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Summary

This dissertation presents research results regarding mathematical modeling in
the context of the analysis of functional neuroimages. Specifically, the research
focuses on pattern-based analysis methods that recently have become popular
analysis tools within the neuroimaging community. Such methods attempt to
predict or decode experimentally defined cognitive states based on brain scans.
The topics covered in the dissertation are divided into two broad parts:

The first part investigates the relative importance of model selection on the brain
patterns extracted form analysis models. Typical neuroimaging data sets are
characterized by relatively few data observations in a high dimensional space.
The process of building models in such data sets often requires strong regulariza-
tion. Often, the degree of model regularization is chosen in order to maximize
prediction accuracy. We focus on the relative influence of model regulariza-
tion parameter choices on the model generalization, the reliability of the spatial
brain patterns extracted from the analysis model, and the ability of the model
to identify relevant brain networks defining the underlying neural encoding of
the experiment. We show that known parts of brain networks can be overlooked
in pursuing maximization of prediction accuracy. This supports the view that
the quality of spatial patterns extracted from models cannot be assessed purely
by focusing on prediction accuracy. Our results instead suggest that model reg-
ularization parameters must be carefully selected, so that the model and its
visualization enhance our ability to interpret brain function.

The second part concerns interpretation of nonlinear models and procedures for
extraction of ‘brain maps’ from nonlinear kernel models. We assess the perfor-
mance of the sensitivity map as means for extracting a global summary map
from a trained model. Such summary maps provides the investigator with an
overview of brain locations of importance to the model’s predictions. The sensi-
tivity map proves as a versatile technique for model visualization. Furthermore,
we perform a preliminary investigation of the use of pre-image estimation for lo-
calized interpretation of nonlinear models. In the context of image denoising the
pre-image analysis proves to enhance the reliability of brain patterns extracted
from multivariate models of the neuroimaging data.
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Resumé

Denne afhandling præsenterer forskningsresultater omhandlende matematisk
modellering indenfor analyse af funktionelle hjernescanningsbilleder. Speci-
fikt fokuserer afhandlingen p̊a mønster-baserede analysemetoder, som nyligt
er blevet populære indenfor hjerneforskning. Ved hjælp af s̊adanne model-
leringsmetoderne forsøger forskere at prædiktere en eksperimentelt defineret
mental tilstand ud fra hjernescanningsdata. Afhandlingen omhandler emner,
der kan inddeles i to dele.

Første del undersøger hvorledes modelvalg indvirker p̊a hjerneaktiveringsmønstre,
som dannes p̊a baggrund af analysemodeller. Typiske datasæt indenfor hjerne-
scanningsforsøg indeholder relativt f̊a observationer med en høj dimensionalitet.
Modellering af s̊adanne datasæt kræver ofte en kraftig kompleksitetskontrol i
modellerne. Ofte vælges graden af kompleksitetskontrol med henblik p̊a at
maksimere modellernes prædiktive nøjagtighed. Vi fokuserer p̊a hvilken ind-
virkning valg af modelkompleksitet har p̊a i) modellernes evne til at prædiktere
nøjagtigt, ii) p̊alideligheden af hjerneaktiveringsmønstre, som dannes p̊a bag-
grund af modellerne, og iii) modellernes evne til at identificere relevante struk-
turer i aktiveringsmønstre. Vi viser, at dele af velkendte aktiveringsmønstre
kan blive overset, hvis der ensidigt fokuseres p̊a maksimering af den prædiktive
nøjagtighed. Disse observationer underbygger en anskuelse om, at kvaliteten af
hjerneaktiveringsmønstre ikke kan vurderes p̊a baggrund af en ensidig betragt-
ning af den prædiktive nøjagtighed. Vores resultater indikerer, at modellers
kompleksitet skal vælges nøjagtigt, s̊aledes at modellerne og deres visualiseringer
kan bidrage til en øget indsigt i den menneskelige hjernes funktion.

Anden del omhandler tolkningen af ikke-lineære modeller og procedurer til
ekstraktion af hjerneaktiveringsmønstre fra ikke-lineære kernel modeller. Vi
undersøger hvorvidt et sensitivity map er brugbart i forbindelse med global mod-
elvisualisering. Globale visualiseringer danner et billede af hjerneaktiverings-
mønstre og giver forskere mulighed for at f̊a et samlet indblik i hvordan en
prædiktiv model fungerer. Sensitivity mappet viser sig som en alsidig metode til
modelvisualisering. Endvidere foretager vi en indledende undersøgelse af pre-
image analyse som et værktøj til lokaliseret tolkning af ikke-linære modeller. I
forbindelse med støjreduktion i hjernescanningsbilleder viser pre-image analyse
sig som en effektiv metode, som muliggør en p̊alidelig identifikation af hjerne-
aktiveringsmønstre.
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Gillings, N. Baaré W. F. C., Knudsen, G. M., 2012. Obesity is associated
with high serotonin 4 receptor availability in the brain reward circuitry.
NeuroImage 61 (4), 884-888.

[m ] Frøkjær, V. G., Erritzøe, D., Holst, K. K., Jensen, P. S., Rasmussen,
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Chapter 1

Reading guide

The following provides an overview of the content of the dissertation. The
dissertation is based on a series of publications, and the intention of the dis-
sertation is to form a connection between these publications. Furthermore, the
dissertation attempts to discuss the contribution of the Ph.D. project in a wider
neuroimaging context. The dissertation is written to be self containing. Hence,
there is a considerable overlap between results presented in this dissertation and
the work reported as scientific publications during the Ph.D. project.

The dissertation is divided into six chapters. Following this introduction is
Chapter 2 that provides a general motivation for our work. Hereafter, a brief
review of different parts of the neuroimaging pipeline ranging from experimen-
tal design to interpretation of analysis results is provided. Finally, the main
contributions of the Ph.D. project are outlined.
Chapter 3 provides background on mathematical modeling techniques used in
the project.
Chapter 4 introduces the data sets used in the project.
Experimental results are presented in Chapter 5.
Finally, Chapter 6 concludes the dissertation and outlines future research per-
spectives.
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Chapter 2

Dissertation background,
context, and contribution

The central topic covered in this dissertation is pattern-based analysis of neu-
roimaging data. Our interest in research within this particular field is based on
observations provided in the first section of this chapter. The second section
discuss a series of important elements involved in the generation, analysis, and
interpretation of neuroimaging data sets. These elements are discussed in the
context of the dissertation focus. The last section outlines the contribution of
the Ph.D. project.
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8 Dissertation background, context, and contribution

2.1 Neuroimaging background

The neuroscientific research field concerns the study of the nervous system.
Measuring various signals from the nervous system is often referred to as neu-
roimaging. Neuroimaging techniques provide means for mapping human brain
function in time and space. The practical application of functional neuroimag-
ing is broad. Applications range from basic research attempting to understand
the physiology underlying the measured brain signals or to understand infor-
mation processing in the healthy and the diseased brain, over brain-computer
interfaces helping paralyzed people to communicate by measuring brain signals,
to more controversial ‘mind reading’ applications e.g. attempting to use neu-
roimaging techniques as advanced polygraphs. A variety of measurement tech-
niques offer unique opportunities to perform non-invasive measurements on the
human brain. Emission tomography, e.g. photon emission tomography (PET)
and single photon emission tomography (SPECT) allow e.g. receptor systems
to be mapped by administering radionuclides to the human body. Electroen-
cephalography (EEG) and magnetoencephalography (MEG) relies on measure-
ments based on electromagnetic fields generated from ionic current flows caused
by the neuron’s electric behavior. Examples of other measurement techniques
are ultrasound and optical imaging. The work in the present thesis focuses
on measurements acquired with functional magnetic resonance imaging (fMRI).
Each measurement modality has its own characteristics and ability to provide in-
sight into different aspects of a particular brain system under study. Modalities
can often be combined to provide more detailed descriptions. An introduction
to the physics of medical imaging modalities is found in Bushberg et al. (2001).

fMRI is an active research field. A database query1 searching for paper title,
abstract, or keywords containing either functional magnetic resonance imaging
or fMRI resulted in 4,026 publications in the calendar year 2010. Other queries
were performed targeted at specific analysis procedures used in the analysis of
data sets acquired with fMRI. Figure 2.1(A) is based on three early papers of
some of the pioneers involved in the development of data analysis strategies, e.g.
Friston et al. (1994, 1995b); Worsley and Friston (1995). These analysis strate-
gies focus on characterizing regional specific effects of the experimental design
in fMRI data by use of the so called mass-univariate analysis. Note that the
number of citations seems to reach a plateau around the millennium followed by
a slight decrease. This should not be taken as evidence that investigators have
stopped using these analysis strategies. Possible other explanations are: i) these
analysis strategies have been well established and investigators do not find it rel-
evant to cite these methodological papers, ii) investigators now cite more recent
papers. Figure 2.1(B) is based both early and more recent papers exploiting

1SciVerse Scopus citation database (www.scopus.com).
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Figure 2.1: Literature search of the number of citations per year for a series of
articles concerned with the analysis of functional magnetic resonance images.
Statistics were retrieved using the SciVerse Scopus citation database as of late
November 2011. Panel A: Some of the first publications on the mass-univariate
analysis procedure. Panel B: Some early and more recent publications on the
pattern-based analysis procedure.

analysis strategies that focus on the characterization of distributed brain pat-
terns by use of the so called pattern-based analysis procedure. Recent papers
exploiting pattern-based analysis by means of the support vector machines (La-
Conte et al., 2005; Mourão-Miranda et al., 2005) are seemingly becoming more
popular than established pattern-based analysis procedures such as the partial
least squares analysis (McIntosh et al., 1996). Haxby et al. (2001); Kamitani and
Tong (2005); Kriegeskorte et al. (2006) presented evidence that pattern-based
analysis provides insight into aspects of the acquired fMRI data that could not
be detected with existing established and recognized analysis strategies. Haynes
and Rees (2006); Norman et al. (2006); O’Toole et al. (2007) are review papers.
Many papers formulate the pattern-based analysis as a classification problem.
Lautrup et al. (1994); Mørch et al. (1997); Kustra and Strother (2001) are exam-
ples of early papers, explicitly formulating the data analysis as a classification
problem, that are rarely cited.
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acquisition preprocessingpreprocessing

analysisanalysis interpretation

Figure 2.2: The neuroimaging pipeline. The diagram shows different parts of the
neuroimaging pipeline. This dissertation primarily focuses on aspects regarding
the preprocessing, data analysis, and the analysis interpretation.

2.2 The neuroimaging pipeline

The following provides an overview of elements in the neuroimaging pipeline.
‘Pipeline’ here refers to a series of choices and assumptions made by the investi-
gator during a neuroimaging experiment. Figure 2.2 shows one way to organize
the pipeline. The present dissertation focuses, in particular, on aspects regard-
ing preprocessing, data analysis, and the interpretation of the analysis results.
The following section reviews some of the assumptions and choices involved in
each step of the pipeline.

2.2.1 Experimental design

The use of neuroimaging techniques is typically motivated by a desire to identify
how information is processed in the human brain. Examples could be that we
are interested in characterization of brain responses evoked by viewing images of
faces or identification of brain areas that are involved in finger movement. The
simplest type of experimental paradigms are based on the subtraction method
where the basic logic is as follows: i) The participant is engaged in two exper-
imental conditions defined as experimental blocks e.g. a condition of interest
and a control condition. ii) The two conditions are expected to be character-
ized by the same cognitive or sensorimotor processes or signal structures except
the process of interest. iii) Subtracting signals acquired under the two con-
ditions gives a difference that is attributed the cognitive/sensorimotor process
of interest. Typical blocks of stimulation have lengths 5 ∼ 20 seconds (Ban-
dettini et al., 1992). Another experimental design is the event-related design
aiming on detection of responses evoked by single trails, e.g. presentation of
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a single sound (Buckner et al., 1996). Event-related designs allow for stimuli
randomization2 and may also be less affected to adaptation effects than block
designs. A general introduction to experimental design in functional neuroimag-
ing is found in e.g. Faro and Mohamed (2010). Other experiments acquire data
under less controlled experimental settings. Examples are fMRI studies where
participants were subjected to movie watching (Hasson et al., 2004) or story
telling (Wallentin et al., 2011). In the Pittsburgh Brain Activity Interpretation
Competition3 (PBAIC) participants were engaged in navigating in a virtual re-
ality environment. Investigations were provided with brain scans and subjects’
behavioral measurements, and the objective was to build a pattern analysis sys-
tems that reliably could predict behavioral data from scans originating form a
test run. Both block designs and event related designs are used in studies using
pattern-based analysis techniques, e.g. Haxby et al. (2001); Kamitani and Tong
(2005); Kriegeskorte et al. (2006).

2.2.2 Acquisition

The most common measured signal in fMRI is the blood oxygenation level de-
pendent (BOLD) signal (Ogawa et al., 1992). The BOLD signal reflects the
relative presence of oxygenated and deoxygenated hemoglobin. Following neu-
ral activity the local cerebral blood flow (CBF) will increase more than the
increase in the cerebral metabolic rate of oxygen (CMRO2) resulting in a de-
crease in the oxygen extraction fraction (OEF). The decrease in OEF will alter
the relative levels of oxygenated and deoxygenated hemoglobin (dHB). Since
these have different magnetic properties the change in the relative levels is mea-
surable. Hence, a decrease in the content of dHB will lead to a BOLD signal
increase. However, the measured BOLD signal does not measure the underlying
neural activity directly. Instead the BOLD signal has a complex dependence on
changes in CBF, CMRO2, and the cerebral blood volume (CBV). Changes in
CBF, CMRO2, and CBV are also collectively referred to as the hemodynamic
response to activation. A critical issue in interpreting fMRI experiments is an
understanding of the relationship between the underlying neural activity, the
hemodynamic response, and the measured BOLD signal (Buxton et al., 2004).
The physiological relationship between neural activity, the hemodynamic re-
sponse, and the BOLD signal is unclear, and different mathematical models,
that primarily incorporates CBF, CBV, and CMRO2 as dynamical variables,
have been proposed, e.g. Buxton et al. (1998, 2004); Friston et al. (2000). Re-
views on the interpretation of the BOLD signal are found in e.g. Dinesh (2005);
Logothetis (2008).

2Block designs can also be randomized. However, experimentally evoked effects may be
removed by a high-pass filter due to the slow nature of the design.

3http://pbc.lrdc.pitt.edu .
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2.2.3 Organization of the data from an fMRI experiment

Typical neuroimaging data sets are characterized by a series of acquired vari-
ables. One way to organize the variables is to use a partitioning into mesoscopic
variables and macroscopic variables.

Mesoscopic variables are here defined to be the voxels’ time series acquired
during the experiment. A single brain scan volume can be considered as orga-
nized into the tensor M∈ Rd1×d2×d3 , where di are the number of voxels in the
three dimensions. Without loss of generality we can organizeM into the vector
m ∈ RP×1 where P = d1d2d3. If N scans are acquired during the experiment
we can further organize these into the measurement matrix M = [m1, . . . ,mN ],

Macroscopic variables refer to a series of other variables collected before, dur-
ing, or after the scan acquisitions. Examples of such variables are informa-
tion about the experimental paradigm, subject behavior during the experiment,
physiological nuisance variables, and movement parameters estimated as part
of preprocessing of the acquired scans. The macroscopic variables can be col-
lected into the vector g ∈ RR×1, with R being the number of collected vari-
ables. The mesoscopic variables can be further organized into the design matrix
D = [g1, . . . ,gN ] similar to the organization of the measurement matrix M.

