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EVOLUTIONARY GRANULAR KERNEL MACHINES 

by 
 

BO JIN 

Under the Direction of Yan-Qing Zhang 

ABSTRACT 
 
 
 Kernel machines such as Support Vector Machines (SVMs) have been widely 

used in various data mining applications with good generalization properties.  

Performance of SVMs for solving nonlinear problems is highly affected by kernel 

functions. The complexity of SVMs training is mainly related to the size of a training 

dataset. How to design a powerful kernel, how to speed up SVMs training and how to 

train SVMs with millions of examples are still challenging problems in the SVMs 

research. 

 For these important problems, powerful and flexible kernel trees called 

Evolutionary Granular Kernel Trees (EGKTs) are designed to incorporate prior domain 

knowledge. Granular Kernel Tree Structure Evolving System (GKTSES) is developed to 

evolve the structures of Granular Kernel Trees (GKTs) without prior knowledge. A 

voting scheme is also proposed to reduce the prediction deviation of GKTSES. To speed 

up EGKTs optimization, a master-slave parallel model is implemented. To help SVMs 

challenge large-scale data mining, a Minimum Enclosing Ball (MEB) based data 

reduction method is presented, and a new MEB-SVM algorithm is designed. All these 

kernel methods are designed based on Granular Computing (GrC). In general, 

Evolutionary Granular Kernel Machines (EGKMs) are investigated to optimize kernels 

effectively, speed up training greatly and mine huge amounts of data efficiently. 
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CHAPTER 1 

INTRODUCTION 

 
 Computer techniques and Internet technology allow us to capture and store huge 

amounts of data. Developing machine learning algorithms to identify patterns from these 

massive data sets automatically is one of great challenges in this information age. These 

patterns can help us analyze inherent relations, understand regularities, and discover new 

knowledge in the data sets. The development of automated learning algorithms for data 

prediction and pattern recognition underwent three revolutions (Shawe-Taylor and 

Cristianini, 2004). 

 
1.1 Three Revolutions 
 
1.1.1 Perceptron 
 
 In 1957, the perceptron algorithm was proposed to identify the linear relationships 

within sets of data by Frank Rosenblatt (Rosenblatt, 1958). As a binary classifier, the 

perceptron algorithm maps an input vector x  to an output value. The algorithm classifies 

an input instance x  as either positive or negative according to the sign of )(xf (Equation 

(1.1)), where w  is a weight vector and ⋅⋅,  is a dot product. The perceptron is the 

simplest type of a feed forward neural network. 

( ) bxwxf += ,         (1.1) 

 
1.1.2 Nonlinear Learning Algorithms 
 
 In the 1980s, feed forward multilayer forward neural networks (Rumelhart et al., 

1986) were introduced as a type of nonlinear learning algorithms. Typically a feed 



  2  

 

forward multilayer neural network has nodes arranged in a multilayer topology, which 

contains an input layer, an output layer and one or more hidden layers. Inputs are 

forwarded from the input layer, through all hidden layers to the output layer. In the neural 

network, each node has an activation function and each connection has a weight. The 

back propagation algorithm is commonly used for neural network training. 

 Decision trees as another type of nonlinear algorithms were introduced by 

Quinlan in 1986. A decision tree has a tree structure in which internal nodes correspond 

to attributes/features and leaf nodes correspond to class labels. To build a tree, an 

attribute that can best split training examples into their proper classes is selected initially. 

A node, related branches and children nodes are then created for that attribute. The 

training examples are then distributed from the parent node to some appropriate children 

nodes and a new attribute is selected to split examples. This process repeats until a node 

contains examples of the same class. At that point, it stores the class label. Typically the 

information gain and the gain ratio are used to measure the quality of a split. Two famous 

decision tree algorithms are ID3 (Quinlan, 1986) and C4.5 (Quinlan, 1993). Feed forward 

multilayer neural networks and decision trees can be used to identify nonlinear patterns 

within data sets. However, these two types of algorithms suffer from some problems such 

as local minima and over fitting. 

 
1.1.3 SVMs and Kernel Methods 
 
 In the 1990s, SVMs were presented by Vapnik and his colleagues (Boser et al., 

1992; Guyon et al., 1993; Cortes and Vapnik, 1995). The design of SVMs is based on 

Statistical Learning Theory (Vapnik, 1995; Vapnik, 1998), which was developed by 

Vapnik and Chervonenkis during 1960s-1990s. According to Statistical Learning Theory, 
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a risk function first needs to be defined to measure the error risk average of an estimator 

during solving the learning problem. Then the remaining task is searching for the 

estimator with the lowest risk.  

 SVMs can effectively solve linear and nonlinear binary classification problems 

with good generalization capability. There are two key features in the SVMs design. One 

is constructing the separating hyperplane with the maximum margin. The other is the 

kernel based feature transformation. With the help of a nonlinear kernel, input data are 

transformed into a high dimensional feature space where it is “easy” for SVMs to find a 

hyperplane to separate data. Inspired by SVMs, many new kernel-based algorithms were 

developed for data mining.  

 The developments from the perceptron algorithm, feed forward multilayer neural 

networks and decision trees to the kernel-based learning algorithms are called three 

revolutions in pattern recognition and analysis. 

 
1.2 Curse of Dimensionality 
 
 In machine learning, the way to represent an input vector will affect the 

complexity of a learning model. To solve the problem easily, it is common to transform 

the input data into a new feature space to obtain a good representation. Such a feature 

transformation can simplify learning tasks (Shawe-Taylor and Cristianini, 2004). An 

example of feature transformation is given in Figure 1.1. 
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Figure 1.1 Example of feature transformation 

Definition 1.1 Feature transformation is a mapping in which input vectors are 

transformed from the input space into a new feature space through a functionϕ  

( ) ( ) ( ) ( )( )xxxxxxx Nn …… ϕϕϕ ,,,,, 121 ==     (1.2) 

where ( ) ( )( ) N
N Rxx ∈… ϕϕ ,,1 , nRx∈  is the input vector,  and NR  is a new feature space.  

 Many mapping functions and techniques can be used to implement the feature 

mapping directly. However it is not easy to define a direct mapping, especially when the 

number of input features is large. The reason is that there are too many possible ways to 

construct a transformation for input features. Different from the direct mapping, the 

kernel-based feature transformation implements a kind of implicit mapping, which 

typically transforms data into an inner product feature space and the transformation 

function ϕ  in Equation (1.2) doesn’t need to be explicitly evaluated. Here is an example. 

Let x  and 'x  be ),( 21 xx and )','( 21 xx respectively. A kernel function 2)'()',( xxxxK ⋅=  

can be used to implement the following transformationϕ  : 
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 Furthermore, the number of dimensions of the new space can be very huge, and 

sometimes even infinite. In such a high dimensional feature space, the data become 

sparse and they can be separated easily. Hence kernel-based methods can overcome the 

curse of dimensionality.  

 
1.3 Two Issues in the SVMs Research 
 
 There are two issues in the SVMs research. One is kernel design. Generally the 

variance of a kernel function is controlled by the kernel parameters, for example, Radial 

Basis Function (RBF) kernel’s parameter γ  and polynomial kernel’s d. In these 

traditional kernels, all features are processed as one unit in vector operations and 

controlled by one or two parameters. With the growing interests of complex data such as 

biological data and chemical data, more powerful and flexible kernels need to be 

designed to incorporate prior domain knowledge. The other issue is the time for SVMs 

training. With the explosive growth of the amount of data in various areas, large-scale 

data mining is becoming vital. Due to the fact that training time and space complexities 

of SVMs mainly depend on the size of a training dataset, SVMs are not suitable for the 

large-scale data classification. Although some techniques have been proposed to speed up 
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SVMs training, how to apply SVMs to the problems with millions of examples is still a 

challenging problem. 

 
1.4 Organizations and Contributions 
  
 In Chapter 2, the basic SVMs theory is briefly reviewed in Section 2.1, which 

focuses on the data classification. In Section 2.2, the kernel concept and some popular 

kernel functions are introduced. In Section 2.3, Mercer Theorem is reviewed. In Section 

2.4, Kernel properties are described. The concept of MEB, the Support Vector Data 

Description (SVDD) algorithm, and the related applications are reviewed in Section 2.5. 

In Section 2.6, evolutionary computation and the related algorithms such as Genetic 

Algorithms (GAs), Genetic Programming (GP) and Evolution Strategy (ES) are reviewed. 

Finally, GrC is introduced in Section 2.6.  

 In Chapter 3, we review some popular kernels designed for complex data in 

Section 3.1. Convolution kernels, all-subsets kernel, ANOVA kernels, string kernels, tree 

kernels, and graph kernels are introduced. The definitions of granular feature 

transformation and kernel based granular feature transformation are given in Section 3.2 

and Section 3.3 respectively. Granular kernel properties are summarized in Section 3.4. 

In Section 3.5, we present the hierarchical kernel design concept and GKTs. GKTs can 

effectively incorporate the prior domain knowledge such as object structures and feature 

relations. In Section 3.6, chromosomes used to encode a problem are first defined. The 

basic genetic operations such as selection, crossover, and mutation used to optimize 

GKTs are then described. Finally, the learning procedure of EGKTs and the system 

architecture are given. 
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 In Chapter 4, Quantitative Structure Activity Relationship (QSAR) analysis and 

machine learning methods used for QSAR analysis are reviewed in Section 4.1. In 

Section 4.2, we present two types of GKTs to measure the similarity between compounds 

of Pyrimidines (inhibitors of E. Coli dihydrofolate reductase). In each GKT, the granular 

kernels are defined based on the possible substituent locations of compounds. Simulation 

results show that GKTs and the related EGKTs can improve the prediction accuracies of 

SVMs by 2.3%~3.4% on the Pyrimidines dataset, compared with the GAs-based SVMs 

with the RBF kernel. Also, based on the comparison made by Burbidge et al. (2001) 

among SVMs, Neural Networks, RBF Network and Decision Trees for the same problem, 

we can say that SVMs with EGKTs are better classifiers for the Pyrimidines activity 

comparison. In Section 4.3, we design another two kinds of GKTs for the Triazines 

activity comparison and simulation results show that SVMs with GKTs can outperform 

SVMs with RBF by  3.6%~4.5% in terms of testing accuracy. 

 In Chapter 5, we propose GKTSES to evolve the GKTs structures in the case of 

lack of prior knowledge. With the new encoding scheme and genetic operations, 

GKTSES are more flexible for problem solving. Simulation results show that the testing 

accuracies of SVMs+GKTSES are higher than those of SVMs+GAs+RBF by about 

2.9%~3.9% in three evaluations in the Cyclooxygenase-2 inhibitor activity comparison. 

To reduce the prediction deviation of GKTSES, we also present a voting-scheme-based 

classification system called EVKM in Section 5.5. Simulation results show that the new 

voting scheme can significantly reduce the prediction deviation of SVMs+GKTSES from 

6.5% to 2.3%.  
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 In Chapter 6, SVMs with parallel computing are briefly reviewed and several 

Parallel GAs models are introduced at first. Then we propose parallel EGKTs, which are 

based on the master-slave parallel GAs model, parallelized with MPICH, and tested in a 

disk-shared memory-distributed Linux cluster environment. Simulation results in Section 

6.4 show that our parallel method can significantly speed up the training of 

SVMs+EGKTs by a factor of 10 with 14 nodes. 

 In Chapter 7, chunking and decomposition methods are first introduced, and then 

several famous algorithms for large-scale data mining are reviewed in Section 7.1. In 

Section 7.2, MEB-SVM is proposed. In this algorithm, the kernel based MEBs are used 

to measure data boundaries, minimize the number of training data, and further shorten 

SVMs training.  

 In Section 7.3.2, the problem of the network intrusion detection is addressed and a 

standard tcpdump dataset containing 4,898,431 examples is used in the simulation. We 

conduct the benchmark results of MEB-SVM with regard to random sampling methods, 

active learning based SVM, Clustering-Based SVM (CB-SVM), and Core Vector 

Machine (CVM) in terms of prediction accuracy, running time, and number of support 

vectors. On a 512MB-RAM 3.2GHz PC, MEB-SVM can finish training in 250 seconds, 

which is very competitive comparing to other algorithms’ running time. The MEB-

SVM’s prediction accuracy can reach 93.38% on the testing dataset with 311,029 

examples, which is higher than those of other methods except CVM. 

 In Section 7.3.3, the simulation on the ring norm dataset with 100,000,000 

examples show that MEB-SVM can finish training in 4013 seconds on a 2.0GB-DRAM 

3.0GHz PC, which is faster than HeroSVM (on a P-4 1.7GHz machine with 1.5 GB 
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SDRAM) by 53191 seconds. It means that MEB-SVM is almost 13 times faster than 

HeroSVM. The prediction accuracy of MEB-SVM on this dataset can reach 98.44%, 

which is almost same as the theoretical expected accuracy of 98.76%. The simulation on 

the ring norm dataset with 3,000,000 examples shows that MEB-SVM can finish training 

in 117 seconds on a 2.0GB-DRAM 3.0GHz PC, which is 55 times as fast as CVM.  

 In Section 7.3.4, we compare MEB-SVM with Lagrangian SVM (LSVM) and 

Proximal SVM (PSVM) on the NDC datasets. Each training dataset contains 2,000,000 

examples and each testing dataset contains 200,000 examples. On the dataset with the 

linear separability of around 70%, MEB-SVM only needs 5 seconds for training on a 

2.0GB-DRAM 3.0GHz PC and can achieve the prediction accuracy of 83.1%, which is 

higher than those of PSVM and LSVM by about 13.5%~13.6%. On the dataset with the 

linear separability of around 90%~91%, MEB-SVM can finish training in 8 seconds and 

achieve the prediction accuracy of 98.8%, which is higher than those of PSVM and 

LSVM by about 7.6%. Although three algorithms are evaluated on the different machines 

(LSVM and PSVM are evaluated on a Pentium 400Mhz machine with a maximum of 2 

GB of memory), the running time and the prediction accuracy of MEB-SVM are still 

competitive. 

