2016, d) Color composite image of January 22nd, 2017, and e) Color 

composite image of February 10th, 2018 (Source: https://earthexplorer.usgs.gov/).  

3.2.2 Geologic Characteristics of the Donnelly Training Area (DTA) 

This Donnelly Training Area is geologically composed of different rock units and soils 

such as Augen gneiss, coal-bearing sedimentary rocks, some granitic rocks, pelitic quartzite, 

unconsolidated surficial deposits, and Nenana Gravel (Hults et al., 2015). Predominantly, DTA 

area is covered by Nenana Gravel. A detailed geological map of the study area is shown in 

Figure 3.6 (top). Digital Elevation Model (DEM) of the DTA was also downloaded from the 

https://earthexplorer.usgs.gov/
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United States Geological Survey (USGS) and elevation ranges from 274.2 to 1877 meters the 

average level of sea as shown in Figure 3.6 (bottom). 

 

Figure 3.6: Geological rock units in the study area (top) and Elevation map of DTA (bottom).  
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 Slope and aspect maps were generated from DEM. The slope of the Donnelly Training 

Area ranges from zero to ~58° (Figure 3.7, Table 3.3). 

 

Figure 3.7: Aspect map of the DTA (top) and Slope map of the DTA area (bottom). 
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Table 3.3: Aspect values from Map.  

Aspect direction Value (°) 

Flat  -1.00 

North 0-22.5 and 337.5-360 

Northeast 22.5-67.5 

East 67.5-112.5 

Southeast 112.5-157.5 

South 157.5-202.5 

Southwest 202.5-247.5 

West 247.5-292.5 

Northwest  292.5-337.5 

 

3.2.3 Permafrost Field Observation Data 

Permafrost field observation data contain permafrost presence and absence within less 

than one-meter depth. There are total of 414 field observations that were collect from 1994 to 

2012 (Pastick et al., 2014). But, the field data are mainly distributed in the south and southwest 

parts of the study area. Figure 3.8 shows the locations of the field data for the permafrost 

presence and absent with a false color composite imager of Landsat 8 OLI bands 6, 5 and 4. 
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Figure 3.8: DTA overlain with presence-absence of near surface (within 1m) permafrost field 

observations and a Landsat 8 OLI (false color composite [red, green, and blue: 6, 5, 

and 4]. 

The active layer thickness (ALT) can be defined as the topmost layer of ground that 

undergoes to annual thawing during the summer and freezing winter in areas underlain by 

permafrost (van Everdingen , 1998). In DTA, ALT has higher values in the southern, south east, 

south west as well as river valley and low in norther part because temperature is higher in 

southern part than in northern part. ALT is highly controlled by surface temperature, physical 

and thermal properties of the surface cover and subsoil, vegetation, soil moisture, duration, and 

thickness of seasonal snow cover (Brown et al., 2000). For ALT validation, an ALT map 

indicating the average ALT values of 2010 to 2019 and developed by Geophysical Institute 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2009JD012974#jgrd16008-bib-0024
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2009JD012974#jgrd16008-bib-0004
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Permafrost Lab (GIPL, 2017) was obtained in 1000 m by 1000 m resolution. The predicted ALT 

values ranged from 0.47 cm to 31.99cm (Figure 3.9).  

 

Figure 3.9: Predicted Active Layer Thickness of 2010 to 2019 and developed by Geophysical 

Institute Permafrost Lab (GIPL, 2017). 
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CHAPTER 4 

METHODOLOGY   

 The methodological flowchart of this study is shown in Figure 4.1 below. The flowchart 

can be distinctly divided three parts: (1) data acquisition and pre-processing, (2) spectral indices 

calculation and analysis, (3) model development, and results and decisions.  
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Figure 4.1: Detail flowchart for the study of permafrost mapping in the Donnelly Training Area.  
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4.1 Image Pre-processing 

Images collected from satellites are affected by different distortions (geometric, 

radiometric, and atmospheric). These images should be corrected (radiometrically, 

geometrically, and atmospherically) and obtain better results (Young et al., 2017). The pre-

processing of satellite images involves sensor calibration, solar correction, and atmospheric 

correction (Figure 4.2). Landsat 8 OLI/TIRS level-1 dataset comprises of quantized and 

calibrated scaled with Digital Numbers (DN) presenting the multispectral data. Landsat 8 

satellite datasets were obtained with the Operational Land Imager (OLI) and Thermal Infrared 

Sensor (TIRS) available in 16-bit unsigned integer format (ARSC, 2002; Chavez et al., 1996; 

NASA, 2013). The obtained Landsat 8 level products with cloud cover less than 10% were 

already geometrically corrected. Thus, in this study the atmospheric correction was conducted. 

4.1.1 Atmospheric Correction of Landsat 8 OLI/TIRS  

The procedure of retrieving surface reflectance by removing path radiance due to 

atmosphere from satellite-measured radiance is called atmospheric correction. Thus, atmospheric 

correction is the process that corrects between atmospheric gases and aerosol, water vapor, ozone 

conditions, atmospheric scattering, and haze (Pandya, 2015).  

Conversion to TOA Radiance (Top of Atmosphere)  

Landsat 8 Level-1 data was converted to TOA spectral radiance rescaling factor using the 

information found in metadata (MTL.txt) file. 

Lλ ≡ ML Qcal + AL                                                                                                                       (4.1) 

where, Lλ = TOA spectral radiance (Watts/ (m2 * srad * μm)) 

ML= Band-specific multiplicative rescaling factor from the metadata 

(RADIANCE_MULT_BAND_x, where x is the band number) 
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AL  = Band-specific additive rescaling factor from the metadata (RADIANCE_ADD_BAND_x, 

where, x is the band number) 

Qcal = Quantized and calibrated standard product pixel values (DN)  

(Source: U.S. Geological Survey (https://landsat.usgs.gov/using-usgs-landsat-8-product).  

Conversion to TOA Reflectance   

Landsat 8 Level-1 data reflective band DN’s was converted to TOA reflectance rescaling 

factor using information found in metadata (MTL.txt) file.  

ρλ′ =  MρQcal + Aρ                                                                                                                    (4.2)  

where,  

ρλ′  = TOA planetary reflectance, without correction of solar angle. (m2 * srad * μm) 

Mρ= Band-specific multiplicative rescaling factor from the metadata 

(REFLECTANCE_MULT_BAND_x, where x is the band number) 

Aρ= Band-specific additive rescaling factor from the metadata 

(REFLECTANCE_ADD_BAND_x, where x is the band number) 

Qcal = Quantized and calibrated standard product pixel values (DN)    

TOA reflectance with correction of sun angle is then: 

Again, TOA with angle correction and sun angle was used from metadata using the following 

equation 

ρλ =  
ρλ′

cos ( θSZ)
=  

ρλ′

sin (θSE) 
                                                                                                               (4.3) 

where, 

θSE = Local sun elevation angle. The scene center sun elevation angle in degrees is provided in 

the metadata (SUN_ELEVATION). 

𝜃𝑆𝑍 = Local solar zenith angle; 𝜃𝑆𝑍= 90°-𝜃𝑆𝐸  

https://landsat.usgs.gov/using-usgs-landsat-8-product
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𝜌𝜆′= TOA planetary reflectance or final atmospheric correction. 

 

 

 

 

 

 

 

Figure 4.2: Correction processes and units for pre-processing remotely sensed imagery (Young 

et al., 2017). 

 

4.2 Calculation of Different Optical Remote-sensing Indices from Landsat 8 OLI/TIRS  

The following are the remote sensing indices (factors) which will be used to study the 

permafrost in DTA.  

4.2.1 TOA to Brightness Temperature (BT) Conversion 

Calculation of brightness temperature (BT) conversion was performed using metadata 

available while downloading the Landsat 8 OLI/TIRS (NASA, 2008; Artis and Carnahan, 1982). 

T =
K2

ln(
K1
Lλ

+1)
                                                                                                                               (4.4) 

where, T = Top of atmosphere brightness temperature (K) 

Lλ= TOA spectral radiance (Watts/ (m2 * srad * μm)) 

K1 =Band-specific thermal conversion constant from the metadata (K1_CONSTANT_BAND_x, 

where, x is band number 
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K2 = Band-specific thermal conversion constant from the metadata 

(K2_CONSTANT_BAND_x, where x is band number (NASA, 2008: Artis and Carnahan, 

1982).  

4.2.2 Normalized Difference Vegetation Index (NDVI) 

For the calculation of NDVI, Landsat 8 OLI/TIRS, bands 4 and 5 were used. NDVI 

enables calculation of relative biomass. The NDVI is used to study drought, agricultural 

production, and predicting hazards (Lillesand, 2015). Initially, NDVI was calculated for each 

acquired Landsat 8 data mentioned in table 1. For the calculation of NDVI, the following 

equation was used:  

NDVI = (NIR - RED) / (NIR + RED) 

NDVI =  
(TMT5 − TM4 )

(TMT5 + TM4 )
                                                                                                                         (4.5) 

4.2.3 Proportion of Vegetation (Pv) 

The proportion of vegetation was calculated from the NDVI which was already 

calculated in equation 4.4. The proportion of vegetation gives the idea about the area that is 

predominantly vegetation and also indicates the area with less or no vegetation. The proportion 

of vegetation (Pv) was calculated using the following equation:  

Pv = ((NDVI – NDVImin) / (NDVImax – NDVImin)) 2                        (4.6) 

where NDVImin is the minimum value from NDVI while NDVImax is the maximum value 

calculated from NDVI.  