2.2.4 Preprocessing

Motion correction

Motion correction refers to the process of aligning individual scan volumes of a
temporal sequence. This registration is important for a number of reasons (Fris-
ton et al., 1996): i) The signal changes, due to the hemodynamic response evoked
by the experimental paradigm, can be small in comparison to signal differences
originating from subject movement. A correlation between subject head mo-
tion and the experimental paradigm will result in spurious results, where signal
changes due to motion are detected as ‘activation’. ii) Movement-related signal
will contribute to error variance of a statistical model. Hence, the test statistics
will be smaller than if the movement related effects were removed. Motion cor-
rection is implemented in terms of a rigid body registration. Such registration
involves a step that estimates transformation parameters, a step that apply the
transformation parameters, and a re-slicing step where the registered image is
written out. The rigid body realignment assumes that the movement of brain
locations can be described by a linear transformation and that any motion hap-
pens between the acquisition of individual scans. While the first assumption
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may be reasonable for most brain locations, the latter is hard to meet, since
the process of scan acquisition is basically continuous over time. Some motion
related artifacts are highly nonlinear (e.g. magnetization contamination as a
result of spin excitation effects) (Friston et al., 1996). Such artifacts are not
directly removed by rigid body realignment. Rigid body realignment is in gen-
eral considered to be a standard preprocessing step. An investigation of the
impact of motion correction on pattern-based analysis models is found in e.g.
Zhang et al. (2009). Analysis results in Chen et al. (2006) provides an example
of apparent task related effects which the authors interpret as originating from
interaction between susceptibility and condition-related movement rather than
‘real activation’. These effects were detected in a data set that was subjected to
motion correction prior to the analysis. Hence, inspection of the brain pattern
underlying a model’s predictions becomes important.

Inter-modality or co-registration refers to the process of aligning scan volumes
acquired with different modalities. Examples are registration of functional scans
to a structural scan in order to localize effects based on anatomical information,
or to perform a registration of functional scans to a standard template where
the registration parameters have been estimated based on a structural scan.
Co-registration is closely related to motion correction and also involves the es-
timation of parameters of a linear transformation model. The scans volumes
subjected to motion correction will in general have a similar voxel intensity dis-
tribution, and a commonly used objective is to minimize the sum of squares
difference between the volumes. Signal intensities may vary considerably across
modalities and it may be advantageous to use other cost functions e.g. mutual
information or normalized mutual information, see e.g. Friston et al. (2007) and
references therein.

Stereotactic registration

Stereotactic registration refers to the process of the registration of scan volumes
to a common template. Such registration enables the investigator to report find-
ings in terms of coordinates defined within a standard coordinate system. Exam-
ples are the templates provided by the Montreal Neurological Institute (MNI).
Stereotactic registration is also a commonly used procedure in multi-subject
analyses in order to facilitate a voxel based analysis across subjects. Typically
the stereotactic registration involves estimation of parameters of models that
allow for non-linear warping. Examples of normalization procedures are ‘low
dimensional’ warping based on a limited number of basis functions e.g. Ash-
burner and Friston (1999, 2005), ‘high dimensional’ warping based on flexible
deformation methods e.g. Ashburner (2007), and surface based registration e.g.
Van Essen (2004).
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An alternative to the use of spatial normalization in multi-subject studies is
parcellation methods. These methods attempt to derive groups of parcels that
are coherent across subjects. Further information on such procedures is found
in e.g. Thirion et al. (2006); Michel et al. (2011b) and references therein.

Spatial filtering

The use of spatial filtering or smoothing can be motivated by the following (Fris-
ton et al., 2007): i) By considering the signal to noise ratio it can be argued
that the spatial filter should match the size of the signal to detect (matched
filter theorem), ii) smoothing will render the error terms in the general linear
model more normal making the statistical inference more valid, iii) smoothing
may lead to better fulfillment of model assumptions when performing statistical
thresholding according the random field theory, iv) smoothing may be neces-
sary when the spatial registration procedure is insufficient to provide a good
alignment of similar (functionally or anatomically) structures across subjects.

The above points i) and iv) are relevant in the context of pattern-based analysis.
The impact of spatial smoothing has systematically been investigated within a
resampling framework in LaConte et al. (2003). These authors demonstrated
that spatial smoothing increased the performance of canonical variates analysis
(CVA) (regularized by truncating a principal component analysis (PCA) basis)
both in terms of prediction accuracy and the reproducibility of brain maps ex-
tracted from the model. The same behavior was found by Strother et al. (2004)
demonstrating a rapid rise in both prediction accuracy and reproducibility for
small amounts of smoothing from 1 to 2 pixel full width half maximum (FWHM)
of a Gaussian in-plane filter. LaConte et al. (2005) provided a comparison of a
CVA (regularized by truncating a PCA basis) and the support vector machine
(SVM) (soft-margin) for different combinations of preprocessing steps, showing
that i) for high levels of temporal filtering mainly the SVM showed decreased
prediction accuracy with decreased level of spatial smoothing, ii) for low levels
of temporal filtering both models, in particular the CVA, showed decreased pre-
diction accuracy with decreased levels of spatial smoothing. Mourão-Miranda
et al. (2005) reported empirical results on the performance of an SVM (hard-
margin version) and linear discriminant analysis (LDA) (without regularization)
concluding that by spatial smoothing i) the prediction accuracy was increased
for both models and most prominently for LDA, ii) the spatial smoothing af-
fected the brain maps obtained from both methods - in particular the map of the
LDA. Recently, Op de Beeck (2010) reported results from grating experiments
and object experiments, where the performance of pattern correlation analy-
sis and SVM predictions were evaluated as a function of spatial smoothing. It
was observed, that increasing the spatial smoothing increased the performance
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of pattern correlation analysis, while the performance of the SVM was not af-
fected by the spatial smoothing. Interestingly, the paper of Op de Beeck (2010)
initiated some debate based on a following hypothesis that was presented in the
paper: ”if multivariate analyses are picking up a small-scale functional organi-
zation, then it can be expected that smoothing will be detrimental to the ability
to decode these fine-scale spatial signals”. In a comment Kamitani and Sawa-
hata (2010) argued that spatial smoothing not necessarily hurt the information
residing in fine-scale patterns by the following argument: Spatial smoothing is
essentially a linear transformation of the data. Hence, one can recover the orig-
inal data from smoothed data by applying the inverse transformation. If some
optimum (linear) discriminant function is constructed on the original data it is
possible to construct a corresponding discriminant function in the smooth data.
Classification according to the two discriminant functions will results in identi-
cal decisions. It is pointed out that whether it is advantageous to use smooth
or unfiltered data depends on the model’s ability to estimate a good decision
function based on the given data. The key point is that absence of decreased
performance when imposing spatial smoothing does not imply that information
is represented only on larger scales. Information is preserved in the filtered
data. Other contributions to the debate are found in Kriegeskorte et al. (2010);
Shmuel et al. (2010). Indeed, the searchlight analysis strategy has be motivated
as an analysis approach that exploits fine-grained spatial signal structures in
data not subjected to spatial smoothing (Kriegeskorte et al., 2006; Raizada and
Kriegeskorte, 2010). An interesting alternative to smoothing with a Gaussian
filter kernel is an analysis procedure based on steerable filters acting as spatial
basis functions (Friman et al., 2003). This analysis adapts filters to regions sur-
rounding a center voxel and the localized analysis is performed throughout the
entire brain (as in searchlight analyses).

Temporal filtering

The fMRI time series are characterized by structured noise that is not related
to the experimental effects of interest. Such structures originates from a series
of nuisance sources e.g. low frequency scanner drift, the cardiovascular system,
and respiration, see e.g. Lund et al. (2006) and references therein. Typically,
such effects are attempted reduced by applying a high-pass filter to the time
series. Such filtering is implemented e.g. in terms of a set of orthogonal basis
functions, defined by a set of discrete cosine basis functions up to a certain
cut-off frequency as in the SPM software package (Friston et al., 1995b) or
Legendre polynomials as in the AFNI software package (Cox, 1996). Another
procedure for identification of basis functions is the retrospective correction
of physiological motion effects in fMRI (RETROICOR) (Glover et al., 2000).
RETROICOR constructs a set of basis functions based on physiological mea-
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surements of cardiac and respiratory signals acquired during scan acquisition.
These basis functions are included in the design matrix. The filtering process
removes the modeled components using a least squares fit. This is equivalent
to orthogonalizing the input time series with respect to the basis time series.
Another important class of filters is decomposition methods, that attempt to
learn the temporal structure of the noise directly from the fMRI time series. Ex-
amples are principal component analysis (PCA) (Bullmore et al., 1996; Hansen
et al., 1999; Thomas et al., 2002) and independent component analysis (ICA)
(McKeown et al., 1998, 2003). Such methods create a new set of variables as
a linear combination of the original time series. The main idea is that some of
the new variables can be regarded as relevant ‘signal’ components, while others
are regarded as ‘noise’ components. Another example is the physiological cor-
rection using canonical autocorrelation analysis (PHYCCA) denoising method
(Churchill et al., 2012b). This method identifies autocorrelated physiological
noise sources with reproducible spatial structure, using canonical correlation
analysis performed in a split-half resampling framework. Filtering by decom-
position methods requires selection of a subset of the components, and it is a
challenge to perform this selection in an unbiased way. For example, various
classification schemes have been proposed in order to automatically identify sig-
nal and noise components (Thomas et al., 2002; De Martino et al., 2007; Tohka
et al., 2008; Churchill et al., 2012b). Filtering by decomposition methods also
amounts to an orthogonalization of the original time series with respect to the
basis time series as identified by the decomposition. Systematic investigations
of the impact of temporal filtering on predictive models are found in e.g. La-
Conte et al. (2003, 2005); Chen et al. (2006). Likewise, temporal filtering has
been demonstrated to improve the performance of kernel regression models (Chu
et al., 2011a). There seems to be converging evidence that temporal filtering
improves model performance both with respect to prediction accuracy and the
reproducibility of brain maps extracted from pattern-based analysis models.

Feature extraction and selection

The above preprocessing steps are quite standard in standard univariate anal-
ysis pipelines. Feature extraction and selection are often used as additional
preprocessing steps when building pattern-based analysis models on neuroimag-
ing data.

Feature extraction here refers to the process of generating a new set of variables
based on the original variables (voxels). Such new variables can be constructed
with decomposition methods, e.g. PCA (Bullmore et al., 1996) and ICA (McK-
eown et al., 1998). These methods construct a new set of variables as linear
combinations of the original variables. An example of nonlinear feature extrac-
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tion is kernel PCA (KPCA). KPCA has been successfully applied as a feature
extraction stage in a computer-aided diagnosis system, that was build to dis-
tinguish Alzheimer’s disease subjects from a control group (López et al., 2009).
These authors used KPCA to extract nonlinear features from SPECT images
and subsequently trained linear and nonlinear classifiers on the KPCA feature
representation. Within analysis of fMRI, Thirion and Faugeras (2003) used
KPCA to perform nonlinear dimensionality reduction prior to modeling, while
Song et al. (2008) used KPCA and pre-image estimation to derive a nonlinear
frequency analysis scheme for noise removal. Guo (2010) used KPCA as an fea-
ture extractor in analysis of fMRI data. A simple feature extraction procedure,
instead of building models on the raw fMRI time series, is to derive features as
temporal averages of scan blocks. Mourão-Miranda et al. (2006) investigated
the impact of temporal averaging blocks on the performance of the SVM (soft-
margin, build with default value of the regularization parameter, C = 1). It was
observed that in comparison to models build on raw data i) temporal averaging
led to an increased prediction accuracy, ii) the brain maps derived from the
models build on temporal averaged data were more similar to maps obtained
with a mass-univariate analysis (as evaluated by visual inspection of thresholded
brain maps). Chen et al. (2006) investigated the impact of temporal averaging
in combination with variation in other elements of the preprocessing pipeline
(e.g. temporal filtering). It was found that the overall prediction accuracy in-
creased with temporal averaging. Another related feature extraction procedure
is to fit a general linear model to each voxel’s time series and define features by
either beta estimates or t-values. Investigations of the impact of such feature
extraction procedures on the predictive performance of a variety of classifiers
are found in Misaki et al. (2010); Mumford et al. (2011).

Feature selection here refers to the process of selecting a subset of the vari-
ables/features for further analysis. A comprehensive introduction of variable
and feature selection is found in Guyon and Elisseeff (2003). De Martino et al.
(2008) discuss and compare different feature selection procedures in the context
of fMRI classification analysis. Perhaps the simplest method for feature selec-
tion is selection of voxels based on a priori defined region of interest (ROI). ROIs
can be identified e.g. based on knowledge from prior studies in literature or on
functional localizer scans. Another simple approach is to use some univariate
selection criterion e.g. analysis of variance (ANOVA) based feature selection.
Cox and Savoy (2003) used both ROI selection and ANOVA selection in clas-
sification analysis of patterns of fMRI activation evoked by various categories
of objects presented as visual stimulation. They reported increased prediction
accuracy with an increased number of voxels included reaching an asymptote
in accuracy with ∼ 100 voxels included in the models. ROI and ANOVA selec-
tion are examples of filter methods that select features as a preprocessing step.
Wrappers are methods where feature selection is more integrated into the mod-
eling process. Such methods use a predictive model to rank variables according
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to their relative importance to the model. An example is recursive feature elimi-
nation (RFE) that recursively eliminates features according to their importance.
Lautrup et al. (1994) performed RFE in a neural network in classification of PET
scans. RFE has been used together with SVMs for classification of brain scans in
e.g. (De Martino et al., 2008; Hanson and Halchenko, 2008). It was shown that
RFE led to an increase in prediction accuracy when features were recursively
eliminated. Finally, the process of feature selection is an integrated part of the
model training procedure in embedded methods. A comprehensive discussion of
these methods is found in Lal et al. (2006). Embedded methods perform feature
selection by incorporating e.g. a sparsity enforcing term into the cost function
that is subject to optimization during the training phase. An example within
the Bayesian learning framework is automatic relevance determination (ARD)
where feature selection is achieved by introducing a sparsity enforcing prior over
the model’s weights (MacKay, 1992, 1994). Yamashita et al. (2008) proposed a
sparse logistic regression model using ARD as a model that automatically selects
voxels relevant for classification of fMRI patterns. In data from a simple four
quadrant visual paradigm they demonstrated, that the proposed model was able
to either maintain or to increase prediction accuracy compared to a conventional
logistic regression model (without feature selection). Additionally, the sparse
model selected ∼ 10 voxels out of approximately 6000 voxels. A variability in
the selected variables across different splits of the data was reported. Further-
more, a procedure for stable feature selection was proposed. This procedure
selects stable features according to the frequency at which individual features
are included in the sparse model across different splits of the data. Examples
of studies proposing models with the elastic net penalty for embedded feature
selection are Grosenick et al. (2008); Carroll et al. (2009); Ryali et al. (2010),
demonstrating capability of the models in maintaining or increasing prediction
accuracy and to identify a subset of voxels, forming a distributed pattern, as
being important to the predictive model. Recently Michel et al. (2011c) pro-
posed total variation (TV) regularization for fMRI pattern classification. TV
regularization performs feature selection (and fit the models weights) in such a
way that voxels that are close in space will have similar weights in the predictive
model.

2.2.5 Supervised analysis I - Classical statistical modeling

Rationale behind mass-univariate analysis

Mass-univariate analysis approaches allow for classical inferences about region-
ally specific effects of the experimental design on the measured brain signals,
e.g. (Friston et al., 1994). The assumed underlying model of brain function
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Figure 2.3: Supervised analysis. Conceptual difference between the ‘conven-
tional’ mass-univariate analysis shown in (A) and the more ‘recent’ pattern-
based analysis procedure shown in (B). The planes illustrate scan slices each
composed of a number of voxels. In both procedures we are interested in the
statistical relationship between the macroscopic variables in g and the meso-
scopic variables in M. The overall relationship can be modeled by the joint
density p (g,M). Models in (A) attempts to explain the observed brain signals
in terms of knowledge on the experimental paradigm. Hence, we are inter-
ested in modeling p (M|g). Models in (B) attempts to explain the experimental
paradigm in terms of the measured brain ‘responses’ to stimulation. Hence, we
are here interested in modeling p (g|M).

is functional specialization. For example, in block design experiments one may
consider an activation study (two conditions - ‘baseline’ and ‘active’), and the
mass-univarite analysis approach focuses on identifying localized brain areas
that are ‘activated’ according to the experimental design.