 In Chapter 8, we conclude this dissertation and direct the future work. 

 Most of our algorithms proposed in this dissertation were already published in 

refereed journal and conference papers. The EGKTs algorithm (Jin et al., 2005) was 

proposed in the 2005 IEEE Symposium on Computational Intelligence in Bioinformatics 

and Computational Biology (IEEE CIBCB) and the parallelized EGKTs algorithm (Jin et 

al., 2007) was published in the International Journal of Data Mining and Bioinformatics. 
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GKTSES (Jin and Zhang, 2006a) was published in the LNCS Transactions on 

Computational Systems Biology. The basic idea of GKTSES and related work (Jin and 

Zhang, 2006b; Jin and Zhang, 2006c) were also presented in the 2006 IEEE Granular 

Computing Conference and the third International Symposium on Neural Networks 

(ISNN). The MEB-SVM algorithm (Jin and Zhang, 2006d) was proposed in the 2006 

IEEE International Conference on Fuzzy Systems (Fuzz-IEEE). 
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CHAPTER 2 

RELATED THEORIES 

 
2.1 SVMs 
 
 For a binary classification problem, let ( ) ( ){ }ll yxyxS ,,,, 11=  represent a 

training data set, where liRx n
i ,,1, =∈  are vectors and liyi ,,1},1,1{ =+−∈  are the 

class labels associated to ix . The separating hyperplane is defined as Equation (2.1) 

where nRw∈  and Rb∈ .  

0, =+ bxw i         (2.1) 

The decision function is defined as Equation (2.2)  

 ),sgn()( bxxyxf i
i

ii += ∑α      (2.2) 

 

Figure 2.1 Hyperplane and margin 

 To get better generalization or reach the lower risk in other words, SVMs try to 

find an optimal hyperplane to classify data into two classes with the maximized margin, 
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which is shown in Figure 2.1. The related objective is formulated as Equation (2.3) and 

Equation (2.4). The margin of the hyperplane is measured by 2||||
2

w
. 

 For the linearly separable case, the optimal hyperplane can be found by solving 

the following constrained optimization problem, 

Minimize 2
2
1 |||| w        (2.3) 

Subject to 1),( ≥+ bxwy ii       (2.4) 

where li ,,1= . 

 This problem can be solved by minimizing the Lagrangian Equation (2.5) with 

respect to w, b and satisfying Equation (2.6).  

( )( )1|||| 2
2
1 −+⋅−≡ ∑ bxwywL ii

l

i
iα      (2.5)     

ii ∀≥ 0α         (2.6)  

 According to the primal-dual theorem, it can be solved by maximizing Equation 

(2.5) subject to 0=
dw
dL  and 0=

db
dL , which are equivalent to Equation (2.7) and Equation 

(2.8) respectively. 

0=−∑ ii

l

i
i xyw α        (2.7)  

0=∑ i

l

i
i yα         (2.8)  

 Substituting Equation (2.7) and Equation (2.8) into Equation (2.5), the final 

objective is reached as Equation (2.9) and Equation (2.10), where lji ,,1, = . 
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Maximize ∑∑∑ −
i j

jijiji
i

i xxyy ,
2
1 ααα     (2.9) 

Subject to 0=∑ i
i

i yα ,   1),( ≥+ bxwy ii ,    ii ∀≥ 0α   (2.10) 

 According to Karush-Kuhn-Tucker (KKT) Theorem, some conclusions can be 

made as follows: 

• If 0=iα , then 1),( ≥+ bxwy ii  

• If 0>iα , then 1),( =+ bxwy ii  

 Those ix  with 0≠iα  are located on the two margin planes and called support 

vectors. Support vectors make contributions to defining the decision boundary function 

(Equation 2.2). Those data with 0=iα  can be removed safely and the same decision 

function can still be obtained.  

 For the linearly non-separable case, a set of nonnegative slack variables lξξ ,,1  

is introduced to penalize training errors. The constrained optimization problem is 

rewritten as 

Minimize ∑+
i

iCw ξ2
2
1 ||||       (2.11)                                 

Subject to iii bxwy ξ−≥+ 1),(      (2.12)  

where iξ  are nonnegative slack variables used to penalize training errors and C  is the 

regularization parameter to control the trade-off between the training error and the margin. 

 Using the Lagrangian approach, the problem can be reformulated as Equation 

(2.13) and Equation (2.14), where lji ,,1, = .  
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Maximize ∑∑∑ −
i j

jijiji
i

i xxyy ,2
1 ααα     (2.13) 

Subject to 0=∑ i
i

i yα , iii bxwy ξ−≥+ 1),( , Ci ≤≤α0 ,  i∀  (2.14) 

 It is well known that those ix  with Ci =α  are misclassified data. 

 For non-linear problem, SVMs map the data from original space into a higher 

dimensional feature space, where an optimal separating hyperplane is found. Instead of 

calculating the mapping function, the kernel function K  is used to implement mapping 

implicitly. The hyperplane is calculated by solving  

Maximize ∑∑∑ −
i j

jijiji
i

i xxKyy ),(2
1 ααα     (2.15) 

Subject to 0=∑ i
i

i yα , ljiCi ,,1,,0 =≤≤α    (2.16) 

The related decision function is 

( ) ),sgn()( bxxKyxf i
i

ii += ∑α      (2.17) 

 
2.2 Kernels 
 
Definition 2.1 A kernel K  is a function satisfying 

)(),(),( zxzxK φφ=        (2.18) 

where φ  is a mapping from input space nRX =  to an inner product feature space 

NRF =  and all Xzx ∈, . 

Fxx ∈)(: φφ  (2.19) 
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 Let vector x  be transformed into a Hilbert space with …… ),(,),(1 xx nϕϕ . 

According to the Hilbert-Schmidt theory the inner product in a Hilbert space can be 

represented as 

( )zxKzxazx
i

iii ,)()()(),(
1

== ∑
∞

=

ϕϕϕϕ     (2.20) 

where K  is symmetric and 0≥ia . Mercer theorem (Mercer, 1909; Vapnik, 1998) gives 

the necessary and sufficient conditions for K  to be written as such kind of representation. 

 The following are some popular kernel functions. 

Polynomial function dyxyxK )1(),( +•=     (2.21) 

RBF )||||exp(),( 2yxyxK −−= γ      (2.22) 

Sigmoid kernel )tanh(),( θ−•= yxyxK     (2.23) 

 
2.3 Mercer Theorem 
 
 As stated by Mercer (Mercer, 1909; Berg et al., 1984; Vapnik, 1998), the 

necessary and sufficient condition for a continuous symmetric function ( )zxK ,  in Hilbert 

space has the expression defined as in Equation (2.24) is Equation (2.25), for all 

)(2 CLf ∈ , where nRx∈  and C  is a compact subset of nR . 

( ) ∑
∞

=

=
1

)()(,
i

iii zxazxK ϕϕ       (2.24) 

( ) ( ) ( ) 0, ≥∫ ∫ zdxdzfxfzxK
C C

     (2.25) 

 
2.4 Kernel Properties 
 
 If 1K  and 2K  are kernels defined on XX ×  , the following ),( yxK  are also 

kernel functions. 
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),(),( 1 yxcKyxK = , +∈ Rc       (2.26) 

cyxKyxK += ),(),( 1 , +∈ Rc      (2.27) 

),(),(),( 21 yxKyxKyxK +=      (2.28) 

),(),(),( 21 yxKyxKyxK =       (2.29) 

)()(),( yfxfyxK = , RXf →:      (2.30) 

),(),(
),(),(

11

1

yyKxxK
yxKyxK =       (2.31) 

 The following are proofs of Equation (2.28) and Equation (2.29). The detailed 

proofs were given by Cristianini and Shawe-Taylor (1999). 

Proof 2.1 Let { }lxx ,,1  be a fixed set, and let 1M  and 2M  be the corresponding 

matrices of kernels 1K  and 2K  on these points. According to Mercer Theorem, αα 1' M  

and αα 2' M are larger than or equal to 0 respectively, so αααα 21 '' MM +  is also larger 

than or equal to 0, for all lR∈α . 

0'')(' 2121 ≥+=+ αααααα MMMM  

Proof 2.2 Let 21 KKK ⊗= . The tensor product of two positive semi-definite matrices is 

still positive semi-definite. The product’s eigenvalues are the products of the eigenvalues 

of the two matrices. The corresponding matrix of 21KK  is the Schur product H  (a 

principal sub matrix of K ), where each entry is the product of entries of the 

corresponding matrices of 1K and 2K . For any lR∈α , there is a corresponding 2
1

lR∈α , 

such that 0'' 11 ≥= αααα KH , and so H  is positive semi-definite. 
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2.5 SVDD 
 
 MEB is the ball which encloses a given set of points with the minimum radius. In 

the research area of kernel methods, MEB was first used in the radius-margin bound 

(Vapnik, 1998; Chapelle and Vapnik, 2000; Chapelle et al., 2002) for the SVMs model 

selection and parameter tuning. The “radius” in the Radius-Margin bound means the 

radius of MEB. Later the SVDD algorithm (Tax and Duin, 1999; Tax and Duin, 2004) 

was proposed, which can be used to calculate MEB in high dimensional space. Besides 

the basic MEB definition with the support vector concept, SVDD also conducts MEB 

with the RBF kernel and the soft-margin. SVDD can be used to solve the soft-margin 

one-class classification problems. For example, when SVDD is used for novelty detection, 

a MEB containing most of the data is calculated and the novel points outside the 

boundary of the ball are detected. The SVDD algorithm is reviewed as follows.  

 Given a data set { }lxxS ,,1=  , liRx n
i ,,1, =∈ , SVDD tries to find a ball 

enclosing all data of S  with the minimum radius. In the input space, MEB can be found 

by solving the following optimization problem: 

Min R, c
2R :  22|||| Rxc i ≤−       (2.32)                      

 The corresponding dual is 

Max
iα
 ∑∑∑ −

l

i

l

j
jiji

l

i
iii xxxx ,, ααα     (2.33) 

Subject to  ∑ =
l

i
i 1α  and 0≥iα , li ,,1=     (2.34)  

 The center c and radius R of MEB can be calculated by Equation (2.35) and 

Equation (2.36). 
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∑=
l

i
ii xc α         (2.35) 

∑∑∑ −=
l

i

l

j
jiji

l

i
iii xxxxR ,, ααα      (2.36) 

 Those ix  with non-zero iα  are also called support vectors, which locate on the 

boundary of MEB. 

 For the kernel-based SVDD, the data are transformed from the input space into a 

feature space, where MEB is calculated. The corresponding dual is defined by Equation 

(2.37) and Equation (2.38). 

Max
iα
 ∑∑∑ −

l

i

l

j
jiji

l

i
iii xxKxxK ),(),( ααα    (2.37) 

Subject to  ∑ =
l

i
i 1α  and 0≥iα , li ,,1= .   (2.38)  

 The center c and radius R of MEB in feature space H are calculated by Equation 

(2.39) and Equation (2.40). 

)(∑ Φ=
l

i
ii xc α        (2.39) 

∑∑∑ −=
l

i

l

j
jiji

l

i
iii xxKxxKR ),(),( ααα     (2.40) 

 If the RBF kernel is chosen as the kernel function, ),( ii xxK  is always equal to 

one and Equation (2.37) can be rewritten as Equation (2.41). 

 Max
iα
 ∑∑−

l

i

l

j
jiji xxRBF ),(1 αα      (2.41) 
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 In the case of MEB with slack variables (see Figure 2.2), Equation (2.32) is 

replaced by Equation (2.42). The parameter C is introduced to control the trade-off 

between the volume and the errors. 

Min R, c ∑+
i

iCR ξ2 :  ii Rxc ξ+≤− 22||||     (2.42)   

 The corresponding dual is 

Max
iα
 ∑∑∑ −

l

i

l

j
jiji

l

i
iii xxKxxK ),(),( ααα    (2.43) 

Subject to 0>iξ , 0≥≥ iC α , li ,,1= .    (2.44) 

 

Figure 2.2 MEB with slack variables 

 
2.6 Evolutionary Computation 
 
 Evolutionary computation is a sub field of Computational Intelligence involving 

the design and application of combinatorial search and heuristic methods, which takes the 

inspiration from natural selection and the fittest survival in the world of biology. The 
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evolutionary computation algorithms have some common elements such as population of 

chromosomes, selection, crossover, mutation and survival of the fittest. 

 
2.6.1 GAs 
 
 GAs (Holland, 1975) is a popular type of evolutionary computation algorithms 

used to optimize general combinatorial problems. Given a problem and the gene 

representation of chromosomes for candidate solutions, GAs work as follows: 

Step 1: Generate the initial population of chromosomes as candidate solutions in a 

random way. 

Step 2: Calculate the fitness for every chromosome. The fitness of a chromosome is used 

to determine how good the solution described by the chromosome is.  

Step 3: Select two chromosomes from the current population as parents with a certain 

probability and apply the crossover operation on parents. 

Step 4: Apply the mutation operation on the new children chromosomes with a certain 

probability. 

Step 5: Repeat steps 3 and 4 until a new population of the same size is generated. 

Step 6: If the stop condition is met, terminate the loop; otherwise, go to step 2. 

 
2.6.2 Other Evolutionary Computation Algorithms 
 
 Besides GAs, the following evolutionary computation algorithms are widely used 

for solution search and problem optimization too.  

 Genetic programming (GP) (Koza, 1990; Koza, 1992) works on the problem with 

genomes of variable length and is employed to evolve symbolic information, such as 
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programs and functions. A tree structure is commonly constructed and optimized to 

arrange the representation of genes under the operations of crossover and mutation. 

 Evolution Strategy (ES) (Rechenberg, 1973; Schwefel 1981) operates on the 

problem with the natural representation for the parameters instead of the gene-parameter 

mapping. The notation of )/( , λρµ + -ES is typically used to classify the basic types of ES. 

