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CLOUD DETECTION AND INFORMATION CLONING TECHNIQUE FOR 

MULTI TEMPORAL SATELLITE IMAGES 

SUMMARY 

One of the main sources of noises in remote sensing satellite images are regional 

clouds and shadows of these clouds caused by atmospheric conditions. In many 

studies, these clouds and shadows are masked with multitemporal images taken from 

the same area to decrease effects of misclassification and deficiency in different image 

processing techniques, such as change detection and NDVI calculation. This problem 

is surpassed in many studies by mosaicking with different images obtained from 

different acquisition dates of the same region. The main step of all these  studies that 

cover cloud cloning or cloud detection is the detection of clouds from a satellite image. 

In this study, clouds and shadow patches are classified by using a spectral feature based 

rule set created after segmentation process of Landsat 8 image. Not only spectral 

characteristics but also structural parameters like pattern, area and dimension are used 

to detect clouds and shadows. Information of cloud projection is used to strengthen 

cloud shadow classification. Rule set of classification is developed within a 

transferable approach to reach a scene independent solution. Results are tested with 

different satellite images from different areas to test transferability and compared to 

other state-of art methods in the literature. Detection of clouds and cloud shadows 

features correctly is the main step of cloning procedure to create cloudless image from 

multitemporal image dataset. Multitemporal image dataset is used to find best image 

to clone cloud image. Choosing best image for cloning process is an important step for 

reliable cloning. Statistical and seasonal similarity tests are used to find best image to 

clone cloud covered image. Vector intersections are used to find cloudless images 

between multitemporal dataset. Flood Fill method is used to create cloudless image 

from cloud covered image by using information extraction from cloudless images in 

dataset. Accuracy of cloning process is tested by using SSIM index to find structural 

and spectral similarity to cloudless image. All cloning results are tested with different 

image from different regions to check transferability of study. This study can be 

regarded as a scientific approach to create cloudless image mosaics for each kind of 

application. Method in this thesis is a scientific approach to well-known methods of 

famous cloudless mosaic generation methods of Google, Mapbox Co. etc. for creation 

of visually good-looking base maps for web maps.  
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ÇOK ZAMANLI UYDU GÖRÜNTÜLERİ İÇİN BULUT BELİRLEME VE 

KLONLAMA YÖNTEMİ 

ÖZET 

Uzaktan algılanmış uydu görüntülerinde atmosfer etkilerinden kaynaklı olarak ortaya 

çıkan bölgesel bulutlar ve bu bulutların gölgeleri, yapılan çalışmalarda problem 

oluşturan temel gürültü kaynaklarındandır. Değişim analizi, NDVI hesaplama gibi 

önemli dijital işlemlerde bulut ve gölge bölgeleri, genel olarak yanıltıcı sonuçlar veren 

bölgeler olduğundan dijital işlemler çoğu zaman bu alanlar maskelenerek 

gerçekleştirilmektedir. Bu problem birçok çalışmada aynı bölgeden farklı zamanlarda 

elde edilmiş uydu görüntüleri ile mozaikleme yapılarak aşılmıştır. Ancak, mozaikleme 

sırasında oluşan spektral ve dokusal bozulmalar çalışmaları olumsuz etkilemektedir. 

Görüntünün çekilme anına bir daha dönülemeyeceğinden, bulutsuz bir görüntü elde 

etmek önemli bir süreç haline gelmektedir. Google Earth gibi sık kullanılan harita 

araçları aynı bölgeye ait çekilmiş birçok görüntü kullanarak bu görüntülerin 

ortalamalarından bulutsuz mozaikler elde ederek kullanıcılara sunmaktadır. Bu 

çalışmada bulutlu görüntüler çok zamanlı bulutsuz görüntülerden klonlama yapılarak 

bulutsuz hale getirilecektir. Diğer benzer çalışmalara ek olarak, klonlama süreci bir 

fotoğraf düzenleme işleminden öte görüntünün spektral özellikleri kullanılarak 

gerçekleştirilerek en yakın tarih ve spektral benzerlik göz önünde bulundurularak 

bulutsuz görüntü elde edilecektir. Üretilen bulutsuz görüntüde oluşan kenar bozulma 

etkileri çeşitli filtreler ile azaltılacaktır. 

Geliştirilen yöntem farklı zamanlarda çekilmiş Landsat-8 uydu görüntüleri ile test 

edilmiştir. Görüntüde bulunan bulutların belirlenmesi, bulut klonlama işleminin 

gerçekleştirilmesi için ilk aşama ve doğruluğu direkt olarak klonlama doğruluğu 

etkileyen bir süreçtir. Bulutların oluşturduğu parlaklık ve gölgelerinin oluşturduğu 

kararmalar birçok veri analizini olumsuz etkilemektedir. Bu etkiler, atmosferik 

düzeltmede oluşacak zorluklar, NDVI değerlerinin yükselmesi, sınıflandırmadaki 

hatalar ve değişim analizinin yanlış gerçekleştirilmesi şeklinde olabilir. Tüm bu 

etkilerin doğrultusunda, uzaktan algılama görüntülerinde bulutlar ve gölgeleri önemli 

bir gürültü kaynağı olduğundan bunların dijital işlemlerden önceki ilk aşamada 

belirlenmesi önem taşımaktadır. Bu çalışmada, Landsat-8 görüntüleri kullanılarak ve 

mevcut ısıl bantların da yardımıyla, bulut ve gölgelerinin belirlenmesi için bölütleme 

tabanlı bir kural dizisi ile uygulanan bir yöntem önerilmiş ve test edilmiştir. Çalışmaya 

temel olan bulut belirleme algoritması, ACCA ve Fmask algoritmalarının geliştirilmiş, 

sadeleştirilmiş, otomatize edilmiş ve bölütleme tabanlı uyarlanmış bir sürümü olarak 

değerlendirilebilir . Bu yöntem sayesinde, spektral özellikler ve geometrik özellikler 

bir arada kullanılarak Landsat 8 görüntülerinden bulut ve bulut gölgeleri belirlenmiştir.  

Spektral ve geometrik özelliklerin yanı sıra Landsat ısıl bant verileri ile, bulut-gölge 

ve soğuk yüzey (kar, buz)  ayırımı güçlendirilmiştir. Komşuluk ilişkileri kullanılarak, 

belirlenen bulut alanları etrafındaki bulut gölgelerinin belirleme doğruluğu 

arttırılmıştır. Geliştirilen algoritma, dört farklı bölge için farklı zamanlarda çekilmiş 

Landsat görüntüleri üzerinde test edilerek değerlendirilmiştir. 
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Bulut belirleme algoritmasında temel olarak Landsat 8 görüntülerinin OLI  ve ısıl 

bantları kullanılmaktadır. Landsat-8 verileri, DN değerler olarak işlenmemiş halde 

sağlanmaktadır. Bu veriler, Landsat verileri ile birlikte gelen meta veri dosyasında 

(MTL) verilen oranlama katsayıları ile atmosfer üstü yansıtım değerlerine ve radyans 

değerlerine dönüştürülebilmektedir. Böylece veriler fiziksel anlamı olan birimlere 

dönüştürülmüş olur. Meta veri dosyasında sağlanan ısıl bant katsayıları ile ısıl bant 

verileri, parlaklık sıcaklığı  bilgisine dönüştürülebilmektedir. OLI bantları atmosfer 

üstü yansıtım değerlerine (ToA), ısıl bantlar ise parlaklık sıcaklığına dönüştürülerek 

algoritmada kullanılmıştır. Yansıtım değerlerine dönüştürülen görüntülerde bulut 

alanlarının belirlenmesi için öncelikle bölütleme algoritması ile görüntü süper-

piksellere ayrılmış ve kural tabanlı bir sınıflandırma dizisi uygulanarak bulut alanları 

görüntü üzerinden belirlenmiştir. Bulut alanlarının belirlenmesinden sonra, spektral 

testler ve bulut alanlarının komşuluk ilişkileri değerlendirilerek bulut gölgesi alanları 

da belirlenmiştir.  

Süper pikseller, pikselleri anlamlı gruplar halinde birleştirerek, piksel grupları 

oluşturmak için kullanılmaktadır. Görüntüdeki aynı bilgiye sahip olan piksellerin 

birleştirilmesi ile görüntü işleme amaçlı işlemlerin hızı da yüksek oranda artmaktadır. 

K-ortalamalar (K-means) yönteminin mekânsal özelliklerini de kullanan bir 

uyarlamasını temel alarak süper pikselleri üreten SLIC algoritması da bu amaçla 

kullanılan etkin yöntemlerden biridir. Bulut süper piksellerinin üretilmesinde SLIC 

yöntemi kullanılmıştır.  