4.2.4 Land Surface Emissivity (ɛ) 

Land surface emissivity (LSE) was derived from the proportion of vegetation utilizing 

constant numbers as described by Rajeshwari and Mani (2014). Emissivity is denoted by ɛ 

(Sobrino et al., 2001 & 2005). While LSE is calculated by the following equation: 
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Emissivity (ɛ) =0.004 * Pv + 0.986                                        (4.7) 

Where Pv is the proportion of vegetation. 

4.2.5 Land Surface Temperature (LST) 

Land surface temperature (LST) is directly related to the surface energy and hydrological 

balance. The land surface temperature is very important in climate change, hydrological cycle, 

urban climate, and vegetation monitoring (Chapin et al., 2005; Kalnay et al., 2003; Ramanathan 

et al., 2001; Wan et al., 2004). In this study, Landsat 8 TIRS thermal bands 10 and 11 were used 

to calculate the LST. For the calculation of LST, brightness temperature of band10 and 11, land 

surface emissivity, and center wavelength of emitted radiance from bands 10 and 11 were 

followed (Jiménez-Muñozet al., 2014; Artis and Carnahan, 1982).  

LST =
BT

1+(λ
BT

ρ
) ln(ɛ)

                             (4.8) 

where BT = Brightness Temperature  

 ɛ = Land Surface Emissivity  

λ = wavelength of emitted radiance. For Landsat 8 OLI/TIRS, λ for band 10 is 10.8 and λ for 

band 11 is 12.00 (Weng et al., 2004).  

ρ = h * c/kB (1.438 * 10-2 m K)  

h = Planck’s constant (6.626 * 10-34 Js)  

c = velocity of light (2.998 * 108 m/s)  

kB = Boltzmann constant (1.38 * 10-23 J/K) 

4.2.6 Albedo  

 Albedo plays an important role in capturing or reflecting the air temperature from the 

land surface. Increased temperature changes ice or snow cover of the land and has a huge 

positive feedback in climate (Kellog, 1975). Albedo was calculated using the following equation:  
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α  = 
0.356b1  + 0.130b3 + 0.373b4  + 0.085b5  + 0.072b7 −0.0018 

0.356  +0.130  + 0.373 +0.085+0.072
                                                                      (4.9)            

where α is albedo and  

b1, b3, b4, b5, and b7 are respective bands of Landsat 8 OLI and TIRS (Liang, 2001). 

4.2.7 Soil Moisture Index (SMI) 

Soil moisture is a critical component for life, environment, energy-chemical cycles, 

runoff, evapotranspiration, erosion, and weathering (Wood, 1997; Rozenstein et al., 2014; Hill, 

Do., 1980; Delworth et al., 1988). SMI can be derived from LST or in combination with LST and 

NDVI as shown in the following equations:   

SMI =  
Tsmax − Ts

Tsmax − Tsmin

                                                                                                                           (4.10) 

where, Tsmax and Tsmin are the maximum and minimum surface temperature for a given soil 

moisture index data. The SMI is calculated by using the NDVI and LST as follow: 

SMI =  
1.1482 ∗NDVI−Ts+164 .74

−2.2033∗NDVI+211.769
                                                                                                           (4.11) 

where NDVI: Normalized Difference Vegetation Index and Ts: Land Surface Temperature 

(LST). 

4.2.8 Normalized Difference Snow Index (NDSI)  

Snow is a valuable source of fresh water and the most important component of the 

hydrological cycle (Brown, 2000; Yang et al., 2003; Zhou and Li, 2003; Tong and Velicogna, 

2010). In this study, NDSI was calculated using green and SWIR bands of Landsat 8 OLI/TSIR 

using following equation:  

NDSI =  
Green −  SWIR 

Green +  SWIR 
                                                                                                                    (4.12) 

i. e.NDSI =  
Band3 −  Band6 

Band3 +  Band6 
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where SWIR (short wave near infrared) or band 6 in Landsat 8 and Green band or band 3 of 

Landsat 8.  

According to Hall et al. (1995), Xiao et al. (2002), and Kulkarni et al. (2006), the 

threshold value for snow is 0.4. Lower than 0.4 in the region indicates absence of snow and 

index value greater than 0.4 indicates presence of snow.  

4.2.9 Normalized Difference Built-up Index (NDBI) 

The NDBI is an important index that indicates the intensity of the urbanization. This 

index can be calculated using SWIR and NIR bands of any multispectral images using the 

following equation:  

NDBI =  
SWIR − NIR 

SWIR +  NIR 
                                                                                                                         (4.13) 

i. e.NDBI =  
Band6 − Band5 

Band6 +  Band5 
 

4.2.10 Normalized Difference Water Index (NDWI) 

The NDWI is an important index that contains water or moisture in the area. This index is 

calculated using green and NIR bands of any multispectral images the following below equation:   

NDWI =  
GREEN − NIR 

GREEN +  NIR 
                                                                                                                   (4.14) 

i. e. NDWI =  
Band3 − Band5 

Band3 +  Band5 
 

4.2.11 Simple Ratio (SR) 

The SR is the inverse relationship between the red and near-infrared reflectance of the 

healthy vegetation. This is the most basic vegetation index (Cohen, 1991; Birth and McVey, 

1968). This gives important information about the vegetation biomass or LAI (Haeberli et al., 

2002). It is calculated by using the RED and near-infrared bands of Landsat 8 OLI.  
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 SR =  
RED

NIR
                                                                                                                                   (4.15) 

i. e. SR =  
Band4

band5
 

4.2.12 Soil Adjusted Vegetation Index (SAVI) 

The monitoring of the phenological pattern of the Earth’s vegetated surface tells the 

length of the growing season and dry-down period (Huete and Liu, 1994). The SAVI is basically 

incorporated with soil background and atmospheric adjustment factor. The following formula is 

used to calculate SAVI: 

SAVI =  
NIR − RED

NIR + RED 
(1 + L)                                                                                                               (4.16) 

where, L is the canopy adjustment factor that depends on the vegetation proportional as well as 

vegetation density. For bare soil, L is one and dense vegetation is zero. In this case, L is 

considered as zero.  

i. e. SAVI =  
Band5 −Band4

band5 +Band4
(1 + 0)                                                                                                        (4.17) 

4.2.13 Enhanced Vegetation Index (EVI) 

The EVI is very similar to NDVI. This quantifies the vegetation greenness. This corrects 

canopy noise and is more sensitive to dense vegetation (Jiang et al., 2008). The EVI is calculated 

as  

EVI = 2.5
(NIR−RED)

(NIR+2.4 RED+1)
                                                                                                                     (4.18)  

i. e. EVI = 2.5
(Band5 − Band4)

(Band5 + 2.4 Band4 + 1)
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4.2.14 Normalized Burn Ration (NBR) 

The NBR is the most widely used vegetation index for mapping of the burn severity 

(Brewer et al., 2005). It is used for the fire map in fire-affected areas using post fire-image. 

𝑁BR =  
NIR−SWIR

NIR+SWIR
                                                                                                                                   (4.19) 

i. e. NBR =  
Band5 − Band6

Band5 + Band6
 

4.2.15 Triangular Vegetation Index (TVI) 

 The triangular vegetation index was developed by Borge and Leblanc (2000). It describes 

radiative energy absorbed by pigments as a function of relative difference between red and near-

infrared reflectance. The TVI area as triangle is defined in the green peak. It is calculated as 

follows:  

TVI =
1

2
(120(NIR − GREEN)) − 200(RED − GREEN)                                                              (4.20) 

i. e. TVI =
1

2
(120(Band5 − Band3)) − 200(Band4 − Band3) 

4.2.16 Reduced Simple Ratio (RSR) 

Chen et al. (2002) elevated the simple ratio algorithm which include information from 

short-wavelength infrared (SWIR) band that can be found in vegetation sensor. The sensor map 

was used to estimate the distribution of LAI in Canada. The RSR is calculated as  

RSR =  
NIR

RED
(

SWIR − SWIRmin

SWIRmax + SWIRmin
)                                                                                             (4.21) 

where, SWIRmax is the short-wavelength infrared maximum and SWIRmin is short-wavelength 

infrared minimum.  

i. e.RSR =  
Band5

Band4
(

Band6 − Band6min

Band6max + Band6min
) 
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The RSR is so important because the land cover mapping is more accurate over the leaf-area 

index in mixed covered areas.  

4.2.17 Visible Atmospherically Resistant Index (VARI) 

The atmospherically resistant vegetation index of visible (that is green) is very sensitive 

to atmospheric effects. This is an estimation of vegetation fraction with an error of <10% 

(Rundquist, 2002). The VARI is calculated as  

VARI =  
GREEN − RED

GREEN + RED − Blue
                                                                                                         (4.22) 

i. e. VARI =  
Band3 − Band4

Band3 + Band4 − Band2
 

4.2.18 Active Layer Thickness (ALT) 

The ALT is the thickness of the surface soil layer which thaws during summer and 

freezes in the winter. The ALT is an important indicator for monitoring permafrost degradation 

in the Arctic region. Increase or decrease of permafrost depends on the ALT (Hinzman et al., 

2005; White et al., 2007). Degradation of permafrost could have serious effects on biological, 

biogeochemical, hydrologic, and landscapes changes (Hinzman et al., 2005; White et al., 2007). 