Mass-univariate analysis approach

The mass-univariate analysis procedure is the most prevalent analysis strategy
within the neuroimaging community. Consider a data set from a neuroimaging
experiment {(gn,Mn)}Nn=1, with N being the number of scans. The goal is to
learn a so-called encoding model f : g→M, that explains how information on
the paradigm is encoded in the brain. Figure 2.3(A) provides an illustration of
the direction of ‘information flow’ in univariate analyses. Within a probabilistic
framework we are interested in modeling p (m|g), where m is the vectorized
scan volume M. The mass-univariate analysis assumes that the distribution
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over the voxels factorizes such that

p (m|g) =

P∏

i=1

p (mi|g) . (2.1)

Hence, it is assumed that the voxels m are conditionally independent given g.
Specifically, the model in eq. (2.1) is implemented in terms of the general linear
model (GLM), and parameters of the GLM, θi, are estimated in each and every
voxel separately. Constructing test statistics, based on model parameters, allows
for regionally specific hypotheses to be tested. While modeling of the brain
signals takes place at the level of individual voxels, the multivariate nature of the
signals is taken into account during a subsequent thresholding of statistical brain
maps, e.g. by means of the random field theory. The mass-univariate analysis
procedure is well implemented in a series of widely used software packages, e.g.
in AFNI (Cox, 1996), FSL (Smith et al., 2004), and SPM (Friston et al., 2007).

2.2.6 Supervised analysis II - Machine learning in neu-
roimaging

Rationale behind pattern-based analysis

Recently, pattern-based analysis methods have gained much attention within
the neuroimaging community. The ultimate goal of pattern-based analysis is to
link patterns of brain ‘activation’ to some experimental defined cognitive state.
The basic question that such methods often attempt to answer is :”Is it possible,
based on the information in a activation pattern, to predict the cognitive state
that a subject was engaged in during the experiment?”. The idea of genera-
tion of predictions or classifications based on brain scans is not new (O’Toole
et al., 2007). Early work includes classification of PET images. Clark et al.
(1991) used LDA to successfully classify patients with Huntington’s disease vs.
healthy controls. Another example is the sub-profile scaling model that allows
for quantification of disease progression or severity based on brain scans (Moeller
and Strother, 1991). Pattern-based analysis was performed by use of artificial
neural networks in the early 1990s. Lautrup et al. (1994) performed classifi-
cation of whole brain PET scans (141,375 voxels), while Mørch et al. (1997)
classified both fMRI and PET. Pattern-based analysis is also well established
in terms of the partial least squares (PLS) analysis procedure (McIntosh et al.,
1996; McIntosh and Lobaugh, 2004).

Over the past decade pattern-based analysis has been re-introduced within
the neuroimaging community as e.g. brain reading (Cox and Savoy, 2003),
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multi-voxel pattern analysis (MVPA) (Norman et al., 2006), mental state decod-
ing (Haynes and Rees, 2006), and information-based functional brain mapping
(Kriegeskorte et al., 2006) methods. In a study of object category representa-
tion in the ventral temporal (VT) cortex Haxby et al. (2001) investigated how
information about categories of objects (e.g. faces, houses, and chairs) was rep-
resented in the VT cortex. By use of a simple pattern correlation classifier they
were able to successfully predict the object category based on brain patterns
of activation. Additionally, they performed an analysis excluding voxels that
respond maximally to specific categories. Even with such voxels excluded from
the classification analysis they were able to predict category label well above
chance level. By adopting a pattern-based analysis procedure this study sup-
ported a view, that the information on faces and objects in the VT cortex is
distributed and overlapping. Another study motivating the use of pattern-based
analysis was reported by Kamitani and Tong (2005). They trained a classifier to
predict stimulus orientation based on brain activation in the early visual cortex.
Individual voxels were shown to provide poor response selectivity for different
stimulus orientation. However, by integrating information across space, by use
of pattern-based analysis, it was possible to correctly predict stimulus orienta-
tion by use of a linear classifier.

Figure 2.4 illustrates two scenarios, where a pattern-based analysis procedure
could extract more information from a data set than could be done in a conven-
tional mass-univariate analysis. In Figure 2.4(A) only voxel x1 shows stimulus
selectivity in terms of change in mean activation strength. Hence, it would be
possible to detect the signal in x1 using a mass-univariate analysis procedure.
However, voxel x1 and x2 are correlated. By considering both voxels (i.e. multi-
voxels analysis) it is fairly straightforward to infer which of the two experimental
conditions a particular example belongs to. Hence, it could be concluded that
x1 and x2 are informative with respect to the stimulus condition. A linear
classifier will have the form f (x1, x2) = w1x1 + w2x2 + b, (orange examples
assigned label 1, and green examples assigned label -1). Note that w1 will be
negative and w2 will be positive according to the orientation of the weight vec-
tor. Often, linear models are visualized with a ‘brain map’ showing the weights
of the weight vector corresponding to the individual voxels. However it is clear
from Figure 2.4(A) that e.g. a positive value of w2 not implies that voxel x2
respond stronger on average to the orange condition than the green condition.
Hence, claims about mean difference in activation strengths in individual voxels
across conditions cannot be made based on the inspection of the sign of the
model’s weights. The logic from interpreting mass-univariate models in terms
of mean differences does not apply directly to the interpretation of classification
model. The positive value of w2 indicates that increasing the signal in x2 for
a given value in x1 will increase the likelihood of the example being classified
as orange. Figure 2.4(B) shows an example where a mass-univariate analysis
and also a linear pattern-based analysis method will fail to detect any relevant
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Figure 2.4: Illustration of the benefit of pattern-based analysis showing examples
of experiments with two experimentally defined conditions (orange circles and
green crosses) and measured signals in two voxels x1 and x2. Panel A shows an
example where the conditions can be separated with a linear classifier indicated
by the dashed line. The arrow illustrates the direction of the weight vector
w of the linear classifier. An univariate analysis could also detect the signal
in x1 but may require a large number of observations due to the relatively
large variation within conditions in comparison to the mean difference. Panel
B shows an example of a situation where a nonlinear classification model is
required to detect the underlying signal structure. Both univariate analysis and
linear pattern-based analysis methods will fail to detect any relevant structure
in the signals.

signal structure. The voxels show no stimulus selectivity in terms of mean acti-
vation differences. The example illustrates a scenario, where a change in brain
covariance structure is evoked by the experimental paradigm. Signal detection
is possible with a nonlinear method that allows for more complex signal struc-
ture to be modeled. For example, a quadratic discriminant analysis modeling
the classes by distinct covariance matrices will be able to detect the underlying
structure of the signals.

Pattern-based analysis approach

Pattern-based analysis can be formulated in terms of a decoding model f : M→
g. Hence, such a model considers the mesoscopic variables to be the causes and
the macroscopic variables to be the consequences (Friston et al., 2008). This is
in contrast to encoding models, that considers the macroscopic variables to be
the causes and the mesoscopic variables to be the consequences. In decoding
models we are interested in modeling the conditional distribution p (g|m). Note
that within the neuroimaging community the process of learning p (m|g) is
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considered a classical statistical analysis strategy while learning p (g|m) is often
referred to as a machine learning approach to data analysis. Encoding models
and decoding models can be related through Bayes’ rule

p (g|m) =
p (m|g) p (g)

p (m)
, (2.2)

Note that p (m) in general is extremely complex. See Kjems et al. (2002); Friston
et al. (2008) for a further discussion of the relationship between encoding and
decoding models.

Using the factorization in eq. (2.1) we can construct a simple decoding model
by use of Bayes’ rule

p (gk|m) =

∏P
i=1 p (mi|gk) p (gk)

∑K
k′=1

∏P
i=1 p (mi|gk′) p (gk′)

, (2.3)

assuming that the macroscopic variable gk, k ∈ {1, . . . ,K} encodes K discrete
brain states. Further by assuming that the conditional distributions over the
mesoscopic variables are Gaussian we obtain the Gaussian Näıve Bayes (GNB)
classifier (Kjems et al., 2002).

A wide range of model types

Despite its simplicity the GNB model, introduced above, has proven good perfor-
mance on a variety of pattern-based analysis tasks (Kjems et al., 2002; Mitchell
et al., 2004; Chen et al., 2006; Pereira and Botvinick, 2011). Kjems et al. (2002)
implemented a GNB model on top of a subspace identified with canonical vari-
ates analysis (CVA) for multi-class prediction in PET images. Mitchell et al.
(2004) demonstrated that the GNB model was able e.g. to successfully predict
stimulus type (visual / auditory) and in predicting the semantic category of
words. Prediction was performed on both individual subject level and across
multiple subjects. Chen et al. (2006) compared GNB models to the support
vector machine (SVM) and logistic regression (LogReg) for a variety of combi-
nations of data preprocessing choices. The GNB models appeared to be more
sensitive (with respect to prediction accuracy) to the different preprocessing
strategies in comparison to LogReg and SVM. However, the performance of
GNB was at the same level as the LogReg and SVM for the preprocessing strat-
egy that led to the highest prediction accuracies. In a recent study focusing on
decoding the category of visual objects based on an event-related design, the
GNB models were reported to perform significantly worse than e.g. the SVM
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and LDA (Misaki et al., 2010). An important remark is that GNB models allow
for computationally extremely fast analyses (Pereira and Botvinick, 2011). This
issue may be important in the searchlight analysis procedure that builds local
decoding models throughout the entire brain (Kriegeskorte et al., 2006; Pereira
and Botvinick, 2011).

Another commonly used model is Fisher’s discriminant analysis (FDA) (and
the closely related CVA and LDA, see e.g. Izenman (2008)) that also has
proven good classification performance. The use of CVA has been well es-
tablished within the NPAIRS resampling framework for model evaluation, see
e.g. Strother et al. (2002); Kjems et al. (2002); Strother et al. (2010). Carlson
et al. (2003) used LDA in analysis of patterns characterizing categorical repre-
sentation of objects (faces, chairs, houses). CVA was compared to the SVM for
different preprocessing strategies in LaConte et al. (2005), where the predictive
performance of CVA was reported to be more sensitive to specific preprocessing
choices than the SVM. A recent study comparing a wide range range of classi-
fiers reported LDA to provide at least the same classification accuracies as linear
(and nonlinear) SVMs (Misaki et al., 2010).

The SVM is the most frequently adopted method for pattern-based analysis
within the neuroimaging community. Cox and Savoy (2003) used the SVM for
classifying distributed patterns of activation in the visual cortex, and Kamitani
and Tong (2005) used the SVM for classification of oriented pattern based on
signals in the early visual cortex. Frequently cited papers in studies using the
SVM are LaConte et al. (2005) and Mourão-Miranda et al. (2005). LaConte
et al. (2005) investigated the predictive performance of the SVM for ten differ-
ent preprocessing choices in data from 16 subjects and proposed four different
methods for extraction of activation maps from SVMs. Additionally, they re-
ported the number of support vectors retained in the best performing model
ranging from fractions 30− 100%. The study of Mourão-Miranda et al. (2005)
performed multi-subject classification in data from 16 subjects performing a
face matching and a location matching task. In comparison to LDA, the SVM
proved to have better predictive performance and to be less sensitive to whether
spatial smoothing was used in the data preprocessing. It was proposed that the
weight vector of a linear SVM represents a discriminating volume. A compari-
son between the discriminating volume and a statistical parametric image (SPI)
from a conventional GLM analysis was performed. It was demonstrated that
voxels belonging to the most discriminating regions, as identified by the SVM,
tend to be closely related to the most significant voxels in the SPI. This was
in contrast to the brain map derived from the LDA that provided less overlap
with the SPI. The SVM was furthermore proposed as an analysis approach with
clear benefits over e.g. LDA:

The brain state classification from fMRI data volumes corre-
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sponds to the classification of few points (scans) in a high-dimensional
space (dimension = number of voxels). In this situation, there are
many linear classifiers (i.e. hyperplanes) that separate the training
data (Scholkopf and Smola, 2002), which heavily overfit and gener-
alize badly. The SVM algorithm can solve this problem (Boser et
al., 1992). It finds the optimal hyperplane, i.e. the separating hyper-
plane that generalizes better. This property makes the linear SVM an
optimal tool to address the problem of finding a common brain net-
work between subjects and use this information to classify data from
a new subject. For all tests, the training error for the SVM (i.e.
the error rate for classifying the training set) was zero, this means
that the training data were linearly separable and the SVM algorithm
found the optimal separating hyperplane. This reflects the fact that
extensions of the SVM as nonlinear kernels or soft-margin SVM with
slack variables are unnecessary here and would be counterproductive.
Mourão-Miranda et al. (2005).

The SVM has indeed proven good predictive performances in a long series of
studies. Applications include classification of IC-fingerprints in order to auto-
matically select relevant ICA components in fMRI data (De Martino et al., 2007;
Tohka et al., 2008), prediction of speech content and speaker identity based on
the brain activation pattern of a listener (Formisano et al., 2008a), prediction
of object category based on patterns of brain activation evoked by visual stim-
uli (Cox and Savoy, 2003; Hanson and Halchenko, 2008), real-time brain state
classification based on fMRI data LaConte et al. (2007), and classification of
disease patterns based on structural scans (Golland et al., 2001, 2005; Klöppel
et al., 2008; Koutsouleris et al., 2009).

A variety of other classifier types have successfully been applied in the pursue to
extract information from patterns of brain activation, including artificial neu-
ral networks (Lautrup et al., 1994; Mørch et al., 1997; Hanson et al., 2004),
logistic regression models (Chen et al., 2006; Yamashita et al., 2008; Rissman
et al., 2010; Wolbers et al., 2011; Michel et al., 2011c), relevance vector machines
(Lukic et al., 2007; Formisano et al., 2008b; Valente et al., 2011), kernel ridge re-
gression (Chu et al., 2011a), and restricted Boltzmann machines (Schmah et al.,
2008). The interested reader is referred to e.g. the study of Misaki et al. (2010)
that compares six classification models based on an event-related experiment
with visual object stimulation or Schmah et al. (2010) for a comparison of ten
classification model applied to data from a longitudinal fMRI study of stroke
recovery.
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Model regularization

When building pattern-analysis models on neuroimaging data the issue of com-
plexity control becomes important. Neuroimaging data sets are typically char-
acterized by a high number of features/voxels (10K-100K), while a relatively
small number of examples are available (100-1000). Hence, strong regulariza-
tion in the models is often required to avoid over-fitting to the training data.
To control model complexity one possibility is to select a few voxels or ROIs as
input variables to the model as described in Section 2.2.4 on feature selection.
Another approach to regularization is to derive an informative basis set based
on the original features/voxels. A commonly used approach is to perform PCA
and build the predictive model on a subspace defined in terms of a subset of the
principal components (PC)s. The studies Strother et al. (2002); Kjems et al.
(2002); LaConte et al. (2003); Strother et al. (2004) successfully implemented
a CVA model on top of a PCA basis. The model complexity can be controlled
by varying the number of retained PCs. These studies demonstrated a trade-off
between prediction accuracy and model visualization ‘reproducibility’. In gen-
eral how model performance depends on the number of PCs retained seems to
be significantly influenced by the specific preprocessing strategy used. There
was a general tendency that prediction accuracy increased with the number of
PCs retained (hence high model complexity) whereas model visualization repro-
ducibility decreased when the model complexity increased. Carlson et al. (2003)
successfully implemented LDA on top of a PCA basis in order to discriminate
between object categories in fMRI data. Cox and Savoy (2003) compared LDA
without regularization with SVM and reported poor performance of the LDA
when the number of included features increased. The authors noted that this
was not surprising since the estimate of the covariance matrix became increas-
ingly singular as the number of features increased. Likewise, Mourão-Miranda
et al. (2005) compared LDA without regularization to the SVM and concluded
that the SVM provided the best predictive performance and proved best in
identifying the most discriminating regions between brain states.

