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abstract

Subtle changes in microbial populations that inhabit different areas of the human
body — known as microbiomes or microbiota — can contribute to disease develop-
ment, and restoring these imbalances may provide a cure. Localised and systemic
diseases such as Inflammatory Bowel Disease (IBD) and depression have been linked
with alterations to microbiota across the human body. Our understanding of how
both diseases develop contains significant gaps, and the microbiome — described
by some as our “second genome” — offers a compelling new area for knowledge
discovery. This thesis aimed to advance the field of microbiome research and is
an account of the work conducted whilst investigating the human gut and oral
microbiome for links with IBD and depression. In this thesis, a hybrid model
and aggregating ensemble feature selection (EFS) approach are applied to micro-
biome census data gathered from subjects with IBD. Microbial ecology techniques
are applied to identify alterations to the oral microbiome in depressed subjects,
and a multimodal Computational Intelligence (CI) classification paradigm known
as a Super Self-Organising Map (sSOM) is applied to predict depression from a
saliva sample. Finally, a rough set characterisation approach was developed and
applied to gut and oral microbiome census data in depressed subjects to avoid
destructive data normalisation and to enable knowledge discovery. The outcomes
from the development of the hybrid model and aggregating EFS approach include
the accurate non-invasive prediction of IBD, and the identification of novel and
robust alterations to the gut microbiome in an adult cohort of IBD patients. The
result provides a potential alternative to invasive colonoscopy, improve the time
to diagnosis and treatment of IBD, and delivers new insights into the aetiology
of IBD. The investigation of the oral microbiome identified novel alterations in
depressed subjects for the first time. The changes to the structure and composition
of the oral microbiome were significant enough to enable the accurate prediction
of depression from a saliva sample. The results contribute to the microbiome-gut-
brain axis theory by associating alterations to the oral microbiome with depression
for the first time, and offer an alternative to subjective criteria for diagnosing
depression, which currently relies on patient self-report and clinical judgement.
The rough set microbiome characterisation approach replicated existing results and
identified previously undescribed alterations to the gut microbiome in depressed
subjects. The results provide an alternative approach to destructive normalisation
techniques that are often applied to microbiome census data (identifying an optimal
approach is an open research question), and contribute to our understanding of
the microbiome-gut-brain axis, which could lead to psychobiotic treatments of
depression in the future.
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(fMRI)

A method of studying brain activity by measuring
blood flow associated with changes (e.g. a partic-
ular task). 139

guanine One of the four main nucleobases found in DNA.
Pairs with cytosine. 80

halophile Organisms that live in highly saline environments.
They require salinity to survive. 104

halotolerant Organisms that can tolerate highly saline envi-
ronments, but do not require salinity to survive.
104

hypothalamic-pituitary-
adrenocortical

(HPA)

The set of organs that constitute the HPA axis: a
major neuroendocrine system responsible for a va-
riety of mechanisms including stress and immune
response and digestion. 43, 45, 71

Indeterminate Colitis
(IC)

IBD cases that are impossible to diagnose as ul-
cerative colitis (UC) or crohn’s disease (CD). 77

Inflammatory Bowel
Disease (IBD)

An umbrella term for a group of inflammatory
diseases of the gastrointestinal tract, including
Crohn’s Disease and ulcerative colitis. ix, 2–5,
33–35, 38, 39, 43, 44, 71, 73–75, 81–92, 94, 96,
100–104, 107, 136, 162, 169–171, 173, 174, 178

KEGG Ortholog (KO) A database of molecular-level functions. Part of
the KEGG collection. 123

Knowledge Discovery in
Databases (KDD)

The process of discovering useful knowledge from a
collection of data, also known as discovery science
or discovery-based science. 8

Kyoto Encyclopedia of
Genes and Genomes

(KEGG)

A collection of databases dealing with genomes,
biological pathways, diseases, drugs, and chemical
substances. 123
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linear discriminant
analysis (LDA)

Statistical pattern recognition technique. 10

Linear discriminate
analysis effect size

(LEfSe)

A software package that aims identify biological
markers from relative abundance microbiome cen-
sus data. 123

major depressive disorder
(MDD)

Also known as depression. A mental disorder that
causes a persistent low mood, low self esteem, and
chronic anhedonia. 40

minimum entropy
decomposition (MED)

A sequence clustering algorithm that partitions
high-throughput sequencing data into ecologically
meaningful and phylogenetically homogeneous
units. 63, 72

multidimensional scaling
(MDS)

A set of related ordination techniques for visualis-
ing complex data. 10, 11

multilayer perceptron
(MLP)

A type of feedforward artificial neural network.
83, 88–90

Negative Predictive
Value (NPV)

Proportion of true negative results. 134

omics A field of biological research that ends with -omics.
For example, genomics involves the study of the
genome. In molecular biology the -ome suffix
refers to “all constituents considered collectively”.
1

operational taxonomic
unit (OTU)

Literally “the thing(s) being studied”. Typically
used to describe marker gene sequence reads clus-
tered at a similarity threshold to approximate a
bacterial taxonomy (e.g. 97% similarity is consid-
ered equivalent to a bacterial species). 58–63, 65,
66, 68, 70–72, 75, 76, 78, 79, 82, 84, 91, 96, 111,
113, 160
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paediatric crohn’s disease
activity index (PCDAI)

A subjective criteria that stratifies the severity of
Crohn’s disease in paediatric patients. 82

Permutational
multivariate analysis of

variance (PERMANOVA)

A non-parametric multivariate statistical test. 121

Phylogenetic
Investigation of
Communities by

Reconstruction of
Unobserved States

(PICRUSt)

Bioinformatics software package that predicts
metagenome functional content from marker gene
survey data. 77, 78, 80, 82, 86, 87, 123, 133, 176

polymerase chain
reaction (PCR)

A technique that can create multiple copies of a
chosen DNA sequence. This is used to amplify
the marker genes to enable sequencing and bioin-
formatic analysis. 53, 56, 57

Positive Predictive Value
(PPV)

Proportion of true positive results. 134

principal component
analysis (PCA)

A statistical method that transforms a set of fea-
tures into a subset of linearly uncorrelated features
(principal components), often used as a dimension-
ality reduction technique. 10, 33

probiotics A substance that stimulates the growth of mi-
croorganisms (particularly those with beneficial
properties). 108

psychobiotic Live bacteria that when ingested confer mental
health benefits through interactions with commen-
sal gut bacteria. ix, 4, 43, 108, 175, 177

Quantitative Insights Into
Microbial Ecology (QIIME)

A bioinformatics pipeline for performing micro-
biome analysis from sequenced amplicon data. 60,
61, 76, 78, 79, 84

quantitative polymerase
chain reaction (qPCR)

A molecular biology laboratory technique that
monitors the amplification of targeted DNA se-
quences in real time. 91
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Random Forest Ensemble statistical pattern recognition technique.
73, 82, 88, 90, 92–94, 96, 101

Recursive Feature
Elimination (RFE)

A feature selection method. 86, 92, 93

robust The consistency of feature selector output when
small changes are made to input data (e.g. by
adding or removing a sample). In this work, ro-
bust biomarkers were identified for inflammatory
bowel disease in Chapter 4 using aggregating en-
semble feature selection. Additionally, the robust-
ness of the rough set characterisation process was
investigated in Chapter 6. 74

robustness See robust 73
Robustness-Performance

Trade-off (RPT)
A variant of the F1-score (F-measure). 94, 96

Rough Set Theory (RST) First described by Pawlak, a rough set is a pair of
“crisp” (conventional) sets: a lower approximation
set and an upper approximation set. 5, 6, 31, 137,
138, 165

Self-Organising Map
(SOM)

A type of artificial neural network; a pattern recog-
nition technique. 11, 118, 119, 137, 174

Sequence Read Archive
(SRA)

Bioinformatics database that provides a public
repository for high-throughput DNA sequence
data. 75

Short Chain Fatty Acid
(SCFA)

Fatty acids with between 2 and 6 carbon atoms.
172, 178

Sparse Correlations for
Compositional data

(SparCC)

A similarity-based network inference tool that can
tolerate sparse and compositional data. 116, 122,
134

Super Self-Organising
Map (sSOM)

A type of multimodal artificial neural network; a
pattern recognition technique. ix, 109, 118, 119,
124, 134, 135



xx GLOSSARY

support vector machine
(SVM)

A statistical pattern recognition technique based
on a separating hyperplane. 18, 21, 73, 83, 85, 86,
88–90, 93, 94, 96, 101

Synthetic Minority
Over-sampling Technique

(SMOTE)

An oversampling algorithm that generates syn-
thetic data to mitigate class imbalance. 92

thymine One of the four main nucleobases found in DNA.
Pairs with adenine. 81

ulcerative colitis (UC) A chronic condition where the large intestine be-
comes inflamed. 39, 74, 76, 77, 83, 88, 91, 94, 96,
100, 171

zero-radius operational
taxonomic unit (zOTU)

An operational taxonomic unit that contains iden-
tical elements, a proposed name for amplicon se-
quence variants. 63, 79
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introduction

Where shall I begin? Which of
all my important nothings shall
I tell you first?

Jane Austen

Bioinformatics and computational biology are challenged by the growth of extremely
complex, highly dimensional, and noisy data gathered from a range of sources
(Holzinger et al., 2014). Huge quantities of omics data from a vast array of fields
(including but not limited to genomics, metagenomics, proteomics, transcriptomics,
and metabolomics) are generated each day, and it is estimated that by 2025
omics data will present some of the most demanding computational challenges
for data acquisition, storage, distribution, and analysis (Stephens et al., 2015).
The generated data provides opportunities to enable the generation of data driven
hypotheses and aid the development of stratified medicine. However, extracting
useful knowledge from the mountains of generated data (in a process known as
knowledge discovery) is not an easy task, and a variety of approaches are required to
do so. Knowledge discovery can be enabled by applying techniques such as statistical
models, Artificial Intelligence (AI), machine learning methods, and Computational
Intelligence (CI) methods. The knowledge discovery process consists of a series
of steps with the ultimate goal to transform data into knowledge (Fayyad et al.,
1996):

Data selection The process of identifying a dataset for analysis and
selecting a data subset for data mining if appropriate;

Data pre-preocessing Organising and tidying (Wickham et al.,
2014) information to remove outliers, perform data normalisation, and
mitigate missing data;

Data transformation Data are made appropriate for data mining
via transformations (e.g. applying summary statistics or dimensionality
reduction techniques)

Data mining “The process of discovering useful patterns and trends
in large data sets” (Larose and Larose, 2014);

Evaluation Interpreting the output of data mining (e.g. extracted
data visualisation).
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Common tasks for data mining include (Larose and Larose, 2014):

• Describing patterns and trends in data;

• Approximating a categorical target variable from a larger data set (classifica-
tion);

• Approximating a numeric target variable from a larger data set (regression);

• Predicting future events (e.g. the share price of a company in 3 months);

• Clustering observations into similar groups;

• Identifying association rules (finding features that co-occur).

CI and machine learning provide powerful tools for extracting knowledge from data
and have been successfully applied to many domains for knowledge discovery such
as sociodemographic analysis and financial market analysis (e.g. identifying if a
payment is fraudulent; Larose and Larose, 2014). However, to date microbiome
census data (described below) have rarely been modelled using approaches other
than standard machine learning algorithms.

Microbiota across the human body have been implicated in a vast number
of localised and systemic diseases over the past decade, including colon cancer,
rheumatoid arthritis, and Inflammatory Bowel Disease (IBD). Microbiota are
defined as “the assemblage of microorganisms present in a defined environment”
(Marchesi and Ravel, 2015). The term microbiome refers to “the entire habitat,
including microorganisms, their genomes, and the surrounding environmental
conditions” (Marchesi and Ravel, 2015). Evidence first presented in animal studies
suggested that altering the microbiome could influence host behaviour. Further
work developed this empirical evidence into the microbiome-gut-brain axis theory,
which describes the complex signalling events that occur between the central
nervous system, endrocrine and immune systems, the enteric nervous system, and
the gastrointestinal microbiome.

Research has linked the microbiome-gut-brain axis to depression and other
psychiatric disorders (Foster et al., 2017). Despite decades of research it is unclear
how depression originates: no single biological mechanism or environmental factor
has been shown to fully explain the aetiology of depression, and to date no empirical
diagnostic tests are currently in clinical use. The microbiome has been referred to
as the second genome of the human body: the number of bacterial cells associated
with the human body greatly outnumbers the amount of human cells present. Thus,
the microbiome is a promising area to identify new markers for disease.

Attempts have been made to identify microbiome dysregulation of the gut-
brain-axis in association with depression in preclinical studies. One of the core
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pathways that is thought to link the microbiome-gut-brain axis and depression is
the “leaky gut” phenomenon. Stress is thought to cause the epithelial barrier of the
gastrointestinal tract to become compromised, causing an increased translocation
of bacterial cells across the mucosal lining. The translocated bacterial cells then
interact with the enteric nervous system and immune cells, activating an immune
response that increases the production of inflammatory mediators. The resultant
inflammatory response contributes to depression, which has close links with chronic
inflammation. Despite a large amount of animal work supporting the microbiome-
gut-brain axis theory, limited and conflicting preclinical evidence is apparent in
humans. To study the gut microbiome, faecal samples must be collected, which
can be a challenging process for large epidemiological studies. Challenges include
sample collection, processing, transportation, and subject recruitment barriers.
The oral microbiome can be investigated via the collection of saliva. Saliva is a cost
effective non-invasive biomarker source. Despite the oral microbiome being part of
the gastrointestinal microbiome, the oral microbiome has not been investigated to
date for associations with depression.

The oral microbiome is one of the most diverse microbiomes in the human
body, and influences the microbiota found in the rest of the gastrointestinal tract.
Alterations to the oral microbiome have been linked to both oral and systemic
diseases with an inflammatory aetiology such as IBD and neurological diseases such
as Alzheimer’s disease. Three salivary glands are the source of nearly 90% of saliva
fluid, which have the potential to absorb blood based biomarkers of disease. This
suggests that saliva can contain important disease information. Therefore charting
the oral microbiome for links to depression is a promising area for further research.
Such work could potentially provide new insights into depression aetiology, and
help to identify novel diagnostic and therapeutic response biological markers. CI
provides a range of tools that can identify such biological markers. In addition, CI
approaches can be applied to gain a greater understanding of complex microbial
communities and the role they play in disease.

1.1 Objectives of the thesis
The aim of this research is to develop computational models of microbiomes across
the gastrointestinal tract in order to investigate the mechanisms that are involved
in the aetiology of disease, with a focus on depression. The first models are
applied to IBD data, as many large publicly available datasets were available while
analytical models were developed and applied. During this time, in collaboration
with the Northern Ireland Centre for Stratified Medicine, an oral microbiome
dataset was collected, containing control and depressed subjects’ data for analysis
and further study. Diseases linked to the microbiome are often systemic and have
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an unclear aetiology. Both diseases are currently difficult to diagnose: there are no
empirical tests for depression in clinical use, and IBD requires invasive colonoscopy.
Gaining a better understanding of these diseases will advance treatment by assisting
clinicians with disease identification. In addition to prediction, models can inform
the underlying aetiology of disease. Such insights can be used to deliver novel
treatments from this understanding, including psychobiotics. To achieve the aim
of this thesis the following objectives have been determined:

1. Review computational approaches including CI and machine learning that
have been applied for knowledge discovery from biological data;

2. Review microbiome literature to identify how the microbiome is thought to
be linked with diseases (with a focus on depression), how microbiome census
data are created, and CI applications to microbiome census data;

3. Identify methodologies that overcome current limitations in the application
of computational models to microbiome census data;

4. Develop computational models that predict IBD from microbiome census
data and enable knowledge discovery;

5. Using AI and CI techniques, identify associations between the oral microbiome
and depression in a cohort of young adults;

6. Develop an approach that could characterise microbial environments while
preserving data semantics that are destroyed by standard normalisation
procedures.

1.2 Thesis contributions
The research outlined in this thesis provides novel contributions to the area of
microbiome research. The work has been peer reviewed in a published conference
paper (Wingfield et al., 2016) and journal paper (Wingfield et al., 2018c). Fur-
thermore, the work has contributed to the development of two other papers that
are under preparation for submission to peer reviewed journals (Wingfield et al.,
2018b; Wingfield et al., 2018a). The primary contributions of this thesis are:

1. The extension of existing predictive models for IBD by the development of a
hybrid model;

2. Generating robust microbial biological markers (biomarkers) for IBD with
ensemble feature selection (EFS);
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3. Identifying a range of alterations in the oral microbiome of a depressed cohort;

4. Accurately predicting depression from a saliva sample;

5. Developing and applying Rough Set Theory (RST) characterisation to mi-
crobiome census data gathered from depressed cohorts which reproduces
empirical findings and delivers novel insights regarding the microbiome-gut-
brain axis.

1.3 Outline of the thesis
Chapters 2 through to 6 outline the contributions of this work in detail. Chapter 7
provides a conclusion and proposes future work. A brief summary of Chapters 2
through to 7 is provided below:

Chapter 2 provides a critical review of CI approaches for knowledge
discovery from biological data and identifies their limitations. Addition-
ally, applications of CI to stratified medicine are reviewed and assessed
for their ability to overcome deficiencies in the microbiome research
knowledge base.

Chapter 3 reviews human microbiome research, the role the micro-
biome plays in disease, and the applications of CI to microbiome research.
An outline of the different stages of a microbiome experiment is provided
due to the interdisciplinary nature of the topic. The outline begins
with extracting DNA from environmental samples and covers each
stage through to the processing of sequenced genomic data to produce
microbiome census data. A huge variety of bioinformatics algorithms
exists for the generation of microbiome census data, and a critical
review of microbiome census data paradigms and algorithms is provided.
Furthermore, the links between depression and human microbiomes are
thoroughly explored via a review of the microbiome-gut-brain axis.

Chapter 4 outlines the development of a hybrid model for IBD predic-
tion and the generation of robust microbial markers for IBD prediction.
The hybrid model evaluates the predictive power of a wide range of
microbiome data, including taxonomic, functional, and clinical data.
The application of EFS identified a subset of bacterial taxa that could
accurately predict IBD from stool in a large paediatric cohort.

Chapter 5 identifies the first documented alterations to the oral mi-
crobiome of a depressed cohort of young adults using a variety of
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microbial ecology analysis techniques. Furthermore, multimodal CI al-
gorithms are applied to enable the prediction of depression from a saliva
sample. The results provide new insights regarding the microbiome-gut-
brain axis theory and have the potential to have great impact on the
microbiome knowledge base.

Chapter 6 describes a RST approach to characterise the oral and gut
microbiomes of depressed cohorts. The work throughout Chapters 4 and
5 focused on prediction, but analysing predictive power is only a small
part of microbiome census data analysis; RST provides a transparent
way to transform data into knowledge. Furthermore, the application
of RST provides a solution to an open research question regarding
identifying an optimal normalisation technique for microbiome census
data. The results of the characterisation are compared with previous
empirical findings.

Chapter 7 concludes this thesis with a discussion of the research
findings. The research outlined in this thesis is compared with the
related literature to demonstrate how the contributions of this work
have advanced the understanding of the microbiome-gut-brain axis and
the development of microbiome census data analysis strategies. The
chapter closes with an outline for proposals of future work which could
extend the research presented in this thesis.
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computational intelligence for knowledge
discovery

Any sufficiently advanced
technology is indistinguishable
from magic.

Arthur C. Clarke

2.1 Introduction
This chapter provides an evaluation of Computational Intelligence (CI) approaches
for knowledge discovery from biological data, decision and data fusion, and discusses
applications of CI to stratified medicine. Stratified medicine aims to improve health
care efficiency and efficacy by delivering the right treatment to the right patient at
the right time. Advances in molecular biology have caused an exponential growth
of biological information. New technology has democratised science by making
experiments that generate vast quantities of data widely available, and most funding
agencies require experimental data to be made available in publicly accessible
archives. At the end of 2015 the European Molecular Biology Laboratory’s European
Bioinformatics Institute (EMBL-EBI) stored nearly 80 petabytes (8× 107 gigabytes)
of biological data (Cook et al., 2015). Knowledge discovery is an important process
for extracting meaningful information from vast quantities of data — the volume
of biological data is projected to exceed astronomical data by 2025 (Stephens et al.,
2015). CI is often used for the purpose of knowledge discovery in databases, as many
CI algorithms are capable of dealing with uncertainty, vagueness, and incomplete
data - all of which are common in complex biological data. A generalised pipeline
for knowledge discovery in databases is presented in Section 2.2, and the background
behind various CI techniques is discussed. Section 2.3 describes the concept of
decision and data fusion. Decision fusion covers the concept of ensembles for
learning, feature selection, and hybrid systems, and relies on combining the outputs
of multiple weak models to outperform a single strong model. Data fusion covers
supervised multi-modal classification, which can incorporate multiple types of data
to create a more holistic model of a system. Section 2.4 provides a brief overview
of CI techniques that have been applied to stratified medicine. In Section 2.5 the
chapter concludes with a summary of findings from the literature.
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2.2 The knowledge discovery process
Knowledge Discovery in Databases (KDD) is the process of extracting valuable in-
telligence from information. Chapters 4 and 6 rely on data gathered from databases;
Chapter 5 uses data gathered from experiments carried out in collaboration with
the Northern Ireland Centre for Stratified Medicine. The KDD process is identical
for both approaches from the data cleaning stage forward (see Figure 2.1). The vast
quantities of data made available on publicly accessible archives such as EMBL-EBI,
described earlier, contain much undiscovered biologcal knowledge. The CI tech-
niques described in this chapter are discussed in the context of a KDD pipeline, as
the ultimate aim of this thesis is to extract new knowledge from complex biological
data. The background of applicable CI techniques (e.g. rough set theory) will be
also be covered. The data cleaning and processing stage of KDD is thoroughly
discussed in Chapter 3 (specifically the process of calculating the abundance of
bacteria from short DNA sequences). Data that represent the microbial commu-
nities that inhabit the human body are often highly dimensional. These types
of data are common across many disciplines, and typically large amounts of the
data are not useful for modelling the problem at hand. The terms redundancy and
irrelevance are useful to describe such data (John et al., 1994). Redundant data
are highly correlated with other data, and relevant data have predictive power. If
relevant data are removed from a dataset the predictive ability of a model decreases.
Weakly relevant data may contribute to the predictive power of a learning model in
combination with other data. This section begins with a discussion about reducing
the complexity of gathered data via a process known as dimensionality reduction.

Figure 2.1: Knowledge discovery process (adapted from Fayyad et al., 1996).

2.2.1 Dimensionality reduction
It is common for many features in a high dimensional dataset to be irrelevant to a
classification problem (Saeys et al., 2007). Superfluous features affect many aspects
of the model fitting process. Mitigating the effects of the irrelevant features is a
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common step in CI workflows for a variety of reasons, all of which are extremely
useful for knowledge discovery from complex biological data:

• To improve the ability of researchers to interpret a fitted model;

• To reduce the time it takes to fit a model;

• To avoid the curse of dimensionality (Keogh and Mueen, 2011);

• To reduce overfitting (see Figure 2.2), which improves the ability of fitted
models to generalise to unseen data.

The curse of dimensionality describes a range of problematic side-effects that
occur as a result of analysing highly dimensional data (Keogh and Mueen, 2011).
Broadly speaking traditional dimensionality reduction falls into three broad strate-
gies (James et al., 2013):

Shrinkage Shrinkage is also known as regularisation. Shrinkage penalises complex
models to reduce variance and overfitting. It does this by fitting a linear model
to all f features. The size of the estimated coefficients is penalised according
to a complexity parameter a. Shrinkage can cause estimated coefficients to
be exactly zero. It is common to perform subset selection, explained below,
by fitting a new model using only non-zero coefficients. Popular models that
implement shrinkage include Ridge regression (Zou and Hastie, 2005), the
Lasso (Meinshausen and Bühlmann, 2006), and the Elastic Net (Zou and
Hastie, 2005).

Feature extraction This approach involves transforming the f features into an
N -dimensional subspace, where N < f . An example of this approach is
Principal Component Analysis. The transformed features are then used to fit
a model.

Feature subset selection Feature subset selection is also known as feature selec-
tion. It aims to identify a subset of f features that are related to a response.
The feature subset is used to fit a model.

Feature extraction, feature subset selection, and CI approaches such as rough
set theory are described below. Shrinkage is implemented across many models.
Although shrinkage improves the predictive performance and computational com-
plexity of a model (see Figure 2.2), unless feature subset selection is used in tandem
with shrinkage every f feature is still present in the final model. As this chapter
is focussed on knowledge discovery from biological data, shrinkage is discussed in
tandem with feature subset selection in this section.
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Figure 2.2: An example of overfitting. Overfitting occurs when a trained model
performs very well on training data, but performs poorly on unseen data. The red
dashed line is overfitted to the training data. The blue line is an ideal fit. Shrinkage
penalises complex models (such as the red dashed line) to reduce overfitting.

Feature extraction via transformations

Dimensionality reduction can be achieved by processes that irreversibly transform a
dataset from a high-dimensional space to a feature subspace. This data transforma-
tion process is also known as feature extraction. Linear transformation techniques
such as principal component analysis (PCA), linear discriminant analysis (LDA),
and multidimensional scaling (MDS) are popular for visualising the variance present
in a microbial community (Dinsdale et al., 2013) or analysing gene expression data
(Lee et al., 2007). The transformations try to reveal the Euclidean structure of the
data. PCA transforms a set of features to a smaller set of uncorrelated features
(principal components) that represent the largest amount of variance present in
the data (Abdi and Williams, 2010). The underlying assumption of PCA is that
high variance represents useful information, and transformed features with low
variance can be removed. PCA is a straightforward process: one first calculates the
eigenvectors of a covariance matrix of data instances X (e.g. samples). A subset of
k eigenvectors that corresponds to the k largest eigenvalues (where k is less than
the number of original dimensions d) is used to build a transformation matrix M .
X ·M yields the transformed feature subspace Y . LDA is similar to PCA but
aims to find a feature subspace that maximises the separation between different
classes (Fisher, 1936); PCA does not take into account class labels (e.g. disease
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status, Balakrishnama and Ganapathiraju, 1998). MDS uses similarity measures
to measure the proximities of data instances to visualise the structure of data
(Borg and Groenen, 2005). The transformation procedure aims to preserve the
proximities between data instances. A variant of MDS known as nonmetric MDS is
widely used to visualise the structure of microbial communities (Kuczynski et al.,
2010). Metric (classical) MDS is incompatible with incomplete, asymmetric, or
ordinal data. One important limitation of the algorithms described above is that
they cannot capture non-linear relationships that are common in data, particularly
in complex biological systems (Lee et al., 2007).

Methods capable of capturing non-linear relationships include manifold-based
extensions of linear techniques such as Isomap (Tenenbaum et al., 2000) and neural
approaches such as the Self-Organising Map (SOM) (Kohonen, 1998) or auto-
encoders (Masci et al., 2011). Manifold approaches assume that data are present in
an embedded non-linear manifold with fewer dimensions than the original feature
space (Hira and Gillies, 2015). Isomap builds a manifold by connecting points
between K clustered data instances. The pairwise distance between each point is
calculated as the geodesic distance. Isomap can identify non-linear patterns in data
because the geodesic distances can represent the lower-dimensional manifold. If K
is too small the geodesic distance cannot be accurately calculated in a sparse graph,
and if K is too large “short circuit” edges can be introduced into the graph. Short
circuit edges occur when points that are not geodesically close are joined; this fails
to represent a manifold’s topology. Taken together these problems mean that the
Isomap approach can struggle to deal with sparse or noisy data (Balasubramanian
and Schwartz, 2002), which makes the approach poorly suited for many complex
biological datasets. Neural approaches to dimensionality reduction perform well
but are vulnerable to poor generalisation (overfitting) and noisy data (Hira and
Gillies, 2015). The background and applications of neural approaches are discussed
thoroughly in the context of supervised learning in Section 2.2.2.

The key disadvantage of feature extraction processes is a loss of data inter-
pretability. The irreversible data transformation process destroys the semantics of
the original data. This is particularly important when knowledge discovery is the
goal of an experiment: for example a domain expert will be more interested in the
action of a subset of predictive genes than a subset of principal components (Abeel
et al., 2010). Linear transformations are incapable of truly representing many of
the phenomena present in complex biological systems (Lee et al., 2007), and the
non-linear transformations described above struggle with noisy and sparse data
(Balasubramanian and Schwartz, 2002), which are common properties of biological
data. Therefore the rest of this subsection focuses on other types of dimensionality
reduction, including feature selection and rough set theory approaches.
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Feature subset selection

Feature subset selection algorithms are diverse, but fall into three main categories:
filter methods, wrapper methods, and embedded methods (see Table 2.1). Semi-
supervised and unsupervised feature selection algorithms are available for data
that are fully or partially missing labels or for experiments that aim to investigate
the structure of the data (Ang et al., 2016). In this section only supervised feature
selection algorithms are discussed as the data used throughout this thesis are
labelled.

Filter feature selection algorithms select features without building a model, and
aim to reduce dimensionality by directly operating on the dataset with criteria
such as correlation, redundancy, or information gain (Guyon and Elisseeff, 2003).
Filter methods are quick and relatively simple to implement at the expense of
model performance. Wrapper feature selection algorithms use a multi-objective
optimisation approach to maximise model performance and minimise feature subset
size (Guyon and Elisseeff, 2003). Wrappers search through the space of possible
feature subsets using the constructed model as a performance measure (e.g. clas-
sification accuracy). The search method can range from simple (combinatorial)
to complex (computational intelligence approaches such as genetic algorithms).
Although wrapper methods provide better results than filter methods they have a
high computational cost and tend to overfit (Guyon and Elisseeff, 2003). Embedded
feature selection algorithms use internal data from the classification model to enable
feature selection (e.g. feature rankings of Random Forests). Embedded methods
provide a balance between computational complexity and performance (Guyon and
Elisseeff, 2003), and often appear at the top of feature selection algorithm bench-
marks. A comprehensive review of multiclass classification and feature selection
algorithms found that embedded feature selection algorithms performed best across
8 metagenomic datasets (Statnikov et al., 2013). A ranked list of features generated
by an embedded feature selector is often combined with a feature elimination
procedure such as recursive feature elimination to generate a feature subset (Guyon
et al., 2002). Regularisation can be thought of as a type of embedded feature
selection. Models such as the Elastic net penalise (regularise) the coefficient of
some features towards zero (Zou and Hastie, 2005). Features with a coefficient of
zero can be considered irrelevant and removed from the model.



2.2.
T

H
E

K
N

O
W

LED
G

E
D

ISC
O

V
ERY

PR
O

C
ESS

13
Table 2.1: Overview of feature selection techniques

Type Advantages Disadvantages Examples
Univariate
filter

Scales well to large data sets Ignores interactions between
features

Information gain (Hall and Smith,
1998)

Independent of model Independent of model Euclidean distance
Multivariate
filter

Faster than wrapper meth-
ods

Slower than univariate filter
methods

Fast correlation based feature se-
lection (Yu and Liu, 2004)

Independent of model Independent of model
Considers interactions be-
tween features

INTERACT (Zhao and Liu, 2007)

Deterministic
wrapper

Simple to implement Selection depends on model Sequential forward selection (Aha
and Bankert, 1996)

Interacts with model More likely to overfit Sequential backward elimination
(Aha and Bankert, 1996)

Considers interactions be-
tween features

Can get stuck in local op-
tima

Randomised
wrapper

Less likely to get stuck in
local optima

Computationally expensive Genetic algorithms (Yang and
Honavar, 1998)

Considers interactions be-
tween features

Selection depends on model Particle swarm optimisation
(Wang et al., 2007b)

Interacts with model More likely to overfit
Embedded Considers interactions be-

tween features
Selection depends on model SVM weight vectors (Guyon et al.,

2002)
Faster than wrapper meth-
ods

Random Forests (Díaz-Uriarte
and De Andres, 2006)

Interacts with model
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Table 2.2: Decision system example

Features Decision
Headache Thirst Regret Hungover
Yes High Medium Yes
No Low Low No
Yes Medium Very High Yes

Rough set theory

Figure 2.3: Overview of rough set theory concepts and their application to the
knowledge discovery process.

Rough set theory (Pawlak, 2012) enables the modelling of imprecise or imperfect
knowledge, and provides a range of concepts that are useful for knowledge discovery
(see Figure 2.3). Rough sets have been applied to gene expression data for the
purposes of dimensionality reduction and classification rule discovery (Dai and Xu,
2013). Using rough set theory it is possible to identify a subset of features (called
a reduct) that are most informative, and non-informative features can be removed
without any information loss (e.g. classification accuracy is not reduced). The
reduct can be identified without any additional kind of data while simultaneously
preserving the semantics of the data. The background to rough set theory is
described and applications to dimensionality reduction are discussed in this section.

One of the most important aspects of rough set theory is the concept of
indiscernability (Pawlak, 1998). Let IS = (U,A) be an information system - a
data table where rows are objects and columns are features, where U is a nonempty
finite set of objects (the universe of discourse), and A is a nonempty finite set of
features such that a : U 7→ Va for every a ∈ A where Va is the value set of feature
a. Information systems can be extended into decision systems with the addition of
decision features (e.g. class labels, see Table 2.2; Pawlak, 1998). A decision system
can be defined as DS : T = (U,A ∪ {d}) where d /∈ A is the decision feature. The
elements of A are known as condition features. Let P be an arbitrary subset of
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A. With any P ⊆ A there is an associated indiscernability relationship IND(P )
(Jensen and Shen, 2008):

IND(P ) = {(x, y) ∈ U2|∀a ∈ P, a(x) = a(y)} (2.1)
where x and y are arbitrary objects of U. The relation correponds to the equivalence
relation if and only if the objects have the same vectors for the features in B. The
indiscernability relation induces a partition in the universe U, which is the set of
equivalence classes generated by IND(P ), and is denoted as U/IND(P ) (Jensen
and Shen, 2008):

U/IND(P ) = ⊗{U/IND({a})|a ∈ P} (2.2)
where:

A⊗B = {X ∩ Y |X ∈ A, Y ∈ B,X ∩ Y 6= ∅} (2.3)
Instances x and y are said to be indiscernible by features if and only if (x, y) ∈
IND(P ). Let X be a subset of U, X can be approximated with the information
contained within P by defining the P -upper and P -lower approximations, denoted
as PX and PX respectively (Jensen and Shen, 2008):

PX = {x|[x]p ⊆ X} (2.4)
PX = {x|[x]p ∩X 6= ∅} (2.5)

the order pair 〈PX,PX〉 is a rough set of X. The boundary region can be defined
via the lower approximation and upper approximation (Jensen and Shen, 2008):

BNp(X) = B(X)−B(X) (2.6)
The boundary region consists of objects that cannot be certainly classified into X
in B (see Figure 2.4). A rough set is crisp if the boundary region is empty. Let P
and Q be feature sets that induce equivalence relations over U. The positive and
negative regions can be defined as (Jensen and Shen, 2008):

POSp(Q) =
⋃

X∈U/Q
PX (2.7)

NEGp(Q) = U−
⋃

X∈U/Q
PX (2.8)

The negative region consists of objects that certainly do not belong to X, and the
positive region consists of objects that are certain to belong to X.
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Figure 2.4: Lower and upper approximations of rough set X.

It is common for many of the features present in a decision system to be
superfluous. Rough sets can be used to identify the minimal (most concise)
representation of a decision system, called a reduct. Reducts aim to only keep
features that preserve the indiscernability relation; there are often multiple subsets
that do this but the most minimal are called reducts (Pawlak, 1998). First the
dependency between features must be defined. From this the significance of
individual features can be measured. A set of Q features depends on a set of P
features if all feature values in Q are determined by the feature values in P . The
degree k (0 ≤ k ≤ 1) that Q depends on P (P →k Q) is defined by (Jensen and
Shen, 2008):

k = γp(Q) = |POSp(Q)|
|U|

(2.9)

if k = 1 then Q totally depends on P , if 0 < k < 1 then Q depends partially on
P , and if k = 0 then Q does not depend on P . The significance of a feature can
be calculated by estimating the change in dependency when a feature is removed
from the set of all features. A highly significant feature will cause a large change in
dependency if removed. The significance of feature x ∈ P on Q can be calculated
by (Jensen and Shen, 2008):

σp(Q, a) = γp(Q)− γp−{a}(Q) (2.10)

A reduct is the minimal subset R from the original feature set C so that for a given
feature set D, γR(D = γC(D)). In a minimal subset no features can be removed
without affecting the dependency degree (Pawlak, 1996). Data sets can have many
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reducts, and the collection of all possible reducts is defined as (Jensen and Shen,
2008):

R = {X|X ⊆ C, γX(D) = γC(D); γX−{a}(D) 6= γX(D), ∀a ∈ X} (2.11)

the intersection of all reducts is called the core. In the context of feature selection
it is common to search reducts to identify a reduct of minimal cardinality (Jensen
and Shen, 2008):

Rmin = {X|X ∈ Rall,∀Y ∈ Rall, |X| ≤ |Y |} (2.12)

The rough set procedures outlined above have been applied extensively to
microbiome census data described in Chapter 3) throughout Chapter 6. The key
motivation for applying rough set theory is that it no additional information about
input data is required, such as statistical probability distributions and degree of
membership in fuzzy set theory (Pawlak, 1996).

2.2.2 Data mining with supervised learning

Data mining techniques enable the search for valuable information from large
volumes of data (Liao et al., 2012). Supervised learning is a data mining technique
that includes classification, regression, and structured output learning. The aim
of supervised learning is to identify a function f : x 7→ y that can generalise
well to unseen data, where x is the feature space of predictors (the independent
variables) used to make a prediction, and y is the response. Classification is a type
of supervised learning problem where y is a discrete value (qualitative output),
and regression is a type of supervised learning problem where y is a continuous
value (quantitative output; Hastie et al., 2009). In structured output learning y is
a structured object, such as the automated annotation of biological macromolecules
(Jiang et al., 2014). Most models are capable of a combination of output types (e.g.
classification and regression), but in this chapter only classification is described
in detail, as the supervised learning problems approached in this thesis are all
classification tasks.
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Support Vector Machines
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Figure 2.5: (a) Linear Support Vector Machine classification of a two-class synthetic
dataset showing the maximum margin separating hyperplane; (b) Kernel func-
tions enable linear SVMs to solve non-linear classification problems by remapping
features.

The core concept behind support vector machines (SVMs) is to construct a maximal
margin hyperplane or set of hyperplanes in high dimensional space that can be
used to separate two classes of data (see Figure 2.5a; Vapnik, 1998). A larger
separation between two classes indicates improved generalisation capability in the
model. SVMs are capable of learning classification problems that are not linearly
separable with the application of kernel functions (Scholkopf and Smola, 2001).
Once an SVM has been trained new objects are classified according to which side
of the hyperplane they fall on. Kernel functions can be used to map data to
higher dimensional space, where a hyperplane can be found by the SVMs (see
Figure 2.5b; Scholkopf and Smola, 2001). Examples of popular kernel functions
include polynomial, radial basis function, or sigmoid functions. SVMs are highly
effective in high dimensional spaces, are computationally efficient, and work well in
p� n classification problems (where the number of features is much larger than the
number of data objects), which are common in biological datasets (Statnikov et al.,
2008). SVMs can also employ regularisation to improve the generalisation ability
of the model by reducing overfitting. For these reasons SVMs are often considered
to be “best of class” for DNA microarray classification tasks and benchmarks have
confirmed that SVMs are superior to Random Forests for problems such as cancer
diagnosis and clinical prognosis from gene expression datasets (Statnikov et al.,
2008). SVMs are typically binary classifiers but can be extended to multi-class
classification. A common approach is to use a series of one-versus-all classifiers,
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where a single class is compared to all other classes binned into an agglomerated
“all” class. This process is repeated for all unique classes (Noble, 2006). A different
approach is one-versus-one multiclass classification, where a separate classifier is
trained for each set of paired labels (Noble, 2006). Given N classes, one-versus-one
classification trains N(N−1)

2 classifiers, while one-versus-all classification trains N
classifiers. The one-versus-all paradigm is adopted where applicable throughout
this thesis because of the computational expense of one-versus-one classification
(Rifkin and Klautau, 2004).

Artificial Neural Networks and Deep Learning

Artificial Neural Networks (ANNs) are a computing paradigm that are capable of
learning to perform a task by iteratively considering examples (Patterson, 1998).
The design of ANNs is inspired by the connections between neurons in biological
nervous systems (Basheer and Hajmeer, 2000). Biological nervous systems are
capable of performing extremely complex tasks (e.g. pattern recognition) much
faster than an electronic equivalent. Brains are often thought of as non-linear
highly parallel computers, and the ultimate goal of ANNs is to mimic the processing
capability of a brain (Jain et al., 1996). There are approximately 1011 neurons in
the human brain (Herculano-Houzel, 2009), and each neuron can have thousands
of connections to other neurons called synapses (estimates for the total number of
synapses range from 1014 to 5× 1014 in human adults; Drachman, 2005).