Assuming the surface subsidence is caused purely by the phase change of pore ice water in an 

active layer, the change in surface subsidence (𝑑𝛿), and due to underlying permafrost thawing 

(Figure 4.3). 
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Figure 4.3: Showing the ground layer, frozen layer, active layer thickness and situation of 

Permafrost (Liu et al., 2010). 

Surface subsidence is caused purely by the phase change of pore ice water in an active 

layer. The surface subsidence (𝑑𝛿), caused by underlying permafrost thawing can be described 

as follows:  

  dδ = PS
ρw−ρi

ρi
dh                                                             (4.23a) 

where P is the soil porosity, 𝑆 is soil moisture fraction of saturation, ρw is density of water (in 

kilograms per cubic meter) that is 997 kg/m3, ρi is density of ice (in kilograms per cubic meter) i. 

e. 934 kg/m3, and 𝑑ℎ is incremental thickness of the thawed soil column (in meters). Integrating 

both sides of equation gives:  

                  δ = ∫ dδ = ∫ PS
ρw−ρi

ρi
dh

H

0

δ

0
                                                                                   (4.23b) 

where, H is active layer thickness, and δ is overall subsidence in thawing season. dδ is 

incremental change in surface subsidence (in meters). This is mapped by using DInSAR 

technique, which is based on Sentinel-1 SAR pairs (Lin et al., 2012). The S is soil moisture 
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saturation. This is estimated based on the soil moisture index calculated from Landsat 8 imagery. 

In this study, the active layer thickness of the optical remote sensing images was calculated as 

stated by Lin et al. (2012): 

             H =  
ρi

PS(ρw−ρi) 
∗ δ                                                                                                       (4.23c)  

4.3 Correlation Analysis and Selection of Model Factors 

Many factors affect the permafrost distribution, including weather, topographic feature, 

soil properties, vegetation, land use and land cover, etc. In the previous studies, elevation, soil 

moisture index (SMI), albedo, and NDVI were taken as model predictors for determining the 

probability of permafrost presence based on equation 4.24 introduced by Wang (2017). In 

addition to the used factors, however, other variables such as LST, NDWI, NDSI, NDBI, SR, 

PVI, SAVI, NBR, EVI, TVI, and slope, aspect, active layer thickness, may be significantly 

correlated with the probability of permafrost presence. In this study, all the predictors were used 

and selected to improve the model for predicting the probability of permafrost presence (POP) 

based on their correlations with the presence of permafrost and prediction accuracy. The multi-

collinearity among the model predictors was also analyzed using Variance Inflation Factor (VIF) 

(Belsley et al., 2005). The modified model was different from the original model proposed by 

Wang (2017). The optical remote sensing variables were utilized in these models by taking their 

average values from January 2014 to December 2018 of Landsat 8 OLI/TIRS data, instead of 

using the values from one single time image. The values of remote sensing variables from 

individual time images may vary over space and time. Their average values of the model 

predictors from multi-temporal images may lead to stable predictions. In addition, a logistic 

model means the nonlinear relationships of the dependent variable with the predictors. However, 

a logistic equation can be converted to a linear model by log transformation. That is,  
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POP = 1
(1 +  Exp(𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ 𝑎𝑚 𝑥𝑚)) ⁄                       

Converted to 

Ln (
1 − POP

POP
) =  a0 + a1x1 + a2x2 + ⋯ amxm  

Thus, the correlation coefficients of Ln((1-POP)/POP) with the predictors were 

calculated and their significant differences from zero were statistically tested at the significant 

level 0.05.  

4.4 Permafrost Distribution Mapping of DTA 

 The probability model (Equation 4.24) described by Wang (2017) was first used in 

mapping the permafrost distribution of DTA: 

POP = 1
(1 + Exp(0.001x1 + 12.38x2 − 1.34x3 + 0.55x4 − 9.73)) ⁄                                     (4.24) 

where, POP is a probability of permafrost and x1, x2 , x3, and x4  respectively represent the 

elevation, SMI, NDVI, and albedo. This equation was fully valid and led to accurate predictions 

of permafrost presence in Qinghai-Tibet Plateau. But it might not work in DTA of Alaska 

because of different environment.  

In this study, the logistic model was first used to develop the model that accounts for 

POP. Logistic stepwise regression with the VIF equal to 10 was utilized to select the driving 

factors. Because ALT significantly affects the POP, similarly, the model that explains the 

relationship of ALT with the driving factors was also derived using linear stepwise regression 

with the VIF equal to 10.  

4.5 Validations of Models  

Based on 414 field observations, the accuracy of predictions from each of the models 

obtained was assessed using the adjusted coefficient of determination and relative root mean 
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square error (relative RMSE) between the estimated and observed values, and Akaike’s 

information criterion AIC (Akaike, 1973, 1974). The AIC is a one kind of model information 

selection which analyzes the true calculated model with predicted model. In this study, AIC can 

be estimated using the following equation.  

AIC = Nln (
ESS

N
) + 2K                                                                                                                          (4.25) 

where, N is the number of random observations, ESS is the Residual Sum of Squares, and K is 

the number of model parameters. The adjusted coefficient of determination, relative RMSE and 

AIC were also used to compare the performance of the predictions from the models.   
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CHAPTER 5 

RESULTS 

5.1 Optical Remote Sensing Factors    

Different optical remote sensing factors and vegetation indices were developed for 

modelling POP and analyzing how the factors improve the predictions of POP in DTA of Alaska.  

5.1.1 Vegetation, Soil and Water Relevant Indices  

5.1.1.1 Vegetation Relevant Indices 

Normalized Difference Vegetation Index: The NDVI gives a measure of the amount and vigor 

of vegetation in a study area. The Average NDVI values of DTA based on the images from 2014 

to 2018 ranges from -0.61 to 0.63 (Figure 5.1). According to Sturm et al. (2001), higher values of 

NDVI indicates greater vigor and amounts of vegetation. In general, NDVI values for vegetated 

lands range from 0.1 to 0.7. The values greater than 0.5 imply densely vegetated areas, while the 

values between -0.2 to 0.1 imply snow, inland water body, desert, and exposed soils (Sturm et 

al., 2001). 
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Figure 5.1: The average normalized difference vegetation index of DTA. 

 

Enhanced Vegetation Index: The EVI aims to improve the NDVI by optimizing the vegetation 

signals in higher NDVI areas. This blue region of the spectrum helps to compensate for soil 

background and reduces atmospheric influenced (that is aerosol scattering) (Huete, Justice, & 

Van Leeuwen, 1999). The EVI value was ranged from -1 to 1. The calculated EVI in DTA was 

found to be -0.16 to 0.72 (Figure 5.2). 
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Figure 5.2: Enhanced Vegetation Index (EVI) in the Donnelly Training Area, Alaska. 

Visible Atmospherically Resistant Index: This is also an enhancement of NDVI to make it 

relatively more resistant to atmospheric factors (that is aerosol levels). The VARI uses 

reflectance values from blue region and correct red reflectance for atmospheric scattering effects 

(Kaufman & Tanre, 1992). It is most useful in the regions with high atmospheric aerosol content. 

The value was found ranging from -0.71 to 0.37 in the DTA.
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Figure 5.3: Visible Atmospherically Resistant Index (VARI) in the Donnelly Training Area. 

 

Simple Ratio and Reduced Simple Ratio: The SR values in DTA range from -0.47 to 0.542 

(Figure 5.4). Chen et al. (2002) modified the SR algorithm that includes more information from 

short-wavelength infrared for the vegetation. This also used the sensor to map the geographical 

distribution of leaf-area index in Canada. The RSR in the Donnelly Training Area ranges from -

0.63 to 0.64 (Figure 5.5). 
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Figure 5.4: Simple Ratio (SR) in the Donnelly Training Area, Alaska.  

 

Figure 5.5: Reduced Simple Ration (RSR) in the Donnelly Training Area, Alaska. 
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Proportion of Vegetation (Pv): The Pv values range almost 0 to 0.99 (Figure 5.6). The higher 

values of Pv indicate dense vegetation cover and lower values indicate sparse vegetation cover.  

In this study, lower Pv values were observed in southern parts of DTA whereas higher values 

were observed in the northern parts. The proportion of vegetation was also dominant in the 

Southeast side of the DTA. The Pv values are intermediate results used for calculation of LST.

 

Figure 5.6: Proportion of vegetation of Donnelly Training Area in 02/10/2018. 

 

Triangular Vegetation Index: The values of TVI calculated in DTA were from -1017.21 to 

618.74 (Figure 5.7). This is a good indication of the chlorophyll estimation and its total 

reflectance. 
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Figure 5.7: Triangular Vegetation Index (TVI) in the Donnelly Training Area Alaska 

 

5.1.1.2 Soil and Water Relevant Indices 

Soil Moisture Index: The SMI gives the function as the linkage between water, ecological 

regime, and atmosphere (Vicente-Serrano et al., 2004; Engman Chauhan, 1995; Sellers et al., 

1993). The average soil moisture values based on the images from January 2014 to December 

2018 were 0.75 to 0.83 (Figure 5.8). As defined by Goward et al. (2002), SMI below values 0.34 

indicates that the lands have mild to severe desertification while SMI values higher than 0.34 

indicates that the lands are wet to very wet. Thus, the results in the DTA indicate that DTA was 

wet to very wet.
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Figure 5.8: The Average Soil Moisture Index (SMI) in the Donnelly Training Area. 