In the notation, µ  represents the number of parents, λ  denotes the number of offspring 

and ρ  is the number of parents that are used in the recombination process to produce one 

offspring. The “+” and “,” determine the selection type. Mutation and recombination are 

used in ES. 

 Evolutionary programming (EP) (Fogel, 1966) was designed by Fogel in 1960. 

Similar to ES, EP also operates on the problem with the natural representation and 

emphasizes the behavioral linkage between parents and their offspring. However, EP 

only uses mutation and selection operation. 

 
2.7 GrC 
 
 GrC (Lin, 1997; Zadeh, 1997; Zadeh, 1998) is a set of theories and methodologies 

using information granules to build computational models for various applications with 

huge amounts of data and information. Here, information granules are collections of 

entities that typically derive at the numeric level and are arranged together according to 

their similarities. 

 The basic notions and principles of granular computing have appeared in many 

fields with different names, such as divide and conquer, fuzzy set theory, rough set theory, 

interval computing, and cluster analysis. GrC is used as an umbrella term to cover these 

topics in different fields. The goal of GrC is to abstract the commonalities from various 
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fields and establish a category of applicable principles in a unified framework. GrC has 

played important roles in e-Business, security, machine learning, data mining, high-

performance computing, wireless mobile computing, and Bioinformatics in terms of 

efficiency, effectiveness, robustness, and uncertainty. 
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CHAPTER 3 

HIERARCHICAL KERNEL DESIGN 

 
3.1 Related Work 
 
3.1.1 Convolution Kernels 
 
 A convolution kernel (Haussler, 1999) uses the relation R between a composite 

object and its parts to capture the object semantics. So convolution kernels are also called 

R-Convolution kernels. 

 Let vectors ),,( 1 Dxxx =  and )',,'(' 1 Dxxx = be the decomposed parts of 

X∈Χ  and X∈Χ' respectively. dx  and 'dx  are in the set DdX d ≤≤1, . For the relation 

XXXR D ××× )(: 1 , the decomposition 1−R  is defined as )},(:{)(1 Χ=Χ− xRxR . The 

relation ),( ΧxR  is true if and only if Dxx ,,1  are the parts of Χ . A convolution kernel 

K  is defined as Equation (3.1) where dK  is a kernel defined on dd XX × . 

∏∑
=Χ∈Χ∈ −−

=ΧΧ
D

d
ddd

RxRx

xxKK
1)'('),(

)',()',(
11

                (3.1) 

 Convolution kernels are so general that they can be used in various problems. 

However, how to choose R is a big issue in the real world applications. 

 
3.1.2 All-subsets Kernel 
 
 As stated by Shawe-Taylor and N. Cristianini (2004), the all-subsets kernel is 

defined as 

∏
=

+=
m

i
ii yxyxK

1

)1(),(                   (3.2) 
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 Let I= {1, …, m} be the indices of features ix  of vector x , Ii∈ . For every subset 

A of I, iAiA xx ∈∏=)(ϕ ,  1)( =xφϕ , and IAA xx ⊆= ))(()( ϕϕ  are defined. The all-subsets 

kernel (Equation (3.2)) can be derived by 

.)1(

)(),(
)(),(),(

1
∏

∑∏

∑

=

⊆
∈

⊆

+=

=

=

><=

m

i
ii

IA
Ii ii

IA
BA

yx

yx

yx
yxyxK
ϕϕ

ϕϕ

 

 
3.1.3 ANOVA Kernels 
 
 An ANOVA (analysis of variance) kernel dK (Vapnik, 1998; Shawe-Taylor and 

N. Cristianini, 2004) is like the all-subsets kernel but restricted to subsets of cardinality d. 

∑ ∏

∑

≤≤<<≤ =

=

=

=

><=

miii

d

j
jj

dA
BA

ddd

d

yx

yx
yxyxK

…211 1

)(

)(),(
)(),(),(

ϕϕ

ϕϕ

                (3.3) 

 In Equation (3.3), )(xdϕ  is equal to dAA x =))((ϕ  and d is used to specify the order 

of the interactions between features 
di

x . ANOVA kernels work very well in support 

vector regression problems (Stitson et al., 1999). 

 
3.1.4 String Kernels 
 
 The similarity of two strings s and t can be measured based on the number of 

common substrings (Cristianini and Shawe-Taylor, 1999; Haussler, 1999; Lodhi, 2001). 

A string kernel for substrings of length p can be defined as follows: 
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∑
∑

=
∈

p
u

p
u

p
up tstsK )(),(),( ϕϕ                  (3.4) 

where },:),({)( 2121 ∑∈==
pp

u uuvvsvvsϕ . Strings s  and t  are defined on a finite 

alphabet ∑ and the string kernel counts the number of common substrings between s 

and t. A recursion built on the k-suffix kernel can be used to compute the kernel: 

⎪⎩

⎪
⎨
⎧ ∈==

= ∑
otherwise

uforuttussif
K

k
s
p

0

,1 11  

Equation (3.4) can be rewritten as 

)):(,):((),(
1||

1

1||

1

pjjtpiisKtsK
ps

i

pt

j

s
pp ++= ∑ ∑

+−

=

+−

=

              (3.5) 

 Substrings kernels can be built based on the kernel defined in Equation (3.5) and 

the “mismatches” within the subsequences are allowed.  

 
3.1.5 Tree Kernels 
 
 Tree kernels (Collins and Duffy, 2002; Kashima and Koyanagi, 2002; Gärtner, 

2003) are used to measure the similarity of data that can be represented as labeled 

ordered directed substrees. Typically a tree kernel is defined as Equation (3.6). 

)()(),( 2121 ThThTTK ii
i
∑=                  (3.6) 

 In the equation, 1T  and 2T   are two trees and )(Thi  is the number of occurrences 

of ith subtree in tree T.  Let 1V  and 2V   be the sets of vertices of 1T  and 2T  respectively. 

Let ),( 21 vvS  be the number of subtrees rooted at vertices 11 Vv ∈  and 22 Vv ∈ . Then the 

tree kernel can be recursively computed using  
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),(),( 21
,

21
2211

vvSTTK
VvVv

∑
∈∈

=                  (3.7) 

where ),( 21 vvS  is defined as 

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

+

=

∏
=

||

1
21

21

21

21

1

)),(1(

1

0

),(

v

j

jj otherwisevvS

labelsamethehaveandverticesleafarevandvbothif

labelsdifferenthavevandvif

vvS  

where jv1  and jv2 are the jth children of 1v  and 2v respectively. || 1v  is the number of 

children of 1v . 

 
3.1.6 Graph Kernels 
 
 A graph consists of a finite set of labeled vertices and a finite set of labeled edges 

between vertices. Two graphs that generate a product graph are called factor graphs. The 

vertex set of the product graph is a subset of Cartesian product of the vertex sets of the 

factor graphs. The product graph has a vertex if and only if the corresponding vertices in 

the factor graphs have the same label. An edge exists between two vertices in the product 

graph if an edge exists between the corresponding vertices in both factor graphs. Both 

edges have the same label. Let ×E  denote the edge set of the product graph and let 

},{ 1 NvvV …=  denote an enumeration of vertex set. Each element of the adjacency matrix 

×E  is defined by 

[ ] ×× ∈⇔= EvvE jiij ),(1 , and [ ] ×× ∉⇔= EvvE jiij ),(0 . 

 The graph kernel (Kashima and Inokuchi, 2002; Gärtner et al., 2003) is defined 

by 
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n

V

ji
EGGK
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⎥
⎦

⎤
⎢
⎣

⎡
= ∑∑

∞

=
×

=
×

01,
21

2

),( λ              (3.8) 

where ij
nE ][ ×  is the number of walks of length n from iv  to jv  and ),0(,,, 10 ii ∀≥λλλ …  

are a set of weights. 

 Besides these kernels, other new kernels are also designed for the similarity 

measurement of complex data. More detailed reviews were given by Gärtner (2003) and 

Hofmann et al. (2006). 

 
3.2 Granular Feature Transformation 
 
Definition 3.1 A feature granule space G  of input space nRX =  is a sub space of X , 

where mRG =  and nm ≤≤1 . 

 From input space, we may generate many feature granule spaces and some 

dimensions could be shared among these sub spaces. 

Definition 3.2 A feature granule Gg ∈  is a vector which is defined in the feature granule 

space G .  

Definition 3.3 Granular feature transformation is a mapping in which a feature granule is 

transformed from the feature granule space into a new feature space through a function ϕ  

defined in Equation (3.1), where Gg ∈  is a feature granule and T is a new feature space. 

Ttg ∈:ϕ         (3.9) 

 Feature transformation of input vectors may be implemented with a group of 

granular feature transformations. An example of granular feature transformation is shown 

in Figure 3.1. In the example, features in the vector ( )nxxxx ,,, 21 …=  are grouped into 

feature granules ig  ( qi ≤≤1 ) according to some prior domain knowledge, such as the 
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similarity or functional adjacency. Some features may be shared. For example, feature 

2x is shared by feature granules 1g  and 2g . A series of granular feature transformation 

functions iϕ  are defined on each feature granule. Each iϕ  transforms the feature granule 

ig  from the feature granule space into a new sub feature space iNR  respectively.  

 

Figure 3.1 An example of granular feature transformation 

 
3.3 Kernel Based Granular Feature Transformation 
 
 Feature transformation may be implemented with a group of kernels on feature 

granules. Kernel based feature transformation on feature granules is similar to that on 

input vectors. If all input features are chosen as a feature granule, there is no difference 

between them.  
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Definition 3.4 A granular kernel gK  is a kernel that can be written in an inner product 

form of Equation (3.9) for all Ggg ∈', . 

)'(),()',( gggggK ϕϕ=       (3.10) 

 In Equation 3.10, ϕ  is a mapping function (defined in Equation (3.11)) from 

feature granule space mRG =  to an inner product feature space ER . 

ERgg ∈)(: ϕϕ        (3.11) 

 Figure 3.3 shows an example of kernel based granular feature transformation in 

which two granular kernels 1gK  and 2gK  are used to transform data instead of kernel K  

shown in Figure 3.2. 

 

Figure 3.2 An example of kernel based feature transformation 

 
Figure 3.3 An example of kernel based granular feature transformation 
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3.4 Granular Kernel Properties 
 
Property 3.1 Granular kernels inherit the properties of traditional kernels such as the 

closure under sum, product, and multiplication with a positive constant over the granular 

feature spaces. 

 Let G  be a feature granule space and Ggg ∈', . Let 1gK  and 2gK  be two granule 

kernels operating over the same space GG× . The following )',( gggK  are also granular 

kernels.  

)',()',( 1 gggKcgggK ×= , 
+∈ Rc      (3.12) 

cgggKgggK += )',()',( 1 , 
+∈ Rc      (3.13) 

)',()',()',( 21 gggKgggKgggK +=      (3.14) 

)',()',()',( 21 gggKgggKgggK ×=      (3.15) 

)'()()',( gfgfgggK = , RXf →:      (3.16) 

)','(),(
)',()',(

11

1

gggKgggK
gggKgggK

×
=      (3.17) 

 These properties can be derived from the traditional kernel properties directly. 

Property 3.2 A kernel can be constructed with two granular kernels defined over 

different granular feature spaces under sum operation. 

To prove it, let )',( 111 gggK  and )',( 222 gggK be two granular kernels, where 

111 ', Ggg ∈ , 222 ', Ggg ∈  and 21 GG ≠ . New kernels can be defined like this, 

)',())','(),,(( 1112121 gggKgggggK =  

)',())','(),,((' 2222121 gggKgggggK =  
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 Here gK  and 'gK  can operate over the same feature space ( ) ( )2121 GGGG ××× .  

))','(),,(('))','(),,(()',()',( 21212121222111 gggggKgggggKgggKgggK +=+  

 According to the sum closure property of kernels ((Berg et al., 1984; Haussler, 

1999; Cristianini and Shawe-Taylor, 1999), )',()',( 222111 gggKgggK +  is a kernel 

over ( ) ( )2121 GGGG ××× .  

Property 3.3 A kernel can be constructed with two granular kernels defined over 

different granular feature spaces under product operation (Berg et al., 1984; Haussler, 

1999). 

 To prove it, let )',( 111 gggK  and )',( 222 gggK be two granular kernels, 

where 111 ', Ggg ∈ , 222 ', Ggg ∈  and 21 GG ≠ . We may define new kernels like this, 

)',())','(),,(( 1112121 gggKgggggK =  

)',())','(),,((' 2222121 gggKgggggK =  

 So gK  and 'gK  can operate over the same feature space ( ) ( )2121 GGGG ××× .  

))','(),,(('))','(),,(()',()',( 21212121222111 gggggKgggggKgggKgggK =  

 According to the product closure property of kernels ((Berg et al., 1984; Haussler, 

1999; Cristianini and Shawe-Taylor, 1999), )',()',( 222111 gggKgggK  is a kernel over 

( ) ( )2121 GGGG ××× . 

 
3.5 Hierarchical Kernel Design and Granular Kernel Trees 
 
 An easy and effective way to construct new kernel functions is combining a group 

of granular kernels via some simple operations such as sum and product shown in Figure 

3.4. The new kernel functions can be naturally expressed as tree structures. The following 

are main steps in the GKTs design. 
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Step 1: Generate feature granules. Features are bundled into feature granules according to 

some prior knowledge such as object structures, feature relationships, similarity, or 

functional adjacency. They may be grouped by an automatic learning algorithm too.  

Step 2: Select granular kernels. Granular kernels are selected from the candidate kernel 

set. Some popular traditional kernels such as RBF kernels and polynomial kernels can be 

chosen as granular kernels, since these kernels have proved successful in many real 

problems. Some special kernels designed for some particular problems could also be 

selected as granular kernels if they are good at measuring the similarities of 

corresponding feature granules.  

Step 3: Construct a tree structure. A tree structure is constructed with suitable number of 

layers, nodes and connections. Like in Step 1, we can construct trees according to some 

prior knowledge or with an automatic learning algorithm.  