An ANN typically consists of a series of inputs, an input layer, a hidden layer,
and an output layer (see Figure 2.6a; Jain et al., 1996). Each neuron is often fully
connected to forward neurons; and each connection is weighted. Weight values
are summed and passed to an activation function which defines an output that
is passed to the output units (see Figure 2.6b; Jain et al., 1996). A learning
algorithm controls how the weight of each connection is changed in response to
newly presented data. ANN network architecture is varied, but a typical example
is a backpropagated fully connected feed-forward network (see Figure 2.6a), also
known as a multilayer perceptron (Noriega, 2005). Multilayer perceptrons are
capable of approximating any function (Hornik et al., 1989) which makes them well
suited for learning complex biological systems. ANN variants are widely applied
for the purpose of data mining (Liao et al., 2012), including the reconstruction
of regulatory gene networks from time series DNA microarray gene expression
data (Ma and Chan, 2007) and predicting the structure of microbial communities
(Larsen et al., 2012). It is important to note that studying the architecture of
a trained ANN will not provide any insight into the structure of the function
being approximated (they are black box algorithms), which limits their suitability
for knowledge discovery. “White box” algorithms, such as decision trees or rule-
based expert systems, can provide insights into how the model makes a decision
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Figure 2.6: (a) A fully connected feed-forward ANN with a single hidden layer (a
multilayer perceptron). (b) Overview of an artificial neuron model.

(Kononenko, 2001).
Deep learning is a recently developed paradigm that allows computational mod-

els composed of several processing layers to automatically learn the representation
of input data (LeCun et al., 2015). Deep learning has caused breakthrough improve-
ments to the performance of speech to text transcription (Hinton et al., 2012) and
image recognition applications (Krizhevsky et al., 2012). The traditional machine
learning paradigm required manual feature extraction from complex data such as
images (represented as an array of pixel values; Guyon and Elisseeff, 2006). In deep
learning feature extraction can take place over multiple layers, and the final output
of a deep learning algorithm uses a combination of the layers to match objects. The
core concept of deep learning is that the multi-layer feature extraction approach
occurs automatically, with no human feedback, and the feature extractions are
learned from the data (LeCun et al., 2015). A deep learning architecture simply
requires a set of non-linear mappings: most deep learning applications use multi-
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layer perceptrons with many hidden layers. This approach was not computationally
feasible until it was implemented using graphics processing units, which reduced
training times by up to 20 times (Schmidhuber, 2015).

Although deep learning has been widely applied to biomedicine (Mamoshina
et al., 2016) it has not been implemented in this thesis due to the limitations of the
paradigm. Deep learning models are black boxes. It is impossible to understand
complex relationships that are present in biological data using a deep learning
model. In addition, large datasets are a prerequisite for deep learning. Fields where
deep learning excel typically have tens of thousands of examples (e.g. CIFAR-10
has 60,000 examples; Krizhevsky and Hinton, 2009). Training a deep learning
model on a small dataset (microbiome datasets larger than a thousand samples are
rare) could easily lead to overfitting. Other limitations include high computational
costs and the requirement of extremely complex analysis pipelines.

Decision trees

Tree-based methods segment the feature space of predictors into a group of simpler
regions (see Figure 2.7; Safavian and Landgrebe, 1991). Predictions are made by
taking the average (mean or mode) of the training samples that belong to the
predicted region. Trees are simple to implement and it is easy to understand why
a model has assigned a particular output to new data, but generally speaking they
do not perform as well as other models such as ANNs or SVMs (James et al.,
2014). The uncompetitive performance has lead to the development of ensembles
of de-correlated decision trees, called Random Forests, which are described further
in Section 2.3.1 (Breiman, 2001). Decision trees are capable of learning non-linear
classification problems (see Figure 2.8). Building a classification tree consists of
two steps (James et al., 2014):

1. Divide the feature space of predictors (the set of possible values forX1, . . . , Xn)
into J disjoint regions (R1, . . . , RJ)

2. For each observation that falls into region RJ take the average of response
values of training observations in RJ

The process used in the first step to divide the feature space of predictors
is known as recursive binary splitting (James et al., 2014). Recursive binary
splitting is a top-down greedy approach that begins at the top of the tree (where
all observations belong to one region) and greedily splits the feature space with
two new branches. Greedy splitting only considers the current node of the tree,
even if it is theoretically possible to improve the overall tree by changing the splits
at a later stage of the algorithm. The first stage of recursive binary splitting is to
select predictor Xj and cutoff s so that splitting the feature space of predictors
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Figure 2.7: Decision tree fitted to the iris data set (Anderson, 1935) for predicting
the species of a flower. Nodes show the classification, the probability of each class
at that node, and the percentage of observations used at the node.

into the region {X|Xj < s} and {X|Xj ≥ s} reduces the error rate. {X|Xj < s}
describes a feature space region where the value of XJ is less than s. During the
tree-growing process the Gini index is typically used to measure the variance across
K classes (James et al., 2014):

Gini =
K∑
k=1

p̂mk (1− p̂mk) (2.13)

where p̂mk is the proportion of observations in the m-th region from the k-th class.
The Gini index measures the purity of a node because a small Gini index shows
that the majority of samples are assigned to a single class. The process is repeated
to identify the best predictor and best cutoff for splitting the data to minimise
the classification error rate for each putative region, but only one of the regions is
split instead of the entire feature space. The process continues until a breakpoint
is reached, typically a minimum number of observations that must be present in a
node for a split to be attempted (Apté and Weiss, 1997).

As the number of features increases, the tendency for decision trees to overfit
also increases. This is because the tree rapidly becomes very complex. A common
strategy to overcome this limitation is to prune a complex tree to obtain a simpler
subtree (Apté and Weiss, 1997). The subtree will have lower variance at the cost
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Figure 2.8: A two-dimensional two-class classification example. Classes are indicated
by the shaded regions. Linear models fail to model the non-linear decision boundary.

of bias. A common metric for pruning the tree is the classification error rate E,
which is the fraction of training observations of a region that do not belong to the
most common class, and is given by (James et al., 2014):

E = 1−max
k

(p̂mk) (2.14)

Rule-based expert systems

Rule-based systems are one of the simplest forms of CI (Grosan and Abraham,
2011). Rule-based systems use IF-THEN rules to represent and encode knowledge
into a computer system. The rule definitions depend entirely on the task the expert
system is built to do (see Table 2.3). Rule-based systems are capable of encoding
a domain expert’s knowledge and experience of a niche topic into an automated
computer system. Rule-based systems consist of the following elements (Grosan
and Abraham, 2011):

Fact set A collection of data and conditions (i.e. features) that is relevant to the
starting state of the expert system. In the fact headache = yes, headache is
the data and the condition is yes.

Rule set The rule set contains all possible actions that should be taken for a
particular problem. IF relates rules to the fact set, and THEN relates to
actions.

Stopping criterion Once a solution has been found (if one can be found) the
expert system should terminate to avoid infinite loops.
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Table 2.3: Example rule-based system.

Facts
Data Conditions Rules
Influenza diagnosis Premises
headache true, false IF headache true AND
temperature < 38,≥ 38 celsius IF temperature ≥ 38 AND
muscle pain low, medium, high IF muscle pain medium OR

IF muscle pain high
Conclusion
THEN influenza is true

Figure 2.9: Structure of a rule-based expert system.

IF-THEN rules consist of the premise (antecedent) and the conclusion (conse-
quent), and are stored in the knowledge base (see Figure 2.9; Liao, 2005). The
facts which correspond to the IF rules are stored in the database. The inference
engine represents all of the protocols that process the knowledge base to identify
information requested by a user. The explanation facilities analyses the structure
of an answer provided by the expert system to provide an explanation of why the
inference engine has provided particular information. The user interface provides
bidirectional communication between the expert system and a user, which typically
consists of queries and answers provided via a graphical user interface. The devel-
oper interface provides bidirectional communication between the expert system
and a knowledge engineer (a computer scientist that works with a domain expert
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to represent knowledge in the expert system; Grosan and Abraham, 2011).
The key advantage of expert systems is that any decisions made by the system

can be queried and the rationale behind the decision can be provided (Efraim et al.,
2001). In the context of knowledge discovery, the key disadvantage of rule-based
systems is that domain knowledge is not always easily encoded into rules, and that
highly dimensional data causes exponential growth in the number of rules (Liu
et al., 2000). A large number of rules will hinder the computational performance of
an expert system, and make it more difficult to interpret the decision of an expert
system. The combination of rule-based systems with rough sets can simultaneously
solve both problems, via the application of reducts and a process known as rule
induction to automatically extract rules from data.

2.3 Decision and data fusion
It is common in CI to create a strong model from a combination, or ensemble,
of weaker models (Qi, 2012). Ensemble methods reduce some of the main causes
of error for learning algorithms: noise, bias and variance. This approach is most
commonly applied to the output of models, and a wide variety of procedures
are available to tune the process depending on the goals of the model, which
are described in Sections 2.3.1 and 2.3.2. Often a committee is formed from the
combined models, and a vote of the output is tallied. Depending on the process
votes can be weighted or unweighted. There are many different weighting systems:
sensible strategies including linking vote weight to the confidence of a fuzzy or
probabilistic model or to the performance of a model. The tallied votes can be
averaged (for regression) or a simple majority determined (for classification). In
Section 2.3.3 the decision fusion concept is expanded to combine the weak output
of multiple feature selectors in order to find a subset of strong and stable features
that can be used to fit a model.

A number of reasons have been proposed for an ensemble of weaker models
outperforming single models (Dietterich et al., 2000). The classification problem
might be able to be solved by different but equally optimal hypotheses: an ensemble
reduces the risk that the model makes a decision that uses a non-optimal hypothesis.
The hypothesis space is expanded by using multiple models, and a single model is
unable to represent the true function. Ensembles reduce the risk that a model will
get stuck in local optima, which can give a better approximation of the function
being learned.

The same idea can be applied to combine the input of models. Consider the
following classification problem: a model is trying to classify the genre of a song
from a music video. The video data have three different modalities: the sequence
of video frames, the audio file, and the lyrics encoded as subtitles (for karaoke
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fans). The modalities are visual, audio, and textual, respectively. It is likely
that the predictive performance of the model will be improved by combining the
three different types of data. This approach is useful for many different types of
experiment: it is unlikely that a single type of data can be used to model complex
natural phenomena. A naïve approach would be to concatenate the three types
of data into a single input matrix. A more elegant approach is to leverage the
knowledge of the domain experts by combining and weighting the input of each data
type independently known as multimodal data fusion, discussed in Section 2.3.4.

2.3.1 Decision fusion with ensemble multiclassifiers
Bagging and boosting

Bagging, or bootstrap aggregation, is a technique that has been widely applied to
improve many learning models, including decision trees. Given a set of observations
{z1, . . . , zn} with variance σ2, the mean variance is σ2

n
. Hence averaging a set

of observations reduces the variance of a learning model. Having many different
independent training sets is unrealistic for many supervised learning experiments.
Different training sets can instead be built by repeatedly sampling a single data
set with replacement (Bühlmann, 2012; creating B bootstrapped training sets):

f̂bag(x) = 1
B

B∑
b=1

f̂ ∗b(x). (2.15)

where f̂ 1(x), . . . , f̂B(x) is a set of learning models. Although bagging improves the
performance of decision trees it is harder to interpret a bagged model (because
many different models must be simultaneously interpreted). Increasing the number
of bags does not increase the risk of overfitting; it is important to balance bagging
test error and computational complexity when deciding how many bags to use.

The AdaBoost M1 algorithm (Freund and Schapire, 1997) is a popular im-
plementation of the boosting paradigm, which can reduce bias and variance (see
Figure 2.10). Given a two-class classification problem the error rate produced by
classifier G(X) (let X be a vector of input features) on a training sample is (Hastie
et al., 2009):

error = 1
N

N∑
i=1

I(yi 6= G(xi)) (2.16)

Boosting produces a set of weak classifiers G1(x), . . . , GM(x). The output predic-
tions for the set of classifiers are combined through a weighted majority voting
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Figure 2.10: Boosting. Classifiers are trained on weighted samples. The output
of each classifier is combined via weighted majority voting to come to a final
prediction.

scheme (Hastie et al., 2009):

G(x) = sign
( M∑
m=1

αmGm(x)
)

(2.17)

where α1, . . . , αm and classifier weights (Gm(x)) are calculated by the boosting
algorithm. The aim of the process is to give more accurate classifiers higher
weights. At each stage of the boosting process weights w1, . . . , wN are applied
to each training sample. Weights are initialised to wi = 1/N (unweighted). For
each stage of the boosting process m = 1, . . . ,M the weights are modified and the
classifier is reapplied to the weighted samples. Samples that were missclassified
by classifier Gm−1(x) have their weights increased, and correctly classified samples
have their weights decreased. Thus samples that are difficult to classify become
more important and each classifier in the sequence is focused on these examples.

Random Forests

Random Forests are an ensemble of decorrelated decision trees (Qi, 2012). The
decorrelation procedure involves a small adjustment to recursive binary splitting.
At each split point a random sample of n features is taken, and the splitting
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procedure is only permitted to consider features present in the n feature subset
(typically n ≈

√
f , where f is the total number of features). By preventing the

model from considering the majority of available features the decorrelation process
prevents a single dominant feature or group of strong features from creating very
similar decision trees across the bags. The benefits of bagging are inhibited for
strongly correlated decision trees (variance reduction). It is important to note that
if n = f then there is no difference between a random forest model and standard
bagged decision trees. Random Forests do not require cross-validation to estimate
their generalisation ability (Qi, 2012). When each tree in a Random Forest is
generated from different bootstrap samples, approximately a third of samples are
left out of and not used to construct a tree. By predicting the class of each unused
sample for each tree and calculating the proportion of misclassification errors the
“out of bag” error can be estimated.

Random Forests have the ability to measure the importance of features, which
is particularly useful for embedded feature selection (Díaz-Uriarte and De Andres,
2006). For each tree in a forest each “out of bag” sample can be predicted and the
number of votes for the correct class summed. After the value for each feature m
in each out of bag sample is randomly permuted and fresh predictions are made,
an error rate can be estimated by subtracting the number of correct votes in the
permuted data from the number of correct votes in the original data. The average
of the error rate across all trees is called the raw importance score for feature m. By
measuring the importance score of all features a ranked list of important features
can be assembled.

2.3.2 Decision fusion with ensemble hybrid methods
In ensemble hybrid methods different types of models are combined to form a
new system, which will be referred to as a meta-model. This is in contrast to
ensemble multiclassifier method, in which the same model is repeatedly applied to
different data resamples. There is a variety of strategies for implementing a hybrid
meta-model, but they fall into two broad categories (Woźniak et al., 2014). The
most popular is parallel hybrid fusion, in which a meta-model combines multiple
models working on the same classification problem. Serial hybrid fusion implements
different types of models on different classification problems. This attempts to
decompose complex problems into a series of solvable modules (Woźniak et al.,
2014). Consider the following classification problem: determining the presence
and subtype of a complex disease. Traditionally multi-class classification would be
conducted (e.g. absent, subtype1, . . . , subtypen). An alternative approach would
be to be decompose the classification problem into two steps: determining dis-
ease presence (two-class classification) and determining the subtype of the disease
(multi-class classification). This is particularly useful for complex diseases, where
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different models might perform better on different problems due to the inherent
properties of the model. For example, a linear SVM might perform well on highly
dimensional data on one classification problem. Multilayer perceptrons can approx-
imate any function, including non-linear classification problems. A neural network
could perform better on less highly dimensional data for a different classification
problem. According to the no free lunch theorem, there is no universally best
classification model (Wolpert, 2002). Serial decision fusion permits decomposing
complex problems into a series of easier steps.

2.3.3 Aggregating Ensemble feature selection
Feature selection is particularly useful for knowledge discovery from high-dimensional
datasets. Domain experts will be interested in investigating a ranked list of features
in a top-down iterative fashion to gain new insights into the problem that the model
is attempting to learn. When knowledge discovery is a priority, an important aspect
of feature selection to consider is the robustness of a feature selection algorithm.
The stability of a feature selection algorithm is defined as the variation in feature
subset output caused by small changes to input data (Saeys et al., 2008). Small
changes can occur at the instance level (e.g. adding or removing a sample) or the
feature level (e.g. by adding noise). For example, an unstable feature selection
algorithm can return a completely different subset of features if an instance is
removed from a dataset. Domain experts will have more confidence in stable feature
subsets, as further analysis is usually costly (particularly for biological data).

The robustness of a feature selection algorithm can be estimated via a similarity
based approach. By resampling a dataset and repeatedly performing a pairwise
comparison of the feature selection algorithms output, a global similarity measure
can be calculated. The outputs of a robust feature selection algorithm to resampled
data will be more similar compared to the outputs of a weak feature selection
algorithm, and the similarity measure will be higher. A global similarity measure
can be defined as (Saeys et al., 2008):

Sglobal =
∑k
i=1

∑k
j=i+1 S (Fi, Fj)
k (k − 1) (2.18)

where fi is the output of a feature selection algorithm applied to resample i (k
resamples total) and S(fi, fj) is the similarity measure between fi and fj. Once
a robust feature selector has been selected a consensus based approach is used
to combine the output of an ensemble of chosen selectors into a final list which
is is useful for validation purposes. The resampling, comparison, and consensus
paradigm is known as ensemble feature selection (Saeys et al., 2008) - the rationale
of which stems from ensemble learning (where multiple models can be combined to
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perform better than a single model). It is important to note that a single Random
Forest model qualifies as a type of non-aggregating ensemble feature selection
(EFS), because the final feature ranking is derived from analysing an ensemble of
decision trees.

Robustness must always be considered in tandem with classification performance,
so the output of feature selection algorithms must be paired with a classification
model in order to evaluate the EFS strategy. This requirement means that embedded
feature selectors have an advantage over filter and wrapper methods, as they combine
feature selection and classification during training (they are less computationally
expensive). A method to automatically balance robustness and classification
performance is required when evaluating a consensus based EFS strategy. A
variation of the F-measure - the harmonic mean between specificity and sensitivity
(Vickery, 1979) - called the robustness-performance trade off (RPT) has been
proposed (Saeys et al., 2008):

RPTβ = (β2 + 1)RP
β2R + P

(2.19)

where R is the robustness (measured by a chosen similarity measure (Spearman
rank correlation coefficient for ranked features in this thesis), P is the performance
of the classifier (accuracy), and β is a parameter that balances the importance of
robustness versus performance (typically 1 by default to give equal importance to
robustness versus performance).

2.3.4 Multimodal classification
Multimodal data fusion is defined as the analysis of several data sets such that
different data sets can interact and inform each other (Lahat et al., 2015). In many
scientific fields information about a phenomenon can be recorded from different
types of sensors, across multiple experiments, and in different conditions. Each
of these different recording methods is referred to as a modality. Multimodality
is particularly important for biological data because a single modality will rarely
provide complete knowledge about a complex system. The motivation for multi-
modal data fusion lies in its ability to deliver a holistic model of a complex system
and its ability to improve decision making (Lahat et al., 2015). Multimodal data
fusion has been applied to the task of developing non-invasive diagnosis techniques.
Multimodal prediction was used to identify patients that would progress from mild
cognitive impairment to Alzheimer’s disease with an accuracy of 73% (Ritter et al.,
2015). The data modalities were diverse, including medical history (e.g. exami-
nations, demographic, and neuro-physical tests), imaging data (e.g. MRI or PET
scans), and laboratory data (e.g. cerebrospinal fluid examinations). Multimodal
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classification is applied to enable holistic modelling of the oral microbiota and host
to predict depression from the oral microbiome in Chapter 5.

2.4 Applications to stratified medicine
The rate of biological information gathering has increased massively over the
past several decades. This has been driven by a wide variety of fields, including
but not limited to, genome sequencing, protein expression, gene expression data,
and metagenomics. CI algorithms are regularly combined with biological data
for both bioinformatics and computational biology applications (Hassanien et al.,
2008). Biological data are often imprecise and incomplete, which can violate
the assumptions of standard statistical models; CI models have minimal prior
assumptions (Lahat et al., 2015). A CI framework such as Rough Set Theory (RST)
can handle uncertainty, vagueness, and missing data (Petit et al., 2014).

The goal of bioinformatics is to build software tools and methods to understand
biological data (i.e. an engineering approach), while the goal of computational
biology is to understand biological systems via the application of computational
methods (often using bioinformatics tools). This thesis is concerned with using
computational biology and CI techniques for the application of stratified medicine
specifically. Stratified medicine has a variety of definitions, and can be split into
two categories (Schleidgen et al., 2013):

• a holistic approach centred around individual patients;

• targeting treatment at specific population subgroups (e.g. based on the
presence or absence of a particular gene).

The goal of stratified medicine is to identify the best treatment for each indi-
vidual patient to maximise the benefit of treatment and to minimise any harmful
side effects. Current non-stratified practice in medicine means that polypharmacy,
the use of multiple treatments which can lead to the administration of more medi-
cations than are clinically required, is extremely common in the elderly population
(Hajjar et al., 2007). Polypharmacy causes negative health outcomes, and stratified
medicine is an approach that can mitigate this problem.

This section will review applications of CI to a wide variety of different types
of data for the purpose of dimensionality reduction and data mining in stratified
medicine. Using different types of information to reach a decision is a widely used
approach in stratified medicine applications, as information gathered by a single
method will rarely be able to completely describe complex biological systems or
phenomena. A multimodal information fusion paradigm can be implemented with
many CI techniques. Multimodal data are widely present in many fields such as
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medical imaging, remote sensing, speech recognition, and omics (e.g. genomics,
metabolomics, metagenomics etc.). Both multimodal and single mode approaches
are discussed below.

Rough set theory has been widely applied for feature selection and knowledge
discovery from complex biological data for stratified medicine purposes. Knowledge
discovery with rough sets typically involves rule induction from discretised data,
which enables easily interpretable descriptions of complex biological data. Domain
experts are often more interested in understanding how the features are used by the
model to predict a condition rather than solely optimising the predictive power of a
model. Applications include describing artery damage after cannulation, analysing
drug-induced changes to gene expression data, and the prediction of various cancers
from gene expression data, described below. Rough set theory has been combined
with an inductive learning approach to automatically acquire knowledge for an
expert system (Azar et al., 2015). The expert system aimed to model artery
damage that arose after cannulation of the radial and dorsalis pedis arteries from a
set of clinical attributes in 46 patients (Azar et al., 2015). Rough set theory has
been applied to gene expression data for the purpose of analysing drug-induced
changes to gene expression profiles (Petit et al., 2014). The expression profiles of
17 genes were recorded for a variety of different drugs which were thought to cause
phospholipidosis (the accumulation of phospholipids in tissue). The process was
used to generate descriptive rules (not predictive: not enough data were present to
independently test the predictive power of the rules).

Rough set classifiers have been used to identify a subset of biomarkers from
gene expression data that can classify gastric carcinomas (Nørsett et al., 2004).
The expression of 2504 genes was measured in tumour biopsies from 17 patients;
a bootstrap t-test was used to identify a subset of differentially abundant genes
(between 10 – 40). Rules were induced from the discretised (e.g. low, medium, or
high expression) subset of differentially abundant genes for a variety of different
classification tasks (e.g. growth patterns, remote metastastis, etc.). A cross-
validated Area Under the Receiver Operating Characteristic (AUROC) of between
0.66 – 1.00 was reported for the six different classification problems. Due to the small
size of the dataset the classifiers were validated by comparing the performance
of the normal classifier against 2000 classifiers with randomly permuted class
labels with a bootstrap t-test. Three of the classifiers were statistically significant
(p < 0.05) and are likely to generalise well. A combination of rough sets and
decision trees have been used to predict the location of the primary tumour in
metastatic adenocarcinoma (Dennis et al., 2005) from the expression profiles of 27
genes. Identifying the site of the primary tumour is important to guide care and
to improve the patient’s prognosis. On unseen data the decision trees performed
extremely well, with an accuracy of 88% for the prediction of seven different



2.4. APPLICATIONS TO STRATIFIED MEDICINE 33

primary tumour sites. The common rationale for applying rough sets to biological
data lies in their ability to identify minimal feature sets (reducts) and generate
human-interpretable rules from linguistic variables (discretised data). Additionally,
the concept of approximation is useful for dealing with noisy data (biological data
are often noisy). However, rough sets can only deal with discretised feature values -
continuous feature values are common in the real world and in some circumstances it
is preferable to use continuous values instead of linguistic variables. The limitations
of rough sets are often overcome by combining rough set theory with other CI
methodologies, such as evolutionary computing or fuzzy logic, described below.

Evolutionary rough sets have been used for feature selection (Banerjee et
al., 2007). As mentioned previously, multiple reducts exist for any rough set.
Identifying reducts is a nondeterministic polynomial time hard problem (NP-hard,
brute forcing would take an unreasonably long time; Skowron and Rauszer, 1992),
and some approaches have applied heuristics to find an optimal reduct for feature
selection purposes because of this (Zhong et al., 2001). Genetic algorithms provide
an alternative efficient search technique that works well in large solution spaces,
based on the theory of evolution (Kumar et al., 2010). A multiobjective genetic
algorithm has been applied to identify a reduct of minimal genes that can be used
to predict cancer from DNA microarray data (Banerjee et al., 2007). The fitness
functions evaluated the size of a reduct and the number of object combinations the
reduct could discern. The classification performance of the reducts was found to
outperform the classification performance features derived from PCA with a k-NN
classifier. The authors proposed that the core of the reducts (the intersection of
reduct features) could be useful for future experimental work by biologists.

Fuzzy rough sets have been used for feature selection for tumour classification
(Dai and Xu, 2013). Crisp rough sets cannot represent continuous data. Gene
expression data are usually continuous, and must be discretised before they can
be input to a rough set. Fuzzy rough sets combine vagueness (fuzzy set theory)
and indiscernability (rough set theory) into a single framework. Dai and Xu
introduced the gain ratio, a metric popular for growing decision trees, into fuzzy
rough theory and developed a feature selection algorithm utilising the gain ratio.
The classification accuracy of a colon cancer dataset processed with the fuzzy
rough feature selection protocol was higher compared with standard crisp rough
set alternatives (Dai and Xu, 2013).

Feature selection algorithms are a standard preprocessing step in a knowledge
discovery pipeline, and so they are widely applied to complex biological data.
Feature selectors applied to Inflammatory Bowel Disease (IBD) (the topic of
Chapter 4) are described below. Filter methods have been applied for the purpose
of knowledge discovery in IBD on gene expression (Wei et al., 2013) and proteomic
(Chen et al., 2009) data. Wrapper methods have been applied to imaging (Schüffler
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et al., 2013) and spectroscopy (Bezabeh et al., 2009) data. Embedded feature
selection is widely applied to biological data because it offers a good balance
between computational complexity and performance, including for IBD classification
from metagenomic data (Tong et al., 2013; Papa et al., 2012). Benchmarks on
metagenomic data sets have shown that embedded feature selectors offer the best
overall performance (Statnikov et al., 2013). The feature selection tasks included
identifying body habitats (e.g. skin or faeces), psoriasis, and gastrointestinal
disorders such as reflux esophagitis from the microbial community present in
samples. Aggregating EFS has been applied for the purpose of knowledge discovery
from DNA microarray and mass spectrometry datasets (Saeys et al., 2008) for
the purpose of cancer classification. Aggregating EFS combines the output of
multiple feature selection algorithms into a single consensus list of a feature subset
to improve knowledge discovery.

2.5 Summary
CI is a critical tool for the purpose of knowledge discovery from complex biological
data. It enables comprehensive searches through large amounts of imprecise and
noisy data for hidden information, and has been widely applied to biological data
sets. However, the application of CI to microbiome census data — 16S marker gene
survey data gathered from environmental samples that can describe the structure
and composition of microbial communities, described further in the next chapter —
has been limited to standard supervised learning algorithms and feature selectors
to date. Although these tools are invaluable for analysing such complex data, other
approaches such as ensemble hybrid methods, rough set theory, fuzzy set theory,
and ANNs are yet to be applied.

Aggregating EFS is a process that improves knowledge discovery by increasing
the confidence domain experts can have in the output of a feature selector. Aggre-
gating EFS results in a final consensus feature ranking by merging the decisions
of a group of feature selectors. Minor changes to the input of a feature selector
can cause large changes to the output of typical feature selectors. This is for a
variety of reasons: the stability of the feature selector output is not a key target of
standard feature selectors, and multiple different feature subsets can be equally
optimal for a given classification problem. The community of microorganisms that
live on humans — the human microbiome, described in Chapter 3 — is highly
variable across individuals. Data that describe the microbiome are often noisy
and imprecise. Feature selection in metagenomics has neglected the concept of
feature stability or robustness, which aggregating feature selection has been shown
to improve (Saeys et al., 2008).

Multimodal classification is applied to many domains such as robotics or image
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processing. While multimodal classification has been applied to medical and
biological data, its application to metagenomic data is sparse. The systems captured
in biological data are immensely complex and dynamic: a single measuring paradigm
will rarely be able to capture all of the information about a phenomenon. The
microbiome does not exist in isolation: constant interactions are present between
the host (e.g. the human) and microbiota. The use of multimodal classification
could introduce the ability to holistically model the microbiome for the first time.

Rough set theory provides a suite of useful concepts that are invaluable for
knowledge discovery from complex data but has not to date been applied to
metagenomic data. Reducts can be used to remove redundant or irrelevant features
from biological data. In bioinformatics and computational biology feature selection
is almost always a prerequisite for model building due to the dimensionality of the
data being studied (Saeys et al., 2007). The concept of boundary regions is useful
as Aristotelian logic is not capable of representing health meaningfully: health is
not the absence of disease (Torres and Nieto, 2006). The use of IF-THEN rules in
rough decision systems enables transparency, which is paramount for knowledge
discovery from complex biological data.

The following three chapters will apply CI algorithms on metagenomic data for
knowledge discovery about human diseases. Chapter 4 will focus on IBD, as many
public data sets are available and it is a key research topic regarding the effect of
the human microbiome on health. Aggregating EFS will be applied to metagenomic
data for the purpose of knowledge discovery and to aid the development of a
non-invasive diagnostic test — IBD must currently be diagnosed via invasive
colonoscopy. Chapter 5 explores the human oral microbiome for links to depression.
A range of microbial ecology techniques are applied to the data that describe
the first documented changes to the oral microbiome in a depressed cohort. A
multimodal classification algorithm that enables the holistic modelling of the oral
microbiome to predict depression. Finally, Chapter 6 applies rough set theory
to metagenomic datasets collected from a depressed cohort to remove irrelevant
features and transparently describes the microbial community dynamics present in
the gut and mouth. These three chapters will outline the novel contributions this
thesis brings to the knowledge base.
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the microbiome gut-brain axis

Tell me what you eat, and I will
tell you what you are.

Jean Anthelme
Brillat-Savarin

3.1 Introduction
This chapter provides a review of research regarding the human microbiome, the
role it plays in disease, and the applications of computational intelligence in
microbiome research. Microbiome research has shown that complex interactions
between microbes and various host processes (e.g. the immune system) can drive
disease in the host, even if the microbes present are not pathogenic per se (an
overview of this phenomenon is provided in Section 3.2). An outline of the general
stages of a microbiome experiment is provided in Section 3.3 (see Figure 3.2),
and methods for generating microbiome count data are reviewed in depth. The
problems introduced by clustering sequences with a global similarity threshold
are noted, and alternative denoising strategies discussed. Section 3.4 gives a brief
overview of the application of computational intelligence to microbiome research, an
underexplored area to date. In Section 3.5 the chapter concludes with a summary
of findings from the literature and an overview of the deficiencies in microbiome
knowledge and protocols that are addressed in this thesis.

3.2 The role of the microbiome in disease
Many different microbial communities exist throughout the human body. The
complete collection of taxa (a taxon is a group of bacteria considered to be a single
unit) present in a microbial community is known as the microbiota; the microbiome
includes the collective genomes of the microbiota (Human Microbiome Project
Consortium, 2012). The rapid increase in publications reporting on the analysis
of microbial communities that inhabit the human body has led to some confusion
in terminology. The terms microbiota, microbiome, and metagenome are often
used interchangeably. For consistency, the term microbiome will be used instead
of the term microbiota. Below are some definitions of terms commonly used in
microbiome research:
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Metagenomics: The functional and sequence-based analysis of the collective
microbial genomes contained in an environmental sample (Riesenfeld et al.,
2004)

Metagenome: The collection of host genetic content and all microbiomes present
(Brüls and Weissenbach, 2011)

Human microbiome: The bacteria, archaea, viruses, and eukaryotic microbes
(and their collective genomes) that exist throughout the human body (Shreiner
et al., 2015)

Gut flora: Synonymous with the gastrointestinal microbiome. Flora can be used
to describe other microbiomes (e.g. oral flora).

3.2.1 How does the microbiome influence disease?
There is some disagreement about when bacteria first colonise human foetuses, but
the womb is traditionally thought to be sterile (Morgan and Huttenhower, 2012).
During and after birth every body surface is colonised by microbes via a variety
of processes. This includes bacteria, archaea, fungi, and viruses. The microbiome
provides key functions for the host, such as nutrient metabolism (Kamada et al.,
2013) and helping to educate and develop the host immune system (Hooper et al.,
2012). Many microbes in the microbiome provide no benefit directly, but their
presence can prevent the development of pathogenic microbes. The members of
a microbial community in a healthy host exist in a state of constant competition
(Coyte et al., 2015). Although disease can be associated with low diversity and the
dominance of specific bacterial clades it is important to note that high diversity
is not always healthy; highly diverse communities are not inherently superior to
simpler communities (Shade, 2017).

Some of the earliest work in microbiome research found different patterns in
the gut microbiome in conditions such as obesity (Turnbaugh et al., 2006) and
Inflammatory Bowel Disease (IBD) (Elson et al., 2005). The Human Microbiome
Project (Turnbaugh et al., 2007) was launched in 2008 to identify and characterise
microbes that live in healthy and diseased humans. The MetaHIT project was
also launched in 2008, with a particular focus on obesity and IBD (MetaHIT
Consortium, 2011). The following subsections focus on IBD and depression, which
are explored throughout this thesis. IBD data was used as a starting point to
develop bioinformatics software pipelines, as most public human microbiomic data
was gathered from IBD and control (healthy) subjects. Depression was investigated
in collaboration with the Northern Ireland Centre for Stratified Medicine. Possible
links between depression and the microbiome are numerous and well-documented
(described below) but the area remains underexplored.
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3.2.2 The gastrointestinal microbiome and Inflammatory
Bowel Disease

The microbiota that reside in the gastrointestinal tract represent a complex and
diverse microbial community (Bäckhed et al., 2005). Although the microbiota
provide key beneficial functions for the host, the presence of a large microbial
community in close proximity to the host provides a constant challenge for the
immune system. A healthy gut immune system can tolerate the normal microbiome
(Brown et al., 2013), and maintains homeostasis of the microbial communities
by containing the microbiota to the the lumen and outer mucus layers of the
gut (Johansson et al., 2008). A dense sterile inner mucus layer that contains
antimicrobial peptides is responsible for segregating the microbiota from intestinal
epithelial cells (Vaishnava et al., 2011).

IBD is a group of disorders that cause persistent inflammation of the gut.
IBD caused 53,000 deaths worldwide in 2013 and its prevalence is increasing
(Molodecky et al., 2012). Urbanisation has been linked with autoimmune diseases,
including IBD (Zuo et al., 2018), and IBD is a growing problem in many parts
of Asia, the Middle East, and South America (Zhao et al., 2013; Ng et al., 2013).
IBD is an umbrella term that covers both crohn’s disease (CD) and ulcerative
colitis (UC). For many years the aetiology of IBD was poorly understood, as
the disease is characterised by unpredictable periods of active inflammation and
remission. Responses to treatment are also unpredictable, with some patients not
responding to steroid treatments, and a proportion requiring surgical removal of
badly affected sections of the gut (Vester-Andersen et al., 2014). This caused
speculation that a decrease in the diversity and changes to the composition of the
intestinal microbiome, known as dysbiosis, could contribute to the development
of the disease (Tamboli et al., 2004). A number of cross-sectional studies have
confirmed that dysbiosis of the intestinal microbiome is present in patients with
IBD during disease onset (before treatment; Gevers et al., 2014), or after IBD has
been diagnosed in a clinical setting (Sokol et al., 2008; Willing et al., 2008; Papa
et al., 2012; Tong et al., 2013). It has been recently shown that dysbiosis of the gut
microbiota precedes the onset of colitis-induced inflammation in mice (Glymenaki
et al., 2017). The aetiology of IBD is thought to involve complex interactions
between the gut microbiome, the environment, the host immune system, and the
host genome (Wallace et al., 2014). It is thought that a genetic susceptibility for a
dysregulated mucosal immune system causes a larger than normal immunological
response to the gut microbiome in some patients. This response can cause shifts in
the composition of the bacterial community, further increasing the immunological
response from the mucosal immune system (Prosberg et al., 2016).
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3.2.3 The microbiome and depression
Depressive disorders are a broad collection of mental health disorders associated
with a range of emotional, physical, cognitive, and behavioural symptoms. Depres-
sion is typically characterised by a loss of enjoyment in ordinary life and low mood
(National Collaborating Centre for Mental Health, 2010). Alongside severity, per-
sistence must also be taken into account when characterising depression; typically
changes must last at least two weeks. Changes can be episodic in nature. Stratify-
ing depressed subjects into different categories of depression can be particularly
challenging. It is important to note that the subtypes proposed below are only
based on symptomatic differences (see Table 3.1); there is limited evidence to date
that suggests different underlying diseases are the cause.

Table 3.1: Major depressive disorder specifiers (i.e. subtypes) (American Psychiatric
Association et al., 2013).

Depression features Main features
Anxious Excessive restlessness or fear
Mixed Changes that occur in a person’s behaviour that

appear to be exaggerated or boastful (e.g. inflated
self-esteem, very talkative)

Chronic MDD diagnosed for at least two years
Melancholic Anhedonia, early morning awakening, loss of ap-

petite, excessive guilt
Catatonia Unusual movements or behaviours such as persis-

tent immobility or mutism
Atypical Weight gain, hypersomnia, mood reactivity
Peripartum onset Develops before or close to childbirth, extreme

mood fluctuations and excessive concern over their
child’s wellbeing

Seasonal pattern Depressive patterns coincidence with specific sea-
sons (e.g. onset of winter)

In this thesis the term depression refers to the specific mental disorder major
depressive disorder (MDD), also known as clinical depression (depression can be
used to refer to a simple state of low mood). Subjects with depression often
have a comorbid physical or psychiatric diagnosis (Brown et al., 2001). For
example, postnatal depression is associated with childbirth, and vascular depression
is associated with the elderly (Sneed and Culang-Reinlieb, 2011). In England
1 in 6 adults reported experiencing common mental health problems, including
anxiety and depression (McManus et al., 2016). In England 3.3% of adults reported
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having a depressive episode in the last week in the 2014 adult psychiatric morbidity
survey (McManus et al., 2016). The prevalence of depression has been found to
be consistently higher in women (Waraich et al., 2004). Depressive disorders were
ranked as the fourth leading cause of burden in 1990 across the world. In 2000 this
increased to the third leading cause of burden. By 2010 depressive disorders were
the second leading cause of disease burden globally (Ferrari et al., 2013), with 8.5%
of total years lived with disability being attributed to depression.

Depression is diagnosed by general practitioners using measures in line with
Diagnostic and Statistical Manual of Mental Disorders (DSM) criteria (American
Psychiatric Association et al., 2013). Diagnosis relies on self-reported symptoms
and clinical judgement. Subjective criteria (e.g. the Hamilton depression rating
scale; Hamilton, 1960) are used to empirically identify depression and measure the
severity of depression during treatment. Subjective criteria are the only methods in
clinical practice for diagnosing depression, and no diagnostic tests are currently used
(e.g. a blood test). The criteria consists of a series of questions about the symptoms
of the interviewee in line with DSM diagnostic criteria. These questions can include
emotional state (e.g. suicidal tendencies), insomnia, psychomotor retardation, and
weight loss. Each question has responses ranked according to severity (e.g. 0 =
no symptoms, 3 = severe symptoms). The responses are summed; increased score
correlates with increased severity. The Hamilton depression scale was originally
developed to test the efficacy of first-generation antidepressants in the 1950s; it has
been proposed that the Hamilton depression scale is unfit for purpose and should
be rejected entirely, to be replaced with a new diagnostic paradigm (Bagby et al.,
2004).

