197 research outputs found

    Adversarial training to improve robustness of adversarial deep neural classifiers in the NOvA experiment

    Get PDF
    The NOvA experiment is a long-baseline neutrino oscillation experiment. Consisting of two functionally identical detectors situated off-axis in Fermilab’s NuMI neutrino beam. The Near Detector observes the unoscillated beam at Fermilab, while the Far Detector observes the oscillated beam 810 km away. This allows for measurements of the oscillation probabilities for multiple oscillation channels, ν_µ → ν_µ, anti ν_µ → anti ν_µ, ν_µ → ν_e and anti ν_µ → anti ν_e, leading to measurements of the neutrino oscillation parameters, sinθ_23, ∆m^2_32 and δ_CP. These measurements are produced from an extensive analysis of the recorded data. Deep neural networks are deployed at multiple stages of this analysis. The Event CVN network is deployed for the purposes of identifying and classifying the interaction types of selected neutrino events. The effects of systematic uncertainties present in the measurements on the network performance are investigated and are found to cause negligible variations. The robustness of these network trainings is therefore demonstrated which further justifies their current usage in the analysis beyond the standard validation. The effects on the network performance for larger systematic alterations to the training datasets beyond the systematic uncertainties, such as an exchange of the neutrino event generators, are investigated. The differences in network performance corresponding to the introduced variations are found to be minimal. Domain adaptation techniques are implemented in the AdCVN framework. These methods are deployed for the purpose of improving the Event CVN robustness for scenarios with systematic variations in the underlying data

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition

    TOWARD ASSURANCE AND TRUST FOR THE INTERNET OF THINGS

    Get PDF
    Kevin Ashton first used the term Internet of Things (IoT) in 1999 to describe a system in which objects in the physical world could be connected to the Internet by sensors. Since the inception of the term, the total number of Internet-connected devices has skyrocketed, resulting in their integration into every sector of society. Along with the convenience and functionality IoT devices introduce, there is serious concern regarding security, and the IoT security market has been slow to address fundamental security gaps. This dissertation explores some of these challenges in detail and proposes solutions that could make the IoT more secure. Because the challenges in IoT are broad, this work takes a broad view of securing the IoT. Each chapter in this dissertation explores particular aspects of security and privacy of the IoT, and introduces approaches to address them. We outline security threats related to IoT. We outline trends in the IoT market and explore opportunities to apply machine learning to protect IoT. We developed an IoT testbed to support IoT machine learning research. We propose a Connected Home Automated Security Monitor (CHASM) system that prevents devices from becoming invisible and uses machine learning to improve the security of the connected home and other connected domains. We extend the machine learning algorithms in CHASM to the network perimeter via a novel IoT edge sensor device. We assess the ways in which cybersecurity analytics will need to evolve and identify the potential role of government in promoting needed changes due to IoT adoptions. We applied supervised learning and deep learning classifiers to an IoT network connection log dataset to effectively identify varied botnet activity. We proposed a methodology, based on trust metrics and Delphic and Analytic Hierarchical Processes, to identify vulnera¬bilities in a supply chain and better quantify risk. We built a voice assistant for cyber in response to the increased rigor and associated cognitive load needed to maintain and protect IoT networks

    Evolutionary Granular Kernel Machines

    Get PDF
    Kernel machines such as Support Vector Machines (SVMs) have been widely used in various data mining applications with good generalization properties. Performance of SVMs for solving nonlinear problems is highly affected by kernel functions. The complexity of SVMs training is mainly related to the size of a training dataset. How to design a powerful kernel, how to speed up SVMs training and how to train SVMs with millions of examples are still challenging problems in the SVMs research. For these important problems, powerful and flexible kernel trees called Evolutionary Granular Kernel Trees (EGKTs) are designed to incorporate prior domain knowledge. Granular Kernel Tree Structure Evolving System (GKTSES) is developed to evolve the structures of Granular Kernel Trees (GKTs) without prior knowledge. A voting scheme is also proposed to reduce the prediction deviation of GKTSES. To speed up EGKTs optimization, a master-slave parallel model is implemented. To help SVMs challenge large-scale data mining, a Minimum Enclosing Ball (MEB) based data reduction method is presented, and a new MEB-SVM algorithm is designed. All these kernel methods are designed based on Granular Computing (GrC). In general, Evolutionary Granular Kernel Machines (EGKMs) are investigated to optimize kernels effectively, speed up training greatly and mine huge amounts of data efficiently

    Machine Learning for Hand Gesture Classification from Surface Electromyography Signals

