12 research outputs found

    Using Branch-and-Price to Find High Quality Solutions Quickly

    Get PDF
    We develop an exact solution approach for integer programs that produces high- quality solutions quickly by solving well-chosen restrictions of the problem. Column generation is used both for generating these problem restrictions and for producing bounds on the value of an optimal solution to the problem. Obtaining primal solutions by solving problem restrictions also provides an easy way to search for improved solutions in the neighborhood of the current best solution. The overall approach is parallelized and computational experiments demonstrate its efficacy. An application to inventory routing is presented

    Optimal mathematical programming and variable neighborhood search for k-modes categorical data clustering

    Get PDF
    The conventional k-modes algorithm and its variants have been extensively used for categorical data clustering. However, these algorithms have some drawbacks, e.g., they can be trapped into local optima and sensitive to initial clusters/modes. Our numerical experiments even showed that the k-modes algorithm could not identify the optimal clustering results for some special datasets regardless the selection of the initial centers. In this paper, we developed an integer linear programming (ILP) approach for the k-modes clustering, which is independent to the initial solution and can obtain directly the optimal results for small-sized datasets. We also developed a heuristic algorithm that implements iterative partial optimization in the ILP approach based on a framework of variable neighborhood search, known as IPO-ILP-VNS, to search for near-optimal results of medium and large sized datasets with controlled computing time. Experiments on 38 datasets, including 27 synthesized small datasets and 11 known benchmark datasets from the UCI site were carried out to test the proposed ILP approach and the IPO-ILP-VNS algorithm. The experimental results outperformed the conventional and other existing enhanced k-modes algorithms in literature, updated 9 of the UCI benchmark datasets with new and improved results

    A new ILP-based refinement heuristic for Vehicle Routing Problems

    No full text
    In this paper we address the Distance-Constrained Capacitated Vehicle Routing Problem (DCVRP), where k minimum-cost routes through a central depot have to be constructed so as to cover all customers while satisfying, for each route, both a capacity and a total-distance-travelled limit. Our starting point is the following refinement procedure proposed in 1981 by Sarvanov and Doroshko for the pure Travelling Salesman Problem (TSP): given a starting tour, (a) remove all the nodes in even position, thus leaving an equal number of \u201cempty holes\u201d in the tour; (b) optimally re-assign the removed nodes to the empty holes through the efficient solution of a min-sum assignment (weighted bipartite matching) problem. We first extend the Sarvanov-Doroshko method to DCVRP, and then generalize it. Our generalization involves a procedure to generate a large number of new sequences through the extracted nodes, as well as a more sophisticated ILP model for the reallocation of some of these sequences. An important feature of our method is that it does not rely on any specialized ILP code, as any general-purpose ILP solver can be used to solve the reallocation model. We report computational results on a large set of capacitatedVRP instances from the literature (with symmetric/ asymmetric costs and with/without distance constraints), along with an analysis of the performance of the new method and of its features. Interestingly, in 13 cases the new method was able to improve the best-know solution available from the literature