A non-subjective diagnostic test for depression would be invaluable, improving
speed of diagnosis and first round response to treatment. Relying on subjective
criteria for diagnosis contributes to the heterogenity that characterises depression.
Misdiagnosis or slow diagnosis has serious consequences for patients. For example,
antidepressant drug treatments are not effective for bipolar disorder (BD) subjects.
Treatment outcomes are worse for patients that are misdiagnosed with depression
and subsequently correctly diagnosed after several episodes of illness (Swann et al.,
1999). The response rate for depression patients to first rounds of pharmacalogical
interventions is around 30% (Trivedi et al., 2006). Non-responders are cycled
through different types and classes of drugs until a response is apparent. Each
cycle can last up to 12 weeks (Papakostas et al., 2008), prolonging impairment or
even exacerbating the condition. Pharmacalogical interventions remain the fastest
and most effective way of treating the most severe forms of depression (Kirsch
et al., 2008).

Depression has a complex aetiology. The first antidepressants were found
by chance, approximately 65 years ago. Iproniazid, an irreversible monoamine
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(a) (b) (c)

Figure 3.1: Monoamine hypothesis of depression. (a): A healthy synapse. (b): A
depressed synapse. (c): Treated depressed synapse. Derived from “Schematic of a
synapse” by Thomas Splettstoesser, distributed under a CC BY-SA 4.0 license.

oxidase inhibitor, was originally used to treat tuberculosis but was found to cause
patients to become “inappropriately happy” (López-Muñoz and Alamo, 2009). It
was found that the first antidepressant drugs had a similar mechanism of action:
they increased the concentration of monoamine neurotransmitters serotonin and
noradrenaline in the brain (first observed in extracellular brain fluid, see Figure 3.1).
The increased concentration was caused by decreased catabolism (breakdown:
the opposite of anabolism) and decreased re-uptake in the postsynaptic neuron
(Castrén, 2005). This is now known as the monoamine hypothesis of mood disorders,
and the idea of a chemical imbalance in the brain causing depression has been
generally accepted across the field and general public (Deacon and Baird, 2009).
According to the monoamine hypothesis of depression in a healthy brain monoamine
neurotransmitters are secreted and bind to receptors on the postsynaptic neuron;
reuptake of neurotransmitters by transporters ends the transmission (see Figure 3.1a;
Hirschfeld, 2000). In a depressed brain a mood disorder is produced by the low
concentration of monoamine neurotransmitters (see Figure 3.1b). Blocking of
the re-uptake transporters by antidepressant drugs increases the concentration
of monoamine neurotransmitters to treat depression (see Figure 3.1c). However,
the monoamine hypothesis has many inconsistencies: drugs such as reserpine
which deplete monoamine neurotransmitters cannot induce depression in healthy
subjects, despite many claims to the contrary (Baumeister et al., 2003). It is
important to note that brains treated with antidepressant drugs do not return to
normal. A cohort of healthy and formerly depressed (in remission after successful
antidepressant treatment) subjects were given 200mg dopamine D2/D3 receptor
antagonist sulpiride. In healthy subjects, there was no change in mood, while in
formerly depressed subjects profound depression quickly returned (Willner et al.,
2005).

https://creativecommons.org/licenses/by-sa/4.0/deed.en
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It is common sense that chronic stress can manifest as disease; it is less easy to
explain how. Stress is persistently accompanied by poor health: it can quadruple
the chance of an adverse medical outcome (Sandberg et al., 2004), and accelerate
the progression of chronic conditions such as coronary heart disease (Smith et al.,
2005). A potential mechanism that explains the biological manifestation of stress
is the hypothalamic-pituitary-adrenocortical (HPA) axis. The axis is activated by
the secretion of corticotropin-releasing hormone (CRH) by the hypothalamus. The
pituitary gland will secrete adrenocorticotropin hormone (ACTH) in response to
an CRH signal. In turn, the adrenal glands will secrete cortisol in response to a
ACTH signal. Cortisol is an extremely important hormone: it can affect the central
nervous system (including learning and emotion), the metabolic system (glycogen
regulation), and the immune system via inflammatory regulation (Sapolsky et al.,
2000). Dysfunction of the HPA axis is one of the most consistent markers of
depression (Molcrani et al., 1997). Antidepressants have been found to normalise
HPA axis function, via mechanisms of action that are independent of monoamine
re-uptake inhibition (Willner et al., 2013). A thorough review of current theories
about the pathophysiology of depression is outside the scope of this thesis, but
many are available in the literature (Castrén, 2005; Shyn and Hamilton, 2010;
Hodes et al., 2015).

A comprehensive review found that no biological markers for depression are
available for inclusion in diagnostic criteria (Mössner et al., 2007). Neurotrophic
factors (Shimizu et al., 2003), biochemical markers (Heuser et al., 1994), neu-
roimaging markers (Kempton et al., 2011), immunological markers (Maes et al.,
1995), and neurophysiological tests (Gangadhar et al., 1993) were considered for
inclusion. While the proposed markers significantly differ between healthy controls
and depression patients, the tests lack sensitivity, specificity, or reproducibility.
Recently discovered biomarkers show promise for specific subgroups of patients
with severe depression. In severely depressed adolescent males, elevated morning
cortisol acts as a biomarker (Owens et al., 2014). Brain glucose metabolism can
be used as a predictive biomarker (McGrath et al., 2013), successfully guiding
intervention strategies (response to psychological intervention vs pharmacological
intervention). Recent work in mice has shown that the administration of bacterial
probiotics can act as an antidepressant (Lactobacillus rhamnosus JB-1 ) or induce
anxiety (Campylobacter jejuni; Foster and Neufeld, 2013). This raises several
questions: if the microbiome can influence the mind and behaviour, what are the
mechanisms behind the phenomenon? Could beneficial bacteria be used clinically
as a psychobiotic treatment for mental health disorders? Could differences in the
microbiome be used to diagnose depression? It is likely that a combination of factors
will determine predisposition to depression, both genetic (including epigenetic and
microbiomic) and environmental (life stresses and exposures).
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IBD and depression are both diseases with heterogenous diagnosis, treatment,
and outcomes. IBD symptoms are non-specific - primarily abdominal pain is
reported - and a colonoscopy is required to confirmation. Diagnosis is often delayed
in paediatric patients because of the invasive nature of the colonoscopy procedure,
which can impact the child’s development (e.g. stunted growth). In the first
contribution of this thesis subsets of microbial markers are identified with ensemble
feature selection that can accurately identify IBD with up to 97% accuracy in a
large paediatric cohort. In future work this approach could be adapted to develop a
highly accurate non-invasive test for IBD that would significantly decrease the time
to diagnosis, improving patient outcomes. Diagnosing depression relies on subjective
criteria rather than diagnostic tests. Misdiagnosis of depression is widespread,
lowering response rates to antidepressant drugs. In the second contribution of this
thesis an Artificial Neural Network (ANN) is used to diagnose depression with high
accuracy from microbiome count data. Clinical validation of this approach could
improve treatment outcomes by increasing the response rate to antidepressant
drugs. Potential mechanisms that may explain how the microbiome could influence
depression are explained below.

3.2.4 The gut-brain axis communication
Bidirectional communication between the gut and the brain was identified by
many scientists in the 19th century, including Charles Darwin (Darwin, 1872).
A well known example of this communication is the frequent co-occurrence of
hunger and anger: low blood glucose has been associated with aggression in
married couples (Bushman et al., 2014). This concept was dubbed the “gut-
brain axis”. The concept has been extended to include the microbiome after
new evidence that bidirectional communication occurs at all levels - with several
distinct mechanisms - between the microbiome, gut, and brain. The methods of
communication include neural, metabolic, and immune pathways (El Aidy et al.,
2015). The microbiome-gut-brain axis has been implicated in the aetiology of
depression via altered neurotransmitter signalling, hypothalamic-pituitary-adrenal
(HPA) axis modulation, and inflammation (Cryan and Dinan, 2012; Foster et al.,
2017).

The intestinal microbiome produces many important neurotransmitters present
in the human brain (Lyte, 2013; Lyte, 2014). Neurotransmitters are chemical
messengers, distinct from hormones, that enable communication across the central
nervous system. The abundance of serotonin precursors in the blood has been
shown to be increased by Bifidobacteria. Serotonin is directly synthesised by many
genera, including Streptococcus and Escheridia. Dopamine and acetylcholine are
produced by Bacillus and Lactobacillus, respectively. Gamma-aminobutyric acid is
produced by Lactobacilli. Lactobacilli have also been shown to alter the expression
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of gamma-aminobutyric acid receptors present in the brain (Bravo et al., 2011).
However, although the neurotransmitters are capable of crossing from the intestine
into the blood stream (it is not certain if they do), most are thought to act locally,
modulating the nervous system present in the gut (the enteric nervous system).
The blood brain barrier, a membrane that separates circulating blood from brain
extracellular fluid (Tran, 2011), is highly selective and thought to prevent any
neurotransmitters crossing from the blood to the brain. Instead, the secreted
neurotransmitters are thought to indirectly affect the brain by interacting with the
enteric nervous system.

Metabolic communication is thought to occur between the intestinal microbiome
and the brain primarily via the secretion of short chain fatty acids such as butyrate
and propionate (Stilling et al., 2014). Short chain fatty acids are byproducts of
microbial metabolism, but are epigenetic modulators via the action of histone
deacetylases. Epigenetic modulation relates to the modification of gene expression
via processes that are unrelated to DNA sequence modifications. Variation in the
methylation of DNA alters gene expression, and the changes in methylation states
are heritable (epigenetic traits). An epigenetic trait is defined as “stably heritable
phenotype resulting from changes in a chromosome without alterations in the DNA
sequence” (Berger et al., 2009). It has been proposed that the synthesis of genes
in brain cells could be altered via the epigenetic effects of short chain fatty acids,
altering host behaviour, as short chain fatty acids can freely pass through the blood
brain barrier (Stilling et al., 2014). The modified gene synthesis could then cause
changes in behaviour.

Cytokine molecules have been shown to enable communication between the
intestinal microbiome and the brain via immune signalling (El Aidy et al., 2014).
Although it is unlikely that cytokines are capable of crossing the blood brain barrier,
the barrier is not perfect. Certain areas of the brain (circumventricular organs;
Fry and Ferguson, 2007) are not protected in order to allow chemical signals to be
sent from the brain to the rest of the body, such as the median eminence of the
hypothalamus. Cytokines such as interleukin-1 and interleukin-6 are thought to
activate the HPA axis, which releases cortisol. Increased concentrations of cortisol
occur after a psychological stressor is introduced to depressed subjects (Burke et al.,
2005).

Inflammation concomitant with the onset of depression may lead to a dysfunc-
tional intestinal epithelium barrier (“leaky gut”) due to the opening of intercellular
tight junctions (Kelly et al., 2015). The translocation of bacterial cells, bacterial
byproducts, and inflammatory mediators across the leaky gut is thought to drive a
chronic pro-inflammatory state and subsequently activates the HPA axis (Kelly
et al., 2016). The bacterial products and inflammatory components can cross the
blood brain barrier and initiate a central inflammatory response via the activation
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of microglia cells (the primary immune cells of the central nervous system; Yir-
miya et al., 2015). Repeated modification of microglial cells causes chronic brain
inflammation, which is thought to play a role in the structural and functional brain
alterations associated with mental health disorders (Stein et al., 2017).

3.3 Counting the uncountable
Bacteria are omnipresent across the surface of the earth. By extension, bacteria are
ubiquitous on the surface of organisms which live on earth, having been exposed
to the surface of the earth during their life. It should be noted that the surface
epithelium that forms the gastrointestinal and respiratory tracts is, despite being
inside the body, actually an exterior surface (i.e. equivalent to skin). Bacteria are
very small - Escherichia coli cells are on average 2 µm long - and very numerous.
An estimated 3.8 × 1013 bacterial cells reside in the human body (which weigh
around 0.2 kilograms; Sender et al., 2016). This is larger than the total number
of human cells present (3.0× 1013). How can we count and catalogue such a vast
number of bacteria? This section will discuss this process. Identifying the specific
sequence of nucleotides present in a DNA molecule is a complex procedure and only
briefly discussed. Detailed discussion regarding sample collection and sequencing
strategies is available in the literature, and references are provided below. The
focus of this section is on identifying ecologically unmixed units of bacteria from
DNA sequence fragments and the processes that ensure that generated sequence
counts are accurate.

3.3.1 What is a bacterial species?
Schoolchildren are taught that organisms of the same species can interbreed to
produce fertile offspring. Unfortunately bacteria do not have sex, which complicates
matters considerably (Cohan, 2002). When Carl Linnaeus began assigning plants
into groups with binomial nomenclature in the Species Plantarum, he used simple
physical characteristics such as the structure of stamen to do so. Viewed under a
microscope, the majority of microbes resemble colourless blobs. Stains and dyes can
be used to differentiate microbes, but the most widely used classification systems
use carbohydrate utilisation tests and other biochemical methods (Goodfellow et al.,
1997). Molecular systematics uses differences in the structural composition of DNA
to group and determine the evolutionary relationships of bacteria (Blaxter, 2003).
The majority of bacterial species in a complex community cannot be identified
or grouped from their physical and chemical characteristics alone (Blaxter, 2003).
The magnitude of microbial diversity has only been realised since the application
of molecular systematics to environmental samples (Lynch and Neufeld, 2015).
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Figure 3.2: Broad overview of stages of a microbiome experiment

Molecular systematics help to measure differences between organisms, but it
does not explain how to group them. Standard cutoff points of similarity have been
adopted by the scientific community. When two organisms are found to be at least
between 97% and 99% similar (Huse et al., 2010), they are considered to be the
same species. If this approach was adopted for macroscopic organisms humans could
be grouped with chimpanzees as a single species (via original estimates of 98.5%
DNA similarity; Hoyer et al., 1972). This blunt approach has clear limitations, but
is a significant improvement over phenotypic methods. However, there is no unified
species concept for bacteria (Doolittle and Zhaxybayeva, 2009), and taxonomic
units defined by similarity thresholds are theoretical constructs.

3.3.2 A computer scientist’s illustrated primer
This subsection provides a high-level overview of DNA sequencing, which is a
crucial stage for any microbiome experiment (see Figure 3.2). DNA is a molecule
that carries the blueprints for growth, development, and reproduction in all living
organisms (Hunter, 1993). The majority of DNA is made of two polynucleotide
strands joined in a double helix structure (see Figure 3.3(b)). Nucleotides are
the monomer unit for nucleic acid polymers (i.e. nucleotides are building blocks:
DNA strands are made from lots of nucleotides joined together; Sadava et al.,
2009). Nucleotides are made up of a nitrogenous base - the term base is often used
as a synonym for nucleotide - a five-carbon sugar (ribose or deoxyribose), and a
phosphate group (see Figure 3.3(a)). There are four possible types of nitrogenous
base in DNA: adenine, cytosine, guanine, and thymine (Sadava et al., 2009).
Nucleotides are joined together by covalent bonds between the five-carbon sugar of
one nucleotide and the phosphate group of the next nucleotide (this is called the
“sugar phosphate backbone”). The nitrogenous bases of two complementary DNA
strands can form hydrogen bonds according to base-pairing rules. When Crick and
Watson discovered the structure of DNA in 1953 they identified base pairing rules:
adenine bonds with thymine, and cytosine bonds with guanine (Watson, Crick
et al., 1953). The two complementary DNA strands are antiparallel.

DNA sequencing is a process that measures the precise order of nucleotides in
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(a) (b)

Figure 3.3: (a) “Chemical Structure of DNA” by Madeleine Price Ball, licensed
under CC-0. (b) DNA structure, derived from the diagram “DNA simple” in the
public domain.

a DNA molecule (Sadava et al., 2009). The chemistry behind DNA sequencing
can be very different depending on the paradigm used, but many rely on detecting
millions of fluorescently labelled short DNA fragments in parallel (Glenn, 2011).
Other approaches include ion semiconductor chip based sequencing (Merriman
et al., 2012) and nanopore sequencing (Mikheyev and Tin, 2014). Throughout this
thesis the sequencing data analysed are generated from “sequencing by synthesis”
light-based methods such as pyrosequencing or paired-end Illumina sequencing as
they are ideal for detecting microbes from environmental samples (Roesch et al.,
2007; Fadrosh et al., 2014). Sequencing by synthesis will be described at a high
level below. More detailed descriptions are available in the literature (Fadrosh
et al., 2014).

The first step of sequencing by synthesis is sample preparation (also known as
library preparation; Quail et al., 2008). DNA must first be broken into shorter
fragments approximately 200-800 base pairs long by chemical (e.g. enzymatic
degradation) or physical (e.g. sonication) means. Adapter sequences are then
attached to the ends of the double stranded fragmented DNA, which are synthetic
oligonucleotides (short DNA molecules) that enable the sequencing process to take
place (see Figure 3.4(a)). After the adapters are attached, the double stranded DNA
is denatured (separated) into single stranded DNA with heat (Meyer and Kircher,
2010). The single stranded DNA molecules are known as templates. The second

https://creativecommons.org/publicdomain/zero/1.0/legalcode
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(a) (b)

Figure 3.4: (a) Sample preparation. (b) Cluster generation.

step is cluster generation, where the adapter sequence present on the templates
causes the templates to stick to a flow cell, which is a glass plate with separate lanes.
Many samples can be sequenced on the same lane because of the unique sample-
specific barcodes present in the adapter regions (Quail et al., 2008). The templates
that are tethered to the flow cell are clonally amplified via bridge polymerase chain
reaction (many copies are simultaneously made; see Figure 3.4(b)).

Sequencing the flow cells that now contain millions of DNA fragments is simple:
by synthesising a copy of the DNA fragments with fluorescently labelled nucleotides
the precise order of nucleotides in the DNA fragments can be determined (Meyer
and Kircher, 2010). The first base of the DNA fragments is determined by exciting
the flow cell with a laser and recording a high resolution image. Each type of
labelled nucleotide will fluoresce at a different wavelength and intensity (Mardis,
2008). By repeating this sequencing cycle the second nucleotide for all DNA
fragments can be determined and so on until the entire DNA fragment has been
recorded. If 200 nucleotide long DNA fragments are being sequenced then 200
images will be recorded. The images are processed to generate colour spectra
for every pixel for every nucleotide position, called a chromatogram. Each pixel
represents a different DNA fragment read, and each image represents a different
nucleotide position (see Figure 3.5(a)). Sequencing is not a perfect process - as
shown by the blurring of the flow cell in Figure 3.5(a) and overlapping signals in the
chromatogram in Figure 3.5(b) - and it is necessary to interpret the chromatogram
to determine which nucleotide is present at each position in the sequence. The
process of converting information that measures the wavelength and intensity of
fluorescing nucleotides to a text-based format that represents sequencing data
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(a) (b)

Figure 3.5: (a) Example image of fluorescently labelled nucleotides on a flow cell,
derived from “Microarray and sequencing flow cell” by Thomas Shafee, licensed
under CC-BY-4.0. (b) Chromatogram derived from “Chromatogram” by Tom
David, in the public domain.

is known as base calling (Ledergerber and Dessimoz, 2011). In many genomics
applications the short DNA reads are often aligned to reference genomes and joined
into a single contiguous sequence. When identifying microbes from environmental
samples this is not usually done: instead the raw reads are used as input for a
variety of clustering (Navas-Molina et al., 2013), or denoising algorithms (Rosen
et al., 2012), discussed further in Sections 3.3.5 and 3.3.6.

3.3.3 From samples to sequences
Proper sampling is the foundation of any microbiome experiment. The most
stunning analysis will be undermined by poor quality data. Samples must be
identified, collected, and their DNA extracted (IHMS Consortium, 2015a). Good
clinical practice is important while sampling human body sites to ensure that the
samples accurately reflect the true bacterial composition present in an environment.
It is also important to remember where the samples actually originated, as sampling
strategies can introduce subtle differences into microbiome census data. For
example, the classification accuracy of a Random Forest machine learning algorithm
significantly improved with microbiome count data derived from intestinal biopsy
versus data derived from a faecal sample, despite both representing the intestinal
microbiome (Gevers et al., 2014). While planning a microbiome experiment a
balance must be achieved between cohort size and the invasiveness of the sampling
procedure. It may be infeasible to biopsy hundreds of subjects, and recruitment
may be more difficult with invasive procedures such as colonoscopy. A thorough
review of sampling protocols is outside the scope of this thesis, but many are

https://creativecommons.org/licenses/by/4.0/deed.en


3.3. COUNTING THE UNCOUNTABLE 51

widely available in the literature (Aagaard et al., 2013; Sinha et al., 2016; IHMS
Consortium, 2015a).

Once a sample has been collected the DNA present must be extracted for
sequencing. The purity and quantity of DNA must be sufficient, or the sequencing
process may fail or produce poor quality data. In brief, the membrane of the
bacterial cells must be broken apart (lysed) while preserving the fragile DNA inside
(IHMS Consortium, 2015b). Lysis methods can be physical, chemical, or mechanical
(or a combination of the three). The DNA must then be separated from the cell
remnants, which can contain enzymes which damage the fragile DNA, and stored
in a stable environment. A thorough review of DNA extraction protocols is outside
the scope of this thesis, but many are available in the literature (Bag et al., 2016;
IHMS Consortium, 2015b). After the DNA has been extracted, it is sequenced (see
section 3.3.2) for further analysis.

It is important to understand why, when attempting to determine the amount
and number of microbes present in an environmental sample, sequencing microbial
DNA is preferred over other methods. Historically, culture-dependent assays were
used to determine the types of microbes present in a sample. For example: a patient
presents to a doctor with a green and fuzzy wound. How would the doctor discover
if pathogenic bacteria were present in the wound? An environmental sample would
be taken from the wound (e.g. with a swab) and placed in an controlled nutrient-
rich environment (a culture). This would promote rapid microbial growth. If no
microbes were present then it can be said that the patient does not have a bacterial
infection. If any microbes have grown on the media, identification can be attempted
via stains, microscopy, and many other biochemical methods such as carbohydrate
utilisation tests.

There are numerous problems with this approach which led to the development
of culture-independent assays (Hugenholtz et al., 1998). The largest problem is that
the majority of microbial life cannot be cultured (Breznak, 2002). This was first
discovered when a difference was found between the number of bacteria observed
via microscopy and the number of bacteria grown in a laboratory culture. The
difference was several orders of magnitude in size, and was dubbed “The Great
Plate Count Anomaly” (Staley and Konopka, 1985). Unculturable bacteria are
unculturable because we lack the scientific understanding to create environments in
which they can thrive (Stewart, 2012). Traditional growth media aim to provide a
never-ending feast for bacteria. Only a small proportion of the microbial population
are capable of taking advantage of the provided feast; the majority are limited by
other factors (e.g. missing nutrients, dormancy, or competition). Thus, a culture-
dependent assay will identify relatively few members of the original microbial
community. Culture-dependent assays can only rarely be considered to be truly
representative of the microbial population present in an environmental sample.
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The other problem with culture-dependent assays is the process of actually
distinguishing one bacterial species from another bacterial species. As described
earlier in Section 3.3.1, the majority of bacteria resemble colourless blobs. In
2008 only 7,000 bacterial species were described (Achtman and Wagner, 2008),
while in 2009 around one million valid species of insect were catalogued (Resh and
Cardé, 2009). Estimates of the number of bacterial species range from hundreds of
thousands to tens of millions. The discrepancy stems from a combination of the
two problems described above. Bacteria must firstly be able to be distinguished
from other bacterial species. This is usually tested via a battery of physical and
chemical tests (e.g. high proteolytic activity, breaks down glucose, etc.). This
process is difficult, and putative bacterial species must also be cultured in order to
be recorded as a valid species. Culture-independent assays have begun to identify
vast amounts of previously hidden bacterial diversity: the number of bacterial
phyla has expanded from 11 in 1987 to at least 85 in 2012, the majority of which
have no cultured representative species (Stewart, 2012). The number and variety
of species present in a single phylum is vast - humans and sea squirts are in the
same phylum (Chordata).

One example of a culture-independent assay is a marker gene survey, which
requires a small section of microbial DNA to be sequenced (Tringe and Hugenholtz,
2008). Another example of a culture-independent assay is sequencing all microbial
DNA present in a sample with metagenomic shotgun sequencing (Tringe and
Rubin, 2005). This thesis uses data derived from marker gene surveys in all
of the contributions, as metagenomic shotgun sequencing is infeasible for most
laboratories due to its economic and computational expense. The gene encoding
16S ribosomal ribonucleic acid (16S rRNA) is often used as a universal marker gene
(see Figure 3.6), because it has a number of interesting properties:

• The 16S rRNA gene is ubiquitous across all bacteria and archaea;

• The 16S rRNA gene is approximately 1500 nucleotides in length, which is
short enough to be feasibly analysed;

• The gene sequence is highly conserved (similar across species) in some areas,
allowing the comparison of distantly related species (Woese and Fox, 1977);

• In other areas the sequence is hypervariable, allowing the comparison of very
closely related species (Clarridge, 2004);

• Some areas are completely conserved, which has aided the development of
universal primers and protocols (Caporaso et al., 2011);

• Horizontal gene transfer - a process in which genetic material is shared
between organisms and distinct from vertical gene transfer (i.e. parent to
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Figure 3.6: The hypervariable regions of 16S rRNA, which is around 1500 nucleotides
long. The 314F and 806R primers are used for sequencing in Chapter 5.

child) - is thought not to occur in the 16S rRNA gene, ensuring that sequenced
16S rRNA genes originate from a specific bacterial cell (Jain et al., 1999).

A primer is a short strand of DNA (around 20 nucleotides long) that acts as a
starting point for DNA synthesis (Sadava et al., 2009). Primers are designed to be
complementary to specific target regions of DNA. Once bound to the targeted region
DNA, DNA polymerase tethers itself to the primer and incorporates nucleotides
complementary to the antisense DNA strand, generating a copy of the targeted
DNA region (Sadava et al., 2009). Many popular sequencing technologies cannot
sequence the entire length of the 16S rRNA gene. Instead, the various hypervariable
regions are used to provide species-specific DNA signatures. These signatures can be
used to create a bacterial census from a marker gene survey. Different hypervariable
regions offer different levels of specificity and sensitivity for detecting distinct
bacterial species. The V3 — V4, V4 only, or V4 — V6 regions are widely used
(Yang et al., 2016).

In high-throughput sequencing a large number of samples are processed simul-
taneously via multiplex sequencing (Wong et al., 2013). Each sample is assigned
an individual “barcode” sequence. The barcodes allow the reads to be separated
and sorted after sequencing. Barcodes are attached to the sequences of interest
with polymerase chain reaction (PCR), described below. By increasing the number
of samples that can be processed simultaneously, multiplexing makes sequencing
much more cost-effective than it otherwise would be by reducing time and reagent
use (Wong et al., 2013). This has also helped to make the process of sequencing
environmental samples, which have very large amounts of DNA present, more
cost-effective.

Universal primers have been designed and made widely available (Caporaso
et al., 2011) that bind to the conserved regions of the 16S rRNA gene that are near
the hypervariable regions of interest. The primers are used to make many copies
of 16S rRNA fragments present in environmental samples via a process known as
the PCR. PCR was invented by Kary Mullis in 1983 (Mullis, 1990), for which he
was awarded the 1993 Nobel Prize in Chemistry. From a single 16S rRNA gene
millions of fragments can be created via a form of molecular photocopying that uses
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Figure 3.7: Paired end sequencing. Derived from templates by Library of Science
and Medicine Illustrations, licensed under CC BY-NC-SA 4.0.

deoxynucleoside triphosphates (dNTPs) as building blocks. This copying process is
used because DNA sequencing machines require input sequences to be of a certain
length, purity, and concentration in order to work well.

Specific sequencing strategies are required to perform 16S rRNA marker gene
surveys effectively. The Illumina MiSeq platform is commonly used for 16S marker
gene surveys (Bartram et al., 2011). The platform can generate up to 250 base
paired-end reads (Quail et al., 2012). Paired-end reads add an extra layer of error
correction, which is a key advantage for the algorithms that identify microbes from
16S data. Partially overlapped paired end sequencing increases sequencing error
because error correction is reduced (see Figure 3.7; Kozich et al., 2013). Up to
384 samples can be processed simultaneously, generating over 24 million discrete
reads. Sequencing data are typically recorded in a text-based format that stores
a biological sequence and the corresponding quality metadata called the FASTQ
format. The quality of a base call is measured by the quality value Q, which is
given by (Cock et al., 2009):

Qphred = −10 log10 p (3.1)

Where p is the probability that the corresponding base call is incorrect. A
common default cutoff for Qphred is approximately 13, which approximately corre-
sponds to p < 0.05 (see Figure 3.8; Cock et al., 2009). However, considering the
millions of bases called during a full sequencing run this is extremely lenient. The
algorithms that estimate a base call probability are proprietary, and are kept secret
by manufacturers.

3.3.4 Noise and bias
Ideally a table of sequence counts should reflect the true composition of the microbial
community present in a sample. Unfortunately biology is a chaotic business. One
of the largest challenges while generating accurate microbiome count data is noise.
Noise is defined as “random fluctuations that obscure or do not contain meaningful
data or other information” (OED Online 2017). Noise in microbiome census
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3.3. COUNTING THE UNCOUNTABLE 55

Figure 3.8: Relationship between the probability that a base call was correct (p)
and the quality index of the base call (Q), see Equation 3.1. The dashed vertical
red line indicates p = 0.05 (Q ≈ 13).

data can be broadly separated into two categories: biological noise and technical
noise. Biological noise is noise introduced by stochastic biological processes, and
technical noise is noise introduced by the measuring processes that occur while
taking a microbial census (Callahan et al., 2016b). Specific strategies can be used
to minimise or correct noise (denoise), discussed below.

Biological noise

Microbes can have multiple slightly different copies of the 16S rRNA operon
(intragenomic variation; Coenye and Vandamme, 2003). An operon is a unit of
DNA containing a cluster of genes controlled by a single promoter (Sadava et al.,
2009). Sequence fragments of the operon copies could appear to be from different
species despite originating from the same cell. This has been known to affect species
identification even during sequence clustering if the sequence fragments are different
enough to not meet the 97% similarity criterion (Sacchi et al., 2002). It should be
noted that this is distinct from the phenomenon of copy-number variation. The
number of 16S rRNA operons can differ significantly across different species. This
variance is driven by different ecological strategies (Klappenbach et al., 2000): a
high number of 16S rRNA operons is associated with rapid growth (copiotrophs),
and a low number of operons is associated with slow growth (oligotrophs). A
frequent species in raw microbiome count data could represent a high-copy number
taxon of low abundance, or vice versa. Microbiome count data can be adjusted
to account for this: public databases of 16S copy numbers exist (Stoddard et al.,
2015). Incorporating this information into microbiome count data analysis has
been found to improve diversity and composition estimates (Kembel et al., 2012).
Despite this, the adjustment is not a common step in microbiome pipelines.

In some cases the entire 16S sequence can be identical across multiple different
species. The 1,412 nucleotide sequence of nearly the entire 16S rRNA gene was
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found to be identical across six species in the Brucella genus (Gee et al., 2004).
Despite the ease of differentiating Brucella species - most members of the genus
were first characterised around the start of the 20th century (Moreno and Moriyón,
2002) and each species infects a different type of host - by a quirk of evolution
its 16S sequence remains identical across the genus. This may hold true for other
uncharacterised genera. However, technical noise - described below - is by far the
largest contributor of systemic bias to microbiome count data.

Technical noise

Bacteria are very hard to kill: in environments which would rapidly kill complex
multicellular life, bacteria can happily thrive. The composition of the bacterial cell
wall contributes to this toughness. During DNA extraction the goal is to isolate
DNA from the cell remnants while preserving the fragile DNA. It has been found
that differences in the composition of the cell wall can cause bacterial lysis to be
more or less efficient (Carrigg et al., 2007). The composition of the bacterial cell
wall differs between microbes. Some bacterial species are easily lysed, while others
are extremely resistant. This will introduce a systematic bias in the apparent
composition of the microbial community: stubborn bugs will appear to be less
abundant.

The process of copying 16S gene fragments with PCR prior to sequencing can
introduce many different types of bias. Primer-template mismatches have been
found to introduce quantitative biases (Parada et al., 2015). Primer-template
mismatches are exacerbated by the popularity of universal primers. The abundance
of microbes with 16S gene sequences that do not perfectly match (even by a single
base) universal primers will be underestimated, as fewer copies will be made. This
can simultaneously overestimate the abundance of bacterial taxa that do match the
primers perfectly. The only way to detect this kind of bias is to combine domain
expertise with in silico and mock community validation of primer pairs. The PCR
copying process is not perfect: artificial base changes can be introduced (Brodin
et al., 2013), which will inflate the number of unique sequences to be analysed
(also confounding diversity and composition metrics). Attempts to denoise PCR
amplicons (sequence copies) with proof-reading enzymes have been successful, but
the number of chimeras (described below) is significantly increased (Schnell et al.,
2015).

The Chimera was a fire-breathing hybrid monster from Greek mythology. It
was formed from different parts of multiple creatures, and seeing a Chimera was
an omen for disaster (Vogel, 2015). PCR chimeras are also an omen for disaster in
microbiome experiments if they are not reduced, identified, and removed. PCR
chimeras are sequences formed when two or more biological sequences join together
(see Figure 3.9). Although the total number of chimeric reads overall is very low
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Figure 3.9: Chimera formation. The chimera would appear as a novel organism in
downstream analysis unless removed. Derived from “PCR ssDNA” by Library of
Science and Medicine Illustrations, licensed under CC BY-NC-SA 4.0.

the clustering stages of downstream analyses cause the chimeric reads to have a
much larger impact. If chimeric sequences are not identified and removed then they
will often appear as rare or novel bacteria, although the chimeric sequence is a
combination of two or more other organisms. Chimeras are believed to form when
DNA polymerase incompletely synthesises the new sequence during the extension
stage of PCR (Smyth et al., 2010). The partially synthesised DNA sequences bind
to different templates with similar sequences. This new sequence can then act as a
primer that is extended to create a chimeric sequence.

Tag switching chimeras are an important chimera variant. If amplicons from
different samples are pooled during sequencing (multiplexed) tag switching can
occur. A key assumption of the multiplexing process is that amplicons can be
correctly assigned to the samples from which they originated. If this assumption is
violated false positive observations will occur during later analysis. Tag switching
occurs when amplicons are copied during PCR. The barcode sections of amplicons
can be incorrectly copied, and if faulty sequences match barcodes already used for
other samples then amplicons will be misattributed to a different sample (Schnell
et al., 2015). A study found between 2.1% and 2.6% of reads were found to have
tag combinations (Schnell et al., 2015).

Sequencing error is a major source of noise in a microbiome experiment (Kozich
et al., 2013). Sequencing error falls into three main categories: insertions, deletions,
and substitutions. Insertions and deletions occur when a nucleotide is added or
removed but a nucleotide is not actually present. A substitution occurs when a
nucleotide is mistaken for another nucleotide (e.g. A is present but T is called).
Illumina platforms are most commonly affected by substitution miscalls (Schirmer
et al., 2015). A useful way to measure sequencing error is to co-sequence a sample
with known proportions of bacteria (or more commonly genomic DNA that simulate
a number of bacterial species) while sequencing other samples (Bokulich et al.,

https://creativecommons.org/licenses/by-nc-sa/4.0/
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2016). The sequenced data are processed through a bioinformatics pipeline, and
the number of bacterial species identified is compared to the known quantity of
bacteria present in the sample. From this process, the error rate of a sequencing run
can be measured. A control sample that consists of a known mixture of microbial
cells that mimics a metagenomic sample is known as a mock community. Mock
communities are commonly used to benchmark different metagenomic pipelines
against each other (Bokulich et al., 2016).

It is common for the number of identified bacteria to be in excess of the amount
actually present in the sample (Callahan et al., 2016a). Sequencing error will
introduce low abundance unique sequences to the pool of measured sequences. A
sequence that is only one or two nucleotides different from another sequence can be
treated as a different bacterial species by downstream algorithms. Additionally, the
introduction of false novelty increases the difficulty of removing chimeras. A mothur
(bioinformatics software for microbial ecology) standard operating protocol (Kozich
et al., 2013; Schloss et al., 2009) reports that 31 bacterial species were observed
from a mock community of 20 control species. This is equivalent to a sequencing
error rate of 6.5× 10−5%, which is the lowest reported in the literature. A more
typical sequencing error of an Illumina MiSeq sequencing machine, without steps
taken to minimise sequencing error, is a rate of between approximately 0.1-0.8%
(Glenn, 2011; Quail et al., 2012).

3.3.5 From sequences to clusters
An operational taxonomic unit (OTU) was originally defined as the group of
organisms currently being studied (Sokal and Sneath, 1963). The term OTU is
now used to describe clusters of bacteria that have been grouped together via
the relative similarity of specific marker genes (e.g. 16S rRNA). Matching OTU
clusters to traditional taxonomy (e.g. mapping OTU 4 to Bacillus subtilis) is a
difficult task. Practically, OTUs are considered to be analogous to a bacterial
“species”, although an OTU can represent any taxonomic level or may not resolve
to any known taxonomy (e.g. uncharacterised microbes). The nomenclature has
become popular due to the difficulties in defining what exactly a bacterial species
is. Broadly speaking three paradigms are popular for identifying OTU clusters:
phylotyping, de novo, and open-reference clustering. A clustering approach with
hard similarity thresholds was first adopted in an attempt to counteract noise
introduced from sequencing error (Amir et al., 2017).

Phylotyping

The phylotyping approach matches sequences to a curated taxonomic database
(Stocker et al., 2011). Matches are binned into “phylotypes” at different taxonomic
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ranks via similarity score thresholds. The key advantages of the process are its
relative insensitivity to sequencing error and its computational efficiency (hundreds
of samples can be processed on a laptop; Rideout et al., 2014). However, this is
a side effect of the poor resolution that phylotyping offers: genus is the lowest
taxonomic rank that phylotyping can assign a sequence to. Other methods can
identify species, subspecies, and even specific sequence variants (Callahan et al.,
2016a). Noise introduced from sequencing error is only reduced because phylotyping
cannot detect it.

Many reference databases are a work in progress, and if a sequence cannot be
matched against the reference it is discarded. Phylotyping can only measure what
is already known (i.e what has already been characterised in a reference database).
Rare or previously unknown organisms missed by phylotyping will affect every
aspect of analysis (e.g. diversity estimates or differential abundance tests). Different
environments are characterised at varying levels. The human gut is reasonably
well characterised, as much work has been done to understand what a healthy
human gut is (MetaHIT Consortium, 2011; Aagaard et al., 2013). Phylotyping a
sample gathered from a rainforest floor would probably result in the vast majority
of sequences being discarded.

During the phylotyping process sequences are not compared with one another.
Instead, because sequences are compared only with the reference database, two
dissimilar sequences can be binned into the same phylotype (Westcott and Schloss,
2015). For example, two sequences can match to a reference at 97% similarity but
only be 94% similar to each other (see Figure 3.10). Furthermore, the sequences
present in the reference database must be least 3% dissimilar to other reference
sequences over the entire length of the gene (Westcott and Schloss, 2015). It
is important to realise that phylotyping only considers gene fragments of the
hypervariable regions, which have been shown to evolve at a different rate to the
rest of the gene (Kim et al., 2011). Therefore the gene fragment sequences being
phylotyped can be at least 97% similar to multiple reference sequences, despite the
references being 3% dissimilar to one another over the full length of the 16S rRNA
gene.

De novo clustering

Distance-based (Schloss and Westcott, 2011) or de novo (Navas-Molina et al., 2013;
from the Latin for “of new”) clustering uses the distance between sequences to
cluster sequences into OTUs. As all sequences must be compared to one another
at runtime, the computational complexity of de novo clustering algorithms scales
approximately quadratically with the number of input sequences. It has been
shown that nearly all unique sequences arise from sequencing error (Kozich et al.,
2013). The inflated number of unique sequences significantly increases the memory
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97% similar︷ ︸︸ ︷
Reference CCCCTGTATTAGGGATGCGGG 80
Sequence_1 CCCCTGTATTAAAAATGCGGG 80

97% similar︷ ︸︸ ︷
Reference CCCCTGTATTAGGGATGCGGG 80
Sequence_2 CCCCTGTATTAGGGATAGAGG 80

94% similar︷ ︸︸ ︷
Sequence_1 CCCCTGTATTAAAAATGCGGG 80
Sequence_2 CCCCTGTATTAGGGATAGAGG 80

Figure 3.10: Sequences are binned into phylotypes via comparison to a taxonomic
reference database but not to each other.

and time requirements of de novo clustering. A de novo clustering algorithm
must be paired with specific noise reducing sequencing strategies, as mentioned
in Section 3.3.3, in order to minimise sequencing error: doubling the number
of sequences causes a four-fold increase in runtime. A key strength of de novo
clustering is its independence from reference databases for the clustering process
(reference databases are still required to assign human-readable taxonomy to an
OTU). An unresolved problem with de novo algorithms is that they are sensitive
to the input order of sequences (Mahé et al., 2014).