Figure 3.4 shows a GKT with m basic granular kernels tgK  and m pairs of feature 

granules tg  and 'tg , where mt ≤≤1 . 

Step 4: Select connection operations. Each connection operation in GKTs can be a sum or 

product. A positive connection weight may associate to each edge of the tree. 
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Figure 3.4 An example of GKTs 

 
3.6 EGKTs 
 
 In our study, GAs are used to optimize the GKTs parameters. We use EGKTs to 

represent such kind of evolutionary GKTs. The following are basic definitions and 

operations used in optimizing EGKTs. 

• Chromosome Let iP  denote the population in generation iG , where mi ,1=  

and m is the total number of generations. Each population iP  has p  

chromosomes pjcij ,,1, = . Each chromosome ijc  has q  genes )( ijt cg , where 
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qt ,,1= . Here each gene is a parameter of GKTs and we use )( ijcGKTs  to 

represent GKTs configured with genes )( ijt cg , qt ,,1= .  

• Fitness There are several popular methods to evaluate SVMs performance. One is 

using the k-fold cross-validation, which is a popular technique for performance 

evaluation. Others are some theoretical bounds evaluation on the generalization 

errors, such as Xi-Alpha bound (Joachims, 2000), VC bound (Vapnik, 1998), 

Radius margin bound and VCs span bound (Vapnik and Chapelle, 1999). Detailed 

review was given by Duan et al. (2003). In our method, k-fold cross-validation is 

used to evaluate SVMs performance in training phase. In k-fold cross-validation, 

the training data set S~  is separated into k mutually exclusive subsets vS~ . Data set 

kvSS vv ,,1,~~
=−=Λ  is used to train SVMs with )( ijcGKTs  and vS~  is used to 

evaluate SVMs model. After k times of training-testing on all different subsets, 

we get k prediction accuracies. The fitness of chromosome ijc is calculated by 

Equation (3.18) where vAcc  is the prediction accuracy of )( ijcGKTs  on vS~ . 

∑
=

=
k

v
vij Acc

k
f

1

1        (3.18) 

• Selection In the algorithm, the roulette wheel method described by Michalewicz 

(1996) is used to select individuals for the new population. Before selection, the 

best chromosome (the GKT with the highest prediction accuracy in fitness 

evaluation) in generation 1−iG will replace the worst chromosome in generation iG  

if the best chromosome in iG is worse than the best chromosome in 1−iG . The 

sum of fitness values iF  in population iG  is first calculated. A cumulative fitness 
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ijq~  is then calculated for each chromosome. The chromosomes are then selected 

as follows. A random number r is generated within the range of [0, 1]. If r is 

smaller than 1
~

iq , then chromosome 1ic  is selected; otherwise chromosome ijc  is 

selected if r is in the range of  ]~,~( 1 jiji qq − . 

ij

p

j
i fF ∑

=

=
1

        (3.19) 

∑
=

=
j

t i

it
ij F

f
q

1

~         (3.20) 

jiji qrq ~~
1 ≤<−         (3.21) 

• Crossover Two chromosomes are first selected randomly from current generation 

as parents and then the crossover point is randomly chosen to separate the 

chromosomes. Parts of chromosomes are exchanged between two parents to 

generate two children. This genetic operation is equivalent to that two GKTs are 

selected to exchange parameters on some granular kernels. 

• Mutation Some chromosomes are randomly selected and some of their genes are 

replaced by random values generated in a specified range. This operation is 

equivalent to changing some parameters of GKTs randomly.  

 The learning procedure of EGKTs is shown in Figure 3.5 and the classification 

system of SVMs with EGKTs is shown in Figure 3.6. 
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Figure 3.5  Learning procedure of EGKTs 

 

Figure 3.6  SVMs with EGKTs 

 

 

Initialization 
For each generation jG  

     For each ijc in jG     

     Repeat v  from 1 to k   
        Train SVMs on vΛ with the current kernel 

        Evaluate SVMs on vS~  

        Calculate vAcc  
     Repeat end 

     Calculate fitness ∑=
=

k

v
vij Acc

k
f

1

1
 

     For End 
     Selection 
     Crossover  
     Mutation 
For End 
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CHAPTER 4  

SVMS WITH EGKTS FOR DRUG ACTIVITY COMPARISON 

 
4.1 QSAR 
 
 QSAR is an important drug design technique, which is used to describe the 

relationships between compound structures and their activities. In QSAR analysis, 

compounds with different biological activities are discriminated first, and then predictive 

rules are constructed, which can be used to predict a molecule’s activity according to the 

values of its chemical and physical descriptors. QSAR can effectively reduce the search 

for new drugs. As a part of QSAR, the problem of drug activity comparison is to learn a 

binary relationship on the biological activities of compounds. The biological activity is 

measured by the value of )/1log( C , where C is a constant for the inhibitory growth 

concentration. With the increased demand on prediction accuracy, machine learning 

methods such as GAs (Devillers, 1999a), Neural Networks (Devillers, 1999b; Hirst et al., 

1994), Inductive Logic Programming (Hirst et al., 1994), and SVMs (Burbidge et al., 

2001) have been introduced for QSAR analysis and drug activity comparison. In this 

chapter, Pyrimidines and Triazines, two kinds of inhibitors of E. Coli dihydrofolate 

reductase (DHFR) are studied. These inhibitors are potential therapeutic agents for the 

treatment of malaria, bacterial infection, toxoplasma and cancer. 

 
4.2 Pyrimidines Activity Comparison 
 
 Pyrimidines prediction was first studied by Hirst and his colleagues (1994a). They 

compared Neural Networks and Inductive Logic Programming (ILP) to the linear 

regression for modeling the QSAR of Pyrimidines. They showed that neural networks 
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and ILP perform better than linear regression using the attribute representation. They also 

showed that the ILP analysis is a good way to formulate the understandable rules relating 

the activity of the inhibitors to their chemical structure. Burbidge et al. (2001) also 

studied Pyrimidines, but focused on the drug activity comparison problem. They applied 

some popular machine learning algorithms (such as SVMs, Neural Networks, Decision 

Trees, and RBF Network) to the problem and made a comparison. 

 
4.2.1 Dataset Description 
 
 Pyrimidines dataset (Newman et al., 1998) contains 55 drugs, and each drug has 

three possible substitution positions (R3, R4 and R5, see Figure 4.1). Each substituent is 

characterized by 9 chemical properties features: polarity, size, flexibility, hydrogen-bond 

donor, hydrogen-bond acceptor, π donor, π  acceptor, polarizability and σ  effect. Drug 

activities are identified by the substituents. If no substituent locates in a possible position, 

the features are indicated by nine -1s. Each input vector includes two drug features with 

the fixed feature order. In each data vector, if the activity of the first drug is higher than 

that of the second one, the vector is labeled positive, otherwise it is labeled negative (see 

Figure 4.2). The total feature number of each vector is 54. The positive and negative data 

are balanced absolutely. 

 The Pyrimidines dataset is randomly shuffled and split into 2 parts in the 

proportion of 4:1. One part is used as the training set, which contains pairs of 44 

compounds. The other part is chosen as the unseen testing set, which contains pairs of the 

left 11 compounds and those between the 11 compounds and the training 44 compounds. 

So the size of training set should be 44 x 43 = 1892 and the size of testing set should be 
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44 x11 x2 +11 x 11 = 1078. Due to the deletion of some pairs with the same activities, 

the data sets are actually a little bit smaller than those above. 

 

Figure 4.1 Structure of Pyrimidines 

 

Figure 4.2 Pyrimidines drug pairs  

 
4.2.2 Feature Granules and Hierarchical Kernel Design 
 
 In the GKTs design, the input vectors are decomposed according to the possible 

substituent locations. Each feature granule includes all features of one substituent (see 

Figure 4.3). So each Pyrimidines drug pair has 6 feature granules and each feature 

granule has 9 features.  

 



  40  

 

 

Figure 4.3 Feature granules in the Pyrimidines drug pair 

 Two types of granular kernel trees (GKTs-1 and GKTs-2) are designed for 

Pyrimidines which are shown in Figure 4.4 and 4.5. Here the connection node operations 

during kernel optimization are fixed in order to evaluate GKTs performance with 

different connection operations. GKTs-1 is a two-layer kernel tree and all granular 

kernels are fused together by a sum operation. GKTs-2 is three-layer kernel tree and 

within which each granule pair is represented by a two-layer subtree. Two subtrees of 

GKTs-2 are combined together by a product operation. 
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Figure 4.4 GKTs-1 

 

 
Figure 4.5 GKTs-2     

 
 
4.2.3 Simulation 
 
 Burbidge et al. (2001) made a comparison (see Table 4.1) among SVMs, three 

types of Neural Networks, RBF Network, and Decision Trees on the same data set. Table 
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4.1 shows that the prediction accuracy of SVMs with the RBF kernel is significantly 

higher than those of other learning algorithms. In the simulation, we only compare the 

performance of SVMs with RBF, GKTs and EGKTs. 

TABLE 4.1 
PERFORMANCE COMPARISON ON THE PYRIMIDINES DATASET (BURBIDGE ET AL., 2001) 

 

 

 The RBF kernel functions are chosen as the granular kernels’ functions in each 

GKTs and therefore each granular kernel igK  has a RBF parameter iγ . The initial ranges 

of all RBFs’γ  and iγ  are ]1,0001.0[ .The initial range of regularization parameter C  is 

]256,1[ . The probability of crossover is 0.7 and the mutation ratio is 0.5. The range of 

connection weights is [0.001, 1]. Five-fold cross validation is used on the Pyrimidines 

training dataset. The population size is set to 500 and the number of generations is set to 

30 for both datasets. The software package of SVMs used in the experiments is LibSVM 

(Chang and Lin, 2001). 

 Performance of SVMs with three types of kernel machines is shown in Table 4.2. 

All these systems are optimized using GAs. Table 4.2 shows that SVMs with two GKTs 

can outperform SVMs with RBF by 3.0% and 3.3% respectively in terms of prediction 

accuracy on unseen testing dataset. The fitness values of SVMs with GKTs-1 and GKTs-

2 are also higher than that of SVMs with RBF. It’s also seen that the testing accuracy of 

SVMs with GKTs-1 is a little bit higher than that of SVMs with GKTs-2. 

 

 

Algorithm Testing accuracy 
SVMs+RBF 87.31% 

MLP  86.19% 
Pruned Neural Network 83.80% 

Dynamic Neural Network 85.12% 
RBF Network 77.28% 

 C5.0 81.30% 



  43  

 

TABLE 4.2 
PERFORMANCE COMPARISON ON THE PYRIMIDINES DATASET 

 

 

 The comparisons between traditional RBF kernels and GKTs are also made with 

the optimization of GAs. A set of 2000 values is randomly generated from [1, 256] for 

parameter C and a set of 2000 groups of kernel parameters is randomly generated for 

each kernel. SVMs are trained and tested with these random parameters. For each dataset, 

the prediction accuracies of SVMs with three kernels are outlined in Figure 4.6 and each 

of them is ordered according to C values. From Figure 4.6, it’s easy to see that the 

performance of GKTs is better than that of traditional RBF kernels. Quartiles and mean 

are also used to summarize each kernel performance in terms of testing accuracy. The 

results are listed in Table 4.3. Based on the differences of Q1 (25th percentile), Q2 

(median), Q3 (75th percentile) and Mean values, we can conclude the GKTs performance 

is better than the RBF performance by about 2.3%~3.4% on Pyrimidines. Comparing 

Table 4.2 and Table 4.3, we can see that the testing accuracies of SVMs with both 

EGKTs are higher than the maximum testing accuracies of SVMs with RBF. It is also 

found that the testing accuracies of EGKTs can be stabilized at the point of 75th 

Percentile. 

 

 SVMs+RBF+GAs SVMs+GKTs-1+GAs SVMs+GKTs-2+GAs 
Fitness 84.5% 86.6% 88.5% 

Training accuracy 96.8% 96.8% 98.8% 
Testing accuracy 88.4% 91.7% 91.4% 
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Figure 4.6 Testing accuracies on the Pyrimidines dataset 

 

TABLE 4.3 
QUARTILES OF TESTING ACCURACIES ON THE PYRIMIDINES DATASET 

 

 

 
4.3 Triazines Activity Comparison 
 
4.3.1 Dataset Description 
  
 In the Triazines dataset (Hirst et al., 1994b), each compound has 6 possible 

substitution positions: the positions of R3 and R4; if the substituent at R3 contains a ring 

itself, then R3 and R4 of this third ring; similarly if the substituent at R4 contains a ring 

itself, then R3 and R4 of this third ring. Ten features are used to characterize each position: 

the structure branching feature and other 9 features which are the same as those used for 

each substituent of Pyrimidines. If no substituent locates in a possible position, the 

 SVMs+RBF SVMs+GKTs-1 SVMs+GKTs-2 
Maximum 91.0% 93.2% 93.0% 

75th Percentile 88.4% 91.7% 91.0% 
Median 88.0% 91.3% 90.6% 

25th Percentile 87.5% 90.9% 90.1% 
Minimum 83.5% 87.0% 87.2% 

Mean 88.2% 91.2% 90.5% 
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features are indicated by ten -1s. So each vector has 120 features. The structure of 

Triazines is described in Figure 4.7. We randomly select 60 drugs from the Triazines 

dataset and then randomly shuffle and split them into 2 parts in the proportion of 5:1 

based on drugs of pairs. The size of training set is 2160 and the size of unseen testing set 

is 1268 for Triazines.  

 

Figure 4.7 Structure of Triazines  

 
4.3.2 Feature Granules and Hierarchical Kernel Design 
 
 In the simulation, the input vectors are decomposed according to the possible 

substituent locations. Each feature granule includes all features of one substituent (see 

Figure 4.8). So each drug pair of Triazines has 12 feature granules with the size of 10. 

