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FOREWORD

Clouds are beatiful elements of our photographs and our nature. For satellite images,
clouds are important noises for earth observation purposes. This thesis aims to develop
a transferable and automated method to detect clouds and shadow from satellite images
and clone these features with other multitemporal satellite image dataset to create
cloudless mosaics.
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CLOUD DETECTION AND INFORMATION CLONING TECHNIQUE FOR
MULTI TEMPORAL SATELLITE IMAGES

SUMMARY

One of the main sources of noises in remote sensing satellite images are regional
clouds and shadows of these clouds caused by atmospheric conditions. In many
studies, these clouds and shadows are masked with multitemporal images taken from
the same area to decrease effects of misclassification and deficiency in different image
processing techniques, such as change detection and NDVI calculation. This problem
is surpassed in many studies by mosaicking with different images obtained from
different acquisition dates of the same region. The main step of all these studies that
cover cloud cloning or cloud detection is the detection of clouds from a satellite image.
In this study, clouds and shadow patches are classified by using a spectral feature based
rule set created after segmentation process of Landsat 8 image. Not only spectral
characteristics but also structural parameters like pattern, area and dimension are used
to detect clouds and shadows. Information of cloud projection is used to strengthen
cloud shadow classification. Rule set of classification is developed within a
transferable approach to reach a scene independent solution. Results are tested with
different satellite images from different areas to test transferability and compared to
other state-of art methods in the literature. Detection of clouds and cloud shadows
features correctly is the main step of cloning procedure to create cloudless image from
multitemporal image dataset. Multitemporal image dataset is used to find best image
to clone cloud image. Choosing best image for cloning process is an important step for
reliable cloning. Statistical and seasonal similarity tests are used to find best image to
clone cloud covered image. Vector intersections are used to find cloudless images
between multitemporal dataset. Flood Fill method is used to create cloudless image
from cloud covered image by using information extraction from cloudless images in
dataset. Accuracy of cloning process is tested by using SSIM index to find structural
and spectral similarity to cloudless image. All cloning results are tested with different
image from different regions to check transferability of study. This study can be
regarded as a scientific approach to create cloudless image mosaics for each kind of
application. Method in this thesis is a scientific approach to well-known methods of
famous cloudless mosaic generation methods of Google, Mapbox Co. etc. for creation
of visually good-looking base maps for web maps.
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COK ZAMANLI UYDU GORUNTULERI iCiN BULUT BELIRLEME VE
KLONLAMA YONTEMI

OZET

Uzaktan algilanmis uydu goriintiilerinde atmosfer etkilerinden kaynakli olarak ortaya
¢ikan bolgesel bulutlar ve bu bulutlarin golgeleri, yapilan ¢alismalarda problem
olusturan temel giiriiltii kaynaklarindandir. Degisim analizi, NDVI hesaplama gibi
onemli dijital islemlerde bulut ve golge bolgeleri, genel olarak yaniltict sonuglar veren
bolgeler oldugundan dijital islemler ¢ogu zaman bu alanlar maskelenerek
gerceklestirilmektedir. Bu problem bir¢ok ¢alismada ayn1 bolgeden farkli zamanlarda
elde edilmis uydu goriintiileri ile mozaikleme yapilarak asilmistir. Ancak, mozaikleme
sirasinda olusan spektral ve dokusal bozulmalar ¢alismalar1 olumsuz etkilemektedir.
Gorlintlinlin ¢ekilme anina bir daha doniilemeyeceginden, bulutsuz bir goriintii elde
etmek Onemli bir siire¢ haline gelmektedir. Google Earth gibi sik kullanilan harita
araglart aym bolgeye ait cekilmis bir¢ok goriintii kullanarak bu goriintiilerin
ortalamalarindan bulutsuz mozaikler elde ederek kullanicilara sunmaktadir. Bu
calismada bulutlu goriintiiler ¢ok zamanl bulutsuz goriintiilerden klonlama yapilarak
bulutsuz hale getirilecektir. Diger benzer ¢alismalara ek olarak, klonlama siireci bir
fotograf diizenleme isleminden ote goriintiiniin spektral oOzellikleri kullanilarak
gerceklestirilerek en yakin tarih ve spektral benzerlik goz onlinde bulundurularak
bulutsuz goriintii elde edilecektir. Uretilen bulutsuz goriintiide olusan kenar bozulma
etkileri cesitli filtreler ile azaltilacaktir.

Gelistirilen yontem farkli zamanlarda c¢ekilmis Landsat-8 uydu goriintiileri ile test
edilmistir. Goriintlide bulunan bulutlarin belirlenmesi, bulut klonlama isleminin
gerceklestirilmesi i¢in ilk asama ve dogrulugu direkt olarak klonlama dogrulugu
etkileyen bir siiregtir. Bulutlarin olusturdugu parlaklik ve gdlgelerinin olusturdugu
kararmalar bir¢ok veri analizini olumsuz etkilemektedir. Bu etkiler, atmosferik
diizeltmede olusacak zorluklar, NDVI degerlerinin yiikselmesi, siniflandirmadaki
hatalar ve degisim analizinin yanhs gerceklestirilmesi seklinde olabilir. Tiim bu
etkilerin dogrultusunda, uzaktan algilama goriintiilerinde bulutlar ve gblgeleri 6nemli
bir giiriiltii kaynagi oldugundan bunlarin dijital islemlerden onceki ilk asamada
belirlenmesi 6nem tasimaktadir. Bu ¢alismada, Landsat-8 goriintiileri kullanilarak ve
mevcut 1s1l bantlarin da yardimiyla, bulut ve gdlgelerinin belirlenmesi i¢in bdliitleme
tabanli bir kural dizisi ile uygulanan bir yontem Onerilmis ve test edilmistir. Caligmaya
temel olan bulut belirleme algoritmasi, ACCA ve Fmask algoritmalarinin gelistirilmis,
sadelestirilmis, otomatize edilmis ve boliitleme tabanli uyarlanmis bir siirtimii olarak
degerlendirilebilir . Bu yontem sayesinde, spektral 6zellikler ve geometrik 6zellikler
bir arada kullanilarak Landsat 8 goriintiilerinden bulut ve bulut golgeleri belirlenmistir.
Spektral ve geometrik ozelliklerin yan1 sira Landsat 1s1] bant verileri ile, bulut-gdlge
ve soguk yiizey (kar, buz) ayirimi giiglendirilmistir. Komsuluk iliskileri kullanilarak,
belirlenen bulut alanlart etrafindaki bulut golgelerinin belirleme dogrulugu
arttirilmistir. Gelistirilen algoritma, dort farkl bolge icin farkli zamanlarda ¢ekilmis
Landsat goriintiileri tizerinde test edilerek degerlendirilmistir.

XXi



Bulut belirleme algoritmasinda temel olarak Landsat 8 goriintiilerinin OLI ve 1s1l
bantlar1 kullanilmaktadir. Landsat-8 verileri, DN degerler olarak islenmemis halde
saglanmaktadir. Bu veriler, Landsat verileri ile birlikte gelen meta veri dosyasinda
(MTL) verilen oranlama katsayilari ile atmosfer iistli yansitim degerlerine ve radyans
degerlerine doniistiiriilebilmektedir. Boylece veriler fiziksel anlami olan birimlere
doniistiiriilmiis olur. Meta veri dosyasinda saglanan 1s1l bant katsayilari ile 1s1l bant
verileri, parlaklik sicakligi bilgisine doniistiiriilebilmektedir. OLI bantlar1 atmosfer
iistli yansitim degerlerine (TOA), 1s1l bantlar ise parlaklik sicakligina donistiiriilerek
algoritmada kullanilmistir. Yansitim degerlerine doniistiiriilen goriintiilerde bulut
alanlarmin belirlenmesi i¢in Oncelikle boliitleme algoritmas: ile goriintii siiper-
piksellere ayrilmis ve kural tabanl bir siniflandirma dizisi uygulanarak bulut alanlari
goriintli lizerinden belirlenmistir. Bulut alanlarinin belirlenmesinden sonra, spektral
testler ve bulut alanlarmin komsuluk iligkileri degerlendirilerek bulut golgesi alanlar1
da belirlenmistir.

Stiper pikseller, pikselleri anlamli gruplar halinde birlestirerek, piksel gruplari
olusturmak i¢in kullanilmaktadir. Goriintiideki ayni bilgiye sahip olan piksellerin
birlestirilmesi ile goriintii isleme amagli islemlerin hiz1 da yiliksek oranda artmaktadir.
K-ortalamalar (K-means) yonteminin mekansal 6zelliklerini de kullanan bir
uyarlamasin1 temel alarak siiper pikselleri iireten SLIC algoritmasi da bu amagla
kullanilan etkin yontemlerden biridir. Bulut siiper piksellerinin iiretilmesinde SLIC
yontemi kullanilmistir.