Another commonly used regularization method is the ridge regularization or `2
regularization. Kustra and Strother (2001) proposed a methodology based on
penalized discriminant analysis (PDA) with a ridge penalty, i.e. regularization
by adding a multiple of a diagonal matrix to the covariance matrix. Further-
more, they imposed spatial smoothness on the model structure by expanding
the brain scans in terms of a tensor product B-spline basis. The model was
successfully applied to a two class and an eight class classification problem in
a multi-subject PET study. Ridge regularization has also been successfully ap-
plied together with logistic regression models e.g. Rissman et al. (2010); Schmah
et al. (2010). A Bayesian version of logistic regression with a ridge penalty has
been successfully applied in analysis of fMRi data in e.g. Yamashita et al.
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(2008). Conventionally, the SVM is motivated as a margin maximizing method.
However, the SVM can also be cast into a regularization framework, e.g. Hastie
et al. (2009). Hence, the complexity control parameter of the SVM becomes
similar to the (inverse) of the regularization parameter controlling the amount
of ridge penalty. In neuroimaging contexts, it has been observed that model per-
formance, as measured by prediction accuracy, is only degraded at low values of
the SVM complexity parameter (LaConte et al., 2005; Marquand et al., 2010).
These observations seem to support the use of the ‘hard-margin’ SVM, a special
instance of the SVM with no regularization parameters that needs to be speci-
fied. The hard-margin SVM has been used in several pattern-based analyses of
fMRI data, e.g. Mourão-Miranda et al. (2005); Wang et al. (2007), a ‘default
value’ of the complexity parameter has been used in e.g. Mourão-Miranda et al.
(2006); Wang (2009); Ecker et al. (2010); Marquand et al. (2010), while other
studies optimize the regularization parameter in order to maximize prediction
accuracy (Grosenick et al., 2008; Schmah et al., 2010; Michel et al., 2011c).
The reason why selection of model regularization parameters is not a major
concern of SVM users in the neuroimaging community may be explained by
the fact that SVMs operated ‘out of the box’ show good generalization perfor-
mance on present neuroimaging data sets. It has been argued by Yunqian Ma
and Cherkassky (2005) that the SVM, in addition to the ridge penalty, also has
an inherent regularization through the hinge loss function (margin regulariza-
tion). This is an important property of the SVM. When other methods fails to
identify an unique/stable solution due to ill-posed nature of the problem (e.g.
inversion of a singular matrix) the SVM will be able to identify an unique solu-
tion through margin maximization - even if no regularization is imposed through
the user controlled ridge penalty.

Ridge regularization provides uniqueness to the model fit and stabilize coeffi-
cient estimates. The solution will be dense, i.e. the model’s coefficients will in
general have values different form zero. Sparsity enforcing regularization e.g.
the least absolute shrinkage and selection operator (LASSO) or the grouped
LASSO methods will set coefficient corresponding to individual features (or
predefined groups) to zero, see e.g. Tibshirani (1996); Meier et al. (2008) and
references therein. Such regularization is also referred to as `1 regularization.
However, the LASSO type regularization may not be appropriate in the anal-
ysis of neuroimaging data, since the procedure tends to select only a single of
multiple correlated variables. Furthermore, LASSO selects at most N features
within the number of features P exceed the number of scans available N . An
attractive alternative is the elastic net (ENET) penalty, that uses a combination
of `1 and `2 (Zou and Hastie, 2005). The ENET regularization was introduced
as a method that does automatic variable selection and also selects groups of
correlated variable to be included in the model. ENET has been successfully
used in pattern-based analysis in a series of neuroimaging studies. Grosenick
et al. (2008) used both the LASSO and ENET regularization with a PDA model.
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They did a comparison of sparse PDA and conventional dense models; LogReg,
LDA, and SVM. In prediction of purchase decisions based on fMRI data they
demonstrated that both the LASSO and the ENET penalty lead to increased
predictive performance. Additionally, it was argued that the sparse methods
automatically selected a relevant set of model coefficients. Carroll et al. (2009)
used ENET regularized regression in predicting a set of ratings based on the
PBAIC fMRI experiment, where subjects were engaged in a virtual reality task.
Model evaluation was performed not only by considering prediction accuracy.
Additionally, the authors introduced procedures for quantifying the model’s
ability to provide ‘interpretable’ brain maps: i) a ‘spatial distribution’ metric
estimating the spread of selected voxels throughout the brain, and ii) a ‘robust-
ness’ metric measuring the overlap between selected voxels identified in models
trained on independent splits of the data set. It was demonstrated that impos-
ing increasing levels of `2 regularization, while fixing the `1 regularization, led to
an increase in robustness without sacrificing prediction accuracy. Additionally,
the spatial distribution metric was decreased with increasing `2 regularization.
The authors suggested that correlated clusters from which variables are included
were spatial proximal. An observation which they argued was consistent with
neuroscientific intuition. Recently, Michel et al. (2011a) proposed an analysis
method called Multiclass Sparse Bayesian Regression. This method performs a
grouping of features (voxels) into several classes. The grouping of features into
classes is controlled by a latent discrete variable, and features belonging to each
class is then regularized differently (in contrast to the ‘global’ regularization in
ridge regression).

A potential limitation of the regularization procedures discussed above is that
they do not directly take into account the expected structure of the model co-
efficients. Examples of such underlying structure are signal structure defined
by spatial distance measures, temporal similarity, prior knowledge on function-
ally or anatomically connectivity, see e.g. Thirion et al. (2006) and references
therein. Friston et al. (2008) proposed to include structure into the regular-
ization procedure by defining a prior over model coefficients within a Bayesian
model comparison framework. It was suggested to impose structure on the co-
efficient covariance matrix. Effectively, this was implemented by defining the
covariance matrix in terms of spatially smooth vectors, singular vectors, sparse
vectors, or support vectors. Models build with different structure imposed could
subsequently be compared within a Bayesian model comparison framework al-
lowing for inference on the underlying signal structure. Cuingnet et al. (2010)
proposed methodology for spatial regularizing the SVM. Specifically, they pro-
posed to use Laplacian regularization in order to obtain more interpretable brain
maps. By considering the notion of proximity between elements of a brain scan
volume, prior knowledge is introduced by considering e.g. spatial proximity
(voxels are close if they are close in space) or anatomical proximity (voxels are
close if they belong to the same brain network as defined e.g. by a brain atlas or
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fiber tracts). This methodology has been successfully applied in pattern-based
analysis of stroke data in detection of difference between subjects with good
and poor outcome based on diffusion-weighted imaging (DWI) data acquired at
the acute stage (Cuingnet et al., 2011). Michel et al. (2011c) recently proposed
a total variational (TV) regularization framework for pattern-based analysis in
fMRI. TV is defined as the `1 norm of the image gradient and preserves edges.
The use of this regularization was motivated by expectation on the underlying
signal structure. Informative voxels, with respect to the macroscopic variable,
were expected to be spatially distributed and that voxels selected by the model
should be grouped into spatially connected clusters. In fMRI data from an
experiment studying object representation the method proved successful in i)
provide prediction accuracies comparable to that obtained with ENET regres-
sion, sparse multinomial logistic regression, and the SVM, ii) providing spatially
coherent regions with similar weights, interpreted to be a simplified and still an
informative set of selected voxels.

Linear and nonlinear models

Figure 2.4 provides examples of signal structures that can be detected by mass-
univariate analysis and by linear and nonlinear pattern-based analysis. Aiming
at improved modeling of effective connectivity, nonlinear modeling has been
introduced within the dynamic causal modeling (DCM) framework (Stephan
et al., 2008). In this context, nonlinear modeling allows for identification of
models in which the connection between two brain regions is modulated by the
activity in a third region. This argument extends to pattern-based analysis
models, that is, nonlinear models allow for signal detection, where changes in
inter-regional interactions are related to the experimental variable. Lautrup
et al. (1994) used flexible artificial neural networks (ANNs) for classification
of PET scans. A comparison of ANNs and linear models (FDA) was reported
in Mørch et al. (1997). They performed pattern-based analysis in both PET
and fMRI data sets, and compared the linear and nonlinear models by evaluat-
ing the prediction accuracy. By monitoring prediction accuracy as a function of
available training examples (scans), they demonstrated crossing learning curves:
Linear models performed best at small sample sizes, while the nonlinear models
showed superior performance at larger sizes of the training set. A re-analysis
of the data from the experiment of Haxby et al. (2001) has been performed
by means of ANN analysis (Hanson et al., 2004). These authors used a noise
perturbation approach to evaluate the contribution of individual voxels to the
overall classification performance. By comparing maps obtained for each specific
object category they reported considerable overlap between ‘important’ voxels
across categories. Based on this finding they argued in favor of a combinatorial
code in the VT lope. Cox and Savoy (2003) compared a linear SVM to a (non-
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linear) polynomial SVM in the analysis of fMRI activations evoked by visual
stimulation. They reported the linear models to be best performing as mea-
sured by prediction accuracy. Similarly, LaConte et al. (2003) compared SVMs
build with linear and polynomial kernels, and reported best performance when
using the linear models. Misaki et al. (2010) compared six different classifier
types trained to predict based on response patterns recorded with fMRI in the
early visual and inferior temporal cortex during an event related experiment.
Overall the linear models were reported to perform the best as measured by
prediction accuracy. In line with the observation by Mørch et al. (1997) the
following explanations were suggested by Misaki et al. (2010): i) the true dis-
tribution’s Bayes-optimal decision boundary were linear, ii) the data available
was insufficient to build reliable nonlinear models, iii) a combination of i) and
ii). In a recent study ten classification methods were compared in a longitudinal
fMRI study of stroke recovery (Schmah et al., 2010). Three different two-class
classification tasks were considered. The classes were heterogeneous in the sense
that each class contained scans from four sub-classes. With respect to classi-
fication accuracy, the relative benefit of nonlinear methods compared to their
linear counterparts varied over classifications tasks. In two classification tasks
the nonlinear methods proved superior performance, while in one task there was
no significant benefit from applying nonlinear methods. Recently, linear SVMs
were compared to nonlinear SVMs based on the radial basis function kernel
(Song et al., 2011). Model comparison was based on a fMRI data set, where the
participants were subjected to visual stimulation by objects belonging to dif-
ferent object categories. The nonlinear models performed the best when build
on relatively low number of voxels, while the linear models performed the best
when a larger number of selected voxels were considered.

The use of nonlinear modeling within the neuroimaging community has been
limited: i) There seems to be a limited benefit in using nonlinear models on
present neuroimaging data sets, and ii) nonlinear models are considerable more
difficult to interpret than basic linear models. Linear models are frequently inter-
preted or visualized by constructing brain maps showing the model’s individual
weights at corresponding brain locations, see e.g. McIntosh et al. (1996); Kjems
et al. (2002); Mourão-Miranda et al. (2005); Hanson and Halchenko (2008).
The sign of individual voxels in such a weight map reflects how a voxel’s signal
value should be changed in order to increase the likelihood of the scan being
assigned to a particular class. Note that even a linear model becomes difficult
to interpret based on the model’s weights in multi-class settings (> 2 cate-
gories)(Kjems et al., 2002; Michel et al., 2011c). Kjems et al. (2002) introduced
the sensitivity analysis as a generic technique for extraction of brain pattern
maps, which can be applied to any model. The methodology builds on early
work by Zurada et al. (1994, 1997). Kjems et al. (2002) extracted sensitivity
maps from a multivariate Gaussian classifier build to discriminate brain states
based on patterns of brain activation measured by PET imaging. Typically, a
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single global summary map is extracted with the sensitivity map visualization
procedure. Hanson et al. (2004) used a noise perturbation method in order to
identify important voxels to a ANNs decisions. Specifically, Gaussian noise was
added to each and every voxel individually, and it was observed whether the
noise perturbation affected the classifier’s decisions. Golland et al. (2005) pro-
posed a localized interpretation approach for the (linear and nonlinear) SVM
in the context of analysis of differences in anatomical shape between popula-
tions. They aimed for a representation of the differences between two classes
captured by the classifier in the neighborhood of data examples. Specifically,
these authors considered the decision function’s sensitivity to changes in the
input along different directions in the feature space. This procedure yields one
visualization/brain image for individual data observation. The authors argued
that generating maps corresponding to support vectors is of particular inter-
est, since they are close to the separating boundary. Recently, Baehrens et al.
(2010) proposed a general methodology for interpretation of trained classifiers
by exploring local explanation vectors that are defined as class probability gra-
dients. This procedure identifies features that are important for prediction at
localized points in the data space. Hence, the methodology provides a means
for explaining a classifier’s individual decisions. LaConte et al. (2005) provides
an insightful and comprehensive discussion of four visualization schemes for the
SVM in the context of fMRI analysis. Specifically, a method termed feature
space weighting (FSW) is proposed and analyzed. FSW comprise the following
steps. First, an SVM is trained and a reduced data set is formed by remov-
ing scans corresponding to support vectors from the initial data set. Hereafter
a summary map is generated by an univariate correlation analysis with the
reference function (experimental/ macroscopic variable). Hence, the FSW visu-
alization strategy focuses on data points that do not contribute to the decision
function. The FSW scheme does however not provide a measure of the relative
importance of voxels to the classifier.

2.2.7 Unsupervised analysis

In neuroimaging, unsupervised analysis typically concerns learning a model
characterizing the mesoscopic variables m. Hence, the macroscopic variables
g are not directly used in the modeling. Sometimes, the unsupervised analysis
strategy is introduced as ‘model-free analysis’, which seems to be referring to
the fact that the model is not specified the same way as for example in the GLM
analysis. In general, the result of the unsupervised analysis will depend on the
structure imposed on the modeling procedure. PCA defines the data in terms of
a new basis set composed by a series of orthogonal eigenimages (Bullmore et al.,
1996; Hansen et al., 1999; Thomas et al., 2002). Another popular decomposition
technique is ICA that attempts to identify spatially or temporally statistically
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independent sources of variation (McKeown et al., 1998). ICA has successfully
proven to allow for extraction of signal structures that are interpretable. E.g.
the method may be able to separate the signals into components that are re-
lated to the experimental paradigm, respiration, heartbeat, and subjects motion
(McKeown et al., 2003). ICA has in general proven to be useful in resting state
experiments or in experiments where the a temporal model g of the data is not
available (Calhoun et al., 2002).

2.2.8 Interpretation

The last part of the neuroimaging pipeline shown in Figure 2.2 is interpreta-
tion. Model interpretation is important in most scientific domains. In par-
ticular within the neuroimaging community there has been a long tradition
in summarising experimental data by a statistical parametric image (SPI). In-
deed spatial localization is the primary objective in many studies, that seeks to
identify brain regions that ‘respond’ significantly to manipulations in a strictly
controlled experimental variable. Within the past decade there has been an
appreciation within the neuroimaging community of the usefulness of analysis
methodology adopted from the research field of machine learning. E.g. the
study of Kamitani and Tong (2005) exemplifies that pattern-based analysis al-
lows for detection of signal structures that was far beyond the scale of what ex-
isting analysis methodology (mass-univariate analysis) is able to detect. It was
demonstrated that reliable predictions of stimuli orientation could be formed
based on the information present in the activity patterns present in the visual
cortex. In many clinical applications reliable predictions are important, since
the outcome of the pattern-based analysis potentially can assist a clinical diag-
nosis (Kippenhan et al., 1992; Klöppel et al., 2008; Ecker et al., 2010). In such
applications high prediction accuracy is desirable.