We also design two kinds of GKTs for Triazines, which are shown in Figure 4.9 and 

Figure 4.10. GKTs-3 is a two-layer kernel tree within which each granular kernel’s 

importance is controlled by the outgoing connection weight. GKTs-4 is a three-layer 

kernel tree within which each drug pair is represented by a two layer subtree. Two 

subtrees are combined together by a product operation. 
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Figure 4.8 Feature granules of the Triazines drug pair 

 
4.3.3 Simulation 
 
 RBF kernel functions are also chosen as granular kernels’ functions in each GKTs. 

The initial ranges of all RBFs’ γ  and iγ  are ]1,0001.0[ . The initial range of 

regularization parameter C  is ]256,1[ . The probability of crossover is 0.7 and the 

mutation ratio is 0.5. The range of connection weights is [0.001, 1]. Eight-fold cross-

validation is used on the Triazines training dataset. The population size and the number 

of generations are also set to 500 and 30 respectively. 

 Performance of SVMs with three types of kernels is shown in Table 4.4. Also all 

these kernels are optimized using GAs. Table 4.4 shows that SVMs with two GKTs can 
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achieve better performance than SVMs with RBF. SVMs with two GKTs can outperform 

SVMS with RBF by 3.7% and 4.9% respectively in terms of testing accuracy. 

TABLE 4.4 
PERFORMANCE COMPARISON ON THE TRIAZINES DATASET 

 

 

 

Figure 4.9 GKTs-3 

 

 SVMs+RBF+GAs SVMs+GKTs-3+GAs SVMs+GKTs-4+GAs 
Fitness 73.8% 74.6% 75.8% 

Training accuracy 93.4% 97.2% 98.7% 
Testing accuracy 79.6% 83.3% 84.5% 
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Figure 4.10 GKTs-4 

 The comparisons between RBF and two kinds of GKTs are also made by using a 

large number of kernel parameter samples. We randomly generate 2000 C values from [1, 

256] and 2000 groups of kernel parameters for each kernel. The prediction accuracies of 

SVMs with three kinds of kernels are summarized in Figure 4.11 and each of them is 

ordered with C values. From Figure 4.11, it’s easy to see that the performance of SVMs 

with GKTs is better than those with the RBF kernels. Quartiles and mean are also used to 

summarize each kernel’s performance in terms of testing accuracy and listed in Table 4.5. 

According to the summaries in Table 4.5, we can conclude the performances of two 

GKTs are better than those of RBF kernels by about 3.6%~4.5% on the Triazines data set. 

Comparing Table 4.4 and 4.5, we can also find that the performance of SVMs with 

EGKTs-3 and EGKTs-4 can be stabilized at Q3 (75th Percentile) in terms of testing 

accuracy.  
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Figure 4.11 Testing accuracies on the Triazines data set 

 

TABLE 4.5 
TESTING ACCURACIES ON THE TRIAZINES DATASET 

 
 SVMs+RBF SVMs+GKTs-1 SVMs+GKTs-2 

Maximum 83.9% 88.2% 88.2% 
75th Percentile 79.9% 83.7% 84.1% 

Median 78.5% 82.6% 83% 
25th Percentile 77.9% 81.5% 82% 

Minimum 72.2% 77.8% 76.2% 
Mean 78.9% 82.6% 83% 
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CHAPTER 5  

GKTSES AND EVKM 

 
 In EGKTs, features within an input vector are grouped into feature granules 

according to the prior domain knowledge. For example, we group the features according 

to the compound substituent locations in the Pyrimidines activity comparison and the 

Triazines activity comparison. Sometimes due to the lack of prior knowledge or due to 

too complicated relations in data, it would be hard to predefine kernel tree structures. 

Considering such kind of challenging problems, we in this chapter present GKTSES to 

evolve the structures of GKTs. We redefine the encoding scheme and genetic operation 

elements to make them more flexible. 

 
5.1 Chromosome 
 
 Let iP  denote the population in generation miGi ,,1, …= and m is the total 

number of generations. Each population iP  has p  chromosomes pjcij ,,1, = . Each 

chromosome ijc  has 12 +q  genes 12,,1),( += qtcg ijt … . In each chromosome, genes 

1,,1),(12 +=− qxcg ijx  represent granular kernels and genes qxcg ijx ,,1),(2 =  

represent sum or product operations. We use )( ijcGKTs  to represent GKTs configured 

with genes )( ijt cg , 12,,1 += qt . In the algorithm, k-fold cross-validation is used in the 

fitness evaluation and the roulette wheel method is used in selection too. 

 
5.2 Crossover 
 
 In GKTSES, a population of individuals is generated in the first generation. Each 

individual encodes a granular kernel tree. For example, GKTs-5 and GKTs-6 are two 
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three-layer GKTs (see Figure 5.1 and 5.2). In GKTs-5 and GKTs-6, each node in the first 

layer is a granular kernel. Granular kernels are combined together by sum and product 

connection operations in the second layer and the third layer. Each granular kernel tree is 

encoded into a chromosome. For example, GKTs-5 and GKTs-6 are encoded in 

chromosomes c1 and c2 (see Figure 5.3) respectively. In the first generation, features are 

first randomly shuffled and then feature granules are randomly generated. Granular 

kernels are preselected from the candidate kernel set. Some traditional kernels such as 

RBF kernels and polynomial kernels can be chosen as granular kernels. In practice, we 

choose RBF kernels as granular kernels and each feature is a feature granule. Finally 

granular kernel parameters and kernel connection operations are also randomly generated 

for each individual. 

 

 

Figure 5.1 GKTs-5 

 

Figure 5.2 GKTs-6 
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Figure 5.3 Chromosomes used encode GKTs-5 and GKTs-6 

 In crossover, two GKTs are first selected from current generation as parents and 

then a crossover point is randomly selected for separating parents GKTs. Subtrees of two 

GKTs are exchanged at the crossover point to generate two new GKTs. For example, 

chromosomes 1c and 2c may do crossover at point d2 to generate two new chromosomes 

(see Figure 5.4). This is equivalent to that GKTs-5 and GKTs-6 exchange their right 

subtrees (see Figure 5.5). In Figure 5.5, GKTs-7 and GKTs-8 have the same structures as 

their parents respectively. Here, GKTs-7 is encoded in chromosome c3 and GKTs-8 is 

encoded in chromosome c4. 

 

Figure 5.4 Chromosomes c3 and c4 generated from c1 and c2 
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Figure 5.5 GKTs-7 and GKTs-8 generated using crossover operation 

 GKTSES can also generate GKTs with different tree structures from their parents 

using the crossover operation. In Figure 5.6, GKTs-5 and GKTs-6 do crossover at point 

d1 to generate two new granular kernel trees, GKTs-9 and GKTs-10, which have different 

tree structures from their parents. The equivalent operation on chromosomes is shown in 

Figure 5.7. 
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Figure 5.6 GKTs-9 and GKTs-10 generated using crossover operation 

 

 

Figure 5.7 Chromosomes c5 and c6 generated from c1 and c2 

 
5.3 Mutation 
 
 In mutation, some genes of one chromosome are selected with a specified 

probability. The values of selected genes are replaced by random values. In the 
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implementation, only connection operation genes are selected to do mutation. Figure 5.8 

shows an example of mutation. The new chromosome c7 is generated by changing the 

eighth gene of chromosome c1 from sum operation to product operation, which is 

equivalent to transforming GKTs-5 to GKTs-11 (see Figure 5.9). 

 

Figure 5.8 Chromosomes c7 generated from c1 using mutation 

 

 

Figure 5.9 GKTs-11 generated from GKTs-5 using mutation 

 The system architecture of GKTSES is shown in Figure 5.10. In the system, the 

regularization parameter C  of SVMs is also optimized together with GKTs. 
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Figure 5.10 Architecture of GKTSES 

 
5.4 Simulation 
 
5.4.1 Dataset Description and Simulation Setup 
 
 In the simulation, GKTSES is used for Cyclooxygenase-2 inhibitor activity 

comparison. The dataset of Cyclooxygenase-2 inhibitors (Kauffman and Jurs, 2001) 

includes 314 compounds, and 153 of them are active and 161 are inactive. 109 features 

are selected to describe each compound. Each feature’s absolute value is scaled to the 

range [0, 1]. The point of log (IC50) units is set to 2.5 to discriminate active compounds 

from inactive compounds. The dataset is randomly shuffled and evenly split into 3 

mutually exclusive parts. Each time we choose one part as the unseen testing set and the 

other twos as the training set. Three-fold cross-validation is used in the fitness evaluation. 

RBF kernel is also chosen as each granular kernel function. The range of γ  is set to 

]1,00001.0[  and the range of regularization parameter C  is set to ]256,1[ . The 

probability of crossover is 0.8 and the mutation ratio is 0.2. The population size is set to 
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300 and the number of generations is set to 50. The software package of SVMs used in 

the experiments is LibSVM (Chang and Lin, 2001).  In the first generation, sum 

operations are generated with the probability of 0.5 in each individual. 

 
5.4.2 Simulation Results 
 
 Table 5.1 shows the prediction accuracies of SVMs with GKTSES and GAs based 

SVMs with RBF in average. From Table 5.1, we can see that SVMs+GKTSES can 

outperform SVMs+GAs+RBF by 3.5% in terms of testing accuracy and 2% in terms of 

fitness, although the latter system shows the higher accuracy in training. The results of 

three evaluations CV-1, CV-2 and CV-3 are summarized in Table 5.2. From Table 5.2, 

we can see that the testing accuracies of SVMs+GKTSES are always higher than those of 

SVMs+GAs+RBF by about 2.9% ~ 3.9% in all three evaluations. The fitness values of 

SVMs+GKTSES are higher than those of SVMs+GAs+RBF by about 1% ~ 3.4%. The 

prediction accuracies in three evaluations are also visualized in Figure 5.11. According to 

the comparison, we can say that SVMs+GKTSES are more reliable than 

SVMs+GAs+RBF.  

 However, the comparison among three evaluations also shows that significant 

deviations exist in the testing accuracies for both systems. This problem could happen 

when the system is not stable or the data set is not iid (independent and identically 

distributed). To solve this problem, we present a voting-scheme-based evolutionary 

kernel machine called evolutionary voting kernel machine (EVKM) in the next section. 

TABLE 5.1 
PREDICTION ACCURACIES IN AVERAGE ON THE CYCLOOXYGENASE-2 DATASET 

 

 

 Fitness Training accuracy Testing accuracy 
SVMs+GAs+RBF 81.9% 94.4% 72.3% 
SVMs+GKTSES 83.9% 89.7% 75.8% 
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TABLE 5.2 
RESULTS OF THREE EVALUATIONS ON THE CYCLOOXYGENASE-2 DATASET 

 

 

 
5.5 EVKM 
 
 In EVKM, the kernel’s evolving procedure and the genetic operations such as 

selection, crossover and mutation are the same as those in GKTSES. The difference is in 

the fitness evaluation. In EVKM, the decision is made by several weighted SVMs instead 

of a single SVM. Simulation results show that EVKM is more stable than SVMs in the 

Cyclooxygenase-2 inhibitor activity comparisons. 

 
5.5.1 Voting Scheme 
 
 In each )( ijcGKTs evaluation, the training data set ( ) ( ){ }ll yxyxS ,,,,~

11=  is 

separated into k mutually exclusive subsets kvSv ,,1,~ …= . SVMs are trained on every 

subset vS~  with )( ijcGKTs  and then k SVMs decision functions )(xdv  are generated. 

( ) vi
i

iiv bxxGKTsyxd
v

v

vv
+= ∑ ,)( α      (5.1) 

where C
vi
≤< α0 , C is the regularization parameter, 

vi
x  are support vectors and vb is the 

threshold for the vth SVMs.  

 The number of correctly classified data in each training is calculated and the 

weighted voting decision function )(xd  is defined as follows: 

∑=
v

vv xdcxd )()(        (5.2) 

 CV-1 CV-2 CV-3 

 SVMs+GAs+ 
RBF GKTSES GAs-RBF-

SVMs GKTSES GAs-RBF-
SVMs GKTSES 

Fitness 83.7% 87.1% 80.4% 82.3% 81.4% 82.4% 
Training accuracy 90.9% 92.3% 97.1% 88.0% 95.2% 88.6% 
Testing accuracy 64.8% 68.6% 78.1% 81% 74% 77.9% 
#Support vector 116 91 107 111 144 111 
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 In Equation (5.2), vc  is a cost factor which is either the accuracy of positive class 

of the vth SVMs if )(xdv  is positive, or the accuracy of negative class of if )(xdv  is 

negative. The training dataset is then predicted by )(xd  and the positive class accuracy 

( +
vt ) and the negative class accuracy ( −

vt ) are calculated respectively. Finally the 

optimized 'GKTs is generated and the decision function )(' xd  is calculated for the 

unseen testing set prediction. 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+== ∑∑ vi

i
ii

v
v bxxGKTsycxd

v

v

vv
,'')(' α     (5.3) 

where the cost factor vc'  is either +
vt or −

vt .  