Gorintiilerden bulut alanlariin belirlenmesi i¢in, bulutlarin spektral karakteristiginin
belirlenmesi ile isleme baglanmistir. Goriintli {izerinden toplanan bulut noktalarinin
spektral imzalar1 karsilastirilmigtir.  Algoritma bu imzalar temel alinarak
gelistirilmistir.  Bulut o6zelliklerine benzer sekilde, bulut golgesi alanlarinin
siiflandirilmasinda da, goriintii {izerinden toplanan bulut noktalarinin spektral
imzalarinin yorumlanmasini temel alan bir yontem ile 1s1l band1 devre dis1 birakan bir
bant oranlama indeksi gelistirilmistir. Bu indeks ile golge alanlarinin degeri diger arazi
ortiisii Ozelliklerinden keskin bir sekilde ayrildigindan esik degeri belirlenmesi
dinamik olarak gerceklestirilebilmektedir. Ikinci olarak, farkli golge alanlarmin, bulut
golgeleri ile karigmasini Onlemek amaciyla goriintii 6zniteliklerinden olan giines
azimut agis1 kullanilarak tiim bulut bolgelerinin bu a¢1 ile dogru orantili sekilde belli
bir uzaklikta izdiiglimi alinmistir. Bu izdiisiim alanlar, potansiyel goélge alanlarini
ifade etmektedir. Golge alan belirleme indeksi sonucu ile bu izdiisiim alanlarin
kesisimi final golge bolgelerinin siniflandirilmasinda kullanilmistir

Bulut ve golgelerinin belirlenmesi, uzaktan algilamada uzun zamandir iizerinde
calisilan ve bircok yontemin gelistirildigi bir konudur. Bu yontemler kimi zaman
yeterli dogrulukta sonucglar verirken, kimi zaman da yeterli dogrulugu
saglayamamaktadir. Piksel tabanli yontemlerin yani sira, goriintiiyii stiper-piksellere
ayiran boliitleme tabanli yontemlerin bulut ve golge belirlemede kullanilmasi yeni bir
konudur. Bu sekilde, goriintii, homojen Ozellikler sergileyen piksel gruplarina
ayrilarak, hem hesaplama giicii azaltilmakta, hem de nesne tabanli bir yaklasim
sergilendiginden, siniflandirilmasi hedeflenen 6zellikler geometrik karakteristikleri
bakimindan etkin bir sekilde goriintii {izerinden elde edilebilmektedir. Bu ¢alismada
gelistirilen bulut ve gblge belirleme algoritmalari ile boliitleme tabanli bir yaklagim bu
kapsamda uygulanmistir. Ilk asamada elde edilen siiper-piksellerin dogrulugu
siniflandirma dogrulugunu dogrudan etkilemektedir. Bu nedenle kiiciik bir 6lcek
parametresi secilerek siiper-piksellerin boyutlar1 kiigiik tutulmus ve piksel
gruplamalari homojen tutularak, heterojen siiper-piksellerin olusmasi olasilig
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azaltilmistir. Bulut ve golge gibi nesneler, parlak ve koyu yansitim degerleri nedeniyle
goriintli tizerindeki spektral karakteristikleri belirgin bir sekilde olusan 6zelliklerdir.
Bu bilgiler esas alinarak SLIC algoritmasi ile etkin bir boliitleme uygulanarak bulut ve
gblge alanlart siiper-piksellere ayrilmistir. Spektral tabanli bir yaklagimla gelistirilen
indeksler ile kural seti seklinde bir yap1 kurularak; parlaklik sicakligi, giines agisi,
NDSI, NDWI gibi 6zellikler de simiflandirma kural setine eklenerek, ¢ok kriterli bir
yapida bulut ve golge alanlar1 goriintii iizerinden belirlenmistir. Burada yeni bir
yaklagim olan bulut-goélge izdiisiimii yaklasimi ile bulut ve golge arasindaki geometrik
bagint1 kullanilarak golge smiflandirmasi dogrulugu arttirilmistir. Tiim bu sonuglar
farkli bolgelerden alinmis goriintiiler lizerindeki ayni parametreler ile kosturularak,
yontemin transfer edilebilirligi test edilmistir. ACCA, Fmask gibi algoritmalarin
yaninda, burada gelistirilen algoritma, transfer edilebilirligi, siliper-piksel tabanli
olmas1 sebebiyle getirdigi islem kolaylig1 ve basitlestirilmis islem adimlar ile
kullanigliligini kanitlamistir.

Bulut ve golge alanlarinin tespitinden sonra klonlama islemine altlik olusturacak bulut
maskeleri elde edilmistir. Bulut alanlarinin, bulutsuz goriintiilerden hangisi segilerek
klonlanilmasina goriintiiler arasinda yapilan spektral benzerlik testleri ile karar
verilmistir. Tiim bu goriintiilerin bulutlu goriintiiye olan korelesyonlar1 hesaplanarak
korelasyonu en yiiksek olan goriintii bilgi aktarimi igin kullanilmigtir. Goriintiilerin
klonlanmasinda, bulutlu goriintiiniin ¢ekildigi tarihe en yakin 3 aylik goriintiiler girdi
olarak alinmistir. Tespit edilen bulut alanlar1 ayr1 ayr1 analiz edilerek, dncelikle secilen
alana yakin tarihli goriintiilerde ayn1 bolgenin bulutsuz olup olmadig1 goriintiilerin
kesisimleri alinarak test edilmistir. Bu testin sonrasinda bulutsuz goriintiiler ile bulutlu
goriintii arasinda korelasyonu en yiiksek goriintiiden tasirma algoritmas ile (Flood
Fill) bilgi aktarimi1 yapilarak bulutsuz goriintii elde edilmistir

Goriintiilerin klonlanmasindan sonra olusan kenar bozulma etkilerinin diizeltilmesi
i¢in, klonlanan bélge sinirlarina ortalama filtresi (mean filter, averaging filter)
uygulanmistir. Goriintiilerin klonlanmasinin ardindan, iiretilen bulutsuz goriintiilerin
yakin zaman ait bulutsuz goriintiilere olan benzerligi, Yapisal Benzerlik indeksi
Yontemi (YBIY) (Structural Similarity Index) ile test edilmistir. YBIY iki resim
arasindaki benzerligin dl¢iilmesi icin gelistirilmis, Karesel Ortalama Hata’nin (KOH)
gelistirilmis bir stirlimii olan ve sik kullanilan bir yontemdir. Bu yontem, karsilastirilan
goriintillerden birisini mutlak dogru olarak kabul ederek, diger goriintiiniin bu
gorlintiiden sapmasini tespit etmektedir. Goriintliniin kontrast ve spektral 6zelliklerini
yani sira, yapisal bozulmalarini da hesaplamaya kattigindan c¢aligma igin uygun
yontem olarak belirlenmis ve uygulanmistir.

Bulutlu gortintiilerdeki bulutlarin giderilmesi uzaktan algilama disiplini iizerinde
calisanlarin uzun zamandir ¢alistigi bir konudur. Sis etkisinin giderilmesi i¢in bazi
spektral yontemler gelistirilmis olsa da, gegirimsiz bulutlarin giderilmesi ancak farkli
zamanli uydu goriintiilerinden bilgi aktarimi ile gerceklesmektedir. Bu ¢alismada,
yapilan diger ¢alismalarda kazanilan bulut belirleme basariminin sonrasinda bu bilgi
kullanilarak goriintiide bulunan bulutlarin, ayni bolgeden ¢ekilmis farkli zamanlh
goriintlilerden bilgi aktarimi ile bulutsuz hale getirilmesi saglanmistir. Diger bulutsuz
goriintii elde etme yontemlerinin yan sira, bulutlu alanlarin bulutsuz goriintiilerden
klonlanmas1 sirasinda, goriintiilerin spektral ve yapisal 6zelliklerini korumak 6n
planda tutulmustur. Farkli goriintii benzerlik ve goriintii kalitesi yontemleri
kullanilarak sadece gorsellik onde tutulmadan spektral ve yapisal bilgiyi de koruyan
bir yontem gelistirilmistir.
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1. INTRODUCTION

One of the main problems of optical remote sensing is clouds and cloud shadows by
atmospheric conditions during data acqusition. Shadows and bright features caused by
clouds are affecting data analysis processes. These effects are; rising NDVI values,
misclassification results and difficulties for atmospheric correction (Zhu et al, 2012).
In remotely sensed images, clouds and shadows are vital parts of noises and detection
of these features are crucial for further digital image processing analysis (Arvidson et
al, 2001; Irish, 2000). Clouds are becoming vital problem for classification and image
interpretation processes when there is no chance to acquire new cloudless images
(Zhang et al, 2010).