Görüntülerden bulut alanlarının belirlenmesi için, bulutların spektral karakteristiğinin 

belirlenmesi ile işleme başlanmıştır. Görüntü üzerinden toplanan bulut noktalarının 

spektral imzaları karşılaştırılmıştır. Algoritma bu imzalar temel alınarak 

geliştirilmiştir.  Bulut özelliklerine benzer şekilde, bulut gölgesi alanlarının 

sınıflandırılmasında da, görüntü üzerinden toplanan bulut noktalarının spektral 

imzalarının yorumlanmasını temel alan bir yöntem ile ısıl bandı devre dışı bırakan bir 

bant oranlama indeksi geliştirilmiştir. Bu indeks ile gölge alanlarının değeri diğer arazi 

örtüsü özelliklerinden keskin bir şekilde ayrıldığından eşik değeri belirlenmesi 

dinamik olarak gerçekleştirilebilmektedir. İkinci olarak, farklı gölge alanlarının, bulut 

gölgeleri ile karışmasını önlemek amacıyla görüntü özniteliklerinden olan güneş 

azimut açısı kullanılarak tüm bulut bölgelerinin bu açı ile doğru orantılı şekilde belli 

bir uzaklıkta izdüşümü alınmıştır. Bu izdüşüm alanlar, potansiyel gölge alanlarını 

ifade etmektedir. Gölge alan belirleme indeksi sonucu ile bu izdüşüm alanların 

kesişimi final gölge bölgelerinin sınıflandırılmasında kullanılmıştır  

Bulut ve gölgelerinin belirlenmesi, uzaktan algılamada uzun zamandır üzerinde 

çalışılan ve birçok yöntemin geliştirildiği bir konudur. Bu yöntemler kimi zaman 

yeterli doğrulukta sonuçlar verirken, kimi zaman da yeterli doğruluğu 

sağlayamamaktadır. Piksel tabanlı yöntemlerin yanı sıra, görüntüyü süper-piksellere 

ayıran bölütleme tabanlı yöntemlerin bulut ve gölge belirlemede kullanılması yeni bir 

konudur. Bu şekilde, görüntü, homojen özellikler sergileyen piksel gruplarına 

ayrılarak, hem hesaplama gücü azaltılmakta, hem de nesne tabanlı bir yaklaşım 

sergilendiğinden, sınıflandırılması hedeflenen özellikler geometrik karakteristikleri 

bakımından etkin bir şekilde görüntü üzerinden elde edilebilmektedir. Bu çalışmada 

geliştirilen bulut ve gölge belirleme algoritmaları ile bölütleme tabanlı bir yaklaşım bu 

kapsamda uygulanmıştır. İlk aşamada elde edilen süper-piksellerin doğruluğu 

sınıflandırma doğruluğunu doğrudan etkilemektedir. Bu nedenle küçük bir ölçek 

parametresi seçilerek süper-piksellerin boyutları küçük tutulmuş ve piksel 

gruplamaları homojen tutularak, heterojen süper-piksellerin oluşması olasılığı 
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azaltılmıştır. Bulut ve gölge gibi nesneler, parlak ve koyu yansıtım değerleri nedeniyle 

görüntü üzerindeki spektral karakteristikleri belirgin bir şekilde oluşan özelliklerdir. 

Bu bilgiler esas alınarak SLIC algoritması ile etkin bir bölütleme uygulanarak bulut ve 

gölge alanları süper-piksellere ayrılmıştır. Spektral tabanlı bir yaklaşımla geliştirilen 

indeksler ile kural seti şeklinde bir yapı kurularak; parlaklık sıcaklığı, güneş açısı, 

NDSI, NDWI gibi özellikler de sınıflandırma kural setine eklenerek, çok kriterli bir 

yapıda bulut ve gölge alanları görüntü üzerinden belirlenmiştir. Burada yeni bir 

yaklaşım olan bulut-gölge izdüşümü yaklaşımı ile bulut ve gölge arasındaki geometrik 

bağıntı kullanılarak gölge sınıflandırması doğruluğu arttırılmıştır. Tüm bu sonuçlar 

farklı bölgelerden alınmış görüntüler üzerindeki aynı parametreler ile koşturularak, 

yöntemin transfer edilebilirliği test edilmiştir. ACCA, Fmask gibi algoritmaların 

yanında, burada geliştirilen algoritma, transfer edilebilirliği, süper-piksel tabanlı 

olması sebebiyle getirdiği işlem kolaylığı ve basitleştirilmiş işlem adımları ile 

kullanışlılığını kanıtlamıştır. 

Bulut ve gölge alanlarının tespitinden sonra klonlama işlemine altlık oluşturacak bulut 

maskeleri elde edilmiştir. Bulut alanlarının, bulutsuz görüntülerden hangisi seçilerek 

klonlanılmasına görüntüler arasında yapılan spektral benzerlik testleri ile karar 

verilmiştir. Tüm bu görüntülerin bulutlu görüntüye olan korelesyonları hesaplanarak 

korelasyonu en yüksek olan görüntü bilgi aktarımı için kullanılmıştır. Görüntülerin 

klonlanmasında, bulutlu görüntünün çekildiği tarihe en yakın 3 aylık görüntüler girdi 

olarak alınmıştır. Tespit edilen bulut alanları ayrı ayrı analiz edilerek, öncelikle seçilen 

alana yakın tarihli görüntülerde aynı bölgenin bulutsuz olup olmadığı görüntülerin 

kesişimleri alınarak test edilmiştir.  Bu testin sonrasında bulutsuz görüntüler ile bulutlu 

görüntü arasında korelasyonu en yüksek görüntüden taşırma algoritması ile (Flood 

Fill) bilgi aktarımı yapılarak bulutsuz görüntü elde edilmiştir  

Görüntülerin klonlanmasından sonra oluşan kenar bozulma etkilerinin düzeltilmesi 

için, klonlanan bölge sınırlarına ortalama filtresi (mean filter, averaging filter) 

uygulanmıştır. Görüntülerin klonlanmasının ardından, üretilen bulutsuz görüntülerin 

yakın zaman ait bulutsuz görüntülere olan benzerliği, Yapısal Benzerlik İndeksi 

Yöntemi (YBIY) (Structural Similarity Index) ile test edilmiştir. YBIY iki resim 

arasındaki benzerliğin ölçülmesi için geliştirilmiş, Karesel Ortalama Hata’nın (KOH) 

geliştirilmiş bir sürümü olan ve sık kullanılan bir yöntemdir. Bu yöntem, karşılaştırılan 

görüntülerden birisini mutlak doğru olarak kabul ederek, diğer görüntünün bu 

görüntüden sapmasını tespit etmektedir. Görüntünün kontrast ve spektral özelliklerini 

yanı sıra, yapısal bozulmalarını da hesaplamaya kattığından çalışma için uygun 

yöntem olarak belirlenmiş ve uygulanmıştır.  

Bulutlu görüntülerdeki bulutların giderilmesi uzaktan algılama disiplini üzerinde 

çalışanların uzun zamandır çalıştığı bir konudur. Sis etkisinin giderilmesi için bazı 

spektral yöntemler geliştirilmiş olsa da, geçirimsiz bulutların giderilmesi ancak farklı 

zamanlı uydu görüntülerinden bilgi aktarımı ile gerçekleşmektedir. Bu çalışmada, 

yapılan diğer çalışmalarda kazanılan bulut belirleme başarımının sonrasında bu bilgi 

kullanılarak görüntüde bulunan bulutların, aynı bölgeden çekilmiş farklı zamanlı 

görüntülerden bilgi aktarımı ile bulutsuz hale getirilmesi sağlanmıştır. Diğer bulutsuz 

görüntü elde etme yöntemlerinin yanı sıra, bulutlu alanların bulutsuz görüntülerden 

klonlanması sırasında, görüntülerin spektral ve yapısal özelliklerini korumak ön 

planda tutulmuştur. Farklı görüntü benzerlik ve görüntü kalitesi yöntemleri 

kullanılarak sadece görsellik önde tutulmadan spektral ve yapısal bilgiyi de koruyan 

bir yöntem geliştirilmiştir.  
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 INTRODUCTION 

One of the main problems of optical remote sensing is clouds and cloud shadows by 

atmospheric conditions during data acqusition. Shadows and bright features caused by 

clouds are affecting data analysis processes. These effects are; rising NDVI values, 

misclassification results and difficulties for atmospheric correction (Zhu et al, 2012). 

In remotely sensed images, clouds and shadows are vital parts of noises and detection 

of these features are crucial for further digital image processing analysis (Arvidson et 

al, 2001; Irish, 2000). Clouds are becoming vital problem for classification and image 

interpretation processes when there is no chance to acquire new cloudless images 

(Zhang et al, 2010). 

Elimination of haze effects and information reconstruction from multitemporal 

satellite images are the main methods to produce cloudless images. Tools like Google 

Earth, are producing cloudless mosaics by using multitemporal images of the same 

region by averaging them (Hancher, 2016). 