Heuristics which incorporate a pre-clustering strategy offer an alternative to
the necessity of specific sequence strategies and strict quality control. USEARCH
and VSEARCH are two microbial ecology bioinformatics software packages that
implement two heuristic approaches including distance-based greedy clustering and
abundance-based greedy clustering (Edgar, 2010; He et al., 2015). VSEARCH is an
open source alternative to USEARCH (Rognes et al., 2016). A wide variety of de
novo clustering algorithms are available, including single linkage, complete linkage,
average linkage, heuristic-based, and Swarm (Schloss et al., 2009; Rognes et al.,
2016; Mahé et al., 2014). A thorough explanation of these algorithms is available
in Westcott and Schloss (2015).

Open-reference clustering

Open-reference clustering is a hybrid approach, created by the developers of
Quantitative Insights Into Microbial Ecology (QIIME), that can scale to up to
billions of input sequences (Rideout et al., 2014). Sequences are firstly binned into
phylotypes. A small proportion (0.3% by default) of the unmatched sequences
are then clustered via de novo methods. The motivation behind open-reference
clustering is to improve scalability while maintaining consistency versus OTUs
generated by other methods. Although this approach is supposed to combine the
strengths of phylotyping and de novo clustering while minimising the weaknesses,
serious problems have been found with the algorithm (Westcott and Schloss, 2015).
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Approximately ten thousand false positive OTUs were picked with open-reference
clustering from a mock community composed of twenty species (Kopylova et al.,
2016). The quality of OTUs picked by QIIME, one of the most popular microbiome
workflows (cited over 7,000 times on Google scholar to date), has been called into
question because of this.

Performance summary

Quantifying the performance of an OTU clustering algorithm is difficult and many
different metrics have been used. Some focus on scalability (Rideout et al., 2014;
Mahé et al., 2014). While this is a good metric for assessing the performance of a
clustering algorithm in isolation, this is unsuitable for measuring the quality of the
clustering output (i.e. do the picked OTUs reflect the true bacterial community
present?). Some early work tried to compare picked OTUs to simulated data drawn
from bacterial taxonomies (White et al., 2010). This approach is flawed: taxonomic
schemes are created by humans, and are susceptible to many different kinds of
bias (historical problems were described in Section 3.3.3). Comparing the ability of
an OTU picking algorithm to generate OTUs similar to other existing methods
(Rideout et al., 2014) is also a flawed approach: consistency is of limited use if all
the existing approaches generate poor OTUs. A more sensible benchmark is to
sequence a mock community of known organisms and to compare the number of
picked OTUs with the types of organisms that are known to be present (May et al.,
2014; Mahé et al., 2014; Kopylova et al., 2016). Critics of this approach note that
mock communities are overly simplistic, and the techniques that perform best on a
mock community may not transfer to real-world complexity (Westcott and Schloss,
2015). Put simply, pipelines that produce less OTUs are not always better.

Overall, de novo methods are the best approach when clustering sequences into
OTUs. There is no single best de novo clustering algorithm for all datasets: it is
best to assess the performance of the algorithms for new datasets, with a preference
towards open source algorithms to aid reproducible research. Given the myriad of
problems associated with clustering sequences into OTUs, alternative approaches
are appealing. Although similarity thresholds are a computationally convenient
way of mitigating artificial variation introduced by sequencing error, there is a
growing realisation that OTUs may not be ecologically meaningful and may not
represent phylogenetically unmixed units of bacteria. Bypassing the concept of
a similarity threshold is key to overcoming the limitations of the OTU approach.
Recent proposals suggest that the OTU paradigm should be replaced in favour
of denoising strategies that can identify exact sequence variants (Callahan et al.,
2017). Exact sequence variants have consistent labels with intrinsic biological
meaning and are identified without the use of reference databases, which improves
the accuracy, reproducibility, and reusability of microbiome experiments.
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3.3.6 The problem with thresholds
Enforcing hard similarity thresholds can cause picked OTUs to be ecologically
irrelevant. The clustering process can discard informative sequence variation and
can group together ecologically distinct bacteria resulting in a phylogenetically
mixed unit (Shapiro and Polz, 2014). A number of algorithms that avoid using a
hard global similarity threshold have been developed recently. Eren et al. (2013),
defined the process of generating high resolution sequence variants as oligotyping,
which outputs a count of high-resolution OTUs called oligotypes. Oligotypes of
Pelagibacter sampled from Cape Cod that are 99.6% similar were found to have
remarkably different fluctuations with seasonal changes in water temperature (Eren
et al., 2013), demonstrating the benefit of threshold-free approaches.

Threshold-free approaches share a common goal: to report the exact sequences
of gene fragments present in a sample. This avoids the use of arbitrary operational
definitions of bacteria. Despite this common goal, the terminology used to describe
the output of threshold-free approaches varies considerably (see bottom of Table 3.2).
Given that the goal has changed between standard OTU approaches and the new
threshold-free paradigm, it is sensible to avoid the use of OTU terminology to
avoid confusion. dada2 labels exact sequences as amplicon sequence variant (ASV).
The term ASV will be used throughout the thesis for consistency. Aside from
improved resolution, the benefits of using ASV are numerous. ASV labels are
consistent across experiments - the label of a bacterial unit is its exact sequence -
improving reproducibility. De novo OTUs cannot be compared across experiments
as sequences must be clustered simultaneously at run time. This makes large scale
replication studies computationally infeasible. ASV labels have intrinsic biological
meaning, and are identified without using reference databases.The computational
costs of generating ASV typically scale linearly with the number of input sequences.
Due to these benefits it has been proposed to replace the use of OTUs with ASVs
across the field (Callahan et al., 2017). The methods of generating high-resolution
amplicon data are diverse, and a full review of every algorithm is outside the
scope of this thesis. The dada2 software package is used throughout this thesis
to generate microbiome count data, and is discussed in detail in Section 4.2 (see
Figure 3.11).
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Table 3.2: Summary of algorithms that assign gene fragments a label. Blank spaces indicate repeating information.

Package Algorithm Output Goal Reference
mothur phylotype Phylotypes Match sequences to reference

database
Schloss et al., 2009

QIIME uclust (closed) Caporaso et al., 2010;
Edgar, 2010

mothur Neighbour joining OTUs Cluster sequences indepen-
dently of reference database

Schloss et al., 2009

QIIME uclust (open) Pick OTUs consistently; scale
to billions of sequences

Caporaso et al., 2010;
Edgar, 2010

USEARCH uclust (de novo) Cluster independently; use
heuristics to improve perfor-
mance

Caporaso et al., 2010;
Edgar, 2010

CD-HIT Suite CD-HIT-OTU Huang et al., 2010
USEARCH UPARSE Heuristic clustering with fewer

false positive OTUs
Edgar, 2013

VSEARCH VSEARCH Heuristic open source alterna-
tive to USEARCH

Rognes et al., 2016

swarm swarm Heuristic local threshold clus-
tering resilient to input order

Mahé et al., 2014

mothur opticlust Improve performance by opti-
mising the Matthews correla-
tion coefficient

Westcott and Schloss,
2017

oligotyping MED Oligotypes Report exact sequences Eren et al., 2013; Eren et
al., 2015

dada2 DADA ASV Callahan et al., 2016a
USEARCH UNOISE2 zOTU Edgar, 2016
deblur deblur subOTUs Amir et al., 2017
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Figure 3.11: Circles represent sets of identical sequence reads. Colours represent
the true biological sequences present in the sample. OTU methods cluster similar
reads together to counteract sequencing error. dada2 infers the exact sequence
variants truly present in the sample. Adapted from supplement of Callahan et al.
(2016a).

3.3.7 It’s hard to be normal

Normalisation is essential to remove bias and variation introduced during sampling
and sequencing. Normalisation is defined as the process of transforming data
to enable fair comparison of measurements gathered from different samples by
eliminating artefacts that arose during the measuring process (Weiss et al., 2017).
Many normalisation processes widely applied to microbiome count data have been
found to introduce errors and bias. Proper normalisation techniques are essential
for experimental results to be considered valid.

Microbiome count data consists of discrete counts of bacterial units or specific
DNA sequences (Weiss et al., 2017). The total number of reads per sample (also
known as the depth of coverage or library size) will often vary by orders of magnitude
within a single sequencing run (see Table 3.3; Caporaso et al., 2011). This variation
is introduced as a technical artefact from the high-throughput sequencing process
and does not reflect true biological variation. In order to compare microbiome
samples to each other they must often be normalised to take into account uneven
library size. If this is not corrected for then correlations between taxa will become
distorted (Weiss et al., 2017).

Heteroscedasticity describes the situation in which a dataset has unequal vari-
ance over a second predictor variable (McMurdie and Holmes, 2014). Figure 3.12
demonstrates that the mean-to-variance ratio of microbiome count data is not
stable (i.e. the data are heteroscedastic). This results in overdispersion being
observed when traditional statistical models based on the Poisson distribution are
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Table 3.3: Distribution of sample library sizes in the Global Patterns dataset
(Caporaso et al., 2011). The sample with the smallest library size is two orders of
magnitude smaller than the largest.

Min. 1st Qu. Median Mean 3rd Qu. Max.
58688 567103 1106849 1085257 1527330 2357181

Figure 3.12: Overdispersion in microbiome count data can be observed by comparing
the common-scale variance versus mean (McMurdie and Holmes, 2014). Each point
shows the estimated mean and variance of an OTU across all biological replicates
in the dataset. The red curve shows the fitted variance estimate calculated by
DESeq (Anders and Huber, 2010).

applied to microbiome count data (McMurdie and Holmes, 2014). Overdispersion
is the presence of greater statistical variability than is expected by a given model.
There are biological reasons for heteroscedasticity occurring in microbiome count
data (e.g. the exponential growth of bacteria; Bálint et al., 2016).

Failing to address heteroscedasticity can lead to several problems. Using het-
eroscedastic data with standard parametric statistical tests of significance is not
appropriate, as parametric tests assume that variance is equal across samples (Mc-
Murdie and Holmes, 2014). Heteroscedasticity decreases the ability of downstream
tests to detect a multivariate effect present in low-variance taxa and makes it diffi-
cult to detect taxa that drive an effect. In addition, heteroscedasticity confounds
location and dispersion effects (Warton et al., 2012).
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Scaling counts with total sum scaling (proportions), where the sum of all
bacteria is 1 for each sample, is a simple way of standardising library size (see
Equation 3.2). Proportion pi,j is calculated from xi,j, where xi,j denotes the count
of OTU i in the jth sample).

pi,j = xi,j∑n
k=1 xi,k

(3.2)

Although this naïve approach is simple to apply and resolves the effect of different
library sizes it is inappropriate because it does not resolve the heteroscedasticity
present in the data. Additionally, total sum scaling transforms microbiome count
data into compositional data (explained below), bringing additional challenges
to analysis. Compositional data are vectors of positive elements constrained to
sum to a constant (Aitchison et al., 1994). Friedman and Alm were the first
to recognise that common normalisation processes cause microbiome count data
to become compositional, and to highlight the problems associated with this
(Friedman and Alm, 2012). This observation has been extended to essentially all
data derived from high throughput sequencing such as RNA-seq (Fernandes et al.,
2014). Compositional data are afflicted by the closure problem: elements compete
to form the constant sum constraint (Aitchison, 1986). In practice this means that
large changes in the absolute abundance of one element of the vector will artificially
suppress the abundance of other elements. This violates assumptions of sample
independence and introduces bias. Standard statistical tests will produce spurious
correlations and false positive or negative results when applied to compositional
data. For example, if a particular taxon increases in abundance spurious negative
correlations will be introduced for less abundant taxa if measured with standard
tests (e.g. the Pearson correlation coefficient; Friedman and Alm, 2012). In addition,
as the library size of a collection of samples is determined by the capacity of the
sequencing instrument even unnormalised sequencing data are compositional (Gloor
and Reid, 2016).

I didn’t like that data anyway: The rarefying approach

Rarefying, or random subsampling without replacement, is an approach that is
present across all major microbiome and microbial ecology toolkits (Caporaso
et al., 2010; Schloss et al., 2009; Oksanen et al., 2015) that corrects uneven library
sizes across samples (see Table 3.4). This normalisation process is sometimes
mistakenly referred to as rarefaction across literature and toolkits. It is important
to distinguish between the data normalisation process and the technique used by
ecologists to generate taxon re-sampling curves in order to assess the coverage or
richness of a sample. The data normalisation process will be exclusively referred
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Table 3.4: The effect of rarefying. Left: raw abundances. Right: after normalisation
with rarefying. Data are hypothetical. It should be noted that due to the random
nature of the process the rarefied count of sample B will not necessarily be even.

Sample A Sample B
OTU i 60 500
OTU j 40 500
Total 100 1000

Sample A Sample B
OTU i 60 50
OTU j 40 50
Total 100 100

to as rarefying. The latter procedure is discussed in Section 5.2, and will only be
referred to as rarefaction.

Rarefying does not correct heteroscedasticity (see middle panel of Figure 3.12),
transforms microbiome count data to compositional data, and decreases statistical
power by discarding observations. It has been suggested that a great deal of work
that has used rarefied counts is statistically inadmissible (McMurdie and Holmes,
2014). Despite this, rarefying is still recommended by popular standard operating
procedures, reviews (Kozich et al., 2013; Weiss et al., 2017), and is incorporated
into many automated workflows. Rarefying involves the following steps:

1. Set a minimum library size NL,lim

2. Discard samples that have fewer reads than NL,lim

3. Randomly subsample remaining libraries without replacement to match size
NL,lim

Rarefying poses problems for transparency and reproducibility. NL,lim is usually
chosen to be the size of the smallest library that meets a specified cut-off. For
example the Forsyth Institute, the centre that sequenced the microbiome count
data discussed in Chapter 5, recommends removing samples that have less than
5000 discrete reads. The arbitrary nature of this cut-off is vulnerable to subjectivity
and bias. Additionally, the random portion of the subsampling procedure adds
noise while failing to add anything of value to the process. Often the seed used to
initialise the pseudorandom number generator is not recorded. Without this seed
rarefied microbiome count data cannot be reproduced from raw sequencing data.

The largest problems with rarefying are related to its reliance on discarding
data, a process which makes statisticians very angry. McMurdie and Holmes, the
first to highlight the problems described above, noted that both Type-I (decreased
specificity) and Type-II error (loss of power) is increased after rarefying. When
clustering samples the loss of power manifested in two ways: samples that were
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not classified because they were discarded, and samples that could not be clus-
tered because of the discarded data that were present prior to rarefying. During
differential abundance testing, the loss of power manifested as the inability of tests
to correctly identify significantly different rare to moderate taxa (McMurdie and
Holmes, 2014).

Two out of three ain’t bad: Log transformations

Log transformations are often used to correct data with unequal variances and
positive skew. Additionally, microbiome count data transformed with a log trans-
formation is not compositional. Microbiome count data are often sparse (Paulson
et al., 2013), with many zeroes present in the data. log2(0) is undefined, so a log
transformation cannot be applied to sparse data. In order to log transform sparse
data a small positive constant is added to the data, also known as a pseudocount.
The generalised log transform of xi,j is given by:

yi,j = log2(xi,j + x0) (3.3)

where yi,j gives the transformed value, xi,j gives the count of the i-th OTU from
the j-th sample, and x0 gives a positive constant (usually 1; Paulson et al., 2013).
The theoretical justification for a pseudocount is that it represents a value below
the detection limit of the sequencing process (Paulson et al., 2013). Applying
a log transformation to microbiome count data acts as an approximate variance
stabilising transformation (Callahan et al., 2016b). The approximate nature of
the transformation can sometimes fail to stabilise the variance, and generally does
not fully resolve the problem. The right panel of Figure 3.12 shows that the
transformation did not completely remove the trend, particularly for less abundant
taxa. Additionally, the log transforming can crush the data at low to medium
abundances (see Figure 3.13) compared with other transformations that measure
and incorporate the mean-variance relationship during the transformation process,
as implemented in the DESeq2 (Love et al., 2014) and edgeR (Robinson et al.,
2010) software packages. An unresolved problem with the use of pseudocounts is
selecting the value of x0. The choice of x0 can change the results of downstream
analyses dramatically (Costea et al., 2014; see Figure 3.14). It is also important to
note that log transformations do not resolve uneven library sizes. One proposed
approach to counteract this is to include the library size of a sample into later
multivariate analysis (Bálint et al., 2016).

Although the log transformation does not normalise uneven library sizes across
samples, it is simple to apply and can be considered to be good enough for many
analysis tasks, despite the troubling use of pseudocounts. Log transformations
are often used in downstream applications that cannot tolerate negative numbers
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Figure 3.13: Common-scale DESeq2 transformed abundance of mouse gut mi-
crobiome count data (top; Schloss et al., 2012) and log transformed abundance
(log2(x+ 1); bottom). Modified from Callahan et al., 2016b.

produced by these theoretically superior procedures. For example, the Bray-Curtis
dissimilarity measure (Bray and Curtis, 1957) requires non-negative counts.

3.4 Computational intelligence in microbial
ecology

Computational Intelligence (CI) approaches have not been widely applied specifically
in microbiome research to date, but efforts have been made to apply CI strategies
in both biomedical and bioinformatics applications. ANN variants have been
most widely applied to microbiome count data. Self-organising maps - a type of
unsupervised neural network that can cluster multidimensional data and visualise it
in a two-dimensional map - have been used to cluster genome signatures and model
the way environmental factors impact their distribution in a microbial community
(Dick et al., 2009). Deep learning approaches have been applied to metagenomic
data in order to learn hierarchical representations of the dataset (Ditzler et al.,
2015). Deep learning is the study of neural networks with more than one hidden
layer (Deng, Yu et al., 2014). Two datasets were analysed: in the first, metagenomic
samples were classified according to what area of the human body they were sampled
from. In the second dataset, metagenomic samples were classified according to the
pH of the environment they were sampled from (originally continuous; binned into
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Figure 3.14: Clustering analysis via multidimensional scaling (data are from
Arumugam et al., 2011). Pseudocounts exponentially decrease from 1 to 0.001,
which significantly changes the clustering output.

high, medium, or low). Although a deep learning approach did not significantly
improve the accuracy of classification, it did allow a tree structure to be generated
and analysed via a recursive neural network.

Genetic and evolutionary feature selection has been used to identify a subset of
OTUs present in the vaginal microbiome that can classify bacterial vaginosis (Carter
et al., 2014). The algorithm used the relative abundance of OTUs and patient
metadata as input. The aim of the experiment was to develop a more accurate and
objective diagnostic test compared with current clinical practice. Two diagnostic
tests are currently used clinically: the Amsel criteria (“any symptom approach”)
and the Nugent score. The Amsel criteria diagnoses bacterial vaginosis if at least
one of the following symptoms occurs: the presence of discharge, a positive “whiff
test”, or a pH greater than 4.5 (Amsel et al., 1983). The Nugent score uses a scale
from 0-10. Bacterial cells are imaged with a microscope, and cells similar in size
and shape to Lactobacillus species are counted (Nugent et al., 1991): for disease to
be diagnosed the score must be greater than 7. Up to a third of bacterial vaginosis
diagnoses using these two tests are false positives (Forney et al., 2006). Treating
healthy women with broad-spectrum antibiotics can cause long term damage to the
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microbiomes across the body (Zaura et al., 2015), increasing the risk of infection
by pathogenic species such as Clostridium difficile (Theriot et al., 2014). Carter
et al. (2014), achieved an accuracy of 99.5% after 8000 iterations with Genetic and
Evolutionary Feature Selection.

A fuzzy alternative to traditional distance matrices has been proposed specifically
for high-throughput metagenomic sequencing data (Krachunov et al., 2015). The
pairwise distance between gene fragment sequences is often calculated (e.g. prior to
multiple sequence alignment) using the Hamming distance (Pinheiro et al., 2005).
The distance H between sequences j and k of length n is given by:

H(j, k) =
n∑
i=1

[ji 6= ki]
n

=
∑
i[ji 6= ki]∑

i 1
(3.4)

Krachunov et al. implemented a fuzzy distance by taking into consideration the
confidence score s(j, i) of position j in base call i (equivalent to Qphred described
earlier). With this established, Krachunov et al. introduced fuzzy pairwise alignment
to counteract the effects of sequencing error. This theoretical approach would be
more beneficial for shotgun sequenced metagenomic data, as sequences generated
by marker gene surveys are usually already clustered into OTUs.

3.5 Summary
The microbiome has been shown to influence many different diseases. This thesis
begins with a focus on IBD, because many public datasets are available, which
helped to develop the bioinformatics pipeline used in the rest of the thesis. After
IBD the thesis transitions to a focus on depression, specifically major depressive
disorder. Depression is a complex disease with heterogeneous aetiology, diagnosis,
treatment, and prognosis. Possible mechanisms for the modulation of behaviour
by the microbiome are explained by the microbiome-gut-brain axis; the potential
mechanisms of action are numerous and varied. The microbiome has been repeatedly
shown to program the HPA axis; HPA axis dysfunction is one of the most consistent
markers of depression. Pathogenic bacteria have been found to activate stress
circuits via stimulation of the vagus nerve, which directly impacts the central
nervous system. Other mechanisms include the epigenetic effects of short chain
fatty acid byproducts, and the microbial synthesis of neurotransmitters.

Standard methods for generating microbiome count data rely on clustering for
two reasons: to compensate for sequence variation that is introduced by technical
noise, and because there is no universal definition of a bacterial species. The vast
majority of unique sequences generated by standard methods arise from technical
noise such as sequencing error. If a clustering approach was not used, biological
variation would quickly be hidden by technical artefacts such as artificial base
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changes, chimeras, and sequencing error. However, the 97% similarity threshold
widely used across the scientific community has been shown to generate ecologically
mixed units of bacteria, which can confound analysis. Thus, the popularity of
similarity thresholds stems partly from computational convenience rather than
good practice. The process of clustering sequences into OTUs is complex, and
subtle changes can generate wildly inaccurate microbiome count data. It is common
for ten thousand OTUs to be observed from a mock community sample of tens of
bacteria. Even the best performing clustering algorithms come with caveats: the
algorithms tend to scale poorly with study size, and OTUs cannot be compared
across studies, hindering reproducible research.

A better approach is to increase the resolution of OTUs by grouping bacteria
into exact sequence variants. The algorithms that achieve this vary widely in
methodology. Some model sequencing errors and infer denoised sequences (divisive
amplicon denoising algorithm (DADA)), while others use information theory to iter-
atively minimise entropy (minimum entropy decomposition (MED)). Experimental
evidence has shown the benefits of this approach: for example, units of bacteria
99.6% similar to each other have been shown to have vastly different abundances
in relation to ocean temperature. Intuitively members of a single ecological unit
should have the same response to an environmental condition. This approach also
increases the dimensionality of the data, rendering it more challenging to analyse
compared with the output of standard clustering methods.

Microbiome count data are difficult to analyse. Technical and biological noise
must be accounted and compensated for. Even perfect microbiome count data
will have uneven library sizes across samples (which infers a level of certainty of
the sampling process) and be heteroscedastic. Common methods for mitigating
uneven library sizes introduce a different kind of challenge by converting the data
to compositional data, which breaks the assumptions of many standard analysis
protocols. Data driven CI algorithms offer a way to compensate for these issues.
This thesis will investigate the following problems, which have not been answered
to date:

• Given the high variability of microbiomes across subjects, can a robust set
of microbial markers be found that can predict Inflammatory Bowel Disease
that can generalise well?

• Are significant differences present in the structure and composition of the
oral microbiome in depressed subjects compared with control subjects?

• Can data driven CI algorithms be used to analyse microbiome count data in
order to compensate for microbiome count data properties such as uneven
library size and heteroscedasticity?
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robustly predicting inflammatory bowel
disease

Never trust a computer you
can’t throw out a window.

Steve Wozniak

4.1 Introduction
The first projects that aimed to characterise the composition of a healthy human
microbiome also aimed to identify associations between the composition of the
gut microbiome and Inflammatory Bowel Disease (IBD) and obesity (MetaHIT
Consortium, 2011; Turnbaugh et al., 2007). IBD caused 53,000 deaths worldwide
in 2013 and its prevalence has been increasing throughout the developed world for
decades (Molodecky et al., 2012). IBD symptomatology is generally non-specific
and diagnosis is usually confirmed via invasive colonoscopy, with consequent delays.
Delayed paediatric IBD diagnosis can reduce growth and is linked to poor treatment
outcomes. First attempts to model the data generated by these projects relied
on analytic approaches borrowed from ecology and the application of simple
classification algorithms. Machine learning algorithms quickly grew popular due
to the complexity of the data. Benchmarks found that support vector machines
(SVMs) and Random Forests generally performed well on microbiome census data
(Statnikov et al., 2013), and these models were quickly integrated as a standard
step in microbiome analysis workflows. Both SVMs and Random Forests are useful
for their ability to perform well on highly dimensional data and to generate feature
subsets to identify bacterial species that are associated with disease. However,
current models use simple labels for classification tasks (e.g. single label health
or disease) and the robustness of feature selector algorithm output has not been
considered to date. Additionally, models for IBD prediction have for the most part
relied on on taxonomic data (i.e. what species are present?) rather than functional
data (i.e. what are the species doing?). IBD was chosen for analysis throughout this
chapter due to the large amounts of public data available and to gain experience
with bioinformatics algorithms for processing the 16S ribosomal ribonucleic acid
(16S rRNA) marker gene survey data. 16S rRNA data provides taxonomic data
that describes the structure and composition of microbial communities and is
cost-effective to collect, process, and analyse: sequenced 16S rRNA data is small
enough to be processed by most university laboratories and analysed on standard
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desktop workstations (other types of sequence data can require larger laboratories
and high performance clusters of computers).

The structure of this chapter is as follows. A brief background is provided
in section 4.2 to explain the bioinformatics algorithms applied throughout this
chapter and biological aspects of IBD that are relevant to later analysis. A hybrid
model is then implemented to decompose a complex problem into a series of simpler
classification tasks. The resulting hybrid model — described in section 4.3 — is
capable of diagnosing the presence of IBD, identifying the subtype of IBD if it is
present, and predicting the current severity of IBD if the disease is in its active
state. Furthermore, the concept of aggregating ensemble feature selection (EFS)
will be applied to high-resolution microbiome census data to improve the power of
non-invasive IBD prediction and for knowledge discovery. Section 4.4 will outline
how EFS can be used to create a robust subset of bacterial species that can be used
to classify IBD subtypes with the highest performance described in the literature
to date. Biologically plausible novel bacterial species are shown to be implicated in
the aetiology of IBD by the EFS procedure in section 4.4.4. This chapter concludes
with a summary in section 4.5.

4.2 Background

A deregulated immune response to changes in the composition of the gastroin-
testinal microbiome (dysbiosis) implicates the microbiome in the aetiology of IBD
(Halfvarson et al., 2017). Each subtype of IBD (e.g. ileal crohn’s disease (CD)) has
been associated with distinct microbial signatures. Industrialised western nations
have the highest IBD incidence and prevalence - approximately 261,000 people suffer
from IBD in the United Kingdom - and this has increased significantly worldwide
since the start of the 20th century (Molodecky et al., 2012). IBD symptoms include
abdominal pain, weight loss, and diarrhoea. In severe cases surgical intervention is
required and the inflamed parts of the gastrointestinal tract are removed. IBD is
a complex disease with uncertain aetiology (Hanauer, 2006). IBD has two major
subtypes: ulcerative colitis (UC) - the effects of which are limited to the gut -
and CD, which can affect the entire gastrointestinal tract. IBD is usually episodic
and severe inflammation is considered to be active IBD. IBD can enter remission
during periods in which limited or no symptoms occur. IBD diagnosis is slow
in children because IBD has non-specific symptoms; Colonoscopy is a specialised
procedure and IBD symptoms are required before colonoscopy will be used for
confirmation. Thus further development of non-invasive tests for IBD would be
valuable to improve treatment outcomes.



4.2. BACKGROUND 75

Microbe1 . . . . . . . . . MicrobeM
0 9 8 0 7 sample1

3 5 6 5 1 . . .
1 0 0 3 2 sampleN

Figure 4.1: Example unnormalised community data matrix.

4.2.1 Data used throughout this chapter
Two publicly available datasets are analysed throughout this chapter:

• The hybrid model presented in section 4.3 uses a dataset of 158 children
(control n=37, IBD n=122, Papa et al., 2012, see Table 4.1);

• The ensemble feature selection approach presented in section 4.4 uses a dataset
of 1485 samples gathered from the gastrointestinal tract of treatment-naïve
children and adults (see Table 4.2, Gevers et al., 2014).

It is important to note that subjects in the Papa et al. dataset were not treatment
naïve: many had a range of treatments including antibiotics and steroids prior to
sampling. Adults were discarded from the Gevers et al. dataset due to insufficient
numbers, and children were defined as being ≤ 16 years old (per the A1 Montreal
classification of IBD; Silverberg et al., 2005). Samples were collected at disease
onset at the time of diagnosis in the Gevers et al., so IBD was in an active state.
The Gevers et al. dataset included samples collected via biopsy and stools. This
chapter focused on stool samples in order to develop a set of robust markers that
can be used to non-invasively predict IBD. Only stool samples (n = 311) remained
after discarding the biopsy samples.

The publicly available data were available in the form of sequenced 16S rRNA
DNA from the Sequence Read Archive (SRA). The sequenced DNA data were
processed with various bioinformatics tools, which are described further in the
following subsections. The output of the bioinformatics tools is microbiome census
data. Microbiome census data form an N ×M matrix of integers where N is
the total number of samples and M is the total number of unique sequences or
operational taxonomic units (OTUs) observed across all samples (see Figure 4.1).
Microbiome census data are highly dimensional: approximately 4500 amplicon
sequence variants (ASVs) were identified from the Gevers et al. data.
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Table 4.1: Demographic data of Papa et al. dataset.

CD UC Control
n 48 73 37
Gender Male 29 39 16

Female 19 33 21
Age Median 14.6 13.4 11

Range 3 — 23 4 — 24 3 — 21
Montreal
class

L1 4

L2 1
L3 22
L4 7
B1 40
B2 6
B3 2
E1 25
E2 12
E3 36

Disease
activity

Control 0 0 37

Inactive 29 26
Mild 11 22
Moderate 5 15
Severe 3 10

4.2.2 Generating operational taxonomic units with uclust

For the development of the hybrid model a standard OTU approach was used to
identify bacterial species. The open reference OTU picking method was used as it
was the default algorithm recommended by the developers of Quantitative Insights
Into Microbial Ecology (QIIME) (Navas-Molina et al., 2013), which was used to
process the Papa et al. data that was input to the hybrid model. Open reference
OTU picking is a combination of closed reference OTU picking (database matching,
see Algorithm 4.1) and de novo OTU picking (see chapter 3.3.5 and Algorithm 4.2).
The open reference algorithm is scalable to billions of input sequences but is still
capable of identifying novel bacterial sequences that are not present in reference
databases (see Algorithm 4.3).
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Table 4.2: Demographic data of Gevers et al. data set. Only stool samples were
used for analysis, and montreal class information was only available for around two
thirds of the data.

Gevers et al.
Number of subjects 1485
Disease status Control 19%

CD 58%
UC 18%
Indeterminate
Colitis (IC)

5%

Age (mean) 23
Disease duration (mean) 0
Total samples 2308
Stool samples 28%
Biopsy samples 72%
Montreal class (CD) L1 24%

L2 23%
L3 53%
B1 90%
B2 6%
B3 2%

4.2.3 Inferring a functional profile

A number of algorithms have been developed that can infer the functional com-
position of a metagenome using marker gene data and reference genomes such as
Tax4Fun and PICRUSt (Langille et al., 2013). In many environments, such as
the human gut, the majority of the bacterial species present are well characterised
and have had their full genomes sequenced. The first approaches that attempted
to predict functional content from marker gene surveys used a relatively simple
procedure to map a subset of abundant 16S rRNA gene sequences to closely related
reference genomes (Morgan et al., 2012). PICRUSt formalises this approach into an
automated algorithm and extends the concept to include a modified ancestral state
reconstruction (ASR) approach (see Figure 4.2). The core concept behind PICRUSt
is that phylogeny and function are strongly correlated. It is common for microbial
ecologists to predict the function of novel bacterial species from closely related
cultured organisms. This allows PICRUSt to “fill in the gaps“ in well-characterised
environments and produce accurate estimates of functional metagenomic content.
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Algorithm 4.1 USEARCH algorithm (default implementation of closed-reference
OTU picking in QIIME 1.X)
dereplicate query sequences (Q)
for all Q do

Identify a small set of database sequences (D) that have many k-mers in
common with Q . Heuristic to improve search speed

Count number of shared k-mers between Q and D (U)
Order D by decreasing U
for all Di do

Compute optimum global alignment A between Di and Q
if A > identity threshold then

Accept Di and terminate search
else if A < identity threshold then

Reject Di

if number of rejections >32 then
Terminate search: no match found

end if
end if

end for
end for

However, the PICRUSt approach should not be applied to poorly characterised
environments. PICRUSt benefits from reference genomes that are phylogenetically
similar to the input data.

4.2.4 Generating amplicon sequence variants with dada2

Raw 16S data typically consist of millions of short sequences (typically less than
400 nucleotides long). Conventionally the sequence reads are clustered according
to fixed similarity thresholds; typically sequences that are more than 97% similar
are binned into an OTU, which approximates a bacterial species (Caporaso et
al., 2010; Schloss et al., 2009). A clustering strategy is required because during
amplification and sequencing significant noise is introduced into the set of sequence
reads (Callahan et al., 2017) (e.g. insertion, deletion, or substitution sequencing
errors). A range of new methods (Eren et al., 2013; Eren et al., 2015; Callahan et al.,
2016a) have been developed that are capable of removing this noise from the set of
sequence reads. These methods are capable of resolving ASVs to a single-nucleotide
resolution, which removes the need for arbitrary similarity thresholds. These
high-resolution methods have better specificity and sensitivity compared with OTU
clustering algorithms (Callahan et al., 2016a), and are better at identifying patterns
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Algorithm 4.2 UCLUST algorithm (default implementation of de novo OTU picking
in QIIME 1.X)
dereplicate query sequences Q
sort Q by length
initialise empty database of centroid sequences C
for all Q do

for all C do
if Qi matches Ci then . Using USEARCH

Add Qi to Ci
else if no match then

Qi becomes new centroid of new cluster, add Qi to C
end if

end for
end for

Algorithm 4.3 Open-reference OTU picking (algorithm recommended by QIIME
1.X developers)

dereplicate query sequences Q
for all Q do

match Q to reference database . Using USEARCH
subsample Q (Qsubsample) that do not return matches (default: 0.001%)
for all Qsubsample do

match Q to centroids . Using UCLUST
end for

end for

of community similarity because ASVs are much less likely to be ecologically mixed
units (Eren et al., 2013). It is important to note that although the term OTU
can apply to ASVs — the definition of OTU is intentionally vague and simply
means “the thing(s) being studied” — for example, one proposed term for ASVs
is zero-radius operational taxonomic unit (zOTU) (Edgar, 2016). However, it is
useful to consistently use different terminology to avoid confusion as the underlying
paradigms are so different (clustering versus denoising). ASVs offer increased
taxonomic resolution, are defined independently of any reference database, have
consistent labels, and can be reused across studies (Callahan et al., 2017). In a
conventional clustering approach, units are defined according to a reference database
(reuse is possible but uncharacterised organisms will be omitted) or in a de novo
fashion (de novo OTUs can include uncharacterised organisms but lack consistent
labels and cannot be reused across studies). OTUs must be mapped to a taxonomy
in order to provide consistent labels, while ASVs are independent of taxonomy and
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Figure 4.2: The PICRUSt workflow by Langille et al., 2013

represent true biological variation. In this work, the divisive amplicon denoising
algorithm (DADA) was used to generate high-resolution microbiome census data.

DADA uses a statistical model to learn the types of amplicon errors present in
a set of sequence reads. The exact sequence variants truly present in the samples
are inferred from the model; these are called ASVs. Heuristic pairwise sequence
alignments are performed for sequences that are closely related. The DADA error
model measures the rate λji at which sequence i is produced from sample sequence
j as a function of sequence composition and quality. λji is the product over the
transition probabilities between the L aligned nucleotides (Callahan et al., 2016a):

λji =
L∏
l=0

p(j(l) 7→ i(l), qi(l)) (4.1)

Generalised transition probabilities are included with the model, but the tran-
sition probabilities can also be learned from the data. An example transition
probability is p(G 7→ T, 40), which describes the probability that a guanine nucle-
obase to thymine nucleobase substitution error has occurred in a base call with a
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Algorithm 4.4 Divisive partitioning algorithm
dereplicate sequences . store abundance and quality data
for all unique sequences do

assign sequences to single partition
set most abundant sequence as centre of partition
calculate pA
while pA,min < ωA do . user chooses ωA

create new partition
set centre of partition to sequence pA,min
allow sequences most likely to have originated from partition to join
calculate pA

end while . all sequences now copied from the centre of their partition
end for

quality score of 40. The probability depends on all three factors. Substitution errors
are the most common kind of sequencing error on Illumina sequencing platforms
(see chapter 3.3.2). λji is estimated for all aligned sequences. Unaligned sequences
are assigned a λji of 0.

The abundance p-value (pA) measures the likelihood that sequence i is too
abundant to be explained by sequencing error alone, and is defined by (Callahan
et al., 2016a):

pA(j 7→ i) = 1
1− ppois(njλji,0)

∞∑
a=ai

ppois(njλji, a) (4.2)

where, if sequencing errors are independent across reads, the abundance of sequences
with sequence i that will be produced from the sample sequence j is Poisson
distributed (ppois) with expectation equal to error rate λji multiplied by sample
sequence j’s expected reads. Let unique sequence i with abundance ai be in
partition j containing nj reads. To generate exact sequence variants, sequences are
processed with the divisive partitioning algorithm (see Algorithm 4.4). The centre
of the generated partitions represent the denoised exact sequence variants.

4.3 Development of a hybrid model

4.3.1 IBD supervised classification
Non-invasive classification of IBD via the microbiome has been attempted many
times across paediatric and adult cohorts (Papa et al., 2012; Tong et al., 2013;
Gevers et al., 2014). Although IBD is a dynamic disease the majority of work done
to date has focused on samples taken at a single time point with few exceptions
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(Halfvarson et al., 2017). All of the models used are supervised classification
algorithms and use stool samples as a proxy to map the intestinal microbiome
(Gevers et al., 2014 also studied invasive biopsy samples). However, mapping
the intestinal microbiome to predict IBD has to date been limited to analysing
the relative abundances of bacterial taxonomic groups (i.e. what is present in the
gut) as all of the models use a bacterial census generated with an OTU clustering
paradigm as a starting point for analysis. Papa et al. and Tong et al. use the
relative abundance directly as input to classification algorithms to predict disease
status. Halfvarson et al. use summary statistics (distance to healthy samples
generated from taxonomic data) that represent the microbiome to predict disease
status. Gevers et al. use the relative abundance as input for regression, predicting
the prognosis of IBD severity using the paediatric crohn’s disease activity index
(PCDAI).

Understanding what the gut microbiome is doing (e.g. gene functions) is difficult
and cannot be measured directly via 16S rRNA marker gene surveys. Metagenomic
shotgun sequencing is required to directly measure gene functions. In shotgun
sequencing DNA molecules are broken into many pieces and all of the DNA molecule
fragments are directly sequenced. Metagenomic shotgun sequencing of dozens or
hundreds of samples is often cost prohibitive. A variety of algorithms have been
developed that can infer gene functions from a bacterial census via a reference
database, including PICRUSt (Langille et al., 2013). There has been debate as to
whether taxonomic is appropriate for classification at all: it has been proposed
that classifying samples into groups from gene functions could enable greater
classification performance and be more biologically meaningful (Xu et al., 2014).
Taxonomic profiles are extremely variable across samples, while functional profiles
are more stable: decreased noise could improve analysis. However, decreased
variation could make it harder to stratify samples. Initial benchmarks have found
few differences between functional classification and taxonomic classification, except
for a single classification task (the Costello body habitats dataset). However, none
of the classification problems involved disease stratification.