Elimination of haze effects and information reconstruction from multitemporal
satellite images are the main methods to produce cloudless images. Tools like Google
Earth, are producing cloudless mosaics by using multitemporal images of the same
region by averaging them (Hancher, 2016).

Averaging multitemporal images is giving better visual appearance for usage such as
base maps but not a scientific approach to produce cloudless scenes. In this study,
cloudless images are created by cloning cloudless regions from multitemporal dataset.
Furthermore, in a addition to other works, spectral features and seasonal effects are
considered to create cloudless image. Edge effects are also smoothed by using different

edge smoothing filters.

Cloud detection algorithms are mainly grouped into two categories; classification
based algorithms and rule-set based algorithms (Huang et al, 2010). Classification
based methods use training sets to classify cloud features similar to traditional
classification approach (Simpson et al, 1995; Amato et al, 2008). Rule-set based
algorithms need pre-defined cloud specific features for implementation. Automation
of these processes is quite difficult to implement because of difficulties in
characterization of cloud features. ACCA (Automated Cloud Cover Assessment)

method which is developed by Irish in 2006 is an example of an automatic cloud cover



detection algorithm for Landsat 7 images (Irish et al, 2006). ACCA method is
considered as a fundamental method for classification of cloud features in Landsat
images (Irish, 2000; Saunders et al, 1988). The aim of this algorithm is detection of
cloud ratio in the scene and appending this information to image metadata as "cloud
cover". ACCA algorithm uses different spectral filters and thermal infrared channels
for detection of clouds. Nevertheless, cloud and shadow boundaries are not precisely
determined for automated analysis of multitemporal Landsat images in this algorithm
(Zhu and Woodcock, 2012). ACCA fails to be precise about detection of warm cirrus
clouds and detects snow and ice as clouds in high-latitude regions. (Irish, 2000;
Saunders et al, 1988). Another most-used cloud and shadow detection algorithm is
Fmask method. Fmask is an object-based cloud and cloud shadow detection method
for Landsat images. Fmask uses Top of Atmosphere (ToA) reflectance and Brightness
Temperature (BT) to find potential cloud pixels, then uses object-based cloud and
cloud shadow matching process to find cloud shadows precisely.

Beyond understanding cloud detection algorithms, visual characterizations of clouds
are important to solve this problem. Clouds in satellite images are visually categorized
into two groups; opaque clouds and semi-transparent clouds. Determination of opaque
clouds are easier to identify because of their high brightness features in visible
channels. Since, their signal covers both clouds and surface underneath cloud features,
identification of semi-transparent clouds is difficult (Gao et al, 1995, 1998, 2002).
Cloud and shadow detection seems as a state-of-art task according to characteristics of
clouds' bright behaviour and dark features of their shadows. In contrary, other
possibilities can occur in different images such as clouds which are not bright and cold
and shadow which are not dark. Also, shadows of clouds over land can occur in many
different ways. Based on these anomalies, shadow detection process is quite harder
than cloud detection. Mostly, cloud region detection studies are completed by spectral
tests. Spectral test can detect shadows in some conditions, but shadows caused by
topography, wet areas, dark surfaces, and shadows which don’t cause sufficient
amount of darkness and cannot be detected only by spectral methods (Saunders and
Kriebel, 1998; Hutchison, 2009). Recently geometry based cloud shadow detection
methods have been studied and shown to be more successful. Cloud shadows and

clouds are matched by each other in object matching method which is well-known and



tested method in geometry based methods (Le Hégarat-Mascle and Andre, 2009;
Berendes et al, 1992; Simpson et al, 1998, 2000)

In the light of all informations given above, cloud and shadow detection procedure is
an ongoing work in remote sensing. In this study, a new method is proposed which is
inspired by all methods mentioned in this paper about cloud and cloud shadow
detection. Our proposed method detects clouds and cloud shadows from Landsat 8
images by using both spectral and geometrical properties after a superpixel
segmentation process. Beside spectral and geometric properties, discrimination of cold
surface (snow, ice) and cloud-shadow relation is strengthened by using thermal
infrared channels of Landsat. Neighbourhood relations are used to improve detection
accuracy of cloud shadow regions around cloud areas. This method is tested with four
different Landsat images taken from different study areas at different acquisition dates.
This study can be regarded as a simplified, modified, automated and segmentation
based version of ACCA and Fmask methods (Saunders and Kriebel, 1998; Zhu and
Woodcock, 2012).

Information reconstruction concept applied to cloud satellite images gives sufficient
results for creating cloudless images from multitemporal image dataset. Cloning cloud
patches from cloudless multitemporal dataset is the information reconstruction concept
of this study. Superpixel segmentation detects cloud patches accurately to start Flood
Fill process to reconstruct cloudless information for cloud patches. Choosing best
image for cloning process is an important step to conserve spectral consistency. Patch
by patch correlation calculations between multitemporal dataset are used to find best
image for cloning in terms of spectral consistency. Vector intersection calculations are
also used to find best cloudless dataset for cloning process to achieve full cloudless
patch cloning. Information reconstruction from cloudless image to cloud image is
implemented by using Flood Fill algorithm by pixel-by-pixel which is one of the most
known graphical filling algorithm used in graphical applications. Conservation of
spectral and structural consistency is the main aim of our proposed cloning algorithm.
SSIM is used to evaluate accuracy of cloning in terms of spectral and structural
consistency with cloudless reference image. Transferability of proposed method is also
tested by using different satellite images from different study areas by using satellite
images with different acquisition dates. Accurate detection of cloud and shadow

patches for cloning process is most important step. Information reconstruction for



cloud images by our proposed method gives sufficient results for passive remote
sensing applications which are interrupted by clouds. Method developed within this

study can yield continuity for analyses such as time series and NDVI calculations.

Cloud covers, which are generally present in optical remote sensing images, limit the
usage of acquired images and increase the difficulty in data analysis. Thus, information
reconstruction of cloud covered images generally plays an important role in image
analysis. This thesis proposes a novel method to reconstruct cloud and cloud shadow
information in multitemporal remote sensing images. Based on the concept of utilizing
spectro-temporal relationships, we propose a superpixel based information
reconstruction algorithm that segments images into superpixels containing clouds and
cloud shadows and then clones information from cloud-free and high-similarity

patches to their corresponding cloud patches.

Workflow of the study is given in Figure 1.1 in detail.
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Figure 1.1 : General workflow of the study



2. BACKGROUND

Companies such as Google and Mapbox are using satellite images base maps for their
web maps (Gundersen, 2013; Hancher, 2016). Cloudless mosaics are important for

showing to users their interested area cloudless and updated (Figure 2.1, Figure 2.2).

Figure 2.1 : Global mosaic of cloudless and clear view of Google Maps & Earth

Landsat satellite images are commonly used for small scale cloudless base map mosaic
creation. Aqua and Terra satellite images are also used for global scale base maps.
Detection and elimination of clouds and shadow patches is important for analysis of
satellite images for different applications such as creation of cloudless base maps.
These maps are used by millions of people in a day. When a user searched an area to
check satellite image in Google Earth, it is important to show cloudless and updated

image to users which makes cloudless image production more important.



(b)

Figure 2.2 : Cloudless image generation procedure of Mapbox Co. a) Images of all
year b) Normalized c) Cloudless image (Url-1).



2.1 Scientific Approach to Cloudless Mosaic Production

Averaging multitemporal satellite images is the most common method to create
cloudless image for web basemaps. This method gives visually sufficient and good
looking results although it may cause a loss of spectral information (Loyd, 2012).
Methods which preserve spectral information is summarized in Introduction chapter.
In this study, both visual appearance and spectral consistency are taken into account
to develop a superpixel based binary classification approach to create cloudless

images.

2.2 Cloud Types
Clouds are given Latin names corresponding to their appearance and height (Muller,
2016). See the following list;
Clouds are classified according to:
. Height, defined by altitude of cloud base.
0 High: cirrus (Ci), cirrostratus (Cs), cirrocumulus (Cc)
0 Middle: Altostratus (As), Altocumulus (Ac)
0 Low: Stratus (St), stratocumulus (Sc), nimbostratus (Ns)

0 Clouds with vertical development: cumulus (Cu), cumulus congestus

(Towering Cumulus-TCU), cumulonimbus (Cb)

Meteorologists also categorize clouds according to precipitation. All of these different
identification features make differences how we see cloud in images (Table 2.1, Figure
2.3).

Table 2.1 : Common cloud types and spesifications (CIMSS, 2016).

Cloud Level Layer Clouds Heap Clouds Hybrid
. Cirrus \ .
High Cirrostratus Cirrocumulus
Mid Altostratus Altocumulus
Low Stratus Cumulus Stratocumulus
Precipitating  Nimbostratus Cumulusnimbus (Thunderstorms!)