Averaging multitemporal images is giving better visual appearance for usage such as 

base maps but not a scientific approach to produce cloudless scenes. In this study, 

cloudless images are created by cloning cloudless regions from multitemporal dataset. 

Furthermore, in a addition to other works, spectral features and seasonal effects are 

considered to create cloudless image. Edge effects are also smoothed by using different 

edge smoothing filters.  

Cloud detection algorithms are mainly grouped into two categories; classification 

based algorithms and rule-set based algorithms (Huang et al, 2010). Classification 

based methods use training sets to classify cloud features similar to traditional 

classification approach (Simpson et al, 1995; Amato et al, 2008). Rule-set based 

algorithms need pre-defined cloud specific features for implementation. Automation 

of these processes is quite difficult to implement because of difficulties in 

characterization of cloud features. ACCA (Automated Cloud Cover Assessment) 

method which is developed by Irish in 2006 is an example of an automatic cloud cover 
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detection algorithm for Landsat 7 images (Irish et al, 2006). ACCA method is 

considered as a fundamental method for classification of cloud features in Landsat 

images (Irish, 2000; Saunders et al, 1988). The aim of this algorithm is detection of 

cloud ratio in the scene and appending this information to image metadata as "cloud 

cover". ACCA algorithm uses different spectral filters and thermal infrared channels 

for detection of clouds. Nevertheless, cloud and shadow boundaries are not precisely 

determined for automated analysis of multitemporal Landsat images in this algorithm 

(Zhu and Woodcock, 2012). ACCA fails to be precise about detection of warm cirrus 

clouds and detects snow and ice as clouds in high-latitude regions. (Irish, 2000; 

Saunders et al, 1988). Another most-used cloud and shadow detection algorithm is 

Fmask method. Fmask is an object-based cloud and cloud shadow detection method 

for Landsat images. Fmask uses Top of Atmosphere (ToA) reflectance and Brightness 

Temperature (BT) to find potential cloud pixels, then uses object-based cloud and 

cloud shadow matching process to find cloud shadows precisely.  

Beyond understanding cloud detection algorithms, visual characterizations of clouds 

are important to solve this problem. Clouds in satellite images are visually categorized 

into two groups; opaque clouds and semi-transparent clouds. Determination of opaque 

clouds are easier to identify because of their high brightness features in visible 

channels. Since, their signal covers both clouds and surface underneath cloud features, 

identification of semi-transparent clouds is difficult (Gao et al, 1995, 1998, 2002). 

Cloud and shadow detection seems as a state-of-art task according to characteristics of 

clouds' bright behaviour and dark features of their shadows. In contrary, other 

possibilities can occur in different images such as clouds which are not bright and cold 

and shadow which are not dark. Also, shadows of clouds over land can occur in many 

different ways. Based on these anomalies, shadow detection process is quite harder 

than cloud detection. Mostly, cloud region detection studies are completed by spectral 

tests. Spectral test can detect shadows in some conditions, but shadows caused by 

topography, wet areas, dark surfaces, and shadows which don’t cause sufficient 

amount of darkness and cannot be detected only by spectral methods (Saunders and 

Kriebel, 1998; Hutchison, 2009). Recently geometry based cloud shadow detection 

methods have been studied and shown to be more successful. Cloud shadows and 

clouds are matched by each other in object matching method which is well-known and 
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tested method in geometry based methods (Le Hégarat-Mascle and Andre, 2009; 

Berendes et al, 1992; Simpson et al, 1998, 2000)   

In the light of all informations given above, cloud and shadow detection procedure is 

an ongoing work in remote sensing. In this study, a new method is proposed which is 

inspired by all methods mentioned in this paper about cloud and cloud shadow 

detection. Our proposed method detects clouds and cloud shadows from Landsat 8 

images by using both spectral and geometrical properties after a superpixel 

segmentation process. Beside spectral and geometric properties, discrimination of cold 

surface (snow, ice) and cloud-shadow relation is strengthened by using thermal 

infrared channels of Landsat. Neighbourhood relations are used to improve detection 

accuracy of cloud shadow regions around cloud areas. This method is tested with four 

different Landsat images taken from different study areas at different acquisition dates. 

This study can be regarded as a simplified, modified, automated and segmentation 

based version of ACCA and Fmask methods (Saunders and Kriebel, 1998; Zhu and 

Woodcock, 2012). 

Information reconstruction concept applied to cloud satellite images gives sufficient 

results for creating cloudless images from multitemporal image dataset. Cloning cloud 

patches from cloudless multitemporal dataset is the information reconstruction concept 

of this study. Superpixel segmentation detects cloud patches accurately to start Flood 

Fill process to reconstruct cloudless information for cloud patches. Choosing best 

image for cloning process is an important step to conserve spectral consistency. Patch 

by patch correlation calculations between multitemporal dataset are used to find best 

image for cloning in terms of spectral consistency. Vector intersection calculations are 

also used to find best cloudless dataset for cloning process to achieve full cloudless 

patch cloning. Information reconstruction from cloudless image to cloud image is 

implemented by using Flood Fill algorithm by pixel-by-pixel which is one of the most 

known graphical filling algorithm used in graphical applications. Conservation of 

spectral and structural consistency is the main aim of our proposed cloning algorithm. 

SSIM is used to evaluate accuracy of cloning in terms of spectral and structural 

consistency with cloudless reference image. Transferability of proposed method is also 

tested by using different satellite images from different study areas by using satellite 

images with different acquisition dates. Accurate detection of cloud and shadow 

patches for cloning process is most important step. Information reconstruction for 
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cloud images by our proposed method gives sufficient results for passive remote 

sensing applications which are interrupted by clouds. Method developed within this 

study can yield continuity for analyses such as time series and NDVI calculations. 

Cloud covers, which are generally present in optical remote sensing images, limit the 

usage of acquired images and increase the difficulty in data analysis. Thus, information 

reconstruction of cloud covered images generally plays an important role in image 

analysis. This thesis proposes a novel method to reconstruct cloud and cloud shadow 

information in multitemporal remote sensing images. Based on the concept of utilizing 

spectro-temporal relationships, we propose a superpixel based information 

reconstruction algorithm that segments images into superpixels containing clouds and 

cloud shadows and then clones information from cloud-free and high-similarity 

patches to their corresponding cloud patches. 

Workflow of the study is given in Figure 1.1 in detail. 

 

Figure 1.1 : General workflow of the study 
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 BACKGROUND 

Companies such as Google and Mapbox are using satellite images base maps for their 

web maps (Gundersen, 2013; Hancher, 2016). Cloudless mosaics are important for 

showing to users their interested area cloudless and updated (Figure 2.1, Figure 2.2).  

 

 Global mosaic of cloudless and clear view of Google Maps & Earth  

Landsat satellite images are commonly used for small scale cloudless base map mosaic 

creation. Aqua and Terra satellite images are also used for global scale base maps.  

Detection and elimination of clouds and shadow patches is important for analysis of 

satellite images for different applications such as creation of cloudless base maps. 

These maps are used by millions of people in a day.  When a user searched an area to 

check satellite image in Google Earth, it is important to show cloudless and updated 

image to users which makes cloudless image production more important. 
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 Cloudless image generation procedure of Mapbox Co. a) Images of all 

year b) Normalized c) Cloudless image (Url-1). 
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 Scientific Approach to Cloudless Mosaic Production 

Averaging multitemporal satellite images is the most common method to create 

cloudless image for web basemaps. This method gives visually sufficient and good 

looking results although it may cause a loss of spectral information (Loyd, 2012). 

Methods which preserve spectral information is summarized in Introduction chapter. 

In this study, both visual appearance and spectral consistency are taken into account 

to develop a superpixel based binary classification approach to create cloudless 

images. 

 Cloud Types 

Clouds are given Latin names corresponding to their appearance and height (Muller, 

2016). See the following list; 

Clouds are classified according to: 

• Height, defined by altitude of cloud base. 

o High: cirrus (Ci), cirrostratus (Cs), cirrocumulus (Cc) 

o Middle: Altostratus (As), Altocumulus (Ac) 

o Low: Stratus (St), stratocumulus (Sc), nimbostratus (Ns) 

o Clouds with vertical development: cumulus (Cu), cumulus congestus 

(Towering Cumulus-TCU), cumulonimbus (Cb) 

Meteorologists also categorize clouds according to precipitation.  All of these different 

identification features make differences how we see cloud in images (Table 2.1, Figure 

2.3). 

 Common cloud types and spesifications (CIMSS, 2016). 

Cloud Level Layer Clouds Heap Clouds Hybrid 

High 
Cirrus \ 

Cirrostratus 
Cirrocumulus  

Mid Altostratus Altocumulus  

Low Stratus Cumulus Stratocumulus 

Precipitating Nimbostratus  Cumulusnimbus (Thunderstorms!) 
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 Common cloud types with reference altitude chart 

(https://laulima.hawaii.edu / Geography 101 Course Notes). 

