
Machine Learning for Hand
Gesture Classification from

Surface Electromyography Signals

A thesis submitted to the University of Sheffield for the degree of Doctor of
Philosophy

Adam Hartwell

Department of Automatic Control and Systems Engineering

July 2019

For the spirit of discovery

i

Abstract

Classifying hand gestures from Surface Electromyography (sEMG) is a process
which has applications in human-machine interaction, rehabilitation and pros-
thetic control. Reduction in the cost and increase in the availability of necessary
hardware over recent years has made sEMG a more viable solution for hand ges-
ture classification. The research challenge is the development of processes to ro-
bustly and accurately predict the current gesture based on incoming sEMG data.

This thesis presents a set of methods, techniques and designs that improve
upon evaluation of, and performance on, the classification problem as a whole.
These are brought together to set a new baseline for the potential classification.

Evaluation is improved by careful choice of metrics and design of cross-validation
techniques that account for data bias caused by common experimental techniques.
A landmark study is re-evaluated with these improved techniques, and it is shown
that data augmentation can be used to significantly improve upon the performance
using conventional classification methods.

A novel neural network architecture and supporting improvements are pre-
sented that further improve performance and is refined such that the network can
achieve similar performance with many fewer parameters than competing designs.
Supporting techniques such as subject adaptation and smoothing algorithms are
then explored to improve overall performance and also provide more nuanced
trade-offs with various aspects of performance, such as incurred latency and pre-
diction smoothness.

A new study is presented which compares the performance potential of med-
ical grade electrodes and a low-cost commercial alternative showing that for a
modest-sized gesture set, they can compete. The data is also used to explore data
labelling in experimental design and to evaluate the numerous aspects of perfor-
mance that must be traded off.

ii

Acknowledgements

I’d first like to express my thanks to my supervisor Dr. Sean Anderson. His guid-
ance has been invaluable in improving not just my research but also improving my
own skill set, particularly with regards to writing. His enthusiasm was critical for
helping me achieve this culmination of my work and helped motivate me during
times where I struggled.

I also want to thank my second supervisor Professor Visakan Kadirkamanathan
for his useful advice, suggestions and insight on the varied topics and problems
I’ve consulted with him about. I’d also like to thank him for cajoling me into tak-
ing a more active part in our research community and giving me the opportunity
to do so.

I would like to thank my partner Dawn for her love and support and always
knowing how to put a smile on my face when I needed it.

I’d like to thank the numerous other researchers and colleagues who gave
me the opportunity to discuss interesting problems and gave me new insight or
perspective. I’m also thankful for the opportunities given to me by same to teach
and present which have been both fulfilling and a perfect opportunity to solidify
my own knowledge base.

My friends, I thank for keeping me sane and reminding me to keep things in
balance.

Lastly, I’d like to thank my parents Stephen and Ewa for their love, patience
and understanding as well as their support, willingness to debate me on my ideas
and instilling in me a desire to learn.

Contents

Abbreviations xi

Nomenclature xiv

1 Introduction 1
1.1 Background . 1
1.2 Aims and Objectives . 3
1.3 Thesis Structure . 4
1.4 Associated Publications . 5

2 Literature Review 7
2.1 Electromyography . 7

2.1.1 Biological Basis . 7
2.1.2 Characteristics of sEMG . 9
2.1.3 Signal Processing Issues . 9
2.1.4 Summarised History of EMG 10
2.1.5 Electrode Types . 10
2.1.6 Skin Preparation and Electrode Placement 11
2.1.7 Applications of sEMG . 12
2.1.8 Myo Armband . 13

2.2 Machine Learning Overview . 14
2.2.1 Feature Engineering . 14

2.3 Neural Networks and Deep Learning 15
2.3.1 No Free Lunch Theorems . 16
2.3.2 The Neuron Model . 16
2.3.3 Training and Backpropagation 17
2.3.4 Activation Functions . 23
2.3.5 Network Architectural Choices 28

2.4 Hand Movement Classification . 34
2.4.1 Deep Learning Approaches . 37

iii

iv Contents

2.4.2 Key Issues . 38

3 Methods 40
3.1 Statistics for Comparison of Techniques 40

3.1.1 Comparison of Two Techniques 41
3.1.2 Comparison of Multiple Techniques 41

3.2 Machine Learning Algorithms . 43
3.2.1 Support Vector Machines . 43
3.2.2 K Nearest Neighbours . 46
3.2.3 Hidden Markov Models . 46

3.3 Evaluation Metrics . 49
3.3.1 Binary Case . 49
3.3.2 Multiclass Case . 50

3.4 Data Labelling . 52

4 Robust Feature-Based Classification 55
4.1 Introduction . 55
4.2 Data Analysis . 57
4.3 Robust Preprocessing and Evaluation 61

4.3.1 Windowing . 61
4.3.2 Metrics . 65
4.3.3 Validation . 67

4.4 Benchmark Details . 69
4.4.1 Preprocessing . 69
4.4.2 Features . 70
4.4.3 Classifiers . 71
4.4.4 Validation and Metrics . 72
4.4.5 Meta-Validation . 73
4.4.6 Data Resampling and Augmentation Techniques 74
4.4.7 Primary Benchmark Variants 75
4.4.8 Person-specific Movement Set Selection 76

4.5 Results and Discussion . 79
4.5.1 Benchmark Results . 79
4.5.2 Metric Comparison . 79
4.5.3 Benchmark Performance Breakdown 81
4.5.4 Feature Differences . 84
4.5.5 Comparison of Window Lengths 86
4.5.6 Classifier Trends . 87
4.5.7 Meta-Validation Results . 89

Contents v

4.5.8 Movement Sub-selection Results 90

4.6 Conclusion . 93

5 Deep Neural Networks for Person-Specific Classification 94

5.1 Introduction . 94

5.2 Methodology . 95

5.2.1 Baseline SVM-RBF . 97

5.2.2 Baseline CNN . 99

5.2.3 Temporal-to-Spatial Network 101

5.2.4 Additional Design Choices . 103

5.2.5 Adam Algorithm . 105

5.2.6 Comparison to Contemporary Networks 106

5.2.7 Filter Visualisation . 107

5.3 Results and Discussion . 108

5.3.1 Effect of Repetition Number 110

5.3.2 Distribution of Classification Performance 111

5.3.3 Filter Visualisations . 112

5.4 Conclusion . 113

6 Compact Deep Neural Networks with Comparison of Electrodes 119

6.1 Introduction . 119

6.2 Methods . 120

6.2.1 Experiment Overview . 120

6.2.2 Experiment Protocols . 122

6.2.3 Experiment Software . 126

6.2.4 Experiment Extensions . 127

6.2.5 Electrode Comparison . 127

6.2.6 Data Preprocessing . 128

6.2.7 Performance Baselines . 129

6.2.8 Compact Deep Neural Network 130

6.2.9 Hardware Performance Comparison 131

6.3 Results and Discussion . 132

6.3.1 Key Findings . 132

6.3.2 Performance on Hardware . 135

6.3.3 GLR vs Hold vs Expert Labelling 136

6.4 Conclusion . 139

vi Contents

7 Online Classification 141
7.1 Introduction . 141
7.2 Methods . 142

7.2.1 Improving Performance with Transfer Learning 142
7.2.2 Motivation for Smoothing Predictions 145
7.2.3 Latch Algorithm . 148
7.2.4 Majority Voting Algorithm . 148
7.2.5 The MSPRT Algorithm . 149
7.2.6 Smoothing with Hidden Markov Models 149
7.2.7 Viterbi Algorithm . 150

7.3 Results and Discussion . 151
7.3.1 Subject Adaptation . 151
7.3.2 Prediction Smoothing . 153

7.4 Integration of Techniques . 159
7.5 Conclusion . 160

8 Closing Remarks 163
8.1 Summary and Conclusions . 163
8.2 Future Research Avenues . 165

Bibliography 167

List of Figures

2.1 Illustration of the formation of an EMG signal 8

2.2 Ideal Bipolar Electrode Placement . 12

2.3 The Myo Armband . 13

2.4 Biological Neuron and Neural Network Neuron 17

2.5 Visualisation of Chain Rule . 19

2.6 Comparison of Momentum and Nesterov Momentum 21

2.7 Dropout Layer Visualisation . 24

2.8 Logistic Sigmoid Activation . 25

2.9 Tanh Activation . 26

2.10 Rectified Linear Unit Activation . 27

2.11 Basic Neural Network . 28

2.12 Visualisation of Convolutional Layer 31

2.13 Visualisation of Stride . 32

2.14 Pooling Layer Visualisation . 34

2.15 LSTM and GRU Visualisation . 35

3.1 SVM Mapping and Decision Boundary 45

3.2 HMM Visualisation as Bayesian Network 47

3.3 Hidden Markov Model . 48

4.1 Illustration of Data Imbalance . 59

4.2 PCA Visualisation . 60

4.3 t-SNE Visualisations . 62

4.4 Windowing Visualisation . 63

4.5 Visualisation of Windowed sEMG . 64

4.6 Histogram of Accuracies from NinaPro Study 66

4.7 Example Comparison of Metrics . 83

4.8 Gesture Sub-selection Comparison . 91

5.1 Visualisation of Xω . 98

vii

viii List of Figures

5.2 TtS Network Diagram . 101
5.3 Geng et al. Performance Per Class . 109
5.4 TtS Performance by Repetition Number 115
5.5 Normalised Position in Movement Against Performance, NinaPro

Study . 116
5.6 Normalised Position in Movement Against Performance 116
5.7 Visualisation of Temporal Convolution Weights 117
5.8 Visualisation of Temporal Convolution Maximum Activation Inputs 117
5.9 Visualisation of Spatial Reduction Maximum Activation Inputs . . . 118

6.1 Jetson TX2 . 120
6.2 Electrode Positioning . 123
6.3 Set of Gestures . 123
6.4 Normalised Position in Movement Against Performance 126
6.5 Myo v Delsys Per Class Performance 133
6.6 Myo v Delsys Per Subject Performance 133
6.7 Myo v Delsys Performance Subject 1 134
6.8 Myo v Delsys Performance Subject 2 135
6.9 Comparison of Gesture Labelling Methods 138

7.1 Classification Flicker . 145
7.2 Latency Definitions . 146
7.3 Pareto Frontier of Smoothing Algorithms (Onset) 158
7.4 Pareto Frontier of Smoothing Algorithms (Tail) 159
7.5 Comparison of Smoothing Algorithms on Compact TtS 161

List of Tables

3.1 Binary Confusion Matrix . 49

3.2 Multiclass Confusion Matrix . 51

4.1 Table of Features . 70

4.2 Benchmark Training and Test Repetitions 72

4.3 100ms Benchmark Results . 80

4.4 200ms Benchmark Results . 81

4.5 400ms Benchmark Results . 82

4.6 Average Rank Against Set Size . 92

5.1 Training and Test Sets . 96

5.2 Baseline CNN DB1 . 99

5.3 Baseline CNN DB2 . 99

5.4 Baseline Adapted CNN DB2 . 99

5.5 TtS DB1 . 102

5.6 TtS DB2 . 102

5.7 Adapted TtS DB2 . 102

5.8 Deep Learning Results Database 1 . 108

5.9 Deep Learning Results Database 2 . 108

6.1 Study Training, Validation and Test Repetitions 129

6.2 Compact TtS (Myo Data) . 131

6.3 Compact TtS (Delsys Data) . 131

6.4 Network Performances and Run Time on Jetson TX2 136

6.5 Comparison of Labelling Techniques 137

7.1 Updated TtS . 143

7.2 Study Training, Validation and Test Repetitions 143

7.3 Subject Adaptation Results . 151

7.4 Subject Adaptation Results When Trained On Individual Repetitions 152

ix

x List of Tables

7.5 Supplemental Smoothing Results (Expert Trained, Expert Tested) . . 154
7.6 Supplemental Smoothing Results (GLR Trained, Expert Tested) . . . 154
7.7 Supplemental Smoothing Results (Expert Trained, GLR Tested) . . . 155
7.8 Supplemental Smoothing Results (GLR Trained, GLR Tested) 155
7.9 Cross-Validated Smoothing Results . 157

Abbreviations

ANOVA Analysis Of Variance. 42

API Applications Programming Interface. 14

AUC Area Under Curve. 50

CNN Convolutional Neural Network. 30, 32, 33, 99, 113

DSP Digital Signal Processing. 61

DT Decision Tree. 71, 87, 88

DWT Discrete Wavelet Transform. 70

ECG Electrocardiography. 7, 10

ECoG Electrocorticography. 1, 2

EEG Electroencephalography. 1, 103

EM Expectation Maximisation. 149

EMG Electromyography. 1, 7, 9, 10, 14, 23, 34, 36, 37, 53, 58, 61, 63, 65, 67, 68, 69,
70, 76, 101, 156, 166

FFT Fast Fourier Transform. 37

FN False Negative. 49, 50, 51, 65

FP False Positive. 49, 50, 51, 65

GLR Generalised Likelihood Ratio. 53, 57, 61, 120, 125, 127, 137, 138, 139, 140,
147, 153, 154, 155, 156, 157, 159

GPU Graphics Processing Unit. 18, 96, 107, 120

xi

xii Abbreviations

GRU Gated Recurrent Unit. 34, 35

HIST Histogram. 70, 84, 85, 86

HMM Hidden Markov Model. 46, 47, 48, 149, 150, 158

IMU Inertial Measurement Unit. 14

JSON Javascript Object Notation. 124

KL Kullback-Leibler. 78, 92

KNN K-Nearest Neighbours. 46, 71, 87, 88

L-BFGS Limited-Memory Broyden-Fletcher-Goldfarb-Shanno. 22

LDA Linear Discriminant Analysis. 36, 71, 84, 85, 87, 88

LSTM Long Short-Term Memory. 34, 35, 104

MAE Mean Absolute Error. 19, 20, 74, 89, 90

MAV Mean Absolute Value. 70, 77, 85, 86, 88, 92, 98, 103, 112, 113

mDWT Mariginal Discrete Wavelet Transform. 70, 73, 74, 77, 83, 84, 85, 86, 88, 89,
98, 112, 129

ML Machine Learning. 16

MLP Multilayer Perceptron. 16, 28, 71

MSE Mean Squared Error. 19, 20

MSPRT Multi-Hypothesis Sequential Probability Ratio Test. 149, 157, 158

NinaPro Non-Invasive Adaptive Hand Prosthetics. 35, 36, 37, 38, 57, 65, 66, 95,
106, 111, 125, 131, 156

PCA Principal Component Analysis. 59, 61

RBF Radial Basis Function. 46

ReLU Rectified Linear Unit. 26, 27, 28

RF Random Forest. 36

Abbreviations xiii

RMS Root Mean Squared. 57, 69

ROC Receiver Operating Characteristic. 50, 52

sEMG Surface Electromyography. i, 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 35, 36,
37, 43, 52, 55, 57, 64, 89, 93, 94, 98, 99, 100, 103, 104, 106, 112, 137, 139, 140,
141, 145, 151, 159, 160, 162, 163, 164, 165, 166

SGD Stochastic Gradient Descent. 20, 21

SMOTE Synthetic Minority Oversampling Technique. 74, 75, 81, 82, 83, 84, 85, 89,
100, 132, 159, 160

SVM Support Vector Machine. vii, 36, 42, 43, 44, 113, 116

SVM-L Support Vector Machine - Linear Kernel. 71, 87, 88

SVM-RBF Support Vector Machine - Radial Basis Function Kernel. 45, 71, 73, 74,
83, 87, 88, 89, 97, 98, 108, 129, 132

t-SNE t-Stochastic Neighbour Embedding. 61, 107

TN True Negative. 49, 50, 51, 65

TP True Positive. 49, 50, 51, 65

TtS Temporal-to-Spatial. 101, 102, 108, 109, 110, 111, 112, 113, 115, 116, 117, 118,
119, 120, 126, 129, 130, 131, 132, 133, 134, 135, 136, 137, 139, 140, 143, 144,
159, 160, 161

VAR Variance. 70, 85, 86

WL Waveform Length. 70, 85, 86, 98

Nomenclature

A list of the variables and notation used in this thesis is defined below. The def-
initions and conventions set here will be observed throughout unless otherwise
stated.

[a, b] Closed interval between a and b

x̂ Estimate of x

∈ Member of operator

∨ Logical "OR" operator

RD Real numbers of dimensions D

L Loss

µ Mean

σ Standard deviation

b Bias term

P(A) Probability of event A

w Weight term

X A set of data points

x A data point

Y A set of outputs

y An output

xiv

Chapter 1

Introduction

1.1 Background

Surface Electromyography (sEMG) records electrical signals from changes in mus-
cle membrane potential with non-invasive electrodes placed on the skin [1]. These
signals have applications in prosthetic control [2, 3], rehabilitation [4] and as a
natural control interface for human-machine interaction [5]. Hand gesture classifi-
cation plays an important role in both human-machine interaction and prosthetic
control as a way of determining user intention. Therefore the accurate classifica-
tion of hand gestures is a vital step towards realising these applications.

This work focuses on framing and solving the hand gesture classification prob-
lem with an emphasis on practical considerations. The classification problem is
tackled by improving upon current data preparation and evaluation methods, ap-
plying novel deep learning methods, exploring methods for subject adaptation
and gathering data to support hardware choices.

Gesture-based interaction or control has applications in many areas. This
includes entertainment via games consoles such as the Wii [6], Kinect [7] and
PlayStation Move [6], control of dashboard utilities in cars [8, 9], operating surgi-
cal equipment [10], aiding in rehabilitation [11] and augmenting working environ-
ments [12] amongst others.

Electroencephalography (EEG) and Electrocorticography (ECoG) are alterna-
tive methods of extracting user intention from the brain directly via electrodes.
These methods, however, are not currently practical for routine clinical or per-
sonal use [13]. When using EEG or ECoG user intention needs to be extracted
from among a multitude of other signals [14]. Meanwhile, Electromyography
(EMG) allows focussing on specific groups of muscles as they are manipulated
via the nervous system, which improves intention extraction relative to EEG and

1

2 1.1. Background

ECoG [13].

An alternate way of recognising gestures is by using a camera which has the
benefit of being generalisable to tracking any part of the human body but can
require markers to be worn for precise tracking [15]. Camera-based approaches
suffer from occlusion problems and may be sensitive to environmental issues such
as changes in lighting, obstructions or varying distance from the camera. Gloves
with flex sensors have also been trialled [16] which alleviate many of the environ-
mental issues of cameras but require substantial hardware adjustment for different
users. These two approaches cannot be used with amputees.

In general, the major benefits of sEMG over other methods is that it is not inva-
sive, adaptation to individuals can generally be performed in software, it does not
suffer from normal changes in the environment, and it can be used on amputees.
Having access to user intention via muscle contraction also allows remapping of
muscle contraction and intention for prosthetic control [17], which makes sEMG a
versatile data source.

This thesis focuses on the problem of classifying hand gestures from sEMG
with a general view towards application as a human-machine interface but presents
ideas relevant to any application. It aims to improve the overall performance of
gesture classification in as generalisable way as possible.

Studies on hand gesture classification with sEMG generally focus on smaller
sets of movements, e.g. 4-7 [18–28] or 9-12 movements [29–35]. Most studies, e.g.
[20, 23, 27, 30, 34–40], by necessity, employ rest-movement-rest cycles as part of
their experiment design and label their data as such which often causes significant
data imbalance. Typically accuracy is then used to evaluate these experiments
[25, 27, 37, 41–43] or "accuracy" / "classification accuracy" is stated without an
equation [18, 20, 23, 26, 28, 29, 35, 37–40, 44, 45] which can lead to uncorrected
bias in results.

The key challenges are the design of standard robust evaluation methods for
ensuring representative performance reporting and comparability between stud-
ies, improving the overall performance of classification techniques, tailoring so-
lutions to individual subjects and addressing issues that arise when classifying
online.

Therefore the first issue tackled is the improvements that can be made to eval-
uation methods. It is shown that common experiment design paradigms lead to
biased data sets and thus biased results. The macro-average accuracy is presented
as a viable alternative metric that avoids the skew the typical accuracy metric in-
troduces. It is combined with proper cross-validation (a technique that is missing
in many studies [22–25, 30, 37, 39, 46–49]) and a new stratification technique that

Chapter 1. Introduction 3

produces a result more representative of the performance that would be found
when evaluating all possible folds.

These evaluation techniques are then applied to a reproduction of a landmark
open-data study with many hand gestures [37], 52, rather than the typical ≤ 12,
to demonstrate the technique’s necessity and that effective classification can be
achieved with this higher number of gestures. The study is further improved
upon via data augmentation techniques which allow a new performance baseline
to be established.

In order to further improve overall performance, a novel neural network ar-
chitecture is then designed. It is shown that this architecture outperforms both
the baseline and other neural network approaches to the problem [39, 47]. The
network architecture is later refined such that it can produce a similarly high per-
formance as the original while requiring an order of magnitude fewer parameters.
The new compact design is evaluated on an embedded system, the Jetson TX2, to
demonstrate the run time improvement it produces.

Supporting methods including gesture subselection, subject adaptation, and
post-classification smoothing are explored as other viable ways to improve perfor-
mance and to show the large decision space associated with defining performance
outside of only an accuracy measure.

These techniques together present a reliable, robust way of improving overall
classification performance and allowing researchers to make informed decisions
regarding the trade-offs involved for any particular application. A new study is
also presented that compares medical grade electrodes with a low-cost commercial
alternative illustrating that the techniques can be used achieve similar performance
levels with both helping to make the necessary hardware for classification more
accessible.

1.2 Aims and Objectives

This thesis aims to improve sEMG-based gesture classification. Accordingly, the
objectives are as follows:

• Reproduce and benchmark existing approaches for gesture classification us-
ing conventional classifiers. Improve evaluation and cross-validation to lay
the groundwork for robust benchmarking in this thesis and future studies

• Investigate how the number of gestures classified affects performance to es-
tablish a realistic number of gestures on which high performance can be
achieved and evaluate algorithms for person-specific gesture subselection

4 1.3. Thesis Structure

• Reproduce, benchmark and extend the design of the current state of the art
in deep neural networks for EMG-based gesture classification using state of
the art techniques along with robust evaluation and validation

• Extend the current state of the art by designing novel deep neural networks
suited to embedded systems that exploit compression techniques and do-
main knowledge

• Compare new generation low-cost consumer surface EMG electrodes to ex-
pensive medical grade electrodes to establish the viability of low-cost elec-
trodes

• Extend the state-of-the-art in online EMG classification by augmenting deep
neural network classifiers with smoothing methods to prevent class ’jitter’
within the classification signal

1.3 Thesis Structure

This thesis is structured around the central idea of improving sEMG gesture clas-
sification:

• Chapters 2 and 3 introduce the theories, techniques, and background this
work is built upon. Particular attention is given to machine learning tech-
niques and neural networks. These chapters are intended as a reference that
supports the later chapters.

• Chapter 4 proposes a set of fundamental improvements to the classification
process that are necessary to ensure that results are reproducible and repre-
sentative. A landmark study is repeated and shown to have significantly bi-
ased results, data resampling and augmentation methods are then applied to
significantly improve performance over the original. Lastly, a novel evalua-
tion of gesture sub-selection techniques is presented, which demonstrates the
possibility for further performance improvement via patient-specific adapta-
tion outside of the classifiers themselves.

• Chapter 5 introduces a novel neural network architecture that encodes do-
main knowledge into its design, leading it to significantly outperform con-
temporary designs. The network is evaluated across two data sets and
against the top performing contemporary designs to demonstrate its im-
provement.

Chapter 1. Introduction 5

• Chapter 6 introduces a new study that compares high- and low-cost elec-
trodes finding that the low-cost electrodes have the potential to produce a
similar or better performance on at least some variants of the classification
problem. A new compact version of the network design is also introduced
that greatly reduces the number of parameters necessary for similar levels
of classification performance. The new study’s data is then used to evaluate
the run time impact of the parameter reduction, demonstrating real-world
run time reduction, which is vital for actual usage. Lastly, different labelling
methods are explored to improve upon future experiment designs.

• Chapter 7 explores subject adaptation and online classification signal smooth-
ing in order to further improve resultant classification performance. Subject
adaptation results show that it is possible to fine-tune a network trained on
other subjects to a new individual by freezing the feature extractor layers in
a way that improves performance over training directly on a new subject.
A variety of techniques are explored for signal smoothing, and it is shown
that most lie on the Pareto frontier between smoothness and added latency,
although different techniques have additional benefits and drawbacks.

• Chapter 8 concludes the thesis. The development of improved classification
methods and techniques is summarised, and potential future avenues for
research are presented.

1.4 Associated Publications

The following papers have resulted from work on this PhD:

• Person-Specific Gesture Set Selection for Optimised Movement Classification
from EMG Signals

- A. Hartwell, V. Kadirkamanathan, and S.R. Anderson. Person-Specific Ges-
ture Set Selection for Optimised Movement Classification from EMG Signals.
In Proceedings of the 38th Annual International Conference of the IEEE Engineer-
ing in Medicine and Biology Society, pages 880–883, 2016

• Compact Deep Neural Networks for Computationally Efficient Gesture Clas-
sification From Electromyography Signals

- A. Hartwell, V. Kadirkamanathan, and S.R. Anderson. Compact Deep Neu-
ral Networks for Computationally Efficient Gesture Classification From Elec-
tromyography Signals. In Proceedings of the 7th IEEE RAS/EMBS International
Conference on Biomedical Robotics and Biomechatronics, pages 891–896, 2018

6 1.4. Associated Publications

Further papers are under review and being prepared for publication at the
time of submission.

The set of tools and utilities developed for this work will be made freely avail-
able on GitHub [52], and specific libraries are available via Python’s package man-
ager. The associated scripts and data will be available alongside this thesis via the
University of Sheffield’s White Rose system.

The following papers resulted from collaborations with fellow researchers:

• Multi-Compartmentalisation in the MAPK Signalling Pathway Contributes
to the Emergence of Oscillatory Behaviour and to Ultrasensitivity

- A. Shuaib, A. Hartwell, E. Kiss-Toth, and M. Holcombe. Multi-Compartmentalisation
in the MAPK Signalling Pathway Contributes to the Emergence of Oscilla-
tory Behaviour and to Ultrasensitivity. PLOS ONE, 11(5):e0156139, 2016

• Top-Down Bottom-Up Visual Saliency for Mobile Robots Using Deep Neural
Networks and Task-Independent Feature Maps

- U. Jaramillo-Avila, A. Hartwell, and S. Anderson. Top-Down Bottom-Up
Visual Saliency for Mobile Robots Using Deep Neural Networks and Task-
Independent Feature Maps. In Proceedings of the 19th Annual Conference: To-
wards Autonomous Robotic Systems, volume 10965, page 489. 2018

Chapter 2

Literature Review

This chapter covers the necessary background information and relevant literature
used to inform later chapters. The key topics covered here are the basis and char-
acteristics of Electromyography (EMG) signals, the machine learning techniques
used in this work along with a particular focus on modern neural networks and
the current academic landscape of EMG based interaction and control.

2.1 Electromyography

2.1.1 Biological Basis

Electromyography (EMG) is the recording of electrical activity produced by mus-
cle fibres when they contract [55]. Muscles themselves are formed of bundles of
muscle fibres which are a form of long tubular cell. The EMG signal is made up
of a superposition of the signals from each muscle cell modified by a person’s
physiology.

In a biomedical context, the recorded EMG waveform is known as an elec-
tromyogram and is closely related to other bioelectrical signals such as Electrocar-
diography (ECG). ECG deals specifically with the signals from heart muscles.

The electrical source for the readings is the change in muscle membrane poten-
tial which causes muscle contraction and the associated movement of potassium
and calcium ions [1]. Therefore a useful interpretation of the resultant electrical
activity is an indirect measurement of movement intention modified by the local
physiological and anatomical properties of a subject at the location(s) of interest.
The reading is sometimes referred to as the myoelectric signal.

There are two main methods of acquisition for EMG signals: invasive (also
referred to as intramuscular) and non-invasive. The non-invasive method is the
focus of this thesis and is often referred to as Surface Electromyography (sEMG).

7

8 2.1. Electromyography

The non-invasive method is also the generally preferred method where possible
since it is relatively free of discomfort and presents a much lower risk of infection
[56, 57].

Acquisition of sEMG is generally achieved by placing electrodes on the surface
of the skin to record the electrical activity. This is in contrast to invasive methods
which require placement of electrodes under the skin. Invasive methods allow
placement of electrodes closer to specific muscles of interest but are less practical
for general usage. Invasive methods have also been shown to produce higher
inter-subject variability as well a lower repeatability over extended periods of time
[58].

An illustration of the EMG signal in relation to a muscle cell membrane po-
tential change is shown in figure 2.1. The figure shows a rough approximation
of how the movement of Sodium and Potassium ions across cell membranes (via
active transport) produces the observed electrical potential changes as might be
viewed by an electrode.

Figure 2.1: Illustration of how an EMG signal is formed by the depolarization and repolar-
ization of the muscle membrane in skeletal muscles. The model is simplified to highlight
the important phases [59].

The resting potential of the muscle fibre membrane is ∼-80/-90mV [1, 59] rel-
ative to the outside of the cell when not contracted. This difference is maintained
by ion pumps, as shown in Figure 2.1, which provide the active transport. Then
when alpha-motor anterior horn cell is activated either by reflex or via the central
nervous system, the excitation is conducted along the motor nerve leading to an

Chapter 2. Literature Review 9

electrical potential being formed at the motor endplates. This causes the diffusion
characteristics of the muscle fibre membrane to change, leading to sodium ion in-
flow. The membrane, therefore, becomes depolarized, which is quickly reversed
via the ion pumps leading to repolarization [59].

2.1.2 Characteristics of sEMG

Figure 2.1 presents a simplified view of the EMG signal itself, which is also more
complicated in practice. The key characteristics of sEMG signals are:

• Amplitudes in the µV to low mV range depending on muscle type and con-
dition [60, 61]

• The resting potential is typically ∼-80/-90mV [1, 59]

• Two distinct phases: transient followed by a steady state[62]

– During contraction, voltages may be either positive or negative [55]

• Bandwidth for most significant activity in the range 5-500Hz although other
bandwidths such as 20-450Hz are used depending on area and application
of interest [59, 63–65]

– The entire usable range is 0-500Hz [66, 67]

– The most significant spectrum is 50-150Hz [66]

• May be modelled as a non-stationary stochastic process [55, 66]

• Composite of all the muscle fibre potentials underneath or near each elec-
trode [55]

2.1.3 Signal Processing Issues

From a signal processing standpoint, the major issues that must be considered are:

• Motion artefacts caused by movement of electrode relative to the skin (typi-
cally 0-20Hz) [55, 66]

• Quasi-randomness of motor unit firing [55, 66]

• Electrode design (particularly self-interference from circuitry design) [37, 55,
66]

• Electrode placement determines which muscle fibres will be targeted and
precise anatomy varies significantly between individuals [68]

10 2.1. Electromyography

• Cross-talk from nearby muscles [56]

• Muscle fatigue alters the action potentials of muscles [68, 69]

• Interference from Electrocardiography (ECG) signals [59] (when near the
heart)

• Interference from nearby equipment or power supplies (generally 50-60Hz)

2.1.4 Summarised History of EMG

The term EMG was first used by French scientist Étienne-Jules Mare in 1890 how-
ever work on what would now be called EMG is recorded as far back as 1666
when experiments were performed on the muscles of electric ray fish[70]. The
beginnings of clinical usage began in 1922 when it was shown that the electrical
signals from muscles could be recorded and analysed [71]. The first use of sEMG
was in 1966 to monitor the activity of speech muscles [72]. This work was ex-
panded upon in 1983 when a clinical method was introduced that demonstrated
sEMG could be used to assess the neuromuscular contribution to pain states [73].

Since 1983 EMG and sEMG have mostly been used in clinical and research
settings. Primary uses include robot control [74], identification of neuromuscular
disorders [75], rehabilitation [76] and prosthetic control [77].

In late 2014 Thalmic Labs shipped an sEMG device called the Myo Armband
[78] which provided a low cost, user-friendly way of gathering and using sEMG
data in real time. The low cost of the device means that the electrode (and thus
signal) quality is not comparable to medically certified devices. The commerciali-
sation of an sEMG device, however, moved sEMG toward wider spread usage.

2.1.5 Electrode Types

Invasive EMG (intramuscular) data acquisition typically makes use of needle elec-
trodes that use a pointed tip as a detection surface or fine wire electrodes that
utilise small diameter wires typically made of a non-oxidising alloy [79]. Applica-
tion of these kinds of electrodes often requires strict certification and supervision
to ensure no harm is done to the subject.

There are two types of electrode typically used when gathering sEMG data:
Gelled electrodes and Dry electrodes [80].

Gelled electrodes use an electrolytic gel as an interface between skin and elec-
trode, which acts to minimise electrical noise. In this setup, a redox reaction occurs
at the metal junction of the electrodes producing the observed signal.

Chapter 2. Literature Review 11

Gelled electrodes are also manufactured in single-use and reusable variants
with the single-use variant being most common. The main drawback of gelled
electrodes is the greater need for special skin preparation, such as hair removal
and cleaning as well as the need to apply the gel to the subject, which can make
usage cumbersome.

Dry electrodes forgo the gel interface and place the metal contact directly on
the skin. These electrodes often contain multiple detecting surfaces and integrated
pre-amplification/filtering circuitry to improve signal quality. Due to the desir-
ability of local circuitry, dry electrodes are usually heavier than a gel counterpart.
This added weight can lead to issues with keeping the electrodes affixed to the
subject and in a stable relationship with the muscles. Engineering for platform
stability is, therefore, seen as vital.

Furthermore, sEMG sensors may be classified as active or passive. Passive elec-
trodes do not use any filtering/amplification circuitry prior to signal output while
active sensors do; therefore, most dry electrodes fall under the active category.

The most common material for the metallic contact of electrodes is silver-silver
chloride (Ag-AgCl) which in 2002 was estimated to be used in 80% of sEMG
applications [80]. Ag-AgCl is popular because of its relatively low impedance
and low half-cell potential [81]. It is considered "the gold standard" material for
sEMG electrodes at the time of writing [82].

In general intramuscular electrodes provide better quality and better-targeted
recordings since they can be placed closer to specific muscles (including muscles
deeper within the body) thus reducing cross-talk and improving discrimination.
However, for human-machine interaction purposes, it is highly undesirable to re-
quire invasive procedures; therefore, surface electrodes are much better suited to
the task.

2.1.6 Skin Preparation and Electrode Placement

Proper skin preparation improves the quality of the sEMG signal received when
using any type of surface electrode. Specifically, skin preparation aims to provide
impedance matching between skin and electrode. This maximises power transfer
between the two by minimising signal reflection. Ideally, all hair and other dead
skin cells, as well as moisture, would be removed from the electrode locations.
The typical advice is to use an abrasive gel to reduce the dry layer of skin and
then clean with alcohol to eliminate moisture [79].

Most surface electrodes utilise two detecting surfaces in a bipolar configura-
tion. In this configuration, the detecting surfaces should be 1− 2cm apart [66]. The
ideal placement for this kind of electrode involves adjusting the electrode’s longi-

12 2.1. Electromyography

tudinal axis (that which intersects both detection surfaces) parallel to the length
of the muscle fibres. The electrode should also be between the motor unit and
tendon insertion of the muscle of interest, empirically placing detection surfaces
on the belly of the muscle has proven to produce good results; likely due to this
being the location of highest muscle fibre density [66]. Figure 2.2 shows this ideal
placement; as can be seen in the figure this placement maximises intersection with
muscle fibres, which results in an improved signal due to the electrical superposi-
tion of the resultant signals.

Figure 2.2: Ideal positioning for a bipolar electrode maximising intersection with muscle
fibres [66].

2.1.7 Applications of sEMG

Key sEMG applications are:
Human-Computer Interaction, which has the potential to provide a more nat-

ural interface for controlling computers and devices. For users with a physical
disability, sEMG also has the potential to improve the interaction experience con-
siderably.

Physiotherapy and Rehabilitation, typically an electromyogram can be recorded
to evaluate the activity of skeletal muscles that a doctor may analyse to determine
whether a patient’s muscles are working correctly. Beyond this basic human-in-
the-loop use, however, research is being conducted to automate this detection [83]
and provide feedback not just to doctors making an assessment but also as part of
neuro-rehabilitation where stimulation can be targeted to malfunctioning muscle
tissue [84, 85].

Prosthetic Control is a growing area for sEMG [86]. It has the benefit over neural

Chapter 2. Literature Review 13

interfaces that it does not cause neural scarring. Additionally, through techniques
such as targeted muscle re-innervation, it is possible for new nerve clusters and
muscles to be grown specifically for the control of a prosthetic [17].

Robotic Control, as it is possible to map EMG signals to control of humanoid
robots, such as robotic arms, in a natural way. Interaction with robots in this more
natural way is important to consider as it reduces the training time for operators.
In exoskeleton robotics being able to control a device without the need for a tradi-
tional interface has been shown to improve the utility of a system as well as user
comfort [87].

Other uses for EMG being explored currently are: facial expression recognition
for use in psychological studies and speech recognition without audio data [88,
89], new diagnostic tests for diseases [90], translation of sign language in real-time
[91], and design of fall prevention mechanisms for lower-limb amputees [92].

2.1.8 Myo Armband

The Myo Armband [78] (pictured in Figure 2.3) is of particular relevance to this
work as its attractive cost (£150) relative to other sEMG detection systems, e.g.
Delsys Trigno Wireless System (∼ £15000) [93], and usability makes it ideal for
widespread usage. Simultaneously the quality constraints imposed by such a low
price make utilising the data a challenging problem.

Figure 2.3: The Myo Armband, a low-cost commercial sEMG device [78].

The Myo uses eight stainless steel electrodes in contrast to the more typical Ag-
AgCl electrodes. The electrodes are active and make use of custom amplification

14 2.2. Machine Learning Overview

circuitry before outputting data via Bluetooth which can be read via an Applica-
tions Programming Interface (API). The Myo samples sEMG at 200Hz, giving it a
bandlimit for perfect reconstruction of ≤ 100Hz [94]. This relatively low bandlimit
would appear to limit its utility as the interesting range of EMG is generally held
as 50-150Hz, and the useful range can extend up to 500Hz [66]. The following
chapters, however, will demonstrate that despite its limitations, the Myo can be a
valuable tool for sEMG classification.

The Myo also contains a nine axes Inertial Measurement Unit (IMU) which
is made up of a gyroscope, accelerometer, and magnetometer, each of which has
three axes. This data is sampled at 50Hz and is transmitted over Bluetooth and
made available via the API.

Many other EMG acquisition systems exist, but the convenience and cost re-
duction provided by the Myo significantly reduce the barrier to entry while also
helping broaden the appeal of sEMG based interaction. Evidence of this can be
seen in the diverse research directions taken by recent work on sEMG utilising the
device [95–98].

For these reasons, considerable effort is devoted to utilising the Myo Armband.

2.2 Machine Learning Overview

Let the definition of "Machine Learning" in this thesis’ context be:
“The field of study that gives computers the ability to learn without being

explicitly programmed.”
This definition is attributed to Arthur Samuel (1959); it allows explicit encod-

ing of the role machine learning plays in this work, which is to serve as the method
for prediction. Related fields include statistics and data mining. This work often
draws on machine learning literature while using statistical and analytical tech-
niques to inform choices in how to choose and design learners to make predictions.

This work focuses on the problem of classifying hand gestures from sEMG
within the framework of "End-to-End" learning, that is taking in raw data and
designing a process that predicts the current hand gesture.

2.2.1 Feature Engineering

The first step in the "End-to-End" pipeline is typically the design and extraction of
useful features. The idea being to represent the underlying data in the most infor-
mative way possible. This can aid interpretation of the data as well as reduce the
informational, computational, and complexity load on any predictive algorithm
used, which typically also improves the algorithm’s performance.

Chapter 2. Literature Review 15

Feature extraction is closely related to dimensionality reduction as features
that lead to high performance often remove redundant and collinear information
in the data. Similarly, useful features often incorporate an aspect of dimension-
ality reduction as this is an effective way of aiding algorithms in learning high-
performance prediction.

The major downsides to feature design are the need for hand-crafting of the
representation (often requiring domain-specific knowledge), the additional load
incurred by extraction and the potentially complex trade-offs and interactions with
prediction algorithms involved in the selection of individual features or combina-
tions thereof.

The issue with features is well highlighted in sEMG classification by the large
number of proposed features and the difficulty in attempts to compare them in the
literature. The reason it is difficult is the diversity in experimental procedures and
capture devices used, which reduces a researcher’s ability to make quantitative
comparisons [68, 99, 100]. This is in addition to the standard issues of feature-
classifier interaction and information loss from dimension reduction. Lack of data
availability from many studies potentially further exacerbates these issues. In
contrast, the computer vision community has made fast progress on the basis of
shared data sets for the benchmarking of algorithms and competitions such as
Imagenet [101].

2.3 Neural Networks and Deep Learning

A large component of this work focuses on leveraging the predictive power of
neural networks. The first and foremost reason to use neural networks is their
state-of-the-art performance on a diverse range of problems [102]. Given the dif-
ficulties shown by previous work [37, 46] in reaching high levels of performance,
neural network’s are, therefore, a natural research avenue. In the context of sEMG
hand movement classification, the other key advantage is the ability to form a
complete end-to-end classification solution by bypassing the difficulties posed by
feature extraction described in Section 2.2.1. Finally, the recent emergence of low-
cost, efficient hardware designed for running neural networks, e.g. the Jetson TX2
[103], enhances their appeal for situations where a general purpose computer is
unavailable or undesirable.

The main disadvantages are the fact that the resultant model is typically a
black box making interpretation of the model difficult without additional mea-
sures. Training also requires potentially large amounts of data and significant
computation time.

16 2.3. Neural Networks and Deep Learning

In the ∼ 7 years since Alexnet [104] the phrase "deep learning" has grown to
encompass the majority of neural network based endeavours. There is no precise,
universally agreed definition of "deep learning" however here it shall be defined
as:

“Any neural network with an architecture more complex than a one hidden
layer Multilayer Perceptron (MLP)”

Before exploring deep learning, however, it is necessary to ensure grounding
in the fundamentals of neural networks. This section covers the fundamentals of
neural network design and implementation in terms of the maths involved, archi-
tecture choices and hyper-parameter choices as well as summarising the history
of the field.

2.3.1 No Free Lunch Theorems

The "no free lunch" theorems for machine learning and optimisation were de-
rived by David Wolpert in the 1990s and have proved contentious within the ma-
chine learning community [105, 106]. The salient point of Wolpert’s work was
that two optimisation algorithms will perform the same when their performance
is averaged across all possible problems. The insight being that finding a tech-
nique, method, algorithm or set thereof that can be applied in any circumstance
is not possible, therefore making informed choices in solution design is necessary.
The theorems are tempered by the fact that real problems are not randomly se-
lected with uniform distribution from the set of all possible problems which leads
to algorithms such as cross-validation performing better, on average, in practical
problem-solving contexts [107].

2.3.2 The Neuron Model

A modern neural network is similar to most other ML algorithms in that it allows
fitting a prediction function to a given set of input and outputs, provided sufficient
quantity and quality of data is available.

Neural networks have a basis in the biology of the brain, which makes a useful
starting point for the topic as well as providing intuitions into basic neural network
operation.

Figure 2.4 shows a biological neuron and its counterpart model as used in
neural networks. Both form the basic computational unit in their respective system
although note that the mathematical model used is a gross simplification of real
neuron interaction, meaning direct comparisons to real brain action are not useful.
Neural networks are biologically inspired as opposed to an attempt to model real

Chapter 2. Literature Review 17

Figure 2.4: Drawing of an abstract biological neuron (top) and the mathematical neuron
model used in neural networks (bottom) [108]. The analogy between the two is highlighted
by the coloured text.

brain activity.

The model in Figure 2.4 is not immutable. For instance, it is possible to delay
the application of the activation function or allow a neuron to reference its past
outputs, however, unless otherwise specified, it is assumed the following equation
describes a neuron’s output:

y(x) = f
(

∑
i
(wixi) + b

)
(2.1)

where f is the activation function, wi is a weight associated with the connection i,
xi is the input on connection i and b is a bias term.