Cirrocumulus

Cumulonimbus = .Nimbostratus

Figure 2.3 : Common cloud types with reference altitude chart
(https://laulima.hawaii.edu / Geography 101 Course Notes).

Identification of clouds from satellite images is the main purpose of cloud
classification process. Basic features for cloud identification can be listed such as;
brightness, texture (shadow in VIS), pattern, edge definition, size and individual shape
(Muller, 2016). Reflective characteristics of clouds are important to analyze how they
seen in satellite images. All surfaces reflect varying amounts of sunlight (Table 2.2).
Different types of clouds are also reflects different amount of sunlight according to

their thickness.

Table 2.2 : Reflectance characteristics of different surfaces (From Radar and
Satellite Weather Interpretation for Pilots, Lankford.).

Surface Type Albedo
Large Thunderstorm 92%
Thick stratocumulus 68%

Snow 88-59%
Thin stratus 42%
Thin cirrostratus 32%
Forest 12%
Water 9%




Normally clouds appear in satellite images bright white. Thin clouds allow most of
sun’s energy to pass through, reflecting very little sunlight which cause to appear gray
in images and also mixture of surface materials’ reflective characteristics. Also, gaps
between small clouds allow some of the Earth’s reflected energy through, when

averaged with the clouds, the clouds appear grayer than normal. (Figure 2.4)

Figure 2.4 : Thin and thick clouds and reflective characteristics.

When you take into account all of these information about clouds, using both visible
and infrared images to determine cloud and cloud types is the best method. Reference
chart for cloud and cloud tye discrimination from visible and infrared images are given

in Table 2.3.

Table 2.3 : Cloud characterisrics in visible and infrared images (Muller, 2016).

IR Image Visible Image Possible Cloud Type
If clouds are: AND if clouds appear:
Cold Thick (white) Cb or Nimbostratus
Cold Thin (gray) Cirrus
Warm Thick (white) Low Stratus, Fog
Warm Thin (gray) Cumulus, stratocumulus

Table 2.4 summarizes all common cloud types and their sample apperaance from

ground, visible and infrared satellite images (CIMSS, 2016).



Table 2.4 : Common cloud types from ground photo, infrared and visible satellite
images.

Photo From Ground Infrared Satellite Images Visible Satellite Images

Cumulus (Heap Clouds)

Stratus (Layer Clouds)

Cumulonimbus

Altocumulus

Cirrus

Cirrostratus

10


https://cimss.ssec.wisc.edu/satmet/modules/4_clouds/images/cumulonimbus_anvil.jpg

3. DATA AND PRE-PROCESSING

Cloning cloud areas is the main part of the thesis. As an initial step, all cloud pixels
need to be classified accurately to start cloning process. Free distrubuted multitemporal
dataset of Landsat-8 images are choosen for detection and cloning of cloud features.
Using thermal bands of Landsat-8 images are also important for discrimination of

cloud and snow features.

Four different Landsat-8 path-rows are selected as study area which have different land
use characteristics and cloud covers between 10% and 30%. Evaluating results of the
algorithm in different regions which have different surface characteristics is important
to test transferability. Figure 3.1 shows the geographical distribution of selected

images.

? Ao
Figure 3.1 : Study area and distribution of selected images.

3.1 Landsat-8

Landsat-8 is an American Earth observation satellite launched on February 11, 2013.
It is the eighth satellite of the Landsat program; the seventh to reach orbit successfully.
Originally called the Landsat Data Continuity Mission (LDCM), it is a collaboration
between NASA (National Aeronautics and Space Administration) and the United
States Geological Survey (USGS) (Table 3.1). Landsat-8 scenes are processing by
Amazon team and available after hours of acqusition. Landsat-8 is freely distrubuted

11



over web and Amazon Cloud Service (AWS). Information about OLI (Operational
Land Imager) and thermal bands is given in Table 3.2.

Table 3.1 : Technical details about Landsat-8 (USGS, 2015).

Landsat-8 in detail

Product type: Level 1T (terrain corrected)
Output format: GeoTIFF
Pixel size: 15 meters/30 meters/100 meters (panchromatic/multispectral/thermal)
Map projection: UTM (Polar Stereographic for Antarctica)
Datum: WGS 84
Orientation: North-up (map)
Resampling: Cubic convolution
OLI Accuracy: 12 meters circular error, 90-percent confidence

TIRS Accuracy: 41 meters circular error, 90-percent confidence

Table 3.2 : Landsat 8-OLI and Thermal Infrared Sensor (TIRS) spectral band
characteristics (USGS, 2015).

Bands Wavelength (micrometers)  Resolution (meters)
Band 1 - Coastal aerosol 0.43-0.45 30
Band 2 - Blue 0.45-0.51 30
Band 3 - Green 0.53-0.59 30
Band 4 - Red 0.64 - 0.67 30
Band 5 - Near Infrared (NIR) 0.85-0.88 30
Band 6 - SWIR 1 1.57 - 1.65 30
Band 7 - SWIR 2 2.11-2.29 30
Band 8 - Panchromatic 0.50 - 0.68 15
Band 9 - Cirrus 1.36-1.38 30
Band 10 - Thermal Infrared (TIRS) 1 10.60 - 11.19 100 * (30)
Band 11 - Thermal Infrared (TIRS) 2 11.50- 1251 100 * (30)

3.1.1 Automatic Download Tool

Landsat programs is a state-of-art earth observation program of USGS (United States
Geological Survey) over decades. After 2015, Amazon Cloud Services Company
announced that each Landsat images will be available in cloud disk space for easy
downloading and usage purposes after a short period of time after acqusition
(Amazon, 2015). In last quarter of 2016, Google also announched that more than 4
millions of Landsat data is available on Google Cloud Platform (Birch, 2016). In this

study, a graphical user interface for selection of appropriate study site is developed.
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Users can select appropriate Path/Row and Date for study area by drawing a rectangle
on map. Users also can select which image to work with from all multitemporal data
set (Figure 3.2 and Figure 3.3).

]
Figure 1 e - a X
File Edit View |Insert Tools Desktop Window Help N

DEES (KM KRANVDELEA-|E|0E8E | O

‘ulnput -z = X

Enter Landsat Path:
180

Enter Landsat Row:
32

Enter Date in Format (October 28, 2014):
December 01, 2015

28’E 29°E 30 E
T

Image taken 25-Nov-2015

Figure 3.2 : Landsat Path/Row/Date selection and quicklook.

Figure 3.3 : Landsat study area selection GUI and downloaded image.

3.2 Calibration of Data

Landsat 8 data is provided as raw DN (Digital Number) numbers. Data can be rescaled
to the Top of Atmosphere (ToA) reflectance and radiance using radiometric rescaling
coefficients stored in the product metadata file (MTL file) (Figure 3.4). By this

conversion, image data is converted to physically meaningful units. Metadata file also
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contains the thermal constants needed to convert TIRS data to the at-satellite

brightness temperature.
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Figure 3.4 : Source of energy, radiance and reflectance (Source: Lillesand and
Kiefer, 2002).

3.2.1 Radiance

Radiance is described as, radiation reflected by a surface and falls within a given solid
angle in specific direction. OLI and TIRS bands can be converted to ToA spectral
radiance using the scaling factors of data which is given in metadata file for each scene

(equation 3.1):
Lr = MQca + AL (3.1)

L, = ToA spectral radiance (Watts / (m? x srad X pm))
M. = Band-specific multiplicative rescaling factor
AL = Band-specific additive rescaling factor

Qcal = Pixel values (DN)

3.2.2 Reflectance

Reflectance is described as, fraction of incident electromagnetic power that is reflected
at an interface. Using radiometric corrected data for remote sensing analysis is
important for multitemporal image analysis. OLI data can be converted to ToA
planetary reflectance after radiance conversion using reflectance rescaling coefficients
given in the product metadata file (MTL file). Equation 3.2 is used to convert DN
values to ToA reflectance for OLI data (USGS, 2015).

pr = MpQcal + A (3.2)
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pr = ToA reflectance, without correction for solar angle.
M, = Band-specific rescaling factor

A, = Band-specific additive rescaling factor

Qca = Pixel values (DN)

Also, sun angle correction is applied to ToA reflectance values by using equation (3.3)

p; = P _ P
A cos(Bsg)  sin(fsz) (3.3)
[ = ToA reflectance
Ose = Sun elevation angle
0sz = Solar zenith angle; 0sz =90° - Osg

After all of these conversions, all processes are applied to reflectance images (Figure
3.5).

Figure 3.5 : Landsat-8 image radiometric calibration (left) Raw Landsat-8 (right)
ToA reflectance calibrated.