 

Soil Adjusted Vegetation Index: This index adjusts for the influence of variation in soil 

background of Red and NIR relationship for this study area with the help of vegetation cover 

(Huete, 1998). The SAVI value was ranged from -1.01 to 0.82 in this study area (Figure 5.9). 
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Figure 5.9: The average Soil Adjusted Vegetation Index (SAVI) in the Donnelly Training Area, 

Alaska. 

 

Normalized Difference Water Index: The NDWI shows the water content and vegetation 

canopies. In DTA, the average NDWI values range from -0.46 to 0.37 based on the images from 

January 2014 to December 2018 and rivers and snow-covered areas have high NDWI (Figure 

5.10).  
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Figure 5.10: The Average Normalized Difference Water Index (NDWI) in the Donnelly Training 

Area. 

 

Normalized Difference Snow Index: The NDSI is regarded as the most important and 

significant role in heat regimes, local and global radiation balance (Darmody et al., 2004; Löffler 

2005). The average NDSI values in DTA vary from -0.26 to 0.54 based on the images from 

January 2014 to December 2018 (Figure 5.11). As recommended by Hall et al. (1995), Kulkarni 

et al. (2006), and Xiao et al. (2002), the optimal values of NDSI greater than 0.40 highlights the 

presence of snow and the values lower than 0.40 indicates the presence of water and soil. The 

results in DTA indicates that the NDSI value ranges from 0.4 to 0.54 represents the presence of 

snow and while lower than 0.4 values indicate land and water body. 
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Figure 5.11: The Average Normalized Difference Snow Index in the Donnelly Training Area. 

 

5.1.2 Normalized Burn Ratio:  The values of NBR change from -0.25 to 0.41 in DTA (Figure 

5.12). This is used for mapping the burn severity and the fire-affected areas using the single post-

fire values. It combines the reflectance in the near infrared and the short wavelength of infrared 

bands. Based on following information (table 5.1) developed by Boer et al. (2008), DTA is 

considered to be moderately low severity burning (Cocke et al., 2005).  
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Table 5.1: Burning classes based on Normalized Burn Ratio (NBR) (Boer et al., 2008) 

NBR  Burn Severity 

<-0.25  High post-fire regrowth 

-0.25 to -0.1 Low post-fire regrowth 

-0.1 to +0.1 Unburned 

0.1 to 0.27 Low severity burn 

0.27 to 0.44 Moderate-low severity burn 

0.44 to 0.66 Moderate-high severity burn 

>0.66 High severity burn 

  

 

 

Figure 5.12: The Average Normalized Burn Ratio (NBR) in the Donnelly Training Area, Alaska.  
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5.1.3 Land Surface Emissivity and Land Surface Temperature   

Land Surface Emissivity: In the DTA, LSE values range from 0.986 to 0.999 (Figure 5.13). 

The LSE was very high in the Northeastern to Northern and Northwest part whereas low LSE 

values were observed in the water bodies, rivers, and lakes. The LSE is also an intermediate 

result for the calculation of LST. 

 

Figure 5.13: The Average Land Surface Emissivity in the Donnelly Training Area. 

 

Land Surface Temperature: The LST changes with climatic conditions and different human 

activities. It directly depends on land covers types such as urban areas, forested lands, bare lands, 

weather conditions, and different terraces. In DTA, the average LST values based on the images 

from January 2014 to December 2018 were calculated ranged from -11.96 °C to 6.29 °C (Figure 

5.14). The average annual temperature described by Douglas et al. (2016) in the interior of 

Alaska was be -3.3 °C, while the mean summer temperature was 20 °C, and the mean winter 
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temperature was -20 °C.

 

Figure 5.14: The Average Land Surface Temperature (LST) in the Donnelly Training Area. 

 

5.1.3 Other Surface Related Indices   

Albedo: Albedo is a controlling factor of the earth’s surface energy budget and it is responsible 

for the reflection or absorption of the solar radiation from the earth’s surface (Liang et al., 2010). 

The average albedo values based on the images from January 2014 to December 2018 were 0.05 

to 0.59 (Figure 5.15). Low albedo mostly indicates water, dry soil, sandy soil, and agricultural 

crops. Medium to high albedo indicates the area with melting to fresh snow. The study in the 

North Slope Alaska in 1992 was conducted with the help of Ground-based and Satellite-Derived 

measurements for surface albedo values that are divided into five seasonal and temporal periods 

(Maykut and Church, 1973). First, winter stationary period starts from mid-October to May and 
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the ground surface is completely covered by dry snow. In this period, albedo varies from 0.7 to 

0.9, and sometimes drops below 0.7 (Maykut and Church, 1973). The second is the spring 

snowmelt period, which starts from late May to early June. Snow starts melting and surface 

albedo is decreases from 0.8 to 0.6 or below. The third season is post-snowmelt period; this is the 

situation of after disappearing of snow from the ground surface. The surface is generally wet, 

and the albedo is at its lowest in this period. The albedo ranges from 0.5 to 0.1. This time, the 

surface is covered with standing water (Maykut and Church, 1973; Weller and Holmgren 1974). 

The fourth period is the summer stationary period and it lasts from the end of post-snowmelt to 

the onset of freeze-up. The surface represents drier periods and albedo starts to increase. The 

albedo of 0.10 is wet tundra while 0.20 is dry tundra. The fifth season is the autumn freeze-up 

period which starts from late August to mid-October (Maykut and Church, 1973). In this period, 

stable snow is fully established. The albedo in the North Slope Alaska greater than 0.90 indicates 

dry snow and can be as low as 0.05 for tundra. The results in DTA represent the tundra to high 

snow time (Maykut and Church, 1973). 
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Figure 5.15: The Average Albedo in the Donnelly Training Area. 

 

Normalized Difference Built-up Index: The NDBI is much less in the northeast sides of DTA, 

where the Army training buildings and other infrastructures are located. This result show that 

higher NDBI values exist mostly in higher elevation and river areas. This might be due to the 

mixing of barren land, river deposited sand, and gravels which give false result. The NDBI 

values in DTA ranges from -0.53 to 0.21 (Figure 5.16). 
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Figure 5.16: The Average Normalized Difference Built-up Index (NDBI) in the Donnell Training 

Area. 
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5.1.4 Active layer thickness and probability of permafrost  

Active Layer Thickness: The ALT is the top layer of the ground, which has the annual thawing, 

and freezing area underlain by permafrost (Romanovsky & Osterkamp, 1997; Bonnaventure & 

Lamoureux, 2013; Harris et al., 1988). This ALT plays an important role in land surface 

processes in the cold areas. The ALT in the DTA ranges from 1.64 cm to 38.88 cm (Figure 5.17). 

The high values indicate the area that goes seasonally thawing above permafrost and present in 

southeast to southern part (Harris et al., 1988), whereas low values present in northeast to 

northern part as well as western part in DTA. 

  

 Figure 5.17: The Active Layer Thickness (ALT) in the Donnelly Training Area, Alaska. 
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Permafrost Probability Map in DTA: The POP map of DTA was calculated based on the 

model factors described by Wang (2017) model. The model factors are elevation, SMI, NDVI, 

and albedo. The obtained permafrost probabilities ranged from 7.85% to 55.09% (Figure 5.18). 

 

Figure 5.18: The distribution probabilities of permafrost presence (POP) in Donnelly Training 

Area, Alaska, based on the model proposed by Wang (2017). 

 

5.2 Contribution of Factors  

In this study, a total of the 500 points were randomly selected to extract the mentioned 

optical remote sensing derived factors and conduct correlation and regression analyses (Figure 

5.19).   
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Figure 5.19: The randomly selected 500 points in the DTA area, Alaska. 