Identification of clouds from satellite images is the main purpose of cloud 

classification process. Basic features for cloud identification can be listed such as; 

brightness, texture (shadow in VIS), pattern, edge definition, size and individual shape 

(Muller, 2016). Reflective characteristics of clouds are important to analyze how they 

seen in satellite images. All surfaces reflect varying amounts of sunlight (Table 2.2). 

Different types of clouds are also reflects different amount of sunlight according to 

their thickness.  

 Reflectance characteristics of different surfaces (From Radar and 

Satellite Weather Interpretation for Pilots, Lankford.). 

Surface Type Albedo 

Large Thunderstorm 92% 

Thick stratocumulus 68% 

Snow 88-59% 

Thin stratus 42% 

Thin cirrostratus 32% 

Forest 12% 

Water 9% 
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Normally clouds appear in satellite images bright white. Thin clouds allow most of 

sun’s energy to pass through, reflecting very little sunlight which cause to appear gray 

in images and also mixture of surface materials’ reflective characteristics. Also, gaps 

between small clouds allow some of the Earth’s reflected energy through, when 

averaged with the  clouds, the clouds appear grayer than normal. (Figure 2.4) 

 

 Thin and thick clouds and reflective characteristics. 

When you take into account all of these information about clouds, using both visible 

and infrared images to determine cloud and cloud types is the best method. Reference 

chart for cloud and cloud tye discrimination from visible and infrared images are given 

in Table 2.3. 

 Cloud characterisrics in visible and infrared images (Muller, 2016). 

IR Image 

If clouds are: 

Visible Image 

AND if clouds appear: 

Possible Cloud Type 

Cold Thick (white) Cb or Nimbostratus 

Cold Thin (gray) Cirrus 

Warm Thick (white) Low Stratus, Fog 

Warm Thin (gray) Cumulus, stratocumulus 

Table 2.4 summarizes all common cloud types and their sample apperaance from 

ground, visible and infrared satellite images (CIMSS, 2016). 
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 Common cloud types from ground photo, infrared and visible satellite 

images. 

Photo From Ground Infrared Satellite Images Visible Satellite Images 

Cumulus (Heap Clouds)  

   Stratus (Layer Clouds) 

   Cumulonimbus 

   Altocumulus 

   Cirrus 

   Cirrostratus 

   
 

https://cimss.ssec.wisc.edu/satmet/modules/4_clouds/images/cumulonimbus_anvil.jpg
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 DATA AND PRE-PROCESSING  

Cloning cloud areas is the main part of the thesis. As an initial step, all cloud pixels 

need to be classified accurately to start cloning process. Free distrubuted multitemporal 

dataset of Landsat-8 images are choosen for detection and cloning of cloud features. 

Using thermal bands of Landsat-8 images are also important for discrimination of 

cloud and snow features.  

Four different Landsat-8 path-rows are selected as study area which have different land 

use characteristics and cloud covers between 10% and 30%. Evaluating results of the 

algorithm in different regions which have different surface characteristics is important 

to test transferability. Figure 3.1 shows the geographical distribution of selected 

images. 

 

Figure 3.1 : Study area and distribution of selected images. 

 Landsat-8 

Landsat-8 is an American Earth observation satellite launched on February 11, 2013. 

It is the eighth satellite of the Landsat program; the seventh to reach orbit successfully. 

Originally called the Landsat Data Continuity Mission (LDCM), it is a collaboration 

between NASA (National Aeronautics and Space Administration) and the United 

States Geological Survey (USGS) (Table 3.1). Landsat-8 scenes are processing by 

Amazon team and available after hours of acqusition. Landsat-8 is freely distrubuted 
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over web and Amazon Cloud Service (AWS). Information about OLI (Operational 

Land Imager) and thermal bands is given in Table 3.2. 

Table 3.1 : Technical details about Landsat-8 (USGS, 2015). 

Landsat-8 in detail 

Product type: Level 1T (terrain corrected) 

Output format: GeoTIFF 

Pixel size: 15 meters/30 meters/100 meters (panchromatic/multispectral/thermal) 

Map projection: UTM (Polar Stereographic for Antarctica) 

Datum: WGS 84 

Orientation: North-up (map) 

Resampling: Cubic convolution 

OLI Accuracy: 12 meters circular error, 90-percent confidence 

TIRS Accuracy: 41 meters circular error, 90-percent confidence 

Table 3.2 : Landsat 8-OLI and Thermal Infrared Sensor (TIRS) spectral band 

characteristics (USGS, 2015). 

Bands Wavelength (micrometers) Resolution (meters) 

Band 1 - Coastal aerosol 0.43 - 0.45 30 

Band 2 - Blue 0.45 - 0.51 30 

Band 3 - Green 0.53 - 0.59 30 

Band 4 - Red 0.64 - 0.67 30 

Band 5 - Near Infrared (NIR) 0.85 - 0.88 30 

Band 6 - SWIR 1 1.57 - 1.65 30 

Band 7 - SWIR 2 2.11 - 2.29 30 

Band 8 - Panchromatic 0.50 - 0.68 15 

Band 9 - Cirrus 1.36 - 1.38 30 

Band 10 - Thermal Infrared (TIRS) 1 10.60 - 11.19 100 * (30) 

Band 11 - Thermal Infrared (TIRS) 2 11.50 - 12.51 100 * (30) 

3.1.1 Automatic Download Tool  

Landsat programs is a state-of-art earth observation program of USGS (United States 

Geological Survey) over decades. After 2015, Amazon Cloud Services Company 

announced that each Landsat images will be available in cloud disk space for easy 

downloading and usage purposes after a short period of time after acqusition  

(Amazon, 2015). In last quarter of 2016, Google also announched that more than 4 

millions of  Landsat data is available on Google Cloud Platform (Birch, 2016). In this 

study, a graphical user interface for selection of appropriate study site is developed. 
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Users can select appropriate Path/Row and Date for study area by drawing a rectangle 

on map. Users also can select which image to work with from all multitemporal data 

set (Figure 3.2 and Figure 3.3). 

 

Figure 3.2 : Landsat Path/Row/Date selection and quicklook. 

 

Figure 3.3 : Landsat study area selection GUI and downloaded image. 

 Calibration of Data 

Landsat 8 data is provided as raw DN (Digital Number) numbers. Data can be rescaled 

to the Top of Atmosphere (ToA) reflectance and radiance using radiometric rescaling 

coefficients stored in the product metadata file (MTL file) (Figure 3.4). By this 

conversion, image data is converted to physically meaningful units.  Metadata file also 
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contains the thermal constants needed to convert TIRS data to the at-satellite 

brightness temperature. 

 

Figure 3.4 : Source of energy, radiance and reflectance (Source: Lillesand and 

Kiefer, 2002). 

3.2.1 Radiance 

Radiance is described as, radiation reflected by a surface and falls within a given solid 

angle in specific direction. OLI and TIRS bands can be converted to ToA spectral 

radiance using the scaling factors of data which is given in metadata file for each scene 

(equation 3.1): 

Lλ = MLQcal + AL (3.1) 

Lλ = ToA spectral radiance (Watts / (m2 x srad x μm)) 

ML = Band-specific multiplicative rescaling factor  

AL = Band-specific additive rescaling factor  

Qcal = Pixel values (DN)     

3.2.2 Reflectance 

Reflectance is described as, fraction of incident electromagnetic power that is reflected 

at an interface. Using radiometric corrected data for remote sensing analysis is 

important for multitemporal image analysis. OLI data can be converted to ToA 

planetary reflectance after radiance conversion using reflectance rescaling coefficients 

given in the product metadata file (MTL file).  Equation 3.2 is used to convert DN 

values to ToA reflectance for OLI data (USGS, 2015). 

 ρλ' = MρQcal + Aρ  (3.2) 
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ρλ'      = ToA reflectance, without correction for solar angle.   

Mρ      = Band-specific rescaling factor  

Aρ       = Band-specific additive rescaling factor  

Qcal     = Pixel values (DN) 

 Also, sun angle correction is applied to ToA reflectance values by using equation (3.3) 

𝜌𝜆 =  
ρλ′

cos(𝜃𝑆𝐸)
=

ρλ′

sin(𝜃𝑆𝑍)
   

(3.3) 

ρλ       = ToA reflectance 

θSE      = Sun elevation angle 

θSZ      = Solar zenith angle;  θSZ = 90° - θSE 

After all of these conversions, all processes are applied to reflectance images (Figure 

3.5). 

 

Figure 3.5 : Landsat-8 image radiometric calibration (left) Raw Landsat-8 (right) 

ToA reflectance calibrated. 