Boruta — an all-relevant feature selection algorithm based on a Random Forest
(Kursa, Rudnicki et al., 2010) — has been widely applied to taxonomic classification
tasks to identify members of microbial communities that are associated with disease
stratification. Standard feature selection algorithms are minimal optimal: they try
to minimise the size of the feature subset while maximising classification accuracy.
Boruta is better suited for biological data analysis as the algorithm will retain all
features that carry information useful for prediction. Retaining all relevant features
is an important first step to gaining a better understanding of the underlying
biological phenomenon. Boruta can be used to measure the relevance of functional
features for disease stratification.
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Other machine learning algorithms that have been widely applied to the predic-
tion of disease from different types of biological data (e.g. DNA microarray data)
have been much less frequently applied to metagenomic classification problems,
including SVMs and multilayer perceptrons (MLPs). SVM classifiers can process
a large number of irrelevant features and high feature-to-sample ratios, and use
regularisation techniques to avoid overfitting (Statnikov and Aliferis, 2007). MLPs
and deep learning have rarely been applied to metagenomic classification, but show
good initial results (Ditzler et al., 2015). Classifying IBD thoroughly requires a
more complex strategy than predicting simply presence or absence. Aspects that
can be considered include the presence of the disease, disease subtype, disease
severity, and predicting response to treatment. The first three aspects have been
considered previously in isolation, but not as a unified decision (data are not
available for predicting prognosis). This approach generates a highly complex
multiclass classification problem, including the following classes:

• Presence: Healthy, active IBD, or IBD in remission

• Subtype: Healthy (control), CD, or UC

• Severity: mild, moderate, or severe

Attempts were made to model this complex multiclass problem using a single
model. However, these attempts were unsuccessful (see Figure 4.3). One possible
reason for this is that different types of models perform well on different classification
problems (there is no single optimum model according to the no free lunch theorem;
Wolpert and Macready, 1997). A model can be designed to classify only a subset
of possible class labels in a multiple classifier system if the outputs are combined
to restore the whole label (Woźniak et al., 2014). Section 4.3.2 outlines how the
standard single-classifier approach to IBD prediction can be replaced with a hybrid
system. This approach will simultaneously: i) determine the relevance (via the
Boruta algorithm) of microbial functions present in the intestinal microbiome for
IBD prediction; ii) enable the concurrent prediction of IBD presence, subtype,
and severity by decomposing IBD diagnosis into a series of more easily solved
classification problems.

4.3.2 A metagenomic hybrid classifier
Multiple classifier systems (hybrid intelligent systems) have many advantages:
combined classifiers can outperform the best individual classifiers, multiple classifiers
are more likely to find an optimal model, and multiple classifiers can be efficiently
implemented in a multi-threaded environment in a parallel manner (Woźniak
et al., 2014). The topology of multiple classifier systems is usually parallel or
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Figure 4.3: AUROC analysis shows that standard multiclass classification is unable
to model thorough IBD prediction (0.5: prediction is equal to random chance).

conditional (serial). In parallel topology each classifier has identical inputs, and the
final decision is made from the combined outputs of each classifier. In conditional
topology, classifiers are used in a serial manner. Input is only passed to the classifier
next in the sequence if some condition is met. The hybrid model implemented in
this chapter used a serial approach. By returning a reduced set of classes at each
stage of the serial classifier a complex problem can be iteratively decomposed into
a series of simpler problems that are easier to classify.

The topology of the serial multiple classifier system (the hybrid model approach;
see Figure 4.4) was designed so that a complex problem (thorough IBD diagnosis)
could be reduced to a set of simpler, but clinically important, problems. The
accurate identification of IBD presence (i.e. IBD or control) is important to guide
treatment options. Some IBD treatments are contraindicated for subjects with
conditions that can be misdiagnosed as IBD (i.e. prescribing immunosuppressant
drugs for amoebic dysentery). The subtype of IBD and current IBD activity is
important to guide the treatment course (e.g. severe Crohn’s disease may require
surgical intervention).

In 16S rRNA data a sample is defined as all DNA sequences identified by the
16S marker gene survey per faecal sample. The DNA sequences identify hundreds
of different bacterial groups per sample. The DNA sequences were mapped to
vector representations in order to input them into supervised learning classification
algorithms. An OTU approach was used to generate these vector representations
from DNA sequences (see Figure 4.5). Bacterial taxonomic groups were identified
and clustered from the similarity of the DNA sequences present per sample (97%
similarity was used to approximate a bacterial species). The QIIME software
package (Caporaso et al., 2010) was used to generate OTU tables (a community
data matrix), with the open-reference subsampled OTU picking algorithm. The
OTU table recorded how many times an identified OTU occurred for each sample.
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Figure 4.4: Conditional multiple classifier system topology. IBD-A: IBD in its
active state, IBD-R: IBD in remission. First and second stage use a support vector
machine (SVM) for classification, third stage uses an Artificial Neural Network
(ANN).
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Figure 4.5: Feature engineering pipeline.

OTU abundances were scaled to be in the range [0, 1].
The PICRUSt algorithm (Langille et al., 2013) was used to infer functional

content from the marker gene survey. PICRUSt infers genetic content from bacterial
phylogenies via comparison to a database of reference genomes. The presence
and abundance of gene functions present per sample were binned into categories
and abundances were scaled to be in the range [0, 1]. Subject clinical history was
converted from categorical variables to indicator variables (e.g. has the patient been
prescribed immunosuppressant drugs). Immunosuppressant drugs and antibiotics
(Zaura et al., 2015) have been shown to cause large long term changes to microbiomes
across the human body and it is thus essential to record their application. Other
clinical data includes subject ethnicity and family history of IBD.

Feature selection was applied where appropriate because high dimensional
learning with traditional artificial neural networks is difficult (Verleysen et al.,
2003). 3-fold cross-validated SVM Recursive Feature Elimination (RFE) (Guyon et
al., 2002) was used to automatically identify the optimal number of features. SVMs
show good performance on high dimensional classification problems (Statnikov
and Aliferis, 2007). SVM-RFE repeatedly eliminates the features least important
(measured by SVM feature weights) to classification performance until the optimum
is reached.

4.3.3 Evaluating the hybrid model
Determining the relevance of the different feature types was performed with the
Boruta algorithm. The predicted gene functions generated with PICRUSt were
the most relevant type of feature across all three stages of the hybrid classifier
(see Table 4.3). To date no other metagenomic classifiers of host health status
have used predicted metagenomes as a feature. However, classification of microbial
communities with predicted metagenomes has occurred with good results (Xu et al.,
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Table 4.3: Distribution of relevant features per stage. Feature relevance calculated
with the Boruta algorithm. See Figure 4.5 for a description of taxonomic, functional,
and clinical features.

Stage Taxonomic
features

Functional
features

Clinical
features

I: IBD presence 27% 64% 9%
II: IBD subtype 34% 53% 13%
III: IBD activity 20% 80% 0%

2014). The aim of Boruta is to understand the mechanisms of action that created
the dataset.

As each stage of the hybrid classifier attempts to model different problems,
it is useful to analyse the feature ranks of each stage individually to gain an
insight into different phenomena. Relevant features associated with IBD presence,
subtype, and severity may be significantly different. Therefore analysing the relevant
features identified by Boruta could generate new insights into the aetiology and
pathophysiology of IBD. Carotenoid biosynthesis was a relevant feature in the first
and second stage. Carotenoids are a group of organic pigments synthesised by plants
and bacteria, and are the pigments that produce attractive colours in plants. They
are sourced mainly from fruit and vegetables and are antioxidants. The pathogenesis
of IBD is thought to involve oxidative stress. In IBD patients antioxidants that
circulate in blood plasma - including carotenoids - are present at significantly lower
concentrations than controls (D’Odorico et al., 2001). This pattern is also found in
this analysis but in this work the carotenoid biosynthesis is only measured from
bacteria (plants do not have 16S rRNA). The intestinal microbiome synthesises a
variety of important vitamins that are required by host metabolism such as vitamin
B12. However, limited work has been done in assessing the role of the microbiota
in carotenoid biosynthesis (e.g. vitamin A). Carotenoid synthesis by commensal
bacteria could contribute to overall host health in previously undiscovered ways,
and imbalances in the intestinal microbiome could reduce the amount of carotenoid
biosynthesis occurring. Genes associated with bacterial infections were found to
be relevant features in the first stage. There is evidence that conserved genes
associated with Vibrio cholerae can be acquired by Campylobacter concisus, leading
to the pathogenesis of IBD (Zhang et al., 2014). Vibrio cholerae can increase the
permeability of the intestine, triggering the onset and relapse of IBD. However, it
is important to note that lateral gene transfer cannot be modelled by approaches
that infer functional content from taxonomic data such as PICRUSt.

The second aim of the hybrid classifier was to deliver good predictive perfor-
mance. It is useful to monitor the performance of each individual stage in order to
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Table 4.4: Cross validated classification performance of the hybrid model.

Stage Average precision score Support (classes
balanced)

I: IBD presence 0.71 111
II: IBD subtype 0.65 111
III: IBD activity 0.61 45

make fair comparisons to current work in the literature and to gain a global view
of classification quality. The predictive performance of a classifier as measured
by a Receiver Operating Characteristic (ROC) analysis is often measured via the
area under the curve (AUC). The AUROC is often a better indicator of classifier
performance than the misclassification rate or a loss matrix (Downey Jr et al., 1999).
The first stage of the hybrid classifier showed good classification performance for
the IBD remission class (see Figure 4.6). The IBD active and control classes showed
excellent performance. The second stage of the hybrid classifier had excellent
performance for the failsafe control class and good performance for the CD and
UC classes. The third stage of the hybrid classifier had good performance for all
classes. The average precision score of the third stage of the hybrid classifier shows
the worst performance across all stages. This could be contributed to the lack of
training data as IBD severity information was not recorded for all subjects (see
Table 4.4) compared with the other two training stages. Additionally, classification
of a subjective criteria (i.e. a class arising from a rating rather than a biological
test) is a difficult problem. The hybrid classifier shows superior performance as
measured by the AUROC to the standalone Random Forest classifier reported in
Papa et al., 2012 (0.83 AUROC for IBD prediction versus up to 0.90 in Stage I of
Figure 4.6).

Despite roughly tripling the amount of features when compared with the original
analysis by Papa et al. of a bacterial census (643 features were used including
a bacterial census, predicted gene abundances, and clinical features in the final
model) the SVMs used in the first two stages performed well. SVMs are insensitive
to high feature-to-sample ratios. Random Forests and SVMs performed poorly on
the third stage of the hybrid classifier. Both could consistently identify mild and
severe classes but were unable to classify moderate classes. A MLP showed good
performance for all classes despite the nonlinearity of the data.

An analysis of the relevant features across all stages of the hybrid classifier
showed that predicted genetic content was a valuable feature type, forming the
majority of relevant features (see Table 4.3). The sensitivity and specificity reported
by Papa et al. of the Random Forest classifier matched or surpassed alternative
clinical methods (i.e. non-colonoscopy tests) for detecting IBD. The hybrid classifier
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Figure 4.6: a) Stage I: Classification of IBD presence with a SVM. (b) Classification
of IBD subtype with a SVM. (c) Classification of IBD severity with a MLP. A
predictive model with an AUROC of 0.5 is no better than random chance (shown
as the dotted diagonal line).
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presented in this chapter shows superior performance as measured by the AUROC
to the standalone Random Forest classifier reported in Papa et al., 2012.

An advantage of using a conditional multiple classifier system is its ability to
maintain good performance for three different classification problems across nine
classes. A MLP was the only algorithm capable of reliably classifying all classes for
stage III, while SVMs showed superior performance for stages I and II. The three
stages were designed to provide relevant information to a clinician which could
guide treatment minimising the need for invasive colonoscopy. SVMs have rarely
been used for metagenomic classification problems but show good performance
in this case. Very little work has been done on applying MLPs to metagenomic
classification problems. MLPs have shown value here for the classification of disease
properties determined by subjective criteria. This is commonly done in many
diseases with uncertain aetiologies, including depression.

The Boruta algorithm validated the use of predicted metagenomes as a novel
feature set for the classification of IBD from marker gene surveys. Boruta revealed
relevant features involved in biological mechanisms behind the pathogenesis of
IBD. Significantly reduced abundance of antioxidant carotenoids in IBD subjects
has been previously measured from blood plasma but not from the intestinal
microbiome (D’Odorico et al., 2001). Carotenoids are typically sourced from fresh
fruit and vegetables: they provide plants with bright pigments. The role of the
intestinal microbiome providing the human host with nutrients and vitamins has
been well documented. No work to date has described the role of the intestinal
microbiome in providing carotenoids to the host.

Genes associated with the lifecycle of pathogenic bacteria were also detected as
relevant by the Boruta algorithm. Of note is the Vibrio cholerae lifecycle which is
relevant for the first stage of the hybrid classifier that identifies IBD in remission,
active IBD, and control classes. Evidence has been found that a combination of
Vibrio cholerae and Campylobacter concisus is implicated in altering the permeability
of the intestine, leading to IBD relapse into an active state (Zhang et al., 2014).
This was previously missed by the bacterial census. Identifying bacterial species
with a 16S marker gene survey is difficult due to technical limitations of the protocol.
Species that are identified are typically present in very low abundances. This creates
highly sparse feature vectors. Sparse data are challenging to learn from because
it can increase the hypothesis space through which the learning algorithm must
search.

4.4 Generation of robust microbial markers
The approaches to feature selection to microbiome census data described in sec-
tion 4.3 have not considered the robustness of feature selector output. Domain
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experts are often interested in experimentally validating feature subsets, which
is an expensive proposition for biological data. Feature selection algorithms can
return different feature subsets from the same input data; different feature subsets
can be equally optimal, particularly if a high degree of redundancy is present in
the dataset (Kalousis et al., 2007). Feature selection algorithms can also return
significantly different feature subsets from input data that has been changed slightly
(e.g. by removing a sample or after adding noise to a feature). Domain experts
will have more confidence in feature selection algorithms that generate consistent
(robust) feature subsets.

Current studies that aim to identify associations between IBD and the micro-
biome, including the work reported in the previous section, have used fuzzy OTU
approaches to generate a bacterial census. From this body of work a wide array
of bacterial genera have been implicated in the pathogenesis of IBD (fuzzy OTU
algorithms are typically limited to identifying bacteria at the genus level). The
rationale for applying aggregating EFS to high-resolution microbiome census data
was two-fold: i) to enable knowledge discovery from the increased resolution of
the input data ii) to improve the clinical utility of any identified feature subsets
by increasing confidence in feature selector output. Firstly, it is possible to match
exact DNA sequences up to a sub-species level. Secondly, exact DNA sequences
can be measured in vivo via a variety of methods (e.g. quantitative polymerase
chain reaction (qPCR)) whereas fuzzy clusters of DNA sequences are much more
difficult to measure.

The data analysed in this section originate from a publicly available dataset
(Gevers et al., 2014) which consists of 1643 samples collected from treatment-naïve
children and adults diagnosed with IBD and controls (see Section 4.2.1). This
chapter focused on stool samples in order to develop a set of robust markers that
can be used to non-invasively predict IBD, so all biopsy samples were discarded,
leaving 311 stool samples. Classes were defined according to an IBD subtype:
control versus UC or control versus CD. Although they fall under the umbrella
term IBD the subtypes have significant biological differences (Ananthakrishnan,
2015; Sartor, 2006), which is the rationale for choosing an IBD subtype to define
classes.

A reproducible computational workflow was implemented with Docker and
nextflow (Di Tommaso et al., 2017). Docker is an open source container platform.
A container bundles together all of the data, software, and library dependencies
necessary to run a piece of software into an image, similar to a very efficient
virtual machine. Docker helps to improve reproducible research by solving “de-
pendency hell”, poor documentation (docker images are self-documenting), and
code rot (Boettiger, 2015). The dataset was downloaded using esearch (Kans,
2013), sra-tools (Leinonen et al., 2010), and GNU Parallel (Tange et al., 2011).
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Microbiome count data were generated with dada2 (Callahan et al., 2016a) and
processed with phyloseq (McMurdie and Holmes, 2013) according to a standard
operating protocol (Callahan et al., 2016b). A variance stabilising transformation
(Love et al., 2014) was applied to the microbiome count data to normalise the un-
even library sizes and heteroscedasticity in the data, which has been recommended
for machine learning applications (McMurdie and Holmes, 2014). Aggregating
EFS was implemented using the OmicsMarkeR package (Determan Jr, 2015). The
Synthetic Minority Over-sampling Technique (SMOTE) (Chawla et al., 2002) was
used to mitigate the class imbalance present in the dataset. SMOTE is a powerful
synthetic sampling technque that has been successfully applied for a variety of ap-
plications (including biomedical data) (He and Garcia, 2009). Imbalanced data can
be significantly more difficult to learn, decreasing model performance (Japkowicz
and Stephen, 2002; He and Garcia, 2009). The distribution of microbial markers
was visualised with Venny (Oliveros, 2015).

4.4.1 Aggregating Ensemble Feature Selection
The robustness of a feature selector can be defined by the variation of feature subset
output caused by small changes to the input (Saeys et al., 2008). EFS can generate
robust feature subsets (Abeel et al., 2010). EFS is inspired by ensemble learning,
where the output of multiple weaker classifiers can be combined to outperform
a single strong model. It has been shown that combining the output of multiple
unstable feature selectors can create a robust consensus feature ranking (Abeel
et al., 2010). Typically filter, wrapper, and embedded feature selection methods
that do not consider the robustness of output have been previously applied to
microbiome data (Statnikov et al., 2013). Random Forests have been widely applied
for supervised classification of IBD from microbiome data and the feature rankings
have been reported for knowledge discovery purposes (Tong et al., 2013; Papa et al.,
2012; Gevers et al., 2014); rankings are often combined with a RFE procedure
to generate a feature subset. Recently an EFS approach was used to generate a
feature subset for the non-invasive prediction of advanced fibrosis in non-alcoholic
fatty liver disease (Loomba et al., 2017). However, this approach does not employ
an aggregation paradigm to measure the robustness of the derived features.

The microbiome census data (input data) were modified by instance perturbation
(removing or adding features) via resampling with replacement (bootstrapping).
Modification can also be done at the feature level (e.g. by adding random noise to
a feature or group of features) or by a combination of instance and feature level
perturbation. To measure the overall effect of bootstrapping on feature stability,
Saeys et al. proposed a similarity measure based approach. In this approach the
stability was measured by averaging the pairwise similarity comparison of feature
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subset output for k bootstraps, which was defined as (Saeys et al., 2008):

Sglobal =
2∑k

i=1
∑k
j=i+1 S (fi, fj)

k (k − 1) (4.3)

where fi is the feature selector output applied to bootstrap i, and S (fi, fj) is a
similarity measure between fi and fj. In this work the Jaccard Index was used as
similarity measure S(fi, fj) (Saeys et al., 2008):

S (fi, fj) = |fi ∩ fj|
|fi ∪ fj|

=
∑
l I(F l

i = f lj = 1)∑
l I(F l

i + f lj > 0) (4.4)

where the function I returns 1 if its argument is true and 0 if its argument is false.
It has been shown that an aggregating EFS approach can improve the robustness

of feature selectors (Saeys et al., 2008) for the prediction of cancer from gene
expression data. Ensemble models are capable of outperforming single models
because if a group of different but equally good hypotheses exist it is less likely
that an ensemble will pick the wrong hypothesis. Furthermore, algorithms can end
up in different local optima enabling an ensemble to better approximate a true
function. Finally it is known that EFS can achieve greater robustness because it
expands the hypotheses space (Dietterich et al., 2000).

EFS has two stages: choosing a set of feature selection algorithms, and combining
the feature subsets into a final consensus ranked list. Let ensemble E contain s
feature selectors F1, . . . , Fs. Each feature selector outputs a feature ranking fi =
f 1
i , . . . , f

N
i . In this work a consensus ranking f was formed by combining feature

subsets with complete linear aggregation (Saeys et al., 2008):

f =
s∑
i=1

w(f li ) (4.5)

where weighting function w is set to w(f li ) = f li . Feature selection must always be
combined with an evaluation of classification performance: domain experts will not
be interested in a stable feature subset that has poor predictive performance. In this
work embedded feature selection algorithms were applied, such as Random Forests
(Breiman, 2001) and linear SVM. Embedded feature selection algorithms provide
feature ranking during training which decreases the computational complexity of
the EFS process. Random Forests are an ensemble of decorrelated decision trees
(Qi, 2012); feature rankings are calculated by randomly permuting a feature in
the out-of-bag samples and calculating the mean change in impurity or accuracy
compared with the out-of-bag rate with unpermuted features. Linear SVMs can
rank features from the absolute value of the weight vector of the hyperplane
(Guyon et al., 2002); RFE is used to reduce the size of the feature subsets by
iteratively removing the poorest 10% of features until the subset is empty. In
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order to effectively evaluate which feature selector should be chosen for a particular
classification problem it is necessary to use a metric that balances the classification
performance of a feature aggregation and the stability of the aggregated features.
The Robustness-Performance Trade-off (RPT) (Abeel et al., 2010) is a metric that
does this. The RPT is a variant of the widely used F1-score which is the harmonic
mean of the precision and recall (Van Rijsbergen, 1979), RPT is defined as (Saeys
et al., 2008):

RPTβ = (β2 + 1) · Sglobal · P
β2 · Sglobal + P

(4.6)

where P is the prediction accuracy of the classification model trained on the
robust feature subset. β is a parameter used to weight the relative importance
between robustness and classification performance. In this work β = 1 to give
equal importance to classification performance and robustness.

Prior to applying EFS a simple filter was applied to remove extremely rare ASVs.
ASVs present in less than 5% of samples were removed, as this study aims to find
microbial markers that are present across a broad population. Prior to EFS 20% of
data were retained from the dataset for independent validation of the final model.
In the first stage of EFS, a portion of the data (20%) is retained in order to test
the performance of the model trained on the remainder of the data (see Figure 4.7).
The training data were repeatedly sampled with replacement (bootstrapped). For
each bootstrap bag a SVM and Random Forest were fit, and recursive feature
elimination was applied to each bag. Feature ranks were extracted across all of
the bags, and merged via complete linear aggregation (Abeel et al., 2010) to form
a single feature ranking list. Each ranked list was combined across all of the
bootstraps to form a final feature subset, along with frequency and consistency
measurements. The RPT was calculated for both models from the classification
performance of the model on the test data and the global similarity measure across
all feature lists. Random Forests were used to validate the generalisation ability
of the microbial markers as they had the highest RPT for both CD and UC. All
classification results reported are from the Random Forest model.

4.4.2 Robust microbial markers of IBD
Approximately 0.5% of ASVs were retained after a two-stage filter and aggregating
EFS feature selection strategy detailed in section 4.4.1 (see Table 4.7). Nearly 4500
ASVs were identified from the stool samples: a simple filter was applied to remove
any ASVs that were not present in at least 5% of samples. After this process,
aggregating EFS was successfully applied to the remaining features (around 250
prevalent ASVs). The overlap of ASVs across IBD subtypes is low - 12.1% of ASVs
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across all bootstrapped samples;

2. Combine feature ranks across all
bootstrapped samples.

Feature Consistency Frequency

Feature1 c1 = No. of occurrences
across N bootstraps

c1
N

· · · · · · · · ·
Featureq cq = No. of occurrences

across N bootstraps

cq
N

for each bag

for each bootstrap

Figure 4.7: Ensemble feature selection workflow, N = 15,M = 40.
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were shared across the CD and UC subsets (see Figure 4.8) - which reflects the
distinct biological differences between the two subtypes.

The stability of a selected feature can be measured by its frequency, which
is the number of times a feature appears in each bootstrap divided by the total
number of bootstraps (see Figure 4.7). Perfectly robust features have a frequency
of 1 while the least robust features will only be present in a single bootstrap; in
this work 5 bootstraps were used so features with a frequency of 0.2 are the least
stable. In the CD cohort 3 ASVs had a perfect frequency (they were present in
every bootstrap), and in the UC cohort 4 features had a perfect frequency (see
Tables 4.5–4.6). It is important to note that the ASV paradigm reveals greater
differences than would otherwise be reported by a clustering approach (Callahan
et al., 2017). OTUs are generally capable of being matched to taxonomic databases
at the level of family or genus (Gevers et al., 2014); all other IBD classification
work agglomerated OTUs into genus-level relative abundance data to represent
the microbiome. ASVs are capable of resolving separate bacterial strains (i.e. at a
level higher than species). However, because ASVs are relatively short fragments
of the full 16S rRNA gene, taxonomic assignment is sometimes limited to higher
ranks. The agglomeration process will discard bacteria that do not meet a defined
phylogenetic or taxonomic threshold. For example, if a genus-level agglomeration
is chosen then OTUs or ASVs that only match to the family level or higher will
be discarded. In this work ASVs are not agglomerated into specific taxonomic
ranks as biological phenomenon (e.g. IBD subtype) may not be accurately modelled
according to human-defined taxonomic hierarchies. ASVs have been shown to
accurately represent true biological variation independently of any taxonomic
reference database (Callahan et al., 2017). Of the most robust features for CD
prediction two could be mapped to genus (Bacteroides and Haemophilus) and one
to family (Lachnospiraceae). One of the most robust features for UC prediction
could be mapped to species (Bacteroides vulgatus), two to genus (Pediococcus and
Ersyipelotrichaceae), and one to family (Ruminococcaceae).

4.4.3 Evaluating the microbial markers
Robust microbial markers should have strong predictive power to be valuable for
knowledge discovery and further investigation by domain experts. The classification
and feature selection ability of Random Forests and SVMs were tested. Random
Forests were chosen as the final model for both IBD subtypes as they had the
highest RPT (a balanced metric of classification performance and aggregated feature
robustness, see Table 4.8). The final models were used to validate the feature
subsets against independent validation data. The dataset was split into two cohorts
according to IBD subtype; the classification task was to distinguish between control
and disease subjects (two class classification). The rationale for this approach
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Figure 4.8: Venn diagram of ASV microbial marker distribution by cohort (CD:
Crohn’s disease, UC: ulcerative colitis).
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Table 4.5: Taxonomy of Robust Microbial Markers of Crohn’s disease.

Frequency Family Genus Species Previously reported?
1 Bacteroidaceae Bacteroides Gevers et al., 2014
1 Pasteurellaceae Haemophilus Gevers et al., 2014
1 Lachnospiraceae Gevers et al., 2014
0.8 Actinomycetaceae Actinomyces graevenitzii 7

0.8 Lachnospiraceae Roseburia Gevers et al., 2014
0.8 Peptostreptococcaceae Intestinibacter bartlettii 7

0.8 Ruminococcaceae Ruminococcaceae
UCG-002

Gevers et al., 2014

0.6 Erysipelotrichaceae Erysipelatoclostridium Gevers et al., 2014
0.4 Lachnospiraceae Roseburia inulinivorans 7

0.4 Bacteroidaceae Bacteroides vulgatus Gevers et al., 2014
0.4 Alcaligenaceae Parasutterella excrementihominis Ricanek et al., 2012
0.4 Pasteurellaceae Actinobacillus Gevers et al., 2014
0.2 Veillonellaceae Megamonas funiformis 7

0.2 Fusobacteriaceae Fusobacterium Gevers et al., 2014
0.2 Bacteroidaceae Bacteroides Chen et al., 2014
0.2 Pasteurellaceae Haemophilus influenzae or

parainfluenzae
Gevers et al., 2014

0.2 Ruminococcaceae Ruminiclostridium 5 Gevers et al., 2014
0.2 Enterobacteriaceae Escherichia /Shigella Gevers et al., 2014
0.2 Ruminococcaceae Ruminococcus 2 bromii Swidsinski et al., 2005
0.2 Lachnospiraceae Blautia Gevers et al., 2014
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Table 4.6: Taxonomy of Robust Microbial Markers of ulcerative colitis.

Frequency Order Family Genus Species Previously
reported?

1 Clostridiales Ruminococcaceae Gevers et al.,
2014

1 Bacteroidales Bacteroidaceae Bacteroides vulgatus Gevers et al.,
2014

1 Lactobacillales Lactobacillaceae Pediococcus Wang et al., 2014
1 Erysipelotrichales Erysipelotrichaceae Erysipelotrichaceae

UCG-003
Gevers et al.,
2014

0.8 Clostridiales Lachnospiraceae Anaerostipes hadrus 7

0.8 Clostridiales Peptostreptococcaceae Intestinibacter bartlettii 7

0.8 Lactobacillales Streptococcaceae Streptococcus Gevers et al.,
2014

0.6 Enterobacteriales Enterobacteriaceae Gevers et al.,
2014

0.6 Clostridiales Lachnospiraceae Gevers et al.,
2014

0.6 Lactobacillales Streptococcaceae Lactococcus Gevers et al.,
2014

0.6 Lactobacillales Lactobacillaceae Lactobacillus Gevers et al.,
2014

0.2 Bacillales Family_XI Gemella Gevers et al.,
2014

0.2 Clostridiales Lachnospiraceae Gevers et al.,
2014

0.2 Bacteroidales Bacteroidaceae Bacteroides Gevers et al.,
2014

0.2 Clostridiales Ruminococcaceae Faecalibacterium cf./prausnitzii Sokol et al., 2008
0.2 Bacteroidales Bacteroidaceae Bacteroides Gevers et al.,

2014
0.2 Bifidobacteriales Bifidobacteriaceae Bifidobacterium Gevers et al.,

2014
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stems from the important biological differences present in the pathophysiology of
UC and CD, which represents an interesting area for knowledge discovery to be
derived from consensus feature subsets.

Non-invasive prediction of both IBD diagnosis and IBD subtype from stool
samples has been previously attempted, including from this dataset (Gevers et al.,
2014). In (Gevers et al., 2014) IBD was predicted from biopsies of the terminal
ileum (mean AUC: 0.85) and rectum (mean AUC: 0.78) with good performance.
Prediction from stool samples was less successful (mean AUC: 0.66 with much lower
consistency). The models used relative microbial abundance data agglomerated
to a genus level. In Tong et al. IBD was predicted with an accuracy of up to
70% (Tong et al., 2013) using nearest shrunken centroid classification from biopsy
samples. In (Papa et al., 2012) classification performance was reported at two
different thresholds: in the first, a sensitivity of 80.3% and a specificity of 69.7%
was reported. The second reported a sensitivity of 45.8% and a specificity of
92.4%. It is important to note that the patient cohort used in Papa et al. had
a mean disease duration of 34.8 months, while the publicly available dataset
used in this work consists of samples collected at time of diagnosis. Due to this
lengthy disease duration many of the patients in the cohort had been treated with
anti-inflammatory drugs or other pharmacological interventions which may have
impacted the composition of the microbiome — the data used in this work do not
suffer from this limitation.

The non-invasive IBD classification described in this section is the highest
performance described in the literature to date. The classification performance of
both feature subsets was excellent. CD was classified with a Positive Predictive
Value (PPV) of 87.6% in the testing set and 96.4% in the validation set, and a
Negative Predictive Value (NPV) of 97.1% in the testing set and 100% in the
validation set. UC was predicted with a PPV of 94.5% in the testing set and
100% in the validation set, and a NPV of 100% in the testing set and 92.6% in the
validation set (see Table 4.7). This is significantly better than performance metrics
reported in Gevers et al., 2014; Papa et al., 2012; Tong et al., 2013.

4.4.4 Knowledge discovery from high resolution
microbiome census data

Every described denoised microbial sequence marker that has been implicated in the
pathogenesis of IBD by the aggregating EFS procedure is novel, as previous work
has relied on analysis of fuzzy clusters (see Tables 4.5–4.6). The reported set of 16S
ASVs can non-invasively predict IBD with the highest reported accuracy to date,
have innate biological meaning and do not rely on reference databases or taxonomic
assignments. The behaviour of ASVs that match the same species can be markedly
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Table 4.7: Classification performance of feature subset

Classification problem Data split Sensitivity Specificity PPV NPV Other
Crohn’s disease Testing 94.5% 90.9% 87.6% 96.1%
Ulcerative colitis 100% 94.5% 94.5% 100%
Crohn’s disease Validation 100% 94.4% 96.4% 100%
Ulcerative colitis 87.5% 100% 100% 92.6%
Papa et al. stool 80.3% 69.7%
Papa et al. stool 45.8% 92.4%
Gevers et al. stool AUROC

0.66
Tong et al. biopsy 70% accu-

racy

Table 4.8: An ensemble of Random Forests were chosen for both classification
problems as they had the highest Robustness-Performance Tradeoff (RPT) measure.

Classification task Model RPT No. features retained
Crohn’s disease Random Forest 0.60 20

SVM 0.58 20
Ulcerative colitis Random Forest 0.70 17

SVM 0.48 17

different (Eren et al., 2013), which demonstrates the limitations of human-defined
taxonomic systems. In order to compare the ASVs to previous work the ASVs were
mapped to the SILVA taxonomic database (Quast et al., 2012). Elements of the
robust microbial marker set that have been found previously in the literature are
described below. In addition, several novel bacterial species that have not been
previously implicated in IBD pathogenesis are also described below. It is important
to note fuzzy clusters, under normal circumstances, are limited to resolving bacteria
at high taxonomic ranks such as Order, Family, or Genus. All of the identified
ASVs have been previously reported in the literature as biomarkers for IBD at high
taxonomic ranks which confirms that the aggregating EFS process has selected
biologically plausible markers. One of the many advantages of the denoising ASV
paradigm is increased taxonomic resolution; as the resolution increases, previously
undescribed microbial markers emerge. The previously described markers below
are gathered from differential abundance statistical tests and machine learning
algorithms (e.g. Random Forest ranks). The reported biomarkers are from samples
gathered from the entire gastrointestinal tract, including stool, rectal or ileal
biopsies.

Blautia, Ruminoccous, Pasteurellaceae, Erysipelotrichales, and Veillonellaceae
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(a) (b)

Figure 4.9: Confusion matrices of models fitted to feature subsets on paediatric
validation data; Crohn’s disease (left) and Ulcerative colitis (right). Each cell
contains a percentage of samples assigned to it: light colours represent a small
percentage, and darker colours represent a large percentage.

are repeatedly observed in the set of robust markers in line with current work
(Gevers et al., 2014). Enterobacteriaceae, Bacteroidales, and Clostridiales have been
repeatedly identified across the literature as IBD biomarkers (Morgan et al., 2012;
Papa et al., 2012; Gevers et al., 2014), and all are strongly represented in the set of
microbial markers. Fusobacterium has been previously reported as a biomarker for
a number of conditions including IBD (Strauss et al., 2011) and colorectal cancer
(Kostic et al., 2012); the risk of developing colorectal cancer in IBD patients is
significantly increased (Triantafillidis et al., 2009). Lachnospiraceae, including the
Roseburia genus specifically, is differentially abundant in IBD subjects (Morgan
et al., 2012). Faecalibacterium prausnitzii is an anti-inflammatory organism and is
associated with health (Sokol et al., 2008). Parasutterella excrementihominis has
been observed to be unique to a cohort of treatment-naïve children (Ricanek et al.,
2012). Bacillales (Hourigan et al., 2015) and Bifidobacterium (Wang et al., 2014)
have also been found to be IBD biomarkers.

When the taxonomic resolution is increased, bacterial species previously unasso-
ciated with IBD begin to emerge. Actinomyces graevenitzii is capable of infecting
humans in combination with other bacterial species. Copathogens such as A.
graevenitzii rely on other bacterial species to inhibit the host immune system or to
reduce the amount of oxygen in the local environment before infection can occur
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(Tietz et al., 2005); A. graevenitzii has been implicated in coinfection with tubercu-
losis (Tietz et al., 2005). In active IBD localised areas of the gut are hypoxic due
to metabolic demand outpacing supply (Colgan et al., 2013): the IBD gut appears
to provide ideal conditions for A. graevenitzii to grow. A. graevenitzii is a strong
biomarker for CD, with a frequency of 0.8 (see Tables 4.5–4.6). Intestinibacter
bartlettii has only been very recently defined, and its role in the human gut and
human health is uncertain; recent work shows that I. bartlettii is thought to be
resistant to oxidative stress and is involved with mucus degradation (Forslund et al.,
2015). Oxidative stress is significantly increased in areas of mucosal inflammation
in IBD (Colgan et al., 2013). I. bartlettii is a robust biomarker for both of the CD
and UC cohorts, with a frequency of 0.8. Both Anaerostipes hadrus and Roseburia
inulinivorans are lactate utilising butyrate-producing bacteria, which have been
proposed as potential probiotics because butyrate promotes gut health (Duncan
and Flint, 2013). A. hadrus is a strong biomarker for UC only with a frequency
of 0.8, and R. inulinivorans is a moderate marker for CD with a frequency of 0.4.
Megamonas funiformis is a weak biomarker for CD (with a frequency of 0.2) and
was originally isolated from human faeces. Its role in the human gut or health is
currently unclear (Sakon et al., 2008). In summary, a group of previously unde-
scribed biologically plausible bacterial species that are robust microbial markers
for IBD is presented. The group includes gut health promoting bacteria, bacterial
species that thrive in the inflammatory environment of an IBD gut and possibly
exacerbate the disease, and other bacterial species with unclear roles in human
health.

4.5 Summary
Modelling the microbiome with supervised learning and feature selection approaches
have implicated specific groups of bacterial genera in the pathophysiology of IBD.
However existing models have only considered taxonomic data, whereas functional
data could illuminate potential mechanisms that underlie IBD aetiology. In addition,
existing feature selection algorithms have not considered the robustness of the
feature selector output, which is important when planning clinical validation of
in silico work. The hybrid model presented in this chapter merges the output of
three different types of data (taxonomic, functional, and clinical) and measures the
relevance of each data type to decompose non-invasive diagnosis of IBD into a series
of simpler classification tasks. After using the Boruta algorithm to measure feature
relevance, the concept of feature robustness was explored with the aggregating EFS
model. Current work in non-invasive IBD prediction has not progressed beyond
predictive model prototypes. The introduction of measuring feature robustness
for microbiome census data is a valuable contribution that could assist clinical
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validation in the future.
There has been debate as to whether functional data (inferred or measured

directly) are useful for making predictions from the microbiome. Preliminary
results suggested that there was little advantage to be gained from using functional
data instead of taxonomic data for many classification tasks. However, there are
compelling theoretical justifications to favour functional data over taxonomic data:
the composition of the microbiome is often highly inconsistent across samples,
but the functional content of the microbiome is typically more homogenous. An
environmental niche will define the functional characteristics of a microbiome. For
example, a highly saline environment will probably have a microbiome that includes
many halotolerant and halophile species, and genes associated with salt tolerance.
Many different halotolerant or halophile species can be present in a highly saline
environment, but the genes present will remain similar. Theoretically this could
decrease noise associated with natural fluctuations of the microbiome and improve
the predictive power of models. However, a systematic analysis of functional data’s
utility has not been attempted with regards to IBD classification. To measure the
relevance of functional data for disease classification the Boruta algorithm was
applied to a variety of different classification tasks that formed a serial hybrid
model. Functional data were the most relevant feature type for all classification
tasks.

After applying Boruta feature selection to the hybrid model the concept of
feature selector robustness was investigated and found to be absent in current
work on predicting disease from the microbiome. Aggregating EFS was applied
for non-invasive IBD prediction from high-resolution microbiome data. A set of
robust novel bacterial species were implicated in the pathogenesis of IBD. The novel
bacterial species were biologically plausible and have been associated with broad
changes to gut health (via butyrate production) in the past. Due to the robust
nature of the microbial markers the route towards potential clinical applications
is made simpler. Due to the expense of marker gene surveys a simpler test would
need to be developed. The use of ASV specific PCR probes to measure the relative
abundance of the microbial markers is one cost-effective option. However, new
models would need to be developed and validated as the process of generating the
data would be significantly different compared with marker gene surveys, which
could impact the predictive potential of the data.

To further illustrate the power of Computational Intelligence (CI) algorithms in
the analysis of genomic data, high-resolution microbiome denosing algorithms will
be extended too the analysis of the oral microbiome in subjects with depression
in chapter 5. Furthermore, the concept of combining different types of data for
classification is extended in chapter 5 for the prediction of depression from a saliva
sample.
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altered oral microbiota in young adults with
depression

That’s a fool’s experiment. But
I love fools’ experiments. I am
always making them.