    Meta-Heuristics for the Multiple Trip Vehicle Routing Problem with Backhauls

    Get PDF
    With the growing and more accessible computational power, the demand for robust and sophisticated computerised optimisation is increasing for logistical problems. By making good use of computational technologies, the research in this thesis concentrates on efficient fleet management by studying a class of vehicle routing problems and developing efficient solution algorithms. The literature review in this thesis looks at VRPs from various development angles. The search reveals that from the problem modelling side clear efforts are made to bring the classical VRP models closer to reality by developing various variants. However, apart from the real VRP applications (termed as 'rich' VRPs), it is also noticeable that these classical VRP based variants address merely one or two additional characteristics from the real routing problem issues, concentrating on either operational (fleet management) or tactical (fleet acquisition) aspects. This thesis certainly hopes to add to one of those good efforts which have helped in bringing the VRPs closer to reality through addressing both the operational as well as the tactical aspects. On the solution methodologies development side, the proposed research noted some considerable and impressive developments. Although, it is well established that the VRPs belong to the NP-hard combinatorial class of problems, there are considerable efforts on the development of exact methods. However the literature is full of a variety of heuristic methodologies including the classical and the most modern hybrid approaches. Among the hybrid approaches, the most recent one noted is mat-heuristics that combine heuristics and mathematical programming techniques to solve combinatorial optimisation problems. The mat-heuristics approaches appear to be comparatively in its infant age at this point in time. However this is an exciting area of research which seeks more attention in the literature. Hence, a good part of this research is devoted to the development of a hybrid approach that combines heuristics and mathematical programming techniques. When reviewing the specific literature on the VRP problems focused in this thesis, the vehicle routing problem with backhauls (VRPB) and the multiple trip vehicle routing problem (MT-VRP), there is not sufficient development on the problem modelling side in terms of bringing these two problems closer to the reality. Hence, to fill the gap this thesis introduces and investigates a new variant, the multiple trip vehicle routing problem with backhauls (MT-VRPB) that combines the above two variants of the VRP. The problem is first described thoroughly and a new ILP (Integer Linear Programming) mathematical formulation of the MT-VRPB along with its possible variations is presented. The MT-VRPB is then solved optimally by using CPLEX along with providing an illustrative example showing the validation of the mathematical formulation. As part of the contribution, a large set of MT-VRPB data instances is created which is made available for future benchmarking. The CPLEX implementation produced optimal solutions for a good number of small and medium size data instances of the MT-VRPB and generated lower bounds for all instances. The CPLEX success may be considered as modest, but the produced results proved very important for the validation of the heuristic results produced in the thesis. To solve the larger instances of the MT-VRPB, a two level VNS algorithm called 'Two-Level VNS' is developed. It was noticed from the literature that the choice of using VNS for the VRPs has increased in recent literature due to its simplicity and speed. However our initial experiments with the classical VNS indicated that the algorithm is more inclined towards the intensification side. Hence, the Two-Level VNS is designed to obtain a maximum balance of the diversification and the intensification during the search process. It is achieved by incorporating a sub-set of neighbourhood structures and a sus-set of local search refinement routines and hence, a full set of neighbourhood structures and a full set of local search refinement routines at two levels of the algorithm respectively. The algorithm found very encouraging results when compared with the solutions found by CPLEX. These findings in this thesis demonstrate the power of VNS yet again in terms of its speed, simplicity and efficiency. To investigate this new variant further, we developed an algorithm belonging to the new class of the hybrid methodologies, i.e., mat-heuristics. A hybrid collaborative sequential mat-heuristic approach called the CSMH to solve the MT-VRPB is developed. The exact method approach produced in Chapter 4 is then hybridised with the Two-Level VNS algorithm developed in Chapter 5. The overall performance of the CSMH remained very encouraging in terms of the solution quality and the time taken on average compared with the CPLEX and the Two-Level VNS meta-heuristic. To demonstrate the power and effectiveness of our methodologies, we tested the designed algorithms on the two special versions of the VRP (i.e., VRPB and MT-VRP) to assess whether they are efficient and dynamic enough to solve a range of VRP variants. Hence the Two-Level VNS and the CSMH algorithms developed to solve the MT-VRPB are adapted accordingly and implemented to solve the two above variants separately. The algorithms produced very competitive results for the benchmark data sets when compared to the best known solutions from the literature. The successful implementations of these algorithms on the three VRP models with only minor amendments prove their generalizability and their robustness. The results in this research show that significant cost savings could be obtained by choosing the right fleet size and better vehicle utilisations with multiple trips and backhauling. Hence, the research proved the justification of studying this interesting combination. Moreover, the problem modelling, efficient algorithm design and implementation, and the research results reveal some vital information and implications from the managerial point of view in terms of making the tactical (fleet acquisition) and the operational (fleet management) decisions in a more informative manner
    corecore