Reporting prediction accuracy is often accompanied with a brain map extracted
from the pattern-based model. Visualization of the model allows the investigator
to interpret the model by identifying brain regions that seemingly drives the
model’s predictions. Hence, the classifier becomes more than a black-box saying
‘yes’ or ‘no’, since the model’s visualization/interpretation could be related to
existing knowledge. Or equally important, new scientific insight could be gained
based on inspection of the model’s visualization. Examples are the studies
Haxby et al. (2001); Hanson et al. (2004) that made claims about object category
representations in the VT lope based on a model’s visualization.

Indeed, in many functional experiments the predictions are not relevant by
themselves. Predictive performance provides a surrogate measure of the model’s
ability to explain the observed data, both in cases where the mapping is from
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mesoscopic variables to macroscopic variables f : m 7→ M or the opposite
f :M 7→m. After building a model, it is important to assess whether the model
captured the statistical regularities of interest in the data. A natural procedure
is to quantify performance in terms of the generalizability of the model (Mørch
et al., 1997). Effectively, this is done by evaluating the prediction accuracy on a
test set. We have more confidence in a model that correctly predicts the brain
states, while it is hard to defend a model with poor generalization performance.
Additionally, we are interested in the interpretability of the predictive model.
Typically, such model interpretation is done on the basis of a brain map that
reveals in which voxels the discriminative information resides (McIntosh et al.,
1996; Kjems et al., 2002; LaConte et al., 2005; Mourão-Miranda et al., 2005).
Hence, we could say that there is a hidden agenda in the use of classification
models in analysis of neuroimaging data. That is, we are interested in how the
discriminative information is encoded in the brain, rather than assignment of
class labels to scans (since labels often are already known).

The final outcome of many mass-univariate analysis is a thresholded SPI. A
statistical test is performed in individual voxels, and the resulting SPI is thresh-
olded according to correction for multiple comparisons, e.g. Friston et al. (1994).
Typically, such maps reveal a limited number of blobs of brain ‘activation’ dis-
tributed across the scan volume. Naturally, we may pursue the same character-
istics in the model’s visualization when using pattern-based analysis. A brain
map extracted from e.g. a SVM will in general be dense. Each voxel will have a
value different from zero. The sparse characteristics of the model’s visualization
can be achieved by i) thresholding the map according to some heuristics, see
e.g. Kjems et al. (2002); LaConte et al. (2005); Mourão-Miranda et al. (2005)
for examples, or ii) use resampling to obtain an empirical coefficient distribution
in each voxel followed by some principled statistical thresholding procedure, see
e.g. Cuingnet et al. (2011). Brain map sparsity can also be achieved inherently
in the model building procedure. For example, feature elimination or other
feature selection procedures automatically selects a subset of voxels available.
Another approach is to build models using a sparsity enforcing regularization
procedure. Such models will automatically set coefficients to be exactly ze-
ros, yielding sparse characteristics of the resulting brain map extracted from
the model (Grosenick et al., 2008; Yamashita et al., 2008; Carroll et al., 2009;
Ryali et al., 2010; Michel et al., 2011c). Such methods have been introduced as
providing more interpretable maps by automatically selecting ‘relevant’ brain
regions.

In addition to the prediction accuracy metric (p) for model evaluation Strother
et al. (1997) proposed a reproducibility metric (r) that measures the similar-
ity between SPIs extracted from models trained on independent data samples.
This approach has been formally established as the NPAIRS resampling frame-
work (Strother et al., 2002). The NPAIRS framework has proven successful in
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optimization of preprocessing pipelines in a series of studies and also in pattern-
based analyses, see e.g. Strother et al. (2002, 2004, 2010); LaConte et al. (2003).
The NPAIRS authors argued that both (p) and (r) play an important role with
respect to model interpretation:

Simultaneously, Hansen and Strother, guided by the field of pre-
dictive learning in statistics (Hastie et al., 2001; Larsen and Hansen,
1997; Mjolsness and DeCoste, 2001), introduced the idea of using po-
tentially unbiased cross-validation-based prediction metrics to mea-
sure data-analytic performance in functional neuroimaging (Hansen
et al., 1999; Kjems et al., 2002; Kustra and Strother, 2001; Lautrup
et al., 1995; Morch et al., 1997). Similar prediction metrics have
recently been used by others (McKeown, 2000; Ngan et al., 2000).
In addition, prediction metrics have been used to gain new insight
into the debate over the spatially modular versus spatially distributed
nature of human brain processing (Cox and Savoy, 2003; Haxby et
al., 2001). We expect both prediction and reproducibility metrics to
play an increasingly important role in the future optimization and
interpretation of fMRI studies. (Strother et al., 2004).

This viewpoint that prediction accuracy alone may be insufficient is shared by
Carroll et al. (2009) who also argue in favor of building models that both predicts
well and are robust:

Indisputably, prediction is an essential component of scientific
modeling, and great effort should be put into maximizing it; how-
ever, as shown in this paper, equally predictive models can still be
markedly different. In fMRI analysis, the core goal underlying pre-
dictive modeling is production of a model that can be interpreted to
pinpoint all relevant voxel activity and exclude all irrelevant activity.
Therefore, it is crucial to not lose sight of the interpretation of the
resulting models in the quest to optimize prediction performance.
. . . We have also shown that being preoccupied with prediction per-
formance can be equally destructive. Models that function as highly
predictive “black boxes” might be useful for neuro-engineering “mind
reading” efforts, but for informing neuroscience, these models should
also be reliable and valid. Carroll et al. (2009) .

2.3 Project contribution

This section outlines the main contributions of the Ph.D. project in relation to
the existing work presented in the previous sections.
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2.3.1 Model sparsity and brain pattern interpretation

Interest is increasing in applying pattern-based analysis techniques to the analy-
sis of functional neuroimaging data. Model interpretation is of great importance
in the neuroimaging context, and is conventionally based on a ‘brain map’ ex-
tracted from the pattern-based analysis model. Prior studies have suggested that
the support vector machine (SVM) may be capable in part to achieve an uncou-
pling between reproducibility4 and prediction performance (Mourão-Miranda
et al., 2005). Prior studies have observed quite stable predictive performance
of the SVM for sufficiently high values of the SVM regularization parameter
C (LaConte et al., 2005; Marquand et al., 2010). Other studies argue that
regularization parameters not needs to be selected ‘very precise’ also relying on
observation of relative stable predictive performance ±3% over a relatively large
range of values for the regularization parameter Chu et al. (2011b).

We have studied the relative influence of model regularization parameter choices
on the model generalization, the reliability of the spatial patterns extracted from
the classification model, and the ability of the resulting model to identify rele-
vant brain networks defining the underlying neural encoding of the experiment.
The work was published in Rasmussen et al. (2012b).

• For a SVM, logistic regression (LogReg) and Fisher’s discriminant analysis
(FDA) we demonstrate that selection of model regularization parameters
has a strong but consistent impact on the generalizability and both the
reproducibility and interpretable sparsity of the models for both `2 and `1
regularization.

• In contrast to early studies comparing FDA (unregularized versions) and
SVM we demonstrate similar performance in both prediction accuracy and
brain pattern reproducibility of the SVM, LogReg, and FDA models. Our
results suggest, that it may be more important carefully to tune model
regularization than it is to select a specific classifier type.

• Importantly, we illustrate a trade-off between model spatial reproducibility
and prediction accuracy for SVM, LogReg, and FDA models. Unlike as
suggested in the literature, we observe that the SVM is not capable in
uncoupling prediction accuracy and pattern reproducibility.

• We show that known parts of brain networks can be overlooked in pur-
suing maximization of classification accuracy alone with either `2 and/or
`1 regularization. When performing feature selection using sparse models

4Reproducibility as defined in Strother et al. (2002).
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(either via feature elimination or a sparsity enforcing prior) we find it use-
ful also to report the prediction accuracy based on voxels excluded from
the model. Such analysis could potentially enhance the interpretation of
a sparse brain pattern.

• Our observations support the view that the quality of spatial patterns ex-
tracted from models cannot be assessed purely by focusing on prediction
accuracy. Our results instead suggest that model regularization param-
eters must be carefully selected, so that the model and its visualization
enhance our ability to interpret the brain.

2.3.2 Visualization of nonlinear kernel models

Kernel methods, e.g., SVMs, relevance vector machines (RVMs), or kernel ridge
regression (KRR) are frequently used in pattern-based analysis. The practical
use of nonlinear modeling within the neuroimaging community has been limited:
i) there seems to be a limited benefit in using nonlinear models on present
neuroimaging data sets (Cox and Savoy, 2003; LaConte et al., 2003; Misaki
et al., 2010) but see also Stephan et al. (2008); Schmah et al. (2010); Song et al.
(2011), and ii) nonlinear models are considerable more difficult to interpret than
basic linear models (LaConte et al., 2005).

We have focused on visualization of nonlinear kernel models. Specifically, we
investigated the sensitivity map (Zurada et al., 1994, 1997; Kjems et al., 2002)
as a technique for generation of global summary maps of kernel classification
models. The illustration of the performance of the sensitivity map was based
on a fMRI data set from an experiment with visual stimuli. The work was
published in Rasmussen et al. (2011) and Rasmussen et al. (2012b).

• We show that the performance of linear models is reduced for certain scan
labelings/categorizations in the fMRI data set, while the nonlinear models
provide more flexibility. Nonlinear models are capable in modeling data,
where a considerable amount of heterogeneity within individual classes
exists.

• We illustrate that the sensitivity map can be used to visualize nonlinear
versions of LogReg, the FDA, and the SVM, and show that the sensitivity
map is a versatile and computationally efficient tool for visualization of
nonlinear kernel models in neuroimaging.

• Based on the original formulation of the sensitivity map visualization, we
have developed further procedures for model visualization. Specifically,
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we focus on the generation of maps that include sign information, unlike
earlier versions of the sensitivity map. The sign information provides the
investigator with a more detailed explanation of how signal changes in
individual brain locations influence the classification.

• An important aspect of our analysis has been to assess the reliability/stability
of the proposed model visualizations. The evaluation is performed within
the NPAIRS framework (Strother et al., 2002), a data-driven split-half
evaluation framework in which we build multivariate models of the data
and base the evaluation on both brain state predictability and the repro-
ducibility of brain maps extracted from multivariate models.

2.3.3 Nonlinear denoising using kernel principal compo-
nent analysis

Kernel principal component analysis (KPCA) is a nonlinear generalization of
PCA. The basic idea in KPCA is to map the data from voxel space to a feature
space, and then perform PCA on the mapped data. Even though, the practical
use of nonlinear kernel based preprocessing methods has been limited, recent
years have seen an increased interest in applying KPCA as a preprocessing and
analysis tool in the field of neuroimaging (Thirion and Faugeras, 2003; Song
et al., 2008; López et al., 2009; Guo, 2010). The main challenge in denoising by
KPCA is the mapping of denoised feature space points back into input space
- also known to as the pre-image problem. The use of KPCA and pre-image
estimation in neuroimaging was reported in Rasmussen et al. (2012a).

• We evaluate the performance of KPCA and the subsequent pre-image
estimation as a tool for noise reduction in fMRI. Using the NPAIRS re-
sampling framework (Strother et al., 2002) for this evaluation has been a
key element in the analysis of our proposed procedures.

• We introduce manifold navigation for exploration of a nonlinear data
manifold and illustrate how pre-image estimation can be used to genera-
tion brain maps in the continuum between experimentally defined brain
states/classes. Our procedure extends the hyperplane navigation proce-
dure proposed for linear models by Sato et al. (2008).
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Chapter 3

Statistical modeling and
model evaluation

This chapter describes the statistical modeling used in the project. Most of
the methods are well established, and introduced here in order to assist the
reader in interpreting the results presented in Chapter 5. The general lin-
ear model is introduced, since this is the most prevalent analysis approach at
present. The multivariate Bayesian decoding model is also introduced, mainly
since it is implemented in the widely used SPM software package. This is fol-
lowed by an introduction of linear and nonlinear predictive models. Readers
familiar with basic modeling techniques are encouraged to skip directly to the
last sections on global model visualization by sensitivity maps and denoising and
localized visualization using kernel principal component analysis and pre-image
estimation.

Notation: In this chapter y will refer to the dependent variables in a model,
while X will refer to independent/ explanatory variables. Note that either of
these variables can contain macroscopic and mesoscopic variables as introduced
in Section 2.2.3.
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3.1 Univariate modeling

3.1.1 The general linear model

Using the conventional notation, we let the mesoscopic variables (e.g. voxel
time series) in a single dimension (voxel) serve as dependent variables y ∈ RN×1
and the macroscopic variables D (Section 2.2.3) serve as explanatory variables
organized in the design matrix X = D> ∈ RN×K . The general linear model
(GLM) reads

yi = Xwi + ei, (3.1)

where w ∈ RK×1 contains model parameters/weights to be estimated, and
e ∈ RN×1 denotes the residual or error term of the GLM. The subscript i
highlights, that the GLM models the signal at voxel-level. Also the error term
is modeled at voxel-level. It is assumed that at voxel i ei ∼ N (0,Σi), where
Σi models the covariance structure of the time series (noise autocorrelation).
Estimation of the model weights at voxel i can be performed using generalized
least squares estimation

ŵi =
(
X>Σi

−1X
)−1

X>Σi
−1yi. (3.2)
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Note that this procedure requires the covariance structure, as modeled by Σi to
be known. We refer to the literature for discussions on procedures for estimating
this covariance structure, e.g. (Friston et al., 2007).

Statistical inference proceeds by definition of a contrast vector c ∈ RK×1. For
example, a t-statistics can be constructed by

ti =
c>ŵi√

var (c>ŵi)
, (3.3)

where the denominator is calculated as

var
(
c>ŵi

)
= c>

(
X>Σi

−1X
)−1

c, (3.4)

see e.g. Friston et al. (2007). This test statistics will follow a Student’s t
distribution under the null-hypothesis. The Student’s t distribution is governed
by ν degrees of freedom, and the interested reader is referred to the literature for
procedures to estimate ν, e.g. Friston et al. (2007). Calculating the t-statistics in
eq. (3.3) for each i ∈ [1, . . . , P ] leads to a statistical parametric image (SPI). By
comparing the t-statistics to the null-distribution in each voxel, we can identify
brain locations where we can reject the null-hypothesis at a certain level of
significance.

The mass-univariate analysis procedure is well implemented in a series of widely
used software packages, e.g. in AFNI (Cox, 1996), FSL (Smith et al., 2004), and
SPM (Friston et al., 2007).

3.2 From univariate encoding models to multi-
variate decoding models

The software package SPM (Friston et al., 2007) provides a decoding model with
a similar formulation as eq. (3.1). This scheme is named multivariate Bayesian
(MVB) decoding. The MVB scheme defines the dependent variables y based on
part of the design matrix containing macroscopic variables D. The explanatory
variables X are based on the mesoscopic variables M, hence X ∈ RN×P (Section
2.2.3). Using the above notation a decoding model can be formulated by

y = Xw + e, (3.5)

where w ∈ RP×1 contains model weights to be estimated, and e ∈ RN×1 denotes
the residual or error term. As in the GLM in eq. (3.1) it is assumed that the
residuals are characterized by some covariance structure Σe, thus e ∼ N (0,Σe).



42 Statistical modeling and model evaluation

Note that in contrast to the GLM that estimates model parameters at voxel-level
wi, the MVB scheme estimates a single model weight vector w.

Typically P � N which means we cannot use the same strategy as in eq.
(3.2) to estimate the model weights. The problem of estimating w is ill-posed
in the sense, that there exists an infinite number of equally likely solutions.
Hence, further assumptions are required. The approach in the MVB scheme
is to introduce a prior over the model weights and assume w ∼ N (0,Σw),
where Σw specify the covariance structure of the model weights. Estimation of
model parameters in the MVB scheme proceeds by use of a variational inference
scheme, and the reader is referred to Friston et al. (2008) for further details.