3.2.3 Brightness Temperature 

The apparent temperature of the surface assuming a surface emissivity of 1 (one). 

Setting the emissivity to one is equivalent to assuming the target is a blackbody, so the 

brightness temperature is defined as the temperature a blackbody would be in order to 

produce the radiance perceived by the sensor. Brightness temperature is a descriptive 

measure of radiation in terms of the temperature of a hypothetical blackbody emitting 

an identical amount of radiation at the same wavelength. The brightness temperature 

is obtained by applying the inverse of the Planck function to the measured radiation. 

Depending on the nature of the source of radiation and any subsequent absorption, the 
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brightness temperature may be independent of, or highly dependent on, the wavelength 

of the radiation (GES DISC, 2016).  

TIRS data can be converted from radiance to BT by using the thermal rescaling given 

in metadata file by using equation 3.4 (USGS, 2015). 

𝑇 =  
𝐾2

ln (
𝐾1

𝐿𝜆
+ 1)

 
 

(3.4) 

T = At-sensor brightness temperature (K) 

Lλ       = ToA spectral radiance (watts/ (m2 x srad x μm)) 

K1, K2  = Band-specific thermal conversion constant  

Brightness temperature information is used in cloud detection algorithm which shows 

lower temperature values in cloud regions compared to other regions. TIR2 channel 

which is indicating better cloud discrimination is used for cloud and shadow detection 

(Figure 3.6). 

 

Figure 3.6 : Landsat-8 image converted brightness temperature. 

3.2.4 Atmospheric Correction 

Atmospheric correction is simply described as a process of removing the atmospheric 

effects in satellite images. The effects of atmosphere should be considered to measure 

and calculate surface reflectance. Land surface reflectance is described as (Moran et 

al., 1992) (equation 3.5); 

ρ= [π x (Lλ−Lp) x d2]/[Tv x ((ESUNλ x cosθs x Tz) + Edown)] (3.5) 

where: 

Lp : path radiance 

Tv : atmospheric transmittance in the viewing direction 

Tz : atmospheric transmittance in the illumination direction 

Edown : downwelling diffuse irradiance 
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Atmospheric measurements are needed for appyling this formula in order to calculate 

surface reflectance. Alternatively, image-based techniques are developed for the 

calculation of these parameters when there is no change for field measurements 

(Chavez, 1996). 

The Dark Object Subtraction (DOS) is one of the state-of-art image-based atmospheric 

correction method. Assumption of this method is that some pixels in image are in 

complete shadow and radiance of them at satellite are caused by path radiance of 

atmospheric scatter. Another support of this assumption is the fact of very few land 

cover types on the earth surface are absolute black. Compared with other advanced 

atmospheric correction methods, accuracy of image-based techniques are lower than 

physically-based methods. Furthermore, they are very effective for estimation of land 

surface reflectance when no atmospheric measurements are available as they can 

(Congedo, 2016). 

The path radiance by definition of (Sobrino et al, 2004) (equation 3.6): 

Lp=Lmin−LDO1% (3.6) 

where: 

Lmin= “radiance that corresponds to a digital count value for which the sum of all the 

pixels with digital counts lower or equal to this value is equal to the 0.01% of all the 

pixels from the image considered” (Sobrino et al, 2004, p. 437) 

LDO1%= radiance of Dark Object, assumed to have a reflectance value of 0.01 

Lmin for Landsat images (eqaution 3.7): 

Lmin=ML∗DNmin+AL (3.7) 

The radiance of dark object by definition of (Sobrino et al, 2004) (equation 3.8): 

LDO1%=0.01∗[(ESUNλ∗cosθs∗Tz)+Edown]∗Tv/(π∗d2) (3.8) 

Then path radiance is (equation 3.9): 

Lp=ML∗DNmin+AL−0.01∗[(ESUNλ∗cosθs∗Tz)+Edown]∗Tv/(π∗d2) (3.9) 

There are several DOS techniques developed based on different assumptions of Tv, Tz, 

and Edown (e.g. DOS1, DOS2, DOS3, DOS4). Basic technique is the DOS1, which uses 

following assumptions (Moran et al, 1992); 

• Tv= 1,  Tz= 1,  Edown= 0 
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Then path radiance is (equation 3.10): 

Lp=ML∗DNmin+AL−0.01∗ESUNλ∗cosθs/(π∗d2)    (3.10) 

Final land surface reflectance is (Figure 3.7) (equation 3.11): 

ρ=[π∗(Lλ−Lp)∗d2]/(ESUNλ∗cosθs (3.11) 

For Landsat 8, ESUN calculation formula is given in equation 3.12. 

ESUN=(π∗d2)∗RADIANCE_MAXIMUM/REFLECTANCE_MAXIMUM (3.12) 

where RADIANCE_MAXIMUM and REFLECTANCE_MAXIMUM can be found 

in metadata file. 

 

Figure 3.7 : Landsat-8 image calibration steps (a) RAW Landsat 8 (b) ToA    

reflectance calibrated (c) DOS 1 Atmospheric corrected. 
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 CLOUD AND SHADOW DETECTION 

The primary limitation of passive remote sensing sensors is their sensitivity to weather 

conditions during data acquisition. Land scenes are, on average, approximately 35% 

cloud covered globally (Ju at al, 2008), significantly reducing the availability of cloud-

free satellite images. Detection of cloud and shadow areas from satellite images is 

important step for many analysis. In this chapter, cloud and shadow detection 

methodology is described in detail.  

Proposed cloud detection algorithm is based on usage of OLI (Operational Land 

Imager) and thermal bands. OLI bands are calibrated to ToA: Top of Atmosphere 

Reflectance and thermal bands are converted to brightness temperature to use in this 

algorithm. Cloud areas ar e identified using ruleset-based classification applied on 

reflectance calibrated images by following superpixel segmentation of satellite image.  

Following classification of cloud areas, cloud shadows are classified by evaluating 

spectral test and neighbourhood relations with cloud regions. Developed method is a 

simplified version of ACCA and Fmask algorithms. Cloud and shadow masks obtained 

by Fmask and results obtained by our method are compared, and results are evaluated. 

General workflow chart of all steps concluded in cloud and shadow detection process 

is given in Figure 4.1. 
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Figure 4.1 : General workflow chart of study. 

 Segmentation 

Generally, clouds and shadows are combination of pixel groups in satellite images 

despite spreaded as small pixels. Pixel by pixel processing of satellite image for binary 

classification works needs much more processing load than using superpixels. Based 

on a concept of merging homogenous pixels to pixel groups, Object Based Image 

Analysis (OBIA) concept is merging milions of pixels into thousounds of superpixels 

to process easily. Clouds and shadows are good example to use superpixels methods 

which both of them occur as patches in images. Not only spectral information but also 

parameters like texture, pattern, area, linearity etc. can be used for classification. In 

this chapter, OBIA analysis of thesis is described in detail. Beyond using word of 

segment for pixel groups, “superpixel” term of computer vision is used for describing 

homogenous pixel groups. 
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4.1.1 SLIC Segmentation 

Superpixels are used to combine pixels into meaningful groups to create pixel groups. 

Merging pixels which have similar information is speeding up image processing tasks. 

SLIC (Simple Linear Iterative Clustering) algorithm is an efficient method for 

segmentation of image which is based on spatially localized version of K-means 

clustering method. Fundamental specifications and advantages of SLIC method are 

evaluated in Achanta et al. (2002). 

SLIC divides image into a M×N regular grids. M and N values are given as an input, 

where (eqaution 4.1) 

𝑀 =
𝑖𝑚𝑎𝑔𝑒𝑊𝑖𝑑𝑡ℎ

𝑟𝑒𝑔𝑖𝑜𝑛𝑆𝑖𝑧𝑒
 , 𝑁 =

𝑖𝑚𝑎𝑔𝑒𝐻𝑒𝑖𝑔ℎ𝑡

𝑟𝑒𝑔𝑖𝑜𝑛𝑆𝑖𝑧𝑒
 (4.1) 

A superpixel is processed by initializing from each grid center (equation 4.2) 

      𝑥𝑖 = 𝑟𝑜𝑢𝑛𝑑𝑖

𝑖𝑚𝑎𝑔𝑒𝑊𝑖𝑑𝑡ℎ

𝑟𝑒𝑔𝑖𝑜𝑛𝑆𝑖𝑧𝑒
 , 𝑦𝑖 = 𝑟𝑜𝑢𝑛𝑑𝑗

𝑖𝑚𝑎𝑔𝑒𝑊𝑖𝑑𝑡ℎ

𝑟𝑒𝑔𝑖𝑜𝑛𝑆𝑖𝑧𝑒
 

(4.2) 

Following this step, regions are obtained by running K-means clustering, started from 

the centers (equation 4.3).  