2.3.3 Training and Backpropagation

Once an architecture has been selected it must then be "taught" via training on a
given set of data. The dominant algorithm for accomplishing this training is the
backpropagation algorithm.

Backpropagation itself is a special case of automatic differentiation with reverse
accumulation and is used in conjunction with an optimisation algorithm and loss

18 2.3. Neural Networks and Deep Learning

function to adjust the weights of neurons in the network to minimise the loss
function. The basis of backpropagation is to apply the chain rule through all
possible paths through the network utilising dynamic programming to minimise
the computation incurred by the vast number of possible paths [109, 110].

After a forward pass through the network, a loss value (error) is calculated
for each output based on the selected loss function. The optimisation function
defines how weights should be changed to reduce the error and backpropagation
allows the error to be propagated backwards from the output to the input which
makes it possible to update every weight in the network. This is why neural
backpropagation is a supervised algorithm; it is necessary to have a target to
compare against in order to compute the error.

Rather than passing a single input through the network and computing the er-
ror, it is typical to use a batch. A batch consists of storing the error of multiple for-
ward passes and using the mean (or another function) of those errors to compute
the update to be backpropagated. Batching reduces the computational overhead
of training as modern implementations, particularly when using GPUs, make the
cost of additional forward passes, once the model is loaded, small. Batches also
smooth out training by reducing the likelihood of substantial changes in direction
between updates. Batch size then becomes a hyper-parameter for training which
can be adjusted to improve training times but must be monitored as overly large
batches can harm performance [104].

Batches also prevent all weight updates becoming strictly positive or negative
in a particular update pass as can be caused by all the inputs becoming positive.
This issue is most relevant when using non-zero mean activations, such as the
sigmoid function (see section 2.3.4).

Using batch sizes that are powers of 2 may also improve computation time both
for training and testing due to the alignment of virtual and physical processors in
GPUs. However, this has not been explicitly studied and thus is better used as a
guideline.

Once the error for a batch has been computed the backpropagation algorithm
computation of the appropriate partial derivative of the loss to flow back to a
neuron so it can be updated. Algorithmically for a given weight in a layer l:

δL
δw(l)

=
Nl+1

∑
i

(
δL

δw(l+1)
i

·
δw(l+1)

i

δw(l)

)
(2.2)

where δL
δw(l) is the partial derivative of the loss L with respect to the weight to

be updated w(l) of layer l. Nl+1 is the number of weights in the layer l + 1 and

Chapter 2. Literature Review 19

i indexes the weights in the layer l + 1. This method can be applied recursively
from the network output to reach any given weight with intermediates stored and
reused to reduce computation. Figure 2.5 illustrates this visually with respect to
the neuron model.

Figure 2.5: Backpropagation through a single neuron via application of change rule, L is
an incoming loss or error signal ([108], edited).

Loss Functions

Correction selection or design of loss of function is essential to ensure training
converges to a useful model. Where there are multiple objectives, it is generally
necessary to hand design the loss function to account for the differences between
the types of predictions and weightings of each objective. Particular attention
must be paid to the relative scaling of objectives as if one objective has a broader
range it can dominate training, therefore, each objective must be scaled to the same
range or weighted appropriately for the problem. There are several common loss
functions that can be used on the majority of problems and make useful bases for
designing custom loss functions.

Mean Squared Error (MSE) is defined as

L =
1
N

N

∑
i=1

(yi − ŷi)
2 (2.3)

where L is the loss, N is the number of output values, yi is the true output and
ŷi is the predicted output. When targets are all in the same range computation is
often saved by omitting the divide by N, the function is then called the L2 Loss.

Mean Absolute Error (MAE) is similar to MSE but takes the absolute value in-

20 2.3. Neural Networks and Deep Learning

stead of the square.

L =
1
N

N

∑
i=1
|yi − ŷi| (2.4)

Similar to MSE the division by N can be dropped in some cases, in which case it
is called the L1 Loss.

MSE or L2 loss is generally less robust than MAE or L1 loss since L2 squares
the error making it much more sensitive to outliers than L1. L1, however, can
suffer from instability in the solution making L2 generally a better solution when
outliers can be accounted for. The instability in L1 loss is caused by the constant
magnitude of its gradient, which can cause inappropriately large updates when
close to minima.

Cross-entropy or log loss is useful when using probabilistic predictions for class
labels. It is defined as:

L = −
N

∑
i=1

K

∑
k=1

y(k)i log (ŷi
(k)) (2.5)

where y(k)i is the true probability of class k for sample i and
ˆ

y(k)i is the predicted
probability of class k for the sample i. The cross-entropy is generally used with an
output layer that uses the softmax activation function.

The primary benefit of the cross-entropy loss is that it accelerates learning by
making the weight update rate proportional to the error in the output instead of
the gradient of the error [111].

This setup is canonical with using a softmax activation function (see Section
2.3.5) in the output layer. When it is used there is a probabilistic interpretation of
the output.

Optimisation Functions

Once the loss has been computed for a particular example, batch or mini-batch,
an optimisation function is required to determine how to use that loss to update
the weights of the neurons in the network. The Stochastic Gradient Descent (SGD)
method with momentum is the typical starting point:

vt = γvt−1 − η∇ f (wt−1) (2.6)

wt = wt−1 + vt (2.7)

where vt is a velocity term initialised at 0 and recomputed at each update step,
γ is the momentum term, vt−1 is the previous velocity, η is the learning rate and

Chapter 2. Literature Review 21

∇ f (wt−1) is the gradient of the error signal at the weight wt−1. wt is the new
weight. The error term is computed from the cost function and backpropagated
to the neuron being updated. The momentum term γ is a value in the range [0, 1]
which adjusts the attenuation of the update velocity, making it act more similarly
to a friction coefficient than momentum despite the naming.

The gradient term is often augmented to become Nesterov (accelerated) mo-
mentum due to reliable, practical results and better convergence guarantees for
convex functions [112]. Adding Nesterov momentum is done by modifying the
weight update to the following three-step process:

wahead = wt−1 + γvt−1 (2.8)

vt = γvt−1 − η∇ f (wahead) (2.9)

wt = wt−1 + vt (2.10)

The idea is to evaluate the gradient update with the weight that would be pro-
duced by the momentum update step alone, a "lookahead" on the gradient update
portion of the equation. Figure 2.6 visualises this method.

Figure 2.6: Comparison of momentum and Nesterov momentum in terms of update rule
[108].

There are many different optimisation functions that improve upon SGD, typ-
ically by allowing for varying learning rate η (making selection of the value less
critical), speeding up convergence or introducing optimisations for different sets
of problems. In this work, the Adam [113] algorithm is used as the choice of op-
timisation function; it is covered in greater detail in Chapter 5, where it is first
used.

22 2.3. Neural Networks and Deep Learning

Methods based on the Newton method [114] take the form

wt = wt−1 − [H f (wt−1)]
−1∇ f (wt−1) (2.11)

where H f (wt−1) is the Hessian matrix (square matrix of second-order partial
derivatives) and ∇ f (wt−1) is the gradient vector. These methods have the po-
tential to improve convergence while reducing the necessary hyper-parameters
(note no learning rate). In deep learning applications, however, explicit computa-
tion and inversion of the Hessian is often infeasible due to its O(n2) complexity
in terms of the number of network parameters.

Quasi-Newton methods such as the Limited-Memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) [115] attempt to bypass this issue by computing an approximate
of the inverse Hessian however often have other limitations e.g. L-BFGS must be
computed over the whole training set rather than batches. These limitations, the
added complexity and lack of scaling to larger problems has meant these methods
are not widely used.

Normalisation

An essential step in the training process is normalisation. While not strictly nec-
essary, normalisation can provide a substantial speed up in convergence time and
help guard against the finding of poor quality minima. Normalisation achieves
this by ensuring that all features/inputs to the network have the same range pre-
venting the learning rate effectively being adjusted proportionally to a feature’s
relative range. This process helps ensure the resultant loss/error surface is con-
ducive to learning.

One standard method is to normalise all data to mean 0 and variance 1, based
on the mean and variance calculated from the training data set:

xi =
xi − µ

σ2 (2.12)

for all input data xi in the data being worked on. µ is the mean value for each
feature in xi calculated from the training data only and σ is the standard deviation
also only calculated from training data.

An alternative approach is batch normalisation. Batch normalisation [116] nor-
malises each output of a layer in a similar way to Equation 2.12 for each training
batch. Utilising batch normalisation has the additional benefits of providing reg-
ularisation and reducing internal covariate shift.

Internal covariate shift is the change in the distribution of network activations

Chapter 2. Literature Review 23

due to changes in the network parameters caused by training. It can be viewed as
the coupling between outputs of earlier layers and later ones. Batch normalisation
reduces this coupling by making the activation distribution more consistent.

Batch normalisation also adds regularisation to a network. The regularisation
comes from the fact that the normalisation computes mean and variance from each
batch, which effectively adds noise to the process.

Regularisation

Good regularisation is vital to prevent overfitting of a network to its training data,
which will result in poor generalisability.

There are many possible ways to regularise a network. Popular choices are
global L1 and L2 weight decay which add a term to weight updates of the form

− λ|w| (2.13)

in the L1 case and similarly in the L2 case:

− λw2 (2.14)

where λ is a hyperparameter. L1 decay allows weights to decay to near
zero values which allows for sparse representations analogous to feature selection
within the network. L2 effectively punishes outliers usually leading to "diffuse"
representations where all inputs are used by some small amount.

Dropout [117] is also a powerful technique to combat overfitting. It functions
by (during training only) randomly removing or nullifying connections at each up-
date step with the probability of a connection being dropped as a hyper-parameter.
Dropout is shown in Figure 2.7.

Regularisation can also be domain-specific. For instance, when working with
images, it is typical to rotate and crop them so that a network learns a represen-
tation that is invariant of such transformations. These are likely to be irrelevant
to the desired output but might cause bias depending on the data set available.
In EMG classification filtering techniques to remove mains noise or known inter-
ference perform a similar job preventing a network learning to classify based on
signals known to be decoupled from the classes under investigation.

2.3.4 Activation Functions

An activation function (Figure 2.4, purple) is the non-linear portion of the neuron
model, which allows fitting to any function. Appropriate selection of activation

24 2.3. Neural Networks and Deep Learning

Figure 2.7: Visualisation of Dropout’s effect on network architecture during training. Left
is a standard neural network architecture; right is the same architecture after applying
dropout [117].

function is critical to achieving the best results in practice [118].

Logistic Sigmoid

A logistic sigmoid is defined as:

f (x) =
1

1 + e−x (2.15)

which effectively compresses any real-valued input into the range 0 to 1. Figure
2.8 shows this squashing effect as well as the function’s derivative.

The logistic sigmoid function is often referred to as, "sigmoid function" or,
"sigmoid" in the neural network literature.

The choice to use the logistic sigmoid function, historically, was based on the
biological analogy for neurons. It can be viewed as an interpretation of the firing
rate real neurons exhibit, i.e. when the inputs multiplied by the weights reach a
threshold, the real neuron will "fire" producing a voltage spike on its output. The
logistic sigmoid represents this with an output of 0 indicating no firing and an
output of 1 denoting firing at the maximum possible frequency.

In the computational model, however, the logistic sigmoid poses a significant
issue. This can be seen in Figure 2.8; the gradient/derivative is close to zero for
any high magnitude input. During training, this causes almost no error to flow
back along the path resulting in little to no weight update and consequently, poor
learning. This issue is known as the "Vanishing Gradient" problem and is covered

Chapter 2. Literature Review 25

Figure 2.8: Logistic sigmoid activation function and its derivative.

in Section 2.3.3.

Another issue presented by the logistic sigmoid function is that its output is
not centred at 0. If all inputs to a neuron (i.e. in the next layer) are x > 0 then the
gradients on all the weights will all be strictly positive or strictly negative which
further hinders the backpropagation algorithm. Specifically, it may be desirable to
increase the value of one weight while reducing the value of another, which is not
possible. This is mostly mitigated by the use of batches in training (since taking an
average of the gradient allows positive and negative updates) this, however, must
be accounted for when using any non-zero centred activation function.

Mathematically this issue can be shown by the following equations:

z = ∑
i
(wixi) + b (2.16)

dz
dwi

= xi (2.17)

dL
dwi

=
dE
dz

dz
dwi

=
dL
dz

xi (2.18)

where L is the incoming loss (alternatively, the error signal). Therefore, unless
dE
dz

= 0 which would preclude training, then if all x > 0 all the gradients will
have the same sign.

Consequently, because of these two issues, the logistic sigmoid function is now
rarely used.

26 2.3. Neural Networks and Deep Learning

Tanh

The tanh function is shown in Figure 2.9 and is another type of sigmoid function.
For neural network purposes, it can be viewed as a scaled version of the logistic
sigmoid function translated to centre on 0 fixing one of the issues of the logistic
sigmoid function. It still suffers from the vanishing gradient problem, however.

Figure 2.9: Tanh activation function and its derivative.

Note that the tanh activation was taken from trigonometry as a replacement
rather than as an evolution of the logistic sigmoid activation.

Rectified Linear Unit

Figure 2.10 shows the Rectified Linear Unit (ReLU) [119]. The ReLU is defined as
max(x, 0) or:

y(x) =

x, x > 0

0, x < 0
(2.19)

The gradient at 0 is technically undefined; however, it is generally set to 0 to
avoid computational issues.

This design introduces the necessary non-linearity for fitting any function
while alleviating the vanish gradient problem by producing a gradient that is
either 1 or 0. These attributes make the design very useful for training networks
with many parameters.

Though a formal study does not exist, it is reasonable to assume that the ReLU
and its extensions are the most popular choice of activation function for most
applications, based on the prevalence of their usage in the literature e.g. [39, 113,
120–130]. The combination of alleviating the vanishing gradient problem while

Chapter 2. Literature Review 27

Figure 2.10: Rectified Linear Unit activation and its derivative. The derivative shows the
useful property of either being 0 or 1 and no other values.

being simple to compute and also improving the convergence rate of gradient
descent [104] make the ReLU an attractive option.

The main issue with the ReLU is that of "dying" [131]. An improper update (too
large and in the "wrong" direction) can cause a ReLU to never activate again on any
data point in the dataset. This means that, during backpropagation, the gradient
of the error with respect to the ReLU is always 0. Therefore the weights do not
update, leading to the ReLU’s "death". Dying can be mitigated by careful selection
of learning rate; however, it remains an issue that must always be monitored when
using the ReLU.

Rectified Linear Unit Variants

Several variants on the ReLU have been proposed that deal with the issue of "dy-
ing". Particularly popular is the Leaky Rectified Linear Unit (LReLU) which allows
a small proportion of the input through below 0:

y(x) =

x, x > 0

αx, x ≤ 0
(2.20)

where α is small value often between 0.1 and 0.01 although this is generally a
global hyper-parameter for the network in question. This is equivalent to max(x, αx).

Other variants include the Parametric Rectified Linear Unit (PReLU) [132]
which makes the α value of the LReLU a learnable parameter and the Exponential
Linear Unit (ELU) which aim to make the mean activation close to zero to improve

28 2.3. Neural Networks and Deep Learning

training times [131].
An alternative neuron design known as Maxout [133] generalises the idea of

ReLUs to encompass the whole neuron by performing the computation:

y(x) = max(w1x + b1, w2x + b2) (2.21)

This keeps the benefits of the ReLU but avoids the "dying" issue at the cost of
doubling the number of parameters to learn in each neuron.

2.3.5 Network Architectural Choices

The Multilayer Perceptron (MLP) is a feed-forward network formed of sequential
layers where each neuron in the layer Li−1 is connected to each neuron in the layer
Li. This design is known as a dense layer. Figure 2.11 shows this design with two
hidden layers, although any non-zero number of hidden layers would qualify as
an MLP. The term "hidden layer" is used to indicate that the layer’s outputs are
not visible under normal operation and as such in most neural networks every
layer except the input and output are considered to be "hidden layers".

Figure 2.11: A basic neural network model; this architecture is also known as an Multilayer
Perceptron (MLP) [108].

Forward Pass

At run time, information in the network flows forward hence the name "forward
pass". Exact programmatic implementation can vary depending on the hardware
and network architecture in use; however, an appropriate model for most cases is
that each layer is updated in turn using the neuron equation:

y(x) = f
(

∑
i
(wixi) + b

)
(2.22)

Chapter 2. Literature Review 29

where the neuron output y(x) in a layer becomes one of the neuron inputs xi for
the next layer.

In the architecture shown in Figure 2.11 this leads to a matrix of the inputs
being read at the input layer, a matrix of outputs being computed for hidden layer
1, then a matrix of outputs for hidden layer 2 and finally the output being com-
puted in the output layer. This output could be either classification or regression
depending on how the output is treated.

Classification Output

When a classification is desired, a typical approach is to make the activation func-
tion of the final layer the softmax function [134].

In Figure 2.11, the output layer only has a single neuron which leads to a
special case of softmax, making it equivalent to logistic regression in the output
layer. The general (multinomial) form of the softmax function is:

y(z)j =
exp(zj)

N

∑
n=1

exp(zn)

(2.23)

for z being the pre-activation function output of a neuron where N is the number
of neurons and j is the output class j = 1, . . . , N.

The softmax function normalises the output such that all outputs sum to one,
making it suited to probabilistic interpretation. If trained using cross-entropy loss
(Section 2.3.3) the output can be interpreted as performing maximum likelihood
estimation because the negative log-likelihood of the correct class is minimised.

Despite this probabilistic interpretation of the output it cannot be treated as a
strict probability, i.e. if the network outputs 0.8 for a class this is not equivalent to
assigning a probability of 80% that the input represents that particular class.

Regression Output

If a regression on the output is desired, the most straightforward approach is to
make the activation function of the output layer the identity function. Alterna-
tively, a restriction may be imposed by using a different function depending on
the application, e.g. constraining the output to non-negative numbers. If used, the
alternate function must be chosen carefully to avoid issues with gradients and to
ensure that it works with the chosen loss function (Section 2.3.3).

30 2.3. Neural Networks and Deep Learning

Dense Layers

Dense or fully connected layers connect each neuron to every input; this is the type
of layer shown in Figure 2.11. Formally each neuron in the layer Li is connected
to each neuron in the layer Li−1 such that:

z(l,k) = f

(
Kl−1

∑
m=1

(
w(l,k,m)z(l−1,m)

)
+ b(l,k)

)
(2.24)

where z(l,k) is the output of neuron k in layer l, ha(.) is the activation function
of the layer, w(l,m) is the weight associated with input z(l−1,m) (output from the
previous layer l− 1). m indexes these inputs, of which there are a total of Kl−1 and
lastly b(l,k) is a bias term.

Superscript indexing is used for consistency and to avoid space issues caused
by the numerous indexes necessary for more complicated layers.

Convolutional Layers

Convolutional layers are similar to dense layers; however, instead of global con-
nectivity to the previous layer, each neuron is only connected locally to a small
number of neurons in the previous layer at any given time. The connections are
then moved, as part of the forward pass, so that each neuron’s local connection
pattern is swept through the previous layer [104, 135]. This process encodes the
explicit assumption that local information is useful for solving the problem.

A network that makes use of convolutional layers is generally known as a
Convolutional Neural Network (CNN). CNNs have seen usage in many domains,
often improving the state-of-the-art. The idea for convolutional layers came from
the study of the visual cortex where it was noted that individual neurons in the
visual cortex respond to stimuli in small regions of the visual field.

Convolutional layers solve the scaling issues inherent in dense layers by en-
forcing local connectivity, which dramatically reduces the number of parameters
compared to a dense layer. For example, a small 400 × 400 pixel RGB image
would need 400× 400× 3 + 1 = 480001 weights per neuron in a dense layer. This
quickly makes the network unmanageably large, leading to issues with computa-
tion, necessary data and overfitting. A convolutional layer, in contrast, can accept
the same size input with parameter numbers orders of magnitude lower. For in-
stance, a 5× 5 convolution with 64 filters on an image with 3 colour channels uses
(5× 5× 3 + 1)× 64 = 4864 weights no matter the height or width.

In modern convolutional networks, many convolutional layers are stacked on
top of each other. Each layer is composed of k learnable filters where each is

Chapter 2. Literature Review 31

connected to a small volume of the previous layer (and the original image in the
input layer). This connected volume, known as a receptive field, is then swept
through the filter’s input volume to produce a map of features at the filter out-
put. This process allows the lower level layers to detect edges, the ones above to
detect groups of edges and the higher level layers to identify motifs and complex
patterns. Intuitively a network such as this encodes the idea that local features are
important, that they are equally relevant anywhere in the input, and that there is
a hierarchy present.

The neuron model thus remains the same, the only difference being which
inputs are connected. The number of parameters for each filter is, therefore, cal-
culable as

n = Fw × Fh × xd + 1 (2.25)

where n is the number of parameters, Fw is the filter width, Fh is the filter height,
xd is the depth of the input and the additional 1 comes from the bias term.

Consider images as 3D volumes where the depth is the colour channels. Each
convolutional filter is considered to have dimensions equal to the number of di-
mensions it moves through, i.e. for an image, a 2D convolutional filter generally
sweeps a volume of some small width and height through the image connecting
fully depth-wise. Figure 2.12 shows an example on a 32× 32 image with 3 colour
channels.

Figure 2.12: Example of connections in a convolutional layer with 5 filters showing the
volume each filter "sees" in the input image, which is a 32× 32× 3 volume [108].

The output dimensions of the convolutional layer are defined by the input
dimensions and three hyper-parameters: the number of filters used, the stride
size and the padding.

32 2.3. Neural Networks and Deep Learning

The number of filters used directly determines the layer output depth as fea-
ture maps are stacked.

Stride determines how far the filter is moved through the input volume at each
step. If the stride is 1 then the filter is moved one pixel at each step. The stride is
set for each dimension to be moved through and often makes the output smaller
in those dimensions.

Lastly, zero-padding may be added around the input of each layer to control
the dimensionality of the output volume.

Figure 2.13: Illustration of stride for a 1D convolutional filter. The filter is shown in the top
right and has length 3 with no bias term. The example on the left uses a stride of 1, and
the example on the right shows the same input with a stride of 2 showing the difference
in calculation and output volume [108].

Figure 2.13 shows a numerical example of the filter update for a 1D convolution
with differing stride sizes. It can be seen that a padding of zeros can be added
to edges of the input to change the resultant output size. Care must be taken
in selecting appropriate filter sizes, and padding parameters or the edges of the
input may be missed due to the input size not being exactly divisible by the filter
size in a particular dimension.

In this thesis, 2D convolutions are primarily used for their flexibility, although,
in several cases, they equate to 1D convolutions evaluated in a 2D manner. The
equation for 2D convolutions is

z(l,k)r,c = f

((
Kl−1

∑
m=1

Rl−1

∑
i=0

Cl−1

∑
j=0

w(l,k,m)
i,j z(l−1,m)

r̃+i,c̃+j

)
+ b(l,k)

)
(2.26)

where z(l,k)r,c is the neuron output at location (r, c) in the current layer l, for r =

1, . . . , rl , c = 1, . . . , cl . Rl × Cl is the convolution filter size, the convolution filter
indexed by k, for k = 1, . . . , Kl , is composed of the adjustable CNN weights w(l,k,m)

i,j .
m indexes the filters in the previous layer, b(l,k) is a bias term and ha(.) is the
activation function of the current layer. The terms r̃ and c̃ index locations in
the previous layer l − 1 which for odd numbers begins at r̃ = r − bRl/2c and
c̃ = c− bCl/2c and the offset must be chosen by the designer for even numbers.
The 1D case is a particular case of this equation where the Rl or Cl summations

Chapter 2. Literature Review 33

are removed. For higher dimensional convolutions additional summations must
be added for each additional dimension.

Stride is handled by increasing the step size used when selecting r and c loca-
tions to compute then concatenating the results while maintaining relative posi-
tions to form the new output matrix (see Figure 2.13)

Typically in a CNN, the last convolutional layer is flattened and fed into a
dense layer to produce the final output although this is not strictly necessary and
can be replaced with a 1× 1 convolutional layer with a number of filters k equal
to the number of labels to make a fully convolutional network.

Since the neuron model has not been altered in constructing a convolutional
layer, dense layers and convolutional layers are fully interchangeable. That is, it is
possible to convert any convolutional layer to a fully connected layer that performs
the same computation and vice versa.

Pooling Layers

Pooling layers can be used between convolutional layers in CNNs. They per-
form downsampling by reducing the non-depth dimensions of their input volume.
Downsampling allows a reduction in the number of parameters in the network,
reducing computational requirements and helping guard against overfitting. The
downside to pooling layers is that, as with any downsampling, information is lost
in the process which can impact performance.

Pooling layers follow a similar architecture to convolutional layers. They use a
filter size such as 2× 2 and apply a function at each depth level sweeping across
the input volume with a defined stride. The difference is that the function gener-
ally does not have learnable parameters like a convolutional filter.

Taking the max value of the filter region is a typical approach which produces
good results in practice; however, the filter function is a hyperparameter. Other
functions that are often used are mean, L1 and L2 norms. The different functions
allow for control over sparsity and to encode assumptions about the importance
of information in the network. Figure 2.14 shows an implementation of a max
pooling layer and how it reduces the output dimensions as well as its effect on
images.

Recurrent Layers

Layers with recurrent connections allow information to be retained between for-
ward passes of a network and thus allow for dynamic temporal behaviour. This
also makes them excellent candidates for handling sequences and dealing with

34 2.4. Hand Movement Classification

Figure 2.14: Illustration of the spatial reduction caused by the pooling layer and its effect
on an image (top). The bottom example is of a max pooling layer with stride size (2, 2)
operating on a 4× 4× 1 input volume [108].

variable length inputs such as in speech recognition [136].

Modern variants often make use of the Long Short-Term Memory (LSTM) [137]
units or the Gated Recurrent Unit (GRU) [138] which help alleviate the vanishing/-
exploding gradient problems common when using simple recurrent units [139].
The designs are shown in Figure 2.15. Combating vanishing/exploding gradient
is achieved via the various switches within each unit that control information and
learning flow (via additional learnable parameters) such that long term dependen-
cies can be captured and information explicitly "forgotten" rather than gradually
removed via learning updates.

2.4 Hand Movement Classification

One of the key obstacles to the usage of EMG in many cases is the difficulty
and expense of large scale data acquisition. The necessary hardware is expensive,

Chapter 2. Literature Review 35

Figure 2.15: Illustration of an Long Short-Term Memory (LSTM) unit (left) and Gated
Recurrent Unit (GRU) (right). On the left i is the input gate, f is the forget gate, o is the
output gate, c is the memory cell, and c̃ is the new memory cell contents. On the right r is
the reset gate, z is the update gate, and h and h̃ are the activation and candidate activation,
respectively [139].

although the Myo Armband has helped in this regard (Section 2.1.8), experiments
may require hours to acquire reasonable amounts of data which can cause fatigue
or attention issues and acquisition of ground truth requires special attention and
methods.

Until recently, this hurdle to data collection stifled research progress due to a
culture of closed-source databases [21, 27, 29, 33, 35, 43, 140–144] requiring any
potential researcher to undertake significant initial effort to acquire the data nec-
essary for an investigation. This goes against the lessons learnt form other fields
e.g. image recognition where the consensus is that making data publicly available
facilitates progress [145].

In an effort to overcome this significant hurdle the Non-Invasive Adaptive
Hand Prosthetics (NinaPro) Project [37, 46, 146] (now also the Megane Pro Project
[147]) have produced several databases of sEMG data and various other sensor
data on both healthy subjects and trans-radial amputees. Along with the data,
they have also published studies looking to benchmark classification performance
on and explore the data [37, 48, 148]. More recently, they have also applied deep
neural networks to the problem [47], although they did not find a design that
improved upon other techniques.

This work dedicates a significant amount of effort to expanding upon the re-
sults presented by the NinaPro project improving upon classification performance
through algorithmic choices as well as data processing and validation techniques.
The NinaPro data sets were chosen not just because they are freely available but
because they present data from high-quality electrodes used on a relatively large
number of participants with significantly more movements tested than most other

36 2.4. Hand Movement Classification

studies. This makes the data ideal for exploring what is possible with sEMG clas-
sification.

Aside from the issue of closed-source data, there are several other vital issues
in the field that require addressing. Most important is that of agreeing on the
appropriate metrics and validation procedures as these vary significantly study to
study making results even on the same data largely incomparable without reim-
plementation of past methods. Relatedly, as with data, the code used is often not
published or not published in a functional state which exacerbates the problem of
repeatability and comparison to existing studies.

Another issue in designing new studies and comparing with old studies is the
definition of ground truth and decisions on what is to be classified. One of the
bigger issues being whether rest should be classified, some studies choose to omit
it from classification [21, 24, 26, 29, 42–44] while others include it [19, 20, 23, 37, 39,
48] which can make a difference in the results reported as well as being essential
to practical applications. These topics will also be extensively covered in later
chapters.

In general, the field focusses on the classification of relatively small numbers of
movements, e.g. 4-7 [18–28] or 9-15 movements [29–35, 149] in comparison to the
∼ 40− 50 in the NinaPro data sets. Expanding the number of movements that can
be classified is vital for the improvement of myoelectric interfaces as it increases
the potential interactions available to users.

Research has been conducted on the fusion of EMG signals with other data
streams, e.g. [150–153]. The aim being to improve performance by incorporating
additional information. Results from these studies are generally positive, indicat-
ing that sensor fusion is a viable way to improve performance in some settings.
Addition of extra sensors, however, increases the cost of the necessary hardware
and the complexity of associated algorithms. These concerns may be minor but
must be balanced with expected performance improvement for a given applica-
tion.

The full spectrum of machine learning algorithms has been applied to EMG
including everything from simple Linear Discriminant Analysis (LDA) classifiers
[23, 37, 42] to Support Vector Machine (SVM) classifiers [19, 37, 154, 155], neural
networks [19, 37, 156], mixture of experts models [157] and many others. Notably,
SVM and Random Forest (RF) classifiers have put up consistently good results in
the past.

Significant effort has also been put into feature engineering to improve the
performance of learning algorithms [55, 62, 99, 100, 158]. Thus far, however, no
single feature or set of features has been found that is optimal in all scenarios

Chapter 2. Literature Review 37

likely due to the fundamental complexity of the received signals. Therefore it is
common to use combinations of features as input to attempt to achieve a more
broadly applicable representation of the underlying information which has shown
good results in practice [37].

2.4.1 Deep Learning Approaches

Newer work has started to make use of deep learning [28, 39, 47, 150, 159, 160],
which allows side-stepping of the feature design problem by offering a complete
end-to-end learning solution with the attractive property of tailoring the effective
feature extraction to each subject.

The work by Atzori et al. [47] demonstrated that a convolutional neural net-
work could be used to achieve performance comparable to, but not better than,
other classification approaches on the NinaPro databases. Their architecture ap-
peared to struggle on the higher frequency data from database 2 losing perfor-
mance relative to database 1 while algorithms such as random forests lost little to
no performance. They conclude that more complex architectures may be necessary
to improve performance over the baseline they set.

Another convolutional neural network solution is presented by Geng et al. [39].
They demonstrate high performance on some data sets using a solution that only
views a single instance of EMG data rather than a window (which is more typical).
The network appears to work particularly well when a large number of electrodes
are available. Their network is evaluated on NinaPro databases 1 and 2 but only
on the full gesture set for database 1. On database 1 it improves upon the accuracy
of Atzori et al.’s results [47] demonstrating that it is possible to outperform other
classification methods using a convolutional neural network.

Further Hu et al. [150] recently extended Geng et al.’s [39] network design by
adding an attention mechanism [161] before the classification output. This allowed
the network to accept windowed input and further improved the accuracy on all
the data sets tested relative to the original. Additional feature engineering was also
added that improved accuracy by preprocessing windows using the Fast Fourier
Transform (FFT) and extracting feature known to be useful in the sEMG domain.

The work by Atzori et al. [47] and Geng et al. [39] is compared to directly
in later chapters. Hu et al.’s work [150] is not due to the timing of its release.
However, Hu et al. [150] shares a majority of its authors with Geng et al. [39] so
it is reasonable to assume supporting methods are similar between the two since
differences are not specified. This is relevant because the evaluation of accuracy
in these works potentially leads to biased results. Issues surrounding result bias
are explored in Chapters 4 and 5.

38 2.4. Hand Movement Classification

Another recent piece of work by Côté-Allard et al. [28] has explored the ap-
plications of transfer learning using deep neural networks. This is of particular
interest since the amount of data on any single subject is often relatively small
since it is unrealistic to gather thousands of examples from an individual subject.
The idea is to take a corpus of data from other subjects and a smaller amount of
data from a new target subject and use the combination of the two sets to improve
overall performance; a concept which is explored further in Chapter 7.

2.4.2 Key Issues

There are three key issues that naturally arise from the literature:
The first issue is the representativeness and comparability of results. Different

studies can vary to a large degree. Differences include, but are not limited to:
numbers of subjects, electrodes used, electrode placement, gestures or movements
used, data capture techniques used, and validation techniques used. This variabil-
ity between studies often makes direct comparison not useful, because the actual
problems being tackled vary substantially.

The way to tackle this underlying issue is by the sharing of data sets and
concerted effort applied to improvement in methods on freely available data.

Even when working on a particular data set, there are still critical issues that
must be addressed. Experimental methods for gathering data on hand movements
typically involve rest-movement-rest cycles. This approach almost invariably leads
to significant class imbalance due to rest being repeated more often than other
movements. Class imbalances are also further amplified by different movement
durations between non-rest classes. Therefore, unless measures are taken to cor-
rect the class imbalance, metrics such as accuracy create misleading results and
classifiers end up over-specialising to a subset of the classes under investigation.

Further, many studies, e.g. [22–25, 30, 37, 39, 46–49], only make use of a single
split of their data. It will be shown herein, that lack of cross-validation further
exacerbates representativeness issues as different splits can bias results.

This issue of representativeness and comparability motivates the investiga-
tion and development of improved validation methodologies. Further, the re-
evaluation of results in the light of improved methods is critical to understanding
the true limits of the field.

The second issue is the lack of high performance on large numbers of move-
ments. Since most studies focus on fewer than 15 movements, e.g. [18–35, 149], the
NinaPro data sets (40+ movements) offer a valuable resource that allows the com-
munity to explore how to improve performance in situations where more move-
ments are required. The results on these data sets, e.g. [37, 48], indicate there is

Chapter 2. Literature Review 39

not yet a classification solution that performs sufficiently well in this context, even
when the utilised metrics are biased towards higher performance.

The lack of a sufficiently high-performance solution motivates the exploration
of neural networks as a way of improving performance, particularly in the context
of many movements. Newer research work also shows the potential benefit of
such methods [39, 47, 150]. Further, this indicates that the exploration of support-
ing methods, such as adaptation to individual subjects, are worthwhile research
avenues.

The final issue is the integration of classification solutions into an online con-
text and the practical concerns it produces. Many studies, e.g. [28, 35, 37, 39, 47,
48, 150, 157, 158], demonstrate results only in an offline context. This means that,
generally, little emphasis is placed on reduction of the computational overhead of
classification. Similarly the offline context does not take into account the practi-
cal issues around implementation on embedded hardware, or how performance
may differ in different usage contexts. Therefore, the optimisation of classifier de-
sign for embedded hardware and the study of practical classification concerns is
motivated.

Chapter 3

Methods

This chapter captures methods used to support the work in this thesis that were
not discussed in the previous chapter.

3.1 Statistics for Comparison of Techniques

A common problem, in this work, is the need to compare different techniques over
multiple subjects controlling for the inherent variability between subjects. In all
the data sets tested herein, subjects show a high degree of variation necessitating
training of algorithms on each individual. Therefore each subject is effectively an
independent data set for the purposes of algorithm evaluation. In the general case,
it is often desirable to test whether a technique produces significantly better per-
formance relative to other techniques when evaluated over multiple independent
data sets.

In this work, multiple classifiers are often compared across a number of sub-
jects, however, the same methods are applied to comparing other independent
variables such as data resampling techniques.

The methodology of Demšar [162] is adopted here to solve this problem as it
is an established approach that minimises the assumptions that need to be made
about the data. The methodology requires that two or more techniques have been
run on a set of data sets and evaluated using a suitable measure. No assumption
is necessary about the sampling scheme; however, the results must provide a reli-
able measure of each technique’s performance on each data set. Herein multiple
resampling of each data set is performed, typically using cross-validation, to en-
sure this reliability. This process leads to N independent, matched measures (one
for each data set) for each of the k techniques under review. The source of variance
is, therefore, the differences in performance over the data sets.

40

Chapter 3. Methods 41

3.1.1 Comparison of Two Techniques

In the special case where the number of techniques k = 2, the Wilcoxon signed-
rank test is used [163]. The test is non-parametric and ranks the difference in
performance between the two techniques for each data set, ignores the signs, and
compares the ranks for positive and negative differences.

The positive rank sum is denoted R+ and calculates the sum of ranks on which
the second algorithm outperforms the first:

R+ = ∑
di>0

rank(di) +
1
2 ∑

di=0
rank(di) (3.1)

where di is the difference between the performance scores of the two techniques
on data set i.

The negative rank sum is denoted R− and calculates the sum of ranks on which
the first algorithm outperforms the second:

R− = ∑
di<0

rank(di) +
1
2 ∑

di=0
rank(di) (3.2)

When the techniques perform the same (di = 0) they are split evenly between
the sums and one is ignored if there is an odd number of such occurrences.

The test statistic is calculated as:

z =
min(R+, R−)− 1

4 N(N + 1)√
1
24 N(N + 1)(2N + 1)

(3.3)

When N is high this statistic is approximately normally distributed, at lower N a
table of exact critical values may be consulted [164].

Where the Wilcoxon signed-rank test is used in this work, it is preferred to
the paired t-test due to the relatively low sample size (in terms of data sets). The
t-test requires the differences between the two tested techniques to be normally
distributed for samples sizes of <∼ 30; an assumption for which there is no pro-
vision for, given the complex relationship between experimental setups, collected
data and the techniques under investigation. The Wilcoxon signed-rank test is also
more robust to outliers [162].

3.1.2 Comparison of Multiple Techniques

It is possible to perform tests such as the Wilcoxon signed-rank test on all pairs of
techniques under consideration on a specific problem. However, when many such

42 3.1. Statistics for Comparison of Techniques

tests are needed the likelihood of incorrectly rejecting at least one null hypothesis
(that two techniques are not significantly different) increases. Formally, multiple
hypothesis testing of this nature requires intervention to control the family-wise
error.

Repeated-measure Analysis Of Variance (ANOVA) [165] is a standard statisti-
cal method for testing the differences between multiple matched sample means.
However, it is not appropriate in this thesis’ context for two reasons. The first is
that it assumes the samples are drawn from normal distributions. This assumption
may be valid when comparing strictly across subjects (with no other modifications)
however when other modifications are present, this assumption is unlikely to hold
true. Second, ANOVA assumes sphericity, i.e. that the variances of the differences
between all combinations of matched samples are the same. An assumption that
cannot be taken for granted due to the diversity of techniques that are investigated
in any given analysis herein. For example, it cannot be assumed that the variance
of the performance differences between a neural network and an SVM is the same
as the variance of the differences between two completely different neural network
designs.

The Friedman test [166] is instead adopted to test whether there is a signifi-
cant difference in the performance of different techniques. The Friedman test is a
non-parametric equivalent of the repeated-measures ANOVA. The test ranks each
technique for each data set separately, with 1 being the best rank and N being the
worst, and computes the average rank for each technique Rj. The null hypothesis
states that all techniques are equivalent, and therefore, their average ranks should
be the same.

The base Friedman statistic is computed as:

χ2
F =

12N
k(k + 1)

[
∑

j
R2

j −
k(k + 1)2

4

]
(3.4)

Iman and Davenport [167] have improved this statistic by removing undesir-
able conservativeness leading to the following test statistic used here:

FF =
(N − 1)χ2

F
N(k− 1)− χ2

F
(3.5)

which follows the F-distribution with k− 1 and (k− 1)(N− 1) degrees of freedom.
If this statistic allows for rejection of the null hypothesis at the given significance
level, then it is possible to proceed with post-hoc testing to determine whether a
technique significantly outperforms the others under consideration.

Chapter 3. Methods 43

Following Demšar’s recommendation [162], the post-hoc Holm step-down pro-
cedure [168] is adopted here.

The Holm step-down procedure requires that the following test statistic be
computed:

z =
Ri − Rj√

k(k+1)
6N

(3.6)

for each technique j being compared to the control technique i. The statistic is
normally distributed and therefore, can be mapped to a corresponding p value.

The p values generated from the above must then be ordered from most sig-
nificant to least significant such that p1 ≤ p2 ≤ .. ≤ pk−1.

Each pi value is then compared, in turn, to a modified significance level:

α

k− i
(3.7)

where α is the desired significance level (here always 5%) and i is the index of the
compared p value. If the p value is less than the modified significance level, then
the corresponding null hypothesis is rejected, and the next comparison can take
place. If any null hypothesis cannot be rejected then all remaining null-hypotheses
are retained as well.

3.2 Machine Learning Algorithms

3.2.1 Support Vector Machines

The literature has shown Support Vector Machine (SVM) to be good at sEMG
hand movement classification tasks [26, 37, 48]. This work uses SVMs as a baseline
alongside a comparison to previous work.

The SVM is a supervised learning algorithm that may be used for classification,
regression or outlier detection (a special case of classification) [169] although in
this work it is only used for classification.

An SVM constructs an optimal hyperplane (or a set thereof) based on some
decision criteria in high dimensional space that, for classification purposes, allows
splitting the input data into

A ∨ B (3.8)

or
A ∨ Ā (3.9)

where A and B are classes and Ā represents not belonging to the class A. A high

44 3.2. Machine Learning Algorithms

dimensional space is used because the assumption is made that if the set were
linearly separable in the original space, then a simpler algorithm would be used
[170].

The hyperplane is defined as:

f (x) = β0 + βTx (3.10)

where x is the support set (closest training examples to the plane), β is the weight
vector and β0 is the bias. There are, therefore, an infinite number of representa-
tions of the hyperplane so by convention the representation satisfying

|β0 + βTx| = 1 (3.11)

is used.

For the purposes of this work, it cannot be assumed that the data is linearly
separable; therefore, it is necessary to use a soft-margin to design the hyperplane.
A soft-margin is a trade-off between training error and margin. A soft-margin is
implemented by using the hinge loss function [170]:

max(0, 1− yi(βxi − β0)) (3.12)

where yi is a class label which takes the value 1 or −1. This function returns 0 if
xi is on the correct side of the hyperplane and is proportional to the distance from
the hyperplane otherwise.

The classifier may then be trained by minimising(
1
N

N

∑
i=1

max(0, 1− yi(βxi − β0))

)
+ λ||β||2 (3.13)

where λ is a hyperparameter that determines the trade-off between increasing the
margin and ensuring points lie on the correct side of the hyperplane.

An SVM in this form is, therefore, strictly a binary classifier. There are two
main ways to apply SVMs to multiclass classification. The first (and more scalable)
approach is to treat the problem as a set of "one vs rest" problems, training an SVM
to distinguish between one class and all the others then running all SVMs at test
time and selecting the class with the largest margin or confidence. The alternative
is "one vs one" i.e. to consider all pairs of classes and use a voting system to
determine the final classification [170].

A kernel function is used to reduce the computational load of the algorithm
by allowing dot products in the high dimensional space to be computed in terms

Chapter 3. Methods 45

of the original lower dimensional space.
Assume there exists a mapping:

ϕ : Rn −→ Rm (3.14)

where Rn is the original input space and Rm is the higher dimensional space the
hyperplane will be designed in. Therefore for some x1 and x2 in Rn the kernel k
computes:

k(x1, x2) = ϕ(x1) · ϕ(x2) (3.15)

without needing to know ϕ or to compute in the higher dimensional space (pro-
viding an appropriate kernel is selected).

The vectors that define the hyperplane can then be determined as linear com-
binations of points in the input data X. Figure 3.1 demonstrates this mapping
function and the differences between the decision boundary made by the hyper-
plane in low dimensional space (left) and high dimensional space (right).