Charles Darwin

5.1 Introduction
Depression is diagnosed with subjective criteria (e.g. the Hamilton depression scale)
and no diagnostic tests are in widespread clinical use despite decades of work
(Mössner et al., 2007) because of depression’s unclear and complex pathophysiology.
Studies attempting to identify the pathogenesis of depression have identified a
number of candidate mechanisms including neurotransmitter deficiencies (Luscher
et al., 2011), changes to neurotrophic levels (Brunoni et al., 2008), structural brain
abnormalities (Lorenzetti et al., 2009), immune system dysregulation (Dantzer
et al., 2008), and circadian rhythm disruption (Wulff et al., 2010). However, none
of the theories have been fully accepted as a definitive model. Pharmacological
interventions which target these candidate mechanisms remain the fastest and
most effective way of treating the most severe forms of depression (Kirsch et al.,
2008), but up to 50% of patients do not respond to first round treatment with
antidepressant drugs (Mrazek et al., 2014). Due to the low response rate, multiple
treatment cycles are a common approach to identify an effective antidepressant drug,
which worsens patient outcomes (Mrazek et al., 2014). For patient outcomes to
improve, new aetiological theories must be developed and explored in combination
with a precision medicine approach.

The gut microbiota — the complex community of microorganisms that inhabit
the human gastrointestinal tract – have been implicated in the pathophysiology
of many diseases, including Inflammatory Bowel Disease (IBD) (Gevers et al.,
2014), obesity (Turnbaugh et al., 2006), and diabetes (Qin et al., 2012). A growing
body of evidence supports the view that the gut microbiota play a key role in
the aetiology of depression via regulation of the central nervous system known as
the gut-brain axis (Cryan and Dinan, 2012; Foster and Neufeld, 2013). Broadly
speaking three mechanisms have been proposed to explain this regulation by the
microbiota: by altering neurotransmitter signalling, modulating the hypothalamic-
pituitary-adrenal (HPA) axis, and inflammation. Inflammation may lead to a
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dysfunctional intestinal epithelium barrier or “leaky gut” due to the opening of
intercellular tight junctions (Kelly et al., 2015), driving a chronic low-grade pro-
inflammatory state and subsequent activation of the HPA-axis, via the exit of
bacterial organisms and their products, as well as inflammatory mediators (Kelly
et al., 2016). Bacterial products and inflammatory components can cross the blood
brain barrier and cause an inflammatory response via the activation of microglia
cells (Yirmiya et al., 2015), which are the primary immune cells of the central
nervous system. Regular microglial activation can cause chronic brain inflammation,
which potentially contributes to the structural and functional brain differences
associated with mental health disorders (Stein et al., 2017). The gut microbiota
can also modulate the concentration of neurotransmitters present in the host
(O’Mahony et al., 2015). In addition to helping to understand the pathophysiology
of depression, the gut microbiota can also provide an opportune location for the
development of novel treatments. psychobiotics — probiotics with potential mental
health benefits — could be therapeutically useful for treating mental illnesses in
humans. Animal models have shown the psychobiotic potential of species such
as Lactobacillus rhamnosus (JB-1) (Bravo et al., 2011). Although this candidate
psychobiotic has to date failed to translate to humans (Kelly et al., 2017) recent
work has shown administering Bifidobacterium longum 1714 can reduce stress and
improve memory in a human cohort (Allen et al., 2016).

The majority of research to date has focused on the role of the microbiome-
gut-brain axis in brain physiology and neurochemistry (Naseribafrouei et al., 2014;
Jiang et al., 2015; Zheng et al., 2016). Although the oral microbiome is one of
the most diverse microbiomes in the human body, has a significant influence on
microbiomes found across the rest of the gastrointestinal tract, and plays a key role
in health and disease (Wade, 2013) it has received little attention to date. Saliva is
a cost effective non-invasive biomarker source that offers collection, handling and
economic advantages compared with methods that require stool or biopsy samples
(Yoshizawa et al., 2013). Saliva is a heterogeneous fluid made up of water, proteins
and small inorganic substances. Saliva is essential for digestion, lubrication, and
acts as a barrier to pathogens (Humphrey and Williamson, 2001). Three major
salivary glands create approximately 90% of saliva fluid and these glands are
surrounded by blood capillaries. Therefore saliva glands have the potential to
absorb blood based biomarkers of disease, which suggests that saliva fluid may
contain comprehensive disease information (Liu and Duan, 2012). Oral dysbiosis
has been linked to systemic diseases (i.e. affecting the entire body, not just the oral
cavity) with an underlying inflammatory aetiology such as rheumatoid arthritis
(Said et al., 2013) and Alzheimer’s disease (Shoemark and Allen, 2015). In this
Chapter bacterial 16S ribosomal ribonucleic acid (16S rRNA) high-throughput
gene sequencing will be used to compare the oral microbiota of 87 young adults (44
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depressed and 43 controls) to evaluate if changes to the structure and composition
of the oral microbiota are associated with depression status. Section 5.2 will
outline the theory that underpins microbial ecology, the study of the relationships
between microorganisms and their environment. Section 5.3 will describe the
process of applying the microbial ecology theory to the 16S rRNA data to identify
alterations induced by depression. Section 5.4 presents a set of alterations to
the oral microbiome associated with depression for the first time. Section 5.5
implements a data-driven Computational Intelligence (CI) algorithm known as a
Super Self-Organising Map (sSOM) (Wehrens, Buydens et al., 2007) to perform
multimodal classification and enable the prediction of depression from microbiome
census data with the highest reported performance in literature to date. This
Chapter finishes with a summary in Section 5.6.

5.2 Microbial ecology theory
Many methods of analysing microbiome census data are taken from ecology. Ecology
is the scientific analysis of the interactions between organisms and their environment.
Ecology includes studying interactions between members of the same species,
interactions across different species, and interactions with abiotic (e.g. physical
or chemical) factors of the environment (Stauffer, 1957). Microbiome census data
can be used to investigate the ecology of microorganisms (also known as microbial
ecology or environmental microbiology).

Ecological terms and processes that describe the diversity and structure of a
site are widely applied to microbiome census data. Whittaker introduced the terms
alpha diversity (α-diversity), beta diversity (β-diversity), and gamma diversity
(γ-diversity; Whittaker, 1972). He proposed that the total species diversity of
an environment (γ-diversity) could be estimated from the mean species diversity
across local sites (α-diversity) and the changes among these sites (β-diversity).
The questions these terms and processes can help answer about the richness and
structure of microbiomes is an important stage of most microbiome experiments.
However, it is important to be cautious when applying widely used procedures from
ecology to microbiome count data derived from high throughput sequencing, as
many assumptions (e.g. regarding heteroscedasticity, sparsity, and compositionality;
described fully in Chapter 3) do not hold true.

5.2.1 Estimating diversity
In microbial ecology α-diversity is used to measure the within-community diversity
of samples (i.e. considering the diversity of samples individually). Methods of
measuring diversity are usually split into two categories: presence-absence metrics
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and relative abundance indices. Measuring α-diversity with species richness falls
into the former category. Most diversity indices fall into the latter category. A
diversity index is a mathematical measure of the diversity of a site. By taking into
account the relative abundance of species, diversity indices offer more information
about the true diversity of a site.

Alpha diversity indices

Table 5.1: Species richness of two example sites.

Site A Site B
Species 1 25 90
Species 2 25 10
Species 3 25 5
Species 4 25 5
Total 100 110

Consider the simple example in Table 5.1. Which site is more diverse? Although
site B has a greater richness than site A, the distribution of species in site A is much
more even. Biological diversity stabilises complex ecological systems in response
to environmental changes (Cleland, 2011). Experimental evidence has shown that
environments such as site A are positively correlated with ecosystem-level stability
but negatively correlated with species-level stability, as smaller species populations
are more likely to go extinct from random environmental changes (Cleland, 2011).
Therefore for a more comprehensive view of biological diversity, evenness — which
measures the relative abundance of the different species present in a site — must
be incorporated into diversity estimates. A diversity index can take into account
the distribution of species in a site. Dozens of diversity indices exist, and three
examples will be described further: Simpson’s Diversity Index (Simpson, 1949), the
Chao index (Chao, 1984), and Faith’s Phylogenetic Diversity Index (Faith, 1992).
The first is important because it describes both richness and evenness. The second
is important because in addition to describing richness and evenness the index
takes into account uneven sampling depths across samples. The third incorporates
phylogenetic differences between species. Simpson’s Index is defined as:

dsimpson =
∑Sobs
i=1 ni (ni − 1)
N (N − 1) (5.1)

where Sobs is the number of observed operational taxonomic units (OTUs), ni is
the number of individuals present in the i-th OTU, and N is the total number of
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individuals in a site. When calculating dsimpson, 0 represents infinite diversity, and
1 no diversity. This is somewhat counterintuitive, and it is common to calculate
the reciprocal of dsimpson to obtain the inverse Simpson’s index in which higher
diversity is represented by a larger value.

A sampled site will always have undetected species present. This problem
is worse for microbiome census data where library sizes can differ by orders of
magnitude across samples. The Chao index offers a method for estimating and
incorporating the number of unseen species present in a site. The Chao 1 index, a
widely used variant of the Chao index, is defined as:

dchao = Sobs + F 2
1

2F2
(5.2)

where Sobs is the number of observed OTUs, F1 is the number of species with
exactly one observation (singletons), and F2 is the number of species with exactly
two observations (doubletons). The theoretical justification for the Chao index is
that if rare species (singletons) are still being discovered during sampling then more
undiscovered rare species are likely to be present. If all species are observed at least
twice then it is likely no more species will be discovered. It has been shown that
the Chao 1 estimator performs well on standard ecological datasets, and the degree
of certainty can be measured with confidence intervals (Colwell and Coddington,
1994).

Although calculating Chao 1 is supported by all microbiome workflow software
packages it is not conceptually valid to apply non-parametric estimators reliant on
singletons to microbiome census data. It is currently impossible to distinguish true
singletons from sequencing error. If singletons are included in microbiome census
data, the majority are likely to be false positives. Chao 1 is extremely sensitive to
singletons (singleton abundance is squared), so including false positive singletons
artificially inflates the apparent richness of a sample. Due to the difficulties described
above, denoising pipelines such as dada2 do not attempt to call singletons. This
process would result in Chao 1 not providing a proper estimated richness. The
diversity of microbiome census data should instead be estimated with indices that
are not reliant on singletons, despite these measures not taking into account uneven
library sizes across samples.

Faith’s phylogenetic diversity is a diversity estimator that incorporates phy-
logenetic differences between species, and is defined by “the sum of the lengths
of all those branches that are members of the corresponding minimum spanning
path” (Faith, 1992), where a branch is defined as a segment of a cladogram (a
phylogenetic tree), and the minimum spanning path is defined as the minimum
distance between two nodes (Faith, 1992). Capturing phylogenetic information
can improve the ability of an alpha diversity estimator to capture the true level of
diversity in an environment. For example, a site containing many closely related
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species could be considered less diverse than a site containing fewer but highly
unrelated organisms.

Beta diversity indices

The Bray-Curtis dissimilarity index is a beta diversity index that quantifies the
dissimilarity between different sites, and is defined as (Bray and Curtis, 1957):

BCi,j = 1− 2Ci,j
Si + Sj

(5.3)

where Ci,j is the sum of the lesser counts for each species found in both sites,
and Si and Sj are the total number of species counted at both sites. The Bray-
Curtis dissimilarity is bounded to between 0 ≤ BCi,j ≤ 1, where 0 represents total
dissimilarity (no species are shared between the two sites) and 1 represents total
similarity.

Taxon resampling curves

Taxon resampling curves can be used to determine if enough observations have
been made so that a quantity (e.g. an estimate of biological diversity; R) can
be estimated from the sampling process. Further biological replicates or deeper
sequencing may be required to get a true understanding of the structure of a
microbial community if a site has been insufficiently sampled. R is typically
measured via species richness (the raw number of different species in a defined
environment) or other measures of α-diversity. Taxon resampling curves are also
known as rarefaction curves, and the process of generating rarefaction curves is
sometimes called rarefaction. However, it is important not to confuse generating
rarefaction curves with the normalisation procedure that is also called rarefaction.
The rarefaction normalisation technique randomly discards observations from
samples until a defined threshold is met. Rarefaction normalisation effectively
reduces the library size of samples to a common threshold (typically set to be the
library size of the sample with the fewest observations).

Taxon resampling curves plot the value of R against the number of observations
used to calculate R (see Figure 5.1). R is estimated for fewer observations by
random undersampling. If R is horizontally asymptotic it is reasonable to assume
that sufficient sampling has been done. If R has not converged, then it is possible
that a good estimate of R cannot be made for the true population. Taxon resampling
curves are only suggestive and cannot be interpreted in a strict way. It is possible
that rare species have been missed by chance and that the sampling effort has been
insufficient even if R has converged. Additionally, applying taxon resampling curves
to data gathered via high-throughput sequencing raises an additional problem: it
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Figure 5.1: Taxon resampling curve (example data taken from the Global Patterns
dataset). Left: Number of OTUs. As sampling increases R increases, falsely
indicating sampling is insufficient. Right: α-diversity measured by the Shannon
diversity index. As sampling increases R has reached a horizontal asymptote,
indicating the value of R is a reasonable estimate of diversity and sufficient sampling
has taken place.

is impossible to determine if rare species are truly present or if they are observed
because of sequencing error.

High-throughput sequencing will have a constant error rate above 0%. As the
library size (the number of discrete sequence reads) of a sample increases, the
number of observed species will also increase because of sequencing error, even
if all of the true species have already been observed. This will cause R to never
converge (see left side of Figure 5.1). Taxon resampling curves must be therefore
interpreted with this caveat in mind.

5.2.2 Analysing composition
One of the most widely applied approaches to analysing the composition of the
microbiome is differential abundance tests. Differential abundance tests measure
if the mean abundance of a taxa is significantly different across multiple sample
classes defined by the experimental design. DESeq is a complex software package
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Table 5.2: Poisson distribution example

Expected number of
red balls

Standard deviation of
number of red balls

Relative error in esti-
mate

10
√

10 = 3.16 31.60%
100

√
100 = 10.00 10.00%

1,000
√

1, 000 = 31.62 3.20%
10,000

√
10, 000 = 100.00 1.00%

designed to accurately analyse the differential expression of sequence count data
(Anders and Huber, 2010). Although DESeq was originally developed for RNA-Seq
count data, it has been applied to microbiome count data, as they share many
properties (McMurdie and Holmes, 2014). Before DESeq can identify differentially
abundant taxa the library size for each sample must be normalised. DESeq creates
a “virtual reference sample” by taking the geometric mean of each taxa abundance
for all samples. Each sample is then normalised to the reference sample to identify
a scaling factor (called a size factor) for each sample. The key challenge for
a differential abundance test is to determine if the variance in sequence read
counts across biological replicates arises from random noise or from true biological
variation.

Noise (variance) is correlated with abundance in microbiome census data.
Therefore statistical power is also correlated with abundance in microbiome count
data. Consider an experiment with a bag containing small white and red balls.
The task of the experiment is to determine the fraction of red balls present in the
bag (e.g. 20%). Each subject is permitted to withdraw a certain number of balls
from the bag without looking. Variation in the number of balls sampled implies
different levels of uncertainty about the estimated fraction of red balls present in
the bag (see Table 5.2).

The negative binomial distribution is a probability distribution that is a gen-
eralisation of the Poisson distribution and includes two parameters (mean µ and
variance q + v). It has been found that the Poisson distribution can be used to
accurately model noise between technical replicates but is unable to accurately
model the variance introduced from biological replicates for RNA-Seq data (Mari-
oni et al., 2008). The differential abundance test implemented by DESeq assumes
that the count Ki,j for gene i in sample j is generated by the negative binomial
distribution with mean sjµj and dispersion α:

Ki,j ∼ NB(sjµiαi) (5.4)

where sj is a scaling factor that accounts for the library size of sample j. Estimating
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α is difficult for each gene with sample sizes that are typical in biological experiments.
Therefore α is estimated by assuming that genes with similar abundances have
similar variances across samples. By sharing this information across samples the
mean-dispersion relationship can be accurately estimated. This is the key advantage
of applying DESeq to microbiome census data: the information sharing process
increases the power of the test to detect differential abundance whilst controlling
false positives. The null hypothesis is that all samples have the same µj (and that
any differences are generated only by noise). The alternative hypothesis is that µj
is the same only within groups (Love et al., 2014):

log µj = β0 + xjβT (5.5)

where xj = 0 if j is a control sample and xj = 1 if j is a treatment sample (i.e.
the phenomenon being investigated by the experimental design). The data are
fitted to a generalised linear model and the coefficients β are estimated. A Wald
test is used to determine the probability that the difference between control and
treatment is observed if there is no true effect (i.e. low probability indicates there
is true biological variation; Love et al., 2014).

DESeq also offers a method of transforming count data so that the variance is
approximately independent of the mean, called a variance stabilising transformation.
This is useful for downstream applications such as machine learning and clustering.
The variance stabilising transformation is given by (Anders and Huber, 2010):

τ(κ) =
∫ κ dq√

w(q)
. (5.6)

where w(q) is the variance-mean dependence estimated by DESeq (see red line on
the left panel of Figure 3.12). Applying transformation τ to count data ki,j

sj
, where

ki,j is the count of the i-th sequence of the j-th subject and sj is the size factor
(depth of coverage) of the j-th sample, returns values that have approximately
similar variances. The returned values are normalised with respect to library size
and are on the log2 scale.

The variance stabilising transformation can produce negative numbers which can
break downstream techniques that require positive numbers. A negative count is
equivalent to the abundance of a particular sequence being lower than the detection
limit of the sampling method. This is a particular problem for many techniques
which have been developed and widely applied in ecology. Ecologists cannot be
faulted for not considering this as, for example, it would be odd to find less than 0
sheep in a surveyed field.
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5.2.3 Inferring microbial interactions

Interactions between species have been regularly inferred from abundance patterns.
Diamond first suggested ecological relationships could be inferred from the presence
or absence of species across habitats (known as a “checkerboard pattern”; see
Figure 5.2(a); Diamond, 1975). Similar patterns have also been observed in
microorganisms (Horner-Devine et al., 2007): microbial interaction analysis detects
patterns of co-occurrence and mutual exclusion across different samples, which
are thought to represent a range of ecological relationships such as mutualism or
commensalism (see Figure 5.2(b)). Complex ecological relationships are responsible
for driving a number of natural phenomena, including dental plaque formation
(Kolenbrander et al., 2010) and algal blooms. Microbial interaction analysis is an
instance of network inference, which attempts to identify relationships from count
data.

Generally there are two reasons why a pair of species consistently correlate
or exclude one another: because of an ecological relationship (e.g. commensalism,
amensalism, mutualism, competition, and predator or prey) or due to an ecological
niche overlap or alternative preference. An ecological niche is defined as the role
and position a species has in its environment. For example, a halophile will have a
co-exclusion relationship with any species that cannot tolerate salinity in a saline
environment. In contrast to ecological relationships there is no direct interaction
between the species in this example, the pattern of co-occurrence is caused by the
environment.

Microbiome count data are sparse and compositional, which creates problems
for standard similarity measures that are used in similarity-based network inference.
Computing a correlation score for a pair of species with an abundance of zero is
particularly problematic (known as the “double zero problem”), as it is impossible
to know if the species are below the detection threshold or if the species is truly
absent. It is therefore sensible to avoid giving sparse pairs a high correlation score.
Similarity measures are also often severely distorted by compositional data, because
if one species has a particularly high abundance other species will appear to have
a lower abundance as the sum is constrained to an arbitrary limit (1 in the case
of data normalised to be a proportion). Sparse Correlations for Compositional
data (SparCC) (Friedman and Alm, 2012) is a network inference algorithm that
is designed to not be affected by compositionality or sparsity, and is applied in
this Chapter. Once an accurate similarity score is generated the significance of
the correlation for each species pair can be assessed via a bootstrap significance
testing procedure. A network with edges as relationships and nodes as taxa can be
created to visualise significant ecological relationships (after discarding edges with
a p value above 0.05, and removing nodes with no edges).
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(a)

(b)

Figure 5.2: (a) Example of checkerboard patterns arising from abundance data
that show co-occurrence relation (b) Ecological relationships
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Figure 5.3: A self-organising map. Adapted from "Self-organising map" (Wilbrow,
2013).

5.2.4 Self-Organising Maps for microbial ecology

Data-driven approaches have minimal priors or constraints. Standard statistical
tests and models make many assumptions about input data. For example, para-
metric statistical tests assume that input data are normally distributed, have a
homogenous variance, have a linear relationship, and are independent. As discussed
in Chapter 3, microbiome census data violate many of these assumptions. In this
chapter an Artificial Neural Network (ANN) variant called a Super Self-Organising
Map (sSOM) (Kohonen, 1998; Melssen et al., 2006) is applied for the purpose of
supervised classification as it is a data-driven algorithm and can tolerate highly
dimensional input data. ANNs are inspired by biological nervous systems and
have been widely used for supervised regression and classification. ANNs can
model complex nonlinear relationships between an input feature space (i.e. the
composition of a microbiome) and an output feature space (class membership).

Self-Organising Maps (SOMs) (Kohonen, 1990) make no assumptions about
the distribution or properties of the input data, and can easily scale to very large
data sets, which makes them appealing for analysing highly complex biological
data. SOMs are often used for unsupervised learning; an XY-Fused (XYF) SOM
consists of two layers (one for input, X, and one for output, Y ) and is capable of
supervised classification. sSOMs are based on XYF maps, but expand the concept
to include a set of input maps (one for each data type) to enable multimodal data
fusion (Melssen et al., 2006).
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Self-Organising Maps

A SOM is a set of unconnected units that are ordered according to a topology
parameter (often a two-dimensional hexagonal grid). The units are connected
to the vertices of the topology. Each unit is assigned a weight vector for each
input instance (e.g. a vector of bacterial counts). Input instances are randomly
presented to all units in the network. The unit with a weight vector closest to the
presented instance is deemed the winner. After the winner is chosen the weight
vectors of the winning unit and its closest neighbours are updated to be more
similar to the presented instance. The updating process is done by calculating
the difference between the input instance and the weight vector of the respective
unit and modifying the difference by a (the learning rate). The modified difference
is then added to the original weight vector, making the winning unit and its
neighbours more similar to the input instance. This process is iterated until every
input instance has been presented to the network a sufficient number of times,
which is a parameter set by the user (epoch number).

Super Self-Organising Maps

The XYF network (the sSOM) uses a fused similarity measure that relies on a
combination of similarities between an input instance X and all units in the X
network, and the similarities between the output instance Y (class membership)
and all units in the Y network. The fused similarity measure for Xi, Yi is defined
as:

Sfused (i, j) = α (t)S (Xi,Xmapx) + (1− α (t)S (Yi,Ymapx)) (5.7)

where α (t) is the relative weight between similarities S (Xi,Xmap) and S (Yi,Ymap)
in the t-th epoch (Melssen et al., 2006). One epoch occurs after all samples in the
training set have been presented to the network. The fused similarity measure is
used to determine the winning unit that is best across both maps (i.e. incorporating
input data as well as class membership data). More in depth explanations of the
algorithm are available (Melssen et al., 2006).

In many scientific fields information about a phenomenon can be recorded from
different types of detectors, across multiple experiments, and in different conditions.
Each of these different recording methods is referred to as a modality. Multimodality
is particularly important for biological data because a single modality will rarely
provide complete knowledge about a complex system. To test the hypothesis that a
multimodal paradigm would benefit modelling the oral microbiome, a multimodal
approach was implemented by fusing microbiome census data, sequencing metadata
(the library size represents a measure of certainty about the sequencing process),
and host (environmental) data.
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Table 5.3: Sample demographics Cases; n=44 and controls; n=43 controls. Age,
gender, smoking status and depression severity score based on participant response
to CIDI depression section. Maximum depression score for inclusion in healthy
group = 15, and minimum depression score for inclusion in depression group = 30.

Demographics Controls (n = 43) Cases (n = 44)
Age (mean) 21 22

(Range ± SD) (18 – 36 ± 3.9) (18 – 38 ± 5.3)
Gender

Male 13 (30.2) 11 (25.0)
Female 30 (69.8) 33 (75.0)

Smoking status
Past (%) 0 (0.0) 7 (29.5)
Daily (%) 3 (7.0) 13 (29.5)
Occasional (%) 6 (14.0) 9 (20.5)
Never (%) 34 (79.1) 11 (25.0)
Missing (%) 4 (9.12)

Depression score (mean) 34.6 10.1
(Range ± SD) (32 – 35 ± 0.9) (7 – 14 ± 2.5)

5.3 Modelling the oral microbiome
Samples for this study were utilised from the Ulster University Student Wellbeing
Study (UUSWS), conducted as part of the WHO World Mental Health International
College Student Project (WMH-ICS), with Ulster University representing Northern
Ireland in this global initiative (McLafferty et al., 2017). Ethical approval was
obtained from Ulster University Research Ethics Committee (REC/15/0004). First
year students were recruited during registration where they gave written consent,
provided a saliva sample and were given a unique, anonymous number to complete
an online mental health survey clinically validated against the DSM-IV.

Saliva samples were collected using Oragene OG-500 kits (DNA Genotek,
Ontario Canada), enabling the self-collection and stabilisation of DNA at room
temperature. Cases of depression (n=43) were selected based on survey responses
to seven questions corresponding to DSM-IV criteria for depression using a Likert
scale response, and controls matched where possible for age, gender, ethnicity and
smoking status (see Table 5.3). After quality control checks 83 samples remained
for analysis.

Microbiome DNA purification was carried out using MasterPure™ DNA Pu-
rification Kit and Ready-Lyse™ Lysozyme from the MasterPure™ Gram Positive
DNA Purification Kit (Epicentre, Madison, US) according to the manufacturer’s
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instructions. The quantity of DNA was measured on a Nanodrop spectrometer
(Fisher Scientific, Loughborough, UK) and the quality measured using the 260/280
ratio and 1.5% gel electrophoresis. To confirm the presence of bacterial DNA, broad
range 16S PCR was carried out. Finally, 50µl of 22ng/µl of good quality DNA was
sent to The Forsyth Institute for 16S high-throughput sequencing (Duran-Pinedo
and Frias-Lopez, 2015).

To prepare for sequencing, PCR amplification of 10—50ng of sample DNA
was carried out using V3 – V4 primers and 5 Prime Hot Master Mix. The
amplicon product was then purified using Solid Phase Reversible Immobilization
with AMPure beads, and 100ng of each amplicon library was pooled, gel-purified,
and quantified using a bioanalyser and subsequent qPCR. Finally, 12 pM of the
library mixture was then spiked with 20% PhiX (Illumina, San Diego, CA), and
sequenced on Illumina MiSeq (Belstrøm et al., 2016). The in vitro work described
above was performed by Elaine Murray and Coral Lapsley at the Northern Ireland
Centre for Stratified Medicine.

The resulting sequence data were denoised with the R v3.4.2 package dada2
(v1.4.0; Callahan et al., 2016b) using a standard operating protocol (Callahan
et al., 2016b). In brief quality-filtered paired end sequences reads were trimmed,
denoised, and joined into contigs. Chimeric sequences were removed and taxonomy
was assigned to the denoised sequence reads using the Ribosome Database Project’s
naïve Bayesian classifier (Wang et al., 2007a) and the SILVA 16S rRNA gene
reference database (Quast et al., 2012). The denoised sequences represented exact
16S rRNA gene sequence variants. These sequence variants were not binned
into fuzzy operational taxonomic units as the exact sequence variant paradigm
is superior to a sequence similarity cutoff approach (Callahan et al., 2017). A de
novo phylogenetic tree was generated from the amplicon sequence variants (ASVs)
with the R package phangorn v2.3.1 (Schliep, 2010). The abundance of 16S rRNA
gene sequence variants, taxonomy data, phylogenetic tree, and sample information
(e.g. depression status) were combined into a phyloseq v1.20.0 (McMurdie and
Holmes, 2013) object for statistical analysis. Exact sequence variants of interest
were further analysed (e.g. differentially abundant exact sequence variants) by
matching sequences against the Human Oral Microbiome Database (Chen et al.,
2010); ASVs were matched to a species level to identify possible mechanisms of
action.

5.3.1 Statistical analysis
The microbial community composition (β-diversity) was estimated using Bray-
Curtis dissimilarity with the R package vegan (v2.4.3; Oksanen et al., 2007). The
Bray-Curtis dissimilarity was estimated from normalised copy number compensated
microbiome census data. To detect statistical differences in β diversity between
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groups a Permutational multivariate analysis of variance (PERMANOVA) imple-
mented in the vegan package was used. A β-dispersion test (vegan::betadisper)
was used to verify that statistically significant groups identified by PERMANOVA
had the same dispersions. The community structure of the oral microbiome was
visualised with a canonical correspondence analysis (CCA) biplot; statistically
significant environmental terms (determined by the PERMANOVA test) were
included on the ordination. The significance of the CCA ordination solution was
confirmed with a permutation test (vegan::anova.cca).

Differential abundance of ASVs was tested using the R package DESeq2 (v1.18.1;
Love et al., 2014). To preserve statistical power very rare ASVs (present in
less than 10% of samples) were removed prior to testing. DESeq2 implements
a generalised linear model (GLM) based on the negative binomial distribution
to detect differential expression in count data while accounting for differences in
library size and biological variation. Although DESeq2 was originally developed
for RNASeq data recent work has shown that it is well suited for application to
microbiome census data compared with other widely used statistical techniques
that rely on destructive normalisation techniques (McMurdie and Holmes, 2014).
Raw reads from both the microbiome count data and functional profiles were
fitted to a negative binomial GLM and a Wald test was used to determine the
significance of GLM coefficients. DESeq2 corrects for multiple testing with the
Benjamini-Hochberg adjustment; statistical significance was determined at the
5% level. Differential abundance was expressed as log2 fold change in depressed
subjects relative to control subjects. Differential abundance was determined for
both microbiome census data and functional profiles with a design blocking variation
introduced by smoking and gender (i.e. only considering the potential effects of
depression on abundance).

The SparCC algorithm (Friedman and Alm, 2012) implemented in the fastspar
(v0.0.3) software package was used to calculate the correlation (co-occurrence) of
ASVs. The co-occurrence matrix is a symmetrical N×N matrix (where N gives the
total number of ASVs). Exact p-values were calculated for the co-occurrence matrix
via permutation tests (1000 iterations). The original SparCC algorithm estimates
pseudo p-values, which can be zero. Permutation p-values should never be zero,
as zero values cause multiple testing correction procedures to be overly lenient
(Phipson and Smyth, 2010). The fastspar implementation reports exact p-values.
GNU Parallel (v20141022; Tange et al., 2011) was used to parallelise fastspar to
decrease the execution time of the process. A correlation matrix and exact p-value
matrix were estimated for non-smoking depressed subjects and non-smoking healthy
subjects. The p-value matrix was false discovery rate adjusted (Benjamini and
Hochberg, 1995). The R package igraph (v1.1.2; Csardi and Nepusz, 2006) was
used to build an undirected graph from each co-occurrence matrix, in which nodes
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are exact sequence variants and edges are the interaction type (e.g. co-presence
or co-absence). Edges with p > 0.05 were removed and nodes with no edges after
filtering were also removed. This resulted in a graph subset for both the healthy and
depressed cohort. The set difference of the graphs was taken to identify statistically
significant microbial interactions that were unique to the depressed cohort.

16S rRNA gene copy number compensation and prediction
of functional content with Phylogenetic Investigation of
Communities by Reconstruction of Unobserved States
(PICRUSt)
Different bacteria have a different amount of 16S rRNA gene copies (16S copy
number), which can bias estimates of abundance and diversity (a bacteria with
a very high 16S copy number will have an artificially inflated abundance). The
16S copy number of ASVs was estimated from the ribosomal RNA database (v5.1;
Stoddard et al., 2014). Approximately 50% of the ASVs were not present in the
database. The copy number for unknown ASVs was estimated using the copy
number of the known DSVs and a phylogenetic ancestral state reconstruction
algorithm (the R package picante 1.6-2 Kembel et al., 2010). The compensated
abundance ASV yi,j was calculated by yi,j = xi,j

zi
where xi,j gives the count of the

i-th amplicon sequence variant from the j-th sample, and zi gives the copy number.
ASVs with an abundance less than 1 for every sample after this transformation
were removed. The compensated counts were used for every stage of the analysis,
except differential abundance testing and functional prediction.

PICRUSt (Langille et al., 2013) was used to identify differences in inferred
functional content between depressed and control groups. In brief: ASVs were
added to the GreenGenes version 13.5 reference database. ASVs that diverged by
more than 3% were discarded according to a standard operating protocol (Maffei,
2018). New PICRUSt precalculated files were created from the new reference
database. ASV abundance was normalised by 16S copy number and the bacterial
composition was used to predict KEGG Ortholog (KO) from the new precalculated
files. KOs were collapsed into Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways using the categorize_by_function.py command provided by PICRUSt.
Linear discriminate analysis effect size (LEfSe) was used to identify differentially
abundant functional pathways in the depressed cohort (Segata et al., 2011).

5.3.2 Multimodal classification of depression
The kohonen package (v3.0.4; Wehrens, Buydens et al., 2007) in R was used to
implement a sSOM with separate layers for each data type. The sSOM was used to
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perform two-class supervised classification (healthy or depressed). Three types of
microbiome data were used to train a map (four including class memberships) i.e.
untransformed raw microbiome census data, the library size for each sample, and
environmental data. The cohort was randomly divided into a training set (80% of
samples) and a testing set (20% of samples). ANNs are sensitive to feature scaling
(i.e. extreme ranges), so each data type was centered and scaled for both partitions.
After training the first three layers of the sSOM were used to predict the class of
unseen data. The predictions were compared against the true class memberships
to evaluate the performance of the model.

Benchmarks were implemented to verify that the multimodality improved
classification performance, and to check the performance of non-fusing alternative
algorithms. Random Forests (an ensemble of decorrelated decision trees) were
chosen as a neural network alternative. Random Forests are capable of modelling
nonlinear class boundaries and have been found to be one of the most effective
machine learning algorithms for microbiome count data (Statnikov et al., 2013).
Random Forests were benchmarked with microbiome census data that had been
normalised with popular techniques, including total sum scaling (proportions),
random subsampling (rarefying), and a variance stabilising transformation provided
by DESeq2.

5.4 Markers of depression in the oral
microbiome

Sequencing the V3 – V4 regions of the 16S rRNA gene generated a total of
approximately 12.5 million sequence reads (median ± MAD): ≈ 66, 000± 28, 000
sequence reads per subject. Sequence reads were denoised into ASVs, and assigned
taxonomic classifications to the highest resolution possible. The denoised dataset
that was analysed included the abundance of 2883 unique sequences covering 9
phyla, 18 classes, 33 orders, 53 families, 84 genera, and 133 species. The dominant
phyla present in the oral microbiota across the entire cohort were Bacteroidetes
(42.18± 13.87%), Proteobacteria (24.57± 17.29%), and Firmicutes (26.62± 9.93%)
(see Figure 5.5(a)). The most prevalent families in the oral microbiota for all
subjects were Prevotellaceae (37.22%), Pasteurellaceae (15.60%), Streptococcaceae
(10.59%), Veillonellaceae (5.46%), and Neisseriaceae (5.50%) (see Figure 5.5(b)).
A taxon resampling curve shows that the oral microbiome of the depressed and
healthy cohort was sampled thoroughly enough to get an accurate representation
of the composition of the oral microbiome (see right side of Figure 5.4).

The structure and composition of the oral microbiome was characterised with
a range of techniques, beginning with ecological measures such as richness (the
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Figure 5.4: Taxon resampling curve (red: control, blue: depression). Left: Number
of ASV. Right: α-diversity (Shannon diversity index). Sufficient sampling has been
done to get a reasonable measurement of microbial community composition as R
has converged.
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Figure 5.5: Visualisations of microbial community composition. (a) Phyla level (b)
Family level



5.4. MARKERS OF DEPRESSION IN THE ORAL MICROBIOME 127

0

50

100

150

Healthy Depression

C
ha

o1
 (

m
ea

n 
±

 S
E

)

0

50

100

150

Healthy Depression

A
C

E
 (

m
ea

n 
±

 S
E

)

0

5

10

15

20

25

Healthy Depression

Fa
ith

's
 P

hy
lo

ge
ne

tic
 D

iv
er

si
ty

 (
m

ea
n 

±
 S

E
)

0

50

100

150

Healthy Depression

S
pe

ci
es

 r
ic

hn
es

s 
(m

ea
n 

±
 S

E
)

0

5

10

15

Healthy Depression

In
ve

rs
e 

S
im

ps
on

 In
de

x 
(m

ea
n 

±
 S

E
)

(a)

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

cohortDepression

SMOKINGDaily

−2

−1

0

1

2

−3 −2 −1 0 1

CCA1   [2.3%]

C
C

A
2 

  [
1.

9%
]

cohort
●a

●a

Healthy

Depression

(b)

Figure 5.6: Visualisations of microbial community structure. (a) α-diversity (b)
β-diversity



128 CHAPTER 5. ALTERED MICROBIOTA IN A DEPRESSED COHORT

●●

●

●

●

●

●

●

●

●

● ●

●

Prevotella

Neisseria

Alloprevotella

Solobacterium

Bergeyella

Aggregatibacter

Porphyromonas

Haemophilus

−
30

−
20

−
10

0 10 20

log2FoldChange

G
en

us

Phylum

●
●
●

Bacteroidetes

Firmicutes

Proteobacteria

(a)

3 2 1 0 1 2 3
LDA SCORE (log 10)

Carbon_fixation_pathways_in_prokaryotes

Methane_metabolism

Phosphotransferase_system__PTS_

Amino_acid_metabolism

Transporters

Depression Healthy

(b)
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Table 5.4: Amplicon sequence variants were further classified by matching against the Human Oral Microbiome
Database.

Change Classification p Notes
Increased Prevotella nigrescens <0.001 Associated with periodonti-

tis (Stingu et al., 2013)
Neisseria siccaa 0.023 Commensal with pathogenic

potential (Johnson, 1983)
Decreased Alloprevotella rava 0.031

Alloprevotella tannerae <0.001 Associated with endodontic
infections (Xia et al., 2000)

Solobacterium moorei <0.001 Associated with halitosis
(Kazor et al., 2003) and en-
dodontic infections (Munson
et al., 2002)

Neisseria subflava <0.001 Commensal
Aggregatibacter segnis <0.001 Can cause infective endo-

carditis (Nørskov-Lauritsen,
2014)

Porphyromonas endodon-
talis

<0.001 Pulpal pathogen (Mirucki et
al., 2014)

Prevotella nanceiensis <0.001 First isolated from healthy
subgingival oral biofilm

Haemophilus parainfluenzae <0.001 Can cause infective endo-
carditis (Nørskov-Lauritsen,
2014)

a Also matches N. flava and N. mucosa at equal identity
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Porphyromonas 
 pasteri

Dialister 
 invisus

Neisseria 
 elongata

Streptococcus 
 sanguinis

Neisseria 
 flavescens

Figure 5.8: Network of statistically significant pairwise microbial interactions unique
to the depressed cohort. Nodes are bacterial species, edges are interactions (green:
positive co-occurrence, red: negative co-exclusion). Opportunistic pathogens are
labelled in a red font.
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Prediction Reference

Figure 5.9: Alluvial diagram of classification performance

Model Data transformation Multimodal Balanced accuracy
Random Forest Proportion 7 49.3%

Rarefied 7 37.5%
Variance stabilised 7 49.3%

Self Organising Map None 7 28.6%
None 3 83.3%

Figure 5.10: Classification performance
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number of unique ASVs present in a sample), alpha diversity and beta diversity.
To calculate alpha diversity simple estimators such as the Shannon diversity index
and the Inverse Simpson diversity index were initially used, and then moved
on to non-parametric species estimators such as the Abundance-based coverage
estimator (ACE) and Chao1 which provide a measure of richness while compensating
for differing sampling intensity across samples. Faith’s Phylogenetic Diversity
index was used to measure richness while incorporating data about phylogenetic
relationships. Depression was not associated with significant changes to richness
or alpha diversity for any of the tested metrics (see Figure 5.6). The Bray-Curtis
dissimilarity statistic was used to measure beta diversity, and significant differences
were found in the composition of the oral microbiota between depression and control
groups (PERMANOVA: p = 0.038). Smoking was also associated with significant
differences in composition of the oral microbiota (PERMANOVA: p < 0.001).
Canonical Correspondence Analysis (CCA) was used to test and visualise the affect
that statistically significant environmental variables had on the structure of the oral
microbiota. The CCA biplot shows clear clustering between depressed and healthy
cohorts into distinct groups, also, clustering between smokers and non-smokers (see
Figure 5.5). The first canonical axis was negatively correlated with smoking daily,
and the second canonical axis was positively correlated with depression and slightly
positively correlated with smoking daily.