 
5.5.2 Simulation Results 
 
 In the simulation, the experimental setup is the same as that in Section 5.4. Table 

5.3 shows the performance of EVKMs with the RBF kernel and GKTSES on the 

Cyclooxygenase-2 dataset. From Table 5.3, we can see that in three evaluations, the 

testing accuracies of EVKM+GKTSES are always higher than those of EVKM+RBF by 

about 1.9% ~ 2.9%. Table 5.4 summarizes the testing accuracies of EVKMs and GAs-

based SVMs with different kernels in three evaluations. From Table 5.4, we can find that 

the average testing accuracy of each EVKM is a little bit higher than that of GAs-based 

SVMs. While comparing the standard deviations of testing accuracies, we can find that 

the standard deviations of EVKMs are much lower than those of GAs-based SVMs. It 

means that EVKMs are more stable than GAs-based SVMs. 
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TABLE 5.3 
PREDICTION RESULTS OF EVKMS IN THREE EVALUATIONS ON THE CYCLOOXYGENASE-2 DATASET 

 

 

TABLE 5.4 
TESTING ACCURACIES IN AVERAGE AND STANDARD DEVIATION ON THE CYCLOOXYGENASE-2 DATASET 

 

 

 
Figure 5.11 Testing accuracies of EVKMs in three evaluations  

 

 SVMs+GAs+RBF SVMs+GKTSES EVKM+RBF EVKM+GKTSES 
Testing accuracy 72.3% 75.8% 74.1% 76.6% 

Standard deviation of 
Testing accuracy 6.8% 6.5% 2.8% 2.3% 

 

 CV-1 CV-2 CV-3 

Method EVKM+ 
RBF 

EVKM+ 
GKTSES 

EVKM+ 
RBF 

EVKM+ 
GKTSES 

EVKM+ 
RBF 

EVKM+ 
GKTSES 

Training accuracy 91.4% 90.9% 90% 85.2% 90.1 % 85.6% 
Testing accuracy 71.3% 74.2% 76.8% 78.7% 74.2% 77% 
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CHAPTER 6  

EGKTS WITH PARALLEL COMPUTING 

  
6.1 SVMs with Parallel Computing 
 
 Some parallel algorithms were designed for SVMs in the literature. Graf et al. 

(2005) developed a kind of parallel SVMs called Cascade of SVMs in a distributed 

environment. In Cascade of SVMs, the smaller optimizations are first solved 

independently, and then the partial results are combined and filtered again until the global 

optimum is reached. Convergence of the algorithm to the global optimum is guaranteed 

with multiple passes through the Cascade. The Gradient Projection Method (GPM) based 

parallel SVMs (Zanghirati and Zanni, 2003; Serafini et al., 2005) were also proposed. In 

GPM based SVMs, the decomposition technique is used to split the quadratic 

programming (QP) problem into smaller QP sub-problems. These sub-problems are 

solved by GPM in a parallel way. An asynchronous parallel ES was designed for the 

SVMs model selection by Runarsson and Sigurdsson (2004). The algorithm was 

implemented on a multi-processor computer using C++ and the standard Posix threads. 

 
6.2 Parallel GAs Models 
 
 Parallel GAs (Cantú-Paz, 1998; Adamidis, 1994; Lin et al., 1997) have been well 

studied in recent several years. Typically there are three types of parallel GAs models: (1) 

single population master-slave model, (2) single population fine-grained model and (3) 

multiple population coarse-grained model. 

 In the single population master-slave GAs, there is only one single population, 

which is similar to the simple GAs. The master node stores the population, does genetic 
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operations such as selection, crossover, and mutation, and distributes individuals to the 

slave nodes. Once the slave nodes evaluate the fitness of the individuals, they send the 

fitness values back to the master node. This kind of parallel model does not affect the 

behavior of GAs, since all individuals in the population are considered during the genetic 

operations. In the single population fine-grained model, there is a single population which 

is structured spatially. Neighborhoods may be overlapped among all the individuals. 

Selection and crossover can only happen on a small neighborhood. This kind of model is 

suitable for massively parallel computers. The multiple population coarse-grained model 

is more complicated and the big difference from the first two models is that it has several 

subpopulations which may exchange individuals.  

 
6.3 Parallel EGKTs 
 
 In EGKTs, all parameters to be optimized are independent. The operations are the 

same in training each SVMs model. So it’s very suitable to use the single population 

master-slave model to parallelize EGKTs and further to speed up the training of EGKTs 

based SVMs. In the parallelization of EGKTs, one processor is chosen as the master node, 

which stores the population of GKTs, does selection, crossover and mutation on these 

GKTs, and then distributes the parameters of GKTs to slave nodes. Each single SVMs 

model is trained and evaluated on one slave node. We implement the parallel system with 

MPICH in a disk-shared and memory-distributed Linux cluster environment. 

 The model architecture of SVMs with the parallel EGKTs is shown in Figure 6.1 

and the system architecture is shown in Figure 6.2. This parallel system has some 

characteristics. Firstly, this is a global GAs-SVMs system, since all evaluations and 

operations are performed on the entire population. Secondly, the implementation is easy, 
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clear, practical, and especially suitable for the SVMs model selection and the training 

speedup of SVMs with EGKTs. The QP decomposition method can be used to speed up 

the GKTs selection too. However, if the training dataset is large, the communication costs 

for transferring sub-QP meta-results will be very high. In our system, the time for QP 

calculation in each SVM model is longer than that for the genetic operations of GAs, 

which generally has different magnitude. In our system, only parameters and fitness 

values need to be transferred between the master and the slaves. So the communication 

costs are small. Thirdly, the system can be easily moved to the large distributed 

computing environment. 

 

Figure 6.1 SVMs with the parallel EGKTs 
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Figure 6.2 System architecture of SVMs with the parallel EGKTs 

 
 
6.4 Simulation 
 
 The Cyclooxygenase-2 dataset and the RBF kernel are used in the simulation. 

Each GKT is defined by simply grouping all features into one feature granule. In GAs, 

the size of population is set to 300 and the number of generations is set to 50. The parallel 

system is tested on the GSU’s Biocluster, which is a Beowulf cluster with four head 

nodes and 40 computing nodes. Each computing node has two 3.0 GHz Intel Xeon CPUs 

with 2.0 GB memory. In the simulation, each computing node will run two SVM models. 

It means that each computing node is equivalent to two slave nodes of the parallel system. 

 The running time of the parallel system on the cluster platform is shown in Figure 

6.3. From Figure 6.3, we find that the parallel system can significantly reduce the 

optimization time of GKTs when the number of slave nodes is larger than 3. The 
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simulation results shown in Figure 6.4 are also illustrated that our parallel method can 

significantly speed up the training of SVMs+EGKTs by a factor of 10 with 14 nodes. 

 

 

Figure 6.3 Running time of the parallel system 

 
Figure 6.4 Speedup of the parallel system 
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CHAPTER 7  

MEB-SVM  

 
7.1 Related Works 
 
7.1.1 Chunking and Decomposition 
 
 Typically, a QP solver is used to find support vectors in SVMs training. Due to 

the fact that the QP algorithm requires large memory for storing the kernel data matrix, 

the traditional QP based SVMs are not suitable for large scale data classification.  

 An alternative way is to split a large optimization task into a series of smaller 

ones. Chunking (Boser et al., 1992) and decomposition (Osuna et al., 1997) are two kinds 

of methods working in this way. In the chunking, an initial random sub dataset (working 

set with an arbitrary size) is optimized by the QP solver and the related support vectors 

are found. The non support vectors are then discarded from the working set and new data 

points violating the optimality conditions are added. The QP solver is used on the 

working set again. The iteration continues until the whole optimization task is solved. 

Different from the chunking algorithm, the decomposition method works on a sub dataset 

with the fixed size. In each iteration, only the Lagrange multipliers on the working set are 

updated and other Lagrange multipliers are kept fixed. A special decomposition 

algorithm is Sequential Minimal Optimization (SMO) (Platt, 1998). SMO is an analytical 

approach, which uses a set of heuristics and works on the working set of the size of two 

without using any optimization package. Besides the chunking and decomposition, there 

are other methods proposed to speed up SVMs training too.  
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7.1.2 CB-SVM 
 
 CB-SVM (Yu et al., 2003) is particularly designed for the large scale data 

classification with a limited amount of system resources. The key idea of CB-SVM is to 

employ the hierarchical clustering technique to find the finer description close to the 

classification boundary and the coarser description far away from the boundary.  

 In CB-SVM, a hierarchical micro-clustering algorithm is used to scan the data set 

and two Clustering Feature (CF) trees are generated on positive data and negative data 

separately. In each CF tree, a hierarchical representation is used to summarize the data 

distribution. The nodes in a lower level are summarized and represented by their parent 

node. The CF trees can effectively summarize the distribution of the entire dataset and 

capture the spherical shapes of hierarchical clusters. An SVM is first trained on the 

centroids of the root nodes of two CF trees and a rough classification boundary is 

generated. The data summaries of two CF trees close to the boundary are then declustered 

into the lower levels. The declustered children nodes are added to the training set and 

another SVM is constructed on the centroids of the nodes in the training set. The 

algorithm repeats such kind of process down through the trees until to the leaf level. 

 CB-SVM is scalable very well if the number of features is small. However CB-

SVM can only be used to solve the linear classification problems in the input space. It is 

difficult to summarize and represent the data distribution hierarchically in the new feature 

space transformed by the nonlinear kernels. How to adapt CB-SVM to solve the 

nonlinear problems with the nonlinear kernels is still a big issue.  
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7.1.3 CVM 
 
 In CVM (Tsang et al., 2005), the SVM optimization problem is first transformed 

to the MEB problem and an approximate optimal solution is obtained on a sub dataset 

called core-set. The idea behind CVM is that the point furthest away from the current 

center is added into the ball incrementally. CVM can be used to classify very large data 

sets with nonlinear kernels. 

 The algorithm initializes the core-set with two points and calculates the initial 

center and radius of the ball. If the left data points fall in the ball, the algorithm 

terminates. Otherwise, the furthest point from the center of the ball is added to the core 

set, and then a new ball is calculated on the core-set using the SMO algorithm. The 

distances of the left points to the updated center are measured again. Such kind of process 

is repeated until no point falls outside the ball. To reduce the required time for measuring 

the distance from the left data points to the center of the ball, 59 sampled points are used 

instead of all the data points. 

 
7.1.4 LSVM 
 
 LSVM (Mangasarian and Musicant, 2001) is a modified SVM using the squared 

slack variables to measure the loss. In LSVM, the classification problem is reformulated 

as an unconstrained optimization problem. The problem is then solved using a method 

based on the Sherman-Morrison-Woodbury formula, which only requires solving the 

systems of linear equalities. LSVM can be very fast on the data sets with the relatively 

low dimensionality. Due to the requirements of storing and inverting a nn×  matrix 

(where n is the number of features), it is not suitable to apply LSVM to the tasks with the 
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high dimensionality. Also, a nonlinear kernel is not easy to be employed in LSVM, 

because the Sherman-Morrison-Woodbury identity is used under the condition that the 

inner product terms of the kernel are explicitly known, which in general are not satisfied. 

 
7.1.5 PSVM 
 
 PSVM (Fung and Mangasarian, 2001) classifies data based on proximity to one of 

two parallel planes that are pushed apart maximally. Similar to LSVM, PSVM uses an 

equality to replace the inequality constraint and the Sherman-Morrison-Woodbury 

formula for matrix inversion. These changes make PSVM avoid the QP calculation and 

build the classification model with linear computations only. PSVM is a very fast 

algorithm with no significant loss of accuracy especially when the number of data 

features is much less than the number of training data. However the algorithm requires 

large space to store the kernel matrix. The incremental training methods (Fung and 

Mangasarian, 2002) can help PSVM reduce the space requirement. 

 
7.1.6 HeroSVM 
 
 HeroSVM (Dong et al., 2003; Dong et al., 2005) is a fast SVM training algorithm 

designed for classifying the data set of huge size with thousands of classes. The key idea 

behind HeroSVM is using block diagonal matrices to approximate the original kernel 

matrix. In HeroSVM, the original problem is decomposed into hundreds of sub problems 

and most of the nonsupport vectors are quickly removed so that the final sequential 

optimization could be finished in a short time. Some other techniques such as kernel 

caching, digest and shrinking are also integrated into the algorithm to speed up the 

training process. 
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7.1.7 Active Learning 
 
 In SVMs with active learning (Schohn and Cohn, 2000), a simple but efficient 

heuristic is applied to estimate the change of the expected error heuristically when an 

example is added. The heuristic tries to narrow the existing hyperplane margin as 

maximal as possible by assuming that examples lying along the hyperplane separate the 

space most quickly on average. In active learning, SVMs are required to be trained once 

only. It’s shown that for a given number of training examples, SVMs with active learning 

can provide better generalization performance than SVMs trained on the randomly 

selected examples. 

 
7.2 MEB-SVM 
 
 As mentioned in Chapter 1, the powers of SVMs in solving the nonlinear 

classification problems are provided by the nonlinear kernels, which implicitly transform 

the data from the input spaces into some high dimensional feature spaces. However, it is 

difficult for us to analyze the data distribution in the feature space transformed  by 

kernels.  

 As mentioned in Section 2.1 of Chapter 2, an important characteristic of SVMs is 

that the separating hyperplane can be built with the support vectors only and the data 

lying out of the margin of the hyperplane can be removed safely. The key idea behind 

MEB-SVM is using MEBs to remove most of data lying outside the hyperplane margin. 

The MEB can only provide the boundary information of a dataset, however such kind of 

information is enough to help SVMs determine the separating hyperplane quickly. 



  71  

 

 In MEB-SVM, the boundary of each class data set is first measured by several 

MEBs, and then the data within each MEB are removed. An SVM is finally trained on a 

smaller dataset which only contains the data on the MEBs boundaries. Because the 

objective conditions are loose and data points (error data) out of an MEB can be tolerated 

very well, the time for measuring the MEB is much shorter than that for finding the 

separating hyperplane in the binary classification. An example of MEB-SVM for data 

classification is shown in Figure 7.1 - 7.4. Figure 7.1 shows the feature space transformed 

by a RBF kernel. Measuring MEBs on each class data set and deleting data within MEBs 

are shown in Figure 7.2 and Figure 7.3 respectively. Figure 7.4 shows a hyperplane found 

by an SVM classifier, which is trained on the final training set. 