 

5.2.1 Correlation Analysis   

The correlation analyses of Ln((1-POP)/POP) and ALT with the driving factors, and 

among the other factors were performed using SPSS 19.0 (Statistical Package for the Social 

Sciences). The significance of the Pearson correlations was assessed at the significant level of 

0.05. Table 5.2 and Figure 5.20 give the Pearson’s Correlation coefficients.   
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Table 5.2: Correlation summary of Ln((1-POP/POP)) and ALT with the remote sensing image derived factors and among the factors 

(Note: * correlation coefficients that are statistically significantly different from zero, and ELE. is Elevation) 

  ELE. SMI NDVI ALBEDO LST NDWI NDSI NDBI SLOPE ASPECT SR SAVI EVI NBR TVI RSR VARI ALT POP 

ELE. 1.00                   

SMI 0.03 1.00                  

NDVI -0.08 -0.07 1.00                 

ALBEDO 0.53* 0.14* -0.24 1.00                

LST -0.06 -0.99* 0.21* -0.18* 1.00               

NDWI 0.02 0.34* -0.74* -0.09 -0.48* 1.00              

NDSI 0.19* 0.56* -0.51* 0.20* -0.62* 0.68* 1.00             

NDBI 0.09 -0.24* -0.43* 0.28* 0.16* 0.16* -0.32* 1.00            

SLOPE 0.53* -0.15* 0.07 0.01 0.13* 0.11* 0.01 0.003 1.00           

ASPECT 0.04 0.01 0.02 -0.04 -0.01 0.04 -0.05 0.05 0.06 1.00          

SR -0.07 0.04 -0.70* -0.03 -0.15* 0.66* 0.42* 0.30* 0.05 0.04 1.00         

SAVI 0.12* -0.01 0.78* 0.11* 0.14* -0.75* -0.35* -0.47* -0.05 -0.05 -0.93* 1.00        

EVI 0.29* -0.05 0.59* 0.45* 0.15* -0.75* -0.29* -0.34* 0.02 -0.06 -0.72* 0.87* 1.00       

NBR -0.12* 0.26* 0.25* -0.41* -0.21* 0.10 0.47* -0.89* 0.09 -0.02 0.02 0.14* 0.01 1.00      

TVI -0.35* 0.05 0.23* -0.69* 0.01 0.16* 0.22* -0.62* 0.04 -0.002 0.09 -0.01 -0.29* 0.75* 1.00     

RSR -0.03 0.12* 0.72* -0.16* 0.02 -0.51* -0.03 -0.84* -0.02 -0.05 -0.67* 0.83* 0.64* 0.60* 0.46* 1.00    

VARI -0.17* -0.01 -0.76* -0.21* -0.12* 0.76* 0.31* 0.47* 0.02 0.05 0.87* -0.99* -0.93* -0.15* 0.06 -0.82* 1.00   

ALT 0.28* 0.26* -0.05 0.36* -0.27* -0.02 0.08 0.17* 0.17* 0.02 -0.12* 0.12* 0.17* -0.21* -0.31* -0.04 -0.14* 1.00  

POP -0.81* -0.24* 0.54* -0.55* 0.34* -0.46* -0.45* -0.28* -0.38* -0.03 -0.27* 0.29* 0.08 0.24* 0.45* 0.39* -0.24* 0.58* 1.00 
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(a) Scatter plot of Elevation and presence of permafrost (b) Scatter plot of SMI and presence of permafrost 

  

(c) Scatter plot of NDVI and presence of permafrost (d) Scatter plot of Albedo and presence of permafrost 
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(e) Scatter plot of LST and presence of permafrost (f) Scatter plot of NDWI and presence of permafrost 

  

(g) Scatter plot of NDSI and presence of permafrost (h) Scatter plot of NDBI and presence of permafrost 
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(i) Scatter plot of Slope and presence of permafrost (j) Scatter plot of Aspect and presence of permafrost 

 
 

(k) Scatter plot of SR and presence of permafrost (l) Scatter plot of SAVI and presence of permafrost 
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(m) Scatter plot of EVI and presence of permafrost (n) Scatter plot of NBR and presence of permafrost 

  

(o) Scatter plot of TVI and presence of permafrost (p) Scatter plot of RSR and presence of permafrost 
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(q) Scatter plot of VARI and presence of permafrost (r) Scatter plot of ALT and presence of permafrost 

Figure 5.20: Scatter plot with fit line of Presence of permafrost (POP) with predictor.



  

71 

 

Table 5.3: Interpreting the size of a Correlation Coefficient (Mukaka, 2012). 

Size of Correlation  Interpretation  

0.90 to 1.00 (-0.90 to-1.00) Very high positive (negative) correlation 

0.70to 0.90 (-0.70 to-0.90) High positive (negative) correlation 

0.50 to 0.70 (-0.50 to-0.70) Moderate positive (negative) correlation 

0.30 to 0.50 (-0.30 to-0.50) Low positive (negative) correlation 

0.00 to 0.30 (0.00 to-0.30) Negligible correlation 

 

The scatter plots of ln((1-POP)/POP) and predictive factors were presented in Figure 

5.20. Permafrost is moderately to highly correlated with elevation, NDVI, albedo and ALT 

(Table 2 and Table 5.3). Overall, ln((1-POP)/POP) has relatively low correlation with LST, 

NDWI, NDSI, slope, TVI and RSR, and other factors have negligible contributions to the 

presence of permafrost in DTA.    

Pearson’s correlation coefficients between ln((1-POP)/POP) and most of the factors, 

including elevation, NDVI, albedo, ALT, LST, NDWI, NDSI, slope, TVI, RSR, SMI, NDBI, SR, 

SAVI, NBR and VARI, were statistically significantly different from zero at the significant level 

of 0.05, indicating potentially significant contributions to prediction of POP. Also, Spearman's 

Rank correlation coefficients were calculated, there are not much differences with Pearson 

correlations. The elevation has the highest negative correlation (i.e. 0.81) with POP (Table 5.2 

and Figure 5.20), then ALT, albedo, NDVI, NDWI, NDSI. TVI, RSR, slope, and LST. On the 

other hand, ln((1-POP)/POP) has no significant correlation with aspect and EVI, implying that 

these two variables have statistically negligible effects to improving the prediction of POP. 



  

72 

 

5.3. Mapping probability of permafrost presence 

Table 5.4 shows the adjusted R Square and F values and the selected driving factors of 

the obtained six models. The coefficients of the models with VIF values are listed in Table 5.5. 

Table 5.4: Summary of models obtained for prediction of probability of permafrost presence 

using stepwise regression. 

Model R2 Adjusted R2 Sig. F Independent variables 

1 0.840 0.839 0.000 ELEVATION, NDVI, LST, TVI, ALT 

2 0.845 0.843 0.000 ELEVATION, NDVI, LST, TVI, ALT, SLOPE 

3 0.853 0.851 0.003 

ELEVATION, NDVI, LST, TVI, ALT, 

SLOPE, RSR 

4 0.858 0.856 0.000 

ELEVATION, NDVI, LST, TVI, ALT, 

SLOPE, RSR, SMI 

5 0.862 0.859 0.001 

ELEVATION, NDVI, LST, TVI, ALT, 

SLOPE, RSR, SMI, NBR 

6 0.865 0.862 0.002 

ELEVATION, NDVI, LST, TVI, ALT, 

SLOPE, RSR, SMI, NBR, NDSI 
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Table 5.5: The coefficients and variation inflation factors (VIF) of the models obtained for 

prediction of probability of permafrost presence using stepwise regression. 

Model Variables                      Coefficients  Variation Inflation Factor (VIF) 

1 Constant 0.062  

 ELEVATION 0.001 2.058 

 NDVI -1.189 1.109 

 LST -0.061 1.062 

 TVI -0.001 1.201 

 ALT -0.012 1.908 

2 Constant 0.087  

 ELEVATION 0.001 2.841 

 NDVI -1.197 1.110 

 LST -0.065 1.100 

 TVI -0.001 1.302 

 ALT -0.013 1.927 

 SLOPE 0.005 1.586 

3 Constant 0.098  

 ELEVATION 0.001 3.117 

 NDVI -1.544 2.579 

 LST -0.061 1.132 

 TVI -0.001 1.819 

 ALT -0.014 1.930 

 SLOPE 0.007 1.735 
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 RSR 0.107 3.110 

4 Constant 51.012  

 ELEVATION 0.001 3.145 

 NDVI -1.068 6.322 

 LST -0.354 2.569 

 TVI -0.001 1.821 

 ALT -0.014 1.933 

 SLOPE 0.005 1.911 

 RSR 0.139 3.480 

 SMI -65.378 2.510 

5 Constant 47.103  

 ELEVATION 0.001 3.167 

 NDVI -1.175 6.633 

 LST -0.337 2.583 

 TVI -0.001 3.055 

 ALT -0.013 1.957 

 SLOPE 0.006 1.969 

 RSR 0.174 4.225 

 SMI -60.451 2.533 

 NBR -0.271 3.660 

6 Constant 34.880  

 ELEVATION 0.001 3.820 

 NDVI -1.008 7.603 
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 LST -0.255 3.977 

 TVI -0.001 3.055 

 ALT -0.015 2.124 

 SLOPE 0.007 2.064 

 RSR 0.155 4.505 

 SMI -44.821 2.837 

 NBR -0.438 5.421 

 NDSI 0.644 6.853 

 

5.3.1 Model 1 

P1 = 1
(1 + Exp(0.001x1 − 1.189x2 − 0.061x3 − 0.001x4 − 0.012x5 + 0.62))                ⁄   (5.1) 

where, P1 is the POP, and x1,  x2,  x3, x4, 𝑎𝑛𝑑 x5, are respectively elevation, NDVI, LST, TVI, 

and ALT. In the study of Wang (2017), Elevation, SMI, NDVI and Albedo were involved in the 

model of POP. In this model 5.1, SMI and albedo were excluded and LST, TVI and ALT were 

included because these three variables had higher correlations with ln((1-POP)/POP) than SMI 

and also albedo was highly correlated with elevation and TVI. The POP in DTA ranges from 

12.89% to 55.99%. The high probabilities exist in the east and northeast parts of the study areas, 

while the low probabilities are noticed in the south and west parts (Figure 5.21). 
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Figure 5.21: The spatial distribution of permafrost probabilities in Donnelly Training Area, 

Alaska based on model 1. 