Figure 3.1: Visualisation of kernel mapping (� = ϕ) from low dimensional input space to
high dimensional space where the hyperplane(s) are designed [171].

During training, the best hyperplane(s) are selected according to a loss func-
tion. The Hinge Loss function is typically used for classification problems which
allows the training data to be used to select the hyperplane(s) with the maximum
margin to the two classes.

Once the hyperplane(s) have been learnt a new input’s proximity to the hy-
perplane(s) can be determined for prediction of class, confidence or margin which
may then be used as part of a multiclass scheme or on its own.

The Support Vector Machine - Radial Basis Function Kernel (SVM-RBF) is a

46 3.2. Machine Learning Algorithms

variant of particular note in this work that uses a Radial Basis Function (RBF) as
its kernel. The RBF is Gaussian function expressed as

exp(−||x− vi||2
2σ2) (3.16)

where x is the input (vector), vi is the ith support vector and σ is the standard
deviation of the kernel.

3.2.2 K Nearest Neighbours

K-Nearest Neighbours (KNN) is a one of the simpler machine learning algorithms;
it is used in this work as a classifier, although it can also be applied to regression
problems. It is non-parametric and defers all computation until test time. These
properties often makes it a useful algorithm to use as a benchmark but can present
speed and memory issues at test time depending on the problem.

In the classification setting the algorithm outputs a class label based on a ma-
jority vote of the K closest training examples where each example votes for its class
label. The hyperparameters are the value of K and the metric used to measure dis-
tance for determining the closest neighbours. A common distance measure used
is the Euclidean distance, which can be calculated as:

f (x1, x2) =

√√√√ D

∑
i=1

(x1,i − x2,i)2 (3.17)

where f (x1, x2) is the distance between data points x1 and x2 while D is the di-
mensionality of the data, x1,i indicates the dimension i of the data point 1. Other
commonly used distance measures are the Minkowski and Mahalanobis distances.
A naive implementation, therefore, must search all other data points in the train-
ing set to determine the closest neighbours. Typically, however, data structures
such as k-d trees are used to reduce the necessary computation by reducing the
number of comparisons required.

It is also possible to introduce weighting on the distance metrics, either a-priori
or with gradient learning methods.

3.2.3 Hidden Markov Models

The Hidden Markov Model (HMM) [172] is a statistical model based on Markov
chains [173]. This work focuses only on first-order Markov chains, which are used

Chapter 3. Methods 47

as a solution for online smoothing. HMM’s make the assumption that:

P(St|St−1, ..., S1) = P(St|St−1) (3.18)

That is, the conditional probability distribution of the state S at the time t depends
only on the state at the time t− 1 and thus is independent of all prior states.

The HMM extends the Markov chain by introducing the idea of hidden states
and observable states (also known as emissions). A Markov chain underlies the
model but the states (St) may not be directly observed and instead must be inferred
from observations. This makes the HMM a useful tool for representing probability
distributions over a sequence of observations.

The joint distribution of a sequence of states and observations can be factored
as

P(S1, ..., ST, Y1, ..., YT) = P(S1)P(Y1|S1)
T

∏
t=2

(P(St|St−1)P(Yt|St))) (3.19)

where S is the state, Y is the observation and T is the length of the sequence.
This factorisation allows graphical visualisation of the conditional independence
relations in the HMM, as shown in Figure 3.2.

Figure 3.2: Visualisation of conditional independence of relations in a HMM, structure is
the same as a Bayesian network.

Figure 3.3 shows an example of a HMM with two hidden states and three
observable emissions for illustration purposes.

Given a set of K discrete states, a transition matrix A can be used where
A ∈ RK×K with each element representing the state transition probability for the
current time step t given the state at t− 1:

Arc = P(St, c = 1|St−1, r = 1) (3.20)

where r is the row index (the state at t− 1) and c is the column index (the state at

48 3.2. Machine Learning Algorithms

Figure 3.3: Example of a HMM. The "Start" state shows the initial prior probabilities P(S1)
of the hidden states, solid edges indicate state transition probabilities, dashed edges show
emission probabilities, and circles are states and emissions [174].

t) of A. A also satisfies the following:

K

∑
c=1

Arc = 1, f or all r (3.21)

0 ≤ Arc ≤ 1 (3.22)

The conditional distribution is therefore given by:

P(St|St−1, A) =
K

∏
r=1

K

∏
c=1

A(St, c,St−1, r)
rc (3.23)

The emissions matrix B defines the probability of each of possible observation
(of which there are N) for each of the K states. It, therefore, takes the form B ∈
RK×N and satisfies:

K

∑
c=1

Brc = 1, f or all r (3.24)

0 ≤ Brc ≤ 1 (3.25)

Finally, the joint probability can, therefore, be restated to encompass all the

Chapter 3. Methods 49

necessary parameters and formulated in a more useful way:

P(S1, ..., ST, Y1, ..., YT|A, B, P(S1)) = P(S1)

(
T

∏
t=2

P(St|St−1, A)

)
T

∏
t=1

P(Yt|St, B)

(3.26)

3.3 Evaluation Metrics

3.3.1 Binary Case

When evaluating binary classification problems, a confusion matrix can be used,
as shown in Table 3.1. This layout presents a convenient and intuitive way to
reason about how the classifier performs from different perspectives.

Positive Label Negative Label
Predicted Positive True Positive (TP) False Positive (FP)
Predicted Negative False Negative (FN) True Negative (TN)

Table 3.1: Confusion matrix for binary classification.

The meaning of each entry in the table can, therefore, be formalised in several
ways. Here the definitions used are the same as Sokolova and Lapalme [175]:

• True Positive (TP) is the number of correctly recognised positive class exam-
ples

• True Negative (TN) is the number of correctly recognised negative class ex-
amples

• False Positive (FP) is the number of negative class examples incorrectly clas-
sified as the positive class

• False Negative (FN) is the number of positive class examples incorrectly
classified as the negative class

Common metrics may, therefore, be described in terms of the Table 3.1:
Accuracy is the most commonly used metric and is defined as:

Accuracy =
Correct Classi f ications

Total Examples
=

TP + TN
TP + FN + FP + TN

(3.27)

which is used to represent the overall effectiveness of the classifier but does not
account for imbalance in the numbers of examples belonging to each class or, the
cost of False Negatives and False Positives.

50 3.3. Evaluation Metrics

Precision calculates how often the classifier is correct when it predicts the
positive class and is, therefore, a measure of agreement between the data labels
and the positive predictions of the classifier:

Precision =
Correct Positive Classi f ications

Positive Predictions
=

TP
TP + FP

(3.28)

Recall or Sensitivity measures how effectively the classifier identifies positive
labels :

Recall =
Correct Positive Classi f ications

Positive Labels
=

TP
TP + FN

(3.29)

F-score computes a weighted harmonic mean of precision and recall to deter-
mine the relationship between the data’s positive labels and the predicted positive
labels:

F− score = (1 + β2)
Precision · Recall

(β2 · precision) + Recall
=

(1 + β2)TP
(1 + β2)TP + β2FN + FP

(3.30)

where Recall is assigned β times more importance than Precision.
Specificity measures how effectively the classifier recognises negative labels:

Speci f icity =
Correct Negative Classi f ications

Negative Labels
=

TN
FP + TN

(3.31)

Receiver Operating Characteristic (ROC) is a graphical representation of the
trade-off between Sensitivity and Specificity, showing how changing the settings
of a classifier impacts the two characteristics. The Area Under Curve (AUC) of
this graph can be calculated to provide a threshold and scale invariant measure
of performance on the range [0, 1] with 1 being perfect classification and 0 being
complete misclassification. The AUC is a measure of the average sensitivity for all
possible specificity values [176].

The AUC is also directly related to the Mann-Whitney U Test statistic [177] by
the following equation:

AUC =
U

Np ∗ Nn
(3.32)

where U is the Mann-Whitney U Test statistic, Np is the number of positive class
examples and Nn is the number of negative class examples.

3.3.2 Multiclass Case

In the multiclass case, each class may be evaluated using its own confusion matrix
calculated in a one-vs-all manner or the definitions of TP, TN, FP and FN may
be updated to account for multiple classes. The major difference in the multiclass

Chapter 3. Methods 51

case is that the idea of negative labels is less precise since a negative of one class
is the positive of another.

Therefore in the multiclass case the definitions of TP, TN, FP and FN must be
updated to consider a specific class rather than a positive and negative:

• TPi is the number of correctly recognised class examples of class i

• FPi is the number of times the classifier predicts class i and is incorrect

• FNi is the number of times the label is class i but the classifier prediction is
incorrect

• TNi is no longer a useful definition in the multiclass case because the idea of
a negative class is no longer used and so TNi is omitted from consideration

These definitions capture the fact that the multiclass case requires an extension
of metric calculations to the rows and columns of the confusion matrix. Table 3.2
shows how these definitions function in a three-class classification problem.

Actual Class

Predicted Class

A B C
A TPA FNB/FPA FNC/FPA
B FNA/FPB TPB FNC/FPB
C FNA/FPC FNB/FPC TPC

Table 3.2: Confusion matrix for three class classification. In general, rows contain are
either TP or FP for the predicted class and columns are TP or FN for the actual class.

Metrics in the multiclass case may, therefore, be calculated as either a micro-
average or macro-average. The macro-average is the average of the measure across
classes while the micro-average obtains cumulative totals across all classes be-
fore calculation. The macro-average, therefore, treats all classes equally while the
micro-average weights towards classes with more examples.

Micro-average Accuracy may, therefore, be defined as:

Accuracymi =
Total Correct Classi f ications

Total Examples
=

∑C
i=1 TPi

∑C
i=1 (TPi + FNi)

(3.33)

where C is the number of classes. Note TN and FP are omitted since they are
equivalent to the TP and FN of other classes.

Macro-average Accuracy is defined as:

Accuracyma =
1
C

C

∑
i=1

TPi

TPi + FNi
(3.34)

52 3.4. Data Labelling

which removes the relative class example frequency weighting from the equation.

Micro-average Recall is, therefore, the same as Micro-average Accuracy:

Recallmi =
∑C

i=1 TPi

∑C
i=1 (TPi + FNi)

(3.35)

Macro-average Recall, similarly, is the same as Macro-average Accuracy:

Recallma =
1
C

C

∑
i=1

TPi

TPi + FNi
(3.36)

Micro-average Precision is defined as:

Precisionmi =
∑C

i=1 TPi

∑C
i=1 (TPi + FPi)

(3.37)

Macro-average Precision is defined as:

Precisionma =
1
C

C

∑
i=1

TPi

TPi + FPi
(3.38)

Micro-average F-score and Macro-average F-score retain the same definition
in terms of Precision and Recall (Equation 3.30) except with the Precision and
Recall calculated with the appropriate averaging technique.

Specificity and Receiver Operating Characteristic (ROC) related measures, in
general, are considered not well developed for the multiclass case [175, 178] and
therefore are not considered here.

3.4 Data Labelling

When gathering sEMG data, it is typically necessary to label where, in the data
stream, a subject is performing each movement/gesture, i.e. to delimit each ges-
ture. Delimitation can be achieved by having an expert manually label data with
an appropriate aid such as a video of the experiment with time stamps; however,
this is human time intensive so automated methods are typically employed.

Open loop methods, such as flagging X seconds after a subject has been asked
to assume a gesture, are a standard solution. Open loop methods, however, are not
as accurate in their delimitation compared to methods that incorporate additional
information although open loop methods can significantly speed up the labelling
process relative to other techniques.

An alternative method sometimes used for delimitation is the maximisation of

Chapter 3. Methods 53

the Generalised Likelihood Ratio (GLR) [179] to produce likely delimitations for
rest-movement-rest cycles. This method generates a boundary closer to what an
expert would label but potentially captures unintentional movement or undesired
transitory effects.

The GLR method, as applied to EMG [37], is described in the following section.
First, the EMG is whitened [180]. Then it is assumed that the distribution

of signals during movement and when in the rest state are Gaussian but with
different parameters from each other, which will be determined as part of the
process. These parameters are:

• θ0 = (µ0, σ2
0) is the rest distribution with mean µ0 and standard deviation

σ0

• θ1 = (µ1, σ2
1) is the movement distribution with mean µ1 and standard

deviation σ1

The assumption is made that the movement’s variance is higher than the rest
state and that, since the data is whitened, the means are 0.

The corresponding probability density function for some point x in either
Gaussian distribution is:

p(θ, x) =
1√
2πσ

exp [− (x− µ)2

2σ2],−∞ < x < ∞ (3.39)

Two hypotheses can then be tested for a proposed start and end of the movement
within the segment:

• H0 that there is no movement: all data is rest (i.e. data is drawn from the
same distribution)

• H1 that a rest-movement-rest sequence occurs (i.e. data is drawn from the
distributions in sequence)

Correspondingly the likelihoods for a time period of N samples are:

H0 ⇒ L(θ0) = p(θ0, x[0, N]) (3.40)

H1 ⇒ L([θ0, θ1, θ0]) = p(θ0, x[0, r1−1])p(θ1, x[r1, r2])p(θ0, x[r2+1, N]) (3.41)

Where r1 and r2 are the start and end of the movement respectively.The likeli-
hood ratio can then be expressed as:

L([θ0, θ1, θ0])

L(θ0)
=

p(θ0, x[0, r1−1])p(θ0, x[r1, r2])p(θ0, x[r2+1, N])

p(θ0, x[0, N])
(3.42)

54 3.4. Data Labelling

This can be simplified by ignoring locations not marked as movement because
these will evaluate to 1, therefore the objective function is:

max

[
r2

∏
k=r1

p(θ1, xt)

p(θ0, xt)

]
, 0 < r1 < N, r1 6 r2 < N (3.43)

The distributions θ0 and θ1 may then be estimated from the data:

µ̂0 =
1

(r1 − 1) + (N − r2 − 1)

(
r1−1

∑
k=1

xk +
N

∑
k=r2+1

xk

)
(3.44)

σ̂0 =
1

(r1 − 1) + (N − r2 − 1)

(
r1−1

∑
k=1

(xk − µ̂)2 +
N

∑
k=r2+1

(xk − µ̂)2

)
(3.45)

µ̂1 =
1
N

r2

∑
k=r1

xk (3.46)

σ̂2
1 =

1
N

r2

∑
k=r1

(xk − µ̂)2 (3.47)

Lastly by utilising the log-likelihood ratio the computation required can be
reduced and potential for error due to precision mitigated:

ln
r2

∏
k=r1

p(θ1, xt)

p(θ0, xt)
=

1
2

[
Nm ln

σ0

σ1
+

1
σ2

0

r2

∑
k=r1

(xt − µ0)
2 − 1

σ2
1

r2

∑
k=r1

(xt − µ1)
2
]

(3.48)

Nm = r2 − r1 + 1 (3.49)

An exhaustive search may then be used to find the points that produce the
highest likelihood with further simplification because θ1 is estimated from the
data:

ln
r2

∏
k=r1

p(θ1, xt)

p(θ0, xt)
=
[

Nm ln
σ0

σ1
+

1
σ2

0

r2

∑
k=r1

(xt − µ0)
2 − Nm

]
(3.50)

In practice assumptions may be made on the rest distribution, priors intro-
duced on the likelihood of any one example belonging to a particular class and
minimum movement duration added to reduce the search space and refine the
predictions.

Chapter 4

Robust Feature-Based
Classification

4.1 Introduction

The focus of this chapter is improving the fundamental building blocks of sEMG
based classification. The key novel contributions are an analysis of and set of
solutions for, a host of recurrent problems in the field that frequently negatively
impact how representative results are of expected application-time performance.
Another contribution is that, with the solutions to representativeness issues in
place, appropriate data resampling techniques can be used to produce state-of-
the-art performance with feature-based classification methods. Finally, a novel
evaluation of methods for choosing movements to classify from a superset is pre-
sented, which allows person-specific adaptation of the movement set in order to
optimise performance for an individual.

For any advance in a field to be meaningful, the methods it is built on must be
robust and reproducible, or the contribution cannot be appropriately evaluated.
There are several recurrent issues in the sEMG classification field that are tackled
here to lay the groundwork for performance improvements in this and future
chapters.

While not directly tackled by the work in this chapter, one of the most fun-
damental issues is access to the data used for a study. Many studies [18, 21, 27,
29, 33, 35, 43, 140–144, 181] do not make their data available, which means their
work cannot be reproduced. Here a well known open-source dataset [182] is used
so that the work can be reproduced by other researchers. Another vital issue is
the usage of smaller numbers of movements in studies, e.g. 4-7 [18–28] or 9-12
movements [29–35] which limits the utility of any resultant classifier since many

55

56 4.1. Introduction

applications benefit from having access to more movements even if only to ensure
performance is optimised for the particular setup or individual. Here 53 move-
ments are classified, which improves the potential of the resultant classifiers.

In terms of contributions to representativeness, this chapter focuses on the
evaluation of classifiers. The first issue is making an appropriate choice of metric;
most studies, e.g. [20, 23, 27, 30, 34–36, 38–40, 182], by necessity, employ rest-
movement-rest cycles as part of their experiment design and label their data as
such. This leads to the rest class being an anomaly in that it is explicitly treated
differently to all other movement classes and, unless special measures are intro-
duced, ends up with significantly more data on it than other classes. Even between
movements, there can be significant variation in the numbers of examples due to
the subject not taking the same time to perform each movement. Together this
leads to data imbalance in most data sets, which can skew measures and classifier
training.

Many studies also use accuracy [25, 27, 37, 41–43] or state the use of "accuracy"
/ "classification accuracy" without an appropriate equation [18, 20, 23, 26, 28, 29,
35, 37–40, 44, 45]. When there is data imbalance in these studies, accuracy leads
to a result biased towards the over-represented classes. Therefore any results are
likely to not be reflective of application-time performance since accuracy effec-
tively imposes the prior that the class distribution at test time is the same as at
application-time which is unlikely to be the case due to the structured nature of
experiments.

Therefore the macro-average accuracy is presented and evaluated in this chap-
ter as a more representative alternative to accuracy. It assumes that the application-
time distribution is unknown and therefore, weights each class equally for the
evaluation of classifiers better representing expected performance. Note that some
studies [21, 24, 26, 29, 42–44] exclude rest from classification however since the
majority of applications desire knowledge of when a subject is not performing a
movement it is assumed here that it is important to be able to classify rest. This can
make a significant difference to the performance profiles of a study and therefore
studies that use rest are generally incomparable with ones that do not.

In the same vein, many studies [22–25, 30, 37, 39, 45–49] do not cross-validate
their results. Cross-validation is known to be a useful technique for reporting
representative results [183, 184] and is shown in this chapter to be applicable to
performance evaluation in this context. Further, since random fold selection is not
compatible with data processing techniques, such as windowing, commonly used
in the field; a stratification technique is presented and validated which ensures
performance results are representative of the result found if trialling the entire

Chapter 4. Robust Feature-Based Classification 57

population of possible folds.

Using these improved validation techniques, the original, well cited, bench-
mark [37] on this data set is re-evaluated and shown to produce significantly
lower performance compared to the original. This re-evaluation provides new
insight into the data, and other data sets like it, which lead to the application of
enhanced data preprocessing in the form of data resampling techniques which
improved performance by over 10% absolute macro-average accuracy compared
to the original. These techniques are fully benchmarked to present a new baseline.
The trends in the new baseline are discussed to highlight important differences
between it and the original.

Finally, a novel evaluation of movement sub-selection techniques (now pub-
lished in IEEE EMBC [50]) is presented, which demonstrates the possibility for
adapting the movements used in an application to a specific subject. This allows
quantification of the trade-off between the number of movements classified and
the resultant performance as well as demonstrating that some selection methods
provide significantly better trade-off ratios than others.

4.2 Data Analysis

NinaPro database 1 [37, 146, 182] is used as a testing ground since the data is
open-source and widely used in the literature, making it an ideal case study. At
the time of writing the NinaPro databases [182] are the most extensive open-source
data sets available for researching sEMG based hand movement recognition or
tracking, particularly with regards to the number of different hand movements
captured.

The database contains data from 10 Otto Bock MyoBock 13E200 sEMG sen-
sors attached to 27 healthy subjects performing 10 repetitions of 52 different hand
movements. The resting state returned to between each movement is treated as
an additional movement, however, making an effective total of 53 for the context
of classification. The database is divided into subjects and sub-divided by experi-
ments where each experiment contains the raw sEMG signals, labels for repetition
and movement ID along with a posteriori refined version of the labels obtained via
use of the Generalised Likelihood Ratio (GLR) test [37]. Some experiments also
include data from a CyberGlove that estimates joint angles although these are not
used. The data is already synchronised via timestamps collected at experiment
time.

The Otto Bock MyoBock 13E200 electrodes sample at 100Hz but also perform
RMS filtering which downshifts the spectral properties of the signal to retain infor-

58 4.2. Data Analysis

mation from higher frequencies [37] despite the relatively low sampling frequency.
In this chapter, the data D takes the form:

D =
{(

X(1), Y(1), R(1)
)

, . . . ,
(

X(N), Y(N), R(N)
)}

(4.1)

where X is a single sample of raw emg data which with an associated movement
ID Y and a repetition ID R. Sequential X(i)’s are sequential temporally except at
the boundaries between exercises.

The prediction problem is then framed as taking in ωl contiguous X samples
and predicting the movement ID Y of the most recent X. Intuitively: predicting
the current hand gesture a subject is performing given access to the current sample
and a finite amount of past data. Therefore rest, or at least non-performance of a
movement of interest, must be considered as a separate class.

Since the data is labelled, the first thing it is necessary to establish is the balance
of data between different classes and repetitions.

In terms of classes, the data is highly imbalanced. The rest class makes up
over 50% of the data on each subject due to the experimental procedure using
rest-movement-rest cycles. On top of this, between the non-rest movements, there
is also a high degree of variability in the number of examples which also varies
across subjects; some movements can have over twice as much data on them as
others. The variability is caused by the experiment calling for following along
with a video with a standardised runtime but with variance in length of the actual
recorded movement content coupled with the natural differences between each
subject. Plotting the distribution of classes, as in Figure 4.1, highlights the signifi-
cance of the problem.

This imbalance in the number of examples means the performance metric will
be critical to ensuring any results present a meaningful view of classifier perfor-
mance.

Repetition labels (and therefore, the amount of data per repetition) vary to a
lesser degree but still up to 10 seconds over the average of ∼ 180 seconds per
repetition per subject.

The other issue with the repetition labels is that all the rest data is labelled as
a separate repetition 0, which can cause reproducibility issues since it is generally
desirable to split the data by the repetition number.

In order to obtain further insight into potential issues, data visualisation is an
invaluable tool. The EMG signals in the database have 10 non-time dimensions
(the number of channels) but as it is more typical to take a windowed segment
(see Section 4.3.1) the actual input space to a classifier is typically an order of
magnitude higher.

Chapter 4. Robust Feature-Based Classification 59

Figure 4.1: Number of examples of each class in NinaPro database 1 for subject 1. The rest
class (class 0) dominates the examples. All subjects show similar trends.

Principal Component Analysis (PCA) allows visualisation of high dimensional
spaces by calculating a transform that changes a data set’s variables into a set of
linearly uncorrelated variables; vectors orthogonal to one another. The vectors,
or "principal components", are calculated such that the first captures the highest
possible variance within the data and each successive vector also maximises the
variance captured while being orthogonal to all previously computed vectors.

To visualise the data 200ms (20 sample) windows were taken with the move-
ment label being the most recent label within the window, and the first two prin-
cipal components for all windows were plotted. This process captures 72% of the
variance in the data and is shown for Subject 1 in Figure 4.2 representing a typical
case.

While PCA does not capture the full variance Figure 4.2 still shows that only
a few movements stand out to any degree based on the raw data. Further, while
it is expected that the rest state/class is relatively low energy compared to other
movements, the Figure shows that, for this data set, there is no clear divide that can

60 4.2. Data Analysis

Figure 4.2: PCA Visualisation of 72% of the variance of the 53 movements in the database.
The top graph shows movements in different colours, demonstrating a large amount of
overlap between movements. The bottom graph shows the same visualisation with rest
plotted against all other movement classes.

Chapter 4. Robust Feature-Based Classification 61

be made. This lack of a clear divide may be caused by the Generalised Likelihood
Ratio (GLR) technique used to delimit rest and movements combined with subjects
not being fully relaxed between some movements.

Another visualisation technique is t-Stochastic Neighbour Embedding (t-SNE)
[185, 186], which achieves dimension reduction through iterative stochastic non-
uniform transformations of the data set that attempt to preserve the local informa-
tion at each step. t-SNE uses a "perplexity" term which trades off keeping global
information vs local information. The same windowed data as used for the PCA
is used under different perplexity values to produce a human intelligible visu-
alisation of the high dimensional topology in Figure 4.3. Since t-SNE performs
non-uniform transformations on the data, the axes of the resultant graph have no
meaning hence their exclusion. Instead, the graph captures only local relations
making precise position lose meaning and distances only useful to show the sep-
aration of points. A guide to the interpretation of t-SNE plots can be found in
[186].

Figure 4.3 reinforces what was seen in Figure 4.2, showing that rest (at least
from the raw data) is very similar to the other movement classes. The t-SNE
visualisation also shows some movements being fragmented, suggesting distinct
stages in the movement or fanned out along a curve suggesting some sort of pro-
gression over the movement similar to the strong curves seen in the PCA.

Together these two visualisations inform the reader that the labelling process is
imprecise; movement classes with a particular label may not belong to that move-
ment or the movement boundaries may not be as clear cut as the labelling process
implies. The Figures 4.2 and 4.3 demonstrate this in that rather than labels repre-
senting neat groups they share space with other labels and even within a particular
label, there can be a high degree of variance and potential sub-groupings.

4.3 Robust Preprocessing and Evaluation

4.3.1 Windowing

Windowing is a Digital Signal Processing (DSP) technique that can be used to feed
past information into classifiers that do not support recursive updates. The typical
method used for EMG is to take a segment of data with length ωl samples and
slide it through contiguous segments of the emg data with a step size of ωinc. This
is equivalent to using a rectangular window function in other DSP applications,
which expresses the expectation that all of the data is equally relevant. This also
allows explicit calculation of features or for the classifier to do so automatically
without introducing bias. Figure 4.4 illustrates the windowing process.

62 4.3. Robust Preprocessing and Evaluation

Figure 4.3: Visualisations created using t-SNE with different perplexities. Plots on the
first row underneath titles are plotted without rest while plots on the lower rows have
rest plotted in black on top of all other classes. It can be seen that rest is similar to most
other movements and that some movements are fragmented or follow curves suggesting
distinct stages or continuous progression, respectively. Axis labels are removed due to the
discontinuity of space in the visualisation.

Chapter 4. Robust Feature-Based Classification 63

Figure 4.4: Illustration of windowing for two examples; window length ωl 4 samples and
increment of 1 sample (upper) and window length 3 samples and increment of 2 samples
(lower).

A common misconception is that the window length is directly proportional
to the observed latency in classification. The two are related, but the relationship
is highly dependent on other parameters such as the classifier being used and
how the window is labelled. In this study, and most EMG classification studies,
the window label is taken from the most recent time step, which means a perfect
classifier would induce zero latency due to the windowing process. In practice,
however, there is likely to be a drop in performance when classifying windows
that only include a small percentage of data on a particular movement. This will
generally lead to a higher observed latency for longer windows; however, the
exact trade-off will be highly dependent on the other parameters of the study.
As a corollary, a short window length does not necessarily imply a short latency
as performance may be degraded during the onset and at the end of movements
when the signal is different to the remainder of the movement.

Therefore, while useful as a rough guideline for expected latency, it is not
possible to directly relate the window length and latency without explicit testing.
Greater window lengths also tend to improve performance (to a point) and so
in environments where latency is important, the actual latency will need to be
confirmed experimentally.

When using windowing, it is also necessary to take extra care when splitting
up data such as for training and testing. If the window increment is lower than the
window length, then nearby windows will share data. This can be seen in Figure
4.4 where all windows share samples with adjacent windows. This means that

64 4.3. Robust Preprocessing and Evaluation

the normally recommended usage of random splits for training and testing sets is
improper and will lead to a biased result since the assumption of set independence
is violated.

Windowing also causes an imbalance in the use of the underlying data since
the data at the start and end of a continuous segment is used less than the re-
mainder. The magnitude of the effect is proportional to the length of contiguous
segments. This has implications for normalisation and potentially other areas such
as data balance.

Here the highlighted issues are dealt with via methodological changes covered
in later sections. For the benchmarks, a sliding window with three different win-
dow lengths was used: 100ms, 200ms and 400ms. The window increment was
kept constant at 10ms. It is, therefore, useful to update the data definition:

D =
{(

X(1)
ω , Y(1), R(1)

)
, . . . ,

(
X(N)

ω , Y(N), R(N)
)}

(4.2)

where Xω is an ωl by C matrix of sEMG data, ωl is the window length and C is the
number of channels/electrodes for data in the database (10). Y is the movement
ID and R is the repetition ID each associated with the most recent time step in the
window based on the a-posteriori refined movement labels.

This structure is convenient since it makes the first axis of Xω a sequence of
chronological sEMG observations and the second an index to a particular channel.
Figure 4.5 presents a graphical representation to aid intuition.

Figure 4.5: Visualisation of a raw sEMG window before feature extraction.

Chapter 4. Robust Feature-Based Classification 65

4.3.2 Metrics

Choice of a representative metric or metrics to review performance is potentially
the most important choice in any study as an inappropriate selection will inval-
idate any findings. This is a particularly relevant issue in many EMG studies
including the one conducted here (see Section 4.2 and Figure 4.1) because the typ-
ical experiment involves rest-movement-rest cycles and it is normally desirable to
classify the rest. This is coupled with the fact that often movements take different
amounts of time to perform, all of which leads to data imbalance.

The standard metric "accuracy" or sometimes "classification accuracy" for the
M class case is defined as:

acc = ∑M
i=1 TPi

∑M
i=1 (TPi + FNi)

(4.3)

where TPi is the number of correctly predicted examples of class i, FNi is the
number of incorrectly predicted examples of class i and M is the number of classes.
See chapter 3.3 for a discussion of multiclass True Positive (TP), True Negative
(TN), False Negative (FN) and False Positive (FP).

Many EMG studies explicitly use "accuracy" as a convenient way to represent
overall performance [25, 37, 41–43] or state the use of "accuracy" / "classification
accuracy" without an appropriate equation [18, 20, 23, 26, 28, 29, 40, 44, 45]. This
is problematic because, as evidenced by the equation, "accuracy" does not take
into account class balance, which effectively weights each class’ contribution by
its relative frequency in the test data. This problem with "accuracy" is pointed
out as being of particular relevance to myoelectric pattern recognition problems
by Ortiz-Catalan et al. [187].

On NinaPro database 1 using "accuracy" equates to rest contributing to the
final accuracy value more than all other classes combined and to weighting longer
movements more than shorter ones.

This issue is present in the original benchmark [37] as evidenced by the his-
togram taken from the original paper shown in Figure 4.6. Specifically, the "accu-
racy" which is reported in the paper is ∼ 76% despite only 1 of the 53 movements
achieving an accuracy greater than 70%.

A more representative measure can be used when it is explicitly assumed that
all classes are of equal importance to the final measure (Section 4.3.2 discusses the
validity of this assumption). The equal importance of classes can be enforced by
taking the mean of the per class accuracy, this is also known as the "macro-average
accuracy" and is defined by the following for the M class case:

66 4.3. Robust Preprocessing and Evaluation

Figure 4.6: Histograms of average accuracies over subjects (left) and movement classes
(right) taken from the original benchmark on NinaPro database 1 [37]. The outlier move-
ment class on the right is the rest class showing how it is significantly better classified than
all other classes.

accma =
1
M

M

∑
i=1

TPi

TPi + FNi
(4.4)

where TPi is the number of correctly predicted examples of class i, FNi is the num-
ber of incorrectly predicted examples of class i and M is the number of classes.
This equation is equivalent to a macro-average of Recall [188] due to considera-
tion of multiple classes. The term "macro-average accuracy" is used here since
intuitively the quantity captures the same ideal as accuracy, which is the expected
number of correct predictions on a new set of data with minimal prior assump-
tions.

For the sake of distinction the original cross-class accuracy metric described in
Equation 4.3 shall henceforth be referred to as "micro-average accuracy".

In this work, the macro-average accuracy will be the default metric because it
provides a single number representing the ability of a classifier to classify incom-
ing windows of data without any assumptions about the distribution of classes in
that new data. Having a single number is also helpful for comparing performance
between methods. Note that in the multiple class case, per class accuracy is also
equivalent to per class Recall.

The macro-average accuracy is calculated for each subject, and the mean is
then taken across subjects to get a final value.

The mean rank is also presented, calculated by treating each subject as a
matched sample, which allows controlling for the natural variability between sub-
jects which biases the standard deviation. The mean rank is also necessary for
computing whether a performance improvement is statistically significant.

Chapter 4. Robust Feature-Based Classification 67

On Equal Class Weighting

One of the assumptions made here is that all classes should be weighted equally
for performance validation. This assumption is used because it encodes the fact
that the expected distribution of new data is unknown.

There is an argument that for some applications, and particularly for the rest
class, that there may be a useful prior making it desirable to achieve high perfor-
mance on one class at the expense of others however if this is desired it can be
implemented using a principled approach such as incorporating a weight into the
metric:

accma =
1
M

M

∑
i=1

γi

(
TPi

TPi + FNi

)
(4.5)

where γi is the weighting for class i. This allows for specific tuning of the metric
to the task, unlike the micro-average accuracy which imposes a frequency based
weighting which is often not representative of expected performance in contexts
outside of a particular known test set.

In any study, it is incorrect to assume the distribution of classes outside the
scope of the work in question, and therefore, an unbiased metric is the only de-
fensible solution without additional information.

4.3.3 Validation

Stratified K-fold cross-validation and its variants [183] are essential techniques for
ensuring results are reliable [184]. This is also an area of major deficiency with
many EMG studies which only use single data splits [22–25, 30, 37, 39, 46–49];
therefore, this thesis provides a more thorough approach to validation to ensure
the integrity of results.

Validation is even more important when used in studies, such as this one,
that use overlapping windows because the data cannot be randomly divided into
independent sets. This is because nearby windows share underlying data-points
as described in Section 4.3.1. A common approach to solve this issue is to record
a repetition number during data collection and then split the sets based on data
from different repetitions. This has a high potential to cause bias since not all
repetitions are equal.

Empirically it was found that in this and other data sets the first repetition of
each movement, particularly, is of lower quality leading to lower reported perfor-
mance than when testing with other repetitions. The exact degree of the effect
varies between data sets and classification methods but consistently appears. It
may be posited that this is likely due to a combination of factors including but not

68 4.3. Robust Preprocessing and Evaluation

limited to inexperience with performing the movement and inexperience with the
experimental technique.

Later repetitions sometimes also show a performance drop relative to others,
including in this data. For small numbers of repetitions, as here, the literature
suggests this is unlikely to be caused by muscle fatigue [141] but may be caused
by preemption of the experiment or inattention causing non-optimal replication of
the movement.

One way to counter these effects is to run preliminary tests to find outlying
repetitions and remove them from the data however this may harm the utility of
a study depending on how it is done since these effects may be representative of
the expected use case. Data is also often at a premium in EMG studies, making
any wastage an expensive proposition.

This thesis proposes a method for Stratified K-fold cross-validation that ac-
counts for the differences in repetition quality. Instead of removing repetitions or
choosing K and randomly selecting repetitions for each fold, K should be selected
to be an integer multiple of the number of repetitions in the data set then folds
should be randomly generated under the condition that each repetition is equally
represented in the test set. Secondly, it is proposed that when classifying the rest
class in experiments making use of rest-movement-rest cycles, all the data either
preceding or proceeding a movement be labelled with the repetition number of
the movement.

Together these two methods ensure correct stratification at both the class and
repetition level, which helps ensure that, when combined with an appropriate
metric, results are robust, generalisable, and repeatable.

Forman et al. [184] show that how metrics are computed across validations
folds can also bias results. Therefore their recommended methodology is adopted
here, which is to calculate metrics as if all test folds formed a single test set. The
macro-average accuracy is, therefore, modified:

acc∗ma =
1
M

M

∑
i=1

∑K
j=1 TPi,j

∑K
j=1 TPi,j + ∑K

j=1 FNi,j
(4.6)

where K is the number of cross-validation folds, TPi,j is the correct predictions of
movement class i for validation fold j, FNi,j is the number of incorrectly predicted
examples of movement class i for validation fold j and M is the number of classes.

Chapter 4. Robust Feature-Based Classification 69

4.4 Benchmark Details

An updated set of benchmarks was designed that addressed shortcomings in pre-
vious studies as well as incorporating improvements in data augmentation during
training to improve performance.

For the sake of comparability, the methods of Atzori et al. [37] are mirrored
except for where improvements are made to fix the highlighted issues.

4.4.1 Preprocessing

Before being passed to the classifiers, the raw EMG stream was preprocessed fol-
lowing these steps:

1. Each channel was passed through a 5Hz, second-order, zero phase, low-pass
Butterworth filter

• This is justified because the Otto Bock electrodes used, perform Root
Mean Squared (RMS) filtering which shifts the frequency spectrum of
the resultant signal down to 0-5 Hz [37] from the generally held relevant
range for EMG of 20-500 Hz [63, 66]

2. The signals were split into a continuous stream of windows:

• Window length: 100/200/400 ms (10/20/40 samples)

• Increment: 10 ms (1 sample)

3. Each window was labelled as belonging to the movement at the most recent
sample within the window

4. Features were extracted from each channel of each window separately

• The features are described in Table 4.1

• Therefore each window is a data point of format c× n where c is the
number of channels (10) and n is the size of the specific feature per
channel

5. Data was split 50/50 for training/testing by repetition number

6. The training set was regularly downsampled by a factor of 10 to reduce
the computational load which effectively acts as an increase in the window
increment by the same factor

70 4.4. Benchmark Details

4.4.2 Features

Table 4.1 breaks down the features benchmarked. They were chosen as a subset of
the original benchmark based on their performance in other studies [55, 100, 189].
The features are extracted over a sample window of length ωl , where xt is a single
data sample from a single channel and each feature is extracted identically for
each of the 10 sEMG channels.

The histogram feature was calculated using equally spaced bins based on sig-
nal value since the ranges/method was unspecified in the original work [37]. The
maximum and minimum value were calculated across the entire data set for con-
sistency and assumed to be limits of the hardware based on qualitative analysis of
the signals.

The Mariginal Discrete Wavelet Transform (mDWT) is a reduction of the Dis-
crete Wavelet Transform (DWT) that has been shown to work well for EMG prob-
lems [26, 190]. The mother wavelet chosen for the DWT was "sym4" based on the
previous study [37].

Feature Description
Mean Absolute Value (MAV) xmav = 1

ωl
∑ωl

t=1 |xt|
Variance (VAR) xvar =

1
ωl

∑ωl
t=1(xt − x̄)2

Waveform Length (WL) [68] xwl = ∑ωl−1
t=1 |xt − xt+1|

Histogram (HIST) xhist = hist(x1:ωl , B)
where xhist ∈ RB, B is the number of bins, and
B=10 bins were used here, spaced equally be-
tween 0.0024 and 4.8351.

Mariginal Discrete Wavelet
Transform (mDWT)
[26, 190]

xmdwt = ∑ωl/2s−1
τ=0 |∑ωl

t=1 xtψl,τ(t)|
where xdwt ∈ RS,
ψl,τ(t) = 2−

s
2 ψ(2−lt− τ),

for s = 1...S, where S is the maximum level of
decomposition (3 levels were used)
ψ is the mother wavelet (sym4)
l is a translation
τ is a dilation

Table 4.1: Table of features where ωl is the window length and xt is a sample of EMG data
at a time t for a single channel. All features are calculated on each channel individually.

Testing combinations of features was considered as it often improves perfor-
mance [191]; however, was omitted here to reduce computational load and study
complexity. In practical applications, it is likely to be desirable to combine sev-
eral of the better performing features to further improve performance if there is

Chapter 4. Robust Feature-Based Classification 71

sufficient processing power and allowable latency to handle the additional com-
putation.

4.4.3 Classifiers

The following five classifiers were used based on the original benchmark [37]. The
MLP classifier is omitted since it is not fully specified and later chapters utilise
neural network based approaches to the problem that are superior to the MLP.

• K-Nearest Neighbours (KNN)

– K chosen to be 10 [this gave a comparable accuracy to the original [37]
from a candidate pool of K = 1− 50]

– Euclidean distance [chosen for its comparable accuracy to the previous
work]

• Linear Discriminant Analysis (LDA)

• Support Vector Machine - Linear Kernel (SVM-L)

– Multiclass method: One vs One

– Sequential Minimal Optimisation

– Heuristic (subsample) kernel scaling

• Support Vector Machine - Radial Basis Function Kernel (SVM-RBF)

– Multiclass method: One vs All

– Sequential Minimal Optimisation

– Box Constraint of 1 [for comparable accuracy and reasonable training
time]

– Heuristic (subsample) kernel scaling

• Decision Tree (DT)

– Maximum number of decision splits: 150

– Gini’s Diversity Index used as split criterion

– Prior probabilities based on class frequencies

– No surrogates

• Each classifier was trained on each feature for each subject

72 4.4. Benchmark Details

4.4.4 Validation and Metrics

The validation procedure outlined in Section 4.3.3 was used, which improved
upon the original single split method and used the macro-average accuracy to
account for the class imbalances.

The metric used was the mean macro-average accuracy (Equation 4.6) across
subjects presented as a decimal on the range [0, 1] with 1 representing a perfect
score.

Table 4.2 shows the randomly selected stratified set of folds for the training and
test sets. Other sets of folds are possible which meet the balancing requirements;
however, as is shown in Section 4.5.7 folds generated in this stratified way are
representative of the true mean across all possible folds.

Split Training Testing

1 [1, 2, 3, 7, 10] [4, 5, 6, 8, 9]

2 [1, 2, 4, 6, 9] [3, 5, 7, 8, 10]

3 [1, 2, 7, 9, 10] [3, 4, 5, 6, 8]

4 [1, 3, 4, 5, 7] [2, 6, 8, 9, 10]

5 [1, 3, 5, 7, 10] [2, 4, 6, 8, 9]

6 [2, 4, 5, 6, 8] [1, 3, 7, 9, 10]

7 [2, 4, 6, 8, 10] [1, 3, 5, 7, 9]

8 [3, 5, 6, 8, 9] [1, 2, 4, 7, 10]

9 [3, 5, 8, 9, 10] [1, 2, 4, 6, 7]

10 [4, 6, 7, 8, 9] [1, 2, 3, 5, 10]

Table 4.2: Validation folds of training and test sets for the benchmarks. Numbers are the
repetition label used in that fold; each repetition appears a total of 5 times in the folds of
each set, ensuring proper stratification.

The set is built by first setting the number of repetitions that will be in the test
set (Ntest) in each fold then calculating the number of necessary folds to allow for
the stratification:

N f olds = Nreps ∗ Nmult (4.7)

where N f olds is the total number of folds needed, Nreps is the number of different
repetition labels in the data and Nmult is a positive integer multiplier that can be
used when more folds are desired.

A list of all possible folds can then be generated and an initial fold chosen
at random via computational pseudo-random number generation. A new fold is
then added randomly, and the set is checked to ensure the maximum number of

Chapter 4. Robust Feature-Based Classification 73

examples of a particular repetition in the test portion of the fold is ≤ Ntest. If there
are > Ntest examples of a specific repetition in the test portion, then the last added
fold is removed, and another random fold is selected. Folds are added until there
are N f olds in the set. If 10 folds are rejected for inclusion in a row, then the process
is reset and begins from randomly selecting an initial fold.

Other ways of determining an appropriate stratification are possible; however,
the above process is sufficiently fast and random on modern hardware.

4.4.5 Meta-Validation

Meta-validation was used to ensure that the validation methodology used was
representative. This was achieved by performing an exhaustive validation across
all 252 possible folds on all subjects with the SVM-RBF using the mDWT feature
and window length set to 200ms. The SVM-RBF was chosen because it performed
best out of the pool of benchmark classifiers.