 

Figure 7.1 Data in a new feature space transformed by a RBF kernel 
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Figure 7.2 MEBs measured on each class data set 

 

Figure 7.3 Data reduction 

 

Figure 7.4 Hyperplane found by an SVM classifier on the reduced data set 
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 The detailed description of the MEB-SVM algorithm is given as follows. For a 

binary nonlinear classification problem, let ( ) ( ){ }ll yxyxS ,,,, 11=  represent a training 

dataset, where liRx n
i ,,1, =∈  are vectors and liyi ,,1},1,1{ =+−∈  are class labels 

associated to ix . Let ( ) ( ){ }1,,,1,
11 ++=+

kxxS  represent positive data set and 

( ) ( ){ }1,,,1,
21 −−=−

kxxS  represent negative data set, where SSS =−+ ∪  and 

lkk =+ 21 . In the MEB-SVM algorithm (see Figure 7.5), operations will be executed 

repeatedly until the size of training set is equal to or smaller than a constant T . In the 

loop, the positive data set +S  will be split into +m equal subsets +
1j

E  and the negative 

data set −S  will be split into −m  equal subsets −
2j

E randomly, where += mj ,,11 …  and 

−= mj ,,12 … . RBF based MEBs are calculated on each subset ( +
1j

E  and −
2j

E ) and a new 

training set is generated which includes all data located on each MEB’s boundary. Once 

the training set is small enough, an SVM classifier will be trained on it with the same 

RBF kernel as used in MEBs. In Figure 7.5, +A  and −A are two temporary datasets. 
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Figure 7.5 The MEB-SVM algorithm 

 
7.3 Simulation 
 
 The KDDCUP-99 intrusion detection dataset and other two artificial datasets are 

used in the simulation. MEB-SVM is implemented based on LibSVM and its Tools 

(Chang and Lin, 2001). In the simulation, we don’t consider the I/O time for reading and 

writing files. The constant T  is always set to 10000. 

Input:  +S , 
−S , 

+m , 
−m and T  

Output: a trained SVM classifier 
 
Algorithm: 

1. S := −+ ∪ SS  

2.  While TS ≥  

{ 

Empty +A  and −A ;                        /* +A  and −A are temporary datasets*/ 

Split +S into +m equal subsets +
1j

E  randomly; 

Split −S into −m equal subsets −
2j

E randomly; 

For 1j  from 1 to +m   

Measure +
1j

E ’s MEB boundary ; 

Put the data located on the boundary of +
1j

E  into +A ; 

For 2j  from 1 to −m   

Measure −
2j

E ’s MEB boundary; 

Put the data located on the boundary of −
2j

E  into −A ; 
+S := +A ; 
−S := −A ; 

S := −+ ∪ SS  
} 

3.  Train an SVM classifier on S ; 
4.  Return a trained SVM classifier; 
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7.3.1 Performance Metrics 
 
 Besides accuracy, some other performance metrics implemented in the PERF 

Software (which can be downloaded at http://kodiak.cs.cornell.edu/kddcup/software.html) 

are also used to measure the MEB-SVM performance. These metrics are calculated based 

on the entries in the confusion matrix. Figure 7.6 shows the confusion matrix for a binary 

classification problem.  

 

Figure 7.6  Confusion matrix 

 In the confusion matrix, a is the number of true positive predictive examples, b is 

the number of false negative predictive examples, c is the number of false positive 

predictive examples, and d is the number of true negative predictive examples. The 

performance metrics used in the simulations are defined as follows: 

• Accuracy (ACC) The ratio between the number of the true predictive examples 

and the total number of examples. 

dcba
daACC
+++

+
= .       (7.1) 

• Positive Predictive Value (PPV) The ratio between the number of the true 

positive predictive examples and the positive predictive examples. 

ca
aPPV
+

=         (7.2) 

Actual\ Predicted  Positive  Negative 

Positive a b 

Negative  c d 
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• Negative Predictive Value (NPV) The ratio between the number of the true 

negative predictive examples and the negative predictive examples. 

db
dNPV
+

=
        (7.3) 

• Sensitivity (SEN) The proportion of the actual positive examples that are 

predicted as positive. 

ba
aSEN
+

=         (7.4) 

• Specificity (SPE) The proportion of the actual negative examples that are 

predicted as negative. 

dc
dSPE
+

=         (7.5) 

• Precision (PRE) The proportion of the positive predictive examples that are 

predicted as positive, which is equal to the positive predictive value. 

ca
aPRE
+

=         (7.6) 

• Recall (REC) The proportion of the actual positive examples that are predicted as 

positive, which is same as the sensitivity. 

ba
aREC
+

=         (7.7) 

• Area under the ROC curve (AUC) ROC curve is a 2-D plot used to show the 

relationship between the prediction and the truth. The area under the ROC curve 

is commonly used as a quantitative value to evaluate the prediction.  An AUC 

example is shown in Figure 7.7  
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Figure 7.7 The area under the ROC curve 

 
7.3.2 Network Intrusion Detection 
 
 With the growth of Internet, network intrusion detection is becoming vital in the 

network security as a lot of malicious actions attempt to compromise the resources of 

networks and information. Data mining methods (Lee and Stolfo, 1998; Bloedorn et al., 

2001; Barbara et al., 2001; Dokas, 2002) are also widely used for the network intrusion 

detection with the tremendous increase of novel network attacks. In network intrusion 

detection, the basic task is to build a model, which can distinguish between intrusion 

connections and normal connections. 

 
7.3.2.1 Dataset Description 
 
 In the simulation, the KDDCUP-99 dataset (which is available at 

http://kdd.ics.uci.edu//databases/kddcup99/kddcup99.html) is a real world dataset used 

for the third international knowledge discovery and data mining tools competition. The 

dataset is a standard set of tcpdump data, which are generated in a military network 

environment and used to simulate the connections in a wide variety of intrusions. The 

training set includes 4,898,431 connection records. The number of positive examples is 

3,925,650 and the number of negative examples is 972,781. The testing set includes 
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311,029 records. In the dataset, each record item has 32 continuous features and 9 

discrete features. All these features are listed in Tables 7.1 - 7.4, which are copied from 

the KDDCUP-99 website. 

TABLE 7.1 
BASIC FEATURES OF INDIVIDUAL TCP CONNECTIONS 

 

 

TABLE 7.2 
CONTENT FEATURES WITHIN A CONNECTION SUGGESTED BY DOMAIN KNOWLEDGE 

 

 

TABLE 7.3 
 TRAFFIC FEATURES COMPUTED USING A TWO-SECOND TIME WINDOW 

 

 

 

 

Feature name Feature description  Type 

count  number of connections to the same host as the current 
connection in the past two seconds  continuous 

serror_rate* % of connections that have “SYN” errors  continuous 
rerror_rate* % of connections that have “REJ” errors  continuous 

same_srv_rate* % of connections to the same service  continuous 
diff_srv_rate* % of connections to different services  continuous 

srv_count* number of connections to the same service as the current 
connection in the past two seconds  continuous 

srv_serror_rate** % of connections that have “SYN” errors  continuous 
srv_rerror_rate** % of connections that have “REJ” errors  continuous 

srv_diff_host_rate** % of connections to different hosts  continuous  
*These features refer to these same-host connections. **These features refer to these same-service connections. 

Feature name Feature description  Type 
hot  number of “hot” indicators continuous 

num_failed_logins  number of failed login attempts  continuous 
logged_in  1 if successfully logged in; 0 otherwise  discrete 

num_compromised  number of “compromised” conditions  continuous 
root_shell  1 if root shell is obtained; 0 otherwise  discrete 

su_attempted  1 if “su root” command attempted; 0 otherwise  discrete 
num_root  number of “root” accesses  continuous 

num_file_creations  number of file creation operations  continuous 
num_shells  number of shell prompts  continuous 

num_access_files  number of operations on access control files  continuous 
num_outbound_cmds number of outbound commands in an ftp session  continuous 

is_hot_login  1 if the login belongs to the “hot” list; 0 otherwise  discrete 
is_guest_login  1 if the login is a “guest” login; 0 otherwise  discrete 

Feature name Feature description  Type 
duration  length (number of seconds) of the connection  continuous 

protocol_type  type of the protocol, e.g. tcp, udp, etc.  discrete 
service  network service on the destination, e.g., http, telnet, etc.  discrete 

src_bytes  number of data bytes from source to destination  continuous 
dst_bytes  number of data bytes from destination to source  continuous 

flag  normal or error status of the connection  discrete  
land  1 if connection is from/to the same host/port; 0 otherwise discrete 

wrong_fragment  number of “wrong” fragments  continuous 
urgent  number of urgent packets  continuous 
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TABLE 7.4 
 OTHER FEATURES WITHOUT DESCRIPTIONS 

 

   
 In the simulation, the continuous features are normalized to the range 0~1. Non-

numerical feature are represented by non-negative integer numbers. For example, for 

feature 2, symbols “tcp”, “udp” and “icmp” are represented by 0, 1 and 2. The 20th 

feature (num_outbound_cmds) is removed so that each processed record item contains 40 

features. 

 
7.3.2.2 Simulation Results 
 
 RBF kernel is used in the MEB-SVM evaluation. In the SVM training, the 

regularization parameter C is set to 16.65 and RBF’s γ  is 0.01, the positive class weight 

is 2.307, and the negative class weight is 1. In MEB calculation, +m is set to 20 and  −m  

is set to 10. We conduct the benchmark results of MEB-SVM with regard to the random 

sampling methods, the active learning based SVM, CB-SVM, and CVM in terms of 

prediction accuracy, running time, and the number of support vectors. MEB-SVM is 

tested on a 2.8 GHz PC with the 512 MB RAM memory. Other methods were evaluated 

on the different machines and the related results are copied from the published papers 

(Yu et al., 2003; Tsang et al., 2005). The random sampling methods, the active learning 

based SVM and CB-SVM were evaluated on an 800MHz P-3 machine with the 906 MB 

RAM memory. CVM was evaluated on a 3.2GHz P-4 machine with the 2GB RAM 

memory. 

Feature name Type 
dst_host_count continuous 

dst_host_srv_count continuous 
dst_host_same_srv_rate continuous 
dst_host_diff_srv_rate continuous 

dst_host_same_src_port_rate continuous 
dst_host_srv_diff_host_rate continuous 

dst_host_serror_rate continuous 
dst_host_srv_serror_rate continuous 

dst_host_rerror_rate continuous 
dst_host_srv_rerror_rate continuous 
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 Table 7.5 shows the performance comparison between MEB-SVM and other 

methods on the KDDCUP-99 dataset. In the table, other processing time means the data 

sampling time in the random sampling methods, the clustering time in CB-SVM, and the 

MEB calculating time in MEB-SVM. From Table 7.5, we can see that MEB-SVM 

finishes training in 250 seconds, which is faster than that of other methods except CVM. 

Although it is not suitable to compare the training time directly (since these algorithms 

are evaluated on the different machine), we can still conclude that MEB-SVM is really a 

fast learning algorithm. The testing accuracy of MEB-SVM can reach 93.38%, which is 

higher than that of other methods except CVM. The AUC value of MEB-SVM is 96.4%, 

which is lower than that of CVM by 1.3%. Table 7.5 also summarizes the number of the 

final training data and the number of support vectors. MEB-SVM only needs a small 

dataset in the SVM training. Other performance metrics are also used to evaluation MEB-

SVM and the results are shown in Table 7.6. 

TABLE 7.5 
PERFORMANCE COMPARISON ON THE KDDCUP-99 DATASET 

 

 
 

 

 

 

Running Time (second) 

Method # 
Testing Error AUC 

# 
Selected 

Training Data

# 
Support 
Vectors 

SVM 
Training 

Time 

Other 
Processing 

Time 
0.001% 25,713 -  -  -  0.000991 500.02 
0.01% 25,030 - - - 0.120689 502.59 
0.1% 25,531 - - - 6.944 504.54 
1% 25,700 - - - 604.54 509.19 

Random 
Sampling 

5% 25,587 - - - 15827.3 524.31 
ASVM 21,634 - 307 - 94192.213 - 

CB-SVM 20,938 - 2893 - 7.639 4745.483 
CVM 19,513 0.977 55 20 1.4  

MEB-SVM* 20,601 0.964 173 114 1 249 
* The training accuracy of MEB-SVM is 95.7%. 
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TABLE 7.6 
OTHER PERFORMANCE EVALUATIONS OF MEB-SVM  

ON THE KDD CUP-99 DATASET 
 

 

 
7.3.3 Evaluation on the Ring Norm Dataset 
 
7.3.3.1 Dataset Description 
 
 Ring norm dataset is the two-class artificial dataset generated using Leo 

Breiman’s algorithm (Breiman, 1996). Each data item has 20 dimensions. One class data 

are generated from a multivariate normal distribution with the zero mean and covariance 

matrix equal 4 times the identity matrix. The other class data are generated from the 

multivariate normal distribution with the unit covariance matrix and mean of 2/sqrt(20) 

along each dimension. For this dataset, the theoretical expected classification accuracy is 

98.76%, which can be computed by using the Fukunaga and Krile’s method (Fukunaga 

and Krile, 1969). 

 
7.3.3.2 Simulation Results 
 
 A training set 1RN  with 3 million ring norm data examples and a testing set with 

90,000 examples are generated and used for the performance comparison between MEB-

SVM and CVM. Both MEB-SVM and CVM are trained on the same P-4 3.0GHz 

machine with 2.0GB RAM (the available memory is about 400MB). For CVM, the 

regularization parameter C is set to 100 and RBF’s γ  is set to 0.0195. For MEB-SVM, C 

Max_Accuarcy threshold* 0.000405 
AUC 0.96355 
ACC 0.93379 
PPV 0.98946 
NPV 0.76235 
SEN 0.92766 
SPC 0.95915 
PRE 0.98946 
REC 0.92766 

         * The prediction threshold that maximizes the accuracy 
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is set to 0.0062, RBF’s γ  is set to 0.01, +m is set to 20, and −m  is set to 20. Both positive 

class weight and negative class weight are set to 1. 

 The simulation results are shown in Table 7.7. From Table 7.7, we can see that 

MEB-SVM has much better performance than CVM in terms of number of the selected 

training data, number of support vectors, testing error and running time. The prediction 

accuracy of MEB-SVM on the testing dataset can reach 98.44%, which is almost same as 

the theoretical expected accuracy. The MEB-SVM training can finish in 117 seconds, 

which is 55 times as fast as CVM. 