 

5.3.2 Model 2 

P2 = 1

(1 + Exp (
0.001x1 − 1.197x2 − 0.065x3 − 0.001x4 − 0.013x5 …

… + 0.005x6 + 0.087
))

⁄      (5.2) 

where, P2 is the POP, and x1 x2, x3,   x4,  x5, and  x6 are respectively elevation, NDVI, LST, TVI, 

ALT, and slope. In addition to the driving factors in model 5.1, slope was added into the model 

5.2.  The POP in the DTA ranges from 12.82% to 58.74%. The high POP values were found in 

the east and northeast parts and northwest corner of the study area and the low POP values 

existed in the south (Figure 5.22). 
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Figure 5.22: The spatial distribution of permafrost probabilities in Donnelly Training Area, 

Alaska based on the model 2. 

 

5.3.3 Model 3 

P3 = 1

(1 + Exp (
0.001x1 − 1.544x2 − 0.061x3 − 0.001x4 − 0.014x5 …

… + 0.007x6 + 0.107x7 + 0.098
))

⁄      (5.3) 

where, P3 is the POP and x1 x2, x3,   x4,  x5, x6, and  x7 are respectively elevation, NDVI, LST, 

TVI, ALT, slope, and RSR. Compared with the driving factors in the model 5.2, RSR was added 

into the model 5.3. The POP in DTA areas varied from 20.12% to 58.96%. The high POP values 

were also found in the east and northeast parts and the northwest corner of the study areas, while 

the low values existed in the south (Figure 5.23). 
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Figure 5.23: The spatial distribution of permafrost probabilities in Donnelly Training Area, 

Alaska based on the model 3. 

 

5.3.4 Model 4 

P4 = 1

(1 + Exp (
0.001x1 − 1.068x2 − 0.354x3 − 0.001x4 − 0.014x5 …

… + 0.005x6 + 0.139x7 − 65.378x8 + 51.012
))

⁄                           (5.4) 

where, P4 is the POP and x1 x2, x3,   x4,  x5, x6, x7 , and  x8 are respectively elevation, NDVI, 

LST, TVI, ALT, slope, RSR, and SMI. In addition to the driving factors in the model 5.3, SMI 

was introduced into the model 5.4. The POP values were found ranging from 7.49% to 63.02%. 

The POP values had similar spatial distribution with those from the models 1, 2, and 3, but the 

overall probabilities decreased (Figure 5.24). 
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Figure 5.24: The spatial distribution of permafrost probabilities in Donnelly Training Area, 

Alaska based on the model 4. 

 

5.3.5 Model 5 

P5 = 1

(1 + Exp (
0.001x1 − 1.175x2 − 0.337x3 − 0.001x4 − 0.013x5 …

… + 0.006x6 + 0.174x7 − 60.451x8 − 0.271x9 + 47.103
))

⁄                      (5.5) 

where, P5 is the POP and x1 x2, x3,   x4,  x5, x6, x7 , x8 , and  x9 are respectively elevation, NDVI, 

LST, TVI, ALT, slope, RSR, SMI, and NBR. Compared with the driving factors in the model 

5.4, NBR was added into the model 5.5. The POP values had a range of from 9.94% to 83.46%. 

The POP values and their distribution were similar to those from the model 4 (Figure 5.25). 
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Figure 5.25: The spatial distribution of permafrost probabilities in Donnelly Training Area, 

Alaska based on the model 5. 

 

5.3.6 Model 6 

P6 = 1

(1 + Exp (
0.001x1 − 1.008x2 − 0.255x3 − 0.001x4 − 0.015x5 + 0.007x6 …

… + 0.155x7 − 44.821x8 − 0.438x9 + 0.644x10 + 47.103
))

⁄      (5.6) 

where, P6 is the POP and x1 x2, x3,   x4,  x5, x6, x7 , x8 , x9, and  x10 are respectively elevation, 

NDVI, LST, TVI, ALT, slope, RSR, SMI, NBR, and NDSI. In addition to those in the model 5.5, 

NDSI was added in the model 5.6 due to its relatively high correlation with ln((1-POP)/POP). 

All the driving factors were statistically significantly correlated with ln((1-POP)/POP). Out of 

ten involved driving factors, in addition to elevation, SMI and NDVI used in the model presented 
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by Wang (2017), seven new predictors were selected, which indicated that the new predictors 

that also significantly contributed the improvement of predicting POP. The albedo utilized in the 

model of Wang (2017) was not included in the model 5.6 because albedo is highly correlated 

with TVI. The POP values varied from 9.91% to 83.48%. The overall high POP values occurred 

in the east, northeast and north parts of the study areas and the low values took place in the 

south, southwest and west parts. The spatial patterns were consistent with those from all other 

models (Figure 5.26). 

 

Figure 5.26: The spatial distribution of permafrost probabilities in Donnelly Training Area, 

Alaska based on the model 6. 
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5.4 Mapping of Active Layer Thickness 

Pearson’s correlation coefficients between ALT and most of the factors, including 

elevation, SMI, albedo, LST, NDBI, slope, SR, SAVI, EVI, NBR, TVI, and VARI, were 

statistically significantly different from zero at the significant level of 0.05, indicating potentially 

significant contributions to prediction of ALT. The predictors that are not significantly correlated 

with ALT consist of NDVI, NDWI, NDSI, aspect and RSR, implying that these five variables 

have no statistically significant effects to improving the prediction of ALT. Also, Spearman's 

Rank correlation coefficients were calculated, there are not much differences from Pearson 

correlations. The albedo has the highest positive correlation (i.e. 0.36) with ALT (Table 5.2), 

then TVI, elevation, LST, SMI, NBR, EVI, NDBI, slope, VARI, SAVI, and SR.  

Because Ln((1-POP)/POP) is highly correlated with and affected by ALT, mapping ALT 

was also conducted in this study by a linear model with stepwise regression method and VIF was 

selected equal to 10. The results of the models were summarized in Table 5.6. A total of eight 

models were obtained and the p-values of F statistics for all the models were smaller than the 

significant level of 0.05. The regression coefficients of the models with VIF values of the 

selected predictors were listed in Table 5.7. 
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Table 5.6: Summary of models obtained for prediction of active layer thickness using stepwise 

regression with VIF equal to 10. 

Model R2 Adjusted R2 Sig. F Independent variables 

1 0.457 0.449 0.000 ALBEDO, SMI, NBR 

2 0.480 0.479 0.000 ALBEDO, SMI, NBR, ELEVATION 

3 0.497 0.481 0.002 ALBEDO, SMI, NBR, ELEVATION, SAVI 

4 0.504 0.503 0.001 ALBEDO, SMI, NBR, ELEVATION, SAVI, NDBI 

5 0.501 0.500 0.023 
ALBEDO, SMI, NBR, ELEVATION, SAVI, NDBI, 

SLOPE  

6 0.507 0.506 0.041 
SMI, ELEVATION, SAVI, NDBI, SLOPE, LST, 

SR, EVI 

7 0.503 0.502 0.023 
SMI, ELEVATION, SAVI, NDBI, SLOPE, LST, 

SR, EVI, VARI 

8 0.519 0.519 0.036 
SMI, ELEVATION, SAVI, NDBI, SLOPE, LST, 

SR, EVI, VARI, TVI 
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Table 5.7: The regression coefficients and VIF values of the models for prediction of active layer 

thickness using stepwise regression. 

Model  Variables Coefficients Variation Inflation Factor (VIF) 

1 Constant -293.730 

 

 

ALBEDO 31.376 1.392 

 

SMI 393.992 1.392 

   NBR -11.499 1.456 

2 Constant  -314.848 1.396 

 ALBEDO 17.635 1.422 

 SMI 418.276 1.022 

  NBR -13.226 1.33 

 ELEVATION 0.007 1.434 

3 Constant -332.711 1.424 

 ALBEDO  14.245 1.475 

 SMI 437.824 1.518 

 NBR -15.338 1.332 

 ELEVATION 0.007 1.482 

 SAVI 7.771 1.522 

4 Constant -339.582 1.665 

 ALBEDO  18.621 2.282 

 SMI 441.934 1.605 

 NBR 9.445 1.657 

 ELEVATION 0.006 1.505 
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 SAVI 17.299 1.616 

 NDBI 97.482 1.741 

5 Constant -326.776 4.442 

 ALBEDO  16.414 3.461 

 SMI 425.700 2.800 

 NBR 11.104 2.302 

 ELEVATION 0.008 2.303 

 SAVI 17.245 1.825 

 NDBI 101.924 1.796 

 SLOPE  -0.108 4.492 

6 Constant -335.829 3.505 

 SMI  13.442 2.822 

 ELEVATION 438.239 1.671 

 SAVI 16.518 3.287 

 NDBI 0.006 2.362 

 SLOPE 23.927 3.059 

 LST 143.672 1.892 

 SR  4.156 5.213 

 EVI -18.449 3.607 

7 Constant -355.217 3.137 

 SMI  7.526 1.688 

 

ELEVATION 460.495 
3.830 
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 SAVI 14.942 3.598 

 NDBI 0.006 2.196 

 SLOPE 38.682 1.870 

 LST 147.321 4.675 

 SR  1.898 3.534 

 EVI -20.584 3.136 

 

VARI 5.494 
1.623 

 

8 Constant -369.520 2.285 

 SMI  5.833 2.303 

 ELEVATION 479.614 3.445 

 SAVI 16.037 5.678 

 NDBI 0.007 2.398 

 SLOPE 34.733 4.678 

 LST 139.789 1.990 

 SR  1.926 3.568 

 EVI -22.981 9.887 

 VSRI 3.364 3.220 

 TVI -7.216 0.000 

 