A key feature of the MVB scheme is model comparison within a Bayesian frame-
work. By imposing a particular structure on the weight covariance Σw

i the in-
vestigator can form a model hypothesis Mi and evaluate the model evidence
p (y|X,Σw

i ). By considering a series of covariance structures {Σw
1 , . . . ,Σ

w
M} we

can choose among M hypotheses by choosing the covariance specification giving
the highest model evidence. Examples of covariance structures available in the
MVB scheme are structures that are modeled by sparse pattern representations,
pattern representations defined by singular vectors of the data, spatial smooth
vectors, or single observations (scans).

3.3 Decoding as predictive modeling

The GLM and MVB models above are formulated to relate the mesoscopic vari-
ables with the macroscopic variables. The interest is on performing inference
on the model’s mapping rather that predicting labels of new examples (Friston
et al., 2008). Another (and more prevalent) approach to pattern-based analysis
is to formulate the analysis in terms of a pattern recognition problem. In such
settings we are interested in learning the model’s parameters based on a train-
ing set in order to predict labels for ‘new’ examples with unknown labels. In
the usual predictive modeling setup we consider a data set D = {(xi, yi)}Ni=1,
where we let xi ∈ RP×1 be the i’th row of the matrix M holding the mesoscopic
variables, and yi be an associated target variable, e.g. an element of the de-
sign matrix D coding class membership or some behavioral variable. We then
formulate a predictive (decoding) model as

ŷ = f(x;θ), (3.6)



3.3 Decoding as predictive modeling 43

where θ are model parameters to be estimated1. For example, we can write a
linear model as

ŷ = w>x + b, (3.7)

with θ = {w, b} where w ∈ RP×1 are model weights and b is the intercept. In a
more general approach we can introduce a vector valued feature representation
φ (x) ∈ RF×1, where F is the dimensionality of the feature space. We then
write the model eq. (3.6) as

ŷ = w>φ (x) + b, (3.8)

where w ∈ RF×1 now.

If we let y be a continuous real variable the model eq. (3.6) will be a regression
model. The model can also be considered as a classification model by using
some coding of the classes e.g. y ∈ {−1, 1} and classify an observation x based
on the sign of ŷ.

3.3.1 Learning model parameters by model regularization

A common strategy to learn parameters of the predictive model eq. (3.6) is to
use the loss and penalty formulation, e.g. Hastie et al. (2009)

argmin
w,b

N∑

i=1

L (yi, ŷi) + λJ (w) , (3.9)

where the loss function L (yi, ŷi) measures the mismatch between the true target
and the prediction, while J (·) is a penalty function on the model weights. λ ≥ 0
is a regularization parameter controlling the balance between the loss-term and
the penalty. There exist a wide range of penalty functions, for instance, the
LASSO penalty J (w) = ||w||1 (`1 penalty) (Tibshirani, 1996), the ridge penalty
J (w) = ||w||22 (`2 penalty) (Hoerl and Kennard, 1970), or the ENET penalty
J (w) = λ1||w||1 + λ2||w||22 where λi are regularization parameters controlling
the balance between the LASSO and the ridge term (Zou and Hastie, 2005;
Hastie et al., 2009).

1Note that the predictions depend on the variable x, i.e. ŷ (x). We use the notation ŷ in
order to keep the notation uncluttered.
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3.4 Linear predictive models

The following reviews the basics behind a series of standard models all formu-
lated with `2 regularization.

3.4.1 Ridge regression

Ridge regression is based on the quadratic loss function L (y, ŷ) = 1
2 (y − ŷ)

2

and the `2 penalty (Hoerl and Kennard, 1970). We can write the objective as

argmin
w,b

N∑

i=1

1

2
(yi − ŷi)2 +

λ

2
||w||2. (3.10)

Using matrix notation for the predictors X ∈ RN×P (mesoscopic variables or-
ganized in rows) and targets y ∈ RN×1 we can write the solution to eq. (3.10)
as

ŵ =
(
X>X + Λ

)−1
X>y, (3.11)

where Λ ∈ RP×P is a diagonal matrix with λ in the diagonal2. Note that we here
assume that the data has been centered, and estimate the intercept b in eq. (3.7)
by the mean of the targets y. Alternatively we could augment X by a column
with constant elements in order to model the intercept. Correspondingly, we
will then augment Λ with a diagonal element set to 0 in order not to apply the
penalty to the model intercept. As can been seen in eq. (3.11) we recover the
ordinary least squares (OLS) estimator if λ = 0.

A further insight into the nature of the ridge penalty can be achieved by the
following analysis (Hastie et al., 2009). Consider the singular value decomposi-
tion (SVD) of the predictor variables X = USV> with U ∈ RN×P , S ∈ RP×P ,
and V ∈ RP×P . We rewrite the fitted response in eq. (3.7) in terms of the SVD

ŷ = Xŵ

= X
(
X>X + Λ

)−1
X>y

= USV>
(
VSU>USV> + Λ

)−1
VSU>y

=

P∑

i=1

ui
s2i

s2i + λ
u>i y. (3.12)

2Note that we in the text use matrices of size P × P . However, effectively we operate on
matrices of size N × N when P � N . See e.g. Lautrup et al. (1994); Mørch et al. (1997);
Hastie and Tibshirani (2004).
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The coordinates of y with respect to the orthogonal basis U are shrunk by

factors
s2i

s2i+λ
, and the shrinkage is the largest for the coordinates of the basis

vectors u with the smallest singular values. Note that the ridge regression can
be compared to principal component regression (PCR) (Hastie et al., 2009).
PCR truncates the basis representation and only retains the K basis vectors
with the largest singular values. In PCR we have similar to eq. (3.12)

ŷ =
K∑

i=1

uiu
>
i y. (3.13)

In the linear model eq. (3.7) we generally may consider to have (P + 1) degrees
of freedom. However, we may consider the regularization as a constraint on the
model structure. Hence, by varying λ we effectively control the model flexibility
or complexity. A measure of such model complexity is the effective degrees of
freedom (Hastie et al., 2009) as defined by

edf(λ) = tr
(
X
(
X>X + Λ

)−1
X>
)

(3.14)

=

P∑

i=1

s2i
s2i + λ

. (3.15)

It is seen that edf (λ) → (P ) if λ → 0 and df (λ) → 0 if λ → ∞. Furthermore,
we have one additional degree of freedom if the model intercept b is included in
the model.

3.4.2 Logistic regression

Consider a binary target variable with coding y ∈ {−1, 1}. Logistic regression
is based on the assumption that the log likelihood ratio is linear in x so that
the conditional probability for y = 1 can be written in terms of the sigmoid
function σ(·)

p (y = 1|x,w, b) =
1

1 + exp (−w>x− b)
= σ

(
w>x + b

)
. (3.16)

Likewise we write p (y = −1|x,w, b) = 1− p (y = 1|x,w, b) = σ
(
−w>x− b

)
so

p (y|x,w, b) = σ
(
y
(
w>x + b

))
. (3.17)

Using the negative log likelihood function we can write the logistic loss function
as L (y, ŷ) = log (1 + exp (−yŷ)), which leads to the loss and penalty formulation
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eq. (3.9)

argmin
w,b

N∑

i=1

log (1 + exp (−yŷ)) +
λ

2
||w||2. (3.18)

Unlike the minimization problem in ridge regression eq. (3.11) there exists no
closed form solution to eq. (3.18) due to the nonlinearity of the sigmoid function.
A common strategy is to use the Newton-Raphson iterative optimization scheme
that leads to iteratively re-weighted least squares (IRLS) estimation

ŵnew = ŵold −H−1g, (3.19)

where the gradient of the cost function with respect to the weights is

g =

N∑

i=1

(σ (ynŷn)− 1) ynxn + λw

= X>a + λw, (3.20)

where a ∈ RN×1 holds the elements ai = (σ (ynŷn)− 1) yn. The Hessian matrix
is given by

H =

N∑

i=1

σ (ynŷn) (σ (ynŷn)− 1) xnx>n + Λ

= X>WX + Λ (3.21)

where W ∈ RN×N is a diagonal matrix with elements wi,i = σ (ynŷn) (σ (ynŷn)− 1)
along the diagonal, and Λ being a diagonal matrix holding λ in the diagonal.
Hence, the update formula becomes

ŵnew =
(
X>WX + Λ

)−1
X>Wz, (3.22)

where z ∈ RN×1 holds the elements zi = x>i ŵold − ai
wi,i

. For a comparison

of different different numerical optimizers for logistic regression see e.g. Minka
(2003). Logistic regression can naturally be generalized to multi-class scenarios
(Bishop, 2006; Hastie et al., 2009).

As with the ridge regression model we can characterize the complexity of the
regularized logistic regression model by estimating the effective degrees of free-
dom, see e.g. Park and Hastie (2008) and references therein. This can be
approximated by

edf(λ) = tr
(
X
(
X>WX + Λ

)−1
X>WX

)
, (3.23)

using W as obtained in the final step of the IRLS algorithm.
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3.4.3 Support vector machines

Support vector machines (SVMs) are often introduced as margin maximizing
classification models (Boser et al., 1992; Cortes and Vapnik, 1995). If we consider
two classes that are linearly separable, we can define a separating hyperplane
so that the training observations are perfectly separated. Indeed, we can define
infinitely many of such hyperplanes. The SVM identifies the hyperplane that
maximizes the margin. The margin is defined as the shortest distance from the
hyperplane to the training data. In case of overlapping class distributions in the
training data the SVM can be extended to allow training points being inside
the margin or even on the wrong side of the hyperplane, i.e. training points will
be misclassified.

For SVMs the optimization objective can also be written as based on the hinge
loss function L(y, ŷ) = [1−yŷ]+, which leads to the loss and penalty formulation
eq. (3.9) as

argmin
w,b

N∑

i=1

[1− ynŷn]+ +
λ

2
||w||2, (3.24)

see e.g. Hastie et al. (2004); Chapelle (2007). The task of learning the pa-
rameters of the SVM is often considered as a constrained quadratic program-
ming problem. The interested reader is referred to the literature for details on
model optimization, e.g. Chapelle (2007); Chang and Lin (2011). Specifically,
the model estimation leads to a number of model coefficients γi ≥ 0 where
i ∈ {1, . . . , N}, from which the models weight vector is estimated by

ŵ =

N∑

i=1

γiyixi. (3.25)

Importantly, a subset of the data points may have γi = 0. Specifically, only
training points that are located on the margin, inside the margin, or on the
wrong side of the separating hyperplane (decision boundary) will have γi > 0.
Such points constitute the support vectors. This is in contrast to the solutions for
ridge regression eq. (3.11) and logistic regression eq. (3.22), where all training
points in general will have a non-zero contribution to ŵ.

In scenarios where P � N the training data can always be separated by a
linear decision boundary. Hence, it may be appealing to search for the solution
that maximizes the margin. Hastie et al. (2004) argued that selection of the
regularization parameter λ can be critical in such scenarios. These authors
provided a P � N simulation showing that more regularized models can be
closer to the Bayes optimum solution than the margin maximizing solution.
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3.4.4 Fisher’s discriminant analysis

Consider multi-class problem with C classes y ∈ {1, . . . , C}, C ≥ 2. Fisher’s
discriminant analysis (FDA) seeks to find optimal projection directions along
which the ratio of the between-class scatter to the total scatter is maximized. In
the multi-class classification problem the Fisher’s discriminant is given by the
matrix W, a C − 1 column matrix, that optimizes the objective

argmax
W

|W>SBW|
|W> (ST + Λ) W| (3.26)

where SB =
∑C
c=1Nc (mc −m) (mc −m)

>
is the between-class scatter matrix,

and ST =
∑N
i=1 (xi −m) (xi −m)

>
is the total scatter matrix, with Nc de-

noting the number of samples in class c and mc and m class means and grand
mean respectively. Note that we here consider regularized Fisher’s discriminant,
where Λ ∈ RP×P is a diagonal matrix holding a regularization parameter λ in
the diagonal (Zhang et al., 2010). FDA is often formulated as the solution to
the following generalized eigenvalue problem

SBW = (ST + Λ) WΞ, (3.27)

where the eigenpairs {wi, ξi} are hold in the columns of W and in the diagonal
of Ξ. Since the rank of SB is C − 1 at most, the dimensionality of the subspace
as identified by FDA will correspondingly be C − 1 at most (Bie et al., 2005;
Zhang et al., 2010).

Regularized FDA can be shown to be closely related to ridge regression (Zhang
et al., 2010). By use of specific coding schemes for the target variables y, the
solutions are related such a way that the subspace (or weight vector) as defined
by ridge regression (eq. (3.10)) onto target variables y and the solution to eq.
(3.27) are related by an orthogonal transformation and a scaling. Hence, in
classification settings we can directly interpret FDA in terms of the loss and
penalty formulation eq. (3.9) based on the squared loss function and an `2
regularization term.

Estimating weights according to eq. (3.26) and (3.27) provides the model’s
weight vectors/ canonical variates (or FDA subspace) in the decision rule eq.
(3.7) and (3.8). The projection of data observations onto the subspace is per-
formed by

zx = W>x. (3.28)

However, also the bias coefficient b in the decision rule needs to be determined.
One approach is to build a Bayes classifier on top of the basis set as identified
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by FDA, see e.g. Kjems et al. (2002). The Bayes classifier is written in terms
of Bayes’ rule

P (cj |zx) =
p (zx|cj)P (cj)∑C
j′=1

(
zx|c′j

)
P
(
c′j
) , (3.29)

where P (cj |zx) is the posterior probability for class cj , p (zx|cj) is the class con-
ditional density, and P (cj) is the class prior probability. Under the assumption
that the class conditional densities are well modeled by Gaussian densities we
have

p
(
zx|µc, σ2

)
=
(
2πσ2

)−C−1
2 exp

(
− 1

2σ2
||zx − µc||2

)
, (3.30)

with µc denoting the mean of the projections of members in class c and the
variance σ2 is assumed to be shared across classes. In cases where the class
priors are equal the classifier as implemented by eq. (3.29) will be equal to a
nearest mean classifier (assuming eq. (3.30)). Decisions are then based on

argmax
c∈{1,...,C}

fc (zx) (3.31)

with the classifier’s c’th output channel given by

fc (zx) = −||zx − µc||2. (3.32)

3.5 Nonlinear predictive models - Kernel mod-
els

In Section (3.4) we outlined the modeling setup for a series of linear models.
However, linear models have by definition limitations when faced with nonlinear
problems. A solution is to consider new representations φ (x) ∈ RF×1 based on
the explanatory variables x as in eq. (3.8). For example, we could let interac-
tion terms xixj be parts of the feature representation. Over the past decade
the kernel methodology has proven quite useful in extending linear models to
nonlinear models. In the following we will review some basics concepts of ker-
nel based learning. The classical reference for theory of reproducing kernels
and reproducing kernel Hilbert spaces is Aronszajn (1950). A general introduc-
tion to kernel based learning is found in Shawe-Taylor and Cristianini (2004).
Interested readers are referred to these references for further/ more complete
introductions to kernel based learning.
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3.5.1 Basic kernel methodology

A central form in kernel based learning is the positive definite kernel function
k (x,y). Similar to the eigenvalue decomposition in linear algebra we can define
eigenfunctions φ (·) and associated eigenvalues λ that fulfills

∫
k (x,y)φ (y) dy = λφ (y) , (3.33)

for all x. It follows from Mercer’s theorem that the positive definite kernel can
be written in terms of M eigenpairs by

k (x,y) =

M∑

i=1

λiφi (x)φi (y) M ≤ ∞. (3.34)

Associated with a kernel function there exists an unique reproducing kernel
Hilbert space (RKHS) F . The sequence of eigenfunctions {φi (·)}Mi=1 creates
an orthonormal basis in F , so that any function f ∈ F can be written as
f (x) =

∑M
i=1 aiφi (x), with ai ∈ R. The function k (x,y) is called the re-

producing kernel for F and has the properties f (y) = 〈f (·) , k (·,y)〉F and
k (x,y) = 〈k (·,x) , k (·,y)〉F , where 〈·, ·〉 denote the scalar product (Shawe-
Taylor and Cristianini, 2004).