3.2.3 Brightness Temperature

The apparent temperature of the surface assuming a surface emissivity of 1 (one).
Setting the emissivity to one is equivalent to assuming the target is a blackbody, so the
brightness temperature is defined as the temperature a blackbody would be in order to
produce the radiance perceived by the sensor. Brightness temperature is a descriptive
measure of radiation in terms of the temperature of a hypothetical blackbody emitting
an identical amount of radiation at the same wavelength. The brightness temperature
is obtained by applying the inverse of the Planck function to the measured radiation.

Depending on the nature of the source of radiation and any subsequent absorption, the
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brightness temperature may be independent of, or highly dependent on, the wavelength
of the radiation (GES DISC, 2016).

TIRS data can be converted from radiance to BT by using the thermal rescaling given
in metadata file by using equation 3.4 (USGS, 2015).

- KK_Z
ln(L_; +1) (3.4)
T = At-sensor brightness temperature (K)
L. = ToA spectral radiance (watts/ (m? x srad X pm))

K1, K2 = Band-specific thermal conversion constant

Brightness temperature information is used in cloud detection algorithm which shows
lower temperature values in cloud regions compared to other regions. TIR2 channel
which is indicating better cloud discrimination is used for cloud and shadow detection
(Figure 3.6).

2, i
Figure 3.6 : Landsat-8 image converted brightness temperature.

3.2.4 Atmospheric Correction

Atmospheric correction is simply described as a process of removing the atmospheric
effects in satellite images. The effects of atmosphere should be considered to measure
and calculate surface reflectance. Land surface reflectance is described as (Moran et
al., 1992) (equation 3.5);

p=[mx (Li—Lp) x d?]/[ Ty x (ESUNx X c0s0sx Tz) + Edown)] (3.5)
where:
Lp : path radiance
Ty : atmospheric transmittance in the viewing direction
T, : atmospheric transmittance in the illumination direction

Edown : downwelling diffuse irradiance
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Atmospheric measurements are needed for appyling this formula in order to calculate
surface reflectance. Alternatively, image-based techniques are developed for the
calculation of these parameters when there is no change for field measurements
(Chavez, 1996).

The Dark Object Subtraction (DOS) is one of the state-of-art image-based atmospheric
correction method. Assumption of this method is that some pixels in image are in
complete shadow and radiance of them at satellite are caused by path radiance of
atmospheric scatter. Another support of this assumption is the fact of very few land
cover types on the earth surface are absolute black. Compared with other advanced
atmospheric correction methods, accuracy of image-based techniques are lower than
physically-based methods. Furthermore, they are very effective for estimation of land
surface reflectance when no atmospheric measurements are available as they can
(Congedo, 2016).

The path radiance by definition of (Sobrino et al, 2004) (equation 3.6):
Lp:Lmin_LD01% (3-6)
where:

Lmin= “radiance that corresponds to a digital count value for which the sum of all the
pixels with digital counts lower or equal to this value is equal to the 0.01% of all the

pixels from the image considered” (Sobrino et al, 2004, p. 437)
Loo1%= radiance of Dark Object, assumed to have a reflectance value of 0.01
Lmin for Landsat images (eqaution 3.7):
Lmin=My*DNmin+AL (3.7)
The radiance of dark object by definition of (Sobrino et al, 2004) (equation 3.8):
Lp01%=0.01*[(ESUN;*cos0s* T2)+Edown] * Tv/(1+d?) (3.8)
Then path radiance is (equation 3.9):
Lp=M_*DNmin+AL—0.01*[(ESUN;*cos0s* T;)+Edown] * Tv/(m+d?) (3.9

There are several DOS techniques developed based on different assumptions of Ty, T,
and Eqdown (e.g. DOS1, DOS2, DOS3, DOS4). Basic technique is the DOS1, which uses
following assumptions (Moran et al, 1992);

A Tv: 1, Tz: l, Edown: 0
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Then path radiance is (equation 3.10):

Lp=M_*DNmin+AL—0.01*ESUN,*cos0s/(m*d?) (3.10)

Final land surface reflectance is (Figure 3.7) (equation 3.11):
p=[m*(La—Lp)*d?]/(ESUNz*cos0s (3.11)
For Landsat 8, ESUN calculation formula is given in equation 3.12.
ESUN=(n*d?)*RADIANCE_MAXIMUM/REFLECTANCE_MAXIMUM (3.12)

where RADIANCE_MAXIMUM and REFLECTANCE_MAXIMUM can be found
in metadata file.

(a) (b) ()

Figure 3.7 : Landsat-8 image calibration steps (a) RAW Landsat 8 (b) ToA
reflectance calibrated (c) DOS 1 Atmospheric corrected.
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4, CLOUD AND SHADOW DETECTION

The primary limitation of passive remote sensing sensors is their sensitivity to weather
conditions during data acquisition. Land scenes are, on average, approximately 35%
cloud covered globally (Ju at al, 2008), significantly reducing the availability of cloud-
free satellite images. Detection of cloud and shadow areas from satellite images is
important step for many analysis. In this chapter, cloud and shadow detection

methodology is described in detail.

Proposed cloud detection algorithm is based on usage of OLI (Operational Land
Imager) and thermal bands. OLI bands are calibrated to ToA: Top of Atmosphere
Reflectance and thermal bands are converted to brightness temperature to use in this
algorithm. Cloud areas ar e identified using ruleset-based classification applied on
reflectance calibrated images by following superpixel segmentation of satellite image.
Following classification of cloud areas, cloud shadows are classified by evaluating
spectral test and neighbourhood relations with cloud regions. Developed method is a
simplified version of ACCA and Fmask algorithms. Cloud and shadow masks obtained
by Fmask and results obtained by our method are compared, and results are evaluated.
General workflow chart of all steps concluded in cloud and shadow detection process

is given in Figure 4.1.
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Figure 4.1 : General workflow chart of study.
4.1 Segmentation

Generally, clouds and shadows are combination of pixel groups in satellite images
despite spreaded as small pixels. Pixel by pixel processing of satellite image for binary
classification works needs much more processing load than using superpixels. Based
on a concept of merging homogenous pixels to pixel groups, Object Based Image
Analysis (OBIA) concept is merging milions of pixels into thousounds of superpixels
to process easily. Clouds and shadows are good example to use superpixels methods
which both of them occur as patches in images. Not only spectral information but also
parameters like texture, pattern, area, linearity etc. can be used for classification. In
this chapter, OBIA analysis of thesis is described in detail. Beyond using word of
segment for pixel groups, “superpixel” term of computer vision is used for describing

homogenous pixel groups.
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4.1.1 SLIC Segmentation

Superpixels are used to combine pixels into meaningful groups to create pixel groups.
Merging pixels which have similar information is speeding up image processing tasks.
SLIC (Simple Linear Iterative Clustering) algorithm is an efficient method for
segmentation of image which is based on spatially localized version of K-means
clustering method. Fundamental specifications and advantages of SLIC method are
evaluated in Achanta et al. (2002).

SLIC divides image into a MxN regular grids. M and N values are given as an input,

where (eqaution 4.1)

i Width [ Height
__imagewi N = imageHeig 4.1)

. . ) . .
regionSize regionSize

A superpixel is processed by initializing from each grid center (equation 4.2)

imageWidth imageWidth (4.2)

Xx; = round; ,Yi = round;

regionSize regionSize

Following this step, regions are obtained by running K-means clustering, started from
the centers (equation 4.3).

(4.3)
i=01,.,M-1

Y (xi,yj)
C =
j=01,...,N—1

K-means uses the standard Lloyd algorithm alternating by assigning pixels to the
closest centers (Lloyd, 1982). Differences of SLIC compared to standard K-means is
that each pixel can be assigned only to the center which comes from the neighbour
tiles. After creation of superpixels, each superpixel is taken into account to check if
area is less then minimum region size value which is taken as an input from user
(Vedaldi and Fulkerson, 2010). Results of SLIC algorithm which is applied to cloud

image are shown in Figure 4.2.

21



Figure 4.2 : Results of SLIC algorithm applied to cloud image (left) Original image
(right) SLIC superpixel segmentation result.

4.2 Cloud Detection

After superpixel segmentation of satellite images, cloud detection steps are described

in detail in this chapter.

4.2.1 Classification of Additional Classes (Water and Snow)

Not only clouds, but also higher buildings, hills and factors which cause height
difference can also cause shadows according to sun azimuth. Shadows and water
bodies are misclassified to each other because of their dark behaviour. In this study,
NDW!I (Normalized Difference Water Index) and cloud projection methods are used

to overcome these two misclassification problems mentioned above (Gao, 1996).