A total of eight models were obtained and shown as follows: 

ALT = (31.376x1 + 393.992x2 − 11.499x3 − 293.730)                                            (5.7) 

ALT = (17.635x1 + 418.276x2 − −13.226x3 + 0.007x4 − 314.848)                                   (5.8) 
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ALT = (14.245x1 + 437.824x2 − 15.338x3 + 0.007x4 + 7.771x5 − 332.711)                  (5.9) 

ALT = (
18.621x1 + 441.934x2 + 9.445x3 + 0.006x4 + 17.299x5 + ⋯

97.482x6 − 339.582
)                              (5.10) 

ALT = (
19.424x1 + 441.057x2 + 8.825x3 + 0.006x4 + 12.642x5 …

… + 109.896x6 + 2.268x7 − 340.940
)                                (5.11) 

ALT = (
13.442x1 + 438.239x2 + 16.518x3 + 0.006x4 + 23.927x5 …

… + 143.672x6 + 4.156x7 − 18.449x8 − 335.829
)                               (5.12) 

ALT = (
7.526x1 + 460.495x2 + 14.942x3 + 0.006x4 + 38.682x5 …

… + 147.321x6 + 1.898x7 − 20.584x8 + 5.494x9 − 355.217
)                              (5.13) 

ALT = (
5.833x1 + 479.614x2 + 16.037x3 + 0.007x4 + 34.733x5 + 139.789x6 …

… + 1.926x7 − 22.981x8 + 3.364x9 − 7.216x10 − 369.520
)         (5.14) 

 

where, ALT is the active layer thickness and 𝑥1, 𝑥2, 𝑥3,𝑥4,  𝑥5 , 𝑥6,   𝑎𝑛𝑑 𝑥7 respectively represent 

albedo, SMI, NBR, elevation, SAVI, NDBI, and slope for equations 5.7 to 5.11, and 𝑥1, 𝑥2, 

𝑥3, 𝑥4,  𝑥5 , 𝑥6,   𝑥7,𝑥8, 𝑥9,𝑎𝑛𝑑 𝑥10  respectively represent SMI, elevation, SAVI, NDBI, slope, 

LST, SR, EVI, VARI, and TVI for equations 5.12 to 5.14. From model 5.7 to model 5.14, all the 

independent variables that had significant contributions to the dynamics of ALT were selected. 

In model 5.7, albedo, SMI and NBR were first selected. The TVI is more correlated with ALT 

than SMI and NBR but TVI was not chosen in model 5.7 because TVI is highly correlated with 

lbedo and NBR.  

The range of ALT values varied by model (Figure 5.27), from 4.48 cm to 32.26 cm for 

model 5.7, from 5.24 cm to 38.75 cm for model 5.8, from 6.23 cm to 41.37 cm for model 5.9, 

from 2.30 cm to 52.64 cm for model 5.10, from 4.31 cm to 55.37 cm for model 5.11, from 3.89 

cm to 59.89 cm for model 5.12, 10.58 cm to 64.98 cm for model 5.13 and from 7.98 cm to 69.56 

cm for model 5.14. The spatial distributions of the ALT values obtained from the models were 

similar to each other (Figure 5.27). The maximum ALT increases from model 5.7 (i.e. max 32.26 



  

88 

 

cm) to model 5.14 (i.e. max 69.56 cm). The minimum ALT varies from model to model. The 

values of ALT were greater in the southern, southwestern and western in DTA, indicating greater 

thickness of active layer mainly due to mountainous, steep and sparsely vegetated areas where 

seasonal thawing of ice underlain by permafrost took place and thus the areas were more 

vulnerable for degradation of permafrost. On the other hand, the values of ALT were 

comparatively smaller in the eastern, northeastern, northern, and northwestern in DTA where the 

very flat lands are present. That is, the probabilities of permafrost presence were smaller in the 

southern, southwestern, and western DTA, and greater in in the eastern, northeastern, northern, 

and northwestern DTA. 
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(c) Model 5.7 (d) Model 5.8 

  

(c) Model 5.9 (d) Model 5.10 
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(e) Model 5.11 (f) Model 5.12 

  

(g) Model 5.13 (h) Model 5.14 

  

Figure 5.27: The spatial distributions of Active Layer Thickness estimates obtained by model 5.7 to model 5.14 in the Donnelly 

Training Area, Alaska. 
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5.5 Validation 

Due to less availability of field data it is hard to come up with solid results of POP and 

ALT estimation validation. For the validation of POP estimates, a total of 414 field observations 

were used. But, most of the field data were located in the South and Southwest parts of DTA. 

Even though, the estimates of POP from the models were compared with the field observations 

and relative root mean square error (RMSE) was calculated .  

First of all, based on the available field observation data of POP in DTA, the POP map 

produced using equation 4.24 from the study of Wang (2017), the obtained relative RMSE is 

4.19%.  Then, in this study the obtained six models were used to generate the estimates of 414 

sample locations using each of the models and the estimates were compared with the field 

observations. All the models led to similar relative RMSE (Table 5.8). Model 5.6 that had the 

smaller relative RMSE (i.e. 4.59%) than other models. So, model 5.6 is considered a best model.  

For the validation of ALT estimates, a total of 500 points were randomly sampled and 

their reference values were extracted from the 2010-2019 ALT map developed by Geophysical 

Institute Permafrost Lab (GIPL, 2017). The ALT estimates were generated using the models 

developed in this study. Although the estimates were the average values of ALT from Jan 2014 

to December 2018, the time period fell in the time interval of the reference values. Comparing 

the estimates with reference values resulted in the relative 
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RMSE ranging from 2.39% to 2.54% (Table 5.8). The relative RMSE values were not 

significantly different from each other among the models. Relatively, the model 5.14 had the best 

performance. 

Table 5.8: Relative RMSE of POP and ALT estimates from the developed models.  

Probability of permafrost presence Active layer thickness 

Model Relative RMSE (%) Model Relative RMSE (%) 

MODEL 5.1 5.93 MODEL 5.7 2.54 

MODEL 5.2 5.92 MODEL 5.8 2.53 

MODEL 5.3 4.88 MODEL 5.9 2.49 

MODEL 5.4 4.79 MODEL 5.10 2.45 

MODEL 5.5 4.62 MODEL 5.11 2.44 

MODEL 5.6 4.59 MODEL 5.12 2.43 

  MODEL 5.13 2.41 

  MODEL 5.14 2.39 

 

Akaike information criterion is another way to validate the produced (Table 5.9). The 

best model for presence of permafrost in DTA is model 5.6 with AIC value -884.26. This model 

5.6 has the predictors including elevation, NDVI, LST, TVI, ALT, SLOPE, RSR, SMI, NBR, 

and NDSI. Relatively, the model performance becomes poorer from model 5.6 to model 5.1. 

This means that addition of more predictors imporve the performance of the model. The standard 

model developed by Wang (2017) using elevation, SMI, NDVI, and Albedo leads to the poorest 

performance in DTA with AIC value of -819.18 (Table 5.9). 
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Table 5.9: Akaike Information Criterion (AIC) for the models of POP in DTA 

Model  N K ESS AIC Value 

Wang's Model  500 4 11.10 -819.18 

MODEL 5.1 500 5 9.95 -840.52 

MODEL 5.2 500 6 9.65 -845.23 

MODEL 5.3 500 7 9.17 -854.21 

MODEL 5.4 500 8 8.82 -860.70 

MODEL 5.5 500 9 8.61 -864.02 

MODEL 5.6 500 10 8.44 -884.26 

 

The performance of ALTmodels was also assessed using AIC (Table 5.10). The model 

5.14 gives best performance with the smallest AIC value of 655.23 and uses SMI, elevation, 

SAVI, NDBI, slope, LST, SR, EVI, VARI, and TVI as the model predictors. The model 

performance becomes better with the addition of the predictors. Model 5.7 has the poorest 

performance with the greatest AIC values of 917.37, in which albedo, SMI, and NBR were used.   
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Table 5.10: Akaike Information Criterion (AIC) for Active Layer Thickness (ALT) in DTA 

Model  N K ESS AIC Value 

MODEL 5.7 500 3 3192.32 917.37 

MODEL 5.8 500 4 3161.40 913.42 

MODEL 5.9 500 5 3090.77 908.12 

MODEL 5.10 500 6 2994.84 899.70 

MODEL 5.11 500 7 2943.72 860.96 

MODEL 5.12 500 8 2906.45 851.11 

MODEL 5.13 500 9 2881.83 789.15 

MODEL 5.14 500 10 2874.28 655.23 
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CHAPTER 6 

DISCUSSION 

This study aims to develop a method of mapping permafrost using optical images and 

identify the major factors that affect the mapping accuracy. There are two research questions to 

be answered.   

Research Question 1: What are the important predictors that significantly improve 

mapping the presence of permafrost in DTA? 

Research Question 2: How does the permafrost vary spatially in the study area?   