    Get PDF
    Classifying hand gestures from Surface Electromyography (sEMG) is a process which has applications in human-machine interaction, rehabilitation and prosthetic control. Reduction in the cost and increase in the availability of necessary hardware over recent years has made sEMG a more viable solution for hand gesture classification. The research challenge is the development of processes to robustly and accurately predict the current gesture based on incoming sEMG data. This thesis presents a set of methods, techniques and designs that improve upon evaluation of, and performance on, the classification problem as a whole. These are brought together to set a new baseline for the potential classification. Evaluation is improved by careful choice of metrics and design of cross-validation techniques that account for data bias caused by common experimental techniques. A landmark study is re-evaluated with these improved techniques, and it is shown that data augmentation can be used to significantly improve upon the performance using conventional classification methods. A novel neural network architecture and supporting improvements are presented that further improve performance and is refined such that the network can achieve similar performance with many fewer parameters than competing designs. Supporting techniques such as subject adaptation and smoothing algorithms are then explored to improve overall performance and also provide more nuanced trade-offs with various aspects of performance, such as incurred latency and prediction smoothness. A new study is presented which compares the performance potential of medical grade electrodes and a low-cost commercial alternative showing that for a modest-sized gesture set, they can compete. The data is also used to explore data labelling in experimental design and to evaluate the numerous aspects of performance that must be traded off

    Optimisation approaches for data mining in biological systems

    Get PDF
    The advances in data acquisition technologies have generated massive amounts of data that present considerable challenge for analysis. How to efficiently and automatically mine through the data and extract the maximum value by identifying the hidden patterns is an active research area, called data mining. This thesis tackles several problems in data mining, including data classification, regression analysis and community detection in complex networks, with considerable applications in various biological systems. First, the problem of data classification is investigated. An existing classifier has been adopted from literature and two novel solution procedures have been proposed, which are shown to improve the predictive accuracy of the original method and significantly reduce the computational time. Disease classification using high throughput genomic data is also addressed. To tackle the problem of analysing large number of genes against small number of samples, a new approach of incorporating extra biological knowledge and constructing higher level composite features for classification has been proposed. A novel model has been introduced to optimise the construction of composite features. Subsequently, regression analysis is considered where two piece-wise linear regression methods have been presented. The first method partitions one feature into multiple complementary intervals and ts each with a distinct linear function. The other method is a more generalised variant of the previous one and performs recursive binary partitioning that permits partitioning of multiple features. Lastly, community detection in complex networks is investigated where a new optimisation framework is introduced to identify the modular structure hidden in directed networks via optimisation of modularity. A non-linear model is firstly proposed before its linearised variant is presented. The optimisation framework consists of two major steps, including solving the non-linear model to identify a coarse initial partition and a second step of solving repeatedly the linearised models to re fine the network partition

    Tiny Machine Learning Environment: Enabling Intelligence on Constrained Devices

    Get PDF
    Running machine learning algorithms (ML) on constrained devices at the extreme edge of the network is problematic due to the computational overhead of ML algorithms, available resources on the embedded platform, and application budget (i.e., real-time requirements, power constraints, etc.). This required the development of specific solutions and development tools for what is now referred to as TinyML. In this dissertation, we focus on improving the deployment and performance of TinyML applications, taking into consideration the aforementioned challenges, especially memory requirements. This dissertation contributed to the construction of the Edge Learning Machine environment (ELM), a platform-independent open-source framework that provides three main TinyML services, namely shallow ML, self-supervised ML, and binary deep learning on constrained devices. In this context, this work includes the following steps, which are reflected in the thesis structure. First, we present the performance analysis of state-of-the-art shallow ML algorithms including dense neural networks, implemented on mainstream microcontrollers. The comprehensive analysis in terms of algorithms, hardware platforms, datasets, preprocessing techniques, and configurations shows similar performance results compared to a desktop machine and highlights the impact of these factors on overall performance. Second, despite the assumption that TinyML only permits models inference provided by the scarcity of resources, we have gone a step further and enabled self-supervised on-device training on microcontrollers and tiny IoT devices by developing the Autonomous Edge Pipeline (AEP) system. AEP achieves comparable accuracy compared to the typical TinyML paradigm, i.e., models trained on resource-abundant devices and then deployed on microcontrollers. Next, we present the development of a memory allocation strategy for convolutional neural networks (CNNs) layers, that optimizes memory requirements. This approach reduces the memory footprint without affecting accuracy nor latency. Moreover, e-skin systems share the main requirements of the TinyML fields: enabling intelligence with low memory, low power consumption, and low latency. Therefore, we designed an efficient Tiny CNN architecture for e-skin applications. The architecture leverages the memory allocation strategy presented earlier and provides better performance than existing solutions. A major contribution of the thesis is given by CBin-NN, a library of functions for implementing extremely efficient binary neural networks on constrained devices. The library outperforms state of the art NN deployment solutions by drastically reducing memory footprint and inference latency. All the solutions proposed in this thesis have been implemented on representative devices and tested in relevant applications, of which results are reported and discussed. The ELM framework is open source, and this work is clearly becoming a useful, versatile toolkit for the IoT and TinyML research and development community

    Mathematical modeling and visualization of functional neuroimages

    Get PDF
    • …
    corecore