NDW!1 values are calculated to prevent misclassification of water bodies and shadow
areas to each other. The constant threshold is used to classify water bodies
automatically (equation 4.4) (Figure 4.3).

NIR — Green (4.4)
NIR + Green

(Water — NDWI < -0.2)

NDWI =
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(b) NDWI| (c) Water Map

Figure 4.3 : (a) Original RGB image (b) NDWI Index (c) Water classification
based on NDWI threshold (scene I1D: LC81910302014163LGNO0O).

NDSI is a normalized difference of two bands (Green and SWIR1) to map snow.
Beside the advantage of using the thermal infrared band, NDSI information is also
added to the procedure to cope with difficulties caused by snow-cowered areas which
have bright and cold temperature features (equation 4.5). NDSI index is used for
discrimination of clouds and snow cover (Hall and Riggs, 2011). Pixels which have
NDSI values greater than 0.8 are classified as snow (USGS, 2015) (Figure 4.4).

Green — SWIR 1 (4.5)

Green + SWIR 2
(Snow NDSI > 0.8)

NDSI =

(a) RGB

Figure 4.4 : (a) Original RGB image (b) NDSI index (c) Snow classification based
on NDSI threshold (scene ID: LC81700322015067LGNOQ0).

4.2.2 Cloud Classification Background (Thermal Band Usage)

Thermal band usage is also easing the process of opaque cloud classification. Band
ratio of cloud pixels compared to other land cover types are resulting in higher values
in cloud regions which ease thresholding process for cloud detection. Cloud
classification method is developed within a multi-criteria structure shown in Figure
4.1. Pixels have temperature value less than 300K are classified as cloud candidate by

using information provided by USGS (Figure 4.5-Figure 4.6).

23



F=jJ1u

Figure 4.6 : (a) Original RGB image (b) Pixels which are smaller than 300K in
TIR2 band (Cloud candidate).

4.2.3 Multi-Criteria Cloud Classification Approach

Detection of cloud features from Landsat image is started by identification of spectral
characteristics of clouds. Spectral signatures collected from image are shown on Figure

4.7. Algorithm is developed on the basis of these signatures.
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Figure 4.7 : Cloud spectral signatures collected from image.

As seen in Figure 4.7, cloud areas have high brightness values in NIR (Band 5), and
SWIR (Band 7) which makes them easily distinguishable in those regions. In addition
to this, information about characteristics of bright objects on the blue band is taken
into account and values of these three bands are multiplied with each other. Cloud
shadows are discriminated from other features by dividing thermal channel to the
multiplication of two bands based on information of low-temperature characteristic of
cloud features on thermal infrared bands (Table 4.1) (equation 4.6) (Figure 4.8).

NIR * SWIR1 * Blue (4.6)
Thermal 2

Index ioyq =

Table 4.1 : Cloud classification criteria.

Feature Threshold
NDSI Not snow (NDSI < 0.6)
Thermal Infrared <300 Kelvin

Cloud Classification Index The dynamic threshold which comes from brightest

object cluster of the image.

(©)
I water
B cioud

Figure 4.8 : (a) Original image (b) Cloud detection index (c) Classified cloud areas.
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4.3 Shadow Classification

Similar to cloud features, cloud shadow classification method is also developed based
on interpretation of spectral signatures which are collected from cloud shadow areas
(equation 4.7). Cloud shadow areas are distinguished easily by using this index which
eases dynamic thresholding for shadow detection.

NIR « SWIR 1 (4.7)
Red

Indexspgaow =

Neighbour edges of cloud and shadow classifications are added to these classified

areas by region growing to complete all classification process.

4.4 Cloud and Cloud Shadow Relation (Cloud Projection Method)

Beyond shadow classification index, projections of cloud features to a specific distance
are calculated according to sun azimuth angle which comes from image metadata
(Figure 4.9; Figure 4.10). It is used to prevent misclassification of cloud shadow
features with other shadows. This candidate cloud projection layer is a qualifier to
ensure objects classified as cloud shadows are associated with cloud pixels. Methods
developed within this thesis follows, Luo et al. (2008); Hughes and Hayes ( 2014);
Braaten et al, (2015); Huang et al, (2010) and Zhu and Woodcock, (2012) by focusing

on superpixel segmented image pixels.

Figure 4.9 : Relationship between clouds and cloud shadow projections (cloud
projection layer (left), cloud layer (right)).
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(1] Cloud patch QEEE}

Il Potential cloud shadow projection
Figure 4.10 : Cloud and cloud shadow projection relation.
Sun azimuth angle is an angle which is measured clockwise from the north while image
acquisition (Figure 4.11). Clouds and their shadows are related by their relative
locations depending on the image acquisition time and the sun location (Le Hégarat-
Mascle and André, 2009).

up

P> North

h: elevation angle, measured up fraom horizon
z: zenith angle, measured from vertical
Az azimuth angle, measured clockwise from North

Source: (http:// 1 /gmd, fazelzen.git

Figure 4.11 : Sun elevation, sun azimuth and zenith angle.

Cloud-shadow distance is designated as 30 pixels based on tests applied on the image.
These projected areas are potential cloud shadow patches. Intersections of these areas
with cloud shadow index are used to identify final cloud shadow classification (Table
4.2, Figure 4.12).

Distance between clouds and cloud shadow superpixels is also important indicator to
correlate clouds with their shadows. 100 pixels buffer is used to check shadows if they
have clouds around them. Size of cloud shadows is also another indicator to understand
if they are related to clouds. Shadows of clouds are always smaller than their connected
clouds (Ho and Cai, 1996). Shadows bigger than clouds are eliminated from

classification.
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Table 4.2 : Shadow classification rules.

Feature Threshold
NDWI Not water
Potential cloud projection Intersection

Shadow detection index The dynamic threshold which comes from darkest

object cluster of the image.

Closeness Clouds in 100 pixels buffer
Size Size < Cloud size
Direction Relation with sun location

I shadow

I cloud
I water

Figure 4.12 : (a) Original image (b) Shadow detection index (c) Classified cloud
shadow areas.

4.5 Results of Cloud and Shadow Detection

Results from our approach and Fmask are compared in Figure 4.13 for four different
study areas. As seen in Figure 4.14, our method gives more efficient results than Fmask
regarding the geometrical accuracy of cloud and shadow structures because of its
segmentation-based approach.
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Figure 4.13 : Results of our approach compared to Fmask method.

[ ]Fmask Result
[_]Result of Study

Figure 4.14 : Detailed area from results.
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Zoom level is not sufficient to spot little details in Figure 4.13. Images taken from two
different parts of the image are zoomed up in Figure 4.14 to show details and analyse
them. Fmask and our method are both giving sufficient results for cloud and shadow

detection.

4.6 Accuracy Assessment

For binary classification applications, using precision and recall metrics give better
understanding to evaluate accuracy of classification. Precision is the number of True
Positives divided by the number of True Positives and False Positives (Eqauation 4.8).
In other words, it is the number of positive predictions divided by the total number of
positive class values predicted. It is also called the Positive Predictive Value (PPV)
(Table 4.3).

- . - TP (4.8)
Precision = positive predictive value = =p
TP+FP

Table 4.3 : Accuracy indicators.

Result of detection: positive  Result of detection: negative
Truth: positive TP FN
Truth: negative FP TN

(TP: True positive, TN: True negative, FP: False positive, FN: false negative)

Recall is the number of True Positives divided by the number of True Positives and
the number of False Negatives. In other words; it is the number of positive predictions
divided by the number of positive class values in the test data. It is also called
Sensitivity or the True Positive Rate (TPR). Recall can be thought of as a measure of
a classifiers completeness. A low recall indicates many False Negatives (Figure 4.15)
(Equation 4.9).

Recall = true positive rate = sensitivity = =r
TP+FN
4.9
F measure = 22
p+r
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Figure 4.15 : Graphical descriptions of TP, FP, Precision and Recall (Source:
Wikipeadia).

Ground truths of both cloud and shadow patches are manually digitized to calculate
accuracy metrics for evaluation of results. Accuracy metrics of cloud and shadow

detection results can be seen in Table 4.4.

Table 4.4 : Accuracy metrics.

Cloud Shadow
Our Our

(units: m?) method  FMASK | method  FMASK
FN 49019439 10408916 18094272 34678429
FP 15113284 73504582 48253971 50534909
TP 207835135 246445658 86651967 54631517

Precision 0,93 0,77 0,64 0,52

Recall 0,81 0,96 0,83 0,61

F measure 0,87 0,85 0,72 0,56

Total Classified 222901200 319786200 144836100 95393700
Total GT 256854574 256854574 113219107 113219107
TP/
TotalClassified 0,93 0,77 0,60 0,38

Precision and recall rates of our study are better than Fmask for four different test sites
we used. Fmask method detects cloud with a bigger confidence interval which causes
more classified areas. In this case, accuracy of two methods are also compared to a
basic True Positive / Total Classified metric to understand classification accuracy.