Rewriting eq. (3.34) as

k (x,y) =

M∑

i=1

√
λiφi (x)

√
λiφi (y)

= φ (x)
>
φ (y) . (3.35)

Hence, evaluating the kernel function corresponds to the dot product in some
feature space F , where the data is mapped by

φ : x→
(√

λ1φ1 (x) , . . . ,
√
λMφM (x)

)
. (3.36)

Kernel based learning algorithms relies on embedding data observations onto the
feature space F and attempt to identify linear relations in the feature space.
These methods calculate inner products in feature space by use of the kernel
function rather than points’ actual embeddings. Hence, modeling is often con-
ducted based on the kernel representation rather than performing the mapping
into F explicitly.
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3.5.2 Learning kernel models by regularization

In section (3.3.1) the task of learning model parameters of predictive models
was formulated as a loss and penalty objective. Similarly, many kernel based
learning models can be based on the objective

argmin
f∈F

N∑

i=1

L (yi, f (xi)) +
λ

2
||f ||2F , (3.37)

see e.g. Hastie et al. (2009). Now, according to the representer theorem we can
write the solution to eq. (3.37) on the form

f (x) =

N∑

i=1

αik(xi,x), (3.38)

with ai ∈ R, see e.g. Shawe-Taylor and Cristianini (2004) and references therein.
According to the reproducing properties of the kernel, the squared norm can be
written as ||f ||2F =

∑N
i=1

∑N
j=1 αiαjk(xi,xj). It then follows that eq. (3.37)

can be written as

argmin
α

N∑

i=1

L
(
yi,α

>ki
)

+
λ

2
α>Kα. (3.39)

where ki is th the i’th column of the kernel matrix K with elements Ki,j =
k (xi,xj). Hence. the problem of learning model parameters is reduced to a
finite dimensional minimization problem. Model building proceeds by selecting
a loss function L (·) and kernel function k. This procedure leads to a range of
kernelized methods, e.g. kernel ridge regression (KRR) (Saunders et al., 1998),
kernel logistic regression (KLR)(Cawley and Talbot, 2004), kernel Fisher’s dis-
criminant analysis (KFDA) (Mika et al., 1999a; Zhang et al., 2010), and ker-
nel principal component analysis (KPCA) (Schölkopf et al., 1998; Mika et al.,
1999b).

3.5.3 The kernel trick

In the previous section we considered kernel based learning from a function
regularization approach. Alternatively we can be more explicit about the fea-
ture space mapping (Shawe-Taylor and Cristianini, 2004). Consider a nonlin-
ear transformation of the input variables {xi}Ni=1 into a feature space F by
φ : xi → φ (xi) ∈ F . For example, assume that we are interested in building a
ridge regression model in F . Now, even in case of a high (possible infinite) di-
mensional feature space, we only have N observation available. Thus we restrict
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the solution ŵ to be in the span of the mapped training points {φ (xi)}Ni=1 , i.e.

ŵ =
∑N
i=1 αiφ (xi) and seek the solution to

argmin
w

N∑

i=1

1

2

(
yi −w>φ (xi)

)2
+
λ

2
||w||2

= argmin
α

N∑

i=1

1

2

(
yi −

N∑

i=1

(αiφ (xi))
>
φ (xi)

)2

+
λ

2

N∑

i=1

N∑

j=1

αiαjφ (xi)
>
φ (xj)

= argmin
α

N∑

i=1

1

2

(
yi −α>ki

)2
+
λ

2
α>Kα. (3.40)

The procedure above is an example of use of the kernel trick. In this procedure
one i) formulates the objective in terms of input points’ feature mappings, ii)
identifies where dot products in feature space appears, and ii) replace the dot
products by kernel evaluations.

For binary versions of KRR, KLR, and the SVM the decision function eq. (3.8)
becomes

f (x) = α>kx + b, (3.41)

with the i’th element of kx ∈ RN×1 corresponding to k (xi,x). For the multi-
class analysis with KFDA (eq. (3.26)) the projections of the data observation
x onto the C − 1 basis vectors (in feature space) can be written as

zx = B>
(

kx −
1

N
K1N

)
, (3.42)

with B ∈ RN×C−1 being a projection matrix (see Zhang et al. (2010) eq. 22
for a definition of B). By constructing a Bayes classifier on top of these feature
space projection we obtain a multi-class classifier as in eq. (3.29)

P (cj |zx) =
p (zx|cj)P (cj)∑C
j′=1

(
zx|c′j

)
P
(
c′j
) . (3.43)

Again we may assume that the class conditional densities of data points feature
space projections are well modeled by Gaussian densities

p
(
zx|µc, σ2

)
=
(
2πσ2

)−C−1
2 exp

(
− 1

2σ2
||zx − µc||2

)
, (3.44)

with µc denoting the mean of the projection of members in class c and variance
σ2 is assumed to be shared across classes.
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3.6 Global model visualization by sensitivity maps

In many applications it is relevant to interpret a trained predictive model. Of-
ten such interpretation is based on visualizing the model’s weights wi in the
linear case eq. (3.7). Likewise, in the nonlinear model eq. (3.8) we could also
inspect the model’s weights. However, when using the kernel methodology we
do not directly have access to the model’s weight vector w. Instead the model is
parametrized by means of the α coefficients in eq. (3.41) and B in eq. (3.42). In
the following section we will develop a sensitivity mapping procedure that allows
for extraction of visualizations from both linear and nonlinear kernel models.
The visualization procedure is based on early work by Zurada et al. (1994, 1997)
and more recent work by Kjems et al. (2002).

3.6.1 General sensitivity map definitions

Definition 3.1 Consider a given (vector valued) function g (x) ∈ RO×1 in a
stochastic environment with a distribution over the inputs x ∈ RP×1 given by
the probability density function p (x). Corresponding to the c’th element in
g (x) we define a model visualization sck by the expected value of the derivative
of the function gc (x) with respect to its arguments

sck =

∫

x∈I

[
∂

∂x
gc (x)

]k
p (x) dx, k ∈ {1, 2} (3.45)

where I denote some region of integration and sck ∈ RP×1. For k = 2 the
visualization sc2 is referred to as a sensitivity map, and for k = 1 the visualization
sc1 is referred to as a signed sensitivity map.

In the following we consider Fisher’s discriminant analysis (FDA) with a Bayes
classifier build on top of the FDA basis as in eq. (3.29). Different choices for
the visualization function gc (x) in eq. (3.45) exist. Among the possibilities are
to use a classifier’s output gc (x) = fc (zx) (Yourganov et al., 2010; Rasmussen
et al., 2011), the probability function gc (x) = P (c|zx) (Baehrens et al., 2010),
or the logarithm of the probability function gc (x) = log [P (c|zx)] (Kjems et al.,
2002).



54 Statistical modeling and model evaluation

3.6.2 Gradients

Linear models

In the following we calculate the gradient in eq. (3.45) for different choices of
the visualization function gc (x). Note that we here neglect any global scaling
factors to maintain notational simplicity3.

I: gc (x) = fc (zx)

By use of the classifiers output for the c’th class eq. (3.32) we immediately
calculate the gradient as

∂

∂x
gc (x) = −W (zx − µc) . (3.46)

II: gc (x) = P (c|zx)

By use of the chain rule and the quotient rule we calculate the gradient as

∂

∂x
gc (x) = −W

[
(zx − µc)−

C∑

c′=1

(zx − µc′)P (c′|zx)

]
P (c|zx) . (3.47)

III: gc (x) = log [P (c|zx)]

By use of the chain rule and the quotient rule we calculate the gradient as

∂

∂x
gc (x) = −W

[
(zx − µc)−

C∑

c′=1

(zx − µc′)P (c′|zx)

]
. (3.48)

Kernel models

We now calculate the gradient in eq. (3.45) for different choices of the visual-
ization function gc (x) for kernel models. Here we let zx denote the projection
of the feature vector φ (x) onto the FDA basis W as in eq. (3.42).

3By global scaling factors we here refer to factors that are constant over the input space
X as well as across the elements xi.
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I: gc (x) = fc (zx)

Since the classifiers output for the c’th class reads fc = − (zx − µc)
>

(zx − µc)
we get by the chain rule

∂

∂x
gc (x) = −∂kx

∂x
B (zx − µc) , (3.49)

with B being defined as in eq. (3.42).

II: gc (x) = P (c|zx)

By use of the chain rule and the quotient rule we calculate the gradient as

∂

∂x
gc (x) = −∂kx

∂x
B

[
(zx − µc)−

C∑

c′=1

(zx − µc′)P (c′|zx)

]
P (c|zx) . (3.50)

III: gc (x) = log [P (c|zx)]

By use of the chain rule and the quotient rule we calculate the gradient as

∂

∂x
gc (x) = −∂kx

∂x
B

[
(zx − µc)−

C∑

c′=1

(zx − µc′)P (c′|zx)

]
. (3.51)

In eq. (3.49 - 3.51) we see, that the derivative of the kernel function is required
in calculating the gradients. Note that the i’th element of kx is k (xi,x) for
i ∈ {1, . . . , N}.

In the following we provide gradients for some ‘popular’ kernels. For the linear
kernel k (xi,x) = x>i x we have

∂kx

∂x
= X>, (3.52)

with individual observations xn organized in the rows of X. The gradient for

the polynomial kernel k (xi,x) =
(
x>i x + q

)2
we have

∂kx

∂x
= 2X>Γ, (3.53)
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where the matrix Γ ∈ RN×N is a diagonal matrix holding elements x>i x + q in
the diagonal.

Finally, the gradient of the Gaussian kernel k (xi,x) = exp
(
− 1
q ||xi − x||2

)
is

∂kx

∂x
=

2

q
GΓ, (3.54)

where the matrix G ∈ RP×N holds the elements Gp,i = xip−xd with xip referring

to the p’th element in training example xi. Γ ∈ RN×N is a diagonal matrix
holding elements kx in the diagonal.

Local support in sensitivity map estimation

In the following we consider the gradients based on kernel models eq. (3.49 -
3.51), and note that the intuition developed in the following also holds for the
linear models eq. (3.46 - 3.48). In general we can consider the gradients for all
three visualization functions gc (x) as based on the following decomposition.

∂

∂x
gc (x) = − ∂kx

∂x
B

︸ ︷︷ ︸
A




(zx − µc)

︸ ︷︷ ︸
B

−
C∑

c′=1

(zx − µc′)P (c′|zx)

︸ ︷︷ ︸
C



P (c|zx)

︸ ︷︷ ︸
D

. (3.55)

We can interpret A as a factor common to all visualization functions and B, C,
and D as weighting factors specific to each visualization function.

First consider the gradient as in eq. (3.49). We can write this gradient by
∂
∂xgc (x) = AB. When moving away from the class center µc the factor B
increases in magnitude. For a linear kernel this means that the magnitude of
the gradient will increase (note that for the linear kernel A will be constant over
the entire input space). For the e.g. Gaussian kernel the interaction between A
and B is more complex, since also A varies over the input space

The gradient in eq. (3.51) can be written as ∂
∂xgc (x) = A(B-C). Consider a

scenario where the classifier is confident that an input point x belongs to class
c, hence P (c|zx) ≈ 1. By this the factor (B-C) becomes small ((B-C) → 0)
and the magnitude of the gradient will correspondingly become small. If the
classifier is confident that P (c′|zx) ≈ 1, c′ 6= c, we can write (B-C) ≈ µc′ − µc.

Finally, we can write the gradient in eq. (3.50) by ∂
∂xgc (x) = A(B−C)D. The

situation is similar to the description above. Additionally, we have a weighting
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with the posterior probability in the factor D. In result the magnitude of the
gradient becomes small if P (c|zx) ≈ 0.

We constructed a simulation with a three class classification problem with
x ∈ R2×1 to illustrate the nature of the gradients based on the three differ-
ent visualization functions. A KFDA classifier with a Gaussian kernel was used.
Figure 3.1 and 3.2 show partitioning of the input space into three class regions
along with the training examples (large markers). We considered the visualiza-
tion function gc (x) corresponding to class 2 (c = 2) and calculated gradients
for data observations belonging to class 1 in Figure 3.1 and class 2 in Figure
3.2. The gradients are plotted as black arrows. Their lengths are normalized in
each plot such that the longest gradient has unit norm, since we are interested
in the relative length variation across the gradients. Figure 3.1 illustrates that
relatively many gradients have similar magnitude when using gc (x) = f (zx)
or gc (x) = log [P (c|zx)], while only a limited number of gradients have a sig-
nificant magnitude when using gc (x) = P (c|zx) as a visualization function.
Figure 3.2 illustrates that using gc (x) = log [P (c|zx)] or gc (x) = P (c|zx)
leads to small magnitudes of the gradients when p (c|zx) ≈ 1. Additionally,
using gc (x) = P (c|zx) also leads to small magnitudes of the gradients when
p (c|zx) ≈ 0.

3.6.3 Estimating sensitivity maps

Estimation of sensitivity maps requires integration over (part of the) input do-
main X according to the definition eq. (3.45). In general the density p (x) is
unknown, and we invoke the sampling distribution p (x) ≈ 1

NI

∑
n∈I δ (x− xn).

Hence, the integral is approximated by a finite sum over data observations

sck ≈
1

NI

∑

n∈I

[
∂

∂x
gc (x) |x=xn

]k
, k ∈ {1, 2} (3.56)

where I is a set containing data observation indices, and NI is the number of
members in the set I. In order to estimate sensitivity maps we must select the
set I over which the summation in eq. (3.56) is done. Additionally, one or more
output channels c must be selected. Many different choices and combinations
exist, and in the following we will outline just a few.
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I: Class specific map version 1

Let all observations of class c define the set Ic. Output channel c is considered
which leads to the map

sck =
1

NIc

∑

n∈Ic

[
∂

∂x
gc (x) |x=xn

]k
, k ∈ {1, 2}. (3.57)

We here use the notation sck referring to that the output corresponding the c’th
class is considered.

II: Class specific map version 2

Let all observations define the set I. Output channel c is considered which leads
to the map

sck =
1

NI

∑

n∈I

[
∂

∂x
gc (x) |x=xn

]k
, k ∈ {1, 2}. (3.58)

Again the notation sck refers to that the output corresponding the c’th class is
considered.

III: Grand average map version 1

Let all observations of class c define the set Ic. Furthermore all output channels
are considered which leads to a grand average map sgak as

sgak =
1

C

C∑

c=1

{
1

NIc

∑

n∈Ic

[
∂

∂x
gc (x) |x=xn

]k}
, k ∈ {1, 2}. (3.59)

IV: Grand average map version 2

Let all observations define the set I. Furthermore all output channels are con-
sidered which leads to a grand average map sgak as

sgak =
1

C

C∑

c=1

{
1

NI

∑

n∈I

[
∂

∂x
gc (x) |x=xn

]k}
, k ∈ {1, 2}. (3.60)
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V: Interclass contrast map

Let all observations in class c′ define the set Ic′ . Furthermore output channel c
is considered which leads to the map

s
c|c′
k =

1

NIc′

∑

n∈Ic′

[
∂

∂x
gc (x) |x=xn

]k
, k ∈ {1, 2}. (3.61)

We here use the notation s
c|c′
k referring to that the output corresponding the

c’th class is considered, and that the map is based on data observations in class
c′.