TABLE 7.7   
PERFORMANCE COMPARISON BETWEEN MEB-SVM AND CVM  

ON THE RING NORM DATASET WITH 3 MILLIONS EXAMPLES 
 

 

 To make a comparison between MEB-SVM and HeroSVM, the other training set 

2RN  with 100,000,000 ring norm data examples and a testing set with 3 million 

examples are generated and used in the evaluation. MEB-SVM is evaluated on a P-4 

3.0GHz machine with the 2.0GB RAM memory (the available memory is about 400MB). 

Both positive class weight and negative class weight are set to 1. C is set to 0.00806, 

RBF’s γ  is set to 0.01, and both +m  and  −m  are set to 500.  

 The simulation results are shown in Table 7.8. Because the number of selected 

training data (=139136) is still too large after the first loop of MEB calculation, MEBs 

are measured again on the selected training data. In the second loop of MEB calculation, 

both +m  and  −m  are set to 10.  The simulation results of HeroSVM listed in Table 7.8 

were reported by Dong et al. (2005). HeroSVM was evaluated on a P-4 1.7GHz machine 

Running Time 
(second)  

# 
Selected 

Training Data 

# 
Support 
Vectors 

Testing 
Error 
(%) SVM 

Training Time 
Other  

Processing Time 
CVM 17338 15703 2.41% 6495 

MEB-SVM 5273 1612 1.56% 2 115 
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with the 1.5GB SDRAM memory. CVM Toolbox used by Tsang et al. (2005) fails to 

handle the data set with 100 million examples. From Table 7.8, we can see that MEB-

SVM can finish training in 4013 seconds on this very large dataset, which is faster than 

HeroSVM by 53191 seconds. It means that MEB-SVM is almost 13 times faster than 

HeroSVM. The prediction accuracy of MEB-SVM on this dataset is 98.44%. The testing 

error of HeroSVM is lower than that of MEB-SVM. In HeroSVM, the final decision is 

made based on the voting among k SVMs, each of which is built on the support vector 

sets with the size of about 7900. 

TABLE 7.8   
PERFORMANCE COMPARISON BETWEEN MEB-SVM AND HEROSVM 

ON THE RING NORM DATASET WITH 100 MILLIONS EXAMPLES 
 

 

 
7.3.4 Evaluation on the Normally Distributed Clustered (NDC) Datasets 
 
7.3.4.1 Dataset Description 
 
 Two datasets with different linear separabilities are generated using the Normally 

Distributed Clusters (NDC) generator (Musicant, 1998). The NDC generator can generate 

a series of random centers for multivariate normal distributions. In the data generation, a 

fraction of data points from each center is generated first, and then a separating 

hyperplane is randomly generated. Each center is marked with a class label based on the 

separating plane. The generator then randomly generates the points from the distributions. 

The linear inseparability of data can be increased by increasing variances of distributions.  

Running Time (second) 
 

# 
Selected  
Training 

Data 

# 
Support  
Vectors 

Testing 
Error 
(%) 

SVM 
Training  

Time 

Other 
Processing 

Time 
HeroSVM 5,807,025 7900k 1.23% 57204 

139136 - - 3994 MEB-SVM 5697 1221 1.56% 2 17 
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7.3.4.2 Simulation Results 
 
 One dataset 1NDC  has linear separability of around 69.7%. The other dataset 

2NDC has linear separability of around 90.9%. Each training set consists of 2 million 

examples with 10 features and each testing set has 200,000 examples. MEB-SVM 

algorithms are trained on P-4 3.0GHz machine with 2.0GB RAM. For the dataset 1NDC , 

C is set to 1500 and RBF’s γ  is set to 0.01. For the data set 2NDC , C is set to 50 and 

RBF’s γ  is set to 0.01. Both +m  and −m  are set to 10 in each training. The simulation 

results are shown in Table 7.9. 

TABLE 7.9 
PERFORMANCE COMPARISON ON THE NDC DATASETS 

 

 
 
 The simulation results of LSVM and PSVM listed in Table 7.9 were reported by 

Fung and Mangasarian (2001). Dataset 3NDC has linear separability of around 70% and 

the dataset 4NDC  has linear separability of around 90%. LSVM and PSVM were 

evaluated on a Pentium 400MHz machine with a maximum of 2 GB of memory. 

 On the dataset with the linear separability of around 70%, MEB-SVM only needs 

5 seconds for training and can achieve the prediction accuracy of 83.1%, which is 

significantly higher than those of PSVM and LSVM by about 13.5%~13.6%. On the 

Running Time (second)

Method Data Set 

Theoretical 
Linear  

Separability 
Theoretical 
Accuracy 

(%) 

Training 
Accuracy

(%) 

Testing 
Accuracy

(%) 

# 
Selected 
Training 

Data 

# 
Support 
Vectors 

SVM 
Training 

Time 

Other 
Processin
g Time 

MEB-
SVM NDC1 69.7% 83.17% 83.06% 62 17 1 4 

LSVM NDC3 70% 69.80% 69.44% - - 655.6 
PSVM NDC3 70% 69.84% 69.52% - - 20.6 
MEB-
SVM NDC2 90.9% 98.83% 98.82% 95 36 1 7 

LSVM NDC4 90% 90.86% 91.23% - - 658.5 
PSVM NDC4 90% 90.8% 91.13% - - 20.8 
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dataset with the linear separability of around 90%~91%, MEB-SVM can finish training 

in 8 seconds and achieve the prediction accuracy of 98.8%, which is higher than those of 

PSVM and LSVM by about 7.6%~7.6%. Although these three algorithms are evaluated 

on the different machines (LSVM and PSVM are evaluated on a Pentium 400Mhz 

machine with a maximum of 2 GB of memory), the running time of MEB-SVM is still 

competitive. 

TABLE 7.10 
OTHER PERFORMANCE EVALUATIONS OF MEB-SVM ON THE NDC DATASETS 

 

 

 MEB-SVM is also evaluated using other performance metrics on the NDC1 and 

NDC2 datasets and the results are summarized in Table 7.10. MEB-SVM can achieve 

high quality metrics on both datasets. On the NDC2 dataset, MEB-SVM can even achieve 

99.9% in the AUC, NPV, and SEN evaluations. These results demonstrate that MEB-

SVM is a powerful kernel-based classification algorithm in large scale data mining. 

Data Set NDC1 NDC2 
Max_Accuarcy threshold -0.246091 0.018746 

AUC 0.924 0.999 
ACC 0.837 0.988 
PPV 0.763 0.974 
NPV 0.909 0.999 
SEN 0.89 0.999 
SPC 0.798 0.98 
PRE 0.763 0.974 
REC 0.89 0.986 
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CHAPTER 8  

CONCLUSION AND FUTURE WORK 

8.1 Conclusion 
 
 In this dissertation, kernel design and SVMs training speedup were well studied. 

Powerful and flexible kernel trees called Evolutionary Granular Kernel Trees (EGKTs) 

were designed for the complex data, such as biological data and chemical data. EGKTs 

can effectively incorporate prior domain knowledge. The simulation results in the 

Pyrimidines and Triazines activity comparisons demonstrated that GKTs and EGKTs can 

effectively improve the prediction accuracies of SVMs comparing to the GAs based 

SVMs with the RBF kernel. Considering the case of lack of prior knowledge, Granular 

Kernel Tree Structure Evolving System (GKTSES) was developed to evolve the 

structures of Granular Kernel Trees (GKTs). To reduce the prediction deviation of 

GKTSES, a voting scheme was proposed for the decision making of SVMs. The 

simulation on the Cyclooxygenase-2 dataset showed that SVMs with GKTSES can 

achieve higher accuracy in testing than the GAs based SVMs with RBF. The simulation 

also showed that the voting scheme can significantly reduce the prediction deviation of 

SVMs+GKTSES from 6.5% to 2.3%.  

 To speed up the EGKTs optimization, we parallelized EGKTs. Simulation results 

showed that the parallel method can significantly speed up the training of SVMs+EGKTs 

by a factor of 10 with 14 nodes. To help SVMs challenge large-scale data mining, we 

presented MEB-SVM. MEB-SVM can quickly and significantly reduce the training data 

and shorten the SVMs training. The conducted benchmark results demonstrated that 

MEB-SVM is a very competitive classification algorithm with regard to the random 
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sampling methods, active learning based SVM, CB-SVM, CVM, HeroSVM, LSVM and 

PSVM in terms of prediction accuracy, running time, and the number of support vectors. 

  
8.2 Future Work 
 
 Our GKTSES system is a kind of intelligent system, which selects granular 

kernels from a candidate kernel set. In the future, we will build a kernel library, which 

will contain more popular kernels such as tree kernels, string kernels and graph kernels. 

The system will choose suitable kernels for SVMs according to the characteristics of 

problems. Furthermore, multi-classification approaches will be introduced into this 

intelligent system, since many data classification problems are multi-classification 

problems. In the system, ensemble learning methods and other machine learning 

algorithms will also be used for classification. 

 
8.2.1 Ensemble Methods 
 
 In ensemble learning, several approaches rather than a single approach are 

integrated to enhance the performance of the final classifier. An ensemble classifier is 

expected to have better performance than the individual base classifiers. Bagging and 

boosting are two kinds of popular ensemble learning algorithms. 

 
8.2.1.1 Bagging 
 
 Bagging (Bauer and Kohavi, 1999) is a kind of ensemble method by using 

voting/averaging to combine predictions. In bagging, instead of building models on one 

training set of size n, several training sets of size n are sampled with replacement from 

original training set. We then build a classifier on each training set and combine the 



  88  

 

predictions of classifiers by using voting/averaging. In bagging, each model receives 

equal weight. Bagging works since it reduces variance by voting/averaging. 

 
8.2.1.2 Boosting 
 
 Boosting (Bauer and Kohavi, 1999) is another kind of ensemble method for 

combining multiple classifiers. Boosting iteratively learns a model from a weighted data 

set, evaluates it, reweights data, and finally produces a set of weighted models. In testing, 

the data class is predicted with the highest weight. 

 
8.2.2 Multi-classification Approaches 
 
 SVMs, as a kind of binary classifiers, cannot directly be used for multi-

classification. When using SVMs to solve a multi-classification problem, a common way 

(Hsu and Lin, 2002) is first decomposing the multi-classification problem into a series of 

binary classification problems, building SVMs models for each of these binary 

classification problems, and then combining outputs of SVMs for the multiple-class 

prediction. 

 
8.2.2.1 One-versus-rest  
 
 In the one-versus-rest approach, k binary SVM models are built for k classes 

separately in the training. The ith SVM model is built with all samples in the ith class 

with positive labels and all other samples with negative labels. Once an unknown sample 

needs to be classified, it is first predicted by these SVM models, and then classified into 

the class corresponding to the SVM model with the highest output value. 

. 
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8.2.2.2 One-versus-rest Voting 
 
 Park and Kanehisa (2003) presented a kind of one-versus-rest voting approach for 

protein subcellular location prediction. Besides the amino acid composition, the amino 

acid pair and gapped amino acid pair compositions (Chou, 1999) were also used to 

generate data vectors. Based on five different types of compositions (amino acids, amino 

acid pairs, one gapped amino acid pairs, two gapped amino acid pairs, and three gapped 

amino acid pairs), five groups of 12 SVMs models are built. In testing, a query protein is 

first classified by each group of SVMs models, which is the same as that in the one-

versus-one approach. Then the final decision is made by voting among the outputs of 5 

groups of SVMs models. In the voting, if the query protein is classified to a same location 

five, four or three times, or it is classified to the same location twice and another three 

different locations once, it will finally be decided as belonging to this location. When the 

query protein is classified to two locations twice, either of these two locations could be 

chosen as the final decision. 

 
8.2.2.3 One-versus-one Voting 
 
 In the one-versus-one voting approach, for a k class problem, k(k-1)/2 SVMs 

models are built where each model is built on data from two different classes. When an 

unknown sample needs to be classified, it is predicted by all SVMs models and k(k-1)/2 

prediction results are generated. In the prediction with the model built on data from the 

ith and jth classes, if this sample is classified to the ith class, the vote for the ith class will 

be added by one. Otherwise, one will be added to the vote for the jth class. The sample is 

finally classified to the class with the maximum votes. In case that two or more classes 
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receive the same maximum votes, one of the classes with the maximum votes will be 

chosen randomly as the final decision. 

 
8.2.2.4 Directed Acyclic Graph SVM 
 
 Directed Acyclic Graph SVM (DAGSVM) (Platt et al., 2000) is another approach 

to combine outputs of SVMs for the multiple-class prediction. Similar to the one-versus-

one voting approach, this approach constructs models on data from any two different 

classes. For a k class problem, k(k-1)/2 SVMs models are built. Different from the one-

versus-one voting approach, a rooted binary directed acyclic graph (DAG) with k(k-1)/2 

internal nodes and k leaves is used in the prediction. When classifying an unknown 

sample, the prediction starts at the root node, repeatedly moves to either the left or right 

child of a node based on the node’s decision, and finally reaches a leaf node which 

indicates the predicted class. 

 
8.2.3 New Intelligent System Framework 
 
 The new intelligent system will include four libraries: kernel library, machine 

learning algorithm library, ensemble method library, and multi-classification approach 

library. The kernel library will only be used for kernel methods. The machine learning 

algorithm library will contain some popular machine learning algorithms such as SVMs, 

decision trees and neural networks. The system will pick up algorithms from this library 

for the unit prediction tasks according to GAs’ initialization. Once the parameters are 

evaluated on each individual classifier, ensemble methods may be selected from the 

ensemble method library to improve the prediction accuracies of unit classifiers. For 

multi-classification problems, some approaches such as one-versus-rest and one-versus-
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one voting could be chosen to solve the tasks. Many possible choices may be combined 

together, which are optimized by GAs. The order of applying ensemble learning and 

multi-classification approaches may be changed and repeated. The system will run in a 

cluster environment. The system architecture is shown in Figure 8.1. 

 

 

Figure 8.1 New intelligent system architecture 
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