Fmeasure is also another metric which is commonly used for evaluation of binary
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classification results. Results show that two methods show similar accuracy for cloud
detection while our method shows more accuracy in shadow classification which uses

cloud projection method to improve cloud&shadow relationships.
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5. CLOUD CLONING

Information reconstruction of images has become an active research topic in the fields
of remote sensing, computer vision, and computer graphics because of its practical
importance. Before information reconstructions of cloud covered images, accurate
detection of cloud and shadow patches is the main step of cloud cloning process. Cloud

and shadow patches are the main input of cloning algorithm (Figure 5.1).

Figure 5.1 : Sample result of cloud and cloud shadow detection

Traditional cloud removal methods could be categorized into three methods: image
filtering method, mathematical morphologic method and multitemporal cloud free
areas composition (Zhengke et al, 2011).

Image filtering method aims to remove thin clouds (Feng et al, 2004). The limitation
of image filtering method is that it can remove thin clouds from images but cannot
recover information under cloud cover effectively, meanwhile, the filtering process
decrease energy of image which cause radiometric loss. The mathematical
morphologic strategy uses statistical test to predict pixel values under clouds and cloud
shadows in reference scenes from multitemporal dataset (Helmer and Ruefenacht,

2005). Cloud-free areas cloning method uses multitemporal data which you can check
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radiometric consistency and then can yield better results in case of radiometry (Wang,
1999; Gabarda and Cristobal 2007; Tseng, 2008). In this study, an automated cloud
and cloud shadow removal method is proposed to generate cloud-free image. In which,

cloud and cloud shadows are detected on basis of both spectral and spatial tests.

Lin et al, (2013) categorize reconstruction methods into three categories such as:
inpainting, multispectral and multitemporal-based methods.

In inpainting-based methods, information of cloud covered regions is synthesized
based on using the techniques of image synthesis and inpainting (Maalouf et al. 2009;
Lorenzi et al. 2011). The inpainting-based methods can yield a visually good looking
result that is suitable for cloud-free visualization purposes such as satellite image layer.
However, inconsistency of radiometry makes the results unsuitable for detailed data

analysis.

In multispectral-based methods, multispectral data are used in cloud detection and
information recounstruction steps (Rakwatin 2009; Roy et al. 2008; Chun et al. 2004;
Wang et al. 2005; Zhang et al. 2009). These methods, based on de-noising and intensity
interpolation, can effectively reconstruct information with good results (Lin et al.
2013).

Multitemporal-based methods (Melgani 2006; Benabdelkader and Melgani 2008;
USGS 2004; Gabarda and Cristobal 2007; Helmer and Ruefenacht 2005; Jiao et al.
2007; Wang et al. 1999; Tseng et al. 2008) compared with the inpainting and
multispectral-based methods, which rely on both temporal and spatial relationships,
shows better results with reconstruction of opaque cloud covered pixels. Melgani
(2006) and Benabdelkader and Melgani (2008) developed a prediction method to find
spectrotemporal relationships between the multitemporal images. The spectrotemporal
relationships are calculated from cloud-free regions in the neighbourhood of cloud
covered regions over the available multitemporal images. Li et al. (2013) also
developed a threshold-based approach to identify the best cloud-free and non-shadow
pixels of a given region. A cloud-free image is then generated by mosaicking the
selected cloud-free pixels. While methods above can vyield good results for
homogenous regions, these methods based on data fusion can show difficulties with
clouds over heterogeneous land cover. Lin et al. (2013) proposed an information

cloning algorithm that selects cloud-free patches using a quality assessment index and
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reconstruct patches by using a global optimization process. Thus, this method can yield

good cloud-free results for opaque clouds (Lin et al. 2013).

In this study, cloud patches are cloned with cloudless satellite images from
multitemporal dataset by using most correlated image for any cloud area (Figure 5.2).
This study is an application of information reconstruction technique to cloudless

Images generation. General workflow of cloning method is given in Figure 5.3.

g
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i

Figure 5.2 : Multitemporal dataset.
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Figure 5.3 : Workflow of cloning procedure.

Replacing the cloud and shadow covered pixels with their corresponding cloud-free

pixels and then adjusting the reflectance values of the replaced pixels has been proven
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inappropriate the image radiometry change based on conditions of data acquisition
(Lin et al. 2013). In addition, contrary to pixel-by-pixel information reconstruction
(Melgani 2006, Benabdelkader and Melgani 2008), which may contain radiometric
inconsistency, Lin et al. (2003) proposed a patch-based method. To address these
problems, we propose a best image choosing algorithm to choose best cloudless image
to clone by using seasonal and spectral similarity. Also superpixel segmentation
algorithm helps to select suitable cloudless pathches from a set of cloudless
multitemporal dataset. Edge smoothing is also showing better seamless information
reconstruction results. Also, results are evaluated by using image quality assessment
metrics to check reliability. Proposed method can produce better cloud-free images in
terms of radiometric accuracy and consistency compared to other cloud removal
methods in previous studies. Visual flowchart of cloning process is given in Figure
5.4.

™~

Multi-temporal Landsat dataset

Low High

Quality assesment

Cloud free image Information reconstruction

Figure 5.4 : Flowchart of cloud cloning method.
5.1 Choose Best Image to Clone

Achieving radiometric consistency is an important step for cloning process. In this
study, image statistics, multitemporal image dataset and vector intersections are used

to find best cloudless image to use in cloning process.
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5.1.1 Image Correlation Approach

Correlation calculation between cloud image and multitemporal cloudless images is
the main metric used to find choosing best image to clone different cloud patches
(Figure 5.5). For each patches correlation between different images is calculated and
image with maximum correlation is chosen (MathWorks, 2014) (equation 5.1). Two
months of time interval is chosen to reduce radiometric inconsistency because of

seasonal change if applicable.

2014-179 / Base Image

5

2014-211/Corr:0.13

TEN

W ¥ ek
s ¥ WA b 5 > .. gl
2014-227/Corr:0.09  2014-243/Corr: 0.38 2014-259/Corr: 0.59

2014-291/Corr:0.03  2014-323/Corr: 0.19 2014-339/Corr: 0.02

Figure 5.5 : Correlation calculations between images to choose best image to clone.

A, B image, r correlation coefficient, A and B mean of all pixels:

= Ym2n(Amn — A) (B — B) (5.1)
\/(ZmZn A — A2 )(ZmZn B — B)?)
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5.1.2 Vector Intersection Approach

Figure 5.6 shows general concept of finding cloudless satellite image for each cloud
patches. Radiometric similarity is the most important metric for choosing cloudless
image from multitemporal dataset. Before this important step, for each cloud patches,
checking multitemporal dataset for cloud covered pixels intersections is the key point
for information reconstruction. Proposed algorithm is checking all multitemporal
dataset for each cloud patch to find image without intersection to start cloning process
(Figure 5.7). If there is not any image without intersection, intersection percentages
are compared to each other by supporting image similarity to decide which image to
choose (Figure 5.8-Figure 5.9).
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Figure 5.6 : Finding best cloudless image for cloud patches.

38



shplvecl|shpl vec2 |shplvec3|shpl vecd|shp2 vecl|shp2 vec2 | shp3 vecl|shp3 vec2|shp3 vec3 |shpd vecl [shpa vec2|shpd vec3 | shps vecl [shps vec2

shpl vecl)

shpl vecd|

shpl vec3

shplvecd

shp2 vecl|

shp2 vec2|

shp3 vecl

shp3 vecd|

shp3 vec3

shpd vecl

shp4 vec2|

shpd vec3

shps vecl

=lolo|lo|lo(r|o|lo|o|lo|o|a|o|e
olo(r|lalo|a|la|o|alalalalale
olo|lol-|o|o|o|o|olo|olalo|e
olololofo|o|o|e|e|o|e|e|o|e
ofl-lolelele|e|e|elale|e|a|e
olo|lo|lofo|o|o|o|o|o|o|e|o|e
olololole|o|o|o|elale|e|a|e
ololo|lofo|o|o|o|o|o|o|a|o|e
=lolalo|o|a|o|o|ala|o|ala|=
ofle|lolo|e|e|a|e|e|a|e|a|a|e
olo|lo|lofo|o|o|o|e|o|o|r|o|e
SR == =R =R =R =N =R =R IR == o =]
olololofo|o|o|o|a|=|ola|o|e
olo|lalale|r|alo|alalalala|=

shps vec2|

0: No intersection
1: Intersection

Figure 5.7 : Intersection check between cloud patches.

Patch to Patch | Intersection Percentage
1 1 3 3 0,289262108
1 1 5 2 0,134085008
1 2 4 3 0,06698818
1 3 4 2 0,047004757
1 4 3 2 1
3 2 1 4 0,176760908
3 3 1 1 0,403571137
3 3 5 2 0,114821778
4 2 1 3 0,306899626
4 3 1 2 0,326800818
5 2 11 0,480630952
5 2 3 3 0,29500354

Figure 5.8 : Intersection percentages of cloud patches with other cloud patches in
multitemporal image dataset.

Figure 5.9 : Visual intersection rates of cloud patches.
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5.2 Edge Smoothing for Seamless and Smooth Cloning

Flood Fill algorithm reconstructs pixel information from cloudless image to cloud
image. While this information reconstruction process, edges of patches shows a
translation effect. Creation of seamless cloudless image is one of the most important
step of this study. Averaging filter (mean filter) is used to smooth edges of cloud
patches to create a seamless effect (Figure 5.10, Figure 5.11).

1 1 1
v v v
1 1 1
v v v
1 1 1
v v v

Figure 5.10 : Averaging filter.

Figure 5.11 : Edges of cloud patches which are applied edge smoothing with
averaging filter.

5.3 Flood Fill for Multitemporal Image Cloning

Flood fill is an algorithm that finds connected areas of a given node in a multi-
dimensional array. Games such as Go and Minesweeper are using this algorithm for
finding which pieces are cleared and paint programs are using it for bucket tool to fill
areas with diferent color. In this study, after checking cloud patches intersections and
image similarity calculations, suitable pixels from cloudless image are cloned to cloud
image pixels by using Flood Fill algorithm by processing pixel-by-pixel. Sample

results from image cloning process is given in Figure 5.12.
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Cloudy Image Cloudless Image Final Image

Cloudy Image Cloudless Image Final Image

Figure 5.12 : Cloning results after information reconstruction by using Flood Fill
method.

Subset 1

Subset 2

5.4 Cloning Results and Image Quality Tests

Evaluation of cloning accuracy is a difficult process. Scene spectral variance similarity
of cloudless cloning final image to cloud image is the main metric to evaluate success
of cloning process. Structural Similarity Index (SSIM) is used to check similarity of
final cloudless image with original cloud image. SSIM is designed to improve
traditional methods such as peak signal-to-noise ratio (PSNR) and mean squared error
(MSE), which have proven to be inconsistent with human visual perception (Wang et
al, 2004). SSIM is one of the most used image quality metric which is used for
measuring similarity between two images. One image is accepted as a base image and
other image is compared to base image in this method. Not only contrast and spectral
signature but also structural similarity is tested in this method. SSIM is chosen as a

suitable quality metric because of this specifications.

The SSIM formula is based on three comparison measurements between the samples
of x and y: luminance (I), contrast (c) and structure (s) which yield to compare two
images by using spectral and structural specifications (equation 5.2). (Brunet et al,
2012)(Wang et al, 2003). SSIM is tested and compared to state-of-art Root Mean
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Square Error (RMSE) with different processed images in Figure 5.13 and Figure 5.14
to check efficiency.

SSIM(x,y) = [1(x, )% . [cCx, )P, [sCx, )]V (5.2)

RMSE=1282.0825 RMSE=155.2179
h - ,

SSIM=0.353 SSIM=0.76467 SSIM=0.67008
RMSE=1212.2988

RMSE=264.0468 RMSE=470.5491

),

Figure 5.13 : SSIM & RMSE results a) Original b) Histogram equalized c) Contrast
adjusted d) Salt & Pepper effect e) Blurred f) JPEG converted.

1-2014-163-cloudless.png 2-2014-179with2014-163-final.png 3-2014-179with2014-115-final.png
SSIM=1 SSIM=0.95397 SSIM=0.94543
MSE=0 MSE=6.9386 MSE=8.9753
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Figure 5.14 : SSIM results and similarity maps of two different cloning results.

Cloudless images are important for all passive remote sensing applications. There are
many studies conducted in this topic of remote sensing. Although some spectral
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methods are developed to remove haze effects, removing oblique clouds from satellite
image is a difficult process. Using multitemporal image dataset to remove or clone
oblique clouds is the most applicable method for cloning oblique clouds. In this study,
cloning of cloud image is completed with information reconstruction from cloudless
multitemporal dataset of the same area with different acquisition dates. Accurate patch
determination is the main step for cloning process which is the main step of seamless
cloning result. Superpixel classification approach which is used to detect both clouds
and shadows is provided better patch determination for detection of cloning edges.
Conservation of spectral and structural consistency is the main aim of our proposed
cloning algorithm. Different image quality and image similarity metrics are tested and
implemented to preserve both spectral and structural information while cloning
process. Transferability of proposed method is also tested by using different satellite
images from various study areas by using satellite images with different acquisition
dates.
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6. RESULTS AND DISCUSSION

Detection and cloning of cloud and shadow regions is a popular study area in remote
sensing for a long time, and lots of methods have been developed. Spectral methods
gives satisfactory results for removing haze effects from satellite images. Processing
opaque clouds by using spectral methods is not sufficient remove clouds and create a
cloudless satellite image by itself. Information reconstruction concept applied to cloud
images gives sufficient results for creating cloudless images from multitemporal image
dataset. These methods provide sufficient accuracy in many cases. Nevertheless, they
don't provide enough accuracy for some specific cases such as opaque clouds over
heterogeneous regions. Beside pixel-based methods, segmentation-based methods
which groups pixels into superpixels are a new study area for detection of clouds and
shadows. By separating image into homogeneous pixel groups, not only computational
workload can be decreased but also features can be obtained on the image effectively
regarding geometrical characteristics by the help of object-based classification
approach. Methods developed in this study is based on segmentation approach for
cloud and shadow detection. Classification results is directly related to accuracy of
superpixels created in the pre-processing step of classification. Accuracy of cloud
identification process is the main input of cloning process to create cloudless images
from cloud images. For this reason, region size is chosen as small as possible to
decrease the size of superpixels to minimize feature loss while pixel grouping process.
Spectral characteristics of features such as cloud and shadow in images are significant
in terms of brightness and darkness. In the light of this information, cloud and shadow
areas are grouped into superpixels by using SLIC segmentation algorithm,
Segmentation-based approach which uses both spectral and spatial information to
group pixels provides more successful results compared to pixel-based method in this
study. Clouds and shadows are detected from the image, by creating indices developed
within spectral tests by adding different parameters to the multi-criteria rule set such

as: brightness temperature, sun azimuth, NDSI and NDWI. Shadow classification
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accuracy is increased with the help of cloud-shadow projection approach as a new
solution to this problem which uses the geometrical relation between cloud and
shadow. Cloud and shadow classification results are compared to Fmask method.
Although, both methods have sufficient recall rates for cloud and shadow
classification, region growing rate used by Fmask method to increase confidence
interval causes non-cloud and non-shadow areas classified as cloud and shadow on
many regions. Testing our algorithm with other satellites is also possible, if satellites
have thermal and infrared bands. One of the restrictions of the proposed algorithm is
the necessitiy of thermal infrared bands to find cold regions to compare clouds with
other cold regions. Using only visible bands to find cloud regions is not possible in our
algorithm, but using techniques like deep learning can yield good results with three
bands images. Transferability of this method is tested with the same parameters by
using different images from different study areas. In addition to algorithm like ACCA
and Fmask, the usability and transferability of the algorithm developed here is proven
in terms of simplification of processing steps and decreasing computational workload

because of its superpixel-based approach.

Cloning cloud patches from cloudless multitemporal dataset is the information
reconstruction concept for this study. Superpixel segmentation detects cloud patches
accurately to start Flood Fill process to reconstruct cloudless information for cloud
patches. Choosing best image for cloning process is an important step to conserve
spectral consistency. Patch by patch correlations calculations between multitemporal
dataset are used to find best image for cloning in terms of spectral consistency. Vector
intersection calculations are also used to find best cloudless dataset for cloning process
to achieve full cloudless patch cloning. Information reconstruction from cloudless
image to cloud image is implemented by using Flood Fill algorithm by pixel-by-pixel
which is one of the most known graphical filling algorithm used in graphical
applications. Conservation of spectral and structural consistency is the main aim of our
proposed cloning algorithm. SSIM is used to evaluate accuracy of cloning in terms of
spectral and structural consistency with cloudless reference image. Transferability of
proposed method is also tested by using different satellite images from various study
areas by using satellite images with different acquisition dates. Accurate detection of
cloud and shadow patches for cloning process is most important step. Information

reconstruction for cloud images by our proposed method gives sufficient results for
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passive remote sensing applications which are interrupted by clouds. Method
developed within this study can yield continuity for analyses such as time series and

NDVI calculations.
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