Differential abundance testing of prevalent ASVs found that 12 bacterial species
were differentially abundant in the depressed cohort relative to the controls (Fig-
ure 5.7). From these sequence variants, 2 were significantly more abundant in
depressed subjects, and 10 were significantly less abundant in depressed subjects.
These differentially abundant sequences were matched against the Human Oral
Microbiome Database (Chen et al., 2010) in order to gain an understanding of
possible underlying mechanisms of action. The majority of identified organisms
were opportunistic pathogens (i.e. under normal conditions they are commensal)
or normal commensal organisms. Opportunistic pathogens that are decreased in
depression have been associated with endodontic infections, halitosis, infective
endocarditis, and pulpal pathogens (see Table 5.4). Opportunistic pathogens that
have been found to be increased in depression include P. nigrescens and N. sicca.
P. nigrescens is associated with periodontitis, while N. sicca is a commensal with
pathogenic potential (Stingu et al., 2013; Johnson, 1983).

Inferred metagenome analysis with PICRUSt was used to identify possible
functional changes in the oral microbiome of depressed subjects. These observed
changes include a decrease in carbon fixation pathways and increases in amino acid
metabolism, methane metabolism, transporters, and phosphotransferase system
(see Figure 5.7).

An analysis of microbial interactions from estimated microbial co-occurrence
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patterns (inferred with SparCC) found a group of statistically significant interactions
unique to the depressed cohort (see Figure 5.8). A co-exclusion relationship was
found between Neisseria flavescens, Streptococcus sanguinis, and Neisseria elongata
in the depressed cohort; a co-presence relationship was found between Dialister
invisus and Porphyromonas pasteri.

5.5 Multimodal classification of depression

To determine if the observed microbiome alterations were significant enough for
stratification of depression status, a multimodal data-driven supervised learning
classification algorithm called a sSOM was applied to the microbiome census
data. The classification task was to distinguish between control and depressed
subjects (two-class classification). Models were trained on 80% of the data. The
generalisation ability of the models was validated by making predictions on unseen
data (the remaining 20%). To measure the performance of the classification models
a variety of metrics was used, including balanced accuracy, Positive Predictive
Value (PPV), and Negative Predictive Value (NPV). Balanced accuracy is defined
as:

Accuracybal = Specificity + Sensitivity
2 (5.8)

Specificity is the true positive rate (i.e. the percentage of depressed subjects that
are correctly identified as having depression). Sensitivity is the true negative rate
(i.e. the percentage of control subjects that are correctly identified as not being
depressed). A multimodal sSOM was able to predict depression with a balanced
accuracy of 83.3% on unseen data (see Table 5.5 and Figure 5.9).

Table 5.5: Performance of classification algorithms applied for depression prediction
from microbiome census data

Implementation Accuracy Sensitivity Specificity PPV NPV
Wingfield et al. 82.35% 66.77% 100.00% 1.00 0.73
Naseribafrouei et al. 66.50% 86.00% 47.00%
Zheng et al.a

a Zheng et al. implemented feature ranking with a Random Forest and reported no classification
metrics.
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5.6 Summary
The intestinal microbiome has been implicated in the aetiology of depression in
a variety of animal models. This includes the ability to transplant a “depressed
microbiome” from a depressed individual into a control individual to induce de-
pression (Zheng et al., 2016). Recently a limited amount of work has been done in
human intestinal microbiome. However, the oral microbiome has not been analysed
for links with depression to date. The oral microbiome presents a compelling
target: salivary glands are surrounded by capillaries, and can absorb blood based
biomarkers of disease, suggesting saliva fluid can contain vital disease informa-
tion (Liu and Duan, 2012). Oral microbiome dysbiosis have been identified for
diseases including pancreatic cancer (Fan et al., 2016), rheumatoid arthritis (Zhang
et al., 2015), and neurological conditions such as Alzheimer’s disease (Shoemark
and Allen, 2015). Therefore an experiment to determine if any alterations are
present in the oral microbiome of a depressed cohort is presented in this Chapter.
In addition, most classification tasks that use microbiome census data are not
explicitly multimodal. It is important to remember that the microbiome does not
exist in isolation: it interacts constantly with its environment (the human host).
Thus it would be valuable to analyse the microbiome in a holistic manner, by
incorporating information from the human host. Therefore a multimodal sSOM
was applied to the data gathered in the experiment to determine if depression
status can be predicted from a saliva sample and to evaluate the effectiveness of a
multimodal paradigm for classification. The data analysed in this chapter includes
microbiome census data and basic clinical information such as smoking use and
gender, although theoretically the approach could apply to multi-omic data (e.g.
whole genome sequencing).

The experiment found a variety of alterations to the composition and structure
of the oral microbiome in a depressed cohort using a range of ecological measures.
The structure of the oral microbiome in the depressed cohort can be clearly clustered
using CCA. Twelve ASVs were found to be differentially abundant in the depressed
oral microbiome: the majority of which were opportunistic pathogens that were less
abundant compared with control samples. Five inferred functional pathways were
also found to be differentially abundant in the depressed cohort. In addition, a set of
unique microbial interactions were found to be present in the depressed microbiome,
the majority of which included interactions between opportunistic pathogens. The
results directly implicate the oral microbiome in the pathogenesis of depression for
the first time, and provide preliminary evidence that depression can be predicted
from a saliva sample. These results have significance for both depression diagnosis
and depression pathophysiology: the reliability of diagnostic criteria is inherently
limited by the response of subjects to questionnaires, and the predictive power
of responses can differ significantly across genders and age groups (Aben et al.,
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2002). Furthermore, co-morbidities have been shown to decrease the performance of
standard depression diagnostic criteria. For example, symptoms such as insomnia
and loss of appetite can increase the risk of false positive depression diagnosis
(Freedland et al., 1992; Fedoroff, Starkstein et al., 1991). An analysis of diagnostic
criteria has shown that for screening purposes the Hamilton depression scale has a
sensitivity of 78.1% and a specificity of 74.6% when the threshold was set to 12
(Aben et al., 2002). An approach that predicts depression from oral microbiome
census data has the potential to alleviate some of the limitations listed above.
However, future work will need to replicate these findings in an independent cohort
to confirm the role that the oral microbiome plays in the microbiome-gut-brain
axis and the predictive power of the oral microbiome for depression diagnosis.

Chapters 4 and 5 have extensively modelled microbiomes for both knowledge
discovery and the prediction of disease. However, none of the models applied in
either Chapter are transparent. An understanding of what is important in IBD and
depression pathophysiology has been gained, but not why the models have arrived
at their result. Transparency is key to enable trust in the output of models, which
is critical for potential clinical applications. Additionally, predictive performance
has been the focus of both chapters. Biologists are often interested in qualitatively
describing phenomena, (i.e. not doing prediction). Chapter 6 will determine if
rough set theory can be used to identify a subset of key organisms according to an
experimental design and to describe why the model has arrived at its conclusion
using transparent IF-THEN rules. Beginning with a proof of concept application to
benchmark data the approach will be scaled up for the purpose of describing the
oral and intestinal microbiome of a depressed cohort.

Publications arising from this work
The basis of this work is under preparation for submission:

Wingfield, B., C. Lapsley, S. Coleman, T. McGinnity, A. J. Bjourson and E. Murray
(2019). ‘Altered oral microbiota in a young adult cohort’. In: Nature Scientific
Reports. Note: manuscript under preparation.
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rough set characterisation of microbiomes

I was just a chap who messed
about in his lab.

Frederick Sanger

6.1 Introduction
The ensemble feature selection (EFS) and Self-Organising Map (SOM) approaches
applied in chapters 3 and 4 respectively were black box models. Although both
approaches can lend insights into the decisions they have made (e.g. via feature
selection) it is impossible to interpret the processes which led to the output of
the model (i.e. why has this algorithm classified this example to class x?). One
method of improving the process of transforming data into knowledge is by making
models interpretable. The data driven SOM approach was applied in chapter 5 in
part to overcome the properties of high-throughput sequencing data that violate
the assumptions of standard models. Rough Set Theory (RST) is a data driven
paradigm that provides many tools for interpretable data analysis. These tools
include the concepts of discernibility, rough sets, minimal knowledge representations
(reducts) that remove superfluous or irrelevant features, and rule induction. As
was observed in chapter 5, evaluating the predictive power of the microbiome
is only one aspect of a microbiome experiment. The goal of many experiments
is to characterise (describe) the microbiome. The Computational Intelligence
(CI) approaches that have been applied throughout this thesis have focused on
classification (approximating a categorical variable from input data). However,
describing events and patterns in data is a major part of data mining and knowledge
discovery (see chapter 2.2). In addition, description is a valuable process for
experimental scientists and many microbiome experiments focus solely on describing
novel microbial environments. Therefore this chapter aims to demonstrate that
RST can be used to characterise (describe) microbiomes. The application of RST
provides a solution to an open research question regarding identifying an optimal
normalisation technique for microbiome census data. Section 6.2 will provide a
description of the RST concepts applied throughout this chapter, a brief summary
regarding normalisation practices for microbiome census data, and a description of
related work. Section 6.3 introduces the rough characterisation process and provides
a demonstrative application of rough characterisation to a benchmark dataset that
is widely used to evaluate the ability of algorithms to model microbiome census
data. Section 6.4 applies the rough characterisation process to the oral microbiome
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dataset described in chapter 5 and a publicly available gut microbiome dataset
gathered from a depressed adult cohort to enable knowledge discovery and generate
new insights into the microbiome-gut-brain axis.

6.2 Rough Set Theory
A brief explanation of RST was provided in chapter 3. This section provides a more
detailed explanation of some key RST tools that are used to extract knowledge
from data. In addition, the benefits of a data-driven paradigm with minimal priors
for characterising microbiome census data, first introduced in chapter 4, are more
fully explored.

6.2.1 Rationale
Many models make assumptions about input data. For example, a naïve Bayesian
classifier assumes that feature values are independent of the value of any other
feature for a given class. A person may be considered sick if they have a high
temperature, a headache, and are shivering. A naïve Bayesian classifier assumes
that each feature contributes independently to the probability that the person is
sick. In this case, a naïve Bayesian classifier would be an inappropriate choice
as there are probable correlations between high temperature and shivering. In
contrast, the only assumption required in RST is that each object has an associated
set of attributes used to describe the object, and that the data are a true and
accurate reflection of reality (Jensen and Shen, 2008). The accuracy assumption
can even be relaxed when applying fuzzy RST, which can incorporate different
levels of uncertainty.

Data produced via high-throughput sequencing are extremely challenging to
analyse. After initial quality control and clustering pre-processing steps (Kozich
et al., 2013) (or alternatively denoising; (Callahan et al., 2016b)) microbiome census
data are typically organised into large matrices where rows represent samples and
columns represent counts of clustered sequence reads that constitute different types
of bacteria (see Figure 6.1). The number of discrete sequence reads per sample (the
sum of each row) can differ by orders of magnitude (see Table 6.1). This uneven
sampling effort does not reflect true biological variation and is an artefact of the
sequencing process. The uneven sampling effort will bias the estimates of bacterial
abundance and should be normalised to allow fair comparison between samples.
Normalisation procedures can also be used to mitigate other types of bias present
in microbial community sequencing data introduced by sparsity (Paulson et al.,
2013) or heteroscedasticity (McMurdie and Holmes, 2014). However, recommended
normalisation procedures that aim to mitigate such complex problems are often



6.2. ROUGH SET THEORY 139

difficult for microbiologists to incorporate (e.g. applying a variance stabilising
transformation based on Gamma-Poisson mixture models; (Love et al., 2014)) and
can destroy the semantics of the original data.

A widely used normalisation strategy is to convert counts into relative abun-
dances per sample (simple proportions). However, as relative abundances are
constrained by an artificial limit (1) they represent compositional data. In addition,
as the library size of a collection of samples is determined by the capacity of the
sequencing instrument (e.g. an Illumina MiSeq DNA sequencer described in chap-
ter 3 will create approximately 2× 107 reads) even unnormalised sequencing data
are compositional (Gloor and Reid, 2016). Compositional data have an arbitrary
or non-informative sum (known as the constant-sum constraint problem; Aitchison
and Egozcue, 2005). In recent years the microbiome research community has
found that compositionality renders both univariate and multivariate data analysis
methods invalid, increasing the popularity of compositional data analysis tools
(Gloor and Reid, 2016). In addition, in 2014 it was observed that applying standard
statistical tests to microbiome census data that violated the assumptions of the
tests had rendered the results of very many microbiome experiments inadmissible
(McMurdie and Holmes, 2014). The application of inappropriate statistical tests to
large and complex biological datasets has caused similar problems in other fields,
including neuroscience. In a famous example, a dead salmon was placed inside an
functional Magnetic Resonance Imaging (fMRI) machine and shown photographs
of humans in social situations. The salmon was asked what emotion the individuals
in the photographs were experiencing while recordings of the salmon’s brain were
made. The application of inappropriate statistical techniques made areas of the
salmon’s brain appear to be active during questioning, raising serious questions
regarding the reliability of fMRI studies (Bennett et al., 2011). The application of
RST resolves a major problem associated with microbiome census data analysis
(e.g. normalisation). As it is almost impossible to violate the assumptions of RST,
researchers do not need to perform extensive checks before beginning their analysis
of microbiome census data. Additionally, it is unlikely that microbiome researchers
are fully aware of the advantages and disadvantages of each type of normalisation
procedure, as normalisation is often automatically performed by software packages.
RST makes redundant the requirement for more complex normalisation algorithms;
the semantics of easily intuited relative abundance microbial sequencing data are
maintained — aiding interpretation by domain experts and providing a possible
solution to an open question in the microbiome research community regarding the
choice of an optimal normalisation algorithm (which can differ depending on data
and analysis task; Weiss et al., 2017).
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Microbe1 . . . . . . . . . MicrobeM
0 9 8 0 7 sample1

3 5 6 5 1 . . .
1 0 0 3 2 sampleN

Figure 6.1: Example unnormalised community data matrix.

Table 6.1: Library size (row sum) summary statistics of Global Patterns (Caporaso
et al., 2011) dataset.

Minimum 1st Quartile Median 3rd Quartile Maximum
5.9× 104 5.7× 105 1.1× 106 1.5× 106 2.4× 106

6.2.2 Characterisation
Throughout this thesis and in the field of microbiome research generally machine
learning and CI approaches have been applied to data for the purpose of predicting
a categorical or numeric variable from a set of input data (classification). These
experiments evaluate the performance of this process by measuring a series of
predictive metrics. However, classification and regression are only a subset of data
mining and knowledge discovery. Popular tasks for data mining and knowledge
discovery include (Larose and Larose, 2014):

• Describing patterns and trends in data;

• Approximating a categorical target variable from a larger data set (classifica-
tion);

• Approximating a numeric target variable from a larger data set (regression);

• Predicting future events (e.g. the share price of a company in 3 months);

• Clustering observations into similar groups;

• Identifying association rules (finding features that co-occur).

Describing pattern and trends in data is the most common aim of microbiome
experiments. Many microbiome experiments aim to identify correlations between
the characterised microbial community and disease. Only a small part of this
process is concerned with evaluating predictive power: the process of determining
elements of a microbial community that have predictive power is described as
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Figure 6.2: Evaluating predictive power (highlighted in red) is only a small part
of 16S marker gene analysis. A much greater focus is placed on characterising
microbial communities.

biological marker (biomarker) analysis by molecular biologists (see Figure 6.2).
RST offers a suite of tools, described in section 6.2.3, that enables the comprehensive
description of data. Data represented as a decision table can be stored in a concise
form as a minimal knowledge representation, and the data can be transformed into
knowledge via the generation of a set ofIF-THEN rules.

6.2.3 Core concepts
A microbiota profile can be represented by a M ×N decision table. The rows of a
decision table correspond to the universe of discourse, X (Jensen and Shen, 2008):

X = {x1, x2, . . . , xN} (6.1)

The columns of a decision table correspond to the set of features A (the set of
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microbes) (Jensen and Shen, 2008):

A = {a1, a2, . . . , aM} (6.2)

Decision table DT consists of a subset of condition attributes (input features,
different microbial species) and decision attributes (class labels e.g. disease or
healthy; DT = C∪D). Each attribute has an associated value set, which represents
the abundance of the microbial species:

Va = {va1 , va2 , . . . , vap} (6.3)

where a ∈ A. The value set must be discrete (continuous variables must be
discretised). Although microbiome census data are discrete counts of sequences,
they are typically converted into continuous variables by a normalisation process to
mitigate uneven library size bias. Therefore relative abundance microbiome census
data, which is used as input data throughout this chapter, must first be discretised.
The maximal discernibility heuristic was used to discretise the microbiome census
data throughout this paper (Bazan et al., 2000). Any condition or decision attribute
subset P ⊆ C or D can induce a partition in X (Petit et al., 2014):

X
P−→ X(P ) = {XP

1 , . . . , X
P
q } (6.4)

where XP
l is the partition of X induced by P. The subsets (Petit et al., 2014):

X = XP
a ∪ . . . ∪XP

Q (6.5)

correspond to the set of equivalence classes, called indiscernibility classes in RST.
Discernibility is the core concept of RST: if (x, y) ∈ IND(P ) (where IND(P ) is
the indiscernibility relation induced by attribute subset P ) then x and y are
indiscernible by attributes from P . For example, if two bacterial species have the
same abundance in both healthy and sick subjects, then using only the abundance
of the bacterial species it is impossible to discern between the two subjects. In RST
a set is approximated by two sets known as the lower and upper approximations
(Jensen and Shen, 2008):

PS = {x : [x]P ⊆ S} (6.6)
P̄S = {x : [x]P ∩ S 6= ∅} (6.7)

where S ⊆ X and [x]P are the equivalence classes of the P -indiscernibility relation.
The tuple 〈PS, P̄S〉 is known as a rough set. P and Q are sets of attributes
inducing equivalence relations over U . The region between the upper and lower
approximation sets is called the boundary region. The boundary region represents
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the set of objects that can possibly be predicted to be from a specific decision class
(non-deterministic; see Figure 6.3). For example, the relative abundance of a set of
species may include sick or healthy samples, and from the relative abundance data
it is impossible to distinguish between the two (Jensen and Shen, 2008):

BNDP (Q) =
⋃

X∈U/Q
P̄S −

⋃
X∈U/Q

PS (6.8)

The positive region, in which objects can be predicted to belong to a decision class
with certainty, is given by:

POSP (Q) =
⋃

X∈U/Q
PY (6.9)

(6.10)

The negative region represents the set of objects that cannot be predicted to a
decision class (e.g. are definitely healthy):

NEGP (Q) = X −
⋃

Y ∈X/Q
P̄ Y (6.11)

Attributes that cannot be removed without changing the partitioning of objects
amongst the indiscernibility relations are indispensable. A minimal set of indis-
pensable condition attributes is known as a reduct.

Minimal knowledge representations

To identify important features the dependence and significance of features must
first be measured. A set of features Q can be said to depend on a set of features
P if all feature values from Q are determined only by feature values from P . For
(P,Q ⊂ A), Q depends on P (given as γp(Q)) to degree k (0 ≤ k ≤ 1) if:

k = γp(Q) = |POS|
|X|

(6.12)

where |S| gives the cardinality of set S. When γp(Q) = 1 Q depends completely on
P . Measuring feature dependence is important because by evaluating the change of
feature dependence after removing a feature, feature significance can be computed.
The significance of feature x ∈ P upon Q is given by (Jensen and Shen, 2008):

σp(Q, a) = γp(Q)− γp−a (Q) (6.13)
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Figure 6.3: Rough set example. The universe of discourse is partitioned into 9
indiscernibility classes by a set of attributes. The blue line represents the set being
approximated (e.g. sick subjects). The green section is the lower approximation, and
the red sections are the upper approximations of the rough set. In the complement
of the upper appromimation (grey) it is certain that no objects in the rough set
will be present (e.g. a healthy subject could be in the grey section).

A feature with a significance greater than 0 is indispensable. It is often useful to
calculate a minimal form of a decision table (a minimal knowledge representation),
known as a reduct. A reduct is defined as a minimal subset R of an initial feature
set C, that if given a set of features D, γR(D) = γC(D). R is considered a minimal
subset if γR−{a}(D) 6= γR(D) for all a ∈ R. In a minimal reduct no features can be
removed without affecting the dependency degree. However, this definition shows
that minimal reducts are not global. A decision table may have many reduct sets.
The collection of all reduct sets is given by (Jensen and Shen, 2008):

Rall = {X|X ∈ C, γX(D) = γC(D); γX−{a} 6= γX(D),∀a ∈ X} (6.14)

Discernibility Matrix

Discernibility matrices are used to identify reducts and to induce rules. A discerni-
bility matrix of a decision table (U,C ∪D) is a symmetric |U | × |U | matrix, where
|U | gives the cardinality the decision table U . Each element of the discernibility
matrix is defined by:

ci,j = {a ∈ C|a(xi) 6= a(xj)}, i, j = 1, . . . , |U | (6.15)
ci,j contains features that differ between instances i and j.
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Discretisation

Table 6.2: Discretisation strategies and implementations

Supervised Unsupervised

Global

ChiMerge (Kerber, 1992)
OneRule (Holte, 1993)
Global discernibility heuristic
(Bazan et al., 2000)

Equal width interval (Dougherty
et al., 1995)
Quantiles (Dougherty et al., 1995)

Local Local discernibility heuristic
(Bazan et al., 2000)

k-means clustering (Dougherty et
al., 1995)

Attributes with real values must be discretised before RST can be applied. A
variety of discretisation strategies are available when working with rough sets, and
care must be taken when choosing a discretisation method as the process guarantees
information loss. Discretisation strategies can be supervised or unsupervised, and
can consider subsets of training samples (local) or the entire instance space (global;
see Table 6.2). The simplest discretisation approaches are unsupervised global
techniques. For example, equal width binning sorts attribute values and divides
the range of observed values into k equally sized intervals. Let x be a feature value
bounded by xmin and xmax (Dougherty et al., 1995):

δ = xmax − xmin

k
(6.16)

where δ gives the interval width, and k gives the chosen number of intervals.
Thresholds (interval boundaries) are given by xmin + iδ where i = 1, . . . , k − 1.
This approach is applied to each continuous attribute independently and does not
incorporate class information.

Although all discretisation methods result in data loss it is likely that unsu-
pervised discretisation methods lose more information compared with supervised
discretisation methods (Dougherty et al., 1995). This is because certain attribute
values may be associated with a particular class. Unsupervised approaches can
cluster attribute values associated with different classes into the same bin. There-
fore incorporating class information can help to identify an optimal discretisation
strategy. The problem of identifying an optimal set of cuts is extremely computa-
tionally complex. Therefore, heuristics are often applied to simplify computation.
A heuristic based on rough set theory called the Maximal Discernibility (MD)
heuristic (Bazan et al., 2000) is a widely implemented method for supervised
discretisation. Let A = (U,A ∪ d) be a decision table. Attribute a ∈ A defines a
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Algorithm 6.1 Maximum discernibility discretisation (Bazan et al., 2000)
Input: Decision table A
Output: Set of cuts D
D = ∅, CA = initial set of cuts on A
L = {(x, y) ∈ U × U : d(x) 6= d(y)}
while L 6= ∅ do

Choose cut cmax ∈ CA that discerns the largest # of instance pairs in L
Input Cmax into D, remove from CA
Remove all instance pairs from L discerned by cmax

end while

sequence va1 , . . . , vana
, where {va1 , . . . , vana

} = {a(x) : x ∈ U} and na ≤ n. The set of
all interval cuts on a is given by:

Ca =
{(
a,
va1 + va2

2
)
, . . . ,

(
a,
vana−1 + vana

2
)}

(6.17)

and the set of all interval cuts on all attributes A:

CA =
⋃
a∈A

Ca (6.18)

The MD heuristic aims to discern the largest number of pairs of objects (see
Algorithm 6.1). The local method computes the quality of cut from a subset
of instances, while the global method computes the quality of cut on the whole
instance set. The local method was used throughout this chapter for discretisation
because the global strategy produced fewer cuts (Bazan et al., 2000). This caused
problems for microbiome census data as there were too many features with a single
interval, possibly due to the high variability present across different microbiomes.

6.2.4 Current rough set applications to microbiome
census data

As far as can be ascertained, there have been no previous attempts to model
microbiota profiles using RST described in the literature. However, aspects of
RST have been implemented for bioinformatics applications to the wider field
of metagenomics. The metagenome is defined as the collection of genomes and
genes from the members of a microbiota (Marchesi and Ravel, 2015). Metagenomic
analysis requires sequencing all of the DNA present in an environmental sample using
shotgun sequencing (in contrast with 16S rRNA marker gene surveys). Classifying
short DNA fragments into a phylogeny or taxonomy (e.g. bacterial species) is a
standard step in metagenomic workflows. Good quality reference databases exist
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for well characterised environments such as the human gut (Quast et al., 2012),
and tools such as the Ribosomal Database Project’s naïve Bayesian classifier can
be trained on reference databases and perform well on novel sequences (Wang
et al., 2007a). In poorly characterised environments such as macroscopic bacterial
accumulations in Guerrero Negro, Mexico up to 85% of DNA sequence fragments
were previously undescribed in reference databases (Ley et al., 2006). Standard
pattern matching tools will not work on data gathered from poorly characterised
environments. To overcome this challenge some classification algorithms rely on
generating a digital signature from DNA fragment characteristics. A common
characteristic is the K-mer frequency (DNA words of length k), which is often used
to estimate the complexity of a genome (Chor et al., 2009). However, as k increases
the number of features used for classification also quickly increases. RST has been
applied to remove superfluous K-mers and to improve DNA fragment classification
compared with standard bioinformatics tools (Jian et al., 2015). A rough reduction
method based on Particle Swarm Optimisation has also been applied to the same
problem (Jian et al., 2016).

RST has been used to predict the presence of operons in metagenomic data.
An operon is defined as a functioning unit of genomic DNA containing a cluster of
genes under the control of a single promoter (Ralston, 2008). Bacteria can adapt
to new environments extremely quickly (e.g. antibiotic resistance), partly because
clusters of genes can be quickly switched on or off depending on environmental
conditions (Ralston, 2008). A decision tree classifier based on the Variable Precision
Rough Set Model (VPRSM) was applied to genomic data from Escherichia coli to
identify if a gene belongs to an operon (Zaidi and Zhang, 2016). The VPRSM had
an accuracy of 89.4% using five features: maximum distance, minimum distance,
direction, cluster of orthologous groups, and gene order conservation. The use of a
decision tree meant that the decisions of the classifier were easy to interpret and
could be validated by domain experts.

Both of the described approaches did not implement knowledge discovery from
highly dimensional data (they focused on classification performance from a set
of summary statistic features). Therefore these approaches were not applied to
microbiome census data.

Rule-based systems are not widely applied to microbiome census data, but
they offer a number of advantages compared with black-box machine learning
algorithms. Transparent IF-THEN rules enable the underlying mathematics of RST
to be codified into linguistic variables that can be easily understood and transmitted
to domain experts (e.g. microbiologists) who lack an understanding of RST. If
microbiologists are interested in the predictive power of certain bacterial groups
(biomarker analysis), machine learning algorithms are typically applied to microbial
sequencing data. The most popular machine learning algorithms are typically black
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boxes; for example, ensembles of de-correlated decision trees (Random Forests; (Qi,
2012)) are often recommended for their ease of implementation and performance
advantages (Statnikov et al., 2013). Although theoretically the output of decision
trees can be interpreted by analysing the structure of a tree, understanding and
explaining the combined output of hundreds of trees trained on random feature
subsets in an ensemble is an almost impossible task that is rarely attempted
(although feature ranks are commonly reported). In contrast, the combined process
of generating reducts and inducing rules from essential features offers an elegant way
to both describe a microbial community and to determine the biomarker potential
of bacterial groups when additional validation data are available. A transparent
descriptive or predictive process could aid the understanding and dissemination
of important results throughout the microbiome research community and help to
improve the reproducibility of research.

6.3 Rough set characterisation of a standard
benchmark dataset

To demonstrate the viability of applying rough set theory to microbiome census
data, a standard benchmark dataset was chosen to determine the performance
of the approach. This initial demonstration uses the Global Patterns dataset
(Caporaso et al., 2011) that is distributed as part of the microbiome census data
analysis R 3.4.3 package phyloseq (McMurdie and Holmes, 2013). The Global
Patterns dataset consists of 25 environmental samples collected across 9 different
environments: standard mock community controls, freshwater, creek freshwater,
ocean, sediment, soil, human skin, human tongue, and human faeces. The objective
of the study was to demonstrate the feasibility of using 16S rRNA gene sequencing
to accurately capture microbial diversity. In the microbiome research community
the Global Patterns dataset is widely used to benchmark new algorithms or tools
(McMurdie and Holmes, 2014; Weiss et al., 2017).The ability of RST to model
microbiota profiles was evaluated by testing classification performance on three
standard tasks, in ascending order of difficulty:

1. Classify microbial communities from vastly different environments (soil or
ocean)

2. Classify microbial communities from closely related environments (lake or
creek freshwater)

3. Classify microbial communities from different areas of the human body
(tongue, skin, or faeces)
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A single reduct was generated from each decision table with the QuickReduct
algorithm (Shen and Chouchoulas, 2000) implemented in the RoughSets R 3.4.3
package (Riza et al., 2014). Due to the number of features in the dataset (4624 types
of bacteria in the denoised Global Patterns dataset) it was infeasible to compute
all reducts, and a single reduct is useful for this demonstration. The classification
performance of the partition in X induced by the set of reduct attributes Ak was
evaluated with two measures (Petit et al., 2014):

Accuracy[X(Ak)] =
∑Q
L=1 Card(AkXAk

L )∑Q
L=1 Card(ĀkXAk

L )
(6.19)

Quality[X(Ak)] =
∑Q
L=1 Card(AkXAk

L )
Card(X) (6.20)

Where Card is cardinality, which represents the number of elements in a set, and
L is the total number of upper (ĀkXAk

L ) and lower-approximation (AkXAk
L ) set

tuples. Accuracy represents the ratio of the size of all lower-approximation sets
to the size of all upper-approximation sets (0 ≤ Accuracy[X(Ak)] ≤ 1). If the
family of lower approximation sets is an empty set (i.e. no objects can be said to
be certainly predicted) then accuracy is zero. Quality represents the ratio of all
objects in the family of lower approximation sets to the total number of objects in
the universe of discourse (0 ≤ Quality[X(Ak)] ≤ 1). It is important to note that
classification accuracy and quality are not tested on independent validation data.
IF-THEN decision rules were generated from the indiscernibility classes defined by
the reduct attributes using the RoughSets package. The descriptive strength of
the rules was evaluated by measuring the support each rule has; support is defined
as the number of instances in the dataset that are concordant with the rule. The
rules were rationalised to biological phenomena after a thorough literature review.
This process involved searching the literature to identify the effects that bacterial
species are known to have on humans, and the role they are thought to play as
part of the larger microbiome (e.g. butyrate synthesis).

6.3.1 Results of rough set characterisation
Decision tables were created for each of the three classification tasks. The first
decision table had 4304 conditional attributes, representing the abundance of
different bacterial groups, and 6 samples (3 ocean samples and 3 soil samples).
The second decision table had 3893 conditional attributes, and 5 samples (2 lake
freshwater and 3 creek freshwater samples). The third decision table had 3878
conditional attributes, and 9 samples (3 skin samples, 3 faecal samples, and 3
tongue samples). A single reduct was generated first for each of the three decision
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tables to simplify analysis. For the soil classification task a single feature was
present in the reduct: the bacterial Family Cenarchaeaceae. The classification
ability of the reduct rough set was tested using the accuracy and quality measures
described in Section 6.3 (see Table 6.3). The lower approximation set contained all
of the samples for each sample type so the accuracy and quality of classification
was 1. The freshwater classification task had a single bacterial species present in
the reduct: Nitrososphaera SCA1145. The human body site classification task also
had a single bacterial species present in the reduct: Propionibacterium acnes. For
both the freshwater and human body classification tasks the lower approximation
set also contained all of the samples for each sample type so the accuracy and
quality of classification was 1 (creating a crisp set).

Rules were then induced from the D-reduct for each decision table. It is
important to note that the generated rules are descriptive and not predictive. By
generating a set of IF-THEN rules, data can be converted into knowledge. Testing
the predictive capability of descriptive rules requires an independent set of validation
data. Due to the small size of the Global Patterns dataset it was infeasible to
do this. The strength of descriptive rules can be measured by the support that
each rule has (the number of instances in the dataset that are concordant with the
rule). The first classification task generated three rules for two classes regarding
the bacterial Family Cenarchaeaceae:

IF Cenarchaeaceae 0 THEN Soil (6.21)
IF Cenarchaeaceae (0, 2.81× 10−6] THEN Ocean (6.22)
IF Cenarchaeaceae (2.81× 10−6, 1] THEN Ocean (6.23)

It is important to note none of the generated rules have been optimised, and could
be simplified by merging the second and third rules. This is simple to do manually
for small rule sets but is a complex topic for larger rule sets. Rule optimisation
was outside the scope of this application of RST to microbiome census data, which
is inteded soley to demonstrate the validity of the technique in this context. The
second classification task also generated three rules for two classes regarding the
bacterial species N. SCA1145 :

IF N. SCA1145 (0, 1.41× 10−7] THEN Lake (6.24)
IF N. SCA1145 (1.41× 10−7, 4.56× 10−7] THEN Creek (6.25)

IF N. SCA1145 (4.56× 10−7, 1] THEN Creek (6.26)

The third classification task generated three rules for three classes regarding the
bacterial species P. acnes:



6.3. ROUGH SET CHARACTERISATION OF A STANDARD BENCHMARK
DATASET 151

Figure 6.4: Induced rules for the classification of sample types.
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IF P. acnes 0 THEN Faeces (6.27)
IF P. acnes (0, 4.91× 10−5] THEN Tongue (6.28)

IF P. acnes (4.91× 10−5, 1] THEN Skin (6.29)

Rationalising the generated rules to biological phenomena or processes is straight-
forward as the semantics of the original data were not destroyed by complex normal-
isation approaches: Cenarchaeaceae consist of marine-based anaerobic thermophile
archaeons that metabolise sulphur (Preston et al., 1996), and its absence from
soil samples is logical (see Equations 6.21–6.23). N. SCA1145 is an ammonia
oxidising archaeon assemblage (candidate species) (Swanson and Sliwinski, 2013).
The difference in abundance could be related to the amount of nitrogen available in
the respective environments (creek versus lake freshwater, see Equations 6.24–6.26).
The most interesting pattern revealed by the induced rules relates to P. acnes (see
Equations 6.27–6.29). Typically P. acnes is a commensal member of the skin micro-
biome, but it can act as a pro-inflammatory opportunistic pathogen, causing acne
(Perry and Lambert, 2011). Its pattern of abundance matches descriptions in the
literature: most prevalent on skin, but capable of colonising other areas of the body
including the tongue and large intestine (Perry and Lambert, 2011). The absence
of P. acnes in stool samples could be related to the sensitivity of the sequencing
process or the low sample size of the cohort (P. acnes is not a major member of
the gut microbiome, the most complex of all human microbiomes). Alternatively,
as faeces are not a perfect proxy for the large intestine P. acnes may be present in
the large intestine but be undetectable in stool. The descriptions revealed by the
induced rules shows that the RST approach has identified biologically plausible
processes that underpin the stratification of samples.

The biggest limitation to the described approach is that only a single reduct is
considered, and that the dataset is very small. Due to the high dimensionality of
the data sets (approximately 4000 features in each decision table) it was not com-
putationally feasible to identify all possible reducts using the RoughSets package.
This is a key challenge for scaling this approach for knowledge discovery in health
applications. In Section 6.4 the approach is extended to characterise two larger
microbiome datasets gathered from depressed adults. The challenge is overcome via
the application of the Java library rseslib (Bazan and Szczuka, 2000), which is
considerably quicker than the RoughSets R package. R is known to be considerably
slower than other popular programming languages (Wickham, 2014). R is composed
of a mix of C, fortran, and R, and the small development team that maintain R
prioritise stability over rewriting large portions of the code base to improve speed
(which would involve breaking compatibility with older versions of R in the process;
Wickham, 2014).
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6.4 Characterising oral and gut microbiomes in
depressed adults

6.4.1 Implementation of rough set characterisation
The RST approach described in Section 6.3 was applied to two datasets to enable
knowledge discovery:

1. a publicly available gut microbiome depression dataset (Jiang et al., 2015)

2. the oral microbiome depression dataset used in chapter 5 (all subjects that
smoked were removed to eliminate confounders)

The ability of RST to model these larger datasets and generate novel insights
about microbiomes in depressed adults was evaluated with three tasks:

1. Characterise the depressed and control gut microbiomes;

2. Characterise the gut microbiome present in subjects in remission (in recovery
after a depression diagnosis);

3. Characterise the depressed and control oral microbiomes.

In order to apply the RST characterisation to these larger and more complex
data the rseslib Java library (Bazan and Szczuka, 2000) was used (instead of
the RoughSets R library from the previous section). Two decision tables were
created — one for each microbiome — and all local reducts were computed. The
characterisation performance of RST was evaluated using the same accuracy and
quality measures described in Equations 6.19 and 6.20. The local maximum
discernibility discretisation process generated two intervals for the oral microbiome
data, and three intervals for the gut microbiome data. The first interval began at
0 abundance, and the last interval was bounded by 1. To simplify visualisations
and analysis these intervals were given the labels low (beginning at 0), medium,
and high (bounded by 1).

6.4.2 Results of rough set characterisation
Decision tables were created for each of the two classification tasks. The first
decision table (gut microbiome) had approximately 2900 conditional attributes, and
59 samples (30 control, 29 depressed). The second decision table (oral microbiome)
had 4400 conditional attributes, and 67 samples (38 control, 29 depressed). All
local reducts were computed for both decision tables. The characterisation ability of
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Table 6.3: Classification metrics

Classification task Accuracy Quality
Oral microbiome 1 1
Gut microbiome 1 1

the reduct rough set was tested using the accuracy and quality measures described
in Section 6.3 (see Table 6.3). The lower approximation set contained all of the
samples for each sample type so the accuracy and quality of classification was
1. The gut microbiome characterisation task contained 12 amplicon sequence
variants (ASVs) covering the bacterial genera Bacteroides, Prevotella, Anaerostipes,
Phascolarctobacterium and Odoribacter. One of the features could not be mapped
to a specific genus, and represented the bacterial Family Ruminococcaceae. The oral
microbiome characterisation task contained 6 features that included the bacterial
genera Selomonas, Streptococcus, Granulicatella, Prevotella (including Prevotella
and P. melaninogenica), and Haemophilus. For both the gut and oral microbiome
characterisation tasks the lower approximation set contained all of the samples for
both classes (depression and control), so the accuracy and quality of characterisation
was 1 (creating a crisp set). This demonstrates that RST can perfectly discern
between control and depressed samples. The next step of characterisation is to
describe the alterations identified by RST using IF-THEN rules.

Different 16S sequence variants can belong to the same genus, and it is important
to note that multiple different ASVs were matched to the same genus. When this has
occured in the microbiome census data, a number has been appended to the name
of the genus to note that although the sequence variant has a shared genus it is in
fact different to other 16S sequence variants in the same genus. For example, seven
ASVs were in the genus Bacteroides, beginning with the ASV labelled Bacteroides
and ending with the ASV Bacteroides 6.