𝐶 = {
Ψ(xi, yj)

𝑖 = 0,1, … , 𝑀 − 1
𝑗 = 0,1, … . , 𝑁 − 1

} 

(4.3) 

K-means uses the standard Lloyd algorithm alternating by assigning pixels to the 

closest centers (Lloyd, 1982). Differences of SLIC compared to standard K-means is 

that each pixel can be assigned only to the center which comes from the neighbour 

tiles. After creation of superpixels, each superpixel is taken into account to check if 

area is less then minimum region size value which is taken as an input from user 

(Vedaldi and Fulkerson, 2010). Results of SLIC algorithm which is applied to cloud 

image are shown in Figure 4.2. 
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Figure 4.2 : Results of SLIC algorithm applied to cloud image (left) Original image 

(right) SLIC superpixel segmentation result. 

 Cloud Detection 

After superpixel segmentation of satellite images, cloud detection steps are described 

in detail in this chapter. 

4.2.1 Classification of Additional Classes (Water and Snow) 

Not only clouds, but also higher buildings, hills and factors which cause height 

difference can also cause shadows according to sun azimuth. Shadows and water 

bodies are misclassified to each other because of their dark behaviour. In this study, 

NDWI (Normalized Difference Water Index) and cloud projection methods are used 

to overcome these two misclassification problems mentioned above (Gao, 1996). 

NDWI values are calculated to prevent misclassification of water bodies and shadow 

areas to each other. The constant threshold is used to classify water bodies 

automatically (equation 4.4) (Figure 4.3). 

𝑁𝐷𝑊𝐼 =  
𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛
 

(Water – NDWI < -0.2) 

(4.4) 
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Figure 4.3 :  (a) Original RGB image (b) NDWI Index (c) Water classification  

based on NDWI threshold (scene ID: LC81910302014163LGN00). 

NDSI is a normalized difference of two bands (Green and SWIR1) to map snow. 

Beside the advantage of using the thermal infrared band, NDSI information is also 

added to the procedure to cope with difficulties caused by snow-cowered areas which 

have bright and cold temperature features (equation 4.5). NDSI index is used for 

discrimination of clouds and snow cover (Hall and Riggs, 2011). Pixels which have 

NDSI values greater than 0.8 are classified as snow (USGS, 2015) (Figure 4.4). 

𝑁𝐷𝑆𝐼 =
𝐺𝑟𝑒𝑒𝑛 − 𝑆𝑊𝐼𝑅 1

𝐺𝑟𝑒𝑒𝑛 + 𝑆𝑊𝐼𝑅 2
 

(Snow NDSI > 0.8) 

(4.5) 

 

Figure 4.4 :  (a) Original RGB image (b) NDSI index (c) Snow classification based 

on NDSI threshold (scene ID: LC81700322015067LGN00). 

4.2.2 Cloud Classification Background (Thermal Band Usage) 

Thermal band usage is also easing the process of opaque cloud classification. Band 

ratio of cloud pixels compared to other land cover types are resulting in higher values 

in cloud regions which ease thresholding process for cloud detection. Cloud 

classification method is developed within a multi-criteria structure shown in Figure 

4.1. Pixels have temperature value less than 300K are classified as cloud candidate by 

using information provided by USGS (Figure 4.5-Figure 4.6). 
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Figure 4.5 : Colormap of thermal infrared 2 band (LC81790342014207LGN00). 

 

Figure 4.6 :  (a) Original RGB image (b) Pixels which are smaller than 300K in 

TIR2 band (Cloud candidate). 

4.2.3 Multi-Criteria Cloud Classification Approach 

Detection of cloud features from Landsat image is started by identification of spectral 

characteristics of clouds. Spectral signatures collected from image are shown on Figure 

4.7. Algorithm is developed on the basis of these signatures. 
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Figure 4.7 : Cloud spectral signatures collected from image. 

As seen in Figure 4.7, cloud areas have high brightness values in NIR (Band 5), and 

SWIR (Band 7) which makes them easily distinguishable in those regions. In addition 

to this, information about characteristics of bright objects on the blue band is taken 

into account and values of these three bands are multiplied with each other. Cloud 

shadows are discriminated from other features by dividing thermal channel to the 

multiplication of two bands based on information of low-temperature characteristic of 

cloud features on thermal infrared bands (Table 4.1) (equation 4.6) (Figure 4.8). 

𝐼𝑛𝑑𝑒𝑥𝑐𝑙𝑜𝑢𝑑 =  
𝑁𝐼𝑅 ∗ 𝑆𝑊𝐼𝑅1 ∗ 𝐵𝑙𝑢𝑒

𝑇ℎ𝑒𝑟𝑚𝑎𝑙 2
 

(4.6) 

Table 4.1 : Cloud classification criteria. 

Feature Threshold 

NDSI Not snow (NDSI < 0.6) 

Thermal Infrared <300 Kelvin 

Cloud Classification Index The dynamic threshold which comes from brightest 

object cluster of the image. 

 

Figure 4.8 :  (a) Original image (b) Cloud detection index (c) Classified cloud areas. 
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 Shadow Classification 

Similar to cloud features, cloud shadow classification method is also developed based 

on interpretation of spectral signatures which are collected from cloud shadow areas 

(equation 4.7).   Cloud shadow areas are distinguished easily by using this index which 

eases dynamic thresholding for shadow detection. 

𝐼𝑛𝑑𝑒𝑥𝑠ℎ𝑎𝑑𝑜𝑤 =  
𝑁𝐼𝑅 ∗ 𝑆𝑊𝐼𝑅 1

𝑅𝑒𝑑
 

(4.7) 

Neighbour edges of cloud and shadow classifications are added to these classified 

areas by region growing to complete all classification process. 

 Cloud and Cloud Shadow Relation (Cloud Projection Method) 

Beyond shadow classification index, projections of cloud features to a specific distance 

are calculated according to sun azimuth angle which comes from image metadata 

(Figure 4.9; Figure 4.10). It is used to prevent misclassification of cloud shadow 

features with other shadows. This candidate cloud projection layer is a qualifier to 

ensure objects classified as cloud shadows are associated with cloud pixels. Methods 

developed within this thesis follows, Luo et al. (2008); Hughes and Hayes ( 2014); 

Braaten et al, (2015); Huang et al, (2010) and Zhu and Woodcock, (2012) by focusing 

on superpixel segmented image pixels. 

 

Figure 4.9 : Relationship between clouds and cloud shadow projections (cloud 

projection layer (left), cloud layer (right)). 
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Figure 4.10 : Cloud and cloud shadow projection relation. 

Sun azimuth angle is an angle which is measured clockwise from the north while image 

acquisition (Figure 4.11). Clouds and their shadows are related by their relative 

locations depending on the image acquisition time and the sun location (Le Hégarat-

Mascle and André, 2009). 

 

Figure 4.11 : Sun elevation, sun azimuth and zenith angle. 

Cloud-shadow distance is designated as 30 pixels based on tests applied on the image. 

These projected areas are potential cloud shadow patches. Intersections of these areas 

with cloud shadow index are used to identify final cloud shadow classification (Table 

4.2, Figure 4.12). 

Distance between clouds and cloud shadow superpixels is also important indicator to 

correlate clouds with their shadows. 100 pixels buffer is used to check shadows if they 

have clouds around them. Size of cloud shadows is also another indicator to understand 

if they are related to clouds. Shadows of clouds are always smaller than their connected 

clouds (Ho and Cai, 1996). Shadows bigger than clouds are eliminated from 

classification. 
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Table 4.2 : Shadow classification rules. 

Feature Threshold 

NDWI Not water 

Potential cloud projection Intersection 

Shadow detection index The dynamic threshold which comes from darkest 

object cluster of the image. 

Closeness Clouds in 100 pixels buffer 

Size Size < Cloud size 

Direction Relation with sun location 

 

Figure 4.12 :  (a) Original image (b) Shadow detection index (c) Classified cloud 

shadow areas. 

 Results of Cloud and Shadow Detection 

Results from our approach and Fmask are compared in Figure 4.13 for four different 

study areas. As seen in Figure 4.14, our method gives more efficient results than Fmask 

regarding the geometrical accuracy of cloud and shadow structures because of its 

segmentation-based approach. 
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Figure 4.13 : Results of our approach compared to Fmask method. 

 

Figure 4.14 : Detailed area from results. 
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Zoom level is not sufficient to spot little details in Figure 4.13. Images taken from two 

different parts of the image are zoomed up in Figure 4.14 to show details and analyse 

them. Fmask and our method are both giving sufficient results for cloud and shadow 

detection. 

 Accuracy Assessment 

For binary classification applications, using precision and recall metrics give better 

understanding to evaluate accuracy of classification. Precision is the number of True 

Positives divided by the number of True Positives and False Positives (Eqauation 4.8). 