6.1 Performance of logistic model with original predictors  

The logistic model proposed by Wang (2017) and Yaya et al. (2018) for Qinghai-Tibet 

Plateau was selected as a basic model in this study. According to Yaya and his colleagues, the 

model includes the inputs or primary driving factors that significantly influence ln((1-

POP)/POP), including elevation, SMI, NDVI, and albedo. The overall accuracy of this model by 

using the predictors was 85% in Qinghai-Tibet Plateau. Applying the model and the same 

predictors to predict the POP in DTA led to more accurate estimates with relative RMSE of 

4.19%. These factors elevation, SMI, NDVI, and albedo were significantly correlated with ln((1-

POP)/POP) in DTA. The elevation had a highest and negative correlation with ln((1-POP)/POP), 

that is, positively correlated with POP, indicating that the areas with higher elevation had higher 

probability of permafrost presence. The NDVI had a positive correlation with ln((1-POP)/POP), 

implying a negative correlation with POP and that the dense the vegetation canopy, the less the 

likelihood of permafrost existing. The SMI was a combination of NDVI and LST, which might 

have led to the duplication of information that was ignored in the model of Wang (2017).  In fact, 

in this study, the first five predictors including elevation, NDVI, LST, TVI and ALT were 
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selected in the model (Table 5.4) of POP. This implied that SMI was not important to improve 

the prediction of POP due to its information duplication with NDVI and LST. At the same time, 

albedo was also not selected mainly because both NDVI and TVI were derived by the bands that 

were involved in albedo (band 1, band 3, band 4, band 5 and band 7). This explained that LST, 

TVI and ALT were more important than SMI and albedo.  

6.2 Contribution of other predictors for predicting probability of permafrost   

In this study, in addition to the original factors (elevation, SMI, NDVI, and albedo), other 

fourteen predictors including LST, NDWI, NDSI, NDBI, Slope, Aspect, SR, SAVI, EVI, NDR, 

TVI, RSR, VARI and ALT were added to explore improving the prediction of POP. The reasons 

to add the predictors included 1) Permafrost presence and its dynamics were determined by soil 

properties, land surface temperature, vegetation, water, soil moisture, burning and snow; and 2) 

whether or not there were other factors that contributed more to the prediction of POP than the 

original factors (elevation, SMI, NDVI, and albedo), It was found that all the added predictors 

except EVI and aspect were statistically significantly correlated with ln ((1-POP)/POP). 

Compared with SMI and albedo, the LST, TVI and ALT contributed more to improving the 

prediction of POP. The logistic stepwise regression led to more predictors involved in the POP 

models. As more predictors were added, the adjusted R square value increased. Based on the 

validation of using the field observations, the model 5.6 led to the smallest relative RMSE. In 

this model, the selected predictors consisted of elevation, NDVI, LST, TVI, ALT, slope, RSR, 

SMI, NBR, and NDSI. The contributions of all the selected independent variables to the 

prediction of POP were statistically significant with VIF values smaller than 10. The predictors 

especially the image derived indices characterized the topographic features, soil properties, land 

surface temperature, vegetation, water, burning and snow, and thus made contributions to the 
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prediction of POP. The performance of the modified models was tested with AIC and the model 

with the small AIC value gives the best performance. Among the modified  models, the model 5.6 

is the best model with the smallest AIC values.  

6.3 Mapping active layer thickness  

The ALT has a correlation coefficient of 0.58 with ln((1-POP)/POP), implying a negative 

correlation with POP. The relatively high correlation implied that the thicker the ALT, the lower 

the POP, which thus reasonably explained the relationship of ALT with POP. Due to the 

importance of ALT, in this study ALT was also mapped using a linear model with eight models 

obtained. Except for NDVI, NDWI, NDSI, aspect and RSR, all other factors are significantly 

correlated with ALT. The albedo, SMI and NBR were first selected in model 5.7, and SMI, 

elevation, SAVI, NDBI, slope, LST, SR, EVI, VARI, and TVI were finally added into the model 

5.14 that has the smallest relative RMSE and AIC values. The LST that greatly affected ALT 

was selected. The independent variables accounted for the characteristics of topography, soil, 

land surface temperature, vegetation, and water, and thus contributed to the prediction of ALT.  

The ALT is a main indicator for permafrost presence because it is the layer that 

undergoes seasonal thawing and thus ALT varies seasonally (Harris et al., 1988). The ALT is 

affected by LST and is a critical component in prediction of climate change which is associated 

with permafrost (Nelson el a., 1998; Zhang et al., 2012). The increase of LST over the last 30 

years indicates an increase in permafrost temperatures of 0.5 to 3 0C (Osterkamp, 2005). The 

increased temperature might have increased the ALT and degraded permafrost (Zhang et al., 

2005; Jorgenson et al., 2010). Previous field observation-based studies reported the ALT in 

several sites in Alaska ranged from 30 to 90 cm (Bockheim, 2007). But, the field observation-

based spatial modeling study by Nelson et al. (1997) showed that the ALT ranged to 0 to more 
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than 70 cm in the heterogeneous types of landscape in the north central Alaska. In this study, the 

ALT was up to about 66 cm. The study of Hinkel and Nelson (2003) showed that the ALT varied 

from 20 to 120 cm from 1995 to 2000 at seven sites in northern Alaska. Their study also reported 

the environmental controls of ALT were dependent on the topographic features, vegetation types, 

and soil properties. In this study, the maximum depth of ALT varied from about 32 cm to 66 cm 

depending on the models and the best performance model 5.14 led to the ALT maximum depth 

of about 70 cm. The maximum ALT value was slightly smaller than those in the previous 

studies. There are 8 models of ALT with different model factors. Addition of model factors the 

model performance proved by the relative RMSE and values. Model 5.14 had the maximum 

number of the factors with the smallest AIC values.  

6.4 Spatial distribution of Permafrost and active layer thickness  

According to Jorgenson et al. (2008), discontinuous type of permafrost exists in DTA. In 

this study, it was found that the probability for this discontinuous type of permafrost presence 

varied over the study area. The east, northeast, north and northwest parts were found to have 

higher POP values, and the central and south to southwest parts had smaller probabilities of 

permafrost presence. The spatial distribution of ALT was inversely consistent with that of POP. 

That is, the ALT was higher in the central, south, and southwest parts due to complex 

topographic, higher LST and sparse vegetation canopy, and lower in the east, northeast, north 

and northwest parts due to the lower LST, forests and wetlands. 

6.5 Limitation  

 The major limitation of this study was the availability of field data in terms of the time 

for the field observations collected and their spatial distribution. This made the validation of the 

model results less possible. Although some of the field data were used, the validation of the 
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obtained results was limited due to different time at which the used field observations were 

collected. Another limitation came from the medium spatial resolution (30 m by 30 m) of the 

used Landsat images. In addition, a limited number of remote sensing spectral variables were 

explored for their contributions to the prediction of POP and ALT. It is possible to leave some 

factors that significantly affect POP and ALT out of the examination in DTA.   
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CHAPTER 7 

CONCLUSIONS 

Permafrost occupies about a quarter of the northern hemisphere land, representing a 

massive amount of 25.5 million ha. Due to the cost and complex technologies required by 

processing InSAR images, this paper explored the use of freely downloadable Landsat satellite 

images for mapping POP and ALT in DTA, Alaska. Landsat 8 OLI/TIRS images from January 

2014 to December 2018 were utilized and the factors that affect POP and ALT and their 

dynamics were analyzed based on a logistic model and a linear regression model, respectively. A 

total of seventeen factors were utilized and selected using stepwise regression with VIF of 10. 

The results showed that the POP in DTA was significantly affected by all the factors 

except aspect and EVI. The factor that was most correlated with ln((1-POP)/POP) was elevation, 

then NDVI, albedo, ALT, LST, NDWI, NDSI, slope, TVI, RSR, SMI, NDBI, SR, SAVI, NBR 

and VARI. The elevation, NDVI, LST, TVI, ALT, SLOPE, RSR, SMI, NBR, and NDSI were 

finally chosen in the best model 5.6. The previously used albedo was excluded in the final 

model. This implied that the albedo was not critical to the prediction of POP. In addition to 

elevation, NDVI and SMI, other predictors including LST, TVI, ALT, SLOPE, RSR, NBR and 

NDSI could not be ignored in the prediction of POP because they characterized the properties of 

topography, soil, vegetation, land surface temperature, water, building and burning. The model 

generated reasonable spatial distribution of POP in which POP had greater values in the east, 

northeast, north and northwest parts and smaller in the south and southwest parts. 

Except for NDVI, NDWI, NDSI, aspect and RSR, moreover, all other predictors are 

significantly correlated with ALT. SMI, ELEVATION, SAVI, NDBI, SLOPE, LST, SR, EVI, 
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VARI and TVI were finally selected in the best model 5.14. The ALT highly varied over the 

study area and its spatial patterns were inversely consistent with those of POP. 

The results are essential for the governments, policymakers, and other concerned 

stakeholders to estimate the degradation of permafrost in DTA and minimize the risk of policy 

decision-making for land use management and planning. This study will help to understand the 

global climate change, changing ecosystem, increasing concentration in the atmosphere, and 

human activity induced disturbance. 
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APPENDIX A 

 PERMAFROST DISTRIBUTION IN NORTHERN HEMISPHERE  

Appendix 1: Circum-Arctic Map of Permafrost and Ground-Ice Conditions, Version 2. [Indicate  

subset used]. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center 

(Brown et al., 2002).  
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APPENDIX B 

LAND SURFACE BRIGHTNESS TEMPERATURE   

Appendix 2: Brightness temperature for band 10 on left and band 11 on right of 01/30/2014. 
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