There were 252 possible validation folds because there were 10 repetitions,
and the data split was 50/50 training/testing with the order of repetitions in a
fold unimportant. This meant that the problem took the form n choose k where n
was 10 and k was 5:

n!
k!(n− k)!

=
10!
5!5!

= 252 (4.8)

The number of unique sets of 10 folds chosen from the 252 possible can also
be calculated using the same equation with n set to 252 and k set to 10:

n!
k!(n− k)!

=
252!

10!242!
= 2.38× 1017 (4.9)

which indicates that complete exploration of the space is non-trivial.

The main goal was to demonstrate that the mean of the 10 folds selected via
the previously proposed stratification method (see Table 4.2) was representative
of the mean of all possible folds. These will be referred to as the stratified folds.
The secondary aims were to show the potential for bias from randomly selected
folds and that the fold selection technique worked in general rather than only on
the one specific instance.

These goals were achieved by finding the true mean across all folds and the
mean estimated by the stratified folds for each subject. A Monte-Carlo simulation
was also run on each subject to estimate the range of values for the mean produced
by randomly selected folds. A Monte-Carlo simulation was used because, as per
Equation 4.9, trialling each combination would be computationally infeasible. The

74 4.4. Benchmark Details

Monte-Carlo simulation tested 10,000,000 random combinations of 10 folds on
each subject.

The MAE was calculated between the true mean for each subject and the esti-
mated mean given by the stratified folds. In order to quantify the potential error
from randomly selected folds, the mean (across subjects) standard deviation of the
Monte-Carlo results was calculated, and the mean maximum potential deviation
was calculated as:

δ =
1
N

N

∑
i=1

max(|µi − µ̂min|, |µi − µ̂max|) (4.10)

where δ is the maximum potential deviation, N is the number of subjects (27), µi

is the true mean for subject i and µ̂min and µ̂max are the minimum and maximum
estimated subject means respectively, as found by the Monte-Carlo simulation.
This allowed quantification of the potential MAE that may result from random
selection.

4.4.6 Data Resampling and Augmentation Techniques

The imbalance in the dataset presented an avenue for improvements of classi-
fier performance over the original. The SVM-RBF with mDWT was used to test
out several data resampling strategies based on the literature from other domains
[192–196].

Three different categories of resampling technique were trialled:
Downsampling was tested in several variations. Randomly downsampling all

classes so that each had the same number of examples as the least represented
class was tested as well as downsampling only the rest class until it had 0.5/1/2/3
times the number of examples of the next most represented class.

Naive upsampling randomly copies data in the training set. Upsampling all
non-rest classes to twice the highest number of non-rest examples was tested.

Synthetic Minority Oversampling Technique (SMOTE) [197] is a more principled
approach to upsampling that generates new data points by taking points in the
original feature data, randomly selecting one of the K nearest neighbours and
"pulling" the original point towards that neighbour by a random factor on the
range 0 − 1. This creates new synthetic data interpolated on the original data.
The authors of SMOTE and results from high dimensional data testing [195] also
recommend downsampling of the majority class in combination with the SMOTE
algorithm. Therefore for this test SMOTE (with K = 25) was used to upsample
non-rest classes by a factor of 2 while simultaneously randomly downsampling
rest to have a number of examples equal to twice the highest number of examples

Chapter 4. Robust Feature-Based Classification 75

of a non-rest class prior to upsampling.

Algorithm 4.1 shows the pseudo-code for the algorithm as used here, which
operates on each class individually.

Algorithm 4.1 Pseudo code for the SMOTE algorithm. Here Na was set to 1 to
double the number of examples of each class, K = 25 and each class was computed
separately.

Input: X : Matrix of examples of a class, Na : Amount of SMOTE (integer),
K : Number of nearest neighbours

Result: Ns × Na synthetic samples

Ns = Number of examples in X
Ndim = Number of dimensions of each example in X
for i = 1 to Ns do

// Compute K nearest neighbours for sample Xi

for j = 1 to Na do
// Randomly select one of the nearest neighbours: k
// Initialise new synthetic Xsyn

for d = 1 to Ndim do
di f = Xi[d]− k[d]
gap = random([0, 1])
Xsyn[d] = Xi[d] + gap ∗ di f

end
end

end

4.4.7 Primary Benchmark Variants

The final benchmark was divided into three variants. Each followed the prepro-
cessing and validation procedures outlined above across all feature, classifier and
window length combinations but with the following differences in data augmen-
tation:

• The "Baseline" featured no additional data augmentation

• The "Rest Downsampled" variant randomly downsampled rest data to have
as many examples as the next most represented class

• The "2x SMOTE" variant used SMOTE to generate twice as many examples
of each non-rest class and then randomly downsampled rest data to have as
many examples as the next most represented class

These variations were chosen based on empirical testing of the aforementioned

76 4.4. Benchmark Details

pool of data augmentation techniques and computational constraints, which lim-
ited the amount of additional data it was feasible to evaluate.

4.4.8 Person-specific Movement Set Selection

The number of movements/gestures used in EMG studies varies greatly from 3
[44] to 53 as benchmarked here. The majority of studies assess less than 10, e.g.
[19, 20, 22, 27–29, 33, 35] and in most cases, the number of movements is deter-
mined ahead of experiment time without any specific reasoning as to why exactly
that number of movements is investigated. The general trend in these studies is,
expectedly, that more movements leads to lower overall performance; however, the
trade-off has not been explored. Selecting the "best" movements for an applica-
tion is therefore also handled ahead of time in these cases which generally means
selection of movements from the literature which potentially leads to lost perfor-
mance since the selected movements may not be ideal for the particular subject or
electrode setup.

Intuitively, movement performance is unlikely to be equal, and performance
on any particular movement is intrinsically tied to both the subject performing
the movement and the EMG recording setup. This intuition is backed up by the
results demonstrated later in this and future chapters. Therefore it may be hy-
pothesised that if there were some leeway in which movements could be used for
a given application then, without significant exploratory work, it would be un-
likely that for a given subject the best performing movements would be selected
for the experiment.

Gathering EMG data from a subject includes an overhead to get the subject
ready for testing as well as the time taken gathering data. Therefore if it is as-
sumed that there is some leeway in terms of which movements can be used in the
final application and the highest performance set of movements from a superset
can be determined. Then, augmenting experimental procedures with additional
movements becomes an efficient way of improving performance since the move-
ments classified at test time may be tailored to an individual.

In most human-machine interface and some prosthetic control problems [17],
the assumption of lee-way in terms of movements that must be classified holds
however whether the highest performance set of movements from a superset can
be found efficiently has not been explored. Therefore an experiment was designed
using the NinaPro data to determine whether this was possible and to explore
what the performance trend looks like when more movements are classified.

The search space for testing combinations of movements that could form a sub-
set of a particular size is generally too big for brute force calculation. Therefore,

Chapter 4. Robust Feature-Based Classification 77

the experiment consisted of testing four different algorithms for sub-selection on
the same process and classifiers described above. The MAV feature and a window
length of 400ms were used to reduce the computational overhead of the experi-
ment rather than running on the full combination of possibilities.

Even in this setup computation time was a major limiting factor of the study
since evaluation at each different number of movements, from 2-53, amplified the
computation needed by a factor of ∼ 30, this was why the MAV feature was used
over the mDWT since it is a more compact representation. The properly stratified
cross-validation also had to be dropped to make the experiment feasible, therefore,
making the absolute performance reported less robust while still allowing a proper
review of the performance trends. Repetitions [1, 3, 5, 7, 9] were used for training
and [2, 4, 6, 8, 10] for testing chosen to match with original benchmarks on the
database [37].

The four approaches for movement sub-selection are outlined below.

Grouped Addition Baseline

The Grouped Addition approach formed the baseline for the experiment and in-
volved adding to the set of movements classified in the order they are presented in
the database [37]. Effectively this amounts to adding groups of related movements
sequentially, starting with flexions and extensions of the fingers then moving to
isometric and isotonic hand configurations moving on to wrist movements then
various functional movements and grasps.

Ideally, the baseline would have been random selection but without the com-
putational power to trial a reasonable number of random selections this alternative
approach presented a way of finding a baseline in a principled manner. Adding
the movements sequentially meant that this baseline likely represents performance
towards the lower end of the performance spectrum given that similar movements
are added after each other.

Maximisation of Minimum Distance Between Movement Means

First the mean MAV for each channel of each gesture may be calculated as

x̄(c)m =
1

Nm

Nm

∑
i=1

x(i,c)m (4.11)

where Nm is the number of examples of movement m and xi,c
m is the MAV of

example i of movement m, channel c. This allows the Euclidean distance to be

78 4.4. Benchmark Details

calculated between two movements as

dm1, m2 =

√√√√ C

∑
i=1

(x̄(c)m1 − x̄(c)m2)
2 (4.12)

where C is the number of channels. Then the distances between each movement
in the current set S and the set of remaining movements may be calculated. The
minimum distance between each movement not in S and the movements in S can
then be found, and the movement with the maximum, minimum distance from all
S is selected to be added to S:

d(m)
min = min(ds,m), s ∈ S (4.13)

where M represents the set of all movements in the experiment and calculated for
all m ∈M, m 6⊆ S.

max(d(m)
min), m ∈M, f or m 6⊇ S (4.14)

Since the set S begins with the rest class contained within it, this approach it-
eratively builds up a set of movements by selecting the most dissimilar movement
at each update step based on the Euclidean distance.

Maximisation of Minimum Symmetric Kullback-Leibler Divergence Between
Movements

This approach has the same aim as the previous one, aiming to iteratively build
up the set of movements but based on the Kullback-Leibler (KL) divergence [198]
rather than the Euclidean distance.

For this metric it was assumed that the feature space could be represented
by a multivariate normal distribution and therefore that each movement could
be defined by a set of c means µ and a c × c covariance matrix Σ which allows
calculation of the KL divergence:

dkl(N∞||N∈) =
1
2

(
tr(Σ−1

2 Σ1) + (µ2 − µ1)
)

(4.15)

where N1 and N2 represent the movement distributions and tr() is the trace op-
eration. Due to the KL divergence being non-symmetric, the final comparison is
performed on the value:

d(1,2)
kl = dkl(N∞||N∈) + dkl(N∈||N∞) (4.16)

Chapter 4. Robust Feature-Based Classification 79

which is used to calculate the most divergent movement from the current set:

d(m)
min = min(d(s,m)

kl), s ∈ S, f or m ∈M, m 6⊆ S (4.17)

max(d(m)
min), m ∈M, f or m 6⊇ S (4.18)

Superset Performance Selection

Superset performance selection works on a subject-specific and classifier-specific
basis. First, the classifier of interest is trained on the subject of interest with all
possible movements. The performance of each class may then be evaluated, and
movements iteratively added to the set to be used by selecting those movements
which perform best on the complete classification problem.

max(accm), f or m 6⊇ S (4.19)

4.5 Results and Discussion

4.5.1 Benchmark Results

Tables 4.3, 4.4 and 4.5 show the results, split up by window length, across all
classifiers, features and variants.

The overarching conclusions that may be drawn from the results are that longer
window lengths tend to improve performance, choice of classifier and feature com-
bination is critical, and data resampling methods can make a significant difference
to the final performance.

4.5.2 Metric Comparison

The "Baseline" results highlight the significant effect of using macro-average ac-
curacy when compared to the original study [37] with the general performance
level being greatly reduced, and the differences between features becoming more
prominent. Figure 4.7 shows how the macro-average accuracy produces a much
more representative value for performance under the assumption that the test time
class distribution is unknown. This assumption is used throughout this work since
the goal is to solve the most general form of the classification problem. In specific
circumstances it may be desirable to weight the accuracy metric, but this is inap-
propriate without a strong prior on the expected class distribution or a use-case
requirement of particular classes being more important than others.

80 4.5. Results and Discussion

Window Length: 100ms
Benchmark

Baseline Rest Downsampled 2x SMOTE
Classifier Feature µsubj (µrank) µsubj (µrank) µsubj (µrank)

KNN MAV 0.428 (4.4) 0.508 (3.9) 0.539 (4.0)
VAR 0.098 (22.0) 0.141 (22.7) 0.151 (22.7)
WL 0.160 (16.0) 0.220 (17.6) 0.231 (17.5)
HIST 0.383 (6.9) 0.412 (9.2) 0.437 (8.9)
mDWT 0.431 (3.4) 0.509 (3.5) 0.540 (3.3)

LDA MAV 0.274 (12.0) 0.347 (11.7) 0.367 (11.6)
VAR 0.049 (24.2) 0.073 (25.0) 0.116 (24.9)
WL 0.106 (20.8) 0.166 (20.7) 0.195 (20.0)
HIST 0.338 (9.6) 0.368 (10.7) 0.374 (10.7)
mDWT 0.291 (10.8) 0.364 (10.3) 0.368 (10.6)

SVM-RBF MAV 0.454 (2.2) 0.534 (2.0) 0.555 (2.0)
VAR 0.042 (24.8) 0.128 (24.0) 0.143 (24.0)
WL 0.133 (18.3) 0.225 (16.9) 0.237 (16.6)
HIST 0.419 (4.3) 0.451 (6.9) 0.472 (6.9)
mDWT 0.467 (1.0) 0.549 (1.0) 0.575 (1.0)

SVM-L MAV 0.378 (7.7) 0.491 (5.8) 0.515 (5.2)
VAR 0.099 (21.7) 0.192 (19.0) 0.211 (18.7)
WL 0.146 (17.1) 0.253 (15.2) 0.266 (14.8)
HIST 0.358 (8.7) 0.431 (8.0) 0.450 (8.1)
mDWT 0.379 (7.1) 0.492 (5.0) 0.514 (5.6)

DT MAV 0.211 (13.5) 0.283 (13.4) 0.285 (13.7)
VAR 0.111 (20.7) 0.153 (21.9) 0.165 (22.3)
WL 0.123 (18.9) 0.166 (20.5) 0.178 (20.9)
HIST 0.183 (15.3) 0.237 (16.1) 0.236 (16.8)
mDWT 0.210 (13.7) 0.281 (13.9) 0.283 (14.0)

Table 4.3: 100ms window benchmark results across all features, classifiers and variants.
For each benchmark µsubj is the inter-subject mean macro-average accuracy for a classifier-
feature combination. The bracketed value µrank is the inter-subject mean rank (range 1-25)
of the classifier-feature combination for a particular benchmark. A rank of 1 indicates top
performance on each subject for a specific benchmark.

The cause of the over-reporting by the micro-average accuracy seen in Figure
4.7, 79% accuracy reported despite only 2 classes performing higher, is the class
imbalance inherent in the data (see Section 4.2). In conjunction with the micro-
average this leads to an effective weighting of the performance proportional to
the ratios between classes. On this data, that means rest performance makes up
the majority of the reported performance which is what causes the over-reporting.
Specifically, the inter-subject mean contribution of the rest class to the final micro-
average accuracy is 58.1%.

The macro-average accuracy (dotted line) reduces this weighting to 1.9%, mak-
ing it equal to each other class, which leads to a metric which better represents
the assumptions about the use-case and better fits the classic intuition on what ac-

Chapter 4. Robust Feature-Based Classification 81

Window Length: 200ms
Benchmark

Baseline Rest Downsampled 2x SMOTE
Classifier Feature µsubj (µrank) µsubj (µrank) µsubj (µrank)

KNN MAV 0.444 (4.9) 0.528 (4.6) 0.552 (4.2)
VAR 0.122 (21.8) 0.176 (22.4) 0.188 (22.6)
WL 0.223 (14.2) 0.294 (16.0) 0.306 (15.6)
HIST 0.425 (6.1) 0.458 (8.7) 0.475 (8.6)
mDWT 0.458 (3.5) 0.540 (3.2) 0.567 (2.7)

LDA MAV 0.285 (12.1) 0.360 (12.0) 0.376 (12.0)
VAR 0.055 (24.6) 0.083 (25.0) 0.131 (25.0)
WL 0.139 (20.1) 0.212 (20.3) 0.241 (19.4)
HIST 0.362 (9.5) 0.396 (10.4) 0.398 (10.5)
mDWT 0.301 (11.0) 0.376 (10.9) 0.384 (10.8)

SVM-RBF MAV 0.472 (2.6) 0.558 (2.0) 0.569 (2.4)
VAR 0.057 (24.4) 0.164 (23.8) 0.181 (23.3)
WL 0.217 (15.1) 0.311 (14.2) 0.318 (14.2)
HIST 0.460 (3.5) 0.500 (6.3) 0.511 (6.6)
mDWT 0.502 (1.0) 0.588 (1.0) 0.606 (1.0)

SVM-L MAV 0.391 (8.3) 0.514 (6.0) 0.529 (6.1)
VAR 0.116 (22.2) 0.231 (19.1) 0.252 (18.3)
WL 0.187 (17.1) 0.317 (13.6) 0.327 (13.3)
HIST 0.386 (8.5) 0.466 (8.3) 0.478 (8.4)
mDWT 0.398 (7.2) 0.521 (4.8) 0.536 (4.9)

DT MAV 0.214 (14.9) 0.292 (15.9) 0.288 (16.4)
VAR 0.129 (21.4) 0.178 (22.6) 0.187 (22.9)
WL 0.148 (19.4) 0.201 (20.7) 0.209 (21.0)
HIST 0.190 (17.1) 0.251 (18.1) 0.245 (19.0)
mDWT 0.216 (14.5) 0.294 (15.1) 0.290 (15.8)

Table 4.4: 200ms window benchmark results across all features, classifiers and variants.
For each benchmark µsubj is the inter-subject mean macro-average accuracy for a classifier-
feature combination. The bracketed value µrank is the inter-subject mean rank (range 1-25)
of the classifier-feature combination for a particular benchmark. A rank of 1 indicates top
performance on each subject for a specific benchmark.

curacy represents. Figure 4.7 shows an example on a single subject. However the
same result is present across all subjects, window lengths, classifiers and features
which justifies the metric choice.

4.5.3 Benchmark Performance Breakdown

The SMOTE algorithm augmented benchmark significantly outperformed the other
two benchmarks at each window length. The subject performance of each classifier-
feature combination on the different benchmarks can be treated as matched sam-
ples i.e. each row of Tables 4.3, 4.4 and 4.5 can be treated as 3 sets of 27 matched
samples, one for each subject. This equates to comparing 3 algorithms (the bench-
marks) across 25 × 27 = 675 matched samples. Therefore the Friedman test

82 4.5. Results and Discussion

Window Length: 400ms
Benchmark

Baseline Rest Downsampled 2x SMOTE
Classifier Feature µsubj (µrank) µsubj (µrank) µsubj (µrank)

KNN MAV 0.458 (5.6) 0.544 (5.3) 0.576 (4.8)
VAR 0.170 (20.2) 0.239 (21.7) 0.258 (21.3)
WL 0.299 (13.2) 0.374 (14.0) 0.392 (13.9)
HIST 0.468 (5.1) 0.502 (8.2) 0.526 (8.0)
mDWT 0.494 (3.1) 0.576 (2.4) 0.612 (2.0)

LDA MAV 0.302 (13.1) 0.377 (13.7) 0.395 (13.4)
VAR 0.071 (24.9) 0.104 (25.0) 0.160 (25.0)
WL 0.188 (18.9) 0.272 (19.0) 0.301 (17.9)
HIST 0.389 (9.3) 0.429 (10.4) 0.436 (10.5)
mDWT 0.324 (11.5) 0.400 (11.9) 0.413 (11.9)

SVM-RBF MAV 0.485 (3.7) 0.573 (2.8) 0.592 (3.2)
VAR 0.099 (24.1) 0.234 (22.3) 0.254 (21.6)
WL 0.314 (12.1) 0.400 (12.0) 0.410 (12.2)
HIST 0.502 (2.6) 0.546 (5.0) 0.561 (5.7)
mDWT 0.537 (1.1) 0.625 (1.0) 0.651 (1.0)

SVM-L MAV 0.401 (9.1) 0.528 (6.8) 0.552 (6.7)
VAR 0.148 (22.0) 0.300 (17.2) 0.324 (16.5)
WL 0.236 (16.0) 0.388 (13.0) 0.403 (13.0)
HIST 0.411 (8.2) 0.497 (8.5) 0.517 (8.7)
mDWT 0.419 (7.4) 0.543 (5.0) 0.570 (4.9)

DT MAV 0.217 (17.0) 0.299 (17.7) 0.301 (18.4)
VAR 0.151 (22.1) 0.210 (23.7) 0.220 (23.9)
WL 0.173 (20.3) 0.236 (21.9) 0.244 (22.2)
HIST 0.199 (18.3) 0.266 (19.8) 0.268 (20.6)
mDWT 0.221 (16.1) 0.303 (16.6) 0.305 (17.6)

Table 4.5: 400ms window benchmark results across all features, classifiers and variants.
For each benchmark µsubj is the inter-subject mean macro-average accuracy for a classifier-
feature combination. The bracketed value µrank is the inter-subject mean rank (range 1-25)
of the classifier-feature combination for a particular benchmark. A rank of 1 indicates top
performance on each subject for a specific benchmark.

followed by post-hoc Holm procedure could be used to determine whether the
SMOTE augmented benchmark was significantly better than the other two.

The Friedman test indicated the benchmarks have different performances at
p < 2.2× 10−308 on all window lengths; therefore, the post-hoc Holm procedure
could be used. Note that 2.2× 10−308 is the smallest value that can be represented
in a standard double floating-point number [199]. On all window lengths the
SMOTE augmented benchmark was found to be significantly better than the other
two with the final Holm procedure p values:

• p < 1.2× 10−57 for window length 100ms

• p < 2.9× 10−46 for window length 200ms

Chapter 4. Robust Feature-Based Classification 83

Figure 4.7: Accuracy per class demonstrating the over-reporting of performance caused
by using micro-averaged accuracy as a performance metric when compared to the macro-
average accuracy. The above example is taken from the Baseline benchmark using the
SVM-RBF with mDWT and 200ms window on Subject 1. However, the highlighted differ-
ences are consistent across subjects classifiers and features.

• p < 1.6× 10−60 for window length 400ms

Concretely the SMOTE augmented benchmark provided top performance on
the following number of subject-classifier-feature combinations:

• 632 of 675 for window length 100ms

• 601 of 675 for window length 200ms

• 639 of 675 for window length 400ms

SMOTE increased computational load relative to the downsampling bench-
mark, however, produced a significant improvement compared to the other bench-
marks. SMOTE’s improved performance over just the rest downsampling ap-
proach made it the best algorithm for achieving high performance in this context
justifying the increase in computation.

SMOTE’s success implies that the classifiers would benefit from additional
data for training purposes which lead to the hypothesis that reducing the origi-
nal downsampling of the training data in the preprocessing step would also pro-
duce similar results when combined with rest downsampling. Empirical testing

84 4.5. Results and Discussion

revealed this to be the case. Reduction of preprocessing step downsampling to
maintain a similar number of training examples as used in the SMOTE bench-
mark produced a similar performance to the SMOTE benchmark. This is poten-
tially due to the interaction between the windowing process and SMOTE produc-
ing synthetic examples that are similar to nearby windows, particularly at longer
window lengths when more information is shared.

Further complete removal of the preprocessing step downsampling was tri-
alled, which produced a 1− 2% improvement over the SMOTE/reduced down-
sampling approaches but increased the computational time necessary by a factor
of ∼ 12 on the available hardware. This made it impractical to perform the fully
cross-validated benchmark due to time constraints.

4.5.4 Feature Differences

The mDWT feature significantly outperformed the other features across all win-
dow lengths. Statistical comparison was computed by treating each benchmark-
classifier-subject combination as a set of 5 matched samples with the independent
variable being the feature. This lead to a total of 3× 5× 27 = 405 matched samples
(benchmarks × classifiers × subjects).

The Friedman test indicated at p < 2.2 × 10−308 that the features produced
different performances, at each window length, which allowed for post-hoc Holm
procedure testing. The following p values were obtained on the final step of the
Holm procedure, confirming that the mDWT was the best feature of those tested:

• p < 3.6× 10−7 for window length 100ms

• p < 1.2× 10−17 for window length 200ms

• p < 4.2× 10−22 for window length 400ms

Concretely the mDWT provided the highest performance for the following
number of benchmark-classifier-subject combinations:

• 252 of 405 for window length 100ms

• 306 of 405 for window length 200ms

• 305 of 405 for window length 400ms

The majority of non-top performances came from combinations including the
LDA classifier which performs better with the HIST feature.

The average ranks computed for Friedman and Holm procedure testing were:

Chapter 4. Robust Feature-Based Classification 85

• Window length 100ms

– mDWT: 1.39

– MAV: 1.96

– HIST: 2.65

– WL: 4.00

– VAR: 5.00

• Window length 200ms

– mDWT: 1.25

– MAV: 2.20

– HIST: 2.56

– WL: 4.00

– VAR: 5.00

• Window length 400ms

– mDWT: 1.26

– MAV: 2.33

– HIST: 2.44

– WL: 3.97

– VAR: 5.00

The MAV performed very well, given its simplicity as a single value for each
channel, with the second best average rank. This implies that for many movements
knowing that muscles near the electrode are activating and approximately to what
extent is sufficient for narrowing down the possible movement.

The HIST feature generally performed worse than the MAV with the notable
exception of when it was combined with the LDA classifier. From the ranks in Ta-
bles 4.3, 4.4 and 4.5 it is clear that the HIST feature also gains the least from adding
rest downsampling. This can be seen in its consistent rise in rank when going from
the baseline to the rest downsampled benchmark which is not as prominent or con-
sistent when going from the rest downsampled to the SMOTE benchmark. This
implies it is useful for defining rest compared to the other features.

The MAV feature’s overall performance decreases as window length increases.
The HIST tends to outperform it more often. This is due to the greater fidelity
afforded by the HIST, meaning it can retain more information.

86 4.5. Results and Discussion

The WL performed poorly. It almost never outperformed the mDWT, MAV
or HIST for any benchmark-classifier-subject combination at any window length.
This differs from the original study [37], which found it had performance rivalling
the aforementioned other features. This is due to this study’s usage of macro-
average accuracy. When evaluated under micro-average accuracy, as in the origi-
nal, the WL’s performance improves dramatically implying it useful for differen-
tiating movements and rest but less useful at distinguishing between movements.

The VAR is worst of all the features tested. It never outperformed any other
feature for any benchmark-classifier-subject combination at any window length.
This indicates it does not capture much meaningful information compared to the
other features.

4.5.5 Comparison of Window Lengths

The 400ms window length significantly improves performance over the 100ms and
200ms window lengths. Statistical comparison was computed by treating each
benchmark-feature-classifier-subject combination as a set of 3 matched samples
with the independent variable being the window length. This lead to a total of
3× 5× 5× 27 = 2025 matched samples (benchmarks × features × classifiers ×
subjects).

The Friedman test indicated at p < 2.2× 10−308 that the window lengths pro-
duced different performances justifying the use of the post-hoc Holm procedure.

The Holm procedure found that, at p < 1.2× 10−214, the 400ms window length
improved performance. The average rank for the different window lengths was:

• 400ms: 1.02, top performance on 1999/2025 matched samples

• 200ms: 2.00, top performance on 20/2025 matched samples

• 100ms: 2.98, top performance on 6/2025 matched samples

This result confirms the intuition that a longer window length is better for clas-
sification since more useful information is contained as the window size increases.
The result also implies that a longer window length than those tested here may
further improve performance. Using a longer window may also increase the la-
tency between a subject performing a movement and it being recognised, however,
therefore this trade-off would have to be assessed based upon the context of the
classifier’s usage.

Chapter 4. Robust Feature-Based Classification 87

4.5.6 Classifier Trends

The SVM-RBF performed significantly better than all other classifiers across all
window lengths. Statistical comparison was computed by treating each benchmark-
feature-subject combination as a set of 5 matched samples with the independent
variable being the classifier. This lead to a total of 3 × 5 × 27 = 405 matched
samples (benchmarks × features × subjects).

On the window length 100ms results the Friedman indicated at p < 6.4 ×
10−260 that the features produced different performances. Longer window lengths
lead to lower p values. Therefore the usage of the post-hoc Holm procedure was
valid. The following p values were obtained on the final step of the Holm proce-
dure, confirming that the SVM-RBF was the best classifier:

• p < 1.5× 10−2 for window length 100ms

• p < 1.6× 10−6 for window length 200ms

• p < 1.2× 10−10 for window length 400ms

Concretely the SVM-RBF provided the highest performance for the following
number of benchmark-feature-subject combinations:

• 242 of 405 for window length 100ms

• 263 of 405 for window length 200ms

• 306 of 405 for window length 400ms

The average ranks computed for Friedman and Holm procedure testing were:

• Window length 100ms

– SVM-RBF: 1.96

– SVM-L: 2.22

– KNN: 2.33

– LDA: 4.21

– DT: 4.28

• Window length 200ms

– SVM-RBF: 1.73

– KNN: 2.27

88 4.5. Results and Discussion

– SVM-L: 2.36

– LDA: 4.22

– DT: 4.41

• Window length 400ms

– SVM-RBF: 1.47

– KNN: 2.19

– SVM-L: 2.50

– LDA: 4.20

– DT: 4.63

These results for the SVM-RBF agree with the original [37] finding it to perform
best overall and improve with increasing window length compared to the other
tested classifiers. Contrary to the original, however, it was found that the SVM-L
performed similarly to the KNN particularly as the window length was decreased.

The SVM-RBF with mDWT performs best of the 25 classifier-feature pairs
tested on all benchmarks and at all window lengths. It achieved the top per-
formance on almost every subject as evidenced by all its ranks being ≤ 1.1 in
Tables 4.3, 4.4 and 4.5. However, it is not possible, at the 5% significance level,
to determine that the SVM-RBF with mDWT is significantly better than the KNN
with mDWT or SVM-RBF with MAV at any particular window length. This was
due to the need to make 24 pairwise comparisons between the classifiers with only
3 ∗ 27 = 81 (benchmarks × subjects) matched samples per window length.

Combining window lengths into the statistical analysis allowed it to be conclu-
sively shown that SVM-RBF with mDWT is the best performing classifier-feature
pair. The comparison takes the form of comparing the 25 classifiers over matched
samples from 3 ∗ 27 ∗ 3 = 243 benchmark-subject-length combinations. The Fried-
man test confirmed the difference in performance at p < 2.2 × 10−308 and the
Holm procedure showed significantly better performance at p < 2.2× 10−2. The
SVM-RBF with mDWT achieved the highest performance on 239/243 combina-
tions.

As evidenced in Figure 4.7 there is a large amount of variation between classes
performance for a given classifier-feature combination. This is present across all
classifiers and features and indicates that certain classes are more easily differen-
tiable or closely related to others. There is also high variation between subjects,
e.g. for the SVM-RBF classifier using the mDWT the inter-subject standard de-
viation was 0.059. Correspondingly, different movements are often more easily

Chapter 4. Robust Feature-Based Classification 89

classifiable for different subjects. This leads to the idea that it can be beneficial
for applications to sub-select movements for particular subjects and in so doing
tailor classification to the subject, something which is already done to some ex-
tent by training on each subject individually. This premise is explored further in
Chapter 7 as a way to reduce inter-subject variation as well as to improve overall
performance in situations where it is unnecessary to use all 53 movements.

In general, the only class to drop in performance in the non-Baseline bench-
marks relative to the original study [37] was the rest class. This is a predictable
outcome of correcting the class imbalance in the data. However, it is still impor-
tant to note as often it may be desirable to improve performance on the rest class,
particularly in terms of false negatives. How this can and should be handled
is application specific, particularly with regards to expected class distributions,
however, so is not dealt with in these benchmarks.

The majority of the conclusions drawn from this study are the same as the
original [37]. However, the absolute performance numbers are lower due to the
re-calibrations in terms of metric choice and handling of the rest class. These
changes to the underlying assumptions of the study, compared to the original, are
necessary to make the results useful for practical application, therefore, the results
presented here represent a new baseline for performance in the hand movement
classification field.

The best overall combination, in terms of raw performance, was the SVM-RBF
with 400ms window length utilising the mDWT feature and the SMOTE based
data augmentation which achieved a macro-average accuracy of 65.1%. This sets
a new conservative benchmark for performance on the classification problem. Re-
sults, both from this study and the wider literature [191], show that making more
data available to the classifier and utilisation of feature combinations could push
this performance even higher. Similarly, this benchmark tackled simultaneous
classification of many movements which may not be necessary for a given appli-
cation so despite this performance being relatively low in absolute terms these
results are encouraging for practical application of sEMG based movement classi-
fication.

4.5.7 Meta-Validation Results

In order to ensure the validation approach was representative, the meta-validation
strategy described in Section 4.4.5 was implemented.

The stratified folds were found to have a MAE of 0.0022 (relative to the true
mean calculated over all possible folds) while the Monte-Carlo simulation of the
random folds was found to have a mean maximum potential deviation of 0.0425

90 4.5. Results and Discussion

and a mean standard deviation of 0.0071. The stratified folds tended slightly
towards an overestimate of the true mean with 19 of the 27 subjects being over-
estimated. When tested on 10 other sets of different, random stratified folds the
MAE varied by ±0.0001.

These numbers show that the stratified approach to selecting cross-validation
folds is superior to random fold selection because it gives a closer estimate of the
true mean across all folds than the majority of other selections. Specifically, anal-
ysis of the z-score indicates that the stratified approach produces, on average, an
error better than 76% of random selections. This validates the choice of validation
methods used here, although it is worth to note the small positive bias in results
it produces.

4.5.8 Movement Sub-selection Results

The results of the comparison between movement subset selection algorithms is
shown in Figure 4.8.

The best performing was the Superset Performance Selection algorithm, which
consistently outperformed the other algorithms across all classifiers and all move-
ment set sizes. It was possible to confirm that the algorithm was significantly
better by assessing each combination of classifier, movement set size, and sub-
ject as a set of 4 matched samples, one for each algorithm being tested. Both the
Friedman test and the Holm procedure returned p < 2.2× 10−308.

The average ranks and number of combinations performed best on by each
algorithm is summarised below:

• Superset Performance: 1.15, top performance on 6144/6885 matched sam-
ples

• KL Divergence: 2.50, top performance on 310/6885 matched samples

• Mean Distance: 2.80, top performance on 317/6885 matched samples

• Baseline: 3.55, top performance on 114/6885 matched samples

The reason the Superset Performance Selection algorithm outperforms the oth-
ers is that it incorporates extra information. It tailors the movement set to the best
for each subject-classifier combination. This contrasts with the other algorithms
that only have access to information on the subject.

Table 4.6 shows how the average rank of the selection algorithms at small
movement set sizes.

The Mean Distance algorithm competes with Superset Performance algorithm
at very small movement set sizes but quickly falls off. This potentially indicates

Chapter 4. Robust Feature-Based Classification 91

5 10 15 20 25 30 35 40 45 50
0

0.2
0.4
0.6
0.8

1

Number of Movements

M
ac

ro
-a

ve
ra

ge
A

cc
ur

ac
y

KNN

Average Correctly Classified Points Per Class

5 10 15 20 25 30 35 40 45 50
0

0.2
0.4
0.6
0.8

1

Number of Movements

M
ac

ro
-a

ve
ra

ge
A

cc
ur

ac
y

LDA

Average Correctly Classified Points Per Class

5 10 15 20 25 30 35 40 45 50
0

0.2
0.4
0.6
0.8

1

Number of Movements

M
ac

ro
-a

ve
ra

ge
A

cc
ur

ac
y

SVM Radial Basis Function

Average Correctly Classified Points Per Class

5 10 15 20 25 30 35 40 45 50
0

0.2
0.4
0.6
0.8

1

Number of Movements

M
ac

ro
-a

ve
ra

ge
A

cc
ur

ac
y

SVM Linear

Average Correctly Classified Points Per Class

5 10 15 20 25 30 35 40 45 50
0

0.2
0.4
0.6
0.8

1

Number of Movements

M
ac

ro
-a

ve
ra

ge
A

cc
ur

ac
y

Decision Tree

Average Correctly Classified Points Per Class

Mean Distance KL Divergence Superset Performance Baseline

Figure 4.8: Performance of classifiers using different size subsets of the 53 movements in
the database. Different algorithms are used to select the subset with the Superset Perfor-
mance Selection algorithm consistently providing higher performance on all classifiers at
different set sizes.

92 4.5. Results and Discussion

Average Rank
Set Size Superset Performance Mean Distance KL Divergence Baseline

2 2.25 2.30 2.46 2.99
3 1.83 2.02 3.00 3.15
4 1.55 2.09 3.16 3.20
5 1.39 2.23 3.05 3.33

Table 4.6: Average rank of the movement set selection algorithms for small set sizes. Rank
was computed based on the 135 classifier-subject pairs that exist for a given movement set
size.

that, at small set sizes, the most important factor is how dissimilar the movements
in the set are. At larger sizes, the extra information about the classification al-
gorithm added by the Superset Performance algorithm becomes more important.
This leads to its decreasing average rank as the set size is increased.

The KL Divergence performs worse than the Mean Distance algorithm at smaller
set sizes but improves over it at larger ones. This is evidenced by the Mean Dis-
tance algorithm’s performance in Table 4.6 contrasted with its overall average rank
of 2.50. Given it was designed to perform a function similar to the Mean Distance
algorithm, this means that the mean MAV may not present a suitably normal dis-
tribution on each channel for comparison.

Therefore it would be reasonable to assume that these two algorithms are likely
to vary more in utility with different features than the Superset Performance Selec-
tion algorithm. This highlights another important benefit of Superset Performance
Selection, which is that it is feature-agnostic.

Finally, it can be seen in Figure 4.8 that all these algorithms make the most
impact at lower set sizes since there is most dissimilarity in sets at those sizes.
These algorithms also beat the baseline Grouped Addition algorithm demonstrat-
ing their practical utility. Overall, therefore, the Superset Performance Selection
algorithm is the most versatile and useful algorithm since it provides clear per-
formance improvements of up to 10% over the baseline and is mostly invariant to
changes in the features used.

This work demonstrates that there is utility in over-provisioning experiments
with more movements than is necessary for a given application in order to im-
prove performance in cases where specific movements are not required, such as in
human-computer interaction. This performance improvement can come at mini-
mal overhead at experiment time and removes the need to try to design a set of
movements that is the best for a population, instead, allowing tailoring of systems
to individuals.

Chapter 4. Robust Feature-Based Classification 93

4.6 Conclusion

The methodological improvements to evaluation presented in this chapter allevi-
ate several common issues found in sEMG-based classification studies. Therefore
these represent a more robust set of techniques for evaluating performance relative
to many previous studies which are critical to ensuring representative repeatable
results.

In particular, the need for a precise definition of the performance metric is
discussed and the major effect of inappropriate choice demonstrated. The macro-
average accuracy is presented as a more informative default performance measure
since it applies a uniform a priori probability to the relative importance of clas-
sifying each class rather than the frequency based probability standard accuracy
imposes, which is unlikely to be valid in real-world application.

A new stratification technique for cross-validation is also presented, which
removes the potential for bias that random selection causes when the number
of folds, K, is low. The technique is meta-validated (Section 4.4.5) to show it
is representative of the performance that would be found across all folds and
provides a tangible improvement over random selection.

In light of these issues and improvements, a major study in sEMG classifi-
cation [37] is re-evaluated with these more realistic techniques, and the overall
performance is shown to be lower than originally reported. This is of importance
to the field since the original study is well cited and its data and methodology used
in several other research ventures potentially leading to misleading conclusions.

The original study is also extended with several data resampling techniques
which improve performance by over 10% in terms of absolute macro-average ac-
curacy. These represent a new improved and more robust benchmark for the
potential performance that can be achieved on this data set as well as presenting
a general-purpose methodology for sEMG hand movement classification.

Parallel to the benchmark, a novel evaluation of movement sub-selection tech-
niques is presented. The evaluation found that when fewer movements are needed
than are available, it is possible to tailor movement selection to a particular sub-
ject to improve performance relative to naive selection. The best technique was
Superset Performance Selection, which consistently improved performance over
the other tested techniques. This evaluation demonstrated that adaptation to each
subject is a useful avenue for improving the performance and utility of hand ges-
ture classification techniques.

Chapter 5

Deep Neural Networks for
Person-Specific Classification

5.1 Introduction

Deep neural networks have been shown to be a powerful tool for a variety of
machine learning problems [102, 104, 181]. In the last chapter, feature-based clas-
sification methods were explored and improved upon to present more robust and
representative performance results. In this chapter, the methodological improve-
ments are built upon by applying deep neural networks in the place of the feature
based classifiers and feature extraction steps. This leads to significant performance
improvement over the original baseline setting a new state-of-the-art for sEMG
gesture classification.

Using deep neural networks also has a distinct advantage over feature based
techniques in that it allows person-specific adaptation at the feature level. The lit-
erature for sEMG gesture classification relies heavily on high-performance feature
extraction [99, 100, 200] with the best features varying depending on the particu-
lar setup and subjects involved. Deep neural networks, on the other hand, allow
tailoring of this step to each individual, automating a potentially complex and
time-consuming part of the classification process.

The major novelty of this chapter is the design and evaluation of a novel convo-
lutional neural network architecture that encodes domain knowledge to produce
best-in-class performance. Specifically, the architecture limits early convolutions
to ensure that features are extracted from individual channels first and that only
high-level features may be inter-channel. This design is based on observation of
the sEMG feature literature, which almost invariably makes the same assumption
during feature extraction. The network is evaluated against several contemporary

94

Chapter 5. Deep Neural Networks for Person-Specific Classification 95

deep neural network approaches [39, 47, 201], across two different data sets to
demonstrate its utility.

An analysis of the resultant performance distribution and visualisation of the
features the network extracts is also presented. It is shown that there is a consistent
negative performance bias that results from the use of the first repetition as well as
other non-uniform trends that can affect the overall results. This presents further
evidence that the stratified cross-validation technique proposed in the last chapter
is vital for repeatability. Further, the substantial change in performance caused
by inappropriate accuracy measures is demonstrated again on the new data set
to show it is not an issue limited to the original data. In addition, it is shown
that the neural network presented here improves the curve associated with per-
formance against normalised position within a movement. This is shown to have
implications for experimental design to be explored in future chapters. Finally, vi-
sualisation and review of the features the network extracts demonstrate a number
of other interesting issues that have an impact on the design of the network itself
and supporting software.

5.2 Methodology

The same evaluation methodology as described in Chapter 4 is used: cross-validating
across a balanced set of folds delineated by repetition number, avoiding data shar-
ing between folds, using macro-average accuracy as the performance metric and
Forman et al.’s inter-fold evaluation [184]:

acc∗ma =
1
M

M

∑
i=1

∑K
j=1 TPi,j

∑K
j=1 TPi,j + ∑K

j=1 FNi,j
(5.1)

NinaPro databases 1 and 2 were used to trial the methodology. Database 1 is
explored and analysed in Section 4.2. Database 2 [202] is collected using a similar
experimental technique to Database 1 but uses a different set of electrodes and
covers 40 subjects performing 40 hand movements plus rest along with 9 finger
force exercises. The force exercises are omitted here since they are intended for
force regression problems rather than classification. The electrodes used are a
Delsys Trigno system with 12 channels, a 2kHz sampling frequency and no signal
rectification [202]. Compared to database 1, therefore, the signals in database 2
are of higher fidelity. Database 2 suffers from a similar level of class imbalance as
database 1 due to the experimental methodology being similar.

On both databases, a window length of 150ms and an increment of 10ms was
used for comparability with contemporary work [39, 47, 201] and recommenda-

96 5.2. Methodology

tions made by Farrell and Weir [203]. For any given application, this length could
be varied to match the desired latency-performance trade-off (Section 4.3.1); How-
ever, it was more important to maintain comparability with other works for devel-
oping this benchmark. 150ms corresponds to 15 sample windows with a 1 sample
increment on database 1 and a 300 sample window with 20 sample increments on
database 2. Windows are still labelled by the most recent label within their data
view, and repetitions are labelled in the same way as in Chapter 4.

In this set of experiments, the training set was not downsampled because of the
significant reduction (∼ 30x) in the number of classifiers that required training and
the ability to effectively utilise Graphics Processing Unit (GPU) computation for
training the neural networks. The zero-phase low-pass filtering was also omitted
since true zero-phase filtering is not possible in an online context, which is the
ultimate goal for the classification process. No feature extraction was performed.

Stratified K-fold cross-validation was used with the stratification based on rep-
etition numbers as discussed in Section 4.3.3. The specific splits/folds used are
shown in Table 5.1, the folds were generated randomly with the first split being
seeded on both databases since this is the single split examined in the papers
benchmarked against [39, 47, 201]. Similarly, the data was only split into training
and testing without a separate validation set to maintain this comparability.

Database 1 Database 2

Split Training Testing Training Testing

1 [1, 3, 4, 6, 8, 9, 10] [2, 5, 7] [1, 3, 4, 6] [2, 5]

2 [1, 2, 3, 5, 7, 9, 10] [4, 6, 8] [1, 4, 5, 6] [2, 3]

3 [1, 2, 4, 6, 7, 8, 10] [3, 5, 9] [1, 2, 3, 5] [4, 6]

4 [1, 2, 5, 6, 8, 9, 10] [3, 4, 7] [1, 2, 4, 6] [3, 5]

5 [2, 3, 4, 6, 8, 9, 10] [1, 5, 7] [2, 3, 4, 5] [1, 6]

6 [1, 2, 3, 4, 5, 7, 9] [6, 8, 10] [2, 3, 5, 6] [1, 4]

7 [3, 5, 6, 7, 8, 9, 10] [1, 2, 4]

8 [1, 2, 4, 5, 7, 8, 9] [3, 6, 10]

9 [3, 4, 5, 6, 7, 8, 10] [1, 2, 9]

10 [1, 2, 3, 4, 5, 6, 7] [8, 9, 10]

Table 5.1: Training and test set splits for validation. Each number refers to a movement
repetition (for 10 total repetitions in database 1 and 6 repetitions in database 2).

All data was independently normalised to zero-mean and standard deviation
one, using training set data only for each validation fold.

The preprocessing steps were therefore reduced to the following (unless oth-

Chapter 5. Deep Neural Networks for Person-Specific Classification 97

erwise noted):

1. Overlapped windowing:

• Window length: 150ms

– 15 samples on database 1

– 300 samples on database 2

• Window increment: 10 ms

– 1 sample on database 1

– 20 samples on database 2

2. Each window labelled as belonging to the movement at the most recent sam-
ple within the window

3. Data was split so as to maintain comparability with the previous studies
[39, 47, 201]

• 7
10 for training and 3

10 for testing on database 1

• 2
3 for training and 1

3 for testing on database 2

4. Data normalised to zero-mean and standard deviation based on statistics
calculated from the training data set

Architecture development and empirical testing used multiple randomised
splits on randomised cross-sections of the subjects to enable rapid prototyping.

Since feature extraction is not performed for the neural networks Xω is the
actual input, which means each network solves the problem:

y = f (Xω, φ) (5.2)

where f is the neural network forward pass and φ are the parameters to be learnt.

The shape and intuition for Xω is shown again in Figure 5.1 as it is critical
for understanding the network design choices made later in this chapter which
operate along the axes separately.

5.2.1 Baseline SVM-RBF

The SVM-RBF classifier from Chapter 4 was reimplemented here as an additional
check against the changes in the methodology and to provide a baseline for per-
formance.

98 5.2. Methodology

Figure 5.1: Visualisation of the raw sEMG window Xω from database 1 as presented to
the neural networks. On database 2 there are two additional channels, and the data is
denser over the same period due to the increase in sampling frequency.

The MAV, WL and mDWT features were combined to make the input (using
the same definitions as in Section 2.2.1) for the SVM-RBF normalised after extrac-
tion using training set data. Class weighting based on training set class frequency
was also used.

Therefore the SVM-RBF solves a slightly different form of the problem:

Y = f (g(Xω, θ), φ) (5.3)

where f is the SVM-RBF maximum margin computation φ is the set of support
vectors, g is the feature extraction process and θ is the parameters of the extraction
process.

The change in window size from the original benchmarks as well the alter-
ations to the preprocessing, specifically the removal of the zero-phase filter, also
make it essential to reimplement the SVM-RBF. Class weighting was used over
the data augmentation strategies to maximise the amount of data for training and
to make the training set for classifiers uniform throughout the methodology. The
combination of features is used to help improve the overall performance of the
classifier [191].

Chapter 5. Deep Neural Networks for Person-Specific Classification 99

5.2.2 Baseline CNN

In order to test whether the performance improvement was due to architecture de-
sign or just the use of deep learning as a classification method a CNN architecture
based on a "standard" network architecture, as used in many other domains[102],
was devised as a litmus test. This style of design is also the approach seen in other
work on sEMG classification with deep learning [28, 45, 47].

Table 5.2 shows the design for database 1 and Tables 5.2 and 5.4 show the
designs for databases.

Layer Type Output Size # Filters Filter Size Stride Padding Activation # Parameters
Input EMG 15x10x1

Gaussian Noise 15x10x1 σ = 0.001
Conv 15x10x128 128 3x3 1x1 Same LReLU(α = 0.1) 1,280
Conv 15x10x64 64 5x3 1x1 Same LReLU(α = 0.1) 122,944
Conv 15x10x32 32 5x3 1x1 Same LReLU(α = 0.1) 30,752

Dropout 4,800 rate = 0.5
Dense 128 128 LReLU(α = 0.1) 614,528

Dropout 128 rate = 0.5
Dense 53 53 Softmax 6,837

Total 776,341

Table 5.2: Baseline CNN architecture for database 1. Channels last format.

Layer Type Output Size # Filters Filter Size Stride Padding Activation # Parameters
Input EMG 300x12x1

Gaussian Noise 300x12x1 σ = 0.001
Conv 15x12x128 128 3x3 1x1 Same LReLU(α = 0.1) 1,280
Conv 15x12x64 64 5x3 1x1 Same LReLU(α = 0.1) 122,944
Conv 15x12x32 32 5x3 1x1 Same LReLU(α = 0.1) 30,752

Dropout 4,800 rate = 0.5
Dense 128 128 LReLU(α = 0.1) 14,745,728

Dropout 128 rate = 0.5
Dense 53 53 Softmax 5,289

Total 14,905,993

Table 5.3: Baseline CNN architecture for database 2. Channels last format.

Layer Type Output Size # Filters Filter Size Stride Padding Activation # Parameters
Input EMG 300x12x1

Gaussian Noise 300x12x1 σ = 0.001
Conv 15x12x128 128 60x3 20x1 Same LReLU(α = 0.1) 23,168
Conv 15x12x64 64 5x3 1x1 Same LReLU(α = 0.1) 122,944
Conv 15x12x32 32 5x3 1x1 Same LReLU(α = 0.1) 30,752

Dropout 4,800 rate = 0.5
Dense 128 128 LReLU(α = 0.1) 737,408

Dropout 128 rate = 0.5
Dense 53 53 Softmax 5,289

Total 919,561

Table 5.4: Baseline Adapted CNN architecture for database 2. Channels last format.

While these networks were based on a typical template: stacked, increasing
size convolutions leading to dropout and dense layers, several notable deviations

100 5.2. Methodology

are implemented that were discovered to be useful and improved upon the per-
formance relative to uninformed designs.

The first is the use of additive Gaussian noise at the input, which is applied
as a form of regularisation during training. This was based on the use of the
same by Atzori et al. [47] in their architecture. Gaussian noise is a natural fit here
to help guard against overfitting given the real-valued nature of the sEMG signals
although the standard deviation was kept small at 0.001 based on empirical testing
and the erratic results demonstrated by higher values in Atzori et al. [47].

Gaussian noise fills a similar role to SMOTE as used in the previous chapter
due to the multiple training passes performed in the neural network training by
presenting "new" variations during each pass. This provides a form of regularisa-
tion to the network helping prevent overfitting to individual data samples.

The second is the use of non-symmetric kernels in the convolutional layers.
Typically square kernels are used since there is no a priori reason to assume the
shape of useful kernels; therefore, squares are used to minimise assumptions. For
this problem, it is known that the input (xω) will always be rectangular with a
longer first (temporal) axis and that, based on the way features are extracted, the
temporal axis is likely to have useful information embedded in it. This fact is
taken advantage of by extending the filter kernel shape in the second and third
convolutional layers which widens the receptive field of each layer along the tem-
poral axis. This led to a small boost in the overall performance of networks using
this rectangular filter kernel compared to square counterparts using either of the
rectangular filter’s dimensions as its width.

The non-symmetric kernel technique is extended in the second database 2 de-
sign (Table 5.4) based on performance improvement and parameter reduction re-
sults from the novel network. The first layer’s convolutional kernel is expanded
along the temporal axis by a factor of 20 as is the stride in the same axis. This
measure was designed as an approach to reducing the number of parameters in
the original design, from Table 5.3, to reduce the computational load caused by
using an order of magnitude more parameters than the network used on database
1 (Table 5.2). This increase in the number of parameters is caused partially by
the increase in the number of channels but overwhelmingly by the 20x increase
in data points in the window due to the 2kHz sampling frequency in database 2
compared to the 100Hz used in database 1. The expanded kernel, therefore, rep-
resents the first convolutional layer viewing the same time period with the same
increment in both databases.

Chapter 5. Deep Neural Networks for Person-Specific Classification 101

5.2.3 Temporal-to-Spatial Network

The major novel design is designated a Temporal-to-Spatial (TtS) network be-
cause of the explicit enforcement of separation of the data in the early layers of
the network forcing learning of temporal features before later combining them
across channels (spatially). Intuitively this is based on the EMG feature extrac-
tion literature which nigh invariably extracts features on a per channel basis
[55, 68, 99, 100, 200, 204] which provides a strong indication that extracting fea-
tures from channels individually is a useful technique. This is directly contrary
to the methodology employed by the contemporary work benchmarked against
[39, 47, 201] which enforces early spatial-only features and more typical architec-
tures like the networks described in Section 5.2.2.

Figure 5.2 shows a visualisation of the general TtS network and Tables 5.5, 5.6,
5.7 shower a finer grained breakdown of the architectures used on the different
databases.

Figure 5.2: Visualisation of the Temporal-to-Spatial (TtS) network. Brackets show the
number of filters followed by filter size. The "or" statements in filter sizes show the differ-
ent sizes for database 1 and database 2, respectively.

102 5.2. Methodology

Layer Type Output Size # Filters Filter Size Stride Padding Activation # Parameters
Input EMG 15x10x1

Gaussian Noise 15x10x1 α = 0.001
Conv (Temporal) 15x10x64 64 3x1 1x1 Same LReLU (α = 0.1) 256

Temporal Fire 15x10x128 (32, 64, 64) (1x1, 1x1, 3x1) 1x1 Same LReLU (α = 0.1) 10,400
Conv (Spatial) 15x10x32 32 3x10 1x1 Same LReLU (α = 0.1) 122,912

Dropout 4,800 rate = 0.5
Dense 128 128 LReLU (α = 0.1) 614,528

Dropout 128 rate = 0.5
Dense 53 53 Softmax 6,837

Total 754,933

Table 5.5: TtS architecture for database 1. Channels last format.

Layer Type Output Size # Filters Filter Size Stride Padding Activation # Parameters
Input EMG 300x12x1

Gaussian Noise 300x12x1 α = 0.001
Conv (Temporal) 12x12x64 64 3x1 1x1 Same LReLU (α = 0.1) 256

Temporal Fire 12x12x128 (32, 64, 64) (1x1, 1x1, 3x1) 1x1 Same LReLU (α = 0.1) 10,400
Conv (Spatial) 12x12x32 32 3x12 1x1 Same LReLU (α = 0.1) 147,488

Dropout 4,608 rate = 0.5
Dense 128 128 LReLU (α = 0.1) 14,745,728

Dropout 128 rate = 0.5
Dense 41 41 Softmax 5,289

Total 14,909,161

Table 5.6: Unadapted TtS architecture for database 2. Uses the same design as for database
1 with the numbers of parameters updated to account for the larger input size. Channels
last format.

The key points of the architecture are the use of Gaussian noise as regulari-
sation, the first Temporal Convolution, the Temporal Fire Module and the Spatial
Reduction Convolution before the final dense classification portion of the network.

The same Gaussian noise parameters are used as in the baseline CNN, i.e.
zero mean with standard deviation 0.001, based on empirical testing of a pool of
candidates and the work by Atzori et al. [47].

The Temporal Convolution acts as the first layer of enforcement of temporal
feature learning by restricting the kernel to viewing only a single channel at a
time. On database 2 two different variants were possible, the first, naive imple-

Layer Type Output Size # Filters Filter Size Stride Padding Activation # Parameters
Input EMG 300x12x1

Gaussian Noise 300x12x1 α = 0.001
Conv (Temporal) 12x12x64 64 50x1 25x1 Same LReLU (α = 0.1) 3,264

Temporal Fire 12x12x128 (32, 64, 64) (1x1, 1x1, 3x1) 1x1 Same LReLU (α = 0.1) 10,400
Conv (Spatial) 12x12x32 32 3x12 1x1 Same LReLU (α = 0.1) 147,488

Dropout 4,608 rate = 0.5
Dense 128 128 LReLU (α = 0.1) 589,952

Dropout 128 rate = 0.5
Dense 41 41 Softmax 5,289

Total 756,393

Table 5.7: TtS architecture for database 2 with adaption for higher sampling frequency.
The key difference is the large filter size and large step size in the temporal dimension of
the first convolutional layer. Channels last format.

Chapter 5. Deep Neural Networks for Person-Specific Classification 103

mentation, with the 3x1 kernel (Table 5.6) as designed for use on database 1 and
the second with a 50x1 kernel and a stride of 25x1 (Table 5.7). The exact value
of this latter set of hyperparameters was based on testing; however, the principle
was to account for the much higher (20x) sampling frequency in database 2. This
adaptation for higher sampling frequencies vastly reduces the necessary number
of parameters while also improving performance (as can be seen by comparing
the tables) making it a powerful technique for adapting networks to different elec-
trodes while controlling the computational complexity. Both the adapted and un-
adapted versions are including in testing for comparison.

The Temporal Fire Module is a co-opt and adaptation of the Fire module that
Iandola et al. used to reduce the number of parameters necessary for AlexNet level
accuracy on Imagenet by 50x as part of their SqueezeNet architecture [205]. The
Fire module, which learns useful inter-filter features, was taken and an additional
temporal feature constraint was added by replacing the 3x3 kernel in the original
with a 3x1 kernel.

Early temporal convolutions were inspired by work on deep learning for EEG
where good performance was found utilising temporal convolutions [206]. Here
the ideas are expanded and adapted for use with sEMG. Some of the latest re-
search in the sEMG classification field has also shown promising results with tem-
poral convolutions [45].

Lastly, the Spatial Reduction Convolution layer uses a kernel that acts on all
channels enforcing the spatial portion of the Temporal-to-Spatial architecture. In-
tuitively this layer is able to extract cross-channel features which have a strong
prior on being the higher level of useful feature, e.g. the MAV per channel across
a window can be well classified. Therefore this expectation that useful top-level
features will be combinations of low-level temporal ones is explicitly enforced.
This allows extending of the receptive field of the layer, which allows it to build
a representation based on a larger amount of the original data. It was found that
this single kernel worked better than adding additional layers in other places to
increase the receptive field by the same amount.

5.2.4 Additional Design Choices

There are six major design choices for the new neural networks not covered ex-
plicitly up to this point.

The first is the choice to train classifiers on each subject individually rather
than training a single classifier or set thereof to work on all subjects. This ap-
proach is adopted throughout this work up to this point and very common in the
wider literature. The reason for this is purely practical, training a classifier across

104 5.2. Methodology

subjects performs significantly worse than training to an individual likely due to
the differences in the biophysical properties of the forearm between subjects as
well as other concerns such as relative electrode placement. In Chapter 7 methods
of making classifiers more useful across subjects are explored.

The second is not making use of ensembles. It is well known that using
ensembles can improve performance; however, this increases the computational
complexity, the method complexity and introduces numerous additional hyper-
parameters. Ensembles were omitted to reduce the complexity of the benchmark
so as to ensure the results were as clear cut and comparable as possible to other
studies and presented the building blocks for more complicated classifier arrange-
ments.

The third is the usage of convolutional neural networks rather than recurrent
networks. A plethora of recurrent architectures were tested including Long Short-
Term Memory (LSTM) networks [207], attentional interfaces and other variants of
recurrent architectures [161]; however, they were found to be more complicated
and perform worse than convolutional solutions. This finding is also implied in
the literature by the fact that other neural network solutions to the classification
problem are not recurrent. It is not clear why recurrent networks generally appear
to perform worse than convolution networks given the problem’s temporal ele-
ment. However, based on the evidence, convolutional architectures were chosen
as the appropriate solution.

The fourth point is the lack of pooling layers in any of the designs. Pool-
ing layers act as downsampling within a network generally averaging or taking a
maximum activation. In larger networks, these layers can be vital to managing the
numbers of parameters and are a staple of convolutional network design. Similar
to the work of Springenberg et al. [208] this design principle was re-evaluated in
the sEMG context, and it was found that removing pooling, even without intro-
ducing alternative downsampling, e.g. via stride increase, consistently improved
performance. This was generally, although not universally, true on all networks,
including those with nearly 15 million parameters implying it may not only be a
function of the generally small network size. A potential implication, therefore,
is that the information extracted over different time periods is not directly gen-
eralised to larger time periods, which is the expected behaviour, given that the
underlying signal is non-stationary.

Fifthly, training was achieved using a set number of epochs (10) for each model
as in each case this was found suitable for convergence, optimisation was per-
formed using the Adam algorithm with default parameters. Using a set number
of epochs like this, as opposed to a dedicated validation data set, makes under

Chapter 5. Deep Neural Networks for Person-Specific Classification 105

or overfitting more likely, which is why the number of epochs is conservative to
avoid overfitting. The set number of epochs was used to ensure the data split was
the same as in previous studies for greater comparability.

Finally, since it is known that the data is heavily imbalanced and that this is
detrimental to the desired classification, class weighting was implemented during
training to ensure the networks did not end up heavily biased towards the rest
class. Several weighting strategies were trialled; however, the following lead to
the best results:

wi = 1 + log2(
nmax

ni
) (5.4)

where wi is the weight for class i, ni is the number examples of class i and nmax is
the maximum number of examples of any class. This leads to a weighting scheme
where examples of the most represented class (rest) have a weighting of 1 while
other classes have their associated error signals amplified but to a much smaller
degree than a frequency based approach would, which helps to guard against
amplification of noise during training and from particular samples dominating a
batch update.

5.2.5 Adam Algorithm

The Adam algorithm [113] is one of the most popular general-purpose optimisa-
tion algorithms at the time of writing and is the algorithm used to train all the
networks used in this and future chapters. Adam takes its name from ADAptive
Moment estimation, which is key to its performance. The reason for its popularity
is its similar or better performance to contemporary algorithms coupled with a
significant decrease in convergence time for many applications without the need
for parameter tuning in most circumstances.

The key points of the Adam algorithm are its usage of a smoothed gradient
vector based on a decaying average of past gradients and past gradient squares
(first and second moments) which allows, effectively, individual adaptive learning
rates for each parameter in the network. The algorithm is included as pseudocode
in Algorithm 5.1.

The bias correction steps in the last few lines are not strictly necessary and are
not implemented in some popular frameworks such as Keras [209]. The correction
terms exist because the algorithm computes moving averages and, therefore, the
first few steps will be significantly biased towards the initialisation of m0 and v0

which may cause inappropriate updates in some circumstances.

The hyperparameters α, β1 and β2 typically perform well with the default val-
ues of α = 0.001, β1 = 0.9 and β2 = 0.999 [113] but can be adjusted to fit the

106 5.2. Methodology

Algorithm 5.1 The Adam algorithm [113] which is popular due to its improve-
ments in convergence time on many problems while having matching or better
performance. Note ε is a small value to prevent division by 0 issues, typically set
to 10−8.

Input: α : Step size, β1 : Exponential decay rate for 1st moment estimate,
β2 : Exponential decay rate for 2nd moment estimate, f (θ) : Cost
function with parameters θ, θ0 : Initial parameters

Result: θt : Updated parameters

m0 = 0, // 1st moment estimate

v0 = 0, // 2nd moment estimate

t = 0, // Current time step

while θt not converged do
t = t + 1
gt = ∇θ ft(θt−1) (// gradient vector for current time step

mt = β1mt−1 + (1− β1)gt // biased first moment estimation

vt = β2vt−1 + (1− β2)g2
t // biased second moment estimation

m̂t = mt/(1− βt
1)gt // initialisation bias correction

v̂t = vt/(1− βt
2)gt // initialisation bias correction

θt = θt−1 − αm̂t/(
√

v̂t + ε)
end

particular needs of a problem if necessary. When changes are made, they are typi-
cally to reduce β1 to reduce the effect of the first moment although no benefit was
found in doing this in the problems explored here.

5.2.6 Comparison to Contemporary Networks

Two contemporary network architectures were reimplemented that both claimed
to have best in class performance for the classification problem [39, 47]. Both made
use of NinaPro databases 1 and 2 in their testing, which provided an ideal testing
ground for comparison.

Atzori et al.’s network [47] was reimplemented based on their description and
communication with the authors about some of the implicit choices made in the
architecture, such as the padding on convolutional layers. Their network uses the
same data format as the new networks implemented here, so no special consider-
ations were necessary for comparability.

Geng et al. [39, 201] forgo direct windowing in favour of an "instantaneous"
approach where majority voting on all samples in a window is used to classify
windows. Therefore data is presented in training as x, y pairs where x is only
a single sample of sEMG and y the associated label rather than presenting a full
window. At test time the same windows were used as for the other classifiers but

Chapter 5. Deep Neural Networks for Person-Specific Classification 107

evaluated each individual sample in each window and took the unweighted ma-
jority vote as the predicted label. Geng et al. provided an implementation of their
network [38] which was fixed to work with current generation hardware how-
ever this code was not compatible with the testing methodology. Therefore, the
network was reimplemented directly using the code provided to inform implicit
design choices in the architecture.

Implementations were validated by testing them under the original method-
ology and verifying that the results were similar to the original studies. Exact
replication of results was not possible due to stochasticity in the training process.
In the reimplementation, random number seeds were set to help reduce this issue.
However, even then it is not entirely possible due to stochastic processes present in
GPU processing software such as cuDNN [210] which are often used in training.

5.2.7 Filter Visualisation

Visualisation techniques can be useful to aid in understanding how a neural net-
work functions and what sort of features it extracts as well as in providing insight
into the data as a whole. There are several ways to help visualise a neural network
including but not limited to weight visualisation, generating inputs that maximise
the activation of a particular neuron, t-SNE and occlusion mapping [108]. The
t-SNE algorithm, however, is less useful here than in the previous chapter or im-
age recognition since clustering of similar examples does not lend itself well to
visualisation.

Weight visualisation is the straightforward plotting of weights to see what
sort of pattern will fit them best. This technique is most useful in the earliest
layers since these deal with the input directly and becomes less useful later on
due to the abstract representation later network layers work with. In images, this
visualisation generally takes the form of a 2D image plot where edge, shape and
colour detectors become visible in the pixel pattern.

Maximising activation of a neuron either by finding examples in the data set
or by using gradient descent to optimise an input for the neuron is also a useful
technique for finding biases that may be present in the network and determining
prime examples of classes of phenomena.

Lastly, occlusion mapping involves running the test procedure with sections
of all the input data removed. Here this means setting the signal to zero ampli-
tude over different segments and determining how this affects performance as an
indicator of which segments of the input the network focuses on at test time.

108 5.3. Results and Discussion

5.3 Results and Discussion

Tables 5.8 and 5.9 show the performance of the different networks on database 1
and 2, respectively. Results are ordered in terms of ascending macro-average ac-
curacy. The micro-average accuracy is also presented to demonstrate the disparity
of results under the two metrics.

Database 1

Classifier
Macro Accuracy Micro Accuracy
µsubj(%) µrank µsubj(%) µrank

Atzori et al. [47] 51.4 4.9 71.0 5.0
Geng et al. [39, 201] 59.0 3.6 79.5 1.1

SVM-RBF 60.4 3.1 77.8 2.5
Baseline CNN 65.0 2.3 77.1 3.7

TtS 66.6 1.2 77.5 2.7
TtS* 69.3 / 78.0 /

Table 5.8: Summary of classifier performances on database 1. The value µsubj is the inter-
subject mean accuracy calculated using either the micro-average or macro-average for a
given classifier, µrank is the inter-subject mean rank (range 1-5). *Repetition 1 removed
from test set without retraining, not included in ranking.

Database 2

Classifier
Macro Accuracy Micro Accuracy
µsubj(%) µrank µsubj(%) µrank

Geng et al. [39, 201] 24.5 7.0 58.2 6.8
Atzori et al. [47] 50.2 6.0 61.0 6.0

Adapted Baseline CNN 57.0 4.9 64.8 5.1
SVM-RBF 60.5 3.8 71.2 1.4

Unadapted TtS 63.1 2.7 69.3 2.5
Unadapted Baseline CNN 63.2 2.5 68.6 3.5

TtS 67.8 1.0 69.5 2.6
TtS* 70.6 / 70.9 /

Table 5.9: Summary of classifier performances on database 2. The value µsubj is the inter-
subject mean accuracy calculated using either the micro-average or macro-average for a
given classifier, µrank is the inter-subject mean rank (range 1-7). *Repetition 1 removed
from test set without retraining, not included in ranking.

On both databases, the TtS network significantly outperforms all others tested
in terms of macro-average accuracy. The micro-average is included for comparison
against the comparison networks [39, 47, 201] and to show that it again masks the
performance of virtually all but rest class as demonstrated by Figure 5.3 which is
not desirable for a benchmark unless there is a strong prior on the test time class
distribution.

Chapter 5. Deep Neural Networks for Person-Specific Classification 109

The statistical significance of the TtS network’s performance was confirmed
using the Friedman test and post-hoc Holm procedure.

On database 1, the Friedman test determined that the classifiers performed
differently at p < 5.8 × 10−33. The Holm procedure then showed that the TtS
outperformed the others at p < 1.3× 10−2. The TtS performed best on 22 of the
27 subjects in the database.

On database 2, the Friedman test determined that the classifiers performed
differently at p < 4.4× 10−152. The Holm procedure then showed that the TtS
outperformed the others at p < 1.3 × 10−3. The TtS performed best on all 40
subjects.

Figure 5.3: Accuracy of individual movement classes compared to the overall micro-
average and macro-average accuracy for Geng et al.’s classifier [39]. The over-reporting
of the micro-average is demonstrated again under the assumption that the test time class
distribution is unknown.

Figure 5.3 demonstrates the underlying cause for Geng et al.’s significantly
reduced performance on database 2. The instantaneous classification method em-
ployed by the network naturally tends to high rest classification rates due to rest
generally being a lower energy state. The Figure shows this in the near 100% rest
classification rate, but this comes at the expense of the other classes being misclas-
sified as rest and is amplified as the number of examples in each window increases
which is what causes this much lower macro-average accuracy on database 2.

Geng et al. present an alternate formulation of the classification problm they
describe as trial based classification; classification by majority vote over all labels
a priori known to be part of a single repetition of each movement. In this setup,

110 5.3. Results and Discussion

their network achieves 87% macro-average accuracy on database 1 and 20.1% on
database 2. The TtS network achieves 92.9% on database 1 and 95.0% on database
2. This trial based classification, however, is not a practical measure since it re-
quires the movement to be complete before classification can take place. On this
data, this is equivalent to introducing a prior on movement duration and a latency
of the order of seconds which is much higher than the generally accepted ∼ 200ms
maximum acceptable control latency [203] as well as requiring prior knowledge
on when a movement begins and ends which is generally unavailable.

All classifiers exhibit a degree of inter-subject variability. This can be quantified
in terms of the standard deviation of the macro-average accuracy between subjects.
On database 1 this is 4.8− 5.7% and on database 2 this is 5.6− 6.3%. This shows
that there is a high degree of variation between subjects.

5.3.1 Effect of Repetition Number

It was discovered that, on average, the first repetition of each movement that each
subject performed had a significantly lower classification rate compared to later
repetitions. This result is illustrated in Figure 5.4 on the TtS network, although
this effect is present in all classifiers.

It may be posited that this is likely a, difficult to avoid, artefact of the experi-
mental procedure and sEMG data gathering in general; the first, or first few times
a subject performs a movement or after having performed another movement there
is a higher likelihood of error. This is backed up by the observation from Figure 5.4
that the first repetition is significantly worse than the others. To a lesser degree the
later repetitions on database 1 also show a decline in performance. This is unlikely
to be from muscle fatigue (due to the limited number of repetitions [141]) but may
be caused by preemption of the video stimuli or inattention causing non-optimal
replication of the movement.

Regardless the underlying cause, it may be beneficial for studies to omit the
first repetitions from their data corpus when considering these databases and to
analyse other data sets for similar effects. However this must be traded off with
the loss of valuable data so it is important to decide this on a case-by-case basis.
Tables 5.8 and 5.9 include the performance of the TtS with repetition 1 removed
from testing to demonstrate the effect; other networks see a similar increase in
performance. Removing different repetitions has a much smaller effect on perfor-
mance (< 1%).

Figure 5.4 shows that the reported effect of the repetition is significantly re-
duced under the micro-average which implies the effect is likely not present or
significantly reduced in the rest class. This was substantiated by review of the per-

Chapter 5. Deep Neural Networks for Person-Specific Classification 111

formance of rest across repetitions which did not show the bias based on repetition
number.

This is an issue not frequently addressed in the literature that, as is clear from
Tables 5.8 and 5.9, can make a significant difference to the final performance and
therefore is worthy of additional consideration in studies going forward.

5.3.2 Distribution of Classification Performance

In one of the original studies on the NinaPro databases [37], it is noted that av-
erage classification performance is highest in the middle of each movement and
degrades significantly towards the start and end of each movement. The graph
from the original study is shown in Figure 5.5.

In this work, a similar effect was found, shown in Figure 5.6, however, while
the curve is similar here, the minimum performance level is higher and the per-
formance ramp during movement onset is significantly steeper. The difference in
the ramp is due to the class weighting implemented here, which reduces the bias
towards the rest class that the data naturally exerts on the training process. The
difference in the minimum performance is due to the increase in performance for
non-rest movements when using the TtS network rather than the original study’s
classification solution.

The original study asserts that the incorrect classifications in these regions are
best characterised as delays to the correct classification. This assertion holds true
as long as the misclassifications are of the rest class since rest precedes and follows
each movement and if rest is also well classified. The assertion fails, however, if the
misclassifications are of other classes or if rest is not well classified throughout. Re-
view of the confusion matrix in the early and late movement regions indicated that
while classes were often misclassified as rest, they were also likely to be misclassi-
fied as other movement classes, meaning that these regions cannot be assumed to
just be an added latency.

Therefore, at least in the case of the new networks presented here, it is better
to characterise these misclassifications as a subset of the broader performance
problem that may have solutions in the form of alterations to labelling methods
and experiment design as well as in classifier design. The ideal being to design
a system that is able to make consistent hard cutoffs between when a movement
class starts and ends. This line of research is explored in the next two chapters,
particularly with regards to the labelling methods chosen in experiment design.

112 5.3. Results and Discussion

5.3.3 Filter Visualisations

This section focuses on visualising data from the TtS network on database 2 due
to the network’s significantly better performance and the data’s high sampling
frequency leading to more interpretable visualisations. The first validation fold of
subject 1 is used to generate the examples.

Figure 5.7 visualises the weights from the first temporal convolution layer (50
weights) where the network acts on the raw incoming sEMG and so is most inter-
pretable. Here the channel-wise, temporal nature of the signals is taken advantage
of to plot the weights as though they were a signal representing the general wave-
form being searched for by each filter. Figure 5.8 connects with Figure 5.7 by
showing the corresponding input waveform snippet that maximises the neuron
activation for the same filters. Due to the interaction with striding this snippet is
the same length as the stride (25 samples) and produces a maximal activation over
that time period which then maximises the activation across the whole window
when repeated except for minor variation in the first and last segment. Variation
in these segments is due to them being evaluated only once as the filter strides
through the sample.

Looking at Figure 5.7 it is possible to see that the filters do not look for a clean
waveform but instead fit a noisy variant which is shadowed by the input segment
that maximises each neuron’s output in Figure 5.8. This implies that it may be
worthwhile to explore stronger regularisation options to attempt to reduce the
noise seen in the filters.

Figure 5.9 shows a variety of the waveforms that produce maximal activations
for the filters in the spatial reduction layer. In contrast to the inputs producing
maximal outputs for the first temporal layer, the waveforms here show patterns
that span the whole window length. This demonstrates that despite the repeating
nature necessary for maximal activation in earlier layers, the later layers are able
to distinguish waveforms with more complex, time-varying shapes.

Noise is still a relevant factor in these higher level representations, as can be
seen via inspection, further reinforcing that stronger regularisation may be of use.
Despite the noise, however, some of the filters show a clear amplitude bias pre-
ferring non-zero mean amplitude across the window, which is similar to the MAV
feature which has shown good performance on the problem. The MAV is par-
ticularly interesting since it requires minimal computation to compute compared
to features like the mDWT. The fact that the network utilises a similar feature at
higher levels of representation suggests that augmentation of the input vector with
the MAV may be a useful line towards improvement that keeps the benefits of the
end-to-end learning system while potentially promoting better performance.

Chapter 5. Deep Neural Networks for Person-Specific Classification 113

Searching the data for examples that created high neuron activations yielded
what were, effectively, adversarial examples. A few of the data windows contained
large voltage spikes and little else that often led to high neuron output despite not
being representative of any particular class. This echoes a fundamental problem
with deep neural networks which is that, since the effective classification function
is not smooth throughout the input space, deviations from the input space en-
coded by the training dataset can cause unexpected results [211]. It is therefore
interesting to note that, at least for this data set, spikes in the input pattern may
cause particular problems. This is relevant because such spikes may be caused by
electrode slippage during normal usage, meaning for practical applications pre-
cautions may be necessary to ensure adequate performance.

5.4 Conclusion

A novel neural network architecture (TtS network) was designed and evaluated in
this chapter. It was shown to significantly outperform SVM and CNN baselines
as well as other contemporary networks. The architecture can also be simply
adjusted to account for varying sampling frequencies; the first convolution filter
may be adjusted to cover an equivalent time period. This was demonstrated to
improve performance, and makes the network much easier to reuse as only one
filter shape needs adjustment rather than the entire architecture.

The TtS design also produced an improvement in the performance curve plot-
ted against normalised movement position implying it generally reached a correct
classification quicker than other networks. Analysis of the confusion matrix for
this region, however, showed that the misclassification pattern was not solely con-
fusion with rest which implies that, contrary to previous assumptions [37], this is
not an added latency but rather a manifestation of the overall performance.

Visualisation of the TtS network shows that the filters look for somewhat noisy
waveforms, which implies that stronger regularisation may lead to improved per-
formance since the filters may be more likely to find less noisy waveforms to
match. It is shown that the higher level features often have non-zero mean ampli-
tudes similar to how the MAV extracts information and that the network is poten-
tially sensitive to high amplitude voltage spikes, which may result from electrode
slippage. This has implications for supporting software design since, if it is known
that slippage may essentially create adversarial examples, software development
can smooth or omit these to prevent errors.

The analysis also showed additional evidence for the need for the methodologi-
cal improvements described in the previous chapter. Specifically, it was shown that

114 5.4. Conclusion

repetitions are unequal in terms of resultant performance and therefore that there
was a need for the stratified cross-validation technique and that the micro-average
accuracy leads to unrepresentative performance.

Chapter 5. Deep Neural Networks for Person-Specific Classification 115

Figure 5.4: Performance by repetition number of the TtS network on the two databases
(mean across subjects) demonstrating a distinct performance reduction in the first repeti-
tion for both databases. Lines indicate 1 standard deviation.

116 5.4. Conclusion

Figure 5.5: The average performance of the SVM classifier given the normalised time-
position within movement for different window lengths [37]. Drop off in performance is
notable as the distance from the centre increases.

Figure 5.6: Performance of the TtS network given normalised time position within the
movement showing similar overall trend as in Atzori et al. [37] but improved overall
performance and faster onset detection.

Chapter 5. Deep Neural Networks for Person-Specific Classification 117

Figure 5.7: Visualisation of the weights of the first 16 filters in the first temporal con-
volutional layer of the TtS network on database 2. The visualisation shows that there is
potentially noise in the weights as well as the underlying signals.

Figure 5.8: Visualisation of the repeated input waveform that creates the maximum acti-
vation for the first 16 filters in the first temporal convolutional layer of the TtS network on
database 2.

118 5.4. Conclusion

Figure 5.9: Visualisation of the window that creates the maximum activation for the first
16 filters of the spatial reduction layer of the TtS network on database 2.

Chapter 6

Compact Deep Neural Networks
with Comparison of Electrodes

6.1 Introduction

This chapter presents a new study that aims to simultaneously compare a set
of low-cost commercial electrodes with an expensive medical grade alternative.
Specifically, the Myo Armband [78] is used to gather data simultaneously with
the Delsys Trigno Wireless System [93]. Usually data would be captured from
one set of electrodes at a time; however, this can lead to biases since the subject
will be familiar with the experiment if multiple tests are conducted with different
electrodes.

This study eschews running the same experiment multiple times with differ-
ent electrodes so that it is possible to evaluate performance from exactly the same
movements. This means that the experimental bias is largely limited to the place-
ment of electrodes, which allows comparison of electrodes in a different light to
other studies. The study mainly aimed to provide useful data for evaluation of
the Myo Armband relative to a medical grade alternative due to its low-cost and
easy availability.

A benchmark is presented using both feature-based classification and the TtS
network to demonstrate the relative performance of the two data sets and to com-
pare and contrast performance trends.

Another novelty is a refinement of the TtS network design which vastly reduces
the number of parameters necessary for similar levels of performance as the origi-
nal [51]. This extension is evaluated on a piece of embedded hardware (the Jetson
TX2 [103]) to demonstrate the importance of compact neural network designs for
applications where processing power is limited. It is shown that in terms of pro-

119

120 6.2. Methods

cessing time, the Compact TtS achieves significantly faster classification making it
more suited to computation-constrained environments.

Finally, the study is used as a vessel to explore how labelling methods af-
fect classifier performance and how a commonly used method, the GLR, gener-
ally leads to labelling different from what an expert would define as the ground
truth which suggests it is sufficient for classifier training but potentially not good
enough for evaluation.

6.2 Methods

In order to capture the full process from study to classification, the study was de-
signed and conducted first, and then the TtS network was adapted and reviewed
in the context of the new data. From there the network was optimised to minimise
the number of parameters and then tested on the Jetson TX2 [103], a small embed-
ded device with GPU capabilities, to evaluate the improvements to classification
time in a real-world setting. An image of the device is shown in Figure 6.1

Figure 6.1: Image of the Jetson TX2 the embedded device used in this chapter [212]. The
device measures 50mm by 90mm.

6.2.1 Experiment Overview

The main aim of the experiment was to contribute a useful addition to the data
available to the research community while also providing a testbed for further
study. Since the resources available made performing a large or complex study
untenable, it was decided to focus on comparing the low-cost, consumer-grade
Myo Armband [78] with a much more expensive (at least 90x more expensive)
medical grade electrode set, the Delsys Trigno wireless system [93]. While gath-

Chapter 6. Compact Deep Neural Networks with Comparison of Electrodes 121

ering new data on the two systems is useful in its own right, other concurrent
studies tackled evaluation of the Myo’s relative performance [35], therefore, in or-
der for the experiment to provide a unique perspective, data was captured from
both systems simultaneously.

The capture of data simultaneously avoids common issues including subjects
performing movements differently between experimental runs, differences in fa-
tigue and attention levels as well as subject familiarisation with experimental tech-
nique. Simultaneous capture does introduce new issues, most importantly, the
fact that since all the electrodes are surface electrodes, they cannot share the same
physical space. This introduces a new set of biases however also presents an op-
portunity to explore the relative performance from a different perspective which is
vital for growth in the field particular as the Myo Armband has gained popularity
in the research community [98, 213–219].

The experiment and all related procedures were approved by the University of
Sheffield Ethics Committee.

The key points of the study data are:

• 14 Gestures + rest

– Each gesture is stationary (held)

– Rest is treated as an additional gesture

• 6 Repetitions of each gesture

– Held for 10s each

– Strongly delimited

• 10 Subjects

– At least 1 dataset for each

– Various supplementary data on some subjects

– All healthy

• Myo Armband

– 8 channels of sEMG

– 3 channels of accelerometer data

• Delsys Trigno

– 5 channels of sEMG

– 5 channels of accelerometer data

122 6.2. Methods

The main limitations of the study are the number of participants and rep-
etitions as ideally hundreds of subjects would be studied performing as many
repetitions as possible however resource constraints made this infeasible. De-
spite this, the study size in both terms is still quite comparable to other studies
[19, 20, 29, 33, 220–222]. Having data on 10 subjects ensured a reasonable variety
of data to examine, and 6 repetitions meant the whole experimental procedure
could be kept to under an hour which was useful for ensuring continuous subject
attention and avoiding issues with muscle fatigue. From previous chapters, it is
also clear that the amount of data generated from similar length procedures is suf-
ficient for training of classifiers although, as more data is generally a good thing,
more supplementary data was gathered where possible.

Figure 6.2 shows how the electrodes were arranged on the forearm so that
the Delsys system could target muscles without getting in the way of the Myo
Armband. The Delsys electrode positions were selected to target both specific
muscles and general areas of interest. Electrode E1 is placed just behind the wrist
along the Abductor Pollicis Longus muscle. E2 is placed similarly behind the wrist
along the Flexor Digitorum Superficialis. E3 again is set behind the wrist along
the Extensor Carpi Ulnaris. E4 is placed further up the forearm, but in front of
the Myo Armband along the Flexor Carpi Radialis. Lastly, electrode E5 is placed
inline with E4 on the forearm but along the Flexor Carpi Ulnaris.

The set of gestures used was selected from a large pool of candidates based on
the hand taxonomy/robotics literature [223–226] and easily recognisable gestures
such as the "thumbs up". Selection criteria were based on preliminary trials con-
ducted on subjects 1, 2 and 10. These trials involved gathering data on each of
these different gestures and quantitatively comparing the performance achieved
by the Neural Network and Support Vector Machine classifiers on offline data
with various combinations of these gestures, as well as a qualitative comparison
of the classification potential in an online context using the Myo Armband. The
set of gestures selected is shown in Figure 6.3.

6.2.2 Experiment Protocols

The experiment was divided into three distinct steps:

• Consent and clinical data gathering

• Subject training

• Gesture data gathering

Chapter 6. Compact Deep Neural Networks with Comparison of Electrodes 123

Figure 6.2: Position of electrodes on the forearm. Electrodes denoted "E" are the Del-
sys system blocks while the Myo Armband is shown separately. Subject 1 is used as a
demonstration model.

Figure 6.3: The 14 gestures (+ rest) included in the study and their associated labels.

124 6.2. Methods

Consent and clinical data was taken via a form presented to the subject before
the beginning of the experiment. The subject was asked to fill out a form that
ensured they understood how the experiment would proceed and how their data
would be handled. The form also recorded their name, height, weight, age, gen-
der, handedness and the date of the experiment. In order to anonymise the data, a
unique number was recorded for each subject then the name was removed before
the rest of the clinical data and unique ID was transcribed to Javascript Object No-
tation (JSON) format to be included with the dataset. This allowed a subject’s data
to be identified later via the unique number in the case they wished to withdraw
their data from the study.

The training step was performed to ensure that each subject was familiar with
the gestures and that each performed the gestures in as similar a way as possible.
Each subject was provided with a copy of Figure 6.3 for reference. The Figure
shows each movement used in the experiment as well as the order they appeared.
The experimental supervisor then ran through each gesture, in turn, instructing
the subject in how it should be performed. The subject was shown a demonstration
of how the testing software would act and asked to demonstrate each gesture to
ensure they could reliably replicate them. This helped prevent errors during the
data gathering step.

Gesture data gathering began with affixing the two sets of electrodes to the
subject’s dominant hand as per Figure 6.2 so that data can be captured on both
sets simultaneously. The Myo Armband was slipped on first with no special at-
tachments, and then the Delsys electrodes were placed using the adhesive patches
recommended by the manufacturer.

For the Myo Armband, the subject was asked to make a "Thumb Up" gesture
with the forearm parallel to the ground and thumb pointing directly upward. The
Myo Armband was then placed 2

3 of the way up the forearm (measured from the
lower electrode edge) with the main electrode block directly on top, status LED
closest to the wrist, band perpendicular to forearm. In the case where 2

3 was too
low to keep the Myo on it was moved up until it was secure.

Once the electrodes were secured, the testing software was run which guided
the subject through all 6 repetitions of each of the 15 movements. Each gesture
(including explicitly rest as a separate gesture) was held for 10 seconds with a 3-
second pause to a neutral position (not necessarily rest) afterwards. The gestures
were performed in the order shown in Figure 6.3; then the process was repeated 6
times.

For each gesture the detailed acquisition process was:

• The subject has their hand at rest/neutral

Chapter 6. Compact Deep Neural Networks with Comparison of Electrodes 125

• A prompt was displayed instructing subject to assume a gesture

• 3s delay (data not labelled as belonging to movement)

• 10s capture (this data was labelled as belonging to the gesture)

• Prompt displayed signalling to return to rest/neutral

• 3s delay

• Repeat for next gesture in sequence

A stationary hold of each gesture was chosen over a movement into and out
of a gesture to avoid the issue of inaccurate ground truth caused by movement
[35]. When a subject performs a dynamic movement, as opposed to a hold, the
classification algorithm must account for the movement into, hold of the gesture
and movement out of the gesture back to rest or into another movement. Dur-
ing the movement into and out of a gesture hold, the class is ill-defined since the
hand is in a dynamic transition between distinct classes and may contain elements
associated with either, as well as additional artefacts caused by making the tran-
sition. Therefore these transitory periods are ill-suited to classification and thus
labelled in this study as belonging to none of the classes of interest. This philos-
ophy is extended to the neutral posture that subjects are asked to adopt between
other gestures, labelling it not as rest but as "not of interest". This is done because
the exact start and end points of the posture cannot be guaranteed, and testing
found that subjects often moved during these periods, which could make the label
boundaries erroneous.

Labelling over a hold allows strong delimitation of the gesture boundary. The
3-second delay after prompting the subject to assume the gesture was found to
be sufficient to ensure that the subject was already holding the gesture when the
labelling began. This allows for a high degree of confidence that the data is repre-
sentative of the gesture. Similarly, since the data stops being labelled as a gesture
at the same time as the prompt appears, the end boundary can also be assigned a
high degree of confidence.

These methods contrast to most other approaches such as the NinaPro databases,
where transitory movement is labelled the same as the held position for a partic-
ular gesture. An offline algorithm (the GLR) is then required to estimate the
position of the boundary between a gesture and rest. This produces uncertainty
in the label at the boundaries as well as introducing the assumption that all data
between gestures is rest.

Figure 5.6 shows the classification performance from the previous chapter as a
function of the normalised position within a movement. This sort of performance

126 6.2. Methods

curve is the expected result given transitory movements which involve moving
from rest to a gesture and then back over a labelled period. Therefore the hy-
pothesis is that by labelling a hold, a much flatter performance curve would be
observed leading to sharper classification at the boundaries, reducing misclassifi-
cation rates and providing more consistent performance.

Figure 6.4: Performance of the TtS network given the normalised position within move-
ment.

The treating of rest as a separate gesture, rather than the class found between
other gestures of interest, helps to ensure consistency since it receives the same
delimitation as other gestures. This reduces the likelihood of errant movement
during capture or residual movement from previous gestures. An additional ben-
efit is that, since this methodology means all gestures are treated equally, the data
does not end up imbalanced.

6.2.3 Experiment Software

A Python script was developed that handles the experiment proper as well as the
necessary post-experiment data synchronisation via high-resolution timestamps.
Data was acquired from the Delsys electrodes using proprietary software and ex-
ported manually for synchronisation; however, for the Myo Armband, a set of
tools were developed to facilitate this and future studies.

The toolset for the Myo includes data gathering utilities to capture data from
all the sensors on board the device as well as bindings to connect to MATLAB and
Python in real time. High-resolution timestamps are also provided that can be

Chapter 6. Compact Deep Neural Networks with Comparison of Electrodes 127

used to synchronise with other sources. This software has been made available to
the community and successfully used on numerous other research projects [52].

6.2.4 Experiment Extensions

After the initial study, an extension to the experiment was designed that inte-
grated video into the data gathering so that movement labels could be labelled
by a human expert. This was particularly useful for comparing the performance
of algorithms such as the GLR and hold delimitation, as used here, to what a
human would classify as the start and end of each movement. Video data also
makes identification of deviations in the experiment possible for the purposes of
detecting unreliable data.

This extended experiment was performed twice on subject 1 and will be made
available as supplemental data. An additional tool was created that allowed expert
labelling and resynchronisation with the data streams.

In order to test for differences in placement additional supplemental data was
also collected on subjects 1 and 2 which was the same as the original experiment
except with 8 Delsys electrodes placed in the same position that the Myo Armband
electrodes normally occupy.

6.2.5 Electrode Comparison

The two electrode sets used were the Myo Armband [78] and the Delsys Trigno
Wireless System [93]. A quantitative and qualitative comparison of the devices is
given below.

Cost, the Myo Armband retails for roughly £150 at the time of writing while
the Delsys Trigno Wireless system is sold for ∼£15,000 (for 8 electrodes, available
only via quotation) [93]. Notably, the Trigno System also requires expensive ad-
ditions for continued use including specially designed single-use sticky fixers for
placement of electrodes although it would be possible to use alternate means of
attaching the electrodes.

Sampling Frequency, the Delsys electrodes are rated for a 2kHz sample rate,
although, in practice, a sample rate of ∼1930Hz was observed. The Myo Armband
has a sampling frequency 200Hz. This is one of the major differences between the
devices.

Number of Electrodes, the Myo Armband is made up of 8 electrodes fixed into a
band which cannot be split up. It is possible to use multiple Myos simultaneously.
The Delsys Trigno system uses electrodes which are self-contained and affixed to
a subject using specially designed sticky fixers. Using a single base station, 16 of

128 6.2. Methods

such units may be used simultaneously. Additional base stations allow more units
to be used.

Electrode Resolution, the Myo quantises incoming sEMG data to 8 bits while the
Delsys Trigno uses a 16-bit conversion giving it a much higher resolution.

Electrode Quality comparison is difficult as the technical specification for the
Myo electrodes is not available, although it is likely a reasonable assumption that
the Trigno electrodes are of a higher quality.

Filtering, the Trigno electrodes filter to 20Hz (±5Hz) - 450Hz (±50Hz) while
the Myo Armband uses built-in notch filters at 50Hz and 60Hz although the raw
data without this filter is available.

Ease of Use is an important, although highly subjective, aspect for the usage of
any wearable device. For an everyday application such as control of a computer
or robot, the Myo Armband is convenient as its arm-band allows quick, simple,
repeatable placement of electrodes whereas the Trigno requires the use of new
sticky fixtures each time and electrodes cannot be moved around easily. The fixed
nature of the Myo Armband does, however, significantly hinder its ability to target
individual muscles.

The Myo Armband also has the advantage of using Bluetooth as a communi-
cation protocol allowing for easy integration with mobile devices and applications
whereas the Trigno requires a bulky base station and separate power source to
communicate with its sensors.

6.2.6 Data Preprocessing

After each experimental run was concluded timestamps were used to synchronise
labelling of gestures and repetitions within the data. Windowing was performed
using a sliding window of 150ms with an increment of 5ms. This translates to
window lengths of 30 samples and increments of 1 sample on the Myo data and
window lengths of 300 samples and increments of 10 samples on the Delsys data.
All the data is then standardised to N(0, 1) prior to classification using statistics
calculated from the training data.

In keeping with previous chapters, performance is measured using the macro-
average accuracy and cross-validated using the balanced stratification approach.
In this study, since there was no need for concessions to improve comparability, the
data was divided into three sets: training, validation and testing using repetition
number. The validation set was used for early stopping purposes during training
as well as for exploratory design purposes. The cross-validation folds are shown
in Table 6.1.

Chapter 6. Compact Deep Neural Networks with Comparison of Electrodes 129

Split Training Validation Testing

1 [1, 5, 6] [4] [2, 3]

2 [1, 3, 6] [2] [4, 5]

3 [1, 2, 4] [3] [5, 6]

4 [1, 2, 5] [6] [3, 4]

5 [2, 4, 5] [1] [3, 6]

6 [1, 3, 5] [6] [2, 4]

7 [3, 5, 6] [4] [1, 2]

8 [4, 5, 6] [2] [1, 3]

9 [2, 4, 6] [3] [1, 5]

10 [1, 2, 3] [5] [4, 6]

11 [3, 4, 6] [1] [2, 5]

12 [2, 3, 4] [5] [1, 6]

Table 6.1: Cross-validation folds for training, validation and test sets for this study. Num-
bers are the repetition label used in that fold; each repetition appears a total of 4 times in
the test folds to ensure proper stratification.

6.2.7 Performance Baselines

In order to establish a performance baseline and compare the utility of the data
sets, an SVM-RBF with mDWT as its feature was trained along with the adaptive
variant of the TtS described in the previous chapter (Section 5.2.3). The SVM-RBF
was chosen due to its top performance from the range of standard classification
techniques in the previous benchmarks. The TtS represented the top performer
overall and was used to determine what level of performance was possible from
the data.

Early stopping was implemented during all neural network training in this
chapter with stopping criteria designed to improve generalisation performance at
the cost of potentially extending training time [227]. The idea is to keep training
the model until the loss L (calculated on the validation set) does not improve by at
least a minimum value δmin for p training epochs and then return the model that
produced the best loss value. The algorithm is illustrated in Algorithm 6.1.

In practice δmin was set to 0.005 and the patience p was set to 5.

Support Vector Machines do not utilise early stopping; therefore, when train-
ing the SVM-RBF, the validation set is discarded to preserve the integrity of the
other sets.

130 6.2. Methods

Algorithm 6.1 Early stopping criteria based on evaluation of techniques by Bottou
[227]. Algorithm trades off extended training time for improvements to generali-
sation.

Input: p : Patience, δmin : Minimum improvement
Dval : Validation data
Result: m f inal : Trained model

m // Initialised model

m f inal = m
Lprev = in f i = 0
while i < p do

// Train network m for 1 epoch

i = i + 1
L = m(Dval) // Evaluate m with validation data

if L < Lprev then
m f inal = m

end
if L+ δmin < Lprev then

i = 0
Lprev = L

end
end

6.2.8 Compact Deep Neural Network

In addition to evaluating the TtS networked design in the previous chapter, the de-
sign was iterated on with a focus to creating a new, refined network architecture
that reduced the total number of parameters for a minimum trade-off in perfor-
mance. The motivation for this focus was the finding that running the networks
on lower-cost systems or embedded devices led to delays of the order of tens of
milliseconds which is a relatively long time when the ideal delay for control is
< 200ms [203].

Tables 6.2 and 6.3 show the Compact TtS designs for the Myo and Delsys data,
respectively. It was determined that it was possible to use the sampling frequency
adaptation approach described in the previous chapter to adapt for the two data
sources and that several modifications could be made within the architecture to
limit the number of parameters.

The first related change was the dramatic reduction in the number of filters
used in the Spatial Reduction layer and limitation of its data view. This produced
a significant bottleneck effect, similar to AutoEncoders [228], compressing the ef-
fective feature space while still retaining most of the important information. This
allowed the penultimate dropout and dense layers to be removed from the ar-

Chapter 6. Compact Deep Neural Networks with Comparison of Electrodes 131

Layer Type Output Size # Filters Filter Size Stride Padding Activation # Parameters
Input EMG 30x8x1

Guassian Noise 30x8x1 α = 0.001
Conv (Temporal) 10x8x16 16 3x1 3x1 Same LReLU (α = 0.1) 64

Temporal Fire 10x8x64 (16, 32, 32) (1x1, 1x1, 3x1) 1x1 Same LReLU (α = 0.1) 2,384
Spatial Reduction 10x8x2 2 1x8 1x1 Same LReLU (α = 0.1) 1,026

Dropout 160 rate = 0.5
Dense 15 15 Softmax 2,415

Total 5,889

Table 6.2: Compact TtS architecture that dramatically reduces the number of parameters
relative to the original. Myo data variant, channels last format.

Layer Type Output Size # Filters Filter Size Stride Padding Activation # Parameters
Input EMG 300x5x1

Guassian Noise 300x5x1 α = 0.001
Conv (Temporal) 12x5x16 16 50x1 25x1 Same LReLU (α = 0.1) 816

Temporal Fire 12x5x64 (16, 32, 32) (1x1, 1x1, 3x1) 1x1 Same LReLU (α = 0.1) 2,384
Spatial Reduction 10x5x2 2 1x5 1x1 Same LReLU (α = 0.1) 642

Dropout 120 rate = 0.5
Dense 15 15 Softmax 1,815

Total 5,657

Table 6.3: Compact TtS architecture that dramatically reduces the number of parameters
relative to the original. Delsys data variant, channels last format.

chitecture entirely since the representation was now simpler and less tied to the
interaction between different filters. Unlike when a similar approach was tested
on the NinaPro data, it was found that, in combination with the compression,
removal of these layers had a minimal impact on performance. This was due to
the reduction in the number of movements being classified and the reduction in
the number of electrode channels which allowed simpler feature extraction to be
effective.

The number of filters in each layer (except in the Spatial Reduction and Clas-
sification layers) was then adjusted via coarse grid search. The search was limited
to powers of 2 as a way of reducing the search space as well as to minimise the
chance of overfitting to the particular data under evaluation.

6.2.9 Hardware Performance Comparison

The Jetson TX2 [103] was used to evaluate relative run-time performance; the
Jetson was chosen because it is an embedded device that incorporates graphics
processing hardware. The timing was performed using Python’s “timeit” package
reporting the lowest value from 20 trials, each of which took the mean run-time
of 1000 predictions with the model pre-loaded into memory. This produced a soft
lower bound on the computation time.

Since there is a large number of embedded device and software implemen-
tation pairs, the results of this part of the study are intended to demonstrate,

132 6.3. Results and Discussion

conceptually, the point that a more compact network does provide a tangible im-
provement in classification time as opposed to producing hard numbers on what
that performance improvement may be for any specific application.

6.3 Results and Discussion

6.3.1 Key Findings

On the Myo data the TtS network achieved a mean macro-average accuracy of
85.1%, the variance between subjects was 6.2%. The SVM-RBF achieved a mean
macro-average accuracy of 70.5% with slightly higher variance between subjects of
6.9%. The Wilcoxon signed-rank test was used to confirm the significance of this
performance difference.

The Wilcoxon signed-rank test was performed using the 10 subjects as 10
matched samples to compared the TtS network and SVM-RBF. The TtS network
outperformed the SVM-RBF on each subject, which leads to the conclusion that
the TtS network significantly outperforms the SVM-RBF at p < 5.1× 10−3. The
minimum performance improvement on any specific subject was 9.6%.

On the Delsys data, the TtS network achieved a mean macro-average accuracy
of 82.7%, with a variance between subjects of 7.1%. The SVM-RBF achieved a
mean macro-average accuracy of 67.9% with, again, the relatively higher variance
between subjects of 9.5%.

The Wilcoxon signed-rank test was used on this data as well. Similarly, the
TtS network outperformed the SVM-RBF on each subject, which lead to the same
conclusion; the TtS network significantly outperforms the SVM-RBF at p < 5.1×
10−3. The minimum performance improvement on any specific subject was 8.7%.

The performance trend between the TtS network and SVM-RBF remains the
same as in previous benchmarks with the TtS network significantly outperform-
ing the SVM-RBF. As seen in Chapter 4 it may be possible to improve the SVM-
RBF’s performance via the use of SMOTE; however, this would still not bridge the
performance difference. Therefore the remainder of this analysis focuses on the
comparison of the neural network performances.

Figure 6.5 shows the mean performance per class for the TtS network. It can be
seen that while the Myo data generally leads to higher performance, the improve-
ment is not uniform with different gesture classes performing better on different
data sets. In order to investigate whether this was a direct result of the electrode
placement, a supplementary data set was obtained on subjects 1 and 2 using 8
Delsys electrodes in the positions the Myo Armband electrodes would occupy.

Chapter 6. Compact Deep Neural Networks with Comparison of Electrodes 133

Figures 6.7 and 6.8 show the results with the supplementary data, while Figure
6.6 shows the original study broken down per subject for reference.

Figure 6.5: Performance of the TtS network on the Myo and Delsys data broken down per
class (mean taken across subjects).

Figure 6.6: Performance of the TtS network on the Myo and Delsys data broken down per
subject.

Overall subject 1 saw a drop in the performance of the Delsys system when
going from the original setup to the supplementary set. Specifically 94.6% to
89.2% while subject 2 saw a minor increase in performance from 85.8% to 86.5%.
Both subjects originally showed better performance on the Delsys electrodes. This
implies that, rather than electrode placement being the sole factor, it is necessary to
consider placement in the context of each subject’s physiology, and its interaction
with the electrodes and gestures under investigation. Further, as seen in Figure 6.6,
there is no clear-cut better setup lending further credence to the theory. This idea,
that for real-world usage, greater weight needs to be lent to the personalisation

134 6.3. Results and Discussion

Figure 6.7: Performance of the TtS network on the Myo data and supplementary Delsys
data with electrodes placed in the same position as the Myo Armband. Subject 1.

of devices and control mechanisms has also been a key discussion recently in the
Bio-medical community [229, 230].

Subject-wise performance indicates that subject 1 is classified better than all
other subjects on all data sets. This is likely due to the subject’s familiarity with
the experimental procedure as well as the experimental design. This makes the
subject a useful test case rather than an anomaly since they represent a trained
operator for whom the setup has some personalisation, therefore, making them
an exemplar closer to the upper bound of the possible performance.

The class-wise performance breakdown demonstrates variability on two fronts:
between classes and between data sets. The variation between classes is expected
given the usage of different muscle combinations, but the difference between best
and worst performers indicates that it may be possible to sub-select from a pool
of gestures for a given application in order to trade off number of gestures with
performance. This is explored in Chapter 7.

The data set differences in class performance do not show a clear trend to-
wards certain types of gestures which is reinforced by the supplementary data
differences and the idea that the evidence for the wider context is an important
factor. Importantly, however, both in the per class and both supplementary re-
sults, the Delsys system performs worse than the Myo Armband at classifying the
rest class. It is not apparent why this is the case but, by elimination, it can be
inferred that the cause is some quality of the Delsys electrodes or their interac-
tion with other system elements. Potential causes include the higher sensitivity
of the electrodes and artefacts caused by the increased input resolution. However,

Chapter 6. Compact Deep Neural Networks with Comparison of Electrodes 135

Figure 6.8: Performance of the TtS network on the Myo data and supplementary Delsys
data with electrodes placed in the same position as the Myo Armband. Subject 2.

determining the true cause would require further investigation.

Regardless of the cause of the Delsys system’s lower performance on the rest
class, it is interesting that the Myo performs consistently well on it, achieving over
98% accuracy on the majority of subjects (see Figure 6.5). This shows that, in
this setup with the Myo Armband, it is unnecessary to bias performance metrics,
weight classification or to acquire extra data to ensure high performance on the
rest class. This is a useful result for the many use-cases that desire consistent
performance on the rest class.

Overall this study shows that the Myo Armband is competitive with the Delsys
system, while costing a factor of ∼ 100 less, making it of particular interest to use
cases where cost is a factor. Therefore for gesture sets of this size or smaller, the
Myo Armband is a viable, low-cost alternative to medical grade systems. Recently,
similar promising results using the Myo Armband have been demonstrated on
transradial amputees further demonstrating its potential [231].

6.3.2 Performance on Hardware

The Compact version of the TtS network was trialled on the Jetson TX2 and a
modern graphics card (NVIDIA GTX 1080 Ti) to demonstrate the utility of param-
eter reduction in a real-world context. The results are shown in Table 6.4 which
includes a comparison with the networks designed by Atzori et al. [47] and Geng
et al. [39] covered in the previous chapter with Atzori et al.’s [47] strides updated
to allow evaluation on the new data shape.

The Compact TtS achieves a lower macro-average accuracy than the standard

136 6.3. Results and Discussion

Myo Data
Params Acc. 1080 Ti TX2

Compact TtS 5,889 84.2% 1.68ms 7.89ms
Atzori et al. [47] 97,883 81.7% 1.69ms 13.17ms
Geng et al. [39] 644,435 44.1% 3.19ms 22.26ms

Delsys Data
Params Acc. 1080 Ti TX2

Compact TtS 5,657 80.3% 1.74ms 8.07ms
Atzori et al. [47] 99,308 65.4% 1.66ms 15.36ms
Geng et al. [39] 546,131 26.4% 3.21ms 20.14ms

Table 6.4: Comparison of the number of parameters, cross-subject mean macro accuracy
and run-times for different neural networks on the Jetson TX2 and NVIDIA 1080 Ti.

TtS network on both data sets, which is the main trade-off for the reduction in
the total number of parameters. The ratio of performance reduction to parameter
reduction is excellent; however, as the number of parameters was reduced by a
factor of 100 for < 3% performance drops on both data sets. The Compact TtS
also still outperforms the contemporary networks tested while using many fewer
parameters [39, 47]. The other networks follow the same performance trend, as
observed in the previous chapter.

Since the data shape is different in this data than for their original design, the
network by Atzori et al. [47] required alteration to its strides to be trained on this
data. Therefore the performance result is not for an identical network. However,
a brute force search of a pool of potential stride changes was trialled and the best
performance design used, which led to the performance reported in Table 6.4.

The run-time results demonstrate the stochasticity present in non-real-time op-
erating systems. However, this still demonstrates that parameter reduction has
tangible benefits on low-power hardware such as the Jetson. On the higher per-
formance computer, utilising the 1080Ti, the benefit is more marginal since other
factors dominate the run-time below some number of parameters, although there
is still an improvement over the much larger network used by Geng et al.

The overall run-time reduction of the Compact TtS is at least 40% (see Table
6.4) compared to the other networks which makes the network a useful design for
many applications where response time to input is critical, such as device control
or prosthetic application.

6.3.3 GLR vs Hold vs Expert Labelling

The experiment also provided an opportunity to qualitatively evaluate the differ-
ences between the methods for labelling of where gestures begin and end. Figure

Chapter 6. Compact Deep Neural Networks with Comparison of Electrodes 137

6.9 shows supplementary data gathered on subject 1 and labelled expertly through
the use of accompanying video data. The expert label denoted where the subject
reached a hold position and the frame before they started moving out of it. The
video was synchronised with the original data via timestamps attached to both
the video and sEMG data frames taken from the same source.

Figure 6.9 shows that the GLR captures a longer duration, including the move-
ment into and out of each gesture, however it fails to delimit only the held gesture.
The expert labelling clips a small amount off the start and end compared to the
GLR, avoiding transitory movements which was desirable for this study. Com-
pared to the hold markers from the experiment, the expert labelling leads to more
usable data per subject but may also include more edge effects as seen at the start
of the gesture example in Figure 6.9.

Ideally, expert labelling would be used on all subjects; however, the process is
time intensive and so does not scale well to larger studies. It may also not be fea-
sible in many applications, e.g. commercial or medical devices where the human
resources to label the data are either expensive, unavailable, or slow relative to the
desired time frame for device usage. The GLR trades the human resources issue
for increased computational cost since an exhaustive search is necessary. Even
with aggressive limiting of the search space, the computational overhead can be
high, which may be limiting although generally less of an issue compared to the
needs of expert labelling. Hold-based labelling requires no overhead and therefore
is attractive as a labelling option. However, it was necessary to explore whether it
was sufficiently representative as despite being used in the literature [34, 35], no
study had proven its utility in a machine learning context.

The TtS network was retrained and tested with the same cross-validation pro-
cedure on this supplementary data with different labelling strategies to evaluate
the resultant differences. Table 6.5 compiles the results.

Test
Expert Hold GLR

Tr
ai

n Expert 90.8% 91.1% 86.3%
Hold 87.7% 90.3% 83.2%
GLR 89.2% 88.6% 85.7%

Table 6.5: Comparison of performance for the different labelling procedures applied to
the training and test sets for the supplementary experiment on subject 1.

The results lend credence to the study premise that using "hold" labels is an
effective proxy for expected performance as can be seen by the fact that the "hold"
and "expert" diagonal entries are similar. Intuitively this makes sense because
both attempt to capture the held gesture although the expert labels capture a

138 6.3. Results and Discussion

Figure 6.9: Comparison of movement duration labelled via different techniques showing
GLR capturing a longer time period than the expert labelled hold position.

Chapter 6. Compact Deep Neural Networks with Comparison of Electrodes 139

more complete picture. This is evidenced in the "expert"-trained, "hold"-tested
entry which performs slightly better than all other entries and the fact the "hold"-
trained, "expert"-tested entry leads to lower performance.

If it is assumed that the expert labelled tests are closest to expected real-world
conditions, the first column indicates that, as would be expected, expert labels
would be ideal followed by GLR and then "hold" for actually training a useful
classifier.

The GLR trained and tested TtS network performed worse than the other diag-
onal results. This is caused by its capture of the transitory movements into and out
of each gesture compared to the other labelling methods. Since these periods are
relatively short compared to the held gesture duration, they have a limited impact
on the classifier itself, but since the transitions present different signals to the held
gestures, this reduces overall test-time performance. This is evidenced by the fact
that the "expert"-trained, "GLR"-tested network performs slightly better than with
the training and test labels swapped.

Given the above, it is reasonable to assume that for the sake of performance
it will often be desirable to assume transitory movements should not be classified
and to instead classify only when a subject actually holds a gesture. This is es-
pecially true when it cannot be assumed a subject will always start from rest or
a neutral hand position, which will further enhance the differences between held
gestures and the movements into and out of them. Under this assumption, it is
clear that it would be ideal to have an expert label all data in future experiments;
however, as previously noted, this adds extra human resources overhead. If this
is not possible, the GLR has been found to be a reasonable substitute for training
purposes although it is likely to skew test-time results downwards in the absence
of expertly labelled data that better reflects the intended usage to test on.

The "hold" labels perform worst but give a good indicator of classifier perfor-
mance potential, and their lack of overhead may be an advantage in some situa-
tions, particularly if it is possible to recoup performance via other methods.

Since these results are based on the data from a single subject they should be
regarded as preliminary, however, they represent an exciting set of options for
future experiments that have previously not been explored in the literature.

6.4 Conclusion

A new comparative sEMG classification study was detailed in this chapter. It
found that data from the Myo Armband was capable of producing similar or
better levels of classification performance than the Delsys Trigno Wireless System.

140 6.4. Conclusion

This is an important finding since the Myo Armband is a factor of ∼ 100 cheaper
than the Delsys Trigno as well as being considerably easier to set up and use. This
potentially makes the barrier to entry for sEMG based gesture classification much
lower. Recent work has also echoed the finding that the Myo Armband has high
classification potential in transradial amputees [231], further demonstrating that it
is a viable alternative to other systems.

The TtS network, introduced in the last chapter, was also streamlined here to
form a new design: the Compact TtS, which uses many fewer parameters than the
original variants. It is shown that the Compact TtS achieves slightly lower perfor-
mance than the TtS however it can be used to predict much faster on real hardware.
The Jetson TX2 [103] was used as an example of a low processing power environ-
ment, and the Compact TtS’s forward pass runtime was evaluated relative to other
contemporary networks demonstrating that it could predict gestures much faster
[51].

Finally, labelling methods were reviewed, and it was shown that, while "hold"
labels produce a reasonable performance estimate, current labelling methods po-
tentially underestimate overall performance or lead to classifiers that underper-
form in practice due to differences from what an expert would label as the ground
truth. Of particular interest is that the GLR labelling method can be used to train a
reasonably good classifier but underestimates performance overall in the absence
of expertly labelled data to evaluate on. Therefore, for future studies, it is shown
that expert labelling is necessary to get the most accurate performance picture and
that there is still more research to be done in the area of data labelling.

Chapter 7

Online Classification

7.1 Introduction

Previous chapters have focused on determining what level of performance is pos-
sible when classifying hand gestures from sEMG data. Throughout, additional
improvements have been made and constraints added to move the problem away
from offline classification towards the sort of solutions that could be practically de-
ployed in real-world situations. This chapter brings together those improvements
and adds several more to present an end-to-end solution for classifying sEMG in
an online context.

Chapter 4 set up the fundamentals by codifying how to evaluate the problem;
that the minimum number of assumptions on the test-time class distribution must
be used to avoid biases caused by data imbalance. The macro-average accuracy
was used to enforce this explicitly in the performance metric. It also introduced
a robust method for stratified cross-validation so that results from offline analy-
sis would be representative of expected performance, and a baseline was designed
with feature-based classification algorithms to give an expected performance floor.
Finally, Chapter 4 showed how, if an application has leeway in the possible ges-
tures to be classified, then additional gestures can be tested during data gathering
to enhance final performance by tailoring the gestures used to each individual.

Chapter 5 raised the performance potential by introducing a novel neural net-
work architecture that improved overall performance. It also removed the zero-
phase filtering in the preprocessing to better represent real applications, since
zero-phase filters are not possible online. The analysis also indicated a consistent
negative performance bias when testing on the first repetition of each movement
performed by all subjects which presents a compelling edge case that may warrant
additional investigation or removal from testing depending on the application.

141

142 7.2. Methods

Chapter 6 introduced a new study on a myoelectric control device to act as
a testbed for further enhancements and demonstrated that the neural networks
allowed a set of 15 gestures to be classified with over 90% macro-average accuracy
on a trained individual. Further, a new compact variant of the network was intro-
duced that significantly reduced the number of parameters necessary for a similar
level of performance. This reduced the classification time on an embedded system
by > 30% and thus demonstrated that it would be possible to run this mode of
classification even in contexts with limited computation.

This chapter tackles the online problem directly by combining all these pre-
vious enhancements and building upon them. First, support methods were ex-
plored to determine whether data from other subjects could be used to improve
performance without adding complexity. Specifically, the concept of subject adap-
tation was investigated which seeks to use data from a corpus of other subjects
to improve the performance of a specific subject by integrating the corpus into
the training process. This process is known as transfer learning and pushed per-
formance higher without the need for extra data gathering. These performance
improvements, via subject adaptation methods, have also been corroborated by
recent work by Côté-Allard et al. [28].

Second, in the online case, despite high gesture accuracy, jitter/instability is
seen in the classification signal; the classification output often flickers between
multiple gestures despite a subject holding a particular gesture. Multiple methods
for achieving smooth classification outputs are presented and evaluated finding
that most algorithms tested lie on a Pareto frontier in terms of smoothness and
latency trade-offs, so a nuanced evaluation depending on the precise context is
necessary to select the best for an application. However, it is also noted that
an elegant majority voting algorithm can serve as a good choice, improving the
smoothness of the classification signal for minimal added latency.

Both investigations make use of the Myo data from the previous chapter.

7.2 Methods

7.2.1 Improving Performance with Transfer Learning

Most applications of hand gesture recognition benefit from reducing the amount
of training needed to get usable levels of accuracy since training forms a barrier
to normal operation. Improvements to the overall performance without the need
for additional data gathering are also useful since classification accuracy has room
to improve on all classes. Therefore a sequence of experiments was designed to
examine how to utilise data recorded from other subjects to either improve overall

Chapter 7. Online Classification 143

performance or reduce the data needed from a single subject to produce a given
level of performance.

The ideal situation would be to require no data on a new subject and still
classify with high performance. One way to achieve this is to train a network
on other subjects and test it on a new subject. The fact that this sort of design
has not been explored in the literature implies its difficulty; however, here an
implementation is included as a demonstration of the lower performance band on
the problem to inform future researchers.

The implementation consisted of an updated TtS network (that kept the same
performance as the original but with reduced parameters) tested on one target
subject while having been trained on all other subjects (the source subjects) in a
leave-one-out fashion combined with the evaluation procedures outlined in earlier
chapters. The updated network is shown in Table 7.1. Cross-validation folds for
this implementation and the other transfer learning experiments are shown in
Table 7.2.

Layer Type Output Size # Filters Filter Size Stride Padding Activation # Parameters
Input EMG 30x8x1

Conv (Temporal) 10x8x16 16 3x1 3x1 Same LReLU (α = 0.1) 64
Temporal Fire 10x8x64 (16, 32, 32) (1x1, 1x1, 3x1) 1x1 Same LReLU (α = 0.1) 2,384
Conv (Spatial) 10x8x16 16 3x12 1x1 Same LReLU (α = 0.1) 8,208

Dropout 1280 rate = 0.5
Dense 15 15 Softmax 19,215

Total 29,871

Table 7.1: Updated TtS that achieves performance the same as the original while incorpo-
rating parameter reducing improvements from Chapter 6. Channels last format.

Split Training Validation Testing

1 [1, 4, 6] [5] [2, 3]

2 [1, 3, 6] [2] [4, 5]

3 [1, 2, 4] [3] [5, 6]

4 [2, 5, 6] [1] [3, 4]

5 [3, 4, 5] [6] [1, 2]

6 [2, 3, 5] [4] [1, 6]

Table 7.2: Cross-validation folds for training, validation and test sets for this study. Num-
bers are the repetition label used in that fold; each repetition appears a total of 2 times in
the test folds to ensure proper stratification.

Two fine-tuning methods were also explored. These involved pretraining the
TtS network on the source subject then freezing some of the layers and training on
the target subject. This is similar to how many computer vision problems utilise

144 7.2. Methods

image-net trained networks [232], freeze the lower layers and retrain them for a
more niche task. The two variants differed in which layers were frozen; the first
froze all but the final dense layer essentially forcing identical feature extraction
while allowing the classification to be tailored to each individual. The second was
the opposite, freezing only the final dense layer to provide a contrast. This is not
normally done in other fields since the feature representation training is generally
considered the problematic part [232].

An augmented TtS network was also introduced, which allowed simultaneous
training on source and target. This was achieved by creating two TtS networks,
one for the source subjects and one for the target subject that shared weights in
the Temporal Fire module and Convolution (Spatial) layers (see Table 7.1). This
creates a shared latent space with the aim being to get the benefits of feature
extractor pretraining without sacrificing the ability to adapt to the quirks of a
specific subject. This was the best performing design of a multitude that were
built on a similar theme but sharing different sections. The training was performed
using an equal amount of data from the target subject and source subjects, which
was presented to the network simultaneously.

In summary, the following setups were fully tested:

• TtS trained with no data on the target subject

• TtS pretrained on source subjects then trained for the target subjects with
feature layers frozen

• TtS pretrained on source subjects then trained for the target subjects with
classification layers frozen

• An augmented TtS design that simultaneously trains on the source subjects
and target subject

• Variants of the previous three using only partial data on each target subject

When evaluating with partial data, each cross-validation fold was split into 3
sub-folds where the classifier was trained on only a single training repetition of
the three in the fold.

Several other problem definitions were explored, including training with unla-
belled target data or target data being labelled using different methods to source
data. However, these did not lead to any interesting results. Similarly, a variety
of other architectures were explored based on interesting results from style trans-
fer [233], language translation learning [234] and other domain adaptation task

Chapter 7. Online Classification 145

[235, 236]. None of these other designs, however, produced consistently high per-
formance on this problem so were omitted from testing, the implications of this,
however, are discussed further in Section 7.3.

7.2.2 Motivation for Smoothing Predictions

All the classifiers explored thus far are instantaneous, i.e. they take in a single
window of sEMG and produce a classification label with no memory capacity
to augment the prediction based on previous inputs. Recurrent neural networks
were trialled in various configurations; however, no design achieved results of a
similar performance to the convolutional neural networks discussed in previous
chapters.

An issue of instantaneous classification is that, even with a high macro-average
accuracy, when the classification is treated as a signal the signal can be unsteady
manifesting as a flicker between different output labels at successive time steps.
Figure 7.1 illustrates this on the test repetitions for a single fold on the expertly
labelled supplemental data from subject 1.

Figure 7.1: Demonstration of the flicker of the classification signal at test time. While over-
all accuracy remains high, the graph shows that the classification signal flickers between
gestures rather than producing a consistent output which is likely to cause issues if used
directly for many applications. The data used was the expertly labelled supplemental data
on Subject 1. Note that the rest and neutral/unclassified labels have both been labelled 0
since the classifier is not trained to output an unclassified label.

The rapid flickering between one class and another manifests on the graph
as solid blocks, although the amplitude thereof has no particular meaning since
the y-axis is categorical. While not always present for each gesture it is clear
that the flicker is a consistent issue and is likely to negatively affect application

146 7.2. Methods

performance if not corrected because a potentially large amount of unintended
inputs are produced.

Therefore to improve the quality of the classification signal and to increase the
utility of classifiers, some form of smoothing is required. Several solutions are
possible and were tested to determine their utility; these are outlined below. Each
algorithm used several windows worth of data and therefore acted as a super-
windowing technique.

Due to the macro-average accuracy not being sufficient to capture the complete
picture, three additional metrics were used to compare performance: onset latency,
tail latency and mean deviations.

Onset latency was defined for all non-rest gestures as the time from the first
ground truth label of the gesture to the first correct classification. Similarly, tail
latency was defined as the time from the first ground truth label of rest after each
gesture to the first correct classification of same. This is illustrated in Figure 7.2
and presented with and without preemptive results, i.e. without 0 latency results
included since these are highly likely to be artefacts.

Figure 7.2: Onset and tail latency definitions.

The final additional measure was the Mean Deviations algorithm, which cal-
culates the mean number of deviations per gesture. Deviations were measured
as changes from a correct label to an incorrect one to contrast with the macro-
average accuracy and latency metrics by representing an expected flicker rate for
a given gesture irrespective of latencies or time spent misclassified. The algorithm
is detailed in Algorithm 7.1.

Chapter 7. Online Classification 147

Algorithm 7.1 Mean Deviations algorithm that calculates the mean number of
deviations from the true label per gesture.

Input: Y : Ground truth labels, Ŷ : Predicted labels
Result: Nd : Mean deviations per gesture

count = 0
for each non-rest gesture i ∈ 1 : N do

// N gestures in data being evaluated

for each data point j ∈ 1 : Ti − 1 do
// Ti time steps in current gesture

if ŷj == yj and ŷj+1! = ŷj then
count = count + 1

end
end

end
Nd = count

N

The point of the mean deviations algorithm is to capture the relative smooth-
ness of the classification signal in a way that taking accuracy measures does not.

The smoothing algorithms were evaluated based on the supplementary data
with expert labelling as well as the main study data. In order to correctly test
the smoothing algorithms, it was necessary to test on contiguous data rather than
sliced data as previously used. Therefore when splitting by repetition, two seconds
before the start of the first gesture with that repetition until two seconds after
the final one was used as a single block. This necessitated precise labelling that
correlated as closely as possible to the subject’s actual movements, i.e. GLR or
expert labelled data rather than hold labelled. It also necessitated a combination
of the explicit rest class with the unclassified portions of the experiment to make
a neutral posture class in order to make the transitions meaningful because the
classifier does not output an "unclassified" class and augmenting the classifier
with an "unclassified" class caused significantly degraded performance.

Therefore the GLR algorithm was run on each subject in the study to produce
usable labels; however, this often led to short rest regions between gestures. This
was due to the slow return to the rest state between trials as observed on several
subjects. This caused significant deviations in onset and tail latencies. This variant
otherwise used the same stratified cross-validation and preprocessing methods as
in the original study evaluation (see Chapter 6). The effects and issues around the
GLR are discussed later in the chapter.

On the supplementary data, since both labelling methods are available, all
combinations of training and testing with the GLR and expert labels are evaluated

148 7.2. Methods

to compare and contrast the various performance trade-offs. This variant also used
the same stratified cross-validation and preprocessing methods as in the original
study evaluation.

Both experiments use the same validation folds as for the subject adaptation
(described in Table 7.2).

7.2.3 Latch Algorithm

Latching is a simple, baseline, smoothing solution. An initial state y0 is selected,
typically the rest/neutral posture, and a stream length lstream chosen based on
acceptable latencies and testing with a given classifier. The algorithm functions
by maintaining the current state unless the last lstream predictions all predict a
different state. Algorithm 7.2 describes the algorithm for completeness.

Algorithm 7.2 Latch algorithm for taking a stream of predictions and producing
a smoother stream.

Input: ŷ : Stream of predicted labels, y0 : Initial state, lstream : Length of
latch stream

Result: ˆ̂y Stream of smoothed labels

ˆ̂y = y0
Initialise Y // Array of length lstream for storing past predictions

while smoothing do
Get new ŷ
Right shift Y
Y[0] = ŷ
if Y[...] == Y[0] then

ˆ̂y = Y[0]
end

end

The only hyperparameter for the latch algorithm was the stream length lstream;
the values [2, 5, 10, 20, 40] were trialled to demonstrate and contrast performance,
latency and smoothness trade-offs.

7.2.4 Majority Voting Algorithm

Another algorithm for smoothing is majority voting. That is voting over the last
lstream windows and outputting the gesture with the most votes. Similar to the
latch algorithm lstream is the only hyperparameter and was trialled at the values
[5, 11, 21, 41].

Chapter 7. Online Classification 149

7.2.5 The MSPRT Algorithm

The Multi-Hypothesis Sequential Probability Ratio Test (MSPRT) [237] is an algo-
rithm that is used to simulate biological decision-making, such as found in the
basal ganglia [238]. It effectively provides a recursive update for a set of evidence
λ of a particular hypothesis, outputting a result when evidence crosses a given
threshold:

λi = g∗λi − log
N

∑
n=1

exp λn (7.1)

y(λ) =

argmax(λ), max(λ) ≥ thres

yde f , max(λ) < thres
(7.2)

where λi is evidence for a hypothesis i, g∗ is a hyperparameter and there are
N hypotheses. Effectively g∗ represents a forgetting factor or how long evidence
persists and log ∑N

n=1 exp λn is a continuous approximation of the max function.
The final outputted class is y, thres is the threshold hyperparameter and yde f is a
chosen default output for when there is not enough evidence for any particular
class.

The default output yde f was set as the rest class and the other hyperparameters
thres and g∗ were determined via grid search.

7.2.6 Smoothing with Hidden Markov Models

The Hidden Markov Model (HMM) is a method that has been shown to be useful
in speech recognition [172] and useful as an addition to deep learning techniques
[136]. In order to apply it as a smoothing algorithm, it was assumed the classifier
outputs are the observations and that the true state was the associated labelled
gesture as per the data.

In the same way as the Majority Vote and Latch algorithms, the HMM was also
given a set length lstream stream of data that includes the current classifier output
and lstream − 1 previous outputs. The Viterbi algorithm (see next section) was then
used to predict the most likely sequence of states that led to the observed classifier
outputs. Instead of predicting at the most recent time step, however, the prediction
at the middle of the stream was used to facilitate smoothing. This introduced a
more direct trade-off with latency because the algorithm actively predicted the
true classification label at a previous time step.

The parameters for HMMs are often learnt using Expectation Maximisation
(EM) [239] although this work forgoes direct parameter learning of the HMM due

150 7.2. Methods

to lack of a suitable training set. Instead, grid search was used to determine the
emission and transmission matrices. The initial probability of the states was set
uniformly so as to not make any assumptions about the expected classification.

HMMs have been successfully applied as an addition to the classification pro-
cess in hand gesture recognition [3] in order to increase overall accuracy. The
methods explored by Rossi et al. [3] require additional labelling, however, and so
here the HMM is used only for smoothing rather than to switch between classi-
fiers.

7.2.7 Viterbi Algorithm

The Viterbi algorithm [240] was used to calculate the most likely sequence of states
given a sequence of observations. Algorithm 7.3 illustrates the process, which
is essentially to iterate forward through a set of observations determining the
probability of state transitions and then backtrace to find the most likely sequence
of transitions from the endpoint probabilities.

Algorithm 7.3

Input: P(S1) : Prior state probabilities, A : Transition matrix, B : Emission
matrix, Y : Sequence of observations {Y1, ..., YT}

Result: S : The most likely sequence of states {S1, ..., ST}

δ[1...K, 1] = P(S1)
ψ[1...K, 1] = 0
for each observation i ∈ 2, ..T do

for each possible state j ∈ 1, ..K do
δ[j, i] = max(δ[1...K, i− 1] · A[1...K, j] · B[j, Y[i]])
ψ[j, i] = argmax(δ[1...K, i− 1] · A[1...K, j] · B[j, Y[i]])

end
end
S[T] = argmax(δ[1...K, T])
for i ∈ T, ..2 do

S[i− 1] = argmax(ψ[S[i], i])
end

Similar to the vanishing gradient problem in deep learning, the Viterbi algo-
rithm can run into numerical issues due to the potentially large number of mul-
tiplications of numbers ≤ 1. In practice, this issue is mitigated by computing the
logarithms of the probabilities.

The Viterbi algorithm performs best on predicting states early in a sequence
since these have more information associated with them.

Chapter 7. Online Classification 151

7.3 Results and Discussion

7.3.1 Subject Adaptation

Table 7.3 summarises the performance of the adaptation algorithms over the 10
subjects in the study.

Algorithm µsubj (%) µrank
No Adaptation 42.4 5.00
Baseline 84.6 3.80
Freeze Classification 86.2 1.60
Freeze Features 86.4 1.40
Dual Train 84.8 3.20

Table 7.3: Performance of subject adaptation algorithms on study data in terms of macro-
average accuracy and rank. Freezing classification or feature layers are shown to improve
over baseline method. The value µsubj is the inter-subject mean macro-average accuracy,
µrank is the inter-subject mean rank (range 1-5).

No adaptation, i.e. not using any data on the target subject, performed the
worst. While this is the expected result, it still reinforces the need for subject-
specific adaptation of classification in order to achieve high performance. The
baseline performs in line with results from the previous chapter.

The two freezing algorithms significantly outperform the other algorithms at
the 5% significance level, although neither is significantly better than the other.
This result was calculated using the Friedman test followed by post-hoc Holm
procedure. This demonstrates that, while it is still necessary to adapt for each
subject, appropriate usage of data from other subjects can be used to boost per-
formance. The frozen feature extractor algorithm, in particular, indicates that a
common set of features is usable across subjects as would be expected given the
extensive sEMG feature literature. The freeze algorithms also show a slight re-
duction in the inter-subject variance, from ∼ 7% down to ∼ 6%, which is another
desirable improvement over the baseline.

The dual training algorithm attempts to achieve a similar goal as the feature
freezing algorithm; however, it uses a shared latent space within the classifier
rather than pre-learning the feature extractor. The fact that it performed essentially
the same as the baseline, however, indicates that the stronger assumption made by
the feature freezing algorithm was more useful. Specifically, the feature freezing
algorithm can be interpreted as applying the assumption:

“The most useful sEMG features are the same across all subjects”
It is useful to have some experimental evidence that this assumption is correct.

The sEMG feature literature by necessity is aimed to design features that were

152 7.3. Results and Discussion

useful across subjects whereas being an end-to-end learning system deep neu-
ral networks present the opportunity to maximise customisation to a particular
subject. Therefore knowing that it may be useful to limit customisation to some
degree and to make use of data from other subjects is vitally important.

This result is similar to results from image classification [241, 242], where it
has been shown that starting with a network pretrained on a similar problem and
fine tuning some of its layers to a new problem results in better performance than
only using data from the new problem, this is shown to be particularly true when
the amount of data available is small.

The most recent studies have applied transfer learning in a way similar to
the dual train methodology demonstrated here [28], and other studies have pre-
initialised their networks on other subject data (a strategy found to be ineffective
here). This work is the first to demonstrate that fine-tuning a pretrained network
is a viable method for improving performance on a particular subject.

Table 7.4 shows the results of training the different adaptation algorithms with
only a single repetition rather than the set of three for each fold.

Macro-average Accuracy (%)
Repetition
Number

Baseline
Freeze

Classification
Freeze

Features
Dual Train Average Rank

1 71.0 74.2 73.9 72.0 4.88
2 75.6 78.6 78.5 77.2 4.35
3 76.4 78.5 78.5 76.9 3.75
4 77.2 78.9 79.1 78.3 3.42
5 74.5 76.8 76.8 75.6 2.58
6 78.1 80.3 80.6 79.1 2.02

Table 7.4: Performance of subject adaptation methods when only trained on one repetition
of the target subject’s data. Repetition 1 is shown to produce a less useful classifier while
the performance trends between the adaptation methods remain the same. Average rank
was calculated over adaptation-subject pairs, i.e. over 40 matched samples.

The results show that repetition 1 generally leads to a poorer classifier, which
provides further evidence for the conclusions from previous chapters that repeti-
tion 1 is generally a lower quality data set. Previously it was shown that repetition
1 had poorer performance in testing compared to other repetitions; however, here
the other side is shown in that the classifier trained from repetition 1 is also lower
quality. Statistically, it is possible to conclude that repetition 1 is significantly
worse than the other repetitions except for repetition 5 at the 5% significance level
using the Friedman test and post-hoc Holm procedure.

Unlike in previous chapters, it was found that there was a dip in performance
for repetition 5. It is not clear exactly why this was the case; however, it potentially

Chapter 7. Online Classification 153

stems directly from the experimental setup. Several subjects indicated their bore-
dom around this point of the experiment, which may have caused a decline in ges-
ture reproduction. Moving into the final repetition may then have reinvigorated
their concentration on the experiment producing the observed performance im-
provement in repetition 6 relative to repetition 5. This has implications for future
experiment design, suggesting that adding additional measures to keep subjects
on task and produce a more consistent level of concentration may be useful ways
of improving the quality of gesture reproduction.

The general trends between the performance of the adaptation algorithms re-
main the same as when all the data is available (Table 7.3) with both freezing algo-
rithms outperforming the others. The one exception is the Dual Train algorithm,
which provides a larger improvement over the baseline than when more data is
available. This demonstrates that enforcing the shared latent space is beneficial
when data on a subject is limited.

Overall, this subject adaptation experiment has shown for the first time that
fine-tuning a network trained to be generalisable on other subjects is a useful way
of enhancing performance without needing to design a new architecture. Further
confirmation of the generally poor performance of the first repetition has been
shown, and avenues for improving experiment design in the future have been
presented.

7.3.2 Prediction Smoothing

Tables 7.5, 7.7, 7.6 and 7.8 show the results of the prediction smoothing algorithms
on the supplemental study data for different labels in training and testing.

The general trend is similar across all variants; every smoothing algorithm
improves the overall macro-average accuracy, reduces the Mean Deviations per
movement but also increases both the onset and tail latencies.

Omitting preemptive results in the latency calculations has the most effect
when the overall latency is lower. Once the latencies are higher, preemption is
much less frequent. The tail latency is most affected by the removal of preemp-
tion, meaning that, in general, the classification is most likely to preemptively
predict a return to the rest position as opposed to movement into a gesture. The
tail latency is also affected more in the GLR trained and tested variant (Table 7.8)
even at higher overall latencies.

The issues with the GLR in this context become apparent when comparing
the tables. When GLR labels are used for training, and expert labels are used for
testing (Table 7.6), the network’s macro-average accuracy is slightly reduced along
with the associated latencies indicating that for training purposes the two are not

154 7.3. Results and Discussion

Expert Trained, Expert Tested

Algorithm
Accuracy

(%)
Mean Dev. Onset (ms) Tail (ms) Onset* (ms) Tail* (ms)

µ P90 µ P90 µ P90 µ P90 µ P90

Baseline 94.4 21.7 60.3 17.5 55.0 13.7 55.0 27.3 65.0 32.4 85.0
Latch (2) 94.7 7.1 19.0 26.4 71.5 21.1 70.0 33.8 85.0 41.8 98.0
Latch (5) 95.0 3.1 9.0 47.8 118.0 39.2 115.0 48.9 122.0 51.0 120.0
Latch (10) 95.3 1.7 5.3 82.6 170.0 71.3 149.5 82.6 170.0 78.8 169.0
Latch (20) 95.6 0.7 2.0 152.6 241.5 132.8 245.0 152.6 241.5 133.6 245.0
Latch (40) 95.0 0.1 0.3 286.1 431.5 243.0 360.0 286.1 431.5 243.0 360.0
HMM (5) 94.8 7.3 19.3 29.9 76.5 21.8 71.5 36.9 90.0 37.8 95.0
HMM (11) 94.9 4.2 11.3 43.7 95.0 33.8 90.0 45.1 95.0 41.5 102.0
HMM (21) 95.1 2.5 7.0 70.3 126.5 62.6 130.0 70.3 126.5 69.6 135.0
HMM (41) 95.2 1.3 5.0 118.6 165.0 108.1 170.0 118.6 165.0 110.1 170.0
HMM (61) 95.3 0.7 3.0 167.7 210.0 152.8 205.0 167.7 210.0 152.8 205.0
Vote (5) 94.8 7.2 19.3 29.9 76.5 21.7 71.5 36.7 90.0 37.6 95.0
Vote (11) 94.9 4.1 11.3 44.6 95.0 33.8 90.0 45.1 95.0 41.5 102.0
Vote (21) 95.1 2.5 7.0 70.2 126.5 61.0 130.0 70.2 126.5 67.9 130.0
Vote (41) 95.2 1.3 5.0 120.3 166.5 108.1 170.0 120.3 166.5 110.1 170.0
MSPRT 95.7 1.6 5.3 90.7 140.0 57.5 95.0 90.7 140.0 61.9 95.0

Table 7.5: Smoothing algorithm performance on supplementary data, trained and tested
on expert labelled data. The value µ is the mean and P90 is the 90th percentile. Accuracy
is given in terms of macro-average. *Preemptive results omitted.

GLR Trained, Expert Tested

Algorithm
Accuracy

(%)
Mean Dev. Onset (ms) Tail (ms) Onset* (ms) Tail* (ms)

µ P90 µ P90 µ P90 µ P90 µ P90

Baseline 93.1 22.4 53.6 23.9 95.0 189.8 280.0 52.8 125.0 196.9 280.0
Latch (2) 93.4 7.4 19.0 29.6 101.5 198.4 285.0 64.5 142.0 202.0 285.0
Latch (5) 93.8 3.5 10.0 53.4 150.0 221.0 313.0 77.4 160.0 222.3 314.0
Latch (10) 94.1 1.9 5.0 84.2 180.0 264.9 371.5 90.6 182.5 266.5 372.0
Latch (20) 94.4 0.8 3.0 167.1 301.5 332.8 456.0 167.1 301.5 334.8 458.0
Latch (40) 93.5 0.2 1.0 310.2 495.0 443.8 589.5 310.2 495.0 443.8 589.5
HMM (5) 93.5 7.7 20.0 31.1 110.0 202.5 290.0 63.0 144.0 203.7 290.0
HMM (11) 93.7 4.5 12.0 40.0 131.5 220.5 315.0 64.7 153.5 223.2 315.0
HMM (21) 94.0 2.8 8.0 63.5 170.0 249.0 353.0 69.2 173.5 250.5 354.0
HMM (41) 94.3 1.5 5.0 108.6 210.0 295.7 391.5 108.6 210.0 297.5 392.0
HMM (61) 94.4 0.9 3.0 156.2 238.0 333.3 438.0 156.2 238.0 333.3 438.0
Vote (5) 93.5 7.5 19.0 31.2 110.0 202.4 290.0 63.2 144.0 203.6 290.0
Vote (11) 93.7 4.4 11.3 40.7 131.5 220.1 311.5 63.3 155.0 222.8 312.5
Vote (21) 94.0 2.8 8.0 63.1 170.0 246.8 349.5 68.9 173.5 248.2 351.0
Vote (41) 94.2 1.5 5.0 110.4 211.5 295.2 386.5 110.4 211.5 297.0 387.0
MSPRT 94.7 1.9 6.0 82.0 161.5 180.9 321.5 83.0 162.5 184.2 323.0

Table 7.6: Smoothing algorithm performance on supplementary data, trained on GLR
labelled data and tested on expert labelled data. The value µ is the mean and P90 is the
90th percentile. Accuracy is given in terms of macro-average. *Preemptive results omitted.

Chapter 7. Online Classification 155

Expert Trained, GLR Tested

Algorithm
Accuracy

(%)
Mean Dev. Onset (ms) Tail (ms) Onset* (ms) Tail* (ms)

µ P90 µ P90 µ P90 µ P90 µ P90

Baseline 89.8 22.2 61.0 197.4 735.0 2.0 0.0 197.4 735.0 36.7 81.0
Latch (2) 90.0 7.6 19.0 208.0 740.0 2.4 0.0 208.0 740.0 45.0 91.0
Latch (5) 90.5 3.8 9.0 231.0 768.0 3.4 0.0 231.0 768.0 47.1 101.5
Latch (10) 91.1 2.6 6.0 265.9 805.0 4.5 0.0 265.9 805.0 62.5 126.5
Latch (20) 92.1 1.5 3.0 335.9 859.5 12.6 45.0 335.9 859.5 65.9 139.5
Latch (40) 92.6 0.7 1.0 469.4 994.5 48.8 168.0 469.4 994.5 110.7 220.0
HMM (5) 90.1 7.9 20.0 212.2 745.0 2.5 0.0 212.2 745.0 42.5 95.0
HMM (11) 90.4 4.9 12.3 226.9 760.0 3.5 0.0 226.9 760.0 48.3 106.0
HMM (21) 90.8 3.3 8.0 253.6 785.0 4.6 0.0 253.6 785.0 65.0 117.5
HMM (41) 91.6 2.2 5.3 301.8 836.5 7.7 10.0 301.8 836.5 71.7 151.0
HMM (61) 92.2 1.5 3.3 350.9 886.5 11.5 38.0 350.9 886.5 68.8 155.5
Vote (5) 90.1 7.7 20.0 212.2 745.0 2.5 0.0 212.2 745.0 42.5 95.0
Vote (11) 90.4 4.9 12.0 227.8 760.0 3.5 0.0 227.8 760.0 48.3 106.0
Vote (21) 90.8 3.3 8.0 253.5 785.0 4.6 0.0 253.5 785.0 64.6 113.0
Vote (41) 91.5 2.2 5.3 303.5 841.5 7.7 10.0 303.5 841.5 71.7 151.0
MSPRT 91.6 2.5 6.0 274.0 811.5 3.6 0.0 274.0 811.5 60.0 107.0

Table 7.7: Smoothing algorithm performance on supplementary data, trained on expert
labelled data and tested on GLR labelled data. The value µ is the mean and P90 is the 90th
percentile. Accuracy is given in terms of macro-average. *Preemptive results omitted.

GLR Trained, GLR Tested

Algorithm
Accuracy

(%)
Mean Dev. Onset (ms) Tail (ms) Onset* (ms) Tail* (ms)

µ P90 µ P90 µ P90 µ P90 µ P90

Baseline 90.1 25.1 59.3 183.6 720.0 13.2 36.5 185.8 720.0 27.1 69.5
Latch (2) 90.3 8.6 20.0 197.2 730.0 17.1 45.0 198.4 730.0 32.4 76.0
Latch (5) 90.8 4.4 10.3 230.9 746.5 27.6 66.5 232.3 747.0 47.3 95.0
Latch (10) 91.3 2.6 6.0 266.7 771.5 47.6 116.5 266.7 771.5 76.2 135.0
Latch (20) 92.3 1.1 3.0 350.4 862.5 92.7 195.0 350.4 862.5 122.6 205.0
Latch (40) 91.9 0.3 1.0 493.3 1013.0 177.8 295.0 493.3 1013.0 204.6 300.0
HMM (5) 90.4 9.0 21.0 201.0 731.5 18.6 46.5 202.2 732.0 36.0 80.0
HMM (11) 90.7 5.5 12.3 217.4 745.0 27.0 61.5 218.7 745.0 48.8 95.0
HMM (21) 91.1 3.7 8.3 246.0 770.0 40.8 91.5 246.0 770.0 65.9 115.0
HMM (41) 91.8 2.1 5.3 291.8 821.5 67.4 145.0 291.8 821.5 94.3 155.5
HMM (61) 92.3 1.3 4.0 339.5 871.5 90.9 183.0 339.5 871.5 123.2 195.0
Vote (5) 90.4 8.8 20.0 201.8 731.5 18.6 46.5 203.0 732.0 36.0 80.0
Vote (11) 90.7 5.4 12.0 218.5 745.0 27.0 61.5 219.9 745.0 48.8 95.0
Vote (21) 91.1 3.6 8.0 245.7 770.0 39.5 91.5 245.7 770.0 65.7 115.0
Vote (41) 91.8 2.1 6.0 293.7 821.5 66.9 145.0 293.7 821.5 93.7 155.5
MSPRT 92.1 2.6 6.0 265.1 793.0 35.9 96.5 265.1 793.0 61.5 115.0

Table 7.8: Smoothing algorithm performance on supplementary data, trained and tested
on GLR labelled data. The value µ is the mean and P90 is the 90th percentile. Accuracy is
given in terms of macro-average. *Preemptive results omitted.

156 7.3. Results and Discussion

overly different. However, when training and testing on GLR labels (Table 7.8),
the network performs worse across all measures. The variation in latency is also
increased as the network is more likely to misclassify larger sections of data.

Since it may be reasonably assumed that the expert labels are more representa-
tive of the ground truth. It is, therefore, reasonable to assume that the GLR, while
being an acceptable substitute for expert labels during training, is not a suitable
method for evaluating actual expected performance. This is an important result
since the GLR is often used for labelling purposes in the field, including its usage
in previous chapters where the NinaPro databases were used since the "refined"
movement labels presented in those databases are based on the GLR.

The GLR was initially developed to detect the onset of muscle contraction us-
ing EMG where it proved useful over threshold methods which were typical at
the time [179]. This is subtly different from the classification problem where it
is currently used. During classification, it is desirable to detect when a subject
has reached a given gesture as opposed to detection of the onset of muscle con-
traction. Likewise, at the end of a gesture where the GLR is used to estimate the
return to the rest state, the time step it predicts will be somewhat after the subject
has stopped holding the gesture. This is why the GLR does not make a suitable
labelling method for evaluating actual expected performance in this context.

These issues were even more apparent in the results from the cross-validation
on the full study data. Table 7.9 presents the useful results of the full study. The
latency measures are omitted because they continue the trend of the GLR trained
and tested pilot (Table 7.8), i.e. they become excessively large and have a large
spread. Further, a large number of preemptions were observed indicating the
measures of latency were less useful.

The problems with the GLR are exacerbated here since some subjects moved
slowly into and out of the rest/neutral state causing short regions to be labelled as
rest when ideally the labelling of rest would occur as soon as the subject stopped
performing a gesture even if there was a delay before actually coming completely
to rest.

Table 7.9, however, still demonstrates that the same performance trends are
present as in the supplemental data. Specifically, every smoothing algorithm im-
proves the overall macro-average accuracy while reducing the mean deviations.
Based on the other results, however, this improvement comes at the cost of in-
creased latencies.

Having noted the issues with the GLR, the focus is now returned to Table 7.5
since it covers the expertly labelled and tested data which most accurately reflects
real-world conditions. From this data, the Pareto Frontiers were plotted in Figures

Chapter 7. Online Classification 157

Full Study, GLR Labels

Algorithm
Macro-average
Accuracy (%)

Mean Deviations
µ P90

Baseline 81.6 61.8 4.0
Latch (2) 81.9 20.3 2.0
Latch (5) 82.5 10.1 1.0
Latch (10) 83.4 5.8 0.0
Latch (20) 84.5 2.7 0.0
Latch (40) 85.4 0.6 0.0
HMM (5) 82.0 21.7 1.9
HMM (11) 82.3 13.1 1.0
HMM (21) 82.9 8.7 0.0
HMM (41) 83.8 5.2 0.0
HMM (61) 84.5 3.5 0.0
Vote (5) 82.0 20.9 1.0
Vote (11) 82.3 12.9 1.0
Vote (21) 82.8 8.6 0.0
Vote (41) 83.8 5.2 0.0
MSPRT 83.9 6.2 0.0

Table 7.9: Smoothing algorithm performance cross-validated on study data, GLR used for
labelling. The value µ is the mean and P90 is the 90th percentile, both calculated across
all subject-gesture-repetition combinations. Accuracy is given in terms of macro-average.
*Preemptive results omitted.

7.3 and 7.4.

What the Pareto frontiers show is that the various smoothing algorithms are
relatively similar when it comes to the trade-off between smoothness and latency;
each algorithm lies either on or close to both frontiers. Only the latching algorithm
has any clear downside compared to the others; it has worse 90th percentile ex-
pected latencies than the other algorithms (see Table 7.5). This poorer performance
is caused by the fact that the algorithm sometimes causes particularly long delays.
This is not unique and happens in all the algorithms; however, it happens more
frequently with the latch. The reason for this is that the latch algorithms requires
an uninterrupted stream of predictions for a specific gesture in order to change to
it. Even a single different prediction causes a delay equal to the length of the latch,
which is compounded by additional different predictions. The other algorithms
are more tolerant of different predictions within their incoming prediction stream.

It is also important to note how the algorithms manipulate the predictions. A
key example here is the MSPRT which outputs rest when there is no strong evi-
dence for another gesture. This significantly changes the distribution of misclassi-
fications which may or may not be beneficial, depending on the context, but here,

158 7.3. Results and Discussion

Figure 7.3: Pareto frontier of mean deviations against onset latency. Data from Table 7.5.
All algorithms tested lie on or very close to the frontier, indicating that all have a high
degree of Pareto efficiency.

as can be seen from Table 7.5, it improves upon the overall accuracy and tail la-
tency compared to other algorithms. Similarly, the HMM could be modified to use
a non-uniform prior on the initial state, biasing it towards certain gestures, which
could be useful. The other algorithms have a much lower impact on prediction
distribution.

Another key difference is that all the smoothing algorithms, because they oper-
ate over longer intervals than single point prediction, tend to change the misclas-
sification distribution such that more of the misclassifications are due to latency
rather than switching and holding an incorrect classification. In applications such
as prosthetic control, this may be preferable since the cost of misclassification is
likely to be higher than the cost of additional latency.

Therefore it can be surmised that, for the majority of cases, applying any of the
smoothing algorithms with appropriately tuned hyperparameters will produce a
reasonable trade-off. However, if maintaining the classification distribution is im-
portant, the MSPRT should not be used. Conversely the MSPRT or HMM should
be used if it is desirable to bias the classification towards certain classes. Other-
wise, majority voting makes a reasonable algorithm choice since it requires min-

Chapter 7. Online Classification 159

Figure 7.4: Pareto frontier of mean deviations against tail latency. Data from Table 7.5.
Some algorithm variants lie behind the frontier; however, most still lie on the frontier
itself, indicating that all have a high degree of Pareto efficiency.

imal hyperparameter tuning, specialist knowledge and computational overhead
while providing a useful reduction in the mean deviations over no smoothing.

7.4 Integration of Techniques

The aim of this thesis is to present an improved set of methods for sEMG based
hand gesture classification. In this section, the techniques and methods discussed
in this and previous chapters are brought together to demonstrate both the per-
formance possible and the improvements over other solutions.

The supplemental data with expert labels was used to best represent the ground
truth, and the same cross-validation folds were used as in Table 7.2. The TtS and
Compact TtS were tested making use of SMOTE, subject adaptation and smooth-
ing algorithms to enhance performance further.

The TtS network performed best with feature freezing pretraining using the
main study data labelled using the GLR and achieved a macro-average accuracy of
91.6% before smoothing. Combined with the latch 20 algorithm, this rose to 93.2%
with an average onset latency of 188.6ms and mean deviations 1.0. In contrast, the

160 7.5. Conclusion

Compact TtS performed worse with the feature freezing pretraining likely due to
its smaller number of parameters being less flexible in capturing an appropriate
generalisation of features. Here SMOTE provided a performance enhancement
over the subject adaptation, which is more useful on the non-compact version of
the TtS. The Compact TtS achieved 90.3% macro-average accuracy rising to 92.0%
with the latch 20 algorithm generating 1.0 mean deviations but with a higher
average onset latency of 243.8ms.

The performance of the latching algorithm on the Compact TtS is shown in
Figure 7.5 as the latch length increases to illustrate the changes to the classification
signal.

Together the results show the need for a more nuanced approach throughout
the classification process. The fact that subject adaptation does not work on the
Compact TtS demonstrates the need for flexibility in training processes to account
for both the data available and the network’s structure. Similarly the harder to
quantify differences in smoothing algorithms such as how they change the timing
distributions of misclassifications and the overall distribution of misclassifications
as well as the smoothness of the resultant classification signal are of differing im-
portance in different applications but are still relevant and are largely obfuscated
by standard measures.

The differences in latencies between the compact and non-compact networks
further evidences the idea that the end-to-end classification process has a large
decision space of complex inter-linked trade-offs and hence supports the need for
nuanced evaluation with respect to particular applications.

7.5 Conclusion

Subject adaptation and prediction smoothing have been investigated in this chap-
ter. Both of these investigations built on work from previous chapters to develop
improvements to the classification process to make it more applicable to real-world
scenarios.

Subject adaptation was used to improve the performance of the TtS network
in situations where similar data was available from other subjects. Pretraining the
network on data from other subjects, freezing the lower feature extraction layers
then fine-tuning the classification layer to a new subject was shown to improve
the overall macro-average accuracy by 1.8%. This mirrors results from the image
classification domain [232] where using pretrained networks and fine tuning to
problems is a well-known tactic. However, for sEMG hand classification, this is
the first successful demonstration of the technique. While the overall performance

Chapter 7. Online Classification 161

Figure 7.5: Classification signal against ground truth from the first cross-validation fold
for the Compact TtS with different length latches showing the increase in smoothness and
added latency. Metrics given are for the complete cross-validation.

162 7.5. Conclusion

improvement is relatively small from this method the fact that in any study with
multiple subjects the improvement only costs minimal computation time and is
potentially applicable to any neural network makes it particularly valuable. It
was also demonstrated that it is not desirable to only train on other subjects and
that the fine-tuning is a necessary step, even when the same gestures are being
classified. This supports continuing research into person-specific adaptations.

The exploration of post-classification smoothing algorithms for better online
classification showed that, for a small trade-off in latency, a significant reduction
in the number of expected deviations per movement could be made through the
use of a number of smoothing techniques. The investigation showed most of
the algorithms had a similar trade-off between latency and mean deviations and
that all also provided an additional boost to the overall macro-average accuracy.
Therefore it was demonstrated that these algorithms make a useful addition to
simply using the output from the classifier, particularly in applications that might
be sensitive to the high-frequency flickering of the classification signal.

Both these methods present ways for researchers to improve performance on
the classification problem in general purpose, practically implementable ways,
which would make sEMG based interaction and control more viable in real appli-
cations.

The integration testing demonstrated that it is not possible to unequivocally
produce a single best set of methods for any given setup. It did, however, demon-
strate that it is possible to classify hand gestures with a high macro-average ac-
curacy using a compact network that could be run on an embedded device while
using smoothing algorithms to trade off smoothness, latency and other important
characteristics to fit the needs of a particular problem.

Chapter 8

Closing Remarks

8.1 Summary and Conclusions

This thesis has centred on improving the performance, robustness and repro-
ducibility of sEMG based gesture classification. The work has been largely ex-
ploratory in nature, with a wide variety of techniques and classifiers being eval-
uated to determine which are the most effective, and has been formulated as a
direct response to the methodological issues highlighted in the field. The main
contributions of this work can be split into three sections: improved evaluation,
higher performance classification and better supporting methods.

The importance of appropriate evaluation was highlighted in Chapter 3. It
was shown that the standard accuracy metric frequently used in the field leads to
a class frequency bias in most experiments which is unlikely to be representative
of the class frequency at application time or desired class weighting. Therefore
the macro-average accuracy was proposed as an alternative that uses a uniform a
priori probability on expected class distribution which leads to a more representa-
tive metric for the purposes of evaluation without a known application time class
distribution. Further, cross-validation techniques were implemented which are vi-
tal for reliable, reproducible results [183, 184] but have often been neglected in
the field. A novel stratification technique for cross-validation was also presented
and validated that solves a common stratification problem associated with gesture
classification.

This thesis contributed several classification performance improvements to the
field that operate along different axes. The performance of feature-based classi-
fiers was improved by data resampling and augmentation techniques which were
demonstrated in the re-evaluation of a landmark study. A novel neural network
design was presented, which significantly outperforms both other classification

163

164 8.1. Summary and Conclusions

methods and contemporary network designs. The network design was also mod-
ified to minimise the number of parameters necessary for a similar level of per-
formance. This lead to tangible run time performance enhancement on embedded
hardware, which is necessary for many real-world applications where computa-
tional power is limited.

Several supporting methodologies were also designed and evaluated, which
have practical value to current and future researchers.

The effect of different labelling methodologies was explored and shown to
have a potentially significant impact on the reported performance due to differ-
ences between the presented labels and the ground truth demonstrating an often
overlooked area of experiment design that potentially deserves further investiga-
tion.

Gesture sub-selection was explored which demonstrated that superset perfor-
mance is a useful metric for selecting the best gestures for a subject, when many
are available, in order to maximise classification performance. This is useful for
any situation where only a subset of all the gestures that there is data on need to be
classified at any one time: a situation that can often be engineered if performance
is critical and allows tailoring of the classification to an individual.

Fine-tuning, and more generally utilising data from other subjects, was shown
to be a viable way of improving classifier performance. This is useful in most
studies and applications since data from multiple subjects is generally available.
This work also indicates that cross-subject learning is a useful endeavour for im-
proving overall performance, a hypothesis which has recently been shown to have
merit [45].

Online smoothing algorithms were explored in terms of the trade-offs they
present, a topic which has not been explored within the current context of sEMG
based gesture classification. It was shown that many algorithms lie on or near
the Pareto front for trading off latencies and smoothness while all also provide a
boost to the overall accuracy of the classification. This presents a potentially low
computational cost way of improving classification performance regardless of the
classifier in use and making informed trade-offs with the expected latency.

A novel study was also presented that explored the performance of the low-
cost Myo Armband compared to a more expensive medical counterpart indicating
that under the right conditions it was possible for it to produce data that lead to
similar or better performance than its more expensive counterpart. This poten-
tially represents the opportunity to drastically reduce the barrier to entry to the
field.

Bringing everything together it has been shown that it is possible to achieve

Chapter 8. Closing Remarks 165

high-performance classification on the sEMG hand classification problem while
allowing for the nuanced trade-off between other characteristics of the classifier
such as computation time, latencies and smoothness of signal.

In summary, the contributions of this thesis are a set of methods, techniques
and designs to improve sEMG hand gesture classification in terms of raw clas-
sification performance, run-time computational cost, representative performance
evaluation, experiment design, and performance trade-offs as well providing freely
available data on low-cost data gathering equipment and code for reproducibility.
Complete processes were also evaluated that demonstrated how these techniques
could be combined to produce high-quality gesture classification.

8.2 Future Research Avenues

This work raises several potential avenues for future research work:

• The macro-average accuracy metric has been shown to be a useful metric
since it applies a uniform a priori probability to the expected class distribu-
tion at application time. In specific applications, it, therefore, would be use-
ful to have an approximate expected class distribution. Since the particular
gestures involved may be different between studies, it would likely be most
useful to determine expected distributions for rest vs other gestures which
would allow informed trade-off choices and appropriate metric weighting.

• In a similar vein, determining the specific trade-offs with non-accuracy pa-
rameters for different applications such as the maximum possible additional
latency from classification + smoothing and the degree to which smoothing
is necessary. Along with weighing other concerns such as memory footprint
and necessary computation would allow for informed design choices with
respect to particular applications.

• Chapters 6 and 7 highlighted potential issues around common labelling pro-
cesses used to label the ground truth of data sets. It would be interesting
to explore this line of research with larger amounts of data based on de-
termining what labelling methods can be used in what contexts. Similarly,
exploration of alternative labelling techniques that can better approximate
expert labelling would also be very useful for the field since using experts,
which was shown to work best here, is human time-intensive.

• The fine-tuning results from Chapter 7 show that data from other subjects
can be used to improve performance on a target subject. Exploring alterna-
tive architectures and methods to exploit this to its maximum potential is,

166 8.2. Future Research Avenues

therefore, an exciting area and is starting to be explored by other researchers
[45]. Mixed error-component modelling may also be a useful extension to
this process to precisely the sources of improvement when a number of
methods are combined.

• The fusion of other data sources with EMG appears to be another promising
approach for improving overall performance in some contexts. Work done
by McIntosh et al. [149] has shown that pressure sensing can be a useful
augmentation to the data input and other work suggests accelerometer data
can also be beneficial, e.g. Xu et al. [151].

• Further exploration of the utility of the Myo Armband or other low-cost
sEMG devices. Reducing the cost of hardware by a factor of ∼ 100× has the
potential to vastly reduce the barriers to entry in the field, and recent work
has shown promising results not just on healthy subjects but also transradial
amputees [231]. Since this thesis was exploratory, a follow-up study would
be useful to confirm the hypothesis that for classification of a reasonable
number of gestures the Myo Armband can achieve performance at least as
good as its more expensive counterparts.

• Approaching the problem as a regression rather than a classification may
be beneficial for some applications where precise tracking of the hand is
useful. This potentially increases the difficulty of the problem but allows
for finer control of devices. Data for training purposes may also be more
difficult to capture since joint angles must be captured. However, some open
source data sets are available to support this research avenue, e.g. finger
force-pattern exercises captured with synchronised sEMG and joint angles
[37].

• Modelling the dynamics of the hand or arm is a potential avenue for im-
proving what can be inferred from EMG signals. This may help support
classification or allow inference of hand/arm position. The key challenge
is designing the model to minimise the need for acquisition of the physical
parameters of the arm. For instance, the bioimpedance of different volumes
of the arm may be difficult to acquire but could make a large difference to
the EMG signals received at a given electrode.

In general, the recommended future work is based on hypotheses testing to
experimentally confirm trends observed in this work, building upon the classifi-
cation methods to make maximum use of available data and exploring how tech-
niques can be adapted to best suit specific applications.

Bibliography

[1] B.M. Nigg and W. Herzog. Biomechanics of the Musculo-Skeletal System. John
Wiley & Sons, 2007.

[2] F. Tenore, A. Ramos, A. Fahmy, S. Acharya, R. Etienne-Cummings, and N.V.
Thakor. Towards the control of individual fingers of a prosthetic hand using
surface EMG signals. In Proceedings of the 29th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society, pages 6145–6148. 2007.

[3] M. Rossi, S. Benatti, E. Farella, and L. Benini. Hybrid EMG classifier based
on HMM and SVM for hand gesture recognition in prosthetics. Proceedings
of the IEEE International Conference on Industrial Technology, pages 1700–1705,
2015.

[4] R. Lipovský and H.A. Ferreira. Self hand-rehabilitation system based on
wearable technology. In Proceedings of the 3rd 2015 Workshop on ICTs for Im-
proving Patients Rehabilitation Research Techniques, pages 93–95, 2015.

[5] X. Zhang, X. Chen, W.h. Wang, J.h. Yang, V. Lantz, and K.q. Wang. Hand
gesture recognition and virtual game control based on 3D accelerometer and
EMG sensors. In Proceedings of the 14th International Conference on Intelligent
User Interfaces, pages 401–406. 2009.

[6] L. Bai, M.G. Pepper, Y. Yana, S.K. Spurgeon, and M. Sakel. Application of
low cost inertial sensors to human motion analysis. In Proceedings of the
International Conference on Instrumentation and Measurement Technology, pages
1280–1285. 2012.

[7] Z. Zhang. Microsoft kinect sensor and its effect. IEEE multimedia, 19(2):4–10,
2012.

[8] M. Zobl, M. Geiger, K. Bengler, and M. Lang. A usability study on hand ges-
ture controlled operation of in-car devices. In Proceedings of the International
Conference on Human-Computer Interaction, 2001.

167

168 Bibliography

[9] M. Alpern and K. Minardo. Developing a car gesture interface for use as a
secondary task. In Extended Abstracts on Human Factors in Computing Systems,
pages 932–933. 2003.

[10] J. Pauchot, L. Di Tommaso, A. Lounis, M. Benassarou, P. Mathieu, D. Bernot,
and S. Aubry. Leap Motion Gesture Control With Carestream Software in
the Operating Room to Control Imaging: Installation Guide and Discussion.
Surgical Innovation, 22(6):615–620, 2015.

[11] J.P. Wachs, M. Kölsch, H. Stern, and Y. Edan. Vision-based hand-gesture
applications. Communications of the ACM, 54(2):60–71, 2011.

[12] J. Kela, P. Korpipää, J. Mäntyjärvi, S. Kallio, G. Savino, L. Jozzo, and
D. Marca. Accelerometer-based gesture control for a design environment.
Personal and Ubiquitous Computing, 10(5):285–299, 2006.

[13] S. Balasubramanian, E. Garcia-Cossio, N. Birbaumer, E. Burdet, and
A. Ramos-Murguialday. Is EMG a Viable Alternative to BCI for Detect-
ing Movement Intention in Severe Stroke? IEEE Transactions on Biomedical
Engineering, 65(12):2790–2797, 2018.

[14] F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi. A review of
classification algorithms for EEG-based brain–computer interfaces. Journal
of Neural Engineering, 4(2):R1, 2007.

[15] L. Kendrick, A. Bzostek, and V.J. Doerr. System and method for tracking
positions of uniform marker geometries, U.S. Patent 9220573, dec 2015.

[16] P. Pławiak, T. Sośnicki, M. Niedźwiecki, Z. Tabor, and K. Rzecki. Hand
body language gesture recognition based on signals from specialized glove
and machine learning algorithms. IEEE Transactions on Industrial Informatics,
12(3):1104–1113, 2016.

[17] T.A. Kuiken, G. Li, B.A. Lock, R.D. Lipschutz, L.A. Miller, K.A. Stubblefield,
and K.B. Englehart. Targeted muscle reinnervation for real-time myoelectric
control of multifunction artificial arms. Journal of American Medicine, 301(6):
619–628, 2009.

[18] H. Jahani Fariman, S.A. Ahmad, M. Hamiruce Marhaban, M. Ali Jan Ghasab,
and P.H. Chappell. Simple and computationally efficient movement classifi-
cation approach for EMG-controlled prosthetic hand: ANFIS vs. artificial
neural network. Intelligent Automation and Soft Computing, 21(4):559–573,
2015.

Bibliography 169

[19] C. Castellini and P. Van Der Smagt. Surface EMG in advanced hand pros-
thetics. Biological Cybernetics, 100(1):35–47, 2009.

[20] S. Shin, R. Tafreshi, and R. Langari. A performance comparison of hand
motion EMG classification. In Proceedings of the 2nd Middle East Conference on
Biomedical Engineering, pages 353–356. 2014.

[21] A. Balbinot and G. Favieiro. A neuro-fuzzy system for characterization of
arm movements. Sensors, 13(2):2613–2630, 2013.

[22] M. Khezri and M. Jahed. A neuro-fuzzy inference system for sEMG-based
identification of hand motion commands. IEEE Transactions on Industrial
Electronics, 58(5):1952–1960, 2011.

[23] R.N. Khushaba, A. Al-Jumaily, and A. Al-Ani. Evolutionary fuzzy discrim-
inant analysis feature projection technique in myoelectric control. Pattern
Recognition Letters, 30(7):699–707, 2009.

[24] M. Khezri and M. Jahed. Real-time intelligent pattern recognition algorithm
for surface EMG signals. Biomedical Engineering Online, 6(1):1, 2007.

[25] Y. Huang, K.B. Englehart, B. Hudgins, and A.D.C. Chan. A Gaussian mix-
ture model based classification scheme for myoelectric control of powered
upper limb prostheses. IEEE Transactions on Biomedical Engineering, 52(11):
1801–1811, 2005.

[26] M.F. Lucas, A. Gaufriau, S. Pascual, C. Doncarli, and D. Farina. Multi-
channel surface EMG classification using support vector machines and
signal-based wavelet optimization. Biomedical Signal Processing and Control, 3
(2):169–174, 2008.

[27] M. Zia-ur Rehman, A. Waris, S. Gilani, M. Jochumsen, I. Niazi, M. Jamil,
D. Farina, and E. Kamavuako. Multiday EMG-Based Classification of Hand
Motions with Deep Learning Techniques. Sensors, 18(8):2497, 2018.

[28] U. Côté-Allard, C.L. Fall, A. Drouin, A. Campeau-Lecours, C. Gosselin,
K. Glette, F. Laviolette, and B. Gosselin. Deep Learning for Electromyo-
graphic Hand Gesture Signal Classification by Leveraging Transfer Learn-
ing. arXiv:1801.07756, 2018.

[29] Z. Ju, G. Ouyang, M. Wilamowska-Korsak, and H. Liu. Surface EMG based
hand manipulation identification via nonlinear feature extraction and clas-
sification. IEEE Sensors Journal, 13(9):3302–3311, 2013.

170 Bibliography

[30] R.N. Khushaba and A. Al-Jumaily. Fuzzy wavelet packet based feature ex-
traction method for multifunction myoelectric control. International Journal
of Biological and Medical Sciences, 2(3):186–194, 2007.

[31] F.V.G. Tenore, A. Ramos, A. Fahmy, S. Acharya, R. Etienne-Cummings, and
N.V. Thakor. Decoding of individuated finger movements using surface
electromyography. IEEE Transactions on Biomedical Engineering, 56(5):1427–
1434, 2009.

[32] R. Zhou, X. Liu, and G. Li. Myoelectric signal feature performance in classi-
fying motion classes in transradial amputees. In Proceedings of the Congress of
the International Society of Electrophysiology and Kinesiology, pages 16–19, 2010.

[33] M.J. Ortiz-Catalan, R. Brånemark, and B. Håkansson. Biologically inspired
algorithms applied to prosthetic control. In BioMed 2012, page 764, 2012.

[34] M. Zia-ur Rehman, S. Gilani, A. Waris, I. Niazi, G. Slabaugh, D. Farina, and
E. Kamavuako. Stacked sparse autoencoders for EMG-based classification
of hand motions: A comparative multi day analyses between surface and
intramuscular EMG. Applied Sciences, 8(7):1126, 2018.

[35] I. Mendez, B.W. Hansen, C.M. Grabow, E.J.L. Smedegaard, N.B. Skogberg,
X.J. Uth, A. Bruhn, B. Geng, and E.N. Kamavuako. Evaluation of the Myo
armband for the classification of hand motions. In Proceedings of the Interna-
tional Conference on Rehabilitation Robotics, pages 1211–1214. 2017.

[36] M. Ortiz-Catalan, R. Brånemark, and B. Håkansson. BioPatRec: A modular
research platform for the control of artificial limbs based on pattern recog-
nition algorithms. Source Code for Biology and Medicine, 8(1):11, 2013.

[37] M. Atzori, A. Gijsberts, I. Kuzborskij, S. Elsig, A.G. Mittaz Hager, O. De-
riaz, C. Castellini, H. Muller, and B. Caputo. Characterization of a Bench-
mark Database for Myoelectric Movement Classification. IEEE Transactions
on Neural Systems and Rehabilitation Engineering, 23(1):73–83, 2015.

[38] W. Geng, Y. Du, W. Jin, W. Wei, Y. Hu, and J. Li. Gesture Recognition by
Instantaneous Surface EMG Images [code], 2016. URL http://zju-capg.

org/myo/.

[39] W. Geng, Y. Du, W. Jin, W. Wei, Y. Hu, and J. Li. Gesture Recognition by
Instantaneous Surface EMG Images. Scientific Reports, 6:36571, 2016.

http://zju-capg.org/myo/
http://zju-capg.org/myo/

Bibliography 171

[40] B. Karlik, M.O. Tokhi, and M. Alci. A fuzzy clustering neural network archi-
tecture for multifunction upper-limb prosthesis. IEEE Transactions on Biomed-
ical Engineering, 50(11):1255–1261, 2003.

[41] B. Hudgins, P. Parker, and N. Robert. A New Strategy for Multifunction
Myoelectric Control. IEEE Transactions on Biomedical Engineering, 40(1):82–
94, 1993.

[42] K. Englehart, B. Hudgin, and P.A. Parker. A wavelet-based continuous clas-
sification scheme for multifunction myoelectric control. IEEE Transactions on
Biomedical Engineering, 48(3):302–311, 2001.

[43] O. Fukuda, T. Tsuji, M. Kaneko, and A. Otsuka. A human-assisting manip-
ulator teleoperated by EMG signals and arm motions. IEEE Transactions on
Robotics and Automation, 19(2):210–222, 2003.

[44] S. Micera, A.M. Sabatini, and P. Dario. On automatic identification of upper-
limb movements using small-sized training sets of EMG signals. Medical
Engineering and Physics, 22(8):527–533, 2000.

[45] Z. Ding, C. Yang, Z. Tian, C. Yi, Y. Fu, and F. Jiang. sEMG-Based Gesture
Recognition with Convolution Neural Networks. Sustainability, 10(6):1865,
2018.

[46] S. Pizzolato, L. Tagliapietra, M. Cognolato, M. Reggiani, H. Müller, and
M. Atzori. Comparison of six electromyography acquisition setups on hand
movement classification tasks. PLOS ONE, 12(10):e0186132, 2017.

[47] M. Atzori, M. Cognolato, and H. Müller. Deep learning with convolutional
neural networks applied to electromyography data: A resource for the clas-
sification of movements for prosthetic hands. Frontiers in Neurorobotics, 10
(SEP):1–10, 2016.

[48] A. Gijsberts, M. Atzori, C. Castellini, H. Müller, and B. Caputo. Movement
Error Rate for Evaluation of Machine Learning Methods for sEMG-Based
Hand Movement Classification. IEEE Transactions on Neural Systems and Re-
habilitation Engineering, 22(4):735–744, 2014.

[49] X. Zhang, Y. Yang, X. Xu, and M. Zhang. Wavelet based neuro-fuzzy clas-
sification for EMG control. In Proceedings of the International Conference on
Communications, Circuits and Systems and West Sino Expositions, volume 2,
pages 1087–1089. 2002.

172 Bibliography

[50] A. Hartwell, V. Kadirkamanathan, and S.R. Anderson. Person-Specific Ges-
ture Set Selection for Optimised Movement Classification from EMG Signals.
In Proceedings of the 38th Annual International Conference of the IEEE Engineer-
ing in Medicine and Biology Society, pages 880–883, 2016.

[51] A. Hartwell, V. Kadirkamanathan, and S.R. Anderson. Compact Deep Neu-
ral Networks for Computationally Efficient Gesture Classification From Elec-
tromyography Signals. In Proceedings of the 7th IEEE RAS/EMBS International
Conference on Biomedical Robotics and Biomechatronics, pages 891–896, 2018.

[52] A. Hartwell. Machine Learning for Hand Gesture Classification from Sur-
face Electromyography Signals [code], 2018. URL https://github.com/

Lif3line.

[53] A. Shuaib, A. Hartwell, E. Kiss-Toth, and M. Holcombe. Multi-
Compartmentalisation in the MAPK Signalling Pathway Contributes to the
Emergence of Oscillatory Behaviour and to Ultrasensitivity. PLOS ONE, 11
(5):e0156139, 2016.

[54] U. Jaramillo-Avila, A. Hartwell, and S. Anderson. Top-Down Bottom-Up
Visual Saliency for Mobile Robots Using Deep Neural Networks and Task-
Independent Feature Maps. In Proceedings of the 19th Annual Conference: To-
wards Autonomous Robotic Systems, volume 10965, page 489. 2018.

[55] M.B.I. Reaz, M.S. Hussain, and F. Mohd-Yasin. Techniques of EMG sig-
nal analysis: detection, processing, classification and applications. Biological
Procedures Online, 8(1):11–35, 2006.

[56] R.H. Chowdhury, M.B.I. Reaz, M.A.B.M. Ali, A.A.A. Bakar, K. Chellappan,
and T.G. Chang. Surface electromyography signal processing and classifica-
tion techniques. Sensors, 13(9):12431–12466, 2013.

[57] A.A.B.A. Nadzri, S.A. Ahmad, M.H. Marhaban, and H. Jaafar. Character-
ization of surface electromyography using time domain features for deter-
mining hand motion and stages of contraction. Australasian Physical and
Engineering Sciences in Medicine, 37(1):133–137, 2014.

[58] A.W. Preece, H.S. Wimalaratna, J.L. Green, E. Churchill, and H.M. Morgan.
Non-invasive quantitative EMG. Electromyography and Clinical Neurophysiol-
ogy, 34(2):81–86, 1994.

https://github.com/Lif3line
https://github.com/Lif3line

Bibliography 173

[59] N. Nazmi, M.A. Abdul Rahman, S.I. Yamamoto, S.A. Ahmad, H. Zamzuri,
and S.A. Mazlan. A Review of Classification Techniques of EMG Signals
during Isotonic and Isometric Contractions. Sensors, 16(8):1304, 2016.

[60] J.V. Basmajian and C.J. De Luca. Muscles Alive - The Functions Revealed by
Electromyography. Williams & Wilkins, Baltimore, MD, 1985.

[61] W.M.B.W. Daud, A.B. Yahya, C.S. Horng, M.F. Sulaima, and R. Sudirman.
Features extraction of electromyography signals in time domain on biceps
Brachii muscle. International Journal of Modeling and Optimization, 3(6):515,
2013.

[62] M. Asghari Oskoei and H. Hu. Myoelectric control systems-A survey.
Biomedical Signal Processing and Control, 2(4):275–294, 2007.

[63] P.A. DeLuca, K.J. Bell, and R.B. Davis. Using surface electrodes for the
evaluation of the rectus femoris, vastus medialis and vastus lateralis muscles
in children with cerebral palsy. Gait and Posture, 5(3):211–216, 1997.

[64] A. Van Boxtel. Optimal signal bandwidth for the recording of surface EMG
activity of facial, jaw, oral, and neck muscles. Psychophysiology, 38(01):22–34,
2001.

[65] R. Merletti and P. Di Torino. Standards for reporting EMG data. Technical
report, 1999.

[66] C.J. De Luca. Surface Electromyography: Detection and Recording. 2012.

[67] D.R. Rogers and D.T. MacIsaac. A comparison of EMG-based muscle fatigue
assessments during dynamic contractions. Journal of Electromyography and
Kinesiology, 23(5):1004–1011, 2013.

[68] D. Tkach, H. Huang, and T.A. Kuiken. Study of stability of time-domain fea-
tures for electromyographic pattern recognition. Journal of Neuroengineering
and Rehabilitation, 7:21, 2010.

[69] C.J. De Luca. The use of surface electromyography in biomechanics. Journal
of Applied Biomechanics, 13:135–163, 1997.

[70] B. Gick, I. Wilson, and D. Derrick. Articulatory Phonetics. Wiley-Blackwell,
2013.

[71] H.S. Gasser and J. Erlanger. A study of the action currents of nerve with the
cathode ray oscillograph. American Journal of Physiology–Legacy Content, 62
(3):496–524, 1922.

174 Bibliography

[72] C.D. Hardyck, L.F. Petrinovich, and D.W. Ellsworth. Feedback of speech
muscle activity during silent reading: Rapid extinction. Science, 154(3755):
1467–1468, 1966.

[73] J.R. Cram and J.C. Steger. EMG scanning in the diagnosis of chronic pain.
Biofeedback and Self-Regulation, 8(2):229–241, 1983.

[74] P.K. Artemiadis and K.J. Kyriakopoulos. EMG-based control of a robot arm
using low-dimensional embeddings. IEEE Transactions on Robotics, 26(2):393–
398, 2010.

[75] P. Marshall and B. Murphy. The validity and reliability of surface EMG to
assess the neuromuscular response of the abdominal muscles to rapid limb
movement. Journal of Electromyography and Kinesiology, 13(5):477–489, 2003.

[76] O. Fukuda, T. Tsuji, A. Ohtsuka, and M. Kaneko. EMG-based human-robot
interface for rehabilitation aid. In Proceedings of the IEEE International Confer-
ence on Robotics and Automation, volume 4, pages 3492–3497. 1998.

[77] D. Nishikawa, W. Yu, H. Yokoi, and Y. Kakazu. EMG prosthetic hand con-
troller using real-time learning method. In Proceedings of the IEEE Conference
on Systems, Man, and Cybernetics, volume 1, pages 153–158. 1999.

[78] Thalmic Labs. Myo Armband, 2015. URL https://www.myo.com/.

[79] M.Z. Jamal. Signal acquisition using surface EMG and circuit design con-
siderations for robotic prosthesis. In Computational Intelligence in Electromyo-
graphy Analysis-A Perspective on Current Applications and Future Challenges.
InTech, 2012.

[80] S. Day. Important factors in surface EMG measurement. Bortec Biomedical
Ltd, pages 1–17, 2002.

[81] S. Lee and J. Kruse. Biopotential electrode sensors in ECG/EEG/EMG sys-
tems. Analog Devices, 200:1–2, 2008.

[82] H.F. Posada-Quintero, R.T. Rood, K. Burnham, J. Pennace, and K.H. Chon.
Assessment of carbon/salt/adhesive electrodes for surface electromyogra-
phy measurements. IEEE Journal of Translational Engineering in Health and
Medicine, 4:1–9, 2016.

[83] B. Cesqui, P. Tropea, S. Micera, and H.I. Krebs. EMG-based pattern recogni-
tion approach in post stroke robot-aided rehabilitation: a feasibility study.
Journal of Neuroengineering and Rehabilitation, 10(1):1, 2013.

https://www.myo.com/

Bibliography 175

[84] X.L. Hu, R.K.Y. Tong, N.S.K. Ho, J.J. Xue, W. Rong, and L.S.W. Li. Wrist reha-
bilitation assisted by an electromyography-driven neuromuscular electrical
stimulation robot after stroke. Neurorehabilitation and Neural Repair, 2014.

[85] N. Kang, J. Idica, B. Amitoj, and J. Cauraugh. Motor recovery patterns in arm
muscles: coupled bilateral training and neuromuscular stimulation. Journal
of Neuroengineering and Rehabilitation, 11(57), 2014.

[86] P. Geethanjali. Myoelectric control of prosthetic hands: state-of-the-art re-
view. Medical Devices (Auckland, N.Z.), 9, 2016.

[87] K. Kiguchi and Y. Hayashi. An EMG-based control for an upper-limb power-
assist exoskeleton robot. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 42(4):1064–1071, 2012.

[88] C. Ho-Seung, C. Wond-Du, and I. Chang-Hwan. A real-time lip gesture
recognition system using facial EMG. In Proceedings of the 38th Annual In-
ternational Conference of the IEEE Engineering in Medicine and Biology Society,
2016.

[89] H. Manabe, A. Hiraiwa, and T. Sugimura. Unvoiced speech recognition
using EMG-mime speech recognition. In Extended Abstracts on Human Factors
in Computing Systems, pages 794–795. 2003.

[90] P. Kugler, C. Jaremenko, J. Schlachetzki, J. Winkler, J. Klucken, and B. Es-
kofier. Automatic recognition of Parkinson’s disease using surface elec-
tromyography during standardized gait tests. In Proceedings of the 35th An-
nual International Conference of the IEEE Engineering in Medicine and Biology
Society, pages 5781–5784. 2013.

[91] J. Wu, Z. Tian, L. Sun, L. Estevez, and R. Jafari. Real-time American sign
language recognition using wrist-worn motion and surface EMG sensors.
In Proceedings of the 12th International Conference on Wearable and Implantable
Body Sensor Networks, pages 1–6. 2015.

[92] C. Shirota. Towards Effective Fall Prevention Mechanisms in Lower-Limb Prosthe-
ses: Trip Recovery in Transfemoral Amputees. PhD thesis, Northwestern Uni-
versity, 2015.

[93] Delsys. Delsys Trigno Wireless System, 2017. URL http://www.delsys.com/

products/wireless-emg/trigno-lab/.

[94] A.J. Jerri. The Shannon sampling theorem-Its various extensions and appli-
cations: A tutorial review. Proceedings of the IEEE, 65(11):1565–1596, 1977.

http://www.delsys.com/products/wireless-emg/trigno-lab/
http://www.delsys.com/products/wireless-emg/trigno-lab/

176 Bibliography

[95] F. Kerber, P. Lessel, and A. Krüger. Same-side hand interactions with arm-
placed devices using EMG. In Proceedings of the 33rd Annual ACM Conference
Extended Abstracts on Human Factors in Computing Systems, pages 1367–1372.
2015.

[96] M. Sathiyanarayanan and T. Mulling. Map Navigation Using Hand Gesture
Recognition: A Case Study Using MYO Connector on Apple Maps. Procedia
Computer Science, 58:50–57, 2015.

[97] K. Nymoen, M.R. Haugen, and A.R. Jensenius. Mumyo–Evaluating and
Exploring the MYO Armband for Musical Interaction. In Proceedings of the
International Conference on New Interfaces For Musical Expression. 2015.

[98] K.S. Krishnan, A. Saha, S. Ramachandran, and S. Kumar. Recognition of
human arm gestures using Myo armband for the game of hand cricket. In
Proceedings of the IEEE International Symposium on Robotics and Intelligent Sen-
sors, pages 389–394. 2017.

[99] A. Phinyomark, C. Limsakul, and P. Phukpattaranont. A Novel Feature
Extraction for Robust EMG Pattern Recognition. Journal of Computing, 1(1):
71–80, 2009.

[100] A. Phinyomark, F. Quaine, S. Charbonnier, C. Serviere, F. Tarpin-Bernard,
and Y. Laurillau. EMG feature evaluation for improving myoelectric pattern
recognition robustness. Expert Systems with Applications, 40(12):4832–4840,
2013.

[101] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, and M. Bernstein. Imagenet large scale visual
recognition challenge. International Journal of Computer Vision, 115(3):211–
252, 2015.

[102] Y. LeCun, Y. Bengio, G. Hinton, L. Y., B. Y., and H. G. Deep learning. Nature,
521(7553):436–444, 2015.

[103] NVIDIA. Jetson TX2 Module [Embedded Device], 2018. URL https://

developer.nvidia.com/embedded/buy/jetson-tx2.

[104] A. Krizhevsky, I. Sutskever, and G.E. Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in Neural Information Pro-
cessing Systems, pages 1097–1105, 2012.

[105] D. Whitley and J.P. Watson. Complexity theory and the no free lunch theo-
rem. In Search Methodologies, pages 317–339. Springer, 2005.

https://developer.nvidia.com/embedded/buy/jetson-tx2
https://developer.nvidia.com/embedded/buy/jetson-tx2

Bibliography 177

[106] C. Giraud-Carrier and F. Provost. Toward a justification of meta-learning: Is
the no free lunch theorem a show-stopper. In Proceedings of the ICML-2005
Workshop on Meta-learning, pages 12–19, 2005.

[107] T. Lattimore and M. Hutter. No free lunch versus Occam’s razor in super-
vised learning. In Algorithmic Probability and Friends. Bayesian Prediction and
Artificial Intelligence, pages 223–235. Springer, 2013.

[108] A. Karpathy, F.F. Li, and J. Johnson. CS231n: Convolutional neural networks
for visual recognition, 2016, 2017. URL http://cs231n.github.io.

[109] D.P. Bertsekas, D.P. Bertsekas, D.P. Bertsekas, and D.P. Bertsekas. Dynamic
Programming and Optimal Control. Athena scientific Belmont, MA, 2005.

[110] N.M. Nasrabadi. Pattern recognition and machine learning. Journal of Elec-
tronic Imaging, 16(4):49901, 2007.

[111] M.A. Nielsen. Neural networks and deep learning. Determination Press, 2015.

[112] Y.E. Nesterov. A method for solving the convex programming problem with
convergence rate O(1/kˆ2). In Dokl. Akad. Nauk SSSR, volume 269, pages
543–547, 1983.

[113] D.P. Kingma and J.L. Ba. Adam: a Method for Stochastic Optimization.
International Conference on Learning Representations, pages 1–15, 2015.

[114] D.P. Bertsekas. Nonlinear Programming. Athena scientific Belmont, 1999.

[115] D.C. Liu and J. Nocedal. On the limited memory BFGS method for large
scale optimization. Mathematical Programming, 45(1-3):503–528, 1989.

[116] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv:1502.03167, 2015.

[117] N. Srivastava, G.E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov. Dropout: a simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[118] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feed-
forward neural networks. Proceedings of the 13th International Conference on
Artificial Intelligence and Statistics, 9:249–256, 2010.

[119] V. Nair and G.E. Hinton. Rectified linear units improve restricted boltz-
mann machines. In Proceedings of the 27th International Conference on Machine
Learning, pages 807–814, 2010.

http://cs231n.github.io

178 Bibliography

[120] G.E. Dahl, T.N. Sainath, and G.E. Hinton. Improving deep neural networks
for LVCSR using rectified linear units and dropout. ICASSP, IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing - Proceedings, (2010):
8609–8613, 2013.

[121] J. Kim, J.K. Lee, and K.M. Lee. Deeply-Recursive Convolutional Network
for Image Super-Resolution. arXiv:1511.04491, 2015.

[122] P. Rajpurkar, C. Bourn, A.Y. Ng, P. Cs, S. Edu, A.N.G. Cs, and S. Edu.
Cardiologist-Level Arrhythmia Detection with Convolutional Neural Net-
works. arXiv:1707.01836v1, 2017.

[123] C. Doersch. Tutorial on Variational Autoencoders. arXiv:1606.05908, pages
1–23, 2016.

[124] P. Isola, J.Y. Zhu, T. Zhou, and A.A. Efros. Image-to-Image Translation with
Conditional Adversarial Networks. arXiv:1611.07004, 2016.

[125] K. He and J. Sun. Convolutional neural networks at constrained time cost.
Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 07-12-June:5353–5360, 2015.

[126] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. WaveNet: A Generative
Model for Raw Audio. arXiv:1609.03499, pages 1–15, 2016.

[127] A.S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. CNN features off-
the-shelf: An astounding baseline for recognition. IEEE Computer Society
Conference on Computer Vision and Pattern Recognition Workshops, pages 512–
519, 2014.

[128] G. Huang, Z. Liu, K.Q. Weinberger, and L. van der Maaten. Densely Con-
nected Convolutional Networks. arXiv:1608.06993, 2016.

[129] K. He, X. Zhang, S. Ren, and J. Sun. Identity Mappings in Deep Resid-
ual Networks Importance of Identity Skip Connections Usage of Activation
Function Analysis of Pre-activation Structure. arXiv:1603.05027, (1):1–15,
2016.

[130] A.L. Maas, A.Y. Hannun, and A.Y. Ng. Rectifier nonlinearities improve neu-
ral network acoustic models. In Proc. ICML, volume 30, 2013.

[131] D.A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep net-
work learning by exponential linear units (ELUs). arXiv:1511.07289, 2015.

Bibliography 179

[132] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the
IEEE International Conference on Computer Vision, pages 1026–1034, 2015.

[133] I.J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio.
Maxout networks. arXiv:1302.4389, 2013.

[134] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and
R. Fergus. Intriguing properties of neural networks. arXiv:1312.6199, 2013.

[135] Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard,
and L.D. Jackel. Backpropagation applied to handwritten zip code recogni-
tion. Neural Computation, 1(4):541–551, 1989.

[136] A. Graves, A.R. Mohamed, and G. Hinton. Speech recognition with deep
recurrent neural networks. In Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing, pages 6645–6649. 2013.

[137] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Compu-
tation, 9(8):1735–1780, 1997.

[138] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio. On the
properties of neural machine translation: Encoder-decoder approaches.
arXiv:1409.1259, 2014.

[139] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv:1412.3555, 2014.

[140] C. Castellini, E. Gruppioni, A. Davalli, and G. Sandini. Fine detection of
grasp force and posture by amputees via surface electromyography. Journal
of Physiology-Paris, 103(3):255–262, 2009.

[141] T.R. Farrell. A comparison of the effects of electrode implantation and tar-
geting on pattern classification accuracy for prosthesis control. IEEE Trans-
actions on Biomedical Engineering, 55(9):2198–2211, 2008.

[142] B. Crawford, K. Miller, P. Shenoy, and R. Rao. Real-time classification of
electromyographic signals for robotic control. In AAAI, volume 5, pages
523–528, 2005.

[143] E.D. Engeberg and S. Meek. Improved grasp force sensitivity for prosthetic
hands through force-derivative feedback. IEEE Transactions on Biomedical
Engineering, 55(2):817–821, 2008.

180 Bibliography

[144] E.D. Engeberg, S.G. Meek, and M.A. Minor. Hybrid force-velocity sliding
mode control of a prosthetic hand. IEEE Transactions on Biomedical Engineer-
ing, 55(5):1572–1581, 2008.

[145] H. Müller, J. Kalpathy-Cramer, I. Eggel, S. Bedrick, S. Radhouani, B. Bakke,
C.E. Kahn, and W. Hersh. Overview of the CLEF 2009 medical image re-
trieval track. In Workshop of the Cross-Language Evaluation Forum for European
Languages, pages 72–84. 2009.

[146] M. Atzori, A. Gijsberts, S. Heynen, A.g.M. Hager, O. Deriaz, P. Van Der
Smagt, C. Castellini, B. Caputo, and M. Henning. Building the NINAPRO
Database : A Resource for the Biorobotics Community. Biomedical Robotics
and Biomechatronics, pages 1258 – 1265, 2012.

[147] F. Giordaniello, M. Cognolato, M. Graziani, A. Gijsberts, V. Gregori,
G. Saetta, A.G.M. Hager, C. Tiengo, F. Bassetto, and P. Brugger. Megane
Pro: myo-electricity, visual and gaze tracking data acquisitions to improve
hand prosthetics. In Proceedings of the International Conference on Rehabilitation
Robotics, pages 1148–1153. 2017.

[148] I. Kuzborskij, A. Gijsberts, and B. Caputo. On the Challenge of Classifying 52
Hand Movements from Surface Electromyography. Proceedings of the Annual
International Conference of the IEEE Engineering in Medicine and Biology Society,
pages 4931–4937, 2012.

[149] J. McIntosh, C. McNeill, M. Fraser, F. Kerber, M. Löchtefeld, and A. Krüger.
EMPress: Practical hand gesture classification with wrist-mounted EMG and
pressure sensing. In Proceedings of the 2016 Conference on Human Factors in
Computing Systems, pages 2332–2342. 2016.

[150] Y. Hu, Y. Wong, W. Wei, Y. Du, M. Kankanhalli, and W. Geng. A novel
attention-based hybrid CNN-RNN architecture for sEMG-based gesture
recognition. PLOS ONE, 13(10):e0206049, 2018.

[151] Y. Xu, C. Yang, P. Liang, L. Zhao, and Z. Li. Development of a hybrid motion
capture method using MYO armband with application to teleoperation. In
Proceedings of the IEEE International Conference on Mechatronics and Automa-
tion, pages 1179–1184. 2016.

[152] C. Xiang, Z. Xu, C. Xiang, and W. Kong-qiao. Hand gesture recognition and
virtual game control based on 3D accelerometer and EMG sensors Hand
Gesture Recognition and Virtual Game Control Based on 3D Accelerometer

Bibliography 181

and EMG Sensors. Proceedings of the 14th International Conference on Intelligent
User Interfaces, (Feb), 2014.

[153] Y. Fang, N. Hettiarachchi, D. Zhou, and H. Liu. Multi-modal Sensing Tech-
niques for Interfacing Hand Prostheses : a Review. IEEE Sensors Journal, 15
(11):6065–6076, 2015.

[154] M.F. Lucas, A. Gaufriau, S. Pascual, C. Doncarli, and D. Farina. Multi-
channel surface EMG classification using support vector machines and
signal-based wavelet optimization. Biomedical Signal Processing and Control, 3
(2):169–174, 2008.

[155] L.R. Quitadamo, F. Cavrini, L. Sbernini, F. Riillo, L. Bianchi, S. Seri, and
G. Saggio. Support vector machines to detect physiological patterns for EEG
and EMG-based human-computer interaction: a review. Journal of Neural
Engineering, 14(1):11001, 2017.

[156] F. Duan, L. Dai, W. Chang, Z. Chen, C. Zhu, and W. Li. sEMG-based identi-
fication of hand motion commands using wavelet neural network combined
with discrete wavelet transform. IEEE Transactions on Industrial Electronics,
63(3):1923–1934, 2016.

[157] T. Baldacchino, W.R. Jacobs, S.R. Anderson, K. Worden, and J. Rowson. Si-
multaneous Force Regression and Movement Classification of Fingers via
Surface EMG within a Unified Bayesian Framework. Frontiers in Bioengineer-
ing and Biotechnology, 6:13, 2018.

[158] A. Phinyomark, P. Phukpattaranont, and C. Limsakul. Feature reduction
and selection for EMG signal classification. Expert Systems with Applications,
39(8):7420–7431, 2012.

[159] X. Zhai, B. Jelfs, R.H.M. Chan, and C. Tin. Self-recalibrating surface EMG
pattern recognition for neuroprosthesis control based on convolutional neu-
ral network. Frontiers in Neuroscience, 11:379, 2017.

[160] M. Zia-ur Rehman, S.O. Gilani, A. Waris, I.K. Niazi, and E.N. Kamavuako.
A novel approach for classification of hand movements using surface EMG
signals. In Proceedings of the IEEE International Symposium on Signal Processing
and Information Technology, pages 265–269. 2017.

[161] C. Olah and S. Carter. Attention and augmented recurrent neural networks.
Distill, 1(9):e1, 2016.

182 Bibliography

[162] J. Demšar. Statistical Comparisons of Classifiers over Multiple Data Sets.
Journal of Machine Learning Research, 7:1–30, 2006.

[163] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics, 1(6):
80–83, 1945.

[164] F. Wilcoxon, S.K. Katti, and R.A. Wilcox. Critical values and probability
levels for the Wilcoxon rank sum test and the Wilcoxon signed rank test.
Selected Tables in Mathematical Statistics, 1:171–259, 1970.

[165] R.A. Fisher. Statistical methods and scientific inference. Hafner Publishing Co.,
New York, 1956.

[166] M. Friedman. The use of ranks to avoid the assumption of normality implicit
in the analysis of variance. Journal of the American Statistical Association, 32
(200):675–701, 1937.

[167] R.L. Iman and J.M. Davenport. Approximations of the critical region of the
fbietkan statistic. Communications in Statistics-Theory and Methods, 9(6):571–
595, 1980.

[168] S. Holm. A simple sequentially rejective multiple test procedure. Scandina-
vian Journal of Statistics, pages 65–70, 1979.

[169] M.A. Hearst, S.T. Dumais, E. Osuna, J. Platt, and B. Scholkopf. Support
vector machines. IEEE Intelligent Systems and their Applications, 13(4):18–28,
1998.

[170] C.J.C. Burges. A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery, 2(2):121–167, 1998.

[171] Wikipedia. Kernel Mapping Visualisation, 2018. URL https://en.

wikipedia.org/wiki/Support{_}vector{_}machine{%}5C{#}/media/File:

Kernel{_}Machine.svg.

[172] L.R. Rabiner. A tutorial on hidden Markov models and selected applications
in speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[173] W.R. Gilks, S. Richardson, and D. Spiegelhalter. Markov Chain Monte Carlo in
Practice. CRC press, 1995.

[174] Wikipedia. Hidden Markov Model Graph Example, 2009. URL https://

commons.wikimedia.org/wiki/File:HMMGraph.svg.

https://en.wikipedia.org/wiki/Support{_}vector{_}machine{%}5C{#}/media/File:Kernel{_}Machine.svg
https://en.wikipedia.org/wiki/Support{_}vector{_}machine{%}5C{#}/media/File:Kernel{_}Machine.svg
https://en.wikipedia.org/wiki/Support{_}vector{_}machine{%}5C{#}/media/File:Kernel{_}Machine.svg
https://commons.wikimedia.org/wiki/File:HMMGraph.svg
https://commons.wikimedia.org/wiki/File:HMMGraph.svg

Bibliography 183

[175] M. Sokolova and G. Lapalme. A systematic analysis of performance mea-
sures for classification tasks. Information Processing and Management, 45(4):
427–437, 2009.

[176] C.E. Metz. Basic principles of ROC analysis. In Seminars in Nuclear Medicine,
volume 8, pages 283–298. 1978.

[177] H.B. Mann and D.R. Whitney. On a test of whether one of two random
variables is stochastically larger than the other. The Annals of Mathematical
Statistics, pages 50–60, 1947.

[178] N. Lachiche and P.A. Flach. Improving accuracy and cost of two-class and
multi-class probabilistic classifiers using ROC curves. In Proceedings of the
20th International Conference on Machine Learning, pages 416–423, 2003.

[179] S. Micera, A.M. Sabatini, and P. Dario. An algorithm for detecting the onset
of muscle contraction by EMG signal processing. Medical Engineering and
Physics, 20(3):211–215, 1998.

[180] A. Hyvärinen, J. Hurri, and P.O. Hoyer. Principal components and whiten-
ing. In Natural Image Statistics, pages 93–130. Springer, 2009.

[181] O. Faust, Y. Hagiwara, T.J. Hong, O.S. Lih, and U.R. Acharya. Deep learning
for healthcare applications based on physiological signals: a review. Com-
puter Methods and Programs in Biomedicine, 2018.

[182] NinaPro Project. Ninapro Database Website, 2015. URL http://ninapro.

hevs.ch/.

[183] R. Kohavi. A Study of Cross-Validation and Bootstrap for Accuracy Estima-
tion and Model Selection. Proceedings of the International Joint Conference on
Artificial Intelligence, 14(12):1137–1143, 1995.

[184] G. Forman and M. Scholz. Apples-to-apples in cross-validation studies.
ACM SIGKDD Explorations Newsletter, 12(1):49, 2010.

[185] L.J.P. Van Der Maaten and G.E. Hinton. Visualizing high-dimensional data
using t-sne. Journal of Machine Learning Research, 9:2579–2605, 2008.

[186] M. Wattenberg, F. Viégas, and I. Johnson. How to use t-sne effectively. Distill,
1(10):e2, 2016.

[187] M. Ortiz-Catalan, F. Rouhani, R. Brånemark, and B. Håkansson. Offline
accuracy: a potentially misleading metric in myoelectric pattern recognition

http://ninapro.hevs.ch/
http://ninapro.hevs.ch/

184 Bibliography

for prosthetic control. In Proceedings of the 37th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society, pages 1140–1143. 2015.

[188] D.M.W. Powers. Evaluation: from precision, recall and F-measure to ROC,
informedness, markedness and correlation. Journal of Machine Learning Tech-
nologies, 2(1):37–63, 2011.

[189] M. Mode, E. Journal, and O.F. Scientific. EMG Signal Classification for Hu-
man Computer Interaction : A Review. European Journal of Scientific Research,
33(3):480–501, 2009.

[190] M.R. Canal. Comparison of wavelet and short time Fourier transform meth-
ods in the analysis of EMG signals. Journal of Medical Systems, 34(1):91–94,
2010.

[191] T. Joachims. Text categorization with support vector machines: Learning
with many relevant features. In Proceedings of the European Conference on
Machine Learning, pages 137–142. 1998.

[192] N. Japkowicz and S. Stephen. The class imbalance problem: A systematic
study. Intelligent Data Analysis, 6(5):429–449, 2002.

[193] H. He and E.a. Garcia. Learning from imbalanced data. IEEE Transactions on
Knowledge and Data Engineering, 21(9):1263–1284, 2009.

[194] V. Ganganwar. An overview of classification algorithms for imbalanced
datasets. International Journal of Emerging Technology and Advanced Engineer-
ing, 2(4):42–47, 2012.

[195] R. Blagus and L. Lusa. SMOTE for high-dimensional class-imbalanced data.
BMC Bioinformatics, 14(1):106, 2013.

[196] F. Provost. Machine learning from imbalanced data sets 101. In Proceedings
of the AAAI’2000 Workshop on Imbalanced Data Sets, 2000.

[197] N.V. Chawla, K.W. Bowyer, L.O. Hall, and W.P. Kegelmeyer. SMOTE: Syn-
thetic Minority Over-sampling Technique. Journal of Artificial Intelligence Re-
search, 16:321–357, 2002.

[198] S. Kullback and R.A. Leibler. On information and sufficiency. The Annals of
Mathematical Statistics, 22(1):79–86, 1951.

[199] IEEE Computer Society. Standards Committee and American National Stan-
dards Institute. IEEE standard for binary floating-point arithmetic (IEEE
754), 1985.

Bibliography 185

[200] Z. Arief, I.A. Sulistijono, and R.A. Ardiansyah. Comparison of five time
series EMG features extractions using Myo Armband. In Proceedings of the
International Electronics Symposium, pages 11–14. 2015.

[201] Y. Du, W. Jin, W. Wei, Y. Hu, and W. Geng. Surface EMG-based inter-session
gesture recognition enhanced by deep domain adaptation. Sensors, 17(3):
458, 2017.

[202] M. Atzori, A. Gijsberts, C. Castellini, B. Caputo, A.G.M. Hager, S. Elsig,
G. Giatsidis, F. Bassetto, and H. Müller. Electromyography data for non-
invasive naturally-controlled robotic hand prostheses. Scientific Data, 2014.

[203] T.R. Farrell and R.F. Weir. The optimal controller delay for myoelectric pros-
theses. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15
(1):111–118, 2007.

[204] E. Scheme and K. Englehart. On the robustness of EMG features for pattern
recognition based myoelectric control; a multi-dataset comparison. In Pro-
ceedings of the 36th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, pages 650–653. 2014.

[205] F.N. Iandola, M.W. Moskewicz, K. Ashraf, S. Han, W.J. Dally, and K. Keutzer.
SqueezeNet: AlexNet-Level Accuracy with 50x Fewer Parameters and <1MB
Model Size. arXiv:1602.07360, 2016.

[206] R.T. Schirrmeister, J.T. Springenberg, L.D.J. Fiederer, M. Glasstetter,
K. Eggensperger, M. Tangermann, F. Hutter, W. Burgard, and T. Ball.
Deep learning with convolutional neural networks for brain mapping
and decoding of movement-related information from the human EEG.
arXiv:1703.05051, 2017.

[207] H. Sak, A. Senior, and F. Beaufays. Long short-term memory recurrent neu-
ral network architectures for large scale acoustic modeling. In Proceedings of
the 15th Annual Conference of the International Speech Communication Associa-
tion, 2014.

[208] J.T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving for
simplicity: The all convolutional net. arXiv:1412.6806, 2014.

[209] F. Chollet and others. Keras, 2015. URL https://github.com/fchollet/

keras.

https://github.com/fchollet/keras
https://github.com/fchollet/keras

186 Bibliography

[210] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catan-
zaro, and E. Shelhamer. cuDNN: Efficient primitives for deep learning.
arXiv:1410.0759, 2014.

[211] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial examples in the phys-
ical world. arXiv: 1607.02533, 2016.

[212] NVIDIA. Jetson TX2 [Image], 2018. URL https://www.nvidia.com/en-gb/

autonomous-machines/embedded-systems-dev-kits-modules/.

[213] E. Decleir. Using Myo during surgery with ADORA Assistant, 2016. URL
https://tinyurl.com/y48h6nzt.

[214] M. Sathiyanarayanan and S. Rajan. MYO Armband for physiotherapy
healthcare : A case study using gesture recognition application. In Proceed-
ings of the 8th International Conference on Communication Systems and Networks,
pages 1–6, 2016.

[215] J.G. Abreu, J.M. Teixeira, L.S. Figueiredo, and V. Teichrieb. Evaluating Sign
Language Recognition Using the Myo Armband. In Proceedings of the 18th
Symposium on Virtual and Augmented Reality, pages 64–70. 2016.

[216] K. Nymoen, M.R. Haugen, and A.R. Jensenius. Mumyo-evaluating and ex-
ploring the myo armband for musical interaction. In Proceedings of the Inter-
national Conference on New Interfaces For Musical Expression. 2015.

[217] A. Ganiev, H.S. Shin, and K.h. Lee. Study on Virtual Control of a Robotic
Arm via a Myo Armband for the Self- Manipulation of a Hand Amputee.
International Journal of Applied Engineering Research, 11(2):973–4562, 2016.

[218] J. Ding, R.Z. Lin, and Z.Y. Lin. Service robot system with integration of
wearable Myo armband for specialized hand gesture human-computer in-
terfaces for people with disabilities with mobility problems. Computers and
Electrical Engineering, 2018.

[219] F. Gaetani, G.A. Zappatore, P. Visconti, and P. Primiceri. Design of an
Arduino-based platform interfaced by Bluetooth low energy with Myo arm-
band for controlling an under-actuated transradial prosthesis. In Proceedings
of the International Conference on IC Design and Technology, pages 185–188.
2018.

[220] J. Ngeo, T. Tamei, and T. Shibata. Estimation of continuous multi-DOF finger
joint kinematics from surface EMG using a multi-output Gaussian process.

https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems-dev-kits-modules/
https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems-dev-kits-modules/
https://tinyurl.com/y48h6nzt

Bibliography 187

In Proceedings of the 36th Annual International Conference of the IEEE Engineer-
ing in Medicine and Biology Society, pages 3537–3540. 2014.

[221] C. Sapsanis, G. Georgoulas, A. Tzes, and D. Lymberopoulos. Improving
EMG based classification of basic hand movements using EMD. In Pro-
ceedings of the 35th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, pages 5754–5757. 2013.

[222] F.C.P. Sebelius, B.N. Rosen, and G.N. Lundborg. Refined myoelectric control
in below-elbow amputees using artificial neural networks and a data glove.
The Journal of Hand Surgery, 30(4):780–789, 2005.

[223] T. Feix, R. Pawlik, H.B. Schmiedmayer, J. Romero, and D. Kragic. A com-
prehensive grasp taxonomy. In Robotics, Science and Systems: Workshop on
Understanding the Human Hand for Advancing Robotic Manipulation, 2009.

[224] M.R. Cutkosky. On grasp choice, grasp models, and the design of hands
for manufacturing tasks. IEEE Transactions on Robotics and Automation, 5(3):
269–279, 1989.

[225] N. Kamakura, M. Matsuo, H. Ishii, F. Mitsuboshi, and Y. Miura. Patterns of
static prehension in normal hands. American Journal of Occupational Therapy,
34(7):437–445, 1980.

[226] S.J. Edwards, D.J. Buckland, and J.D. McCoy-Powlen. Developmental and
Functional Hand Grasps. Slack, 2002.

[227] L. Bottou. Early Stopping - but when? Neural Networks: Tricks of the Trade,
7700(1):421–436, 2012.

[228] P. Vincent, H. Larochelle, Y. Bengio, and P.A. Manzagol. Extracting and
composing robust features with denoising autoencoders. In Proceedings of
the 25th International Conference on Machine Learning, pages 1096–1103. 2008.

[229] H. Herr. State of the Art Prosthetics, Plenary Talk. In Proceedings of the 7th
IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomecha-
tronics. 2018.

[230] S. Collins. Rapid Prototyping of Prosthetic Devices, Plenary Talk. In Proceed-
ings of the 7th IEEE RAS/EMBS International Conference on Biomedical Robotics
and Biomechatronics. 2018.

[231] M. Cognolato, M. Atzori, D. Faccio, C. Tiengo, F. Bassetto, R. Gassert, and
H. Muller. Hand Gesture Classification in Transradial Amputees Using the

188 Bibliography

Myo Armband Classifier. In Proceedings of the 7th IEEE RAS/EMBS Interna-
tional Conference on Biomedical Robotics and Biomechatronics, 2018.

[232] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-
level image representations using convolutional neural networks. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
1717–1724, 2014.

[233] L.A. Gatys, A.S. Ecker, and M. Bethge. Image style transfer using convo-
lutional neural networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2414–2423, 2016.

[234] M. Long, H. Zhu, J. Wang, and M.I. Jordan. Deep transfer learning with
joint adaptation networks. arXiv:1605.06636, 2016.

[235] Y. Ganin and V. Lempitsky. Unsupervised domain adaptation by backprop-
agation. arXiv:1409.7495, 2014.

[236] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. Adversarial discriminative
domain adaptation. In Computer Vision and Pattern Recognition, volume 1,
2017.

[237] V.P. Draglia, A.G. Tartakovsky, and V.V. Veeravalli. Multihypothesis sequen-
tial probability ratio tests. I. Asymptotic optimality. IEEE Transactions on
Information Theory, 45(7):2448–2461, 1999.

[238] L.F. Nunes and K. Gurney. Multi-alternative decision-making with non-
stationary inputs. Royal Society Open Science, 3(8):160376, 2016.

[239] J.A. Bilmes. A gentle tutorial of the EM algorithm and its application to
parameter estimation for Gaussian mixture and hidden Markov models. In-
ternational Computer Science Institute, 4(510):126, 1998.

[240] G.D. Forney. The Viterbi Algorithm. Proceedings of the IEEE, 61(3):268–278,
1973.

[241] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the
wild. In Proceedings of the IEEE International Conference on Computer Vision,
pages 3730–3738, 2015.

[242] W. Ge and Y. Yu. Borrowing treasures from the wealthy: Deep transfer learn-
ing through selective joint fine-tuning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, volume 6, 2017.

	Abbreviations
	Nomenclature
	Introduction
	Background
	Aims and Objectives
	Thesis Structure
	Associated Publications

	Literature Review
	Electromyography
	Biological Basis
	Characteristics of sEMG
	Signal Processing Issues
	Summarised History of EMG
	Electrode Types
	Skin Preparation and Electrode Placement
	Applications of sEMG
	Myo Armband

	Machine Learning Overview
	Feature Engineering

	Neural Networks and Deep Learning
	No Free Lunch Theorems
	The Neuron Model
	Training and Backpropagation
	Activation Functions
	Network Architectural Choices

	Hand Movement Classification
	Deep Learning Approaches
	Key Issues

	Methods
	Statistics for Comparison of Techniques
	Comparison of Two Techniques
	Comparison of Multiple Techniques

	Machine Learning Algorithms
	Support Vector Machines
	K Nearest Neighbours
	Hidden Markov Models

	Evaluation Metrics
	Binary Case
	Multiclass Case

	Data Labelling

	Robust Feature-Based Classification
	Introduction
	Data Analysis
	Robust Preprocessing and Evaluation
	Windowing
	Metrics
	Validation

	Benchmark Details
	Preprocessing
	Features
	Classifiers
	Validation and Metrics
	Meta-Validation
	Data Resampling and Augmentation Techniques
	Primary Benchmark Variants
	Person-specific Movement Set Selection

	Results and Discussion
	Benchmark Results
	Metric Comparison
	Benchmark Performance Breakdown
	Feature Differences
	Comparison of Window Lengths
	Classifier Trends
	Meta-Validation Results
	Movement Sub-selection Results

	Conclusion

	Deep Neural Networks for Person-Specific Classification
	Introduction
	Methodology
	Baseline SVM-RBF
	Baseline CNN
	Temporal-to-Spatial Network
	Additional Design Choices
	Adam Algorithm
	Comparison to Contemporary Networks
	Filter Visualisation

	Results and Discussion
	Effect of Repetition Number
	Distribution of Classification Performance
	Filter Visualisations

	Conclusion

	Compact Deep Neural Networks with Comparison of Electrodes
	Introduction
	Methods
	Experiment Overview
	Experiment Protocols
	Experiment Software
	Experiment Extensions
	Electrode Comparison
	Data Preprocessing
	Performance Baselines
	Compact Deep Neural Network
	Hardware Performance Comparison

	Results and Discussion
	Key Findings
	Performance on Hardware
	GLR vs Hold vs Expert Labelling

	Conclusion

	Online Classification
	Introduction
	Methods
	Improving Performance with Transfer Learning
	Motivation for Smoothing Predictions
	Latch Algorithm
	Majority Voting Algorithm
	The MSPRT Algorithm
	Smoothing with Hidden Markov Models
	Viterbi Algorithm

	Results and Discussion
	Subject Adaptation
	Prediction Smoothing

	Integration of Techniques
	Conclusion

	Closing Remarks
	Summary and Conclusions
	Future Research Avenues

	Bibliography