In other words, it is the number of positive predictions divided by the total number of 

positive class values predicted. It is also called the Positive Predictive Value (PPV) 

(Table 4.3). 

Precision = positive predictive value = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 = p 

(4.8) 

Table 4.3 : Accuracy indicators. 

 Result of detection: positive Result of detection: negative 

Truth: positive TP FN 

Truth: negative FP TN 

(TP: True positive, TN: True negative, FP: False positive, FN: false negative) 

Recall is the number of True Positives divided by the number of True Positives and 

the number of False Negatives. In other words; it is the number of positive predictions 

divided by the number of positive class values in the test data. It is also called 

Sensitivity or the True Positive Rate (TPR).  Recall can be thought of as a measure of 

a classifiers completeness. A low recall indicates many False Negatives (Figure 4.15) 

(Equation 4.9). 

Recall = true positive rate = sensitivity = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 = r 

F measure = 
2𝑝𝑟

𝑝+𝑟 
 

(4.9) 
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Figure 4.15 : Graphical descriptions of TP, FP, Precision and Recall (Source: 

Wikipeadia). 

Ground truths of both cloud and shadow patches are manually digitized to calculate 

accuracy metrics for evaluation of results. Accuracy metrics of cloud and shadow 

detection results can be seen in Table 4.4. 

Table 4.4 : Accuracy metrics. 

 Cloud Shadow 

(units: m2) 

Our 

method FMASK 

Our 

method FMASK 

FN 49019439 10408916 18094272 34678429 

FP 15113284 73504582 48253971 50534909 

TP 207835135 246445658 86651967 54631517 

Precision 0,93 0,77 0,64 0,52 

Recall 0,81 0,96 0,83 0,61 

F measure 0,87 0,85 0,72 0,56 

Total Classified 222901200 319786200 144836100 95393700 

Total GT 256854574 256854574 113219107 113219107 

TP / 

TotalClassified 0,93 0,77 0,60 0,38 

Precision and recall rates of our study are better than Fmask for four different test sites 

we used. Fmask method detects cloud with a bigger confidence interval which causes 

more classified areas. In this case, accuracy of two methods are also compared to a 

basic True Positive / Total Classified metric to understand classification accuracy. 

Fmeasure is also another metric which is commonly used for evaluation of binary 
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classification results. Results show that two methods show similar accuracy for cloud 

detection while our method shows more accuracy in shadow classification which uses 

cloud projection method to improve cloud&shadow relationships. 
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 CLOUD CLONING 

Information reconstruction of images has become an active research topic in the fields 

of remote sensing, computer vision, and computer graphics because of its practical 

importance. Before information reconstructions of cloud covered images, accurate 

detection of cloud and shadow patches is the main step of cloud cloning process. Cloud 

and shadow patches are the main input of cloning algorithm (Figure 5.1). 

 

Figure 5.1 : Sample result of cloud and cloud shadow detection 

Traditional cloud removal methods could be categorized into three methods: image 

filtering method, mathematical morphologic method and multitemporal cloud free 

areas composition (Zhengke et al, 2011).  

Image filtering method aims to remove thin clouds (Feng et al, 2004). The limitation 

of image filtering method is that it can remove thin clouds from images but cannot 

recover information under cloud cover effectively, meanwhile, the filtering process 

decrease energy of image which cause radiometric loss. The mathematical 

morphologic strategy uses statistical test to predict pixel values under clouds and cloud 

shadows in reference scenes from multitemporal dataset (Helmer and Ruefenacht, 

2005). Cloud-free areas cloning method uses multitemporal data which you can check 
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radiometric consistency and then can yield better results in case of radiometry (Wang, 

1999; Gabarda and Cristobal 2007; Tseng, 2008). In this study, an automated cloud 

and cloud shadow removal method is proposed to generate cloud-free image. In which, 

cloud and cloud shadows are detected on basis of both spectral and spatial tests. 

Lin et al, (2013) categorize reconstruction methods into three categories such as: 

inpainting, multispectral and multitemporal-based methods.  

In inpainting-based methods, information of cloud covered regions is synthesized 

based on using the techniques of image synthesis and inpainting (Maalouf et al. 2009; 

Lorenzi et al. 2011). The inpainting-based methods can yield a visually good looking 

result that is suitable for cloud-free visualization purposes such as satellite image layer. 

However, inconsistency of radiometry makes the results unsuitable for detailed data 

analysis. 

In multispectral-based methods, multispectral data are used in cloud detection and 

information recounstruction steps (Rakwatin 2009; Roy et al. 2008; Chun et al. 2004; 

Wang et al. 2005; Zhang et al. 2009). These methods, based on de-noising and intensity 

interpolation, can effectively reconstruct information with good results (Lin et al. 

2013).  

Multitemporal-based methods (Melgani 2006; Benabdelkader and Melgani 2008; 

USGS 2004; Gabarda and Cristobal 2007; Helmer and Ruefenacht 2005; Jiao et al. 

2007; Wang et al. 1999; Tseng et al. 2008) compared with the inpainting and 

multispectral-based methods, which rely on both temporal and spatial relationships, 

shows better results with reconstruction of opaque cloud covered pixels. Melgani 

(2006) and Benabdelkader and Melgani (2008) developed a prediction method to find 

spectrotemporal relationships between the multitemporal images. The spectrotemporal 

relationships are calculated from cloud-free regions in the neighbourhood of cloud 

covered regions over the available  multitemporal images. Li et al.  (2013) also 

developed a threshold-based approach to identify the best cloud-free and non-shadow 

pixels of a given region. A cloud-free image is then generated by mosaicking the 

selected cloud-free pixels. While methods above can yield good results for 

homogenous regions, these methods based on data fusion can show difficulties with 

clouds over heterogeneous land cover. Lin et al. (2013) proposed an information 

cloning algorithm that selects cloud-free patches using a quality assessment index and 
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reconstruct patches by using a global optimization process. Thus, this method can yield 

good cloud-free results for opaque clouds (Lin et al. 2013). 

In this study, cloud patches are cloned with cloudless satellite images from 

multitemporal dataset by using most correlated image for any cloud area (Figure 5.2). 

This study is an application of information reconstruction technique to cloudless 

images generation. General workflow of cloning method is given in Figure 5.3. 

 
Figure 5.2 : Multitemporal dataset. 

 

Figure 5.3 : Workflow of cloning procedure. 

Replacing the cloud and shadow covered pixels with their corresponding cloud-free 

pixels and then adjusting the reflectance values of the replaced pixels has been proven 
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inappropriate the image radiometry change based on conditions of data acquisition 

(Lin et al. 2013). In addition, contrary to pixel-by-pixel information reconstruction 

(Melgani  2006, Benabdelkader and Melgani 2008), which may contain radiometric 

inconsistency, Lin et al. (2003) proposed a patch-based method. To address these 

problems, we propose a best image choosing algorithm to choose best cloudless image 

to clone by using seasonal and spectral similarity. Also superpixel segmentation 

algorithm helps to select suitable cloudless pathches from a set of cloudless 

multitemporal dataset. Edge smoothing is also showing better seamless information 

reconstruction results. Also, results are evaluated by using image quality assessment 

metrics to check reliability. Proposed method can produce better cloud-free images in 

terms of radiometric accuracy and consistency compared to other cloud removal 

methods in previous studies. Visual flowchart of cloning process is given in Figure 

5.4. 

 

Figure 5.4 : Flowchart of cloud cloning method.  

 Choose Best Image to Clone 

Achieving radiometric consistency is an important step for cloning process. In this 

study, image statistics, multitemporal image dataset and vector intersections are used 

to find best cloudless image to use in cloning process. 
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5.1.1 Image Correlation Approach 

Correlation calculation between cloud image and multitemporal cloudless images is 

the main metric used to find choosing best image to clone different cloud patches 

(Figure 5.5). For each patches correlation between different images is calculated and 

image with maximum correlation is chosen (MathWorks, 2014) (equation 5.1). Two 

months of time interval is chosen to reduce radiometric inconsistency because of 

seasonal change if applicable.   

 

Figure 5.5 : Correlation calculations between images to choose best image to clone. 

A, B image, r correlation coefficient, 𝐴  ̅̅ ̅and 𝐵  ̅̅̅̅  mean of all pixels:  

𝑟 =
∑ ∑ (𝐴𝑚𝑛 −  𝐴 )̅̅ ̅̅  (𝐵𝑚𝑛 −  𝐵 )̅̅ ̅̅  𝑛𝑚

√(∑ ∑  (𝐴𝑚𝑛 −  𝐴 )̅̅ ̅̅ 2 𝑛𝑚 )(∑ ∑  (𝐵𝑚𝑛 −  𝐵 )̅̅ ̅̅ 2 𝑛𝑚 )    

 
(5.1) 
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5.1.2 Vector Intersection Approach 

Figure 5.6 shows general concept of finding cloudless satellite image for each cloud 

patches. Radiometric similarity is the most important metric for choosing cloudless 

image from multitemporal dataset. Before this important step, for each cloud patches, 

checking multitemporal dataset for cloud covered pixels intersections is the key point 

for information reconstruction. Proposed algorithm is checking all multitemporal 

dataset for each cloud patch to find image without intersection to start cloning process 

(Figure 5.7). If there is not any image without intersection, intersection percentages 

are compared to each other by supporting image similarity to decide which image to 

choose (Figure 5.8-Figure 5.9). 