6.4.3 Discussion
More complex rules were generated to characterise both the gut and oral microbiome
characterisation tasks (see Figure 6.4 and Tables 6.4– 6.6). For both microbiomes
the abundance of bacterial taxa was defined as being low or high in relation to the
discretised bins to aid comprehension. At least one of the generated rules will apply
to all of the subjects for each dataset, as the rough set characterisation approach
had perfect accuracy and quality of characterisation. In the gut microbiome three
rules were induced to characterise control samples, and four rules to characterise
depressed samples. Control samples are characterised by low abundance of the
bacterial genera subset, whilst depressed samples are characterised by a mixture
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Table 6.4: Rules that characterise the gut microbiome for depressed and control
cohorts

Rule Antecedent Consequent
1 IF Bacteroides (3) low AND

Bacteroides (6) low AND
Prevotella low AND
Anaerostipes low AND
Ruminococcaceae low

THEN control

2 IF Bacteroides (3) low AND
Bacteroides (4) low AND
Bacteroides (6) low AND
Anaerostipes low AND
Ruminococcaceae low

THEN control

3 IF Bacteroides low AND
Bacteroides (1) low AND
Bacteroides (4) low AND
Bacteroides (6) low AND
Ruminococcaceae low AND
Odoribacter low AND
Anaerostipes low

THEN control

1 IF Bacteroides (1) low AND
Bacteroides (6) high AND
Phascolarctobacterium low AND
Ruminococcaceae low

THEN depressed

2 IF Bacteroides (3) low AND
Ruminococcaceae low AND
Bacteroides (6) high

THEN depressed

3 IF Bacteroides (1) low AND
Bacteroides (4) low AND
Bacteroides (6) high AND
Ruminococcaceae low

THEN depressed

4 IF Alistipes low AND
Odoribacter high

THEN depressed
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Table 6.5: Rules that characterise the gut microbiome for the remission cohort

Rule Antecedent Consequent
1 IF Bacteroides (3) medium AND

Bacteroides (6) low AND
Odoribacter low AND
Oscillospira low AND
Anaerostipes low

THEN remission

2 IF Bacteroides (3) medium AND
Bacteroides (4) low AND
Phascolarctobacterium low AND
Oscillospira low

THEN remission

3 IF Bacteroides low AND
Bacteroides (3) medium AND
Bacteroides (6) low AND
Odoribacter low

THEN remission

4 IF Bacteroides low AND
Bacteroides (1) high AND
Odoribacter low

THEN remission

5 IF Bacteroides low AND
Bacteroides (1) high AND
Bacteroides (3) medium

THEN remission

6 IF Bacteroides (3) medium AND
Phascolarctobacterium low AND
Odoribacter low AND
Oscillospira low

THEN remission

7 IF Bacteroides (3) medium AND
Bacteroides (6) low AND
Ruminococcaceae low AND
Odoribacter low

THEN remission

8 IF Bacteroides (1) high AND
Bacteroides (3) low AND
Odoribacter high AND
Oscillospira medium

THEN remission
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Table 6.6: Rules that characterise the oral microbiome for depressed and control
cohorts

Rule Antecedent Consequent
1 IF Selenomonas high AND

Granulicatella elegans low AND
Prevotella low

THEN control

2 IF Streptococcus low AND
Prevotella melaninogenica low

THEN control

3 IF Haemophilus parainfluenzae high
AND
Granulicatella elegans low AND
Selemonas low

THEN control

4 IF Selenomonas low AND
Streptococcus low

THEN control

5 IF Haemophilus parainfluenza high
AND
Granulicatella elegans high

THEN control

1 IF Selomonas high AND
Streptococcus high

THEN depression

2 IF Streptococcus high AND
Granulicatella elegans low

THEN depression

of high and low abundant the bacterial genera subset (see Figure 6.5). There are
significant biological justifications for the four rules that characterise the depressed
gut microbiome. Phascolarctobacterium is a bacterial genus that is abundant in
the human gut and produces short chain fatty acids, which are associated with
modifying host metabolism and mood (Cryan and Dinan, 2012). Additionally,
Phascolarctobacterium has been previously positively correlated with positive mood
in healthy adults (Li et al., 2016). The second and third rules for depression contain
the multiple bacteria in the Bacteroides genus; Bacteroides are a major mutualistic
member of the normal human intestinal microbiome, the described abundance
patterns indicate a type of gut dysbiosis has occured, which has been frequently
associated with various diseases. It is useful to compare the rough results for the
gut microbiome with the original analysis that used traditional (i.e. non-RST)
methodology (Jiang et al., 2015). The low levels of Ruminococcaceae in rules 2 and
3 are concordant with the traditional analysis. The low abundance of Alistipes in
rule 4 is not consistent with the original analysis. However, the low abundance
is combined with a high abundance of Odoribacter, which was not mentioned in
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Gut

Control Depression Remission

Bacteroides (3) ⇓ AND

Bacteroides (6) ⇓ AND

Prevotella ⇓ AND

Anaerostipes ⇓ AND

Ruminococcaceae ⇓

Bacteroides (3) ⇓ AND

Bacteroides (4) ⇓ AND

Bacteroides (6) ⇓ AND

Anaerostipes ⇓ AND

Ruminococcaceae ⇓

Bacteroides ⇓ AND

Bacteroides (1) ⇓ AND

Bacteroides (4) ⇓ AND

Bacteroides (6) ⇓ AND

Ruminococcaceae ⇓ AND

Odoribacter ⇓ AND

Anaerostipes ⇓

Bacteroides (1) ⇓ AND

Bacteroides (6) ⇑ AND

Phascolarctobacterium ⇓ AND

Ruminococcaceae ⇓

Bacteroides (3) ⇓ AND

Ruminococcaceae (6) ⇓ AND

Bacteroides (6) ⇑

Bacteroides (1) ⇓ AND

Bacteroides (4) ⇓ AND

Bacteroides (6) ⇑ AND

Ruminococcaceae ⇓

Alistipes ⇓ AND

Odoribacter ⇑

Bacteroides (3) ⇔ AND

Bacteroides (6) ⇓ AND

Odoribacter ⇓ AND

Oscillospira ⇓ AND

Anaerostipes ⇓

Bacteroides (3) ⇔ AND

Bacteroides (4) ⇓ AND

Phascolarctobacterium ⇓ AND

Oscillospira ⇓

Bacteroides ⇓ AND

Bacteroides (3) ⇔ AND

Bacteroides (6) ⇓ AND

Odoribacter ⇓

Bacteroides ⇓ AND

Bacteroides (1) ⇑ AND

Odoribacter ⇓

Bacteroides ⇓ AND

Bacteroides (1) ⇑ AND

Bacteroides (3) ⇔

Bacteroides (3) ⇔ AND

Phascolarctobacterium ⇓ AND

Odoribacter ⇓ AND

Oscillospira ⇓

Bacteroides (3) ⇔ AND

Bacteroides (6) ⇓ AND

Ruminococcaceae ⇓ AND

Odoribacter ⇓

Bacteroides (1) ⇑ AND

Bacteroides (3) ⇓ AND

Odoribacter ⇑ AND

Oscillospira ⇔

Figure 6.5: Rules that characterise the gut microbiome. ⇑ indicates high abundance,
⇔ indicates medium abundance, and ⇓ indicates low abundance

the original analysis. Odoribacter are typically opportunistic pathogens, which
can activate inflammatory pathways associated with the microbiome-gut-brain
axis (Hardham et al., 2008). In the oral microbiome five rules were induced
to characterise control samples and two to characterise depressed samples (see
Figure 6.6). There is again compelling biological evidence that supports the
induced rules: many oral streptococci and selemonads are opportunistic pathogens
(Kreth et al., 2009; Gonçalves et al., 2012). The original analysis of the oral
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Oral

Control Depression

Selenomonas ⇑ AND

Granulicatella elegans ⇓ AND

Prevotella ⇓

Streptococcus ⇓ AND

Prevotella melaninogenica ⇓

Haemophilus parainfluenzae ⇑ AND

Granulicatella elegans ⇓ AND

Selenomonas ⇓

Selenomonas ⇓ AND

Streptococcus ⇓

Haemophilus parainfluenza ⇑ AND

Granulicatella elegans ⇑

Selomonas ⇑ AND

Streptococcus ⇑

Streptococcus ⇑ AND

Granulicatella elegans ⇓

Figure 6.6: Rules that characterise the oral microbiome. ⇑ indicates high abundance,
and ⇓ indicates low abundance

microbiome showed a similar pattern of abundance for opportunistic pathogens
that is demonstrated in both the control and depressed rules. The rules that
describe subjects in remission are unique in that they describe patterns of bacterial
abundance at a level other than high or low. This could indicate that the gut
microbiome is in a state of recovery from dysbiosis.

In the gut microbiome the support for control rules (83.3% average) was greatly
higher compared with the support for depressed rules (28.4%). The lower support for
depressed rules is in line with current theories regarding the microbiome-gut-brain
axis: it is thought the gut in depressed subjects is in a state of dysbiosis. Dysbiosis
describes microbial imbalance, which can vary significantly across different subjects.
Additionally, microbiome composition can differ significantly across individuals
with dysbiosis whilst the overall gene content is the same (i.e. the functions of the
bacteria) (Dash et al., 2015). However, this pattern of support does not hold for
the oral microbiome, as the average support for rules is similar for both control
(38.94%) and depressed (45%) subjects. This may be related to the method of
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Gut microbiome
Decision Rule # Support
Control 1 86.7%

2 83.3%
3 80.0%

Depressed 1 31.0%
2 27.5%
3 27.5%
4 27.5%

Oral microbiome
Decision Rule # Support
Control 1 79.0%

2 26.3%
3 42.1%
4 18.4%
5 28.9%

Depressed 1 55.0%
2 35.0%

Table 6.7: Quality of microbiome characterisation.

sample collection. The oral microbiome dataset was gathered via saliva samples,
which can vary significantly. The gut microbiome dataset was gathered via faeces,
which will be more consistent across samples. Therefore defining a control subject
from saliva may be a more difficult task for the oral microbiome dataset.

In Chapter 5 a standard microbial analysis was performed of oral microbiome
census data, and its possible links with depression. There are some similarities across
both the rough set characterisation and the standard analysis. For example, low
Prevotella is a rule for control subjects (see Table 6.6), and a differential abundance
analysis found that some Prevotella ASVs are significantly more abundant in
depressed subjects (see Figure 5.7). Additionally, Haemophilus parainfluenzae
is found to be high in control samples, and the differential abundance analysis
found that an ASV in the Haemophilus genus is significantly less abundant in
depressed subjects (see Figure 5.7). Indeed, the Haemophilus ASV shows the highest
abundance change of all differentially abundant ASVs. No other bacterial genera
from the differential abundance analysis intersect with the results of the rough set
characterisation. However, high Streptococcus abundance was repeatedly part of
depression characterisation. Streptococcus sanguinis was found to have statistically
significant microbial interactions with Neisseria flavescens and Neisseria elongata
in the network analysis (see Figure 5.8).

The gut microbiome dataset was previously analysed with a standard microbial
ecology methodology (Jiang et al., 2015). It is difficult to directly compare results
as the original work used a clustering based operational taxonomic unit (OTU)
method of processing the 16S sequences, and the rough set characterisation detailed
in this work uses the superior ASV paradigm. A differential abundance analysis
showed that Bacteroides was significantly less abundant in the control group,
which is supported by all of the generated control rules. However, some differences
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include Phascolarctobacterium and Alistipes being reported as more abundant in the
depressed cohort, while the generated depressed rules identify decreased abundance
for both genera. However, the significant methodological differences between the
two analysis limit the conclusions that can be drawn from any comparisons.

The datasets analysed in this section stratified samples with any confounding
conditions into a separate group that was not considered for analysis. Confounding
conditions could impact the composition of the microbiome, and any changes
should be reflected in the characterisation process also. Including subjects with
confounding conditions could significantly reduce the quality of the generated rules
by introducing extra variability (i.e. the generated rules would have less support).
The rough set characterisation procedure has used simple classes (e.g. depressed
or healthy) so far to characterise subjects. To incorporate confounding conditions
additional classes could be added. For example, a subject that has recently taken
antibiotics will have a significantly different microbiome compared with a subject
that has not, even if both have a similar underlying condition. In the case of this
dataset, four classes could be chosen to specify control and depressed subjects
with and without antibiotic use. This approach will not scale to a large amount of
confounders, although including too many confounders may introduce too much
variation to the data and limit the effectiveness of any analysis.

6.5 Measuring the robustness of rough set
characterisation

In p >> n data there is a reasonable chance that random correlations between
feature vectors and a class label will be present, due to the sheer size of the feature
space (see Figure 6.7; Smith and Ebrahim, 2002). A closely related phenomenon in
statistics is called the multiple comparisons problem (Noble, 2009). Briefly, in the
multiple comparisons problem the more hypotheses you wish to test simultaneously,
the more likely it is that an erroneous significant result will be identified. For
example, testing if the relative abundance of 10 bacterial genera are associated
with a particular disease at the same time, with a significance level of 0.05:

P at least one significant result = 1− P no significant results (6.30)
= 1− (1− 0.05)10 (6.31)

≈ 40% (6.32)

Results in an approximately 40% chance of a significant test result, even if none
actually are. In computational biology it is common to do hundreds or thousands
of simultaneous hypothesis tests, which rapidly increases the probability of a false
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Figure 6.7: Searching through large amounts of data can identify correlated features
by chance. The number of people that die by becoming tangled in their bedsheets
correlates almost perfectly with U.S. per-capita cheese consumption (R ≈ 0.95).
Graph by Tyler Viglen, available under a Creative Commons license.

positive (Noble, 2009). Several methods exist to correct for multiple comparison
testing, including Bonferroni correction (Bland and Altman, 1995) or the Benjamini-
Hochberg procedure (Hochberg and Benjamini, 1990).

The problem of ensuring that the output of a feature selector is robust has been
covered extensively in Chapter 4, in which robust microbial markers of Inflammatory
Bowel Disease (IBD) were identified using aggregating EFS. The same strategy of
repeatedly resampling a subset of data can be used to measure the robustness of
rough set reducts, and therefore the robustness of the rough set characterisation. In
this section the robustness of the oral and gut rough set characterisations (discussed
in Section 6.4) is investigated.

6.5.1 Implementation and results
To assess the robustness of the oral and gut characterisations 80% of the micro-
biome census data for each characterisation task was repeatedly resampled with
replacement (bootstrapped; see Figure 6.8). A bootstrap procedure randomly draws
samples with replacements from a dataset (i.e. the drawn sample is added back to
the dataset and can be redrawn). Bootstrapping is commonly used to estimate the
precision of sample statistics, significance tests, and in model validation (Varian,
2005). The rough set characterisation procedure was then performed on each of
the data resamples generated by the bootstrapping procedure. To measure the
robustness of the rough set characterisation procedure, the similarity of the bacterial
species present in the generated rules across different bootstraps was combined into
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Figure 6.8: The robustness of a rough set characterisation can be measured by
bootstrapping microbiome census data and combining the bacterial species present
in the reducts. Complete linear aggregation (Abeel et al., 2010) was used to
combine the lists of bacterial species into a ranked list of robust characterisations.

a single ranked list of bacterial genera using complete linear aggregation (Abeel
et al., 2010). A strong characterisation would be a rule that has been generated
consistently across multiple data resamples, and a weak characterisation would be
present in few resamples (or absent entirely).

The best gut characterisations included Bacteroides, Alipstipes, and Phasco-
larctobacterium, which were identified in at least half of the resampled rough
sets (see Table 6.8). Overall, the most robust characterisation was Bacteroides,
which appeared in 80% of gut resamples, and was present in nearly every single
generated rule for control, depressed, and remission subjects. Two new bacterial
genera were identified in the resampled characterisations that were absent from
the original: Parabacteroides and Ersyipelotrichaceae. One genera present in the
original characterisation was absent from every resample (Ruminococcaceae).

The best oral characterisations included Streptococcus, Prevotella, Haemophilus,
and Selenomonas, which were identified in at least half of the resampled rough
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Table 6.8: Robustness of gut microbiome rough characterisation.

Genera Consistency Frequency Rule no.
Bacteroides 8 0.8 1 – 3 (control), 1 – 3 (de-

pressed), 1 – 8 (remission)
Alistipes 7 0.7 4 (depressed)
Parabacteroides 6 0.6 None
Phascolarctobacterium 5 0.5 1 (depressed), 2 & 6 (remis-

sion)
Erysipelotrichaceae
UCG.003

4 0.4 None

Odoribacter 3 0.3 3 (control), 3 (depressed), 1,
3, 4, 6 – 8 (remission)

Prevotella 9 2 0.2 1 (control)
Anaerostipes 1 0.1 1 – 3 (control), 1 (remission)

Table 6.9: Robustness of oral microbiome rough characterisation.

Genera Consistency Frequency Rule no.
Streptococcus 10 1 2 & 4 (control), 1 – 2 (de-

pression)
Prevotella 7 9 0.9 1 – 2 (control)
Haemophilus 8 0.8 3 & 5 (control)
Veillonella 7 0.7 None
Selenomonas 3 7 0.7 1, 3, 4 (control), 1 (depres-

sion)
Capnocytophaga 5 0.5 None
Megasphaera 4 0.4 None
Neisseria 2 0.2 None
Gemella 2 0.2 None
Prevotella 6 2 0.2 1 – 2 (control)

sets (see Table 6.9). The most robust characterisation was Streptococcus, which
was identified in every resample, and was present in over half the generated
rules from the original characterisation for both depressed and control subjects.
Many new bacterial genera appear that were not present in the original rules
that characterised the oral microbiome, including Veillonella, Capnocytophaga,
Megasphaera, Neisseria, and Gemella. The genera Granulicatella was present in
the original characterisation, but absent from every resample.
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6.5.2 Discussion
The rough set resampling approach demonstrates that both gut and oral charac-
terisations of depressed cohorts were on the whole fairly robust. However, the
analysis did reveal that certain rules were significantly more robust than others.
For example, Bacteroides (gut) and Streptococcus (oral) were present in nearly
every resample, and were both used in a large number of rules. On the other
hand, some bacterial genera were only present in the original characterisation and
did not appear (e.g. Ruminococcaceae in the gut and Granulicatella in the oral
characterisations). In addition, several new bacterial genera appeared many of
the resamples that were absent in the original characterisation. The most robust
of which include Veillonella and Capnocytophaga in the majority of oral resam-
ples, and Parabacteroides which appears in the majority of gut resamples. The
robustness of characterisations should be taken into account when attempting to
investigate potential mechanisms of actions related to biological species.

In future work, incorporating the resampling procedure when identifying reducts
from high dimensional data would be an invaluable method of ensuring that outputs
(in the form of IF-THEN rules) are robust, and not the result of random chance.
Under normal conditions this would normally be assessed by testing generated
IF-THEN rules on unseen data. However, because the characterisation process
produces descriptive rules and not predictive rules, this was not possible. Therefore
the resampling process was required to further assess the quality of characterisations.

6.6 Summary
Modelling microbiome census data is a difficult task due to the problematic proper-
ties associated with high-throughput sequencing data. Recently the widespread
application of models that are inappropriate for microbiome census data has
rendered the analysis of many microbiome experiments deeply flawed at best (Mc-
Murdie and Holmes, 2014). Even analysing microbiome census data with models
that are thought to be appropriate is associated with caveats and pitfalls that
are unlikely to be noticed by many (Weiss et al., 2017). By applying data-driven
CI approaches with weak prior assumptions this metaphorical minefield can be
avoided entirely. In addition, the first goal of many microbiome experiments is to
characterise an environment. The description of patterns in data is also a significant
part of data mining and knowledge discovery — despite the focus on classification
throughout this thesis and the popularity of classification for microbiome research
generally — and the application of rough set theory in this chapter has enabled
the thorough description of problematic data.

The experiments in this chapter found that RST was capable of characterising
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microbiomes well. The quality of characterisation was measured with three metrics
(fully defined in Section 6.3): the accuracy of characterisation, the quality of char-
acterisation, and the support each induced rule received (i.e. the number of samples
that agreed with a generated rule). Furthermore, an additional bootstrapping
procedure found that the rough characterisations were fairly robust. The rough
sets could perfectly discern samples collected from different locations. Simple rules
were induced to generate knowledge about key characteristics of the microbiomes
and what distinguishes them from similar environments. The rough sets were also
able to perfectly characterise the depression datasets, and more complex rules
were induced to generate knowledge from the data. The generated rules included
a compelling mix of old and new insights: comparison of the rules to existing
analysis using standard approaches found many identified abundance patterns were
also present in the RST characterisation. In addition, novel abundance patterns
have also been identified, implicating new bacterial genera in the aetiology of the
microbiome-gut-brain axis for the first time such as Odoribacter. However, it is
important to note that further work will be required to generate new data (e.g. the
recruitment and analysis of a new cohort to analyse the gut and oral microbiome
in depressed subjects) to confirm the novel results independently of the rough set
characterisation procedure. Work on subjects with depression in remission revealed
that the microbiome could be showing preliminary signs of a recovery process,
which provides support for the leaky gut hypothesis of depression.

Preliminary evidence of disease prediction from microbiome census data has been
presented in this thesis and across microbiome research more generally. However,
highly popular high performance supervised learning algorithms (Statnikov et
al., 2013) are almost entirely black box models. Although black box models are
acceptable for applications such as image processing and speech recognition, it is
important to trust the output of models for clinical use of medical recommendation
systems. To enable trust it is critical for models to be transparent and understood
by human experts. The RST approach described throughout this chapter can be
easily extended from description to transparent disease prediction if sufficient data
are available, and disease prediction would be necessary to develop any future
clinical applications of RST characterisation.

Rule-based systems suffer from the combinatorial rule explosion problem. As
the number of features being considered increases, the number of rules increases
exponentially (Combs and Andrews, 1998). This drastically reduces the performance
and transparency of rule-based systems. The rough set theory applications to the
microbiome census data in this chapter have generated small reducts, with less
than a dozen features, which avoids this problem. However, it is important to note
some applications of the rough set characterisation may result in a rule explosion
if many bacterial species are relevant to the characterisation. Rule optimisation
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would be an important method of tackling this problem while maintaining the
transparency of the system.

Publications arising from this work
The basis of this work is under preparation for submission:

Wingfield, B., S. Coleman, T. McGinnity and A. J. Bjourson (2019). ‘Rough Set
Microbiome Characterisation’. In: IEEE/ACM Transactions on Computational
Biology and Bioinformatics. Note: manuscript under preparation.
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conclusions and future work

My methods of navigation have
their advantages. I may not
have gone where I intended to
go, but I think I have ended up
where I needed to be.

Douglas Adams

7.1 Introduction
Since germ theory was popularised by John Snow and Louis Pasteur in the 19th

century, microorganisms have been viewed by healthcare professionals and the
general public, as a pest that must be destroyed. However, the vast majority of
microorganisms that inhabit the human body are not pathogenic, and many are
responsible for maintaining health. Subtle imbalances in the microbiome have
been linked to a large number of diseases with a complex and uncertain aetiology,
including Inflammatory Bowel Disease (IBD) and depression. IBD caused 53,000
deaths worldwide in 2013 and its prevalence is increasing, particularly in western
countries (Molodecky et al., 2012). Each week 3.3% of the adult population in
England report having a depressive episode (McManus et al., 2016) and depression
is one of the leading sources of disability globally. Both diseases are currently
difficult to diagnose: there are no empirical tests for depression in clinical use, and
IBD requires invasive colonoscopy.

The aim of this thesis is to develop computational models of microbiomes across
the entire gastrointestinal tract in order to investigate the mechanisms that are
involved in the aetiology of disease, with a focus on depression. To achieve the aim
of this thesis six objectives were determined:

1. Review computational approaches including Computational Intelligence (CI)
and machine learning that have been applied for knowledge discovery from
biological data;

2. Review the microbiome literature to identify how the microbiome is thought
to be linked with diseases (with a focus on depression), how microbiome
census data are created, and CI applications to microbiome census data;

3. Identify methodologies that overcome current limitations in the application
of computational models to microbiome census data;
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4. Develop computational models that accurately predict IBD from microbiome
census datam, and identify a robust subset of bacterial species that can enable
knowledge discovery;

5. Using Artificial Intelligence (AI) and CI techniques, identify associations
between the oral microbiome and depression in a cohort of young adults;

6. Develop an approach that could characterise microbial environments while
preserving data semantics that are destroyed by standard normalisation
procedures.

Chapter 2 presented a review of CI applied to knowledge discovery from biological
data, while Chapter 3 presented a review of the microbiome-gut-brain axis, its
role in disease, and applications of CI to microbiome census data. These reviews
identified key research challenges related to microbiome census data analysis and
the microbiome-gut-brain axis that have not been considered to date:

1. The impact of microbiome variability on feature selection algorithm output;

2. The role the oral microbiome plays in the microbiome-gut-brain axis in a
depressed cohort;

3. The role microbiome census data normalisation algorithms play in destroying
data semantics and impairing data interpretability.

Due to the variability of taxonomic profiles (i.e. the count of different bacterial
species that represent the microbiome) across individuals, the output of feature
selection algorithms to microbiome census data was inconsistent after small changes
were made to the input data. This can additionally impact classification perfor-
mance. This is a common problem when applying feature selection algorithms to
complex biological data, as biological data can be variable and highly dimensional,
which impacts the performance of standard feature selectors (Abeel et al., 2010).
Typical feature selection approaches have traditionally focused on metrics such as
execution time and classification accuracy, rather than output stability. However, to
enable knowledge discovery, and to to gain the confidence of non-computer scientist
domain experts, the output of feature selection algorithms should be robust.

A growing body of evidence suggests that the gastrointestinal microbiome plays
an important role in the aetiology of depression. However, the limited work done in
a human cohort has focused exclusively on the lower half of the gastrointestinal tract.
The role of the oral microbiome has not been investigated in a depressed cohort to
date. Saliva can absorb blood-based biomarkers and can represent an important
source of disease information. Saliva can be collected non-invasively, which offers
significant sampling and handling advantages compared with the collection of faecal
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or biopsy samples, which are required to analyse the gut microbiome. Therefore
the oral microbiome presents a compelling target for identifying new links between
the gastrointestinal microbiome and depression.

Despite a huge variety of normalisation approaches being developed and bench-
marked for microbiome census data, there is no universal optimal approach. A
chosen approach must carefully balance the properties of the data and the objectives
of the experiment. For example, certain microbial environments can violate the
sparsity assumptions of popular transformations, and some transformations can
produce negative counts which are incompatible with traditional ecological analysis
approaches. Additionally, the transformations can destroy the semantics of the
original data, and create data that are difficult for scientists with no background
in data analytics to understand.

Two models were developed and presented in Chapter 4 that use microbiome
census data gathered from subjects with IBD to enable and enhance the non-invasive
prediction of IBD. Firstly, a hybrid model was developed that decomposes full
IBD diagnosis (including presence, subtype, and severity) into a series of simpler
classification problems. The importance of functional profile data (which is less
variable than standard taxonomic profiles) was assessed for each stage of the hybrid
model to determine the effect of variability on feature selector output. The less
variable functional data was found to be the most important type of data for all
stages of the hybrid classifier. Secondly, an aggregating ensemble feature selection
(EFS) procedure was applied to taxonomic profiles to identify robust microbial
markers, enable knowledge discovery, and to mitigate the impact of taxonomic
profile variability across subjects on feature selection algoritm output.

Chapter 5 explored the oral microbiome and its role in the microbiome-gut-
brain axis in a depressed cohort. The results found alterations present in the
composition and structure of the oral microbiome in depressed subjects for the
first time. The differences were large enough to enable accurate prediction (83.3%
balanced accuracy) of depression from a saliva sample. This novel result has
significant implications for the microbiome-gut-brain axis theory of depression,
which to date has focused on the lower gastrointestinal tract, and for the current
understanding of depression pathophysiology. The predictive performance of the
methods developed in Chapters 4 and 5 exceed current clinical best practice. The
Hamilton depression scale has a sensitivity of 78.1% and a specificity of 74.6% for
screening purposes (Aben et al., 2002). Current non-invasive methods of diagnosing
IBD have a maximum accuracy of 81.4% for crohn’s disease (CD) (calprotectin),
and 83.3% for ulcerative colitis (UC) (faecal lactoferrin) (Langhorst et al., 2008).
The robust microbial markers identified in Chapter 4 have a sensitivity of 100% for
CD and 87.5% for UC, and a specificity of 94.4% for CD and 100% for UC.

Chapter 6 outlined the development of the rough microbiome characterisation
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approach, which applied rough set theory to describe microbial environments.
A variety of normalisation techniques were applied to microbiome census data
throughout Chapters 4 and 5. Different normalisation approaches were used
as there is no single optimal normalisation technique, and the chosen approach
must carefully consider both the data and analysis task. By using a data driven
approach with minimal prior assumptions this problem can be avoided. Additionally,
rough set theory offers an attractive suite of tools for extracting knowledge from
data. By applying the rough microbiome characterisation approach to the oral
microbiome census data from Chapter 5 and a publicly available dataset gathered
from the gut of depressed subjects, new insights were identified and existing
results confirmed regarding the microbiome-gut-brain axis in depressed subjects.
Four rules were generated to characterise the depressed gut microbiome. Of
particular note is that low abundance of Phascolarctobacterium is associated with
depression. Significantly, this observation has both theoretical and empirical
justification. Phascolarctobacterium produces Short Chain Fatty Acids (SCFAs),
which are thought to be associated with modifying host metabolism and mood
(Cryan and Dinan, 2012). Additionally, Phascolarctobacterium has been directly
observed to be positively correlated with positive mood in a human cohort (Li
et al., 2016). The pattern of decreased abundance of some opportunistic pathogens
(e.g. Granulicatella elegans) that was observed in Chapter 5 was also found by
the rough characterisation of the oral microbiome. It is important to note that it
was not possible to determine relationships between the oral and gut microbiome
in depressed or healthy subjects. The gut microbiome data was gathered from
a Chinese cohort and the oral microbiome data was gathered from a European
cohort. Any variation or correlation between the oral and gut microbiome and
depression could be caused by factors such as differences in diet or ethnicity, which
are known to significantly impact the composition and structure of microbiomes
(Prideaux et al., 2013).

7.2 Summary of original contributions

The primary aim of this thesis was to develop and apply analytical models to
investigate the oral and gut microbiomes for association with disease and enable
knowledge discovery, with a focus on depression and the microbiome-gut-brain
axis. This aim was achieved by the work presented throughout Chapters 4–6.
The following sections below summarise the novel contributions of this thesis
(Sections 7.2.1 – 7.2.3).
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7.2.1 Non-invasive prediction of IBD and identification of
robust microbial markers

The hybrid model and aggregating EFS approaches, developed throughout Chap-
ter 4, enables the non-invasive identification of IBD in paediatric subjects from faecal
samples. Additionally, the aggregating EFS enabled knowledge discovery via the
generation of a consensus ranked feature list. The following original contributions
were delivered during the development of these approaches:

Comprehensive IBD prediction: IBD is a complex disease, and
during standard diagnosis its presence, subtype, and severity is assessed
by clinicians via invasive colonoscopy. The hybrid model decomposed
this complex classification problem into a series of simpler classification
tasks to allow non-invasive diagnosis.

Assessing functional feature relevance: Taxonomic profiles are
extremely variable across different subjects. It was unclear if functional
profiles, which are less variable, could be useful for disease prediction.
The relevance of functional features was assessed with the Boruta algo-
rithm. The majority of relevant features were found to be functional
features for all stages of the hybrid classifier.

Aggregating ensemble feature selection: Due to the variabil-
ity of microbiomes across individuals, the output of feature selection
algorithms to microbiome census data was inconsistent after small
changes were made to the input data. An aggregating EFS approach
was applied to microbiome census data to generate a consensus feature
ranking that could non-invasively predict IBD in a treatment-naïve
paediatric cohort from taxonomic data.

IBD knowledge discovery: By combining state-of-the-art bioin-
formatics algorithms — the amplicon sequence variant (ASV) approach
— to an existing dataset with aggregating EFS, biologically plausible
species of bacteria were implicated in the pathogenesis of IBD for the
first time.

7.2.2 Analysing oral microbiome in a depressed cohort
Recent work has shown that the microbiome plays an important role in the aetiology
of depression (Foster et al., 2017). Much interest has been focused on the role
of the lower gastrointestinal tract in the microbiome-gut-brain axis. However,
the importance of the oral microbiome has received little attention to date. To
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characterise the oral microbiome in a depressed cohort saliva samples were selected
from the Ulster University Student Wellbeing Study, and bacterial identification
performed using 16S high-throughput sequencing. Through this the following
contributions were achieved:

Structural changes in the depressed oral microbiome: Novel
changes to the structure of the oral microbiome in depressed subjects
were observed via analysis of beta diversity with statistical tests and
constrained ordination. The depressed cohort was found to have signifi-
cant microbial co-occurrence relationships that were absent in control
subjects.

Compositional changes in the depressed oral microbiome:
Novel changes to the composition of the oral microbiome in depressed
subjects were observed via differential abundance analysis of ASVs and
inferred functional pathways.

Prediction of depression from a saliva sample: Multimodal clas-
sification was applied with a Self-Organising Map (SOM) to the oral
microbiome data, enabling accurate prediction of depression from mi-
crobiome census data collected from a saliva sample for the first time.
The predictive power of multimodal classification can exceed diagnostic
criteria in current clinical use (e.g. the Hamilton depression scale, Aben
et al., 2002).

7.2.3 Rough characterisation of oral and gut microbiomes
in depressed cohorts

The contributions summarised in sections 7.2.1 and 7.2.2 implicate novel bacterial
species in the pathophysiology of IBD depression for the first time. However, the
applied models were black box models and cannot be interpreted. Additionally, a
variety of normalisation approaches were applied as there is no optimal normalisation
technique for all microbiome census data. This can impact the interpretability of
the model output by destroying the semantics of the original data. Models based
on rough set theory are transparent, data driven, and can measure the relevance
and significance of features. The application of rough set theory to microbiome
census data enabled the following contributions:

Rough characterisation: A key goal of microbiome experiments is
to characterise (i.e. describe) the microbial community. High-throughput
sequencing is used to generate microbiota profiles, but data gathered
via this method are extremely challenging to analyse as the data violate
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multiple strong assumptions of standard models. Rough set theory has
weak assumptions and offers a range of attractive tools for extracting
knowledge from complex data. The application of RST simultaneously
provides a solution to an open research question regarding identify-
ing an optimal normalisation approach for microbiome census data
while providing a clear interpretation of microbial communities. No
normalisation approach is optimal for all microbiome census data, and
misapplying a normalisation algorithm can significantly impact down-
stream analysis. As RST is a data-driven approach with minimal prior
assumptions, this problem does not occur in the rough characterisation
approach demonstrated on a benchmark dataset.

Depression knowledge discovery: Testing the rough character-
isation approach on oral and gut microbiome datasets gathered from
depressed subjects showed that RST is capable of perfectly characteris-
ing the gut and oral microbiomes and identifies previously undescribed
alterations to the microbiome-gut-brain axis including increased abun-
dance of the opportunistic pathogen Odoribacter in the gut of depressed
subjects. The observed alterations have clear biological justifications:
bacterial genera that are known to alter human mood and behaviour
and have been independently shown to be positively correlated with
positive mood were observed to have an decreased abundance in RST
analysis of the depressed cohort.

7.3 Future work
The research within this thesis provides new contributions to microbiome research,
CI, and the microbiome-gut-brain axis theory. However, this work could be
extended in a variety of directions. Some potential avenues are outlined throughout
sections 7.3.1 – 7.3.4. The work in this thesis has identified for the first time that
the oral microbiome in depressed subjects is significantly different. The first stage of
further work should be to confirm the alterations in larger cohorts, and to potentially
identify new alterations, by directly measuring taxonomic and functional data with
shotgun sequencing. The next stage of further work should be to study the depressed
microbiome in longitudinal experiments to identify key changes associated with the
onset of depression and remission. Once longitudinal changes have been identified,
the final stage of further work would be to determine if the alterations to the
microbiome can be reversed or ameliorated by the administration of psychobiotics,
and if such approaches are capable of effectively treating depression.
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7.3.1 Fuzzy-rough microbiome characterisation
One of the most significant disadvantages of rough set theory is its requirement
for data to be discrete. Although raw microbiome count data consists of discrete
sequence reads, total sum scaling normalisation (i.e proportions) mitigates uneven
library size across samples while maintaining data interpretability. Continuous data
must be discretised before it can be analysed, and information loss is guaranteed
by the discretisation process. Fuzzy-rough sets combine the concepts of vagueness
(fuzzy sets) and uncertainty (rough set theory), which both arise from uncertainty in
knowledge. The application of fuzzy-rough sets would enable the use of real-valued
data, mitigating one of the most significant drawbacks associated with the rough
microbiome characterisation approach.

7.3.2 Microbiome characterisation with shotgun
sequenced data

The microbiome census data analysed throughout this thesis was gathered via a
marker gene survey. Although marker gene surveys are one of the most popular
methods of estimating the structure and composition of microbial communities,
there is a number of disadvantages associated with the protocol that could impact
results. Firstly, significant bias is introduced by differential amplification and
variable 16S copy number across different species. The marker gene survey protocol
uses universal primers that can identify a broad spectrum of bacterial and archaeal
species. However, it is well known that the amplification efficiency of universal
primers varies across different organisms (as the 16S sequences vary slightly). This
will impact estimates of bacterial abundance. 16S copy number bias will also
impact estimates of bacterial abundance, but this can be somewhat mitigated via
the use of copy number databases and ancestral state reconstruction algorithms.
Additionally, 16S marker gene surveys can only directly measure taxonomic content
of a microbial community. Functional content must be inferred in silico from
characterised genomes using bioinformatics software packages such as Phylogenetic
Investigation of Communities by Reconstruction of Unobserved States (PICRUSt).
Compared with direct measurement of functions, it is certain that some information
loss will occur because of bias introduced by the marker gene survey or problems
with the inference procedure.

Shotgun sequencing sequences long DNA strands instead of small sections of
marker genes. This means that the bias described above would be mitigated
and functional content can be directly measured. The hybrid model presented in
Chapter 4 investigated the relevance of functional profiles for disease prediction.
Chapter 6 presented the rough characterisation of oral and gut microbiomes in
depressed subjects. Although rough set theory was able to model the microbiomes
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perfectly, the generated rules that characterised the environments had somewhat low
support. As functional profiles have less variance compared with taxonomic profiles,
and it has been shown that alterations in both depressed microbiomes do exist, it
would be valuable to perform rough characterisation on directly measured shotgun
sequenced data (both taxonomic and functional) to determine if functional profiles
generate rules with more support. However, it is important to note that shotgun
sequenced sequence data are significantly more expensive to collect and process,
and are extremely time-consuming to analyse compared with 16S marker gene
survey data. Characterising the microbiome of depressed subjects from shotgun
sequenced data would require significant investment and resources.

7.3.3 Longitudinal analysis of depressed cohort
The conclusions that could be drawn from the microbial co-occurrence networks
were limited because the analysis provides more compelling results for time series
data. Identifying how microbial relationships change over time in response to
changes in state can significantly improve our understanding of the underlying bio-
logical phenomenon. However, time-series microbiome datasets are often collected
from non-medical datasets (e.g. microbial communities present in the ocean), and
no longitudinal datasets exist for a depression cohort. Repeated sampling over
time could reveal changes correlated to the onset of depression, antidepressant
prescription, and depression entering remission. Time series analysis is not limited
only to microbial co-occurrence analysis: monitoring the structure and composition
of the microbiome over time would also be invaluable. Time series data would
provide additional classification or regression problems that could be modelled.
For example, subject prognosis could be predicted by modelling non-response to
antidepressant medication, which is thought to be linked to inflammation, from
time-series data.

7.3.4 Psychobiotics
Once the onset of depression or remission has been associated with alterations to
microbiomes across the human body from time-series data, the next logical step
would be to identify if reversing such changes can be used to treat depression.
Restoring altered microbiomes to their original state could provide a novel method
of treating depression, possibly in combination with traditional methods including
pharmacological intervention and cognitive behavioural therapy. In addition,
novel psychobiotics — live bacteria that when ingested confer mental health
benefits through interactions with commensal gut bacteria — could be identified
by understanding the overall effect that the microbiome alterations have on the
host. For example, the alterations associated with the onset of depression could
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lead to an increased amount of SCFAs being produced by the microbiome (and
hence absorbed by the human host). SCFAs can engage in epigenetic regulation
of inflammation, which is linked to the aetiology of depression. Identifying and
administering a bacterial species that metabolises SCFAs could theoretically prevent
the development of depression, or treat it.

7.4 Conclusion
The aim of this thesis was to develop and apply analytical CI models to investigate
the oral and gut microbiomes for association with disease and to enable knowledge
discovery, with a focus on depression and the microbiome-gut-brain axis. The
work contained in this thesis addresses this objective by developing and applying
CI techniques on publicly available IBD microbiome census data, and applying
the same approaches to oral microbiome samples collected in collaboration with
the Northern Ireland Centre for Stratified Medicine. The analysis of the oral
microbiome samples identified key alterations correlated with depression. The
alterations were significant enough to allow the non-invasive prediction of depression
from a saliva sample for the first time, with a sensitivity and specificity that exceeds
some diagnostic criteria in current clinical use. This discovery has extended the
microbiome-gut-brain axis theory to include oral microbiome for the first time,
which has to date focused on the lower gastrointestinal tract. In addition, this work
developed a rough characterisation procedure that provides a potential solution to
an open research question regarding identifying an optimal normalisation technique
for microbiome census data. The rough characterisation approach was applied
to the oral microbiome data described in Chapter 5 and publicly available gut
microbiome data gathered from a depressed cohort and generated new insights into
the microbiome-gut-brain axis.
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