
Georgia State University
ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

5-3-2007

Evolutionary Granular Kernel Machines
Bo Jin

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Computer Science Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For
more information, please contact scholarworks@gsu.edu.

Recommended Citation
Jin, Bo, "Evolutionary Granular Kernel Machines." Dissertation, Georgia State University, 2007.
https://scholarworks.gsu.edu/cs_diss/15

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks @ Georgia State University

https://core.ac.uk/display/71421688?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

EVOLUTIONARY GRANULAR KERNEL MACHINES

by

BO JIN

Under the Direction of Yan-Qing Zhang

ABSTRACT

 Kernel machines such as Support Vector Machines (SVMs) have been widely

used in various data mining applications with good generalization properties.

Performance of SVMs for solving nonlinear problems is highly affected by kernel

functions. The complexity of SVMs training is mainly related to the size of a training

dataset. How to design a powerful kernel, how to speed up SVMs training and how to

train SVMs with millions of examples are still challenging problems in the SVMs

research.

 For these important problems, powerful and flexible kernel trees called

Evolutionary Granular Kernel Trees (EGKTs) are designed to incorporate prior domain

knowledge. Granular Kernel Tree Structure Evolving System (GKTSES) is developed to

evolve the structures of Granular Kernel Trees (GKTs) without prior knowledge. A

voting scheme is also proposed to reduce the prediction deviation of GKTSES. To speed

up EGKTs optimization, a master-slave parallel model is implemented. To help SVMs

challenge large-scale data mining, a Minimum Enclosing Ball (MEB) based data

reduction method is presented, and a new MEB-SVM algorithm is designed. All these

kernel methods are designed based on Granular Computing (GrC). In general,

Evolutionary Granular Kernel Machines (EGKMs) are investigated to optimize kernels

effectively, speed up training greatly and mine huge amounts of data efficiently.

INDEX WORDS:

Bioinformatics, Computational Intelligence, Data Mining, Evolutionary Granular Kernel
Machines, Evolutionary Granular Kernel Trees, Genetic Algorithms, Granular
Computing, Granular Kernel Tree Structure Evolving System, Machine Learning,
Minimum Enclosing Ball, Statistical Learning, Support Vector Machines

EVOLUTIONARY GRANULAR KERNEL MACHINES

by

BO JIN

A Dissertation Submitted in Partial Fulfillment of Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia Stage University

2007

Copyright by
Bo Jin
2007

EVOLUTIONARY GRANULAR KERNEL MACHINES

by

BO JIN

Major Professor: Yan-Qing Zhang
Committee: Rajshekhar Sunderraman

Saeid Belkasim
Yichuan Zhao

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

May 2007

 iv

Acknowledgments

Firstly, I particularly thank my advisor, Dr. Yan-Qing Zhang, for his guidance and

help throughout my Ph.D. study and during the completion of this dissertation. Secondly,

I am grateful to my committee members, Dr. Rajshekhar Sunderraman, Dr. Saeid

Belkasim, and Dr. Yichuan Zhao for their assistance. Finally, I would like to thank my

family and friends for their help, encouragement and support.

Some of my Ph.D. research was supported in part by the U.S. National Institute of

Health under grant P20 GM065762. I was supported by the Georgia State University

Doctoral Fellowship Program of Molecular Basis of Disease (MBD). I was also

supported by the Research Assistantship in Department of Computer Science at Georgia

State University.

 v

 TABLE OF CONTENTS

LIST OF FIGURES ... viii

LIST OF TABLES... xi

LIST OF ABBREVIATIONS.. xiii

CHAPTER 1 INTRODUCTION... 1

1.1 Three Revolutions ... 1

1.1.1 Perceptron .. 1

1.1.2 Nonlinear Learning Algorithms .. 1

1.1.3 SVMs and Kernel Methods .. 2

1.2 Curse of Dimensionality.. 3

1.3 Two Issues in the SVMs Research ... 5

1.4 Organizations and Contributions... 6

CHAPTER 2 RELATED THEORIES ... 11

2.1 SVMs ... 11

2.2 Kernels .. 14

2.3 Mercer Theorem .. 15

2.4 Kernel Properties ... 15

2.5 SVDD .. 17

2.6 Evolutionary Computation .. 19

2.6.1 GAs .. 20

2.6.2 Other Evolutionary Computation Algorithms ... 20

2.7 GrC .. 21

CHAPTER 3 HIERARCHICAL KERNEL DESIGN ... 23

3.1 Related Work ... 23

3.1.1 Convolution Kernels .. 23

3.1.2 All-subsets Kernel.. 23

3.1.3 ANOVA Kernels ... 24

3.1.4 String Kernels... 24

3.1.5 Tree Kernels ... 25

3.1.6 Graph Kernels .. 26

3.2 Granular Feature Transformation.. 27

 vi

3.3 Kernel Based Granular Feature Transformation... 28

3.4 Granular Kernel Properties .. 30

3.5 Hierarchical Kernel Design and Granular Kernel Trees .. 31

3.6 EGKTs... 33

CHAPTER 4 SVMS WITH EGKTS FOR DRUG ACTIVITY COMPARISON 37

4.1 QSAR ... 37

4.2 Pyrimidines Activity Comparison.. 37

4.2.1 Dataset Description ... 38

4.2.2 Feature Granules and Hierarchical Kernel Design ... 39

4.2.3 Simulation ... 41

4.3 Triazines Activity Comparison ... 44

4.3.1 Dataset Description ... 44

4.3.2 Feature Granules and Hierarchical Kernel Design ... 45

4.3.3 Simulation ... 46

CHAPTER 5 GKTSES AND EVKM... 50

5.1 Chromosome .. 50

5.2 Crossover .. 50

5.3 Mutation ... 54

5.4 Simulation.. 56

5.4.1 Dataset Description and Simulation Setup .. 56

5.4.2 Simulation Results... 57

5.5 EVKM ... 58

5.5.1 Voting Scheme... 58

5.5.2 Simulation Results... 59

CHAPTER 6 EGKTS WITH PARALLEL COMPUTING... 61

6.1 SVMs with Parallel Computing .. 61

6.2 Parallel GAs Models.. 61

6.3 Parallel EGKTs ... 62

6.4 Simulation.. 64

CHAPTER 7 MEB-SVM .. 66

7.1 Related Works ... 66

7.1.1 Chunking and Decomposition.. 66

 vii

7.1.2 CB-SVM .. 67

7.1.3 CVM... 68

7.1.4 LSVM... 68

7.1.5 PSVM .. 69

7.1.6 HeroSVM .. 69

7.1.7 Active Learning .. 70

7.2 MEB-SVM.. 70

7.3 Simulation.. 74

7.3.1 Performance Metrics ... 75

7.3.2 Network Intrusion Detection... 77

7.3.2.1 Dataset Description ... 77

7.3.2.2 Simulation Results... 79

7.3.3 Evaluation on the RING NORM Dataset .. 81

7.3.3.1 Dataset Description ... 81

7.3.3.2 Simulation Results... 81

7.3.4 Evaluation on the Normally Distributed Clustered (NDC) Datasets 83

7.3.4.1 Dataset Description ... 83

7.3.4.2 Simulation Results... 84

CHAPTER 8 CONCLUSION AND FUTURE WORK .. 86

8.1 Conclusion... 86

8.2 Future Work .. 87

8.2.1 Ensemble Methods.. 87

8.2.1.1 Bagging ... 87

8.2.1.2 Boosting .. 88

8.2.2 Multi-classification Approaches ... 88

8.2.2.1 One-versus-rest ... 88

8.2.2.2 One-versus-rest Voting... 89

8.2.2.3 One-versus-one Voting... 89

8.2.2.4 Directed Acyclic Graph SVM ... 90

8.2.3 New Intelligent System Framework .. 90

REFERENCES... 92

 viii

LIST OF FIGURES

Figure 1.1 Example of feature transformation 4

Figure 2.1 Hyperplane and margin 11

Figure 2.2 MEB with slack variables 19

Figure 3.1 An example of granular feature transformation 28

Figure 3.2 An example of kernel based feature transformation 29

Figure 3.3 An example of kernel based granular feature transformation 29

Figure 3.4 An example of GKTs 33

Figure 3.5 Learning procedure of EGKTs 36

Figure 3.6 SVMs with EGKTs 36

Figure 4.1 Structure of Pyrimidines 39

Figure 4.2 Pyrimidines drug pairs 39

Figure 4.3 Feature granules in the Pyrimidines drug pair 40

Figure 4.4 GKTs-1 41

Figure 4.5 GKTs-2 41

Figure 4.6 Testing accuracies on the Pyrimidines dataset 44

Figure 4.7 Structure of Triazines 45

Figure 4.8 Feature granules of the Triazines drug pair 46

Figure 4.9 GKTs-3 47

Figure 4.10 GKTs-4 48

Figure 4.11 Testing accuracies on the Triazines data set 49

 ix

Figure 5.1 GKTs-5 51

Figure 5.2 GKTs-6 51

Figure 5.3 Chromosomes used encode GKTs-5 and GKTs-6 52

Figure 5.4 Chromosomes c3 and c4 generated from c1 and c2 52

Figure 5.5 GKTs-7 and GKTs-8 generated using crossover operation 53

Figure 5.6 GKTs-9 and GKTs-10 generated using crossover operation 54

Figure 5.7 Chromosomes c5 and c6 generated from c1 and c2 54

Figure 5.8 Chromosomes c7 generated from c1 using mutation 55

Figure 5.9 GKTs-11 generated from GKTs-5 using mutation 55

Figure 5.10 Architecture of GKTSES 56

Figure 5.11 Testing accuracies of EVKMs in three evaluations 60

Figure 6.1 SVMs with the parallel EGKTs 63

Figure 6.2 System architecture of SVMs with the parallel EGKTs 64

Figure 6.3 Running time of the parallel system 65

Figure 6.4 Speedup of the parallel system 65

Figure 7.1 Data in a new feature space transformed by a RBF kernel 71

Figure 7.2 MEBs measured on each class data set 72

Figure 7.3 Data reduction 72

Figure 7.4 Hyperplane found by an SVM classifier on the reduced data set 72

Figure 7.5 The MEB-SVM algorithm 74

Figure 7.6 Confusion matrix 75

Figure 7.7 The area under the ROC curve 77

 x

Figure 8.1 Architecture of the new intelligent system 91

 xi

LIST OF TABLES

Table 4.1 Performance comparison on the Pyrimidines dataset

(Burbidge et al., 2001) 42

Table 4.2 Performance comparison on the Pyrimidines dataset 43

Table 4.3 Quartiles of testing accuracies on the Pyrimidines dataset 44

Table 4.4 Performance comparison on the Triazines dataset 47

Table 4.5 Testing accuracies on the Triazines dataset 49

Table 5.1 Prediction accuracies in average on the Cyclooxygenase-2 dataset 57

Table 5.2 Results of three evaluations on the Cyclooxygenase-2 dataset 58

Table 5.3 Prediction results of EVKMs in three evaluations

on the Cyclooxygenase-2 dataset 60

Table 5.4 Testing accuracies in average and standard deviation

on the Cyclooxygenase-2 dataset 60

Table 7.1 Basic features of individual TCP connections 78

Table 7.2 Content features within a connection suggested by domain knowledge 78

Table 7.3 Traffic features computed using a two-second time window 78

Table 7.4 Other features without discriptions 79

Table 7.5 Performance comparison on the KDDCUP-99 dataset 80

Table 7.6 Other performance evaluations of MEB-SVM on the KDD Cup-99 dataset 81

Table 7.7 Performance comparison between MEB-SVM and CVM

on the ring norm dataset with 3 millions examples 82

 xii

Table 7.8 Performance comparison between MEB-SVM and HeroSVM

on the ring norm dataset with 100 millions examples 83

Table 7.9 Performance comparison on the NDC datasets 84

Table 7.10 Other performance evaluations of MEB-SVM on the NDC datasets 85

 xiii

LIST OF ABBREVIATIONS

Clustering Feature CF

Clustering-Based Support Vector Machine CB-SVM

Core Vector Machine CVM

Directed Acyclic Graph DAG

Evolution Strategy ES

Evolutionary Granular Kernel Trees EGKTs

Evolutionary Granular Kernel Machines EGKMs

Evolutionary Voting Kernel Machine EVKM

Genetic Algorithms GAs

Genetic Programming GP

Gradient Projection Method GPM

Granular Computing GrC

Granular Kernel Trees GKTs

Granular Kernel Tree Structure Evolving System GKTSES

Inductive Logic Programming ILP

Lagrangian Support Vector Machine LSVM

Minimum Enclosing Ball MEB

Minimum Enclosing Ball based Support Vector Machine MEB-SVM

Normally Distributed Clusters NDC

Proximal Support Vector Machine PSVM

 xiv

Quadratic Programming QP

Quantitative Structure Activity Relationship QSAR

Radial Basis Function RBF

Sequential Minimal Optimization SMO

Support Vector Data Description SVDD

Support Vector Machines SVMs

 1

CHAPTER 1

INTRODUCTION

 Computer techniques and Internet technology allow us to capture and store huge

amounts of data. Developing machine learning algorithms to identify patterns from these

massive data sets automatically is one of great challenges in this information age. These

patterns can help us analyze inherent relations, understand regularities, and discover new

knowledge in the data sets. The development of automated learning algorithms for data

prediction and pattern recognition underwent three revolutions (Shawe-Taylor and

Cristianini, 2004).

1.1 Three Revolutions

1.1.1 Perceptron

 In 1957, the perceptron algorithm was proposed to identify the linear relationships

within sets of data by Frank Rosenblatt (Rosenblatt, 1958). As a binary classifier, the

perceptron algorithm maps an input vector x to an output value. The algorithm classifies

an input instance x as either positive or negative according to the sign of)(xf (Equation

(1.1)), where w is a weight vector and ⋅⋅, is a dot product. The perceptron is the

simplest type of a feed forward neural network.

() bxwxf += , (1.1)

1.1.2 Nonlinear Learning Algorithms

 In the 1980s, feed forward multilayer forward neural networks (Rumelhart et al.,

1986) were introduced as a type of nonlinear learning algorithms. Typically a feed

 2

forward multilayer neural network has nodes arranged in a multilayer topology, which

contains an input layer, an output layer and one or more hidden layers. Inputs are

forwarded from the input layer, through all hidden layers to the output layer. In the neural

network, each node has an activation function and each connection has a weight. The

back propagation algorithm is commonly used for neural network training.

 Decision trees as another type of nonlinear algorithms were introduced by

Quinlan in 1986. A decision tree has a tree structure in which internal nodes correspond

to attributes/features and leaf nodes correspond to class labels. To build a tree, an

attribute that can best split training examples into their proper classes is selected initially.

A node, related branches and children nodes are then created for that attribute. The

training examples are then distributed from the parent node to some appropriate children

nodes and a new attribute is selected to split examples. This process repeats until a node

contains examples of the same class. At that point, it stores the class label. Typically the

information gain and the gain ratio are used to measure the quality of a split. Two famous

decision tree algorithms are ID3 (Quinlan, 1986) and C4.5 (Quinlan, 1993). Feed forward

multilayer neural networks and decision trees can be used to identify nonlinear patterns

within data sets. However, these two types of algorithms suffer from some problems such

as local minima and over fitting.

1.1.3 SVMs and Kernel Methods

 In the 1990s, SVMs were presented by Vapnik and his colleagues (Boser et al.,

1992; Guyon et al., 1993; Cortes and Vapnik, 1995). The design of SVMs is based on

Statistical Learning Theory (Vapnik, 1995; Vapnik, 1998), which was developed by

Vapnik and Chervonenkis during 1960s-1990s. According to Statistical Learning Theory,

 3

a risk function first needs to be defined to measure the error risk average of an estimator

during solving the learning problem. Then the remaining task is searching for the

estimator with the lowest risk.

 SVMs can effectively solve linear and nonlinear binary classification problems

with good generalization capability. There are two key features in the SVMs design. One

is constructing the separating hyperplane with the maximum margin. The other is the

kernel based feature transformation. With the help of a nonlinear kernel, input data are

transformed into a high dimensional feature space where it is “easy” for SVMs to find a

hyperplane to separate data. Inspired by SVMs, many new kernel-based algorithms were

developed for data mining.

 The developments from the perceptron algorithm, feed forward multilayer neural

networks and decision trees to the kernel-based learning algorithms are called three

revolutions in pattern recognition and analysis.

1.2 Curse of Dimensionality

 In machine learning, the way to represent an input vector will affect the

complexity of a learning model. To solve the problem easily, it is common to transform

the input data into a new feature space to obtain a good representation. Such a feature

transformation can simplify learning tasks (Shawe-Taylor and Cristianini, 2004). An

example of feature transformation is given in Figure 1.1.