 

Figure 5.6 : Finding best cloudless image for cloud patches. 
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Figure 5.7 : Intersection check between cloud patches. 

 

Figure 5.8 : Intersection percentages of cloud patches with other cloud patches in 

multitemporal image dataset. 

 

Figure 5.9 : Visual intersection rates of cloud patches. 
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 Edge Smoothing for Seamless and Smooth Cloning 

Flood Fill algorithm reconstructs pixel information from cloudless image to cloud 

image. While this information reconstruction process, edges of patches shows a 

translation effect. Creation of seamless cloudless image is one of the most important 

step of this study. Averaging filter (mean filter) is used to smooth edges of cloud 

patches to create a seamless effect (Figure 5.10, Figure 5.11). 

 

Figure 5.10 : Averaging filter. 

 

Figure 5.11 : Edges of cloud patches which are applied edge smoothing with 

averaging filter. 

 Flood Fill for Multitemporal Image Cloning 

Flood fill is an algorithm that finds connected areas of a given node in a multi-

dimensional array. Games such as Go and Minesweeper are using this algorithm for 

finding which pieces are cleared and paint programs are using it for bucket tool to fill 

areas with diferent color. In this study, after checking cloud patches intersections and 

image similarity calculations, suitable pixels from cloudless image are cloned to cloud 

image pixels by using Flood Fill algorithm by processing pixel-by-pixel. Sample 

results from image cloning process is given in Figure 5.12. 
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Figure 5.12 : Cloning results after information reconstruction by using Flood Fill 

method. 

 Cloning Results and Image Quality Tests 

Evaluation of cloning accuracy is a difficult process. Scene spectral variance similarity 

of cloudless cloning final image to cloud image is the main metric to evaluate success 

of cloning process. Structural Similarity Index (SSIM) is used to check similarity of 

final cloudless image with original cloud image.  SSIM is designed to improve 

traditional methods such as peak signal-to-noise ratio (PSNR) and mean squared error 

(MSE), which have proven to be inconsistent with human visual perception (Wang et 

al, 2004). SSIM is one of the most used image quality metric which is used for 

measuring similarity between two images. One image is accepted as a base image and 

other image is compared to base image in this method. Not only contrast and spectral 

signature but also structural similarity is tested in this method. SSIM is chosen as a 

suitable quality metric because of this specifications.  

The SSIM formula is based on three comparison measurements between the samples 

of x and y: luminance (l), contrast (c) and structure (s) which yield to compare two 

images by using spectral and structural specifications (equation 5.2). (Brunet et al, 

2012)(Wang et al, 2003). SSIM is tested and compared to state-of-art Root Mean 
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Square Error (RMSE) with different processed images in Figure 5.13 and Figure 5.14 

to check efficiency. 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝐼(𝑥, 𝑦)]𝛼 . [𝑐(𝑥, 𝑦)]𝛽 . [𝑠(𝑥, 𝑦)]𝛾 (5.2) 

 

Figure 5.13 : SSIM & RMSE results a) Original b) Histogram equalized c) Contrast 

adjusted d) Salt & Pepper effect e) Blurred f) JPEG converted. 

 

Figure 5.14 : SSIM results and similarity maps of two different cloning results. 

Cloudless images are important for all passive remote sensing applications. There are 

many studies conducted in this topic of remote sensing. Although some spectral 
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methods are developed to remove haze effects, removing oblique clouds from satellite 

image is a difficult process. Using multitemporal image dataset to remove or clone 

oblique clouds is the most applicable method for cloning oblique clouds. In this study, 

cloning of cloud image is completed with information reconstruction from cloudless 

multitemporal dataset of the same area with different acquisition dates. Accurate patch 

determination is the main step for cloning process which is the main step of seamless 

cloning result. Superpixel classification approach which is used to detect both clouds 

and shadows is provided better patch determination for detection of cloning edges. 

Conservation of spectral and structural consistency is the main aim of our proposed 

cloning algorithm. Different image quality and image similarity metrics are tested and 

implemented to preserve both spectral and structural information while cloning 

process. Transferability of proposed method is also tested by using different satellite 

images from various study areas by using satellite images with different acquisition 

dates. 
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 RESULTS AND DISCUSSION 

Detection and cloning of cloud and shadow regions is a popular study area in remote 

sensing for a long time, and lots of methods have been developed. Spectral methods 

gives satisfactory results for removing haze effects from satellite images.  Processing 

opaque clouds by using spectral methods is not sufficient remove clouds and create a 

cloudless satellite image by itself. Information reconstruction concept applied to cloud 

images gives sufficient results for creating cloudless images from multitemporal image 

dataset. These methods provide sufficient accuracy in many cases. Nevertheless, they 

don't provide enough accuracy for some specific cases such as opaque clouds over 

heterogeneous regions. Beside pixel-based methods, segmentation-based methods 

which groups pixels into superpixels are a new study area for detection of clouds and 

shadows. By separating image into homogeneous pixel groups, not only computational 

workload can be decreased but also features can be obtained on the image effectively 

regarding geometrical characteristics by the help of object-based classification 

approach. Methods developed in this study is based on segmentation approach for 

cloud and shadow detection. Classification results is directly related to accuracy of 

superpixels created in the pre-processing step of classification. Accuracy of cloud 

identification process is the main input of cloning process to create cloudless images 

from cloud images. For this reason, region size is chosen as small as possible to 

decrease the size of superpixels to minimize feature loss while pixel grouping process. 

Spectral characteristics of features such as cloud and shadow in images are significant 

in terms of brightness and darkness. In the light of this information, cloud and shadow 

areas are grouped into superpixels by using SLIC segmentation algorithm. 

Segmentation-based approach which uses both spectral and spatial information to 

group pixels provides more successful results compared to pixel-based method in this 

study. Clouds and shadows are detected from the image, by creating indices developed 

within spectral tests by adding different parameters to the multi-criteria rule set such 

as: brightness temperature, sun azimuth, NDSI and NDWI. Shadow classification 
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accuracy is increased with the help of cloud-shadow projection approach as a new 

solution to this problem which uses the geometrical relation between cloud and 

shadow. Cloud and shadow classification results are compared to Fmask method. 

Although, both methods have sufficient recall rates for cloud and shadow 

classification, region growing rate used by Fmask method to increase confidence 

interval causes non-cloud and non-shadow areas classified as cloud and shadow on 

many regions. Testing our algorithm with other satellites is also possible, if satellites 

have thermal and infrared bands. One of the restrictions of the proposed algorithm is 

the necessitiy of thermal infrared bands to find cold regions to compare clouds with 

other cold regions. Using only visible bands to find cloud regions is not possible in our 

algorithm, but using techniques like deep learning can yield good results with three 

bands images. Transferability of this method is tested with the same parameters by 

using different images from different study areas. In addition to algorithm like ACCA 

and Fmask, the usability and transferability of the algorithm developed here is proven 

in terms of simplification of processing steps and decreasing computational workload 

because of its superpixel-based approach.  

Cloning cloud patches from cloudless multitemporal dataset is the information 

reconstruction concept for this study. Superpixel segmentation detects cloud patches 

accurately to start Flood Fill process to reconstruct cloudless information for cloud 

patches. Choosing best image for cloning process is an important step to conserve 

spectral consistency. Patch by patch correlations calculations between multitemporal 

dataset are used to find best image for cloning in terms of spectral consistency. Vector 

intersection calculations are also used to find best cloudless dataset for cloning process 

to achieve full cloudless patch cloning. Information reconstruction from cloudless 

image to cloud image is implemented by using Flood Fill algorithm by pixel-by-pixel 

which is one of the most known graphical filling algorithm used in graphical 

applications. Conservation of spectral and structural consistency is the main aim of our 

proposed cloning algorithm. SSIM is used to evaluate accuracy of cloning in terms of 

spectral and structural consistency with cloudless reference image. Transferability of 

proposed method is also tested by using different satellite images from various study 

areas by using satellite images with different acquisition dates. Accurate detection of 

cloud and shadow patches for cloning process is most important step. Information 

reconstruction for cloud images by our proposed method gives sufficient results for 
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passive remote sensing applications which are interrupted by clouds. Method 

developed within this study can yield continuity for analyses such as time series and 

NDVI calculations.    
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