VI: Weighted maps

The contributions from the individual gradients are weighted by some factor wmn ,
where m indicates that we can have multiple weight factors per data observation.
This procedure can be applied to all maps eq. (3.57 - 3.61). For example,
applying the weighting factor to the interclass contrast map eq. (3.61) gives

s
c|c′,m
k =

1

NIc′

∑

n∈Ic′
wmn

[
∂

∂x
gc (x) |x=xn

]k
, k ∈ {1, 2}. (3.62)

The motivation behind the introduction of the weight factor is as follows. Con-
sider the maps eq. (3.57 - 3.61). Cancellation can occur when estimating the
signed sensitivity map (k = 1) due the possible existence of sign differences in
the gradients across the members of I. Even when using linear classifiers such
cancellation can occur if C > 2. One possible solution is to calculate the sensitiv-
ity map (k = 2) as a visualization, where the squaring remove such cancellation
effects. However, it may be relevant to derive a visualization that contains sign
information. By use of the weight factor we can hope to mitigate the problem
of cancellation to some extent. For example, we could perform clustering of the
data observations as defined by I such that observations with similar gradient
∂gc (x) /∂x|x=xn

are assigned to the same cluster. E.g. by modeling the data
by M clusters we obtain wmn = P (m|zxn) for m ∈ 1, . . . ,M with P (m|zxn) be-
ing the posterior probability of point xn belonging to cluster m. The notation

s
c|c′,m
k refers to that the output corresponding the the c’th class is considered,

and that the map is based on data observations in class c′, where each gradient
is weighed according to the weights wmn . Hence, the weighted maps can be seen
as a refinement of the interclass contrast maps in (V), where we for each inter-
class contrast map obtain M maps by procedure (VI). Figure 3.3 illustrates a
scenario, where some heterogeneity in gradient orientation within the same class
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exists. No cancellation will occur when calculating the sensitivity map (squar-
ing the gradients). However sign information is lost. Summation of gradients
without squaring results in cancellation effects. The resulting map will fail to
capture that the gradients have a considerable component along the second di-
mension. Generating weighted maps (multiple maps for each class) could lead
to discovery of the relevance of the second dimension while maintaining sign
information.
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Figure 3.1: Illustration of gradients (arrows) based on three different visu-
alization functions gc (x). From top to bottom: gc (x) = f (zx), gc (x) =
log [P (c|zx)], and gc (x) = P (c|zx). The plots show how each point belong-
ing to class 1 should be changed locally in order to increase the likelihood of the
point being assigned to class 2.
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Figure 3.2: Illustration of gradients (arrows) based on three different visu-
alization functions gc (x). From top to bottom: gc (x) = f (zx), gc (x) =
log [P (c|zx)], and gc (x) = P (c|zx). The plots show how each point belong-
ing to class 1 should be changed locally in order to increase the likelihood of the
point being assigned to class 1.
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Figure 3.3: Illustration of scenario with considerable heterogeneity among the
gradients’ orientations within the same class. Summation of the gradients will
lead to cancellation effect along the second dimension. Hence, a map based on
the sum of the signed gradients will primarily identify the first dimension as
important to the discriminative task. (Gradients are based on the visualization
function gc (x) = f (zx)).
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3.7 Denoising and localized visualization using
kernel principal component analysis and pre-
image estimation

Kernel principal component analysis (KPCA) is a nonlinear generalization of
PCA and operates in a feature space F , (Schölkopf et al., 1998; Mika et al.,
1999b). Linear PCA is often used as an exploratory tool relying on the decom-
position X̃ = SV of the centered data matrix X̃ ∈ RN×P , where V ∈ RN×P
holds orthonormal basis vectors in the rows, and S ∈ RN×N holds the data ob-
servations’ coordinates with respect to this new basis or the so called PC scores
S = X̃V>. Hence, the PC scores can be interpreted by inspecting a correspond-
ing basis vectors, e.g. Bullmore et al. (1996); Hansen et al. (1999). Likewise,
denoising can be performed by projecting a data observation onto a subspace
spanned by a few basis vectors e.g. by truncating the basis V to only include
the first K rows VK . The denoising operation is then X̃denoised = X̃V>KVK . In
KPCA it is straightforward to obtain the PC scores. However, is it complicated
to i) going from a data point’s projections in feature space F to the observation’s
representation in the input space X , and ii) interpret the PC scores, since basis
vectors do not directly have a representation in the input space. In the following
we will briefly summarize KPCA as introduced by Schölkopf et al. (1998); Mika
et al. (1999b). This is following by a description of the pre-image procedure
that attempt to recover input space representations from data points feature
space projections (Mika et al., 1999b). Finally, we propose an interpretation
procedure for KPCA that is based on sensitivity mapping visualization.

3.7.1 Kernel principal component analysis

Let φ : X 7→ F be a mapping from the D-dimensional input space, X , to
the feature space, F . Now, let {x1, . . . ,xN} be N data points in X and
{φ (x1) , . . . ,φ (xN )} be the corresponding points in F .

KPCA is similar to PCA that estimates a set of orthogonal basis vectors that
diagonalizes the covariance. However, rather than working in X KPCA operates
in F . Specifically, KPCA diagonalizes the covariance matrix in feature space

C =
1

N

N∑

n=1

φ̃ (xn) φ̃ (xn)
>
, (3.63)

where it is assumed that the data has been centered (in feature space by φ̃ (x) =

φ (x)−∑N
n=1 φ (xn)). By transforming the data by an orthogonal basis defined



3.7 Denoising and localized visualization using kernel principal component
analysis and pre-image estimation 65

as basis vectors in the rows of V ∈ RN×F we achieve the new uncorrelated set
of coordinates. Specifically, we seek eigenvalues λ ≥ 0 and a corresponding set
of eigenvectors v that satisfy the eigenvalue problem

Cv = λv. (3.64)

Now, it follows that the eigenvectors v lies in the span of the mapped data

observations
{
φ̃ (x1) , . . . , φ̃ (xN )

}
, such that v =

∑N
n=1 αnφ̃ (xn) with α ∈

RN×1 being a coefficient vector (Schölkopf et al., 1998; Mika et al., 1999b). By
exploiting the kernel trick we can solve an equivalent eigenvalue problem

K̃α = Nλα, (3.65)

with K̃ being the centered kernel matrix4 The solutions αj are normalized by the
requirement vj>vj = 1, which translates into requiring λjα

j>αj = 1. Finally,

a mapped data observation φ̃ (x) can be projected onto the basis vector vj by
the operation

β (x)j = vj>φ̃ (x)

=

N∑

n=1

αjnk̃ (xn,x) , (3.66)

with k̃ (xn,x) being the n’th element of the vector k̃x defined as the centralized
version of the vector kx.

As with PCA we may expect the underlying relevant structure of the data to
be present in a subspace. Hence, we can retain q < N components in order to
perform KPCA denoising. Equivalent to PCA, the squared reconstruction error
is minimal and the retained variance is maximal for KPCA. However, these
properties hold in F not in X . For a more thorough derivation of KPCA the
reader is referred to Schölkopf et al. (1998); Mika et al. (1999b).

3.7.2 Pre-image estimation

Suppose that we are interested in a denoised version of an observation x0. A data
observation’s feature space projection can be obtained by means of eq. (3.66).
The main challenge in denoising by KPCA is the mapping of denoised feature

4Centralizing the data in the feature space can be performed by the following
operations (Schölkopf et al., 1998; Rosipal et al., 2001). Training data: K̃ =(
IN − 1

N
1n1>

n

)
K

(
IN − 1

N
1N1>

N

)
, with N being the number of training data observations.

Test data: k̃x
>

=
(
kx

> − 1
N
1>
NK

) (
IN − 1

N
1N1>

N

)
.
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Figure 4.9: A 2-dimensional two-class example illustrating the problems
with many local minima in the cost function. We seek to de-noise the
green point in the center using kernel PCA with 50 principal components
and varying the scale. Mika et. al.’s algorithm is initialized in all 500
training points resulting in 500 pre-image estimates indicated by the black
crosses in the two top rows. The bottom row shows the value of the cost
function ||ϕ(z) − Pqϕ(x)||2 for each pre-image (the color indicates which
class the initialization point belongs to).

augmenting the cost function with a penalty term on the input space distance.
Thus the distance criteria in (4.1) is changed to

z = argmin
z∈X

||ϕ(z) − Pqϕ(x0)||2 + λ||z − x0||2 (4.28)

here λ is a non-negative regularization parameter and x0 is the noisy observation
in X . The idea of combining input and feature space distances is illustrated in
Figure 4.10.

Thus in continuation of (4.9) we now seek to minimize

||ϕ(z) − Pqϕ(x)||2 + λ||z − x0||2

30 The Pre-image Problem

4.1 Introduction

In many applications it is of interest to reconstruct a data point in input space
from a point in feature space, i.e., applying the inverse map of ϕ. For example
de-noising by kernel PCA works by mapping a noisy input point x into feature
space, ϕ(x) ∈ F , and then projecting it onto q principal components in feature
space giving Pqϕ(x). By mapping the projection back into input space a new
and hopefully less noisy point z = ϕ−1(Pqϕ(x)) is obtained.

Given a point in feature space Ψ, the pre-image problem thus consists of finding
a point z ∈ X in the input space such that ϕ(z) = Ψ. z is then called the
pre-image of Ψ, and finding z is called the pre-image problem. As a function
f : X "→ Y only has an inverse if and only if f is both one-to-one and onto,
ϕ will in general not have an inverse, and hence recovering the pre-image is not
straightforward. This follows from the fact that when dim(F) $ dim(X ), ϕ can
not be onto, and whether the map is one-to-one depends on the choice of kernel
function.

The pre-image problem is illustrated in Figure 4.1. The property that ϕ is
not necessarily onto leads to the conclusion that not all points in F or even
span{ϕ(X )} is the image of some x ∈ X . Furthermore, when ϕ is not one-to-
one it follows that even when a pre-image exists it might not be unique. Thus
the pre-image problem is ill-posed. Thereby, not all points that in F can be
expressed as a linear combination of the ϕ-mapped training points, e.g., kernel
PCA projections can necessarily be represented as the image of any point in
input space. (Dambreville, Rathi and Tannenbaum, 2006; Mika et al., 1999;
Kwok and Tsang, 2004; Arias, Randall and Sapiro, 2007; Schölkopf et al., 1999)

Hence, the exact pre-image typically does not exist, and we therefore relax the
search to find an approximate pre-image, i.e., a point in input space which maps
into a point in feature space ”as close as possible” to Ψ. However, this is still
not trivial due to the possible infinite dimensionality of F (Schölkopf, Smola,
Knirsch and Burges, 1998a).

Different optimality criteria could be used for this approximation, such as (Arias
et al., 2007)

Distance: z = argmin
z∈X

||ϕ(z) − Ψ||2 (4.1)

Co-linearity: z = argmax
z∈X

〈
ϕ(z)

||ϕ(z)|| ,
Ψ

||Ψ||

〉
(4.2)

The generalization of any kernel algorithm often heavily depends on the choice
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Figure 4.9: A 2-dimensional two-class example illustrating the problems
with many local minima in the cost function. We seek to de-noise the
green point in the center using kernel PCA with 50 principal components
and varying the scale. Mika et. al.’s algorithm is initialized in all 500
training points resulting in 500 pre-image estimates indicated by the black
crosses in the two top rows. The bottom row shows the value of the cost
function ||ϕ(z) − Pqϕ(x)||2 for each pre-image (the color indicates which
class the initialization point belongs to).

augmenting the cost function with a penalty term on the input space distance.
Thus the distance criteria in (4.1) is changed to

z = argmin
z∈X

||ϕ(z) − Pqϕ(x0)||2 + λ||z − x0||2 (4.28)

here λ is a non-negative regularization parameter and x0 is the noisy observation
in X . The idea of combining input and feature space distances is illustrated in
Figure 4.10.

Thus in continuation of (4.9) we now seek to minimize

||ϕ(z) − Pqϕ(x)||2 + λ||z − x0||2
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Figure 4.9: A 2-dimensional two-class example illustrating the problems
with many local minima in the cost function. We seek to de-noise the
green point in the center using kernel PCA with 50 principal components
and varying the scale. Mika et. al.’s algorithm is initialized in all 500
training points resulting in 500 pre-image estimates indicated by the black
crosses in the two top rows. The bottom row shows the value of the cost
function ||ϕ(z) − Pqϕ(x)||2 for each pre-image (the color indicates which
class the initialization point belongs to).

augmenting the cost function with a penalty term on the input space distance.
Thus the distance criteria in (4.1) is changed to

z = argmin
z∈X

||ϕ(z) − Pqϕ(x0)||2 + λ||z − x0||2 (4.28)

here λ is a non-negative regularization parameter and x0 is the noisy observation
in X . The idea of combining input and feature space distances is illustrated in
Figure 4.10.

Thus in continuation of (4.9) we now seek to minimize

||ϕ(z) − Pqϕ(x)||2 + λ||z − x0||2
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Figure 4.10: The pre-image problem in kernel PCA de-noising concerns
estimating z from x0, through the projection of the image onto the principal
subspace. Presently available methods for pre-image estimation lead to
unstable pre-images because the inverse is ill-posed. We show that simple
input space regularization, with a penalty based on the distance ||z − x0||
leads to a stable pre-image.

= k(z, z) − 2

N∑

n=1

γnk(z,xn) + Ω + λ(zT z + xT
0 x0 − 2zx0) (4.29)

When ignoring z-independent terms, the above to reduces

k(z, z) − 2
N∑

n=1

γnk(z,xn) + λ(zT z − 2zx0) (4.30)

which should be minimized w.r.t. z. This expression can be minimized for any
kernel using a non-linear optimizer.

For RBF kernels Mika et al.’s (1999) fixed-point iteration scheme can be regular-
ized similarly, this typically leads to a faster evaluation than using an optimizer.

Introducing regularization in the maximization problem given in (4.11) leads to
the following objective function

ρλ(z) =

N∑

n=1

γnk(z,xn) − λ||z − x0||2 (4.31)

which we seek to maximize w.r.t. z. It should be noted that the λ in the
equation above differs by a factor two compared to the λ in equation (4.29) due
to the 2 in front of the second term in (4.29).

Now following the derivation in Mika et al. (1999), the first order derivative of
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the following objective function
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which we seek to maximize w.r.t. z. It should be noted that the λ in the
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to the 2 in front of the second term in (4.29).

Now following the derivation in Mika et al. (1999), the first order derivative of

Figure 3.4: The pre-image problem in kernel principal component analysis de-
noising concerns estimating z from x0, through the projection of the image onto
the principal subspace in feature space, F . (This image was kindly provided by
Trine Jule Abrahamsen, DTU Informatics).

space points back into input space. Assuming that the given feature space point

lies in the span of
{
φ̃ (x1) , . . . , φ̃ (xN )

}
implies that it can be represented as

a linear combination of the training images. The pre-image problem consists
of finding a point z ∈ X such that φ̃ (z) = Pqφ̃ (x0), where Pq denote the

projection onto a subspace. z is then called the pre-image of Pqφ̃ (x0).

Since a function has an inverse if and only if it is bijective, φ will not be invertible
for most nonlinear kernel functions, and thus the pre-image problem is ill-posed
(Burges, 1998; Schölkopf et al., 1998, 1999; Mika et al., 1999b; Kwok and Tsang,
2004). For many choices of kernels dim (F)� dim (X ), and it follows that not
all points in F or even the subspace spanned by {φ (x1) , . . . ,φ (xN )} is the
image of any x. Furthermore, whenever φ is not injective, uniqueness of a
recovered pre-image is not guaranteed.

Since an exact pre-image often does not exist, various approaches to the non-
linear optimization problem of finding an approximate pre-image have been de-
veloped (Mika et al., 1