 4

Figure 1.1 Example of feature transformation

Definition 1.1 Feature transformation is a mapping in which input vectors are

transformed from the input space into a new feature space through a functionϕ

() () () ()()xxxxxxx Nn …… ϕϕϕ ,,,,, 121 == (1.2)

where () ()() N
N Rxx ∈… ϕϕ ,,1 , nRx∈ is the input vector, and NR is a new feature space.

 Many mapping functions and techniques can be used to implement the feature

mapping directly. However it is not easy to define a direct mapping, especially when the

number of input features is large. The reason is that there are too many possible ways to

construct a transformation for input features. Different from the direct mapping, the

kernel-based feature transformation implements a kind of implicit mapping, which

typically transforms data into an inner product feature space and the transformation

function ϕ in Equation (1.2) doesn’t need to be explicitly evaluated. Here is an example.

Let x and 'x be),(21 xx and)','(21 xx respectively. A kernel function 2)'()',(xxxxK ⋅=

can be used to implement the following transformationϕ :

 5

),2,(),(: 2
221

2
121 xxxxxxϕ

We may rewrite)',(xxK ,

>=<
>=<

++=

+=

+=

⋅=

)'(),(
)',''2,'(),,2,(

)'(''2)'(

)''(

)''(
)'()',(

2
221

2
1

2
221

2
1

2
222211

2
11

2
2211

2
2211

2

xx
xxxxxxxx

xxxxxxxx

xxxx

xxxx
xxxxK

ϕϕ

 Furthermore, the number of dimensions of the new space can be very huge, and

sometimes even infinite. In such a high dimensional feature space, the data become

sparse and they can be separated easily. Hence kernel-based methods can overcome the

curse of dimensionality.

1.3 Two Issues in the SVMs Research

 There are two issues in the SVMs research. One is kernel design. Generally the

variance of a kernel function is controlled by the kernel parameters, for example, Radial

Basis Function (RBF) kernel’s parameter γ and polynomial kernel’s d. In these

traditional kernels, all features are processed as one unit in vector operations and

controlled by one or two parameters. With the growing interests of complex data such as

biological data and chemical data, more powerful and flexible kernels need to be

designed to incorporate prior domain knowledge. The other issue is the time for SVMs

training. With the explosive growth of the amount of data in various areas, large-scale

data mining is becoming vital. Due to the fact that training time and space complexities

of SVMs mainly depend on the size of a training dataset, SVMs are not suitable for the

large-scale data classification. Although some techniques have been proposed to speed up

 6

SVMs training, how to apply SVMs to the problems with millions of examples is still a

challenging problem.

1.4 Organizations and Contributions

 In Chapter 2, the basic SVMs theory is briefly reviewed in Section 2.1, which

focuses on the data classification. In Section 2.2, the kernel concept and some popular

kernel functions are introduced. In Section 2.3, Mercer Theorem is reviewed. In Section

2.4, Kernel properties are described. The concept of MEB, the Support Vector Data

Description (SVDD) algorithm, and the related applications are reviewed in Section 2.5.

In Section 2.6, evolutionary computation and the related algorithms such as Genetic

Algorithms (GAs), Genetic Programming (GP) and Evolution Strategy (ES) are reviewed.

Finally, GrC is introduced in Section 2.6.

 In Chapter 3, we review some popular kernels designed for complex data in

Section 3.1. Convolution kernels, all-subsets kernel, ANOVA kernels, string kernels, tree

kernels, and graph kernels are introduced. The definitions of granular feature

transformation and kernel based granular feature transformation are given in Section 3.2

and Section 3.3 respectively. Granular kernel properties are summarized in Section 3.4.

In Section 3.5, we present the hierarchical kernel design concept and GKTs. GKTs can

effectively incorporate the prior domain knowledge such as object structures and feature

relations. In Section 3.6, chromosomes used to encode a problem are first defined. The

basic genetic operations such as selection, crossover, and mutation used to optimize

GKTs are then described. Finally, the learning procedure of EGKTs and the system

architecture are given.

 7

 In Chapter 4, Quantitative Structure Activity Relationship (QSAR) analysis and

machine learning methods used for QSAR analysis are reviewed in Section 4.1. In

Section 4.2, we present two types of GKTs to measure the similarity between compounds

of Pyrimidines (inhibitors of E. Coli dihydrofolate reductase). In each GKT, the granular

kernels are defined based on the possible substituent locations of compounds. Simulation

results show that GKTs and the related EGKTs can improve the prediction accuracies of

SVMs by 2.3%~3.4% on the Pyrimidines dataset, compared with the GAs-based SVMs

with the RBF kernel. Also, based on the comparison made by Burbidge et al. (2001)

among SVMs, Neural Networks, RBF Network and Decision Trees for the same problem,

we can say that SVMs with EGKTs are better classifiers for the Pyrimidines activity

comparison. In Section 4.3, we design another two kinds of GKTs for the Triazines

activity comparison and simulation results show that SVMs with GKTs can outperform

SVMs with RBF by 3.6%~4.5% in terms of testing accuracy.

 In Chapter 5, we propose GKTSES to evolve the GKTs structures in the case of

lack of prior knowledge. With the new encoding scheme and genetic operations,

GKTSES are more flexible for problem solving. Simulation results show that the testing

accuracies of SVMs+GKTSES are higher than those of SVMs+GAs+RBF by about

2.9%~3.9% in three evaluations in the Cyclooxygenase-2 inhibitor activity comparison.

To reduce the prediction deviation of GKTSES, we also present a voting-scheme-based

classification system called EVKM in Section 5.5. Simulation results show that the new

voting scheme can significantly reduce the prediction deviation of SVMs+GKTSES from

6.5% to 2.3%.

 8

 In Chapter 6, SVMs with parallel computing are briefly reviewed and several

Parallel GAs models are introduced at first. Then we propose parallel EGKTs, which are

based on the master-slave parallel GAs model, parallelized with MPICH, and tested in a

disk-shared memory-distributed Linux cluster environment. Simulation results in Section

6.4 show that our parallel method can significantly speed up the training of

SVMs+EGKTs by a factor of 10 with 14 nodes.

 In Chapter 7, chunking and decomposition methods are first introduced, and then

several famous algorithms for large-scale data mining are reviewed in Section 7.1. In

Section 7.2, MEB-SVM is proposed. In this algorithm, the kernel based MEBs are used

to measure data boundaries, minimize the number of training data, and further shorten

SVMs training.

 In Section 7.3.2, the problem of the network intrusion detection is addressed and a

standard tcpdump dataset containing 4,898,431 examples is used in the simulation. We

conduct the benchmark results of MEB-SVM with regard to random sampling methods,

active learning based SVM, Clustering-Based SVM (CB-SVM), and Core Vector

Machine (CVM) in terms of prediction accuracy, running time, and number of support

vectors. On a 512MB-RAM 3.2GHz PC, MEB-SVM can finish training in 250 seconds,

which is very competitive comparing to other algorithms’ running time. The MEB-

SVM’s prediction accuracy can reach 93.38% on the testing dataset with 311,029

examples, which is higher than those of other methods except CVM.

 In Section 7.3.3, the simulation on the ring norm dataset with 100,000,000

examples show that MEB-SVM can finish training in 4013 seconds on a 2.0GB-DRAM

3.0GHz PC, which is faster than HeroSVM (on a P-4 1.7GHz machine with 1.5 GB

 9

SDRAM) by 53191 seconds. It means that MEB-SVM is almost 13 times faster than

HeroSVM. The prediction accuracy of MEB-SVM on this dataset can reach 98.44%,

which is almost same as the theoretical expected accuracy of 98.76%. The simulation on

the ring norm dataset with 3,000,000 examples shows that MEB-SVM can finish training

in 117 seconds on a 2.0GB-DRAM 3.0GHz PC, which is 55 times as fast as CVM.

 In Section 7.3.4, we compare MEB-SVM with Lagrangian SVM (LSVM) and

Proximal SVM (PSVM) on the NDC datasets. Each training dataset contains 2,000,000

examples and each testing dataset contains 200,000 examples. On the dataset with the

linear separability of around 70%, MEB-SVM only needs 5 seconds for training on a

2.0GB-DRAM 3.0GHz PC and can achieve the prediction accuracy of 83.1%, which is

higher than those of PSVM and LSVM by about 13.5%~13.6%. On the dataset with the

linear separability of around 90%~91%, MEB-SVM can finish training in 8 seconds and

achieve the prediction accuracy of 98.8%, which is higher than those of PSVM and

LSVM by about 7.6%. Although three algorithms are evaluated on the different machines

(LSVM and PSVM are evaluated on a Pentium 400Mhz machine with a maximum of 2

GB of memory), the running time and the prediction accuracy of MEB-SVM are still

competitive.

 In Chapter 8, we conclude this dissertation and direct the future work.

 Most of our algorithms proposed in this dissertation were already published in

refereed journal and conference papers. The EGKTs algorithm (Jin et al., 2005) was

proposed in the 2005 IEEE Symposium on Computational Intelligence in Bioinformatics

and Computational Biology (IEEE CIBCB) and the parallelized EGKTs algorithm (Jin et

al., 2007) was published in the International Journal of Data Mining and Bioinformatics.

 10

GKTSES (Jin and Zhang, 2006a) was published in the LNCS Transactions on

Computational Systems Biology. The basic idea of GKTSES and related work (Jin and

Zhang, 2006b; Jin and Zhang, 2006c) were also presented in the 2006 IEEE Granular

Computing Conference and the third International Symposium on Neural Networks

(ISNN). The MEB-SVM algorithm (Jin and Zhang, 2006d) was proposed in the 2006

IEEE International Conference on Fuzzy Systems (Fuzz-IEEE).

 11

CHAPTER 2

RELATED THEORIES

2.1 SVMs

 For a binary classification problem, let () (){ }ll yxyxS ,,,, 11= represent a

training data set, where liRx n
i ,,1, =∈ are vectors and liyi ,,1},1,1{ =+−∈ are the

class labels associated to ix . The separating hyperplane is defined as Equation (2.1)

where nRw∈ and Rb∈ .

0, =+ bxw i (2.1)

The decision function is defined as Equation (2.2)

),sgn()(bxxyxf i
i

ii += ∑α (2.2)

Figure 2.1 Hyperplane and margin

 To get better generalization or reach the lower risk in other words, SVMs try to

find an optimal hyperplane to classify data into two classes with the maximized margin,

 12

which is shown in Figure 2.1. The related objective is formulated as Equation (2.3) and

Equation (2.4). The margin of the hyperplane is measured by 2||||
2

w
.

 For the linearly separable case, the optimal hyperplane can be found by solving

the following constrained optimization problem,

Minimize 2
2
1 |||| w (2.3)

Subject to 1),(≥+ bxwy ii (2.4)

where li ,,1= .

 This problem can be solved by minimizing the Lagrangian Equation (2.5) with

respect to w, b and satisfying Equation (2.6).

()()1|||| 2
2
1 −+⋅−≡ ∑ bxwywL ii

l

i
iα (2.5)

ii ∀≥ 0α (2.6)

 According to the primal-dual theorem, it can be solved by maximizing Equation

(2.5) subject to 0=
dw
dL and 0=

db
dL , which are equivalent to Equation (2.7) and Equation

(2.8) respectively.

0=−∑ ii

l

i
i xyw α (2.7)

0=∑ i

l

i
i yα (2.8)

 Substituting Equation (2.7) and Equation (2.8) into Equation (2.5), the final

objective is reached as Equation (2.9) and Equation (2.10), where lji ,,1, = .

 13

Maximize ∑∑∑ −
i j

jijiji
i

i xxyy ,
2
1 ααα (2.9)

Subject to 0=∑ i
i

i yα , 1),(≥+ bxwy ii , ii ∀≥ 0α (2.10)

 According to Karush-Kuhn-Tucker (KKT) Theorem, some conclusions can be

made as follows:

• If 0=iα , then 1),(≥+ bxwy ii

• If 0>iα , then 1),(=+ bxwy ii

 Those ix with 0≠iα are located on the two margin planes and called support

vectors. Support vectors make contributions to defining the decision boundary function

(Equation 2.2). Those data with 0=iα can be removed safely and the same decision

function can still be obtained.

 For the linearly non-separable case, a set of nonnegative slack variables lξξ ,,1

is introduced to penalize training errors. The constrained optimization problem is

rewritten as

Minimize ∑+
i

iCw ξ2
2
1 |||| (2.11)

Subject to iii bxwy ξ−≥+ 1),((2.12)

where iξ are nonnegative slack variables used to penalize training errors and C is the

regularization parameter to control the trade-off between the training error and the margin.

 Using the Lagrangian approach, the problem can be reformulated as Equation

(2.13) and Equation (2.14), where lji ,,1, = .

 14

Maximize ∑∑∑ −
i j

jijiji
i

i xxyy ,2
1 ααα (2.13)

Subject to 0=∑ i
i

i yα , iii bxwy ξ−≥+ 1),(, Ci ≤≤α0 , i∀ (2.14)

 It is well known that those ix with Ci =α are misclassified data.

 For non-linear problem, SVMs map the data from original space into a higher

dimensional feature space, where an optimal separating hyperplane is found. Instead of

calculating the mapping function, the kernel function K is used to implement mapping

implicitly. The hyperplane is calculated by solving

Maximize ∑∑∑ −
i j

jijiji
i

i xxKyy),(2
1 ααα (2.15)

Subject to 0=∑ i
i

i yα , ljiCi ,,1,,0 =≤≤α (2.16)

The related decision function is

()),sgn()(bxxKyxf i
i

ii += ∑α (2.17)

2.2 Kernels

Definition 2.1 A kernel K is a function satisfying

)(),(),(zxzxK φφ= (2.18)

where φ is a mapping from input space nRX = to an inner product feature space

NRF = and all Xzx ∈, .

Fxx ∈)(: φφ (2.19)

 15

 Let vector x be transformed into a Hilbert space with ……),(,),(1 xx nϕϕ .

According to the Hilbert-Schmidt theory the inner product in a Hilbert space can be

represented as

()zxKzxazx
i

iii ,)()()(),(
1

== ∑
∞

=

ϕϕϕϕ (2.20)

where K is symmetric and 0≥ia . Mercer theorem (Mercer, 1909; Vapnik, 1998) gives

the necessary and sufficient conditions for K to be written as such kind of representation.

 The following are some popular kernel functions.

Polynomial function dyxyxK)1(),(+•= (2.21)

RBF)||||exp(),(2yxyxK −−= γ (2.22)

Sigmoid kernel)tanh(),(θ−•= yxyxK (2.23)

2.3 Mercer Theorem

 As stated by Mercer (Mercer, 1909; Berg et al., 1984; Vapnik, 1998), the

necessary and sufficient condition for a continuous symmetric function ()zxK , in Hilbert

space has the expression defined as in Equation (2.24) is Equation (2.25), for all

)(2 CLf ∈ , where nRx∈ and C is a compact subset of nR .

() ∑
∞

=

=
1

)()(,
i

iii zxazxK ϕϕ (2.24)

() () () 0, ≥∫ ∫ zdxdzfxfzxK
C C

 (2.25)

2.4 Kernel Properties

 If 1K and 2K are kernels defined on XX × , the following),(yxK are also

kernel functions.

 16

),(),(1 yxcKyxK = , +∈ Rc (2.26)

cyxKyxK +=),(),(1 , +∈ Rc (2.27)

),(),(),(21 yxKyxKyxK += (2.28)

),(),(),(21 yxKyxKyxK = (2.29)

)()(),(yfxfyxK = , RXf →: (2.30)

),(),(
),(),(

11

1

yyKxxK
yxKyxK = (2.31)

 The following are proofs of Equation (2.28) and Equation (2.29). The detailed

proofs were given by Cristianini and Shawe-Taylor (1999).

Proof 2.1 Let { }lxx ,,1 be a fixed set, and let 1M and 2M be the corresponding

matrices of kernels 1K and 2K on these points. According to Mercer Theorem, αα 1' M

and αα 2' M are larger than or equal to 0 respectively, so αααα 21 '' MM + is also larger

than or equal to 0, for all lR∈α .

0'')(' 2121 ≥+=+ αααααα MMMM

Proof 2.2 Let 21 KKK ⊗= . The tensor product of two positive semi-definite matrices is

still positive semi-definite. The product’s eigenvalues are the products of the eigenvalues

of the two matrices. The corresponding matrix of 21KK is the Schur product H (a

principal sub matrix of K), where each entry is the product of entries of the

corresponding matrices of 1K and 2K . For any lR∈α , there is a corresponding 2
1

lR∈α ,

such that 0'' 11 ≥= αααα KH , and so H is positive semi-definite.

 17

2.5 SVDD

 MEB is the ball which encloses a given set of points with the minimum radius. In

the research area of kernel methods, MEB was first used in the radius-margin bound

(Vapnik, 1998; Chapelle and Vapnik, 2000; Chapelle et al., 2002) for the SVMs model

selection and parameter tuning. The “radius” in the Radius-Margin bound means the

radius of MEB. Later the SVDD algorithm (Tax and Duin, 1999; Tax and Duin, 2004)

was proposed, which can be used to calculate MEB in high dimensional space. Besides

the basic MEB definition with the support vector concept, SVDD also conducts MEB

with the RBF kernel and the soft-margin. SVDD can be used to solve the soft-margin

one-class classification problems. For example, when SVDD is used for novelty detection,

a MEB containing most of the data is calculated and the novel points outside the

boundary of the ball are detected. The SVDD algorithm is reviewed as follows.

 Given a data set { }lxxS ,,1= , liRx n
i ,,1, =∈ , SVDD tries to find a ball

enclosing all data of S with the minimum radius. In the input space, MEB can be found

by solving the following optimization problem:

Min R, c
2R : 22|||| Rxc i ≤− (2.32)

 The corresponding dual is

Max
iα
 ∑∑∑ −

l

i

l

j
jiji

l

i
iii xxxx ,, ααα (2.33)

Subject to ∑ =
l

i
i 1α and 0≥iα , li ,,1= (2.34)

 The center c and radius R of MEB can be calculated by Equation (2.35) and

Equation (2.36).

 18

∑=
l

i
ii xc α (2.35)

∑∑∑ −=
l

i

l

j
jiji

l

i
iii xxxxR ,, ααα (2.36)

 Those ix with non-zero iα are also called support vectors, which locate on the

boundary of MEB.

 For the kernel-based SVDD, the data are transformed from the input space into a

feature space, where MEB is calculated. The corresponding dual is defined by Equation

(2.37) and Equation (2.38).

Max
iα
 ∑∑∑ −

l

i

l

j
jiji

l

i
iii xxKxxK),(),(ααα (2.37)

Subject to ∑ =
l

i
i 1α and 0≥iα , li ,,1= . (2.38)

 The center c and radius R of MEB in feature space H are calculated by Equation

(2.39) and Equation (2.40).

)(∑ Φ=
l

i
ii xc α (2.39)

∑∑∑ −=
l

i

l

j
jiji

l

i
iii xxKxxKR),(),(ααα (2.40)

 If the RBF kernel is chosen as the kernel function,),(ii xxK is always equal to

one and Equation (2.37) can be rewritten as Equation (2.41).

 Max
iα
 ∑∑−

l

i

l

j
jiji xxRBF),(1 αα (2.41)

 19

 In the case of MEB with slack variables (see Figure 2.2), Equation (2.32) is

replaced by Equation (2.42). The parameter C is introduced to control the trade-off

between the volume and the errors.

Min R, c ∑+
i

iCR ξ2 : ii Rxc ξ+≤− 22|||| (2.42)

 The corresponding dual is

Max
iα
 ∑∑∑ −

l

i

l

j
jiji

l

i
iii xxKxxK),(),(ααα (2.43)

Subject to 0>iξ , 0≥≥ iC α , li ,,1= . (2.44)

Figure 2.2 MEB with slack variables

2.6 Evolutionary Computation

 Evolutionary computation is a sub field of Computational Intelligence involving

the design and application of combinatorial search and heuristic methods, which takes the

inspiration from natural selection and the fittest survival in the world of biology. The

 20

evolutionary computation algorithms have some common elements such as population of

chromosomes, selection, crossover, mutation and survival of the fittest.

2.6.1 GAs

 GAs (Holland, 1975) is a popular type of evolutionary computation algorithms

used to optimize general combinatorial problems. Given a problem and the gene

representation of chromosomes for candidate solutions, GAs work as follows:

Step 1: Generate the initial population of chromosomes as candidate solutions in a

random way.

Step 2: Calculate the fitness for every chromosome. The fitness of a chromosome is used

to determine how good the solution described by the chromosome is.

Step 3: Select two chromosomes from the current population as parents with a certain

probability and apply the crossover operation on parents.

Step 4: Apply the mutation operation on the new children chromosomes with a certain

probability.

Step 5: Repeat steps 3 and 4 until a new population of the same size is generated.

Step 6: If the stop condition is met, terminate the loop; otherwise, go to step 2.

2.6.2 Other Evolutionary Computation Algorithms

 Besides GAs, the following evolutionary computation algorithms are widely used

for solution search and problem optimization too.

 Genetic programming (GP) (Koza, 1990; Koza, 1992) works on the problem with

genomes of variable length and is employed to evolve symbolic information, such as

 21

programs and functions. A tree structure is commonly constructed and optimized to

arrange the representation of genes under the operations of crossover and mutation.

 Evolution Strategy (ES) (Rechenberg, 1973; Schwefel 1981) operates on the

problem with the natural representation for the parameters instead of the gene-parameter

mapping. The notation of)/(, λρµ + -ES is typically used to classify the basic types of ES.

In the notation, µ represents the number of parents, λ denotes the number of offspring

and ρ is the number of parents that are used in the recombination process to produce one

offspring. The “+” and “,” determine the selection type. Mutation and recombination are

used in ES.

 Evolutionary programming (EP) (Fogel, 1966) was designed by Fogel in 1960.

Similar to ES, EP also operates on the problem with the natural representation and

emphasizes the behavioral linkage between parents and their offspring. However, EP

only uses mutation and selection operation.

2.7 GrC

 GrC (Lin, 1997; Zadeh, 1997; Zadeh, 1998) is a set of theories and methodologies

using information granules to build computational models for various applications with

huge amounts of data and information. Here, information granules are collections of

entities that typically derive at the numeric level and are arranged together according to

their similarities.

 The basic notions and principles of granular computing have appeared in many

fields with different names, such as divide and conquer, fuzzy set theory, rough set theory,

interval computing, and cluster analysis. GrC is used as an umbrella term to cover these

topics in different fields. The goal of GrC is to abstract the commonalities from various

 22

fields and establish a category of applicable principles in a unified framework. GrC has

played important roles in e-Business, security, machine learning, data mining, high-

performance computing, wireless mobile computing, and Bioinformatics in terms of

efficiency, effectiveness, robustness, and uncertainty.

 23

CHAPTER 3

HIERARCHICAL KERNEL DESIGN

3.1 Related Work

3.1.1 Convolution Kernels

 A convolution kernel (Haussler, 1999) uses the relation R between a composite

object and its parts to capture the object semantics. So convolution kernels are also called

R-Convolution kernels.

 Let vectors),,(1 Dxxx = and)',,'(' 1 Dxxx = be the decomposed parts of

X∈Χ and X∈Χ' respectively. dx and 'dx are in the set DdX d ≤≤1, . For the relation

XXXR D ×××)(: 1 , the decomposition 1−R is defined as)},(:{)(1 Χ=Χ− xRxR . The

relation),(ΧxR is true if and only if Dxx ,,1 are the parts of Χ . A convolution kernel

K is defined as Equation (3.1) where dK is a kernel defined on dd XX × .

∏∑
=Χ∈Χ∈ −−

=ΧΧ
D

d
ddd

RxRx

xxKK
1)'('),(

)',()',(
11

 (3.1)

 Convolution kernels are so general that they can be used in various problems.

However, how to choose R is a big issue in the real world applications.

3.1.2 All-subsets Kernel

 As stated by Shawe-Taylor and N. Cristianini (2004), the all-subsets kernel is

defined as

∏
=

+=
m

i
ii yxyxK

1

)1(),((3.2)

 24

 Let I= {1, …, m} be the indices of features ix of vector x , Ii∈ . For every subset

A of I, iAiA xx ∈∏=)(ϕ , 1)(=xφϕ , and IAA xx ⊆=))(()(ϕϕ are defined. The all-subsets

kernel (Equation (3.2)) can be derived by

.)1(

)(),(
)(),(),(

1
∏

∑∏

∑

=

⊆
∈

⊆

+=

=

=

><=

m

i
ii

IA
Ii ii

IA
BA

yx

yx

yx
yxyxK
ϕϕ

ϕϕ

3.1.3 ANOVA Kernels

 An ANOVA (analysis of variance) kernel dK (Vapnik, 1998; Shawe-Taylor and

N. Cristianini, 2004) is like the all-subsets kernel but restricted to subsets of cardinality d.

∑ ∏

∑

≤≤<<≤ =

=

=

=

><=

miii

d

j
jj

dA
BA

ddd

d

yx

yx
yxyxK

…211 1

)(

)(),(
)(),(),(

ϕϕ

ϕϕ

 (3.3)

 In Equation (3.3),)(xdϕ is equal to dAA x =))((ϕ and d is used to specify the order

of the interactions between features
di

x . ANOVA kernels work very well in support

vector regression problems (Stitson et al., 1999).

3.1.4 String Kernels

 The similarity of two strings s and t can be measured based on the number of

common substrings (Cristianini and Shawe-Taylor, 1999; Haussler, 1999; Lodhi, 2001).

A string kernel for substrings of length p can be defined as follows:

 25

∑
∑

=
∈

p
u

p
u

p
up tstsK)(),(),(ϕϕ (3.4)

where },:),({)(2121 ∑∈==
pp

u uuvvsvvsϕ . Strings s and t are defined on a finite

alphabet ∑ and the string kernel counts the number of common substrings between s

and t. A recursion built on the k-suffix kernel can be used to compute the kernel:

⎪⎩

⎪
⎨
⎧ ∈==

= ∑
otherwise

uforuttussif
K

k
s
p

0

,1 11

Equation (3.4) can be rewritten as

)):(,):((),(
1||

1

1||

1

pjjtpiisKtsK
ps

i

pt

j

s
pp ++= ∑ ∑

+−

=

+−

=

 (3.5)

 Substrings kernels can be built based on the kernel defined in Equation (3.5) and

the “mismatches” within the subsequences are allowed.

3.1.5 Tree Kernels

 Tree kernels (Collins and Duffy, 2002; Kashima and Koyanagi, 2002; Gärtner,

2003) are used to measure the similarity of data that can be represented as labeled

ordered directed substrees. Typically a tree kernel is defined as Equation (3.6).

)()(),(2121 ThThTTK ii
i
∑= (3.6)

 In the equation, 1T and 2T are two trees and)(Thi is the number of occurrences

of ith subtree in tree T. Let 1V and 2V be the sets of vertices of 1T and 2T respectively.

Let),(21 vvS be the number of subtrees rooted at vertices 11 Vv ∈ and 22 Vv ∈ . Then the

tree kernel can be recursively computed using

 26

),(),(21
,

21
2211

vvSTTK
VvVv

∑
∈∈

= (3.7)

where),(21 vvS is defined as

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

+

=

∏
=

||

1
21

21

21

21

1

)),(1(

1

0

),(

v

j

jj otherwisevvS

labelsamethehaveandverticesleafarevandvbothif

labelsdifferenthavevandvif

vvS

where jv1 and jv2 are the jth children of 1v and 2v respectively. || 1v is the number of

children of 1v .

3.1.6 Graph Kernels

 A graph consists of a finite set of labeled vertices and a finite set of labeled edges

between vertices. Two graphs that generate a product graph are called factor graphs. The

vertex set of the product graph is a subset of Cartesian product of the vertex sets of the

factor graphs. The product graph has a vertex if and only if the corresponding vertices in

the factor graphs have the same label. An edge exists between two vertices in the product

graph if an edge exists between the corresponding vertices in both factor graphs. Both

edges have the same label. Let ×E denote the edge set of the product graph and let

},{ 1 NvvV …= denote an enumeration of vertex set. Each element of the adjacency matrix

×E is defined by

[] ×× ∈⇔= EvvE jiij),(1 , and [] ×× ∉⇔= EvvE jiij),(0 .

 The graph kernel (Kashima and Inokuchi, 2002; Gärtner et al., 2003) is defined

by

 27

ijn

n
n

V

ji
EGGK

x

⎥
⎦

⎤
⎢
⎣

⎡
= ∑∑

∞

=
×

=
×

01,
21

2

),(λ (3.8)

where ij
nE][× is the number of walks of length n from iv to jv and),0(,,, 10 ii ∀≥λλλ …

are a set of weights.

 Besides these kernels, other new kernels are also designed for the similarity

measurement of complex data. More detailed reviews were given by Gärtner (2003) and

Hofmann et al. (2006).

3.2 Granular Feature Transformation

Definition 3.1 A feature granule space G of input space nRX = is a sub space of X ,

where mRG = and nm ≤≤1 .

 From input space, we may generate many feature granule spaces and some

dimensions could be shared among these sub spaces.

Definition 3.2 A feature granule Gg ∈ is a vector which is defined in the feature granule

space G .

Definition 3.3 Granular feature transformation is a mapping in which a feature granule is

transformed from the feature granule space into a new feature space through a function ϕ

defined in Equation (3.1), where Gg ∈ is a feature granule and T is a new feature space.

Ttg ∈:ϕ (3.9)

 Feature transformation of input vectors may be implemented with a group of

granular feature transformations. An example of granular feature transformation is shown

in Figure 3.1. In the example, features in the vector ()nxxxx ,,, 21 …= are grouped into

feature granules ig (qi ≤≤1) according to some prior domain knowledge, such as the

 28

similarity or functional adjacency. Some features may be shared. For example, feature

2x is shared by feature granules 1g and 2g . A series of granular feature transformation

functions iϕ are defined on each feature granule. Each iϕ transforms the feature granule

ig from the feature granule space into a new sub feature space iNR respectively.

Figure 3.1 An example of granular feature transformation

3.3 Kernel Based Granular Feature Transformation

 Feature transformation may be implemented with a group of kernels on feature

granules. Kernel based feature transformation on feature granules is similar to that on

input vectors. If all input features are chosen as a feature granule, there is no difference

between them.

 29

Definition 3.4 A granular kernel gK is a kernel that can be written in an inner product

form of Equation (3.9) for all Ggg ∈', .

)'(),()',(gggggK ϕϕ= (3.10)

 In Equation 3.10, ϕ is a mapping function (defined in Equation (3.11)) from

feature granule space mRG = to an inner product feature space ER .

ERgg ∈)(: ϕϕ (3.11)

 Figure 3.3 shows an example of kernel based granular feature transformation in

which two granular kernels 1gK and 2gK are used to transform data instead of kernel K

shown in Figure 3.2.

Figure 3.2 An example of kernel based feature transformation

Figure 3.3 An example of kernel based granular feature transformation

 30

3.4 Granular Kernel Properties

Property 3.1 Granular kernels inherit the properties of traditional kernels such as the

closure under sum, product, and multiplication with a positive constant over the granular

feature spaces.

 Let G be a feature granule space and Ggg ∈', . Let 1gK and 2gK be two granule

kernels operating over the same space GG× . The following)',(gggK are also granular

kernels.

)',()',(1 gggKcgggK ×= ,
+∈ Rc (3.12)

cgggKgggK +=)',()',(1 ,
+∈ Rc (3.13)

)',()',()',(21 gggKgggKgggK += (3.14)

)',()',()',(21 gggKgggKgggK ×= (3.15)

)'()()',(gfgfgggK = , RXf →: (3.16)

)','(),(
)',()',(

11

1

gggKgggK
gggKgggK

×
= (3.17)

 These properties can be derived from the traditional kernel properties directly.

Property 3.2 A kernel can be constructed with two granular kernels defined over

different granular feature spaces under sum operation.

To prove it, let)',(111 gggK and)',(222 gggK be two granular kernels, where

111 ', Ggg ∈ , 222 ', Ggg ∈ and 21 GG ≠ . New kernels can be defined like this,

)',())','(),,((1112121 gggKgggggK =

)',())','(),,((' 2222121 gggKgggggK =

 31

 Here gK and 'gK can operate over the same feature space () ()2121 GGGG ××× .

))','(),,(('))','(),,(()',()',(21212121222111 gggggKgggggKgggKgggK +=+

 According to the sum closure property of kernels ((Berg et al., 1984; Haussler,

1999; Cristianini and Shawe-Taylor, 1999),)',()',(222111 gggKgggK + is a kernel

over () ()2121 GGGG ××× .

Property 3.3 A kernel can be constructed with two granular kernels defined over

different granular feature spaces under product operation (Berg et al., 1984; Haussler,

1999).

 To prove it, let)',(111 gggK and)',(222 gggK be two granular kernels,

where 111 ', Ggg ∈ , 222 ', Ggg ∈ and 21 GG ≠ . We may define new kernels like this,

)',())','(),,((1112121 gggKgggggK =

)',())','(),,((' 2222121 gggKgggggK =

 So gK and 'gK can operate over the same feature space () ()2121 GGGG ××× .

))','(),,(('))','(),,(()',()',(21212121222111 gggggKgggggKgggKgggK =

 According to the product closure property of kernels ((Berg et al., 1984; Haussler,

1999; Cristianini and Shawe-Taylor, 1999),)',()',(222111 gggKgggK is a kernel over

() ()2121 GGGG ××× .

3.5 Hierarchical Kernel Design and Granular Kernel Trees

 An easy and effective way to construct new kernel functions is combining a group

of granular kernels via some simple operations such as sum and product shown in Figure

3.4. The new kernel functions can be naturally expressed as tree structures. The following

are main steps in the GKTs design.

 32

Step 1: Generate feature granules. Features are bundled into feature granules according to

some prior knowledge such as object structures, feature relationships, similarity, or

functional adjacency. They may be grouped by an automatic learning algorithm too.

Step 2: Select granular kernels. Granular kernels are selected from the candidate kernel

set. Some popular traditional kernels such as RBF kernels and polynomial kernels can be

chosen as granular kernels, since these kernels have proved successful in many real

problems. Some special kernels designed for some particular problems could also be

selected as granular kernels if they are good at measuring the similarities of

corresponding feature granules.

Step 3: Construct a tree structure. A tree structure is constructed with suitable number of

layers, nodes and connections. Like in Step 1, we can construct trees according to some

prior knowledge or with an automatic learning algorithm.

Figure 3.4 shows a GKT with m basic granular kernels tgK and m pairs of feature

granules tg and 'tg , where mt ≤≤1 .

Step 4: Select connection operations. Each connection operation in GKTs can be a sum or

product. A positive connection weight may associate to each edge of the tree.

 33

Figure 3.4 An example of GKTs

3.6 EGKTs

 In our study, GAs are used to optimize the GKTs parameters. We use EGKTs to

represent such kind of evolutionary GKTs. The following are basic definitions and

operations used in optimizing EGKTs.

• Chromosome Let iP denote the population in generation iG , where mi ,1=

and m is the total number of generations. Each population iP has p

chromosomes pjcij ,,1, = . Each chromosome ijc has q genes)(ijt cg , where

 34

qt ,,1= . Here each gene is a parameter of GKTs and we use)(ijcGKTs to

represent GKTs configured with genes)(ijt cg , qt ,,1= .

• Fitness There are several popular methods to evaluate SVMs performance. One is

using the k-fold cross-validation, which is a popular technique for performance

evaluation. Others are some theoretical bounds evaluation on the generalization

errors, such as Xi-Alpha bound (Joachims, 2000), VC bound (Vapnik, 1998),

Radius margin bound and VCs span bound (Vapnik and Chapelle, 1999). Detailed

review was given by Duan et al. (2003). In our method, k-fold cross-validation is

used to evaluate SVMs performance in training phase. In k-fold cross-validation,

the training data set S~ is separated into k mutually exclusive subsets vS~ . Data set

kvSS vv ,,1,~~
=−=Λ is used to train SVMs with)(ijcGKTs and vS~ is used to

evaluate SVMs model. After k times of training-testing on all different subsets,

we get k prediction accuracies. The fitness of chromosome ijc is calculated by

Equation (3.18) where vAcc is the prediction accuracy of)(ijcGKTs on vS~ .

∑
=

=
k

v
vij Acc

k
f

1

1 (3.18)

• Selection In the algorithm, the roulette wheel method described by Michalewicz

(1996) is used to select individuals for the new population. Before selection, the

best chromosome (the GKT with the highest prediction accuracy in fitness

evaluation) in generation 1−iG will replace the worst chromosome in generation iG

if the best chromosome in iG is worse than the best chromosome in 1−iG . The

sum of fitness values iF in population iG is first calculated. A cumulative fitness

 35

ijq~ is then calculated for each chromosome. The chromosomes are then selected

as follows. A random number r is generated within the range of [0, 1]. If r is

smaller than 1
~

iq , then chromosome 1ic is selected; otherwise chromosome ijc is

selected if r is in the range of]~,~(1 jiji qq − .

ij

p

j
i fF ∑

=

=
1

 (3.19)

∑
=

=
j

t i

it
ij F

f
q

1

~ (3.20)

jiji qrq ~~
1 ≤<− (3.21)

• Crossover Two chromosomes are first selected randomly from current generation

as parents and then the crossover point is randomly chosen to separate the

chromosomes. Parts of chromosomes are exchanged between two parents to

generate two children. This genetic operation is equivalent to that two GKTs are

selected to exchange parameters on some granular kernels.

• Mutation Some chromosomes are randomly selected and some of their genes are

replaced by random values generated in a specified range. This operation is

equivalent to changing some parameters of GKTs randomly.

 The learning procedure of EGKTs is shown in Figure 3.5 and the classification

system of SVMs with EGKTs is shown in Figure 3.6.

 36

Figure 3.5 Learning procedure of EGKTs

Figure 3.6 SVMs with EGKTs

Initialization
For each generation jG

 For each ijc in jG

 Repeat v from 1 to k
 Train SVMs on vΛ with the current kernel

 Evaluate SVMs on vS~

 Calculate vAcc
 Repeat end

 Calculate fitness ∑=
=

k

v
vij Acc

k
f

1

1

 For End
 Selection
 Crossover
 Mutation
For End

 37

CHAPTER 4

SVMS WITH EGKTS FOR DRUG ACTIVITY COMPARISON

4.1 QSAR

 QSAR is an important drug design technique, which is used to describe the

relationships between compound structures and their activities. In QSAR analysis,

compounds with different biological activities are discriminated first, and then predictive

rules are constructed, which can be used to predict a molecule’s activity according to the

values of its chemical and physical descriptors. QSAR can effectively reduce the search

for new drugs. As a part of QSAR, the problem of drug activity comparison is to learn a

binary relationship on the biological activities of compounds. The biological activity is

measured by the value of)/1log(C , where C is a constant for the inhibitory growth

concentration. With the increased demand on prediction accuracy, machine learning

methods such as GAs (Devillers, 1999a), Neural Networks (Devillers, 1999b; Hirst et al.,

1994), Inductive Logic Programming (Hirst et al., 1994), and SVMs (Burbidge et al.,

2001) have been introduced for QSAR analysis and drug activity comparison. In this

chapter, Pyrimidines and Triazines, two kinds of inhibitors of E. Coli dihydrofolate

reductase (DHFR) are studied. These inhibitors are potential therapeutic agents for the

treatment of malaria, bacterial infection, toxoplasma and cancer.

4.2 Pyrimidines Activity Comparison

 Pyrimidines prediction was first studied by Hirst and his colleagues (1994a). They

compared Neural Networks and Inductive Logic Programming (ILP) to the linear

regression for modeling the QSAR of Pyrimidines. They showed that neural networks

 38

and ILP perform better than linear regression using the attribute representation. They also

showed that the ILP analysis is a good way to formulate the understandable rules relating

the activity of the inhibitors to their chemical structure. Burbidge et al. (2001) also

studied Pyrimidines, but focused on the drug activity comparison problem. They applied

some popular machine learning algorithms (such as SVMs, Neural Networks, Decision

Trees, and RBF Network) to the problem and made a comparison.

4.2.1 Dataset Description

 Pyrimidines dataset (Newman et al., 1998) contains 55 drugs, and each drug has

three possible substitution positions (R3, R4 and R5, see Figure 4.1). Each substituent is

characterized by 9 chemical properties features: polarity, size, flexibility, hydrogen-bond

donor, hydrogen-bond acceptor, π donor, π acceptor, polarizability and σ effect. Drug

activities are identified by the substituents. If no substituent locates in a possible position,

the features are indicated by nine -1s. Each input vector includes two drug features with

the fixed feature order. In each data vector, if the activity of the first drug is higher than

that of the second one, the vector is labeled positive, otherwise it is labeled negative (see

Figure 4.2). The total feature number of each vector is 54. The positive and negative data

are balanced absolutely.

 The Pyrimidines dataset is randomly shuffled and split into 2 parts in the

proportion of 4:1. One part is used as the training set, which contains pairs of 44

compounds. The other part is chosen as the unseen testing set, which contains pairs of the

left 11 compounds and those between the 11 compounds and the training 44 compounds.

So the size of training set should be 44 x 43 = 1892 and the size of testing set should be

 39

44 x11 x2 +11 x 11 = 1078. Due to the deletion of some pairs with the same activities,

the data sets are actually a little bit smaller than those above.

Figure 4.1 Structure of Pyrimidines

Figure 4.2 Pyrimidines drug pairs

4.2.2 Feature Granules and Hierarchical Kernel Design

 In the GKTs design, the input vectors are decomposed according to the possible

substituent locations. Each feature granule includes all features of one substituent (see

Figure 4.3). So each Pyrimidines drug pair has 6 feature granules and each feature

granule has 9 features.

 40

Figure 4.3 Feature granules in the Pyrimidines drug pair

 Two types of granular kernel trees (GKTs-1 and GKTs-2) are designed for

Pyrimidines which are shown in Figure 4.4 and 4.5. Here the connection node operations

during kernel optimization are fixed in order to evaluate GKTs performance with

different connection operations. GKTs-1 is a two-layer kernel tree and all granular

kernels are fused together by a sum operation. GKTs-2 is three-layer kernel tree and

within which each granule pair is represented by a two-layer subtree. Two subtrees of

GKTs-2 are combined together by a product operation.

 41

Figure 4.4 GKTs-1

Figure 4.5 GKTs-2

4.2.3 Simulation

 Burbidge et al. (2001) made a comparison (see Table 4.1) among SVMs, three

types of Neural Networks, RBF Network, and Decision Trees on the same data set. Table

 42

4.1 shows that the prediction accuracy of SVMs with the RBF kernel is significantly

higher than those of other learning algorithms. In the simulation, we only compare the

performance of SVMs with RBF, GKTs and EGKTs.

TABLE 4.1
PERFORMANCE COMPARISON ON THE PYRIMIDINES DATASET (BURBIDGE ET AL., 2001)

 The RBF kernel functions are chosen as the granular kernels’ functions in each

GKTs and therefore each granular kernel igK has a RBF parameter iγ . The initial ranges

of all RBFs’γ and iγ are]1,0001.0[.The initial range of regularization parameter C is

]256,1[. The probability of crossover is 0.7 and the mutation ratio is 0.5. The range of

connection weights is [0.001, 1]. Five-fold cross validation is used on the Pyrimidines

training dataset. The population size is set to 500 and the number of generations is set to

30 for both datasets. The software package of SVMs used in the experiments is LibSVM

(Chang and Lin, 2001).

 Performance of SVMs with three types of kernel machines is shown in Table 4.2.

All these systems are optimized using GAs. Table 4.2 shows that SVMs with two GKTs

can outperform SVMs with RBF by 3.0% and 3.3% respectively in terms of prediction

accuracy on unseen testing dataset. The fitness values of SVMs with GKTs-1 and GKTs-

2 are also higher than that of SVMs with RBF. It’s also seen that the testing accuracy of

SVMs with GKTs-1 is a little bit higher than that of SVMs with GKTs-2.

Algorithm Testing accuracy
SVMs+RBF 87.31%

MLP 86.19%
Pruned Neural Network 83.80%

Dynamic Neural Network 85.12%
RBF Network 77.28%

 C5.0 81.30%

 43

TABLE 4.2
PERFORMANCE COMPARISON ON THE PYRIMIDINES DATASET

 The comparisons between traditional RBF kernels and GKTs are also made with

the optimization of GAs. A set of 2000 values is randomly generated from [1, 256] for

parameter C and a set of 2000 groups of kernel parameters is randomly generated for

each kernel. SVMs are trained and tested with these random parameters. For each dataset,

the prediction accuracies of SVMs with three kernels are outlined in Figure 4.6 and each

of them is ordered according to C values. From Figure 4.6, it’s easy to see that the

performance of GKTs is better than that of traditional RBF kernels. Quartiles and mean

are also used to summarize each kernel performance in terms of testing accuracy. The

results are listed in Table 4.3. Based on the differences of Q1 (25th percentile), Q2

(median), Q3 (75th percentile) and Mean values, we can conclude the GKTs performance

is better than the RBF performance by about 2.3%~3.4% on Pyrimidines. Comparing

Table 4.2 and Table 4.3, we can see that the testing accuracies of SVMs with both

EGKTs are higher than the maximum testing accuracies of SVMs with RBF. It is also

found that the testing accuracies of EGKTs can be stabilized at the point of 75th

Percentile.

 SVMs+RBF+GAs SVMs+GKTs-1+GAs SVMs+GKTs-2+GAs
Fitness 84.5% 86.6% 88.5%

Training accuracy 96.8% 96.8% 98.8%
Testing accuracy 88.4% 91.7% 91.4%

 44

Figure 4.6 Testing accuracies on the Pyrimidines dataset

TABLE 4.3
QUARTILES OF TESTING ACCURACIES ON THE PYRIMIDINES DATASET

4.3 Triazines Activity Comparison

4.3.1 Dataset Description

 In the Triazines dataset (Hirst et al., 1994b), each compound has 6 possible

substitution positions: the positions of R3 and R4; if the substituent at R3 contains a ring

itself, then R3 and R4 of this third ring; similarly if the substituent at R4 contains a ring

itself, then R3 and R4 of this third ring. Ten features are used to characterize each position:

the structure branching feature and other 9 features which are the same as those used for

each substituent of Pyrimidines. If no substituent locates in a possible position, the

 SVMs+RBF SVMs+GKTs-1 SVMs+GKTs-2
Maximum 91.0% 93.2% 93.0%

75th Percentile 88.4% 91.7% 91.0%
Median 88.0% 91.3% 90.6%

25th Percentile 87.5% 90.9% 90.1%
Minimum 83.5% 87.0% 87.2%

Mean 88.2% 91.2% 90.5%

 45

features are indicated by ten -1s. So each vector has 120 features. The structure of

Triazines is described in Figure 4.7. We randomly select 60 drugs from the Triazines

dataset and then randomly shuffle and split them into 2 parts in the proportion of 5:1

based on drugs of pairs. The size of training set is 2160 and the size of unseen testing set

is 1268 for Triazines.

Figure 4.7 Structure of Triazines

4.3.2 Feature Granules and Hierarchical Kernel Design

 In the simulation, the input vectors are decomposed according to the possible

substituent locations. Each feature granule includes all features of one substituent (see

Figure 4.8). So each drug pair of Triazines has 12 feature granules with the size of 10.

We also design two kinds of GKTs for Triazines, which are shown in Figure 4.9 and

Figure 4.10. GKTs-3 is a two-layer kernel tree within which each granular kernel’s

importance is controlled by the outgoing connection weight. GKTs-4 is a three-layer

kernel tree within which each drug pair is represented by a two layer subtree. Two

subtrees are combined together by a product operation.

 46

Figure 4.8 Feature granules of the Triazines drug pair

4.3.3 Simulation

 RBF kernel functions are also chosen as granular kernels’ functions in each GKTs.

The initial ranges of all RBFs’ γ and iγ are]1,0001.0[. The initial range of

regularization parameter C is]256,1[. The probability of crossover is 0.7 and the

mutation ratio is 0.5. The range of connection weights is [0.001, 1]. Eight-fold cross-

validation is used on the Triazines training dataset. The population size and the number

of generations are also set to 500 and 30 respectively.

 Performance of SVMs with three types of kernels is shown in Table 4.4. Also all

these kernels are optimized using GAs. Table 4.4 shows that SVMs with two GKTs can

 47

achieve better performance than SVMs with RBF. SVMs with two GKTs can outperform

SVMS with RBF by 3.7% and 4.9% respectively in terms of testing accuracy.

TABLE 4.4
PERFORMANCE COMPARISON ON THE TRIAZINES DATASET

Figure 4.9 GKTs-3

 SVMs+RBF+GAs SVMs+GKTs-3+GAs SVMs+GKTs-4+GAs
Fitness 73.8% 74.6% 75.8%

Training accuracy 93.4% 97.2% 98.7%
Testing accuracy 79.6% 83.3% 84.5%

 48

Figure 4.10 GKTs-4

 The comparisons between RBF and two kinds of GKTs are also made by using a

large number of kernel parameter samples. We randomly generate 2000 C values from [1,

256] and 2000 groups of kernel parameters for each kernel. The prediction accuracies of

SVMs with three kinds of kernels are summarized in Figure 4.11 and each of them is

ordered with C values. From Figure 4.11, it’s easy to see that the performance of SVMs

with GKTs is better than those with the RBF kernels. Quartiles and mean are also used to

summarize each kernel’s performance in terms of testing accuracy and listed in Table 4.5.

According to the summaries in Table 4.5, we can conclude the performances of two

GKTs are better than those of RBF kernels by about 3.6%~4.5% on the Triazines data set.

Comparing Table 4.4 and 4.5, we can also find that the performance of SVMs with

EGKTs-3 and EGKTs-4 can be stabilized at Q3 (75th Percentile) in terms of testing

accuracy.

 49

Figure 4.11 Testing accuracies on the Triazines data set

TABLE 4.5
TESTING ACCURACIES ON THE TRIAZINES DATASET

 SVMs+RBF SVMs+GKTs-1 SVMs+GKTs-2

Maximum 83.9% 88.2% 88.2%
75th Percentile 79.9% 83.7% 84.1%

Median 78.5% 82.6% 83%
25th Percentile 77.9% 81.5% 82%

Minimum 72.2% 77.8% 76.2%
Mean 78.9% 82.6% 83%

 50

CHAPTER 5

GKTSES AND EVKM

 In EGKTs, features within an input vector are grouped into feature granules

according to the prior domain knowledge. For example, we group the features according

to the compound substituent locations in the Pyrimidines activity comparison and the

Triazines activity comparison. Sometimes due to the lack of prior knowledge or due to

too complicated relations in data, it would be hard to predefine kernel tree structures.

Considering such kind of challenging problems, we in this chapter present GKTSES to

evolve the structures of GKTs. We redefine the encoding scheme and genetic operation

elements to make them more flexible.

5.1 Chromosome

 Let iP denote the population in generation miGi ,,1, …= and m is the total

number of generations. Each population iP has p chromosomes pjcij ,,1, = . Each

chromosome ijc has 12 +q genes 12,,1),(+= qtcg ijt … . In each chromosome, genes

1,,1),(12 +=− qxcg ijx represent granular kernels and genes qxcg ijx ,,1),(2 =

represent sum or product operations. We use)(ijcGKTs to represent GKTs configured

with genes)(ijt cg , 12,,1 += qt . In the algorithm, k-fold cross-validation is used in the

fitness evaluation and the roulette wheel method is used in selection too.

5.2 Crossover

 In GKTSES, a population of individuals is generated in the first generation. Each

individual encodes a granular kernel tree. For example, GKTs-5 and GKTs-6 are two

 51

three-layer GKTs (see Figure 5.1 and 5.2). In GKTs-5 and GKTs-6, each node in the first

layer is a granular kernel. Granular kernels are combined together by sum and product

connection operations in the second layer and the third layer. Each granular kernel tree is

encoded into a chromosome. For example, GKTs-5 and GKTs-6 are encoded in

chromosomes c1 and c2 (see Figure 5.3) respectively. In the first generation, features are

first randomly shuffled and then feature granules are randomly generated. Granular

kernels are preselected from the candidate kernel set. Some traditional kernels such as

RBF kernels and polynomial kernels can be chosen as granular kernels. In practice, we

choose RBF kernels as granular kernels and each feature is a feature granule. Finally

granular kernel parameters and kernel connection operations are also randomly generated

for each individual.

Figure 5.1 GKTs-5

Figure 5.2 GKTs-6

 52

Figure 5.3 Chromosomes used encode GKTs-5 and GKTs-6

 In crossover, two GKTs are first selected from current generation as parents and

then a crossover point is randomly selected for separating parents GKTs. Subtrees of two

GKTs are exchanged at the crossover point to generate two new GKTs. For example,

chromosomes 1c and 2c may do crossover at point d2 to generate two new chromosomes

(see Figure 5.4). This is equivalent to that GKTs-5 and GKTs-6 exchange their right

subtrees (see Figure 5.5). In Figure 5.5, GKTs-7 and GKTs-8 have the same structures as

their parents respectively. Here, GKTs-7 is encoded in chromosome c3 and GKTs-8 is

encoded in chromosome c4.

Figure 5.4 Chromosomes c3 and c4 generated from c1 and c2

 53

Figure 5.5 GKTs-7 and GKTs-8 generated using crossover operation

 GKTSES can also generate GKTs with different tree structures from their parents

using the crossover operation. In Figure 5.6, GKTs-5 and GKTs-6 do crossover at point

d1 to generate two new granular kernel trees, GKTs-9 and GKTs-10, which have different

tree structures from their parents. The equivalent operation on chromosomes is shown in

Figure 5.7.

 54

Figure 5.6 GKTs-9 and GKTs-10 generated using crossover operation

Figure 5.7 Chromosomes c5 and c6 generated from c1 and c2

5.3 Mutation

 In mutation, some genes of one chromosome are selected with a specified

probability. The values of selected genes are replaced by random values. In the

 55

implementation, only connection operation genes are selected to do mutation. Figure 5.8

shows an example of mutation. The new chromosome c7 is generated by changing the

eighth gene of chromosome c1 from sum operation to product operation, which is

equivalent to transforming GKTs-5 to GKTs-11 (see Figure 5.9).

Figure 5.8 Chromosomes c7 generated from c1 using mutation

Figure 5.9 GKTs-11 generated from GKTs-5 using mutation

 The system architecture of GKTSES is shown in Figure 5.10. In the system, the

regularization parameter C of SVMs is also optimized together with GKTs.

 56

Figure 5.10 Architecture of GKTSES

5.4 Simulation

5.4.1 Dataset Description and Simulation Setup

 In the simulation, GKTSES is used for Cyclooxygenase-2 inhibitor activity

comparison. The dataset of Cyclooxygenase-2 inhibitors (Kauffman and Jurs, 2001)

includes 314 compounds, and 153 of them are active and 161 are inactive. 109 features

are selected to describe each compound. Each feature’s absolute value is scaled to the

range [0, 1]. The point of log (IC50) units is set to 2.5 to discriminate active compounds

from inactive compounds. The dataset is randomly shuffled and evenly split into 3

mutually exclusive parts. Each time we choose one part as the unseen testing set and the

other twos as the training set. Three-fold cross-validation is used in the fitness evaluation.

RBF kernel is also chosen as each granular kernel function. The range of γ is set to

]1,00001.0[and the range of regularization parameter C is set to]256,1[. The

probability of crossover is 0.8 and the mutation ratio is 0.2. The population size is set to

 57

300 and the number of generations is set to 50. The software package of SVMs used in

the experiments is LibSVM (Chang and Lin, 2001). In the first generation, sum

operations are generated with the probability of 0.5 in each individual.

5.4.2 Simulation Results

 Table 5.1 shows the prediction accuracies of SVMs with GKTSES and GAs based

SVMs with RBF in average. From Table 5.1, we can see that SVMs+GKTSES can

outperform SVMs+GAs+RBF by 3.5% in terms of testing accuracy and 2% in terms of

fitness, although the latter system shows the higher accuracy in training. The results of

three evaluations CV-1, CV-2 and CV-3 are summarized in Table 5.2. From Table 5.2,

we can see that the testing accuracies of SVMs+GKTSES are always higher than those of

SVMs+GAs+RBF by about 2.9% ~ 3.9% in all three evaluations. The fitness values of

SVMs+GKTSES are higher than those of SVMs+GAs+RBF by about 1% ~ 3.4%. The

prediction accuracies in three evaluations are also visualized in Figure 5.11. According to

the comparison, we can say that SVMs+GKTSES are more reliable than

SVMs+GAs+RBF.

 However, the comparison among three evaluations also shows that significant

deviations exist in the testing accuracies for both systems. This problem could happen

when the system is not stable or the data set is not iid (independent and identically

distributed). To solve this problem, we present a voting-scheme-based evolutionary

kernel machine called evolutionary voting kernel machine (EVKM) in the next section.

TABLE 5.1
PREDICTION ACCURACIES IN AVERAGE ON THE CYCLOOXYGENASE-2 DATASET

 Fitness Training accuracy Testing accuracy
SVMs+GAs+RBF 81.9% 94.4% 72.3%
SVMs+GKTSES 83.9% 89.7% 75.8%

 58

TABLE 5.2
RESULTS OF THREE EVALUATIONS ON THE CYCLOOXYGENASE-2 DATASET

5.5 EVKM

 In EVKM, the kernel’s evolving procedure and the genetic operations such as

selection, crossover and mutation are the same as those in GKTSES. The difference is in

the fitness evaluation. In EVKM, the decision is made by several weighted SVMs instead

of a single SVM. Simulation results show that EVKM is more stable than SVMs in the

Cyclooxygenase-2 inhibitor activity comparisons.

5.5.1 Voting Scheme

 In each)(ijcGKTs evaluation, the training data set () (){ }ll yxyxS ,,,,~

11= is

separated into k mutually exclusive subsets kvSv ,,1,~ …= . SVMs are trained on every

subset vS~ with)(ijcGKTs and then k SVMs decision functions)(xdv are generated.

() vi
i

iiv bxxGKTsyxd
v

v

vv
+= ∑ ,)(α (5.1)

where C
vi
≤< α0 , C is the regularization parameter,

vi
x are support vectors and vb is the

threshold for the vth SVMs.

 The number of correctly classified data in each training is calculated and the

weighted voting decision function)(xd is defined as follows:

∑=
v

vv xdcxd)()((5.2)

 CV-1 CV-2 CV-3

 SVMs+GAs+
RBF GKTSES GAs-RBF-

SVMs GKTSES GAs-RBF-
SVMs GKTSES

Fitness 83.7% 87.1% 80.4% 82.3% 81.4% 82.4%
Training accuracy 90.9% 92.3% 97.1% 88.0% 95.2% 88.6%
Testing accuracy 64.8% 68.6% 78.1% 81% 74% 77.9%
#Support vector 116 91 107 111 144 111

 59

 In Equation (5.2), vc is a cost factor which is either the accuracy of positive class

of the vth SVMs if)(xdv is positive, or the accuracy of negative class of if)(xdv is

negative. The training dataset is then predicted by)(xd and the positive class accuracy

(+
vt) and the negative class accuracy (−

vt) are calculated respectively. Finally the

optimized 'GKTs is generated and the decision function)(' xd is calculated for the

unseen testing set prediction.

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+== ∑∑ vi

i
ii

v
v bxxGKTsycxd

v

v

vv
,'')(' α (5.3)

where the cost factor vc' is either +
vt or −

vt .

5.5.2 Simulation Results

 In the simulation, the experimental setup is the same as that in Section 5.4. Table

5.3 shows the performance of EVKMs with the RBF kernel and GKTSES on the

Cyclooxygenase-2 dataset. From Table 5.3, we can see that in three evaluations, the

testing accuracies of EVKM+GKTSES are always higher than those of EVKM+RBF by

about 1.9% ~ 2.9%. Table 5.4 summarizes the testing accuracies of EVKMs and GAs-

based SVMs with different kernels in three evaluations. From Table 5.4, we can find that

the average testing accuracy of each EVKM is a little bit higher than that of GAs-based

SVMs. While comparing the standard deviations of testing accuracies, we can find that

the standard deviations of EVKMs are much lower than those of GAs-based SVMs. It

means that EVKMs are more stable than GAs-based SVMs.

 60

TABLE 5.3
PREDICTION RESULTS OF EVKMS IN THREE EVALUATIONS ON THE CYCLOOXYGENASE-2 DATASET

TABLE 5.4
TESTING ACCURACIES IN AVERAGE AND STANDARD DEVIATION ON THE CYCLOOXYGENASE-2 DATASET

Figure 5.11 Testing accuracies of EVKMs in three evaluations

 SVMs+GAs+RBF SVMs+GKTSES EVKM+RBF EVKM+GKTSES
Testing accuracy 72.3% 75.8% 74.1% 76.6%

Standard deviation of
Testing accuracy 6.8% 6.5% 2.8% 2.3%

 CV-1 CV-2 CV-3

Method EVKM+
RBF

EVKM+
GKTSES

EVKM+
RBF

EVKM+
GKTSES

EVKM+
RBF

EVKM+
GKTSES

Training accuracy 91.4% 90.9% 90% 85.2% 90.1 % 85.6%
Testing accuracy 71.3% 74.2% 76.8% 78.7% 74.2% 77%

 61

CHAPTER 6

EGKTS WITH PARALLEL COMPUTING

6.1 SVMs with Parallel Computing

 Some parallel algorithms were designed for SVMs in the literature. Graf et al.

(2005) developed a kind of parallel SVMs called Cascade of SVMs in a distributed

environment. In Cascade of SVMs, the smaller optimizations are first solved

independently, and then the partial results are combined and filtered again until the global

optimum is reached. Convergence of the algorithm to the global optimum is guaranteed

with multiple passes through the Cascade. The Gradient Projection Method (GPM) based

parallel SVMs (Zanghirati and Zanni, 2003; Serafini et al., 2005) were also proposed. In

GPM based SVMs, the decomposition technique is used to split the quadratic

programming (QP) problem into smaller QP sub-problems. These sub-problems are

solved by GPM in a parallel way. An asynchronous parallel ES was designed for the

SVMs model selection by Runarsson and Sigurdsson (2004). The algorithm was

implemented on a multi-processor computer using C++ and the standard Posix threads.

6.2 Parallel GAs Models

 Parallel GAs (Cantú-Paz, 1998; Adamidis, 1994; Lin et al., 1997) have been well

studied in recent several years. Typically there are three types of parallel GAs models: (1)

single population master-slave model, (2) single population fine-grained model and (3)

multiple population coarse-grained model.

 In the single population master-slave GAs, there is only one single population,

which is similar to the simple GAs. The master node stores the population, does genetic

 62

operations such as selection, crossover, and mutation, and distributes individuals to the

slave nodes. Once the slave nodes evaluate the fitness of the individuals, they send the

fitness values back to the master node. This kind of parallel model does not affect the

behavior of GAs, since all individuals in the population are considered during the genetic

operations. In the single population fine-grained model, there is a single population which

is structured spatially. Neighborhoods may be overlapped among all the individuals.

Selection and crossover can only happen on a small neighborhood. This kind of model is

suitable for massively parallel computers. The multiple population coarse-grained model

is more complicated and the big difference from the first two models is that it has several

subpopulations which may exchange individuals.

6.3 Parallel EGKTs

 In EGKTs, all parameters to be optimized are independent. The operations are the

same in training each SVMs model. So it’s very suitable to use the single population

master-slave model to parallelize EGKTs and further to speed up the training of EGKTs

based SVMs. In the parallelization of EGKTs, one processor is chosen as the master node,

which stores the population of GKTs, does selection, crossover and mutation on these

GKTs, and then distributes the parameters of GKTs to slave nodes. Each single SVMs

model is trained and evaluated on one slave node. We implement the parallel system with

MPICH in a disk-shared and memory-distributed Linux cluster environment.

 The model architecture of SVMs with the parallel EGKTs is shown in Figure 6.1

and the system architecture is shown in Figure 6.2. This parallel system has some

characteristics. Firstly, this is a global GAs-SVMs system, since all evaluations and

operations are performed on the entire population. Secondly, the implementation is easy,

 63

clear, practical, and especially suitable for the SVMs model selection and the training

speedup of SVMs with EGKTs. The QP decomposition method can be used to speed up

the GKTs selection too. However, if the training dataset is large, the communication costs

for transferring sub-QP meta-results will be very high. In our system, the time for QP

calculation in each SVM model is longer than that for the genetic operations of GAs,

which generally has different magnitude. In our system, only parameters and fitness

values need to be transferred between the master and the slaves. So the communication

costs are small. Thirdly, the system can be easily moved to the large distributed

computing environment.

Figure 6.1 SVMs with the parallel EGKTs

 64

Figure 6.2 System architecture of SVMs with the parallel EGKTs

6.4 Simulation

 The Cyclooxygenase-2 dataset and the RBF kernel are used in the simulation.

Each GKT is defined by simply grouping all features into one feature granule. In GAs,

the size of population is set to 300 and the number of generations is set to 50. The parallel

system is tested on the GSU’s Biocluster, which is a Beowulf cluster with four head

nodes and 40 computing nodes. Each computing node has two 3.0 GHz Intel Xeon CPUs

with 2.0 GB memory. In the simulation, each computing node will run two SVM models.

It means that each computing node is equivalent to two slave nodes of the parallel system.

 The running time of the parallel system on the cluster platform is shown in Figure

6.3. From Figure 6.3, we find that the parallel system can significantly reduce the

optimization time of GKTs when the number of slave nodes is larger than 3. The

 65

simulation results shown in Figure 6.4 are also illustrated that our parallel method can

significantly speed up the training of SVMs+EGKTs by a factor of 10 with 14 nodes.

Figure 6.3 Running time of the parallel system

Figure 6.4 Speedup of the parallel system

 66

CHAPTER 7

MEB-SVM

7.1 Related Works

7.1.1 Chunking and Decomposition

 Typically, a QP solver is used to find support vectors in SVMs training. Due to

the fact that the QP algorithm requires large memory for storing the kernel data matrix,

the traditional QP based SVMs are not suitable for large scale data classification.

 An alternative way is to split a large optimization task into a series of smaller

ones. Chunking (Boser et al., 1992) and decomposition (Osuna et al., 1997) are two kinds

of methods working in this way. In the chunking, an initial random sub dataset (working

set with an arbitrary size) is optimized by the QP solver and the related support vectors

are found. The non support vectors are then discarded from the working set and new data

points violating the optimality conditions are added. The QP solver is used on the

working set again. The iteration continues until the whole optimization task is solved.

Different from the chunking algorithm, the decomposition method works on a sub dataset

with the fixed size. In each iteration, only the Lagrange multipliers on the working set are

updated and other Lagrange multipliers are kept fixed. A special decomposition

algorithm is Sequential Minimal Optimization (SMO) (Platt, 1998). SMO is an analytical

approach, which uses a set of heuristics and works on the working set of the size of two

without using any optimization package. Besides the chunking and decomposition, there

are other methods proposed to speed up SVMs training too.

 67

7.1.2 CB-SVM

 CB-SVM (Yu et al., 2003) is particularly designed for the large scale data

classification with a limited amount of system resources. The key idea of CB-SVM is to

employ the hierarchical clustering technique to find the finer description close to the

classification boundary and the coarser description far away from the boundary.

 In CB-SVM, a hierarchical micro-clustering algorithm is used to scan the data set

and two Clustering Feature (CF) trees are generated on positive data and negative data

separately. In each CF tree, a hierarchical representation is used to summarize the data

distribution. The nodes in a lower level are summarized and represented by their parent

node. The CF trees can effectively summarize the distribution of the entire dataset and

capture the spherical shapes of hierarchical clusters. An SVM is first trained on the

centroids of the root nodes of two CF trees and a rough classification boundary is

generated. The data summaries of two CF trees close to the boundary are then declustered

into the lower levels. The declustered children nodes are added to the training set and

another SVM is constructed on the centroids of the nodes in the training set. The

algorithm repeats such kind of process down through the trees until to the leaf level.

 CB-SVM is scalable very well if the number of features is small. However CB-

SVM can only be used to solve the linear classification problems in the input space. It is

difficult to summarize and represent the data distribution hierarchically in the new feature

space transformed by the nonlinear kernels. How to adapt CB-SVM to solve the

nonlinear problems with the nonlinear kernels is still a big issue.

 68

7.1.3 CVM

 In CVM (Tsang et al., 2005), the SVM optimization problem is first transformed

to the MEB problem and an approximate optimal solution is obtained on a sub dataset

called core-set. The idea behind CVM is that the point furthest away from the current

center is added into the ball incrementally. CVM can be used to classify very large data

sets with nonlinear kernels.

 The algorithm initializes the core-set with two points and calculates the initial

center and radius of the ball. If the left data points fall in the ball, the algorithm

terminates. Otherwise, the furthest point from the center of the ball is added to the core

set, and then a new ball is calculated on the core-set using the SMO algorithm. The

distances of the left points to the updated center are measured again. Such kind of process

is repeated until no point falls outside the ball. To reduce the required time for measuring

the distance from the left data points to the center of the ball, 59 sampled points are used

instead of all the data points.

7.1.4 LSVM

 LSVM (Mangasarian and Musicant, 2001) is a modified SVM using the squared

slack variables to measure the loss. In LSVM, the classification problem is reformulated

as an unconstrained optimization problem. The problem is then solved using a method

based on the Sherman-Morrison-Woodbury formula, which only requires solving the

systems of linear equalities. LSVM can be very fast on the data sets with the relatively

low dimensionality. Due to the requirements of storing and inverting a nn× matrix

(where n is the number of features), it is not suitable to apply LSVM to the tasks with the

 69

high dimensionality. Also, a nonlinear kernel is not easy to be employed in LSVM,

because the Sherman-Morrison-Woodbury identity is used under the condition that the

inner product terms of the kernel are explicitly known, which in general are not satisfied.

7.1.5 PSVM

 PSVM (Fung and Mangasarian, 2001) classifies data based on proximity to one of

two parallel planes that are pushed apart maximally. Similar to LSVM, PSVM uses an

equality to replace the inequality constraint and the Sherman-Morrison-Woodbury

formula for matrix inversion. These changes make PSVM avoid the QP calculation and

build the classification model with linear computations only. PSVM is a very fast

algorithm with no significant loss of accuracy especially when the number of data

features is much less than the number of training data. However the algorithm requires

large space to store the kernel matrix. The incremental training methods (Fung and

Mangasarian, 2002) can help PSVM reduce the space requirement.

7.1.6 HeroSVM

 HeroSVM (Dong et al., 2003; Dong et al., 2005) is a fast SVM training algorithm

designed for classifying the data set of huge size with thousands of classes. The key idea

behind HeroSVM is using block diagonal matrices to approximate the original kernel

matrix. In HeroSVM, the original problem is decomposed into hundreds of sub problems

and most of the nonsupport vectors are quickly removed so that the final sequential

optimization could be finished in a short time. Some other techniques such as kernel

caching, digest and shrinking are also integrated into the algorithm to speed up the

training process.

 70

7.1.7 Active Learning

 In SVMs with active learning (Schohn and Cohn, 2000), a simple but efficient

heuristic is applied to estimate the change of the expected error heuristically when an

example is added. The heuristic tries to narrow the existing hyperplane margin as

maximal as possible by assuming that examples lying along the hyperplane separate the

space most quickly on average. In active learning, SVMs are required to be trained once

only. It’s shown that for a given number of training examples, SVMs with active learning

can provide better generalization performance than SVMs trained on the randomly

selected examples.

7.2 MEB-SVM

 As mentioned in Chapter 1, the powers of SVMs in solving the nonlinear

classification problems are provided by the nonlinear kernels, which implicitly transform

the data from the input spaces into some high dimensional feature spaces. However, it is

difficult for us to analyze the data distribution in the feature space transformed by

kernels.

 As mentioned in Section 2.1 of Chapter 2, an important characteristic of SVMs is

that the separating hyperplane can be built with the support vectors only and the data

lying out of the margin of the hyperplane can be removed safely. The key idea behind

MEB-SVM is using MEBs to remove most of data lying outside the hyperplane margin.

The MEB can only provide the boundary information of a dataset, however such kind of

information is enough to help SVMs determine the separating hyperplane quickly.

 71

 In MEB-SVM, the boundary of each class data set is first measured by several

MEBs, and then the data within each MEB are removed. An SVM is finally trained on a

smaller dataset which only contains the data on the MEBs boundaries. Because the

objective conditions are loose and data points (error data) out of an MEB can be tolerated

very well, the time for measuring the MEB is much shorter than that for finding the

separating hyperplane in the binary classification. An example of MEB-SVM for data

classification is shown in Figure 7.1 - 7.4. Figure 7.1 shows the feature space transformed

by a RBF kernel. Measuring MEBs on each class data set and deleting data within MEBs

are shown in Figure 7.2 and Figure 7.3 respectively. Figure 7.4 shows a hyperplane found

by an SVM classifier, which is trained on the final training set.

Figure 7.1 Data in a new feature space transformed by a RBF kernel

 72

Figure 7.2 MEBs measured on each class data set

Figure 7.3 Data reduction

Figure 7.4 Hyperplane found by an SVM classifier on the reduced data set

 73

 The detailed description of the MEB-SVM algorithm is given as follows. For a

binary nonlinear classification problem, let () (){ }ll yxyxS ,,,, 11= represent a training

dataset, where liRx n
i ,,1, =∈ are vectors and liyi ,,1},1,1{ =+−∈ are class labels

associated to ix . Let () (){ }1,,,1,
11 ++=+

kxxS represent positive data set and

() (){ }1,,,1,
21 −−=−

kxxS represent negative data set, where SSS =−+ ∪ and

lkk =+ 21 . In the MEB-SVM algorithm (see Figure 7.5), operations will be executed

repeatedly until the size of training set is equal to or smaller than a constant T . In the

loop, the positive data set +S will be split into +m equal subsets +
1j

E and the negative

data set −S will be split into −m equal subsets −
2j

E randomly, where += mj ,,11 … and

−= mj ,,12 … . RBF based MEBs are calculated on each subset (+
1j

E and −
2j

E) and a new

training set is generated which includes all data located on each MEB’s boundary. Once

the training set is small enough, an SVM classifier will be trained on it with the same

RBF kernel as used in MEBs. In Figure 7.5, +A and −A are two temporary datasets.

 74

Figure 7.5 The MEB-SVM algorithm

7.3 Simulation

 The KDDCUP-99 intrusion detection dataset and other two artificial datasets are

used in the simulation. MEB-SVM is implemented based on LibSVM and its Tools

(Chang and Lin, 2001). In the simulation, we don’t consider the I/O time for reading and

writing files. The constant T is always set to 10000.

Input: +S ,
−S ,

+m ,
−m and T

Output: a trained SVM classifier

Algorithm:

1. S := −+ ∪ SS

2. While TS ≥

{

Empty +A and −A ; /* +A and −A are temporary datasets*/

Split +S into +m equal subsets +
1j

E randomly;

Split −S into −m equal subsets −
2j

E randomly;

For 1j from 1 to +m

Measure +
1j

E ’s MEB boundary ;

Put the data located on the boundary of +
1j

E into +A ;

For 2j from 1 to −m

Measure −
2j

E ’s MEB boundary;

Put the data located on the boundary of −
2j

E into −A ;
+S := +A ;
−S := −A ;

S := −+ ∪ SS
}

3. Train an SVM classifier on S ;
4. Return a trained SVM classifier;

 75

7.3.1 Performance Metrics

 Besides accuracy, some other performance metrics implemented in the PERF

Software (which can be downloaded at http://kodiak.cs.cornell.edu/kddcup/software.html)

are also used to measure the MEB-SVM performance. These metrics are calculated based

on the entries in the confusion matrix. Figure 7.6 shows the confusion matrix for a binary

classification problem.

Figure 7.6 Confusion matrix

 In the confusion matrix, a is the number of true positive predictive examples, b is

the number of false negative predictive examples, c is the number of false positive

predictive examples, and d is the number of true negative predictive examples. The

performance metrics used in the simulations are defined as follows:

• Accuracy (ACC) The ratio between the number of the true predictive examples

and the total number of examples.

dcba
daACC
+++

+
= . (7.1)

• Positive Predictive Value (PPV) The ratio between the number of the true

positive predictive examples and the positive predictive examples.

ca
aPPV
+

= (7.2)

Actual\ Predicted Positive Negative

Positive a b

Negative c d

 76

• Negative Predictive Value (NPV) The ratio between the number of the true

negative predictive examples and the negative predictive examples.

db
dNPV
+

=
 (7.3)

• Sensitivity (SEN) The proportion of the actual positive examples that are

predicted as positive.

ba
aSEN
+

= (7.4)

• Specificity (SPE) The proportion of the actual negative examples that are

predicted as negative.

dc
dSPE
+

= (7.5)

• Precision (PRE) The proportion of the positive predictive examples that are

predicted as positive, which is equal to the positive predictive value.

ca
aPRE
+

= (7.6)

• Recall (REC) The proportion of the actual positive examples that are predicted as

positive, which is same as the sensitivity.

ba
aREC
+

= (7.7)

• Area under the ROC curve (AUC) ROC curve is a 2-D plot used to show the

relationship between the prediction and the truth. The area under the ROC curve

is commonly used as a quantitative value to evaluate the prediction. An AUC

example is shown in Figure 7.7

 77

Figure 7.7 The area under the ROC curve

7.3.2 Network Intrusion Detection

 With the growth of Internet, network intrusion detection is becoming vital in the

network security as a lot of malicious actions attempt to compromise the resources of

networks and information. Data mining methods (Lee and Stolfo, 1998; Bloedorn et al.,

2001; Barbara et al., 2001; Dokas, 2002) are also widely used for the network intrusion

detection with the tremendous increase of novel network attacks. In network intrusion

detection, the basic task is to build a model, which can distinguish between intrusion

connections and normal connections.

7.3.2.1 Dataset Description

 In the simulation, the KDDCUP-99 dataset (which is available at

http://kdd.ics.uci.edu//databases/kddcup99/kddcup99.html) is a real world dataset used

for the third international knowledge discovery and data mining tools competition. The

dataset is a standard set of tcpdump data, which are generated in a military network

environment and used to simulate the connections in a wide variety of intrusions. The

training set includes 4,898,431 connection records. The number of positive examples is

3,925,650 and the number of negative examples is 972,781. The testing set includes

 78

311,029 records. In the dataset, each record item has 32 continuous features and 9

discrete features. All these features are listed in Tables 7.1 - 7.4, which are copied from

the KDDCUP-99 website.

TABLE 7.1
BASIC FEATURES OF INDIVIDUAL TCP CONNECTIONS

TABLE 7.2
CONTENT FEATURES WITHIN A CONNECTION SUGGESTED BY DOMAIN KNOWLEDGE

TABLE 7.3
 TRAFFIC FEATURES COMPUTED USING A TWO-SECOND TIME WINDOW

Feature name Feature description Type

count number of connections to the same host as the current
connection in the past two seconds continuous

serror_rate* % of connections that have “SYN” errors continuous
rerror_rate* % of connections that have “REJ” errors continuous

same_srv_rate* % of connections to the same service continuous
diff_srv_rate* % of connections to different services continuous

srv_count* number of connections to the same service as the current
connection in the past two seconds continuous

srv_serror_rate** % of connections that have “SYN” errors continuous
srv_rerror_rate** % of connections that have “REJ” errors continuous

srv_diff_host_rate** % of connections to different hosts continuous
*These features refer to these same-host connections. **These features refer to these same-service connections.

Feature name Feature description Type
hot number of “hot” indicators continuous

num_failed_logins number of failed login attempts continuous
logged_in 1 if successfully logged in; 0 otherwise discrete

num_compromised number of “compromised” conditions continuous
root_shell 1 if root shell is obtained; 0 otherwise discrete

su_attempted 1 if “su root” command attempted; 0 otherwise discrete
num_root number of “root” accesses continuous

num_file_creations number of file creation operations continuous
num_shells number of shell prompts continuous

num_access_files number of operations on access control files continuous
num_outbound_cmds number of outbound commands in an ftp session continuous

is_hot_login 1 if the login belongs to the “hot” list; 0 otherwise discrete
is_guest_login 1 if the login is a “guest” login; 0 otherwise discrete

Feature name Feature description Type
duration length (number of seconds) of the connection continuous

protocol_type type of the protocol, e.g. tcp, udp, etc. discrete
service network service on the destination, e.g., http, telnet, etc. discrete

src_bytes number of data bytes from source to destination continuous
dst_bytes number of data bytes from destination to source continuous

flag normal or error status of the connection discrete
land 1 if connection is from/to the same host/port; 0 otherwise discrete

wrong_fragment number of “wrong” fragments continuous
urgent number of urgent packets continuous

 79

TABLE 7.4
 OTHER FEATURES WITHOUT DESCRIPTIONS

 In the simulation, the continuous features are normalized to the range 0~1. Non-

numerical feature are represented by non-negative integer numbers. For example, for

feature 2, symbols “tcp”, “udp” and “icmp” are represented by 0, 1 and 2. The 20th

feature (num_outbound_cmds) is removed so that each processed record item contains 40

features.

7.3.2.2 Simulation Results

 RBF kernel is used in the MEB-SVM evaluation. In the SVM training, the

regularization parameter C is set to 16.65 and RBF’s γ is 0.01, the positive class weight

is 2.307, and the negative class weight is 1. In MEB calculation, +m is set to 20 and −m

is set to 10. We conduct the benchmark results of MEB-SVM with regard to the random

sampling methods, the active learning based SVM, CB-SVM, and CVM in terms of

prediction accuracy, running time, and the number of support vectors. MEB-SVM is

tested on a 2.8 GHz PC with the 512 MB RAM memory. Other methods were evaluated

on the different machines and the related results are copied from the published papers

(Yu et al., 2003; Tsang et al., 2005). The random sampling methods, the active learning

based SVM and CB-SVM were evaluated on an 800MHz P-3 machine with the 906 MB

RAM memory. CVM was evaluated on a 3.2GHz P-4 machine with the 2GB RAM

memory.

Feature name Type
dst_host_count continuous

dst_host_srv_count continuous
dst_host_same_srv_rate continuous
dst_host_diff_srv_rate continuous

dst_host_same_src_port_rate continuous
dst_host_srv_diff_host_rate continuous

dst_host_serror_rate continuous
dst_host_srv_serror_rate continuous

dst_host_rerror_rate continuous
dst_host_srv_rerror_rate continuous

 80

 Table 7.5 shows the performance comparison between MEB-SVM and other

methods on the KDDCUP-99 dataset. In the table, other processing time means the data

sampling time in the random sampling methods, the clustering time in CB-SVM, and the

MEB calculating time in MEB-SVM. From Table 7.5, we can see that MEB-SVM

finishes training in 250 seconds, which is faster than that of other methods except CVM.

Although it is not suitable to compare the training time directly (since these algorithms

are evaluated on the different machine), we can still conclude that MEB-SVM is really a

fast learning algorithm. The testing accuracy of MEB-SVM can reach 93.38%, which is

higher than that of other methods except CVM. The AUC value of MEB-SVM is 96.4%,

which is lower than that of CVM by 1.3%. Table 7.5 also summarizes the number of the

final training data and the number of support vectors. MEB-SVM only needs a small

dataset in the SVM training. Other performance metrics are also used to evaluation MEB-

SVM and the results are shown in Table 7.6.

TABLE 7.5
PERFORMANCE COMPARISON ON THE KDDCUP-99 DATASET

Running Time (second)

Method #
Testing Error AUC

Selected

Training Data

Support
Vectors

SVM
Training

Time

Other
Processing

Time
0.001% 25,713 - - - 0.000991 500.02
0.01% 25,030 - - - 0.120689 502.59
0.1% 25,531 - - - 6.944 504.54
1% 25,700 - - - 604.54 509.19

Random
Sampling

5% 25,587 - - - 15827.3 524.31
ASVM 21,634 - 307 - 94192.213 -

CB-SVM 20,938 - 2893 - 7.639 4745.483
CVM 19,513 0.977 55 20 1.4

MEB-SVM* 20,601 0.964 173 114 1 249
* The training accuracy of MEB-SVM is 95.7%.

 81

TABLE 7.6
OTHER PERFORMANCE EVALUATIONS OF MEB-SVM

ON THE KDD CUP-99 DATASET

7.3.3 Evaluation on the Ring Norm Dataset

7.3.3.1 Dataset Description

 Ring norm dataset is the two-class artificial dataset generated using Leo

Breiman’s algorithm (Breiman, 1996). Each data item has 20 dimensions. One class data

are generated from a multivariate normal distribution with the zero mean and covariance

matrix equal 4 times the identity matrix. The other class data are generated from the

multivariate normal distribution with the unit covariance matrix and mean of 2/sqrt(20)

along each dimension. For this dataset, the theoretical expected classification accuracy is

98.76%, which can be computed by using the Fukunaga and Krile’s method (Fukunaga

and Krile, 1969).

7.3.3.2 Simulation Results

 A training set 1RN with 3 million ring norm data examples and a testing set with

90,000 examples are generated and used for the performance comparison between MEB-

SVM and CVM. Both MEB-SVM and CVM are trained on the same P-4 3.0GHz

machine with 2.0GB RAM (the available memory is about 400MB). For CVM, the

regularization parameter C is set to 100 and RBF’s γ is set to 0.0195. For MEB-SVM, C

Max_Accuarcy threshold* 0.000405
AUC 0.96355
ACC 0.93379
PPV 0.98946
NPV 0.76235
SEN 0.92766
SPC 0.95915
PRE 0.98946
REC 0.92766

 * The prediction threshold that maximizes the accuracy

 82

is set to 0.0062, RBF’s γ is set to 0.01, +m is set to 20, and −m is set to 20. Both positive

class weight and negative class weight are set to 1.

 The simulation results are shown in Table 7.7. From Table 7.7, we can see that

MEB-SVM has much better performance than CVM in terms of number of the selected

training data, number of support vectors, testing error and running time. The prediction

accuracy of MEB-SVM on the testing dataset can reach 98.44%, which is almost same as

the theoretical expected accuracy. The MEB-SVM training can finish in 117 seconds,

which is 55 times as fast as CVM.

TABLE 7.7
PERFORMANCE COMPARISON BETWEEN MEB-SVM AND CVM

ON THE RING NORM DATASET WITH 3 MILLIONS EXAMPLES

 To make a comparison between MEB-SVM and HeroSVM, the other training set

2RN with 100,000,000 ring norm data examples and a testing set with 3 million

examples are generated and used in the evaluation. MEB-SVM is evaluated on a P-4

3.0GHz machine with the 2.0GB RAM memory (the available memory is about 400MB).

Both positive class weight and negative class weight are set to 1. C is set to 0.00806,

RBF’s γ is set to 0.01, and both +m and −m are set to 500.

 The simulation results are shown in Table 7.8. Because the number of selected

training data (=139136) is still too large after the first loop of MEB calculation, MEBs

are measured again on the selected training data. In the second loop of MEB calculation,

both +m and −m are set to 10. The simulation results of HeroSVM listed in Table 7.8

were reported by Dong et al. (2005). HeroSVM was evaluated on a P-4 1.7GHz machine

Running Time
(second)

Selected

Training Data

Support
Vectors

Testing
Error
(%) SVM

Training Time
Other

Processing Time
CVM 17338 15703 2.41% 6495

MEB-SVM 5273 1612 1.56% 2 115

 83

with the 1.5GB SDRAM memory. CVM Toolbox used by Tsang et al. (2005) fails to

handle the data set with 100 million examples. From Table 7.8, we can see that MEB-

SVM can finish training in 4013 seconds on this very large dataset, which is faster than

HeroSVM by 53191 seconds. It means that MEB-SVM is almost 13 times faster than

HeroSVM. The prediction accuracy of MEB-SVM on this dataset is 98.44%. The testing

error of HeroSVM is lower than that of MEB-SVM. In HeroSVM, the final decision is

made based on the voting among k SVMs, each of which is built on the support vector

sets with the size of about 7900.

TABLE 7.8
PERFORMANCE COMPARISON BETWEEN MEB-SVM AND HEROSVM

ON THE RING NORM DATASET WITH 100 MILLIONS EXAMPLES

7.3.4 Evaluation on the Normally Distributed Clustered (NDC) Datasets

7.3.4.1 Dataset Description

 Two datasets with different linear separabilities are generated using the Normally

Distributed Clusters (NDC) generator (Musicant, 1998). The NDC generator can generate

a series of random centers for multivariate normal distributions. In the data generation, a

fraction of data points from each center is generated first, and then a separating

hyperplane is randomly generated. Each center is marked with a class label based on the

separating plane. The generator then randomly generates the points from the distributions.

The linear inseparability of data can be increased by increasing variances of distributions.

Running Time (second)

Selected
Training

Data

Support
Vectors

Testing
Error
(%)

SVM
Training

Time

Other
Processing

Time
HeroSVM 5,807,025 7900k 1.23% 57204

139136 - - 3994 MEB-SVM 5697 1221 1.56% 2 17

 84

7.3.4.2 Simulation Results

 One dataset 1NDC has linear separability of around 69.7%. The other dataset

2NDC has linear separability of around 90.9%. Each training set consists of 2 million

examples with 10 features and each testing set has 200,000 examples. MEB-SVM

algorithms are trained on P-4 3.0GHz machine with 2.0GB RAM. For the dataset 1NDC ,

C is set to 1500 and RBF’s γ is set to 0.01. For the data set 2NDC , C is set to 50 and

RBF’s γ is set to 0.01. Both +m and −m are set to 10 in each training. The simulation

results are shown in Table 7.9.

TABLE 7.9
PERFORMANCE COMPARISON ON THE NDC DATASETS

 The simulation results of LSVM and PSVM listed in Table 7.9 were reported by

Fung and Mangasarian (2001). Dataset 3NDC has linear separability of around 70% and

the dataset 4NDC has linear separability of around 90%. LSVM and PSVM were

evaluated on a Pentium 400MHz machine with a maximum of 2 GB of memory.

 On the dataset with the linear separability of around 70%, MEB-SVM only needs

5 seconds for training and can achieve the prediction accuracy of 83.1%, which is

significantly higher than those of PSVM and LSVM by about 13.5%~13.6%. On the

Running Time (second)

Method Data Set

Theoretical
Linear

Separability
Theoretical
Accuracy

(%)

Training
Accuracy

(%)

Testing
Accuracy

(%)

Selected
Training

Data

Support
Vectors

SVM
Training

Time

Other
Processin
g Time

MEB-
SVM NDC1 69.7% 83.17% 83.06% 62 17 1 4

LSVM NDC3 70% 69.80% 69.44% - - 655.6
PSVM NDC3 70% 69.84% 69.52% - - 20.6
MEB-
SVM NDC2 90.9% 98.83% 98.82% 95 36 1 7

LSVM NDC4 90% 90.86% 91.23% - - 658.5
PSVM NDC4 90% 90.8% 91.13% - - 20.8

 85

dataset with the linear separability of around 90%~91%, MEB-SVM can finish training

in 8 seconds and achieve the prediction accuracy of 98.8%, which is higher than those of

PSVM and LSVM by about 7.6%~7.6%. Although these three algorithms are evaluated

on the different machines (LSVM and PSVM are evaluated on a Pentium 400Mhz

machine with a maximum of 2 GB of memory), the running time of MEB-SVM is still

competitive.

TABLE 7.10
OTHER PERFORMANCE EVALUATIONS OF MEB-SVM ON THE NDC DATASETS

 MEB-SVM is also evaluated using other performance metrics on the NDC1 and

NDC2 datasets and the results are summarized in Table 7.10. MEB-SVM can achieve

high quality metrics on both datasets. On the NDC2 dataset, MEB-SVM can even achieve

99.9% in the AUC, NPV, and SEN evaluations. These results demonstrate that MEB-

SVM is a powerful kernel-based classification algorithm in large scale data mining.

Data Set NDC1 NDC2
Max_Accuarcy threshold -0.246091 0.018746

AUC 0.924 0.999
ACC 0.837 0.988
PPV 0.763 0.974
NPV 0.909 0.999
SEN 0.89 0.999
SPC 0.798 0.98
PRE 0.763 0.974
REC 0.89 0.986

 86

CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1 Conclusion

 In this dissertation, kernel design and SVMs training speedup were well studied.

Powerful and flexible kernel trees called Evolutionary Granular Kernel Trees (EGKTs)

were designed for the complex data, such as biological data and chemical data. EGKTs

can effectively incorporate prior domain knowledge. The simulation results in the

Pyrimidines and Triazines activity comparisons demonstrated that GKTs and EGKTs can

effectively improve the prediction accuracies of SVMs comparing to the GAs based

SVMs with the RBF kernel. Considering the case of lack of prior knowledge, Granular

Kernel Tree Structure Evolving System (GKTSES) was developed to evolve the

structures of Granular Kernel Trees (GKTs). To reduce the prediction deviation of

GKTSES, a voting scheme was proposed for the decision making of SVMs. The

simulation on the Cyclooxygenase-2 dataset showed that SVMs with GKTSES can

achieve higher accuracy in testing than the GAs based SVMs with RBF. The simulation

also showed that the voting scheme can significantly reduce the prediction deviation of

SVMs+GKTSES from 6.5% to 2.3%.

 To speed up the EGKTs optimization, we parallelized EGKTs. Simulation results

showed that the parallel method can significantly speed up the training of SVMs+EGKTs

by a factor of 10 with 14 nodes. To help SVMs challenge large-scale data mining, we

presented MEB-SVM. MEB-SVM can quickly and significantly reduce the training data

and shorten the SVMs training. The conducted benchmark results demonstrated that

MEB-SVM is a very competitive classification algorithm with regard to the random

 87

sampling methods, active learning based SVM, CB-SVM, CVM, HeroSVM, LSVM and

PSVM in terms of prediction accuracy, running time, and the number of support vectors.

8.2 Future Work

 Our GKTSES system is a kind of intelligent system, which selects granular

kernels from a candidate kernel set. In the future, we will build a kernel library, which

will contain more popular kernels such as tree kernels, string kernels and graph kernels.

The system will choose suitable kernels for SVMs according to the characteristics of

problems. Furthermore, multi-classification approaches will be introduced into this

intelligent system, since many data classification problems are multi-classification

problems. In the system, ensemble learning methods and other machine learning

algorithms will also be used for classification.

8.2.1 Ensemble Methods

 In ensemble learning, several approaches rather than a single approach are

integrated to enhance the performance of the final classifier. An ensemble classifier is

expected to have better performance than the individual base classifiers. Bagging and

boosting are two kinds of popular ensemble learning algorithms.

8.2.1.1 Bagging

 Bagging (Bauer and Kohavi, 1999) is a kind of ensemble method by using

voting/averaging to combine predictions. In bagging, instead of building models on one

training set of size n, several training sets of size n are sampled with replacement from

original training set. We then build a classifier on each training set and combine the

 88

predictions of classifiers by using voting/averaging. In bagging, each model receives

equal weight. Bagging works since it reduces variance by voting/averaging.

8.2.1.2 Boosting

 Boosting (Bauer and Kohavi, 1999) is another kind of ensemble method for

combining multiple classifiers. Boosting iteratively learns a model from a weighted data

set, evaluates it, reweights data, and finally produces a set of weighted models. In testing,

the data class is predicted with the highest weight.

8.2.2 Multi-classification Approaches

 SVMs, as a kind of binary classifiers, cannot directly be used for multi-

classification. When using SVMs to solve a multi-classification problem, a common way

(Hsu and Lin, 2002) is first decomposing the multi-classification problem into a series of

binary classification problems, building SVMs models for each of these binary

classification problems, and then combining outputs of SVMs for the multiple-class

prediction.

8.2.2.1 One-versus-rest

 In the one-versus-rest approach, k binary SVM models are built for k classes

separately in the training. The ith SVM model is built with all samples in the ith class

with positive labels and all other samples with negative labels. Once an unknown sample

needs to be classified, it is first predicted by these SVM models, and then classified into

the class corresponding to the SVM model with the highest output value.

.

 89

8.2.2.2 One-versus-rest Voting

 Park and Kanehisa (2003) presented a kind of one-versus-rest voting approach for

protein subcellular location prediction. Besides the amino acid composition, the amino

acid pair and gapped amino acid pair compositions (Chou, 1999) were also used to

generate data vectors. Based on five different types of compositions (amino acids, amino

acid pairs, one gapped amino acid pairs, two gapped amino acid pairs, and three gapped

amino acid pairs), five groups of 12 SVMs models are built. In testing, a query protein is

first classified by each group of SVMs models, which is the same as that in the one-

versus-one approach. Then the final decision is made by voting among the outputs of 5

groups of SVMs models. In the voting, if the query protein is classified to a same location

five, four or three times, or it is classified to the same location twice and another three

different locations once, it will finally be decided as belonging to this location. When the

query protein is classified to two locations twice, either of these two locations could be

chosen as the final decision.

8.2.2.3 One-versus-one Voting

 In the one-versus-one voting approach, for a k class problem, k(k-1)/2 SVMs

models are built where each model is built on data from two different classes. When an

unknown sample needs to be classified, it is predicted by all SVMs models and k(k-1)/2

prediction results are generated. In the prediction with the model built on data from the

ith and jth classes, if this sample is classified to the ith class, the vote for the ith class will

be added by one. Otherwise, one will be added to the vote for the jth class. The sample is

finally classified to the class with the maximum votes. In case that two or more classes

 90

receive the same maximum votes, one of the classes with the maximum votes will be

chosen randomly as the final decision.

8.2.2.4 Directed Acyclic Graph SVM

 Directed Acyclic Graph SVM (DAGSVM) (Platt et al., 2000) is another approach

to combine outputs of SVMs for the multiple-class prediction. Similar to the one-versus-

one voting approach, this approach constructs models on data from any two different

classes. For a k class problem, k(k-1)/2 SVMs models are built. Different from the one-

versus-one voting approach, a rooted binary directed acyclic graph (DAG) with k(k-1)/2

internal nodes and k leaves is used in the prediction. When classifying an unknown

sample, the prediction starts at the root node, repeatedly moves to either the left or right

child of a node based on the node’s decision, and finally reaches a leaf node which

indicates the predicted class.

8.2.3 New Intelligent System Framework

 The new intelligent system will include four libraries: kernel library, machine

learning algorithm library, ensemble method library, and multi-classification approach

library. The kernel library will only be used for kernel methods. The machine learning

algorithm library will contain some popular machine learning algorithms such as SVMs,

decision trees and neural networks. The system will pick up algorithms from this library

for the unit prediction tasks according to GAs’ initialization. Once the parameters are

evaluated on each individual classifier, ensemble methods may be selected from the

ensemble method library to improve the prediction accuracies of unit classifiers. For

multi-classification problems, some approaches such as one-versus-rest and one-versus-

 91

one voting could be chosen to solve the tasks. Many possible choices may be combined

together, which are optimized by GAs. The order of applying ensemble learning and

multi-classification approaches may be changed and repeated. The system will run in a

cluster environment. The system architecture is shown in Figure 8.1.

Figure 8.1 New intelligent system architecture

 92

REFERENCES

P. Adamidis, “Review of parallel genetic algorithms bibliography,” Internal Technical

Report, Aristotle University of Thessaloniki, 1994.

D. Barbara, N. Wu and S. Jajodia, “Detecting Novel Network Intrusions Using Bayes

Estimators,” First SIAM Conference on Data Mining, Chicago, 2001.

E. Bauer and R. Kohavi, “An Empirical Comparison of Voting Classification Algorithms:

Bagging, Boosting, and Variants,” Machine Learning, vol. 36, no.1-2, pp.105-139, 1999.

C. Berg, J.P.R. Christensen and P. Ressel, Harmonic Analysis on Semigroups-Theory of

Positive Definite and Ralated Functions, Springer-Verlag, 1984.

E. Bloedorn, A.D. Christiansen, W. Hill, C. Skorupka, L.M. Talbot and J. Tivel, “Data

Mining for Network Intrusion Detection: How to Get Started,” MITRE Technical Report,

2001.

B.E. Boser, I.M. Guyon and V.N. Vapnik, “A training algorithm for optimal margin

classifiers,” In Proceedings of the 5th Annual ACM Workshop on Computational

Learning Theory, D. Haussler, eds., pp. 144-152, ACM Press, 1992.

 93

L. Breiman, “Bias, variance, and arcing classifiers,” Tec. Report 460, Statistics

department, University of California, April 1996. Available:

ftp://ftp.cs.toronto.edu/pub/neuron/delve/data/tarfiles/ringnorm.tar.gz.

R. Burbidge, M. Trotter, B. Buxton and S. Holden, “Drug Design by Machine Learning:

Support Vector Machines for Pharmaceutical Data Analysis,” Computers and Chemistry,

vol. 26, no. 1, pp. 4-15, 2001.

E. Cantú-Paz, “A survey of parallel genetic algorithms,” Calculateurs Paralleles, vol. 10,

no. 2, Paris: Hermes, 1998.

C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector machines,” 2001.

O. Chapelle and V. N. Vapnik, “Model selection for support vector machines,” Advances

in Neural Information Processing Systems 12, S.A. Solla, T.K. Leen and K.-R. Muller,

Ed., MIT Press, 2000.

O. Chapelle, V.N. Vapnik, O. Bousquet and S. Mukherjee, “Choosing Multiple

Parameters for Support Vector Machines,” Machine Learning, vol. 46, no. 1, pp. 131-159,

2002.

K.C. Chou, “Using pair-coupled amino acid composition to predict protein secondary

structure content,” Journal of Protein Chemistry, vol. 18, no. 4, pp. 473-480, 1999.

 94

M. Collins and N. Duffy, “Convolution kernels for natural language,” Advances in

Neural Information Processing Systems 14, T.G. Dietterich, S. Becker and Z.

Ghahramani, eds., MIT Press, 2001.

C. Cortes and V.N. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, pp.

273-297, 1995.

N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines and

other kernel-based learning methods, Cambridge University Press, 1999.

P. Dokas, L. Ertoz, V. Kumar, A. Lazarevic, J. Srivastava and P. Tan, “Data Mining

for Network Intrusion Detection,” Proc. NSF Workshop on Next Generation Data

Mining, Baltimore, 2002.

J.X. Dong, A. Krzyzak and C.Y. Suen, “A Fast Parallel Optimization for Training

Support Vector Machine,” Proceedings of 3rd International Conference on Machine

Learning and Data Mining, P. Perner and A. Rosenfeld, eds., Springer Lecture Notes in

Artificial Intelligence (LNAI 2734), pp. 96-105, Leipzig, Germany, 2003.

J.X. Dong, A. Krzyzak and C.Y. Suen, “Fast SVM training algorithm with decomposition

on very large datasets,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 27,

no. 4, pp. 603--618, 2005.

J. Devillers, Genetic Algorithms in Molecular Modeling, Academic Press, 1999a.

 95

J. Devillers, Neural Networks and Drug Design, Academic Press, 1999b.

K. Duan, S.S. Keerthi and A.N. Poo, “Evaluation of simple performance measures for

tuning SVM hyperparameters,” Neurocomputing, vol. 51, pp. 41-59, 2003.

K. Fukunaga and T.F. Krile, “Calculation of Bayes’ Recognition Error for Two

Multivariate Gaussian Distributions,” IEEE Trans. Computers, vol. 18, no. 3, pp. 220–

229, 1969.

G. Fung and O.L. Mangasarian, “Incremental Support Vector Machine Classification,” In

R. Grossman, H. Mannila and R. Motwani, eds.: Proceedings of the Second SIAM

International Conference on Data Mining, SIAM, pp. 247-260, 2002.

G. Fung and O.L. Mangasarian, “Proximal support vector machine classifiers,” in Proc.

KDD-2001: Knowledge Discovery and Data Mining. F. Provost and R. Srikant, eds., San

Francisco, 2001, pp. 77-86, New York, ACM press, 2001.

L.J. Fogel, A.J. Owens and M.J. Walsh, “Artificial Intelligence through Simulated

Evolution,” John Wiley, NY, 1966.

T. Gärtner, P.A. Flach and S. Wrobel, “On graph kernels: Hardness results and efficient

alternatives,” Proceedings of the 16th Annual Conference on Computational Learning

Theory, 2003.

 96

T. Gärtner, “A Survey of Kernels for Structured Data,” ACM SIGKDD Explorations

Newsletter, vol. 5, pp. 49-58, 2003.

H.P. Graf, E. Cosatto, L. Bottou, I. Dourdanovic and V.N. Vapnik, “Parallel Support

Vector Machines: The Cascade SVM,” Advances in Neural Information Processing

Systems, 2005.

I. Guyon, B. Boser and V.N. Vapnik, “Automatic Capacity Tuning of Very Large VC-

Dimension Classifiers,” Advances in Neural Information Processing Systems, vol. 5,

Morgan Kaufmann, San Mateo, CA, 1993.

D. Haussler, “Convolution kernels on discrete structures,” Technical report UCSC-CRL-

99-10, Department of Computer Science, University of California at Santa Cruz, 1999.

J.D. Hirst, R.D. King and M.J.E. Sternberg, “Quantitative structure-activity relationships

by neural networks and inductive logic programming. I. The inhibition of dihydrofolate

reductase by pyrimidines,” Journal of Computer-Aided Molecular Design, vol. 8, no. 4,

pp. 405-420, 1994a.

J.D. Hirst, R.D. King and M.J.E. Sternberg, “Quantitative structure-activity relationships

by neural networks and inductive logic programming. II. The inhibition of dihydrofolate

reductase by triazines,” Journal of Computer-Aided Molecular Design, vol. 8, no. 4, pp.

421-432, 1994b.

 97

T. Hofmann, B. Schölkopf and A.J. Smola, “A Review of Kernel Methods in Machine

Learning,”, Technical Report 156, Max Planck Institute for Biological Cybernetics,

Tubingen, Germany, 2006.

J.H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press,

1975.

C.-W. Hsu and C.-J. Lin, “A comparison of methods for multiclass Support Vector

Machines,” IEEE Trans. on Neural Networks, 13(2), pp. 415-425, 2002.

B. Jin, Y.-Q. Zhang and B. Wang, “Granular Kernel Trees with Parallel Genetic

Algorithms for Drug Activity Comparisons,” International Journal of Data Mining and

Bioinformatics, vol. 1, no. 3, pp. 270-285, 2007.

B. Jin, Y.-Q. Zhang and B. Wang, “Evolutionary Granular Kernel Trees and Applications

in Drug Activity Comparisons,” Proc. of IEEE Symposium on Computational

Intelligence in Bioinformatics and Computational Biology, San Diego, pp. 121-126, 2005.

B. Jin and Y.-Q. Zhang, “Evolutionary Construction of Granular Kernel Trees for

Cyclooxygenase-2 Inhibitor Activity Comparison,” Transactions on Computational

Systems Biology V, C. Priami et al., eds., Lecture Notes in Computer Science (LNCS),

vol. 4070, pp. 25-35, 2006a.

 98

B. Jin and Y.-Q. Zhang, “Genetic Granular Kernel Methods for Cyclooxygenase-2

inhibitor Activity Comparison,” Third International Symposium on Neural Networks

(ISNN), Chendu, 2006b.

B. Jin and Y.-Q. Zhang, “Evolutionary Voting Kernel Machines for Cyclooxygenase-2

Inhibitor Activity Comparisons,” Proc. of IEEE-GrC, 2006c.

B. Jin and Y.-Q. Zhang, “Classifying Very Large Data Sets with Minimum Enclosing

Ball Based Support Vector Machine,” Proc. of IEEE International Conference on Fuzzy

Systems, 2006d.

T. Joachims, “Estimating the Generalization Performance of a SVM Efficiently,”

Proceedings of the International Conference on Machine Learning, Morgan Kaufman,

2000.

G.W. Kauffman and P.C. Jurs, “QSAR and k-Nearest Neighbor Classification Analysis

of Selective Cyclooxygenase-2 Inhibitors Using Topologically-Based Numerical

Descriptors,” J. Chem. Inf. Comput. Sci., vol. 41, no. 6, pp. 1553-1560, 2001.

H. Kashima and T. Koyanagi, “Kernels for Semi-Structured Data,” Proceedings of the

Nineteenth International Conference on Machine Learning, pp. 291-298, 2002.

H. Kashima and A. Inokuchi, “Kernels for graph classification,” In ICDM Workshop on

Active Mining, 2002.

 99

J.R. Koza, “Genetic Programming: A Paradigm for Genetically Breeding Populations of

Computer Programs to Solve Problems,” Stanford University Computer Science

Department technical report STAN-CS-90-1314, 1990.

J.R. Koza, “Genetic Programming: On the Programming of Computers by Means of

Natural Selection,” MIT Press, 1992.

W. Lee and S.J. Stolfo, “Data Mining Approaches for Intrusion Detection,” Proceedings

of the 1998 USENIX Security Symposium, 1998.

S.-H. Lin, E.D. Goodman and W.F. Punch, III, “Investigating Parallel Genetic

Algorithms on Job Shop Scheduling Problem,” Proceedings of the 6th International

Conference on Evolutionary Programming VI, 1997.

T.Y. Lin, “Granular computing,” Announcement of the BISC Special Interest Group on

Granular Computing, 1997.

H. Lodhi, J. Shawe-Taylor, N. Christianini and C. Watkins, “Text classification using

string kernels,” Advances in Neural Information Processing Systems 13., T. Leen, T.

Dietterich and V. Tresp, eds., MIT Press, 2001.

O.L. Mangasarian and D.R. Musicant, “Lagrangian support vector machines,” Journal of

Machine Learning Research, vol. 1, pp.161-177, 2001.

 100

J. Mercer, “Functions of positive and negative type and their connection with the theory

of integral equations,” Proceedings of the Royal Society of London, Series A, containing

papers of a Mathematical and Physical Character, vol. 83, no. 559, pp. 69-70, 1909.

Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, Springer

Verlag, Berlin, 1996.

D.R. Musicant, “NDC: normally distributed clustered datasets,” Computer Sciences

Department, University of Wisconsin, Madison, 1998.

D.J. Newman, S. Hettich, C.L. Blake and C.J. Merz, UCI Repository of machine learning

databases, Irvine, CA: University of California, Department of Information and

Computer Science, 1998.

E. Osuna, R. Freund and F. Girosi, “An improved training algorithm for support vector

machines,” In IEEE Workshop on Neural Networks and Signal Processing, pp. 276-285,

1997.

K.-J. Park and M. Kanehisa, “Prediction of protein subcellular locations by support

vector machines using compositions of amino acids and amino acid pairs,”

Bioinformatics, vol. 19, no. 13, pp. 1656-1663, 2003.

 101

J. C. Platt, “Fast Training of Support Vector Machines using Sequential Minimal

Optimization,” in Advances in Kernel Methods - Support Vector Learning, B. Schölkopf,

C. Burges, and A. Smola, eds., MIT Press, 1998.

J. C. Platt, N. Cristianini and J. Shawe-Taylor, “Large margin DAGs for multiclass

classification,” Advances in Neural Information Processing Systems, S.A. Solla, T.K.

Leen and K.-R. Müller, eds., MIT Press, Cambridge, MA, vol. 12, pp. 547-553, 2000.

J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, Los Altos,

1993.

J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, pp. 81-106, 1986.

I. Rechenberg, “Evolutionsstrategie: Optimierung technischer Systeme und Prinzipien der

biologischen Evolution,” Frommann-Holzboog, Stuttgart, 1973

F. Rosenblatt, “The Perceptron: a probabilistic model for information storage and

organization in the brain,” Cornell Aeronautical Laboratory, Psychological Review, vol.

65, no. 6, pp. 386-408, 1958.

D.E. Rumelhart, G.E. Hinton, and R.J. Williams, “Learning internal representations by

error propagation,” in D.E. Rumelhart and J.L. McClelland, eds., Parallel Distributed

Processing: Explorations in the Microstructure of Cognition, vol. 1, pp. 318-362,

Cambridge, MA: The MIT Press, 1986.

 102

T.P. Runarsson and S. Sigurdsson, “Asynchronous Parallel Evolutionary Model Selection

for Support Vector Machines,” Neural Information Processing - Letters and Reviews, vol.

3, no. 3, pp. 59-67, 2004.

G. Schohn and D. Cohn, “Less is more: Active learning with support vector machines,”

in Proc. 17th Int. Conf. Machine Learning, Stanford, CA, 2000.

H.-P. Schwefel, Numerical optimization of computer models, Wiley, Chichester, 1981.

T. Serafini, G. Zanghirati and L. Zanni, “Gradient Projection Methods for Large

Quadratic Programs and Applications in Training Support Vector Machines,” Optim.

Meth. Soft., vol. 20, pp. 353-378, 2005.

J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis, Cambridge

University Press, 2004.

M. Stitson, A. Gammerman, V.N. Vapnik, V. Vovk, C. Watkins and J. Weston, “Support

vector regression with ANOVA decomposition kernels,” In B. Scholkopf, C. J. C. Burges,

and A. J. Smola, eds., Advances in Kernel Methods - Support Vector Learning, pp. 285-

292, MIT Press, Cambridge, MA, 1999.

D.M.J. Tax and R.P.W. Duin, “Data Domain Description by Support Vectors,” In:

Verleysen, M. (ed.), Proceedings of ESANN, D. Facto Press, Brussels. pp. 251-256, 1999.

 103

D.M.J. Tax and R.P.W. Duin, “Support Vector Data Description,” Machine Learning, vol.

54, no. 1, pp. 45-66, 2004.

I.W. Tsang, J.T. Kwok and P.-M. Cheung, “Core vector machines: Fast SVM training on

very large data sets,” Journal of Machine Learning Research, vol. 6, pp. 363-392, 2005.

V.N. Vapnik, The Nature of Statistical Learning Theory, Springer, N.Y., 1995.

V.N. Vapnik, Statistical Learning Theory, New York: John Wiley and Sons, 1998.

V.N. Vapnik and O. Chapelle, “Bounds on error expectation for support vector machine,”

Advances in Large Margin Classifiers, A. Smola, P. Bartlett, B. Schöölkopf and

Schuurmans, D., eds. , MIT Press, Cambridge, MA, 1999.

H. Yu, J. Yang and J. Han, “Classifying large data sets using SVMs with hierarchical

clusters,” In Proc. ACM Int’l Conf. Knowledge Disc. Data Mining (KDD), pp. 306-315,

2003.

L.A. Zadeh, “Some reflections on soft computing, granular computing and their roles in

the conception, design and utilization of information/intelligent systems,” Soft

Computing, vol. 2, pp. 23-25, 1998.

L.A. Zadeh, “Toward a theory of fuzzy information granulation and its centrality in

human reasoning and fuzzy logic,” Fuzzy Sets and Systems, vol. 90, pp. 111-127, 1997.

 104

G. Zanghirati and L. Zanni, “Parallel Solver for Large Quadratic Programs in Training

Support Vector Machines,” Parallel Computing, vol. 29, pp. 535-551, 2003.

	Georgia State University
	ScholarWorks @ Georgia State University
	5-3-2007

	Evolutionary Granular Kernel Machines
	Bo Jin
	Recommended Citation

	Microsoft Word - Dissertation_Bo_JIN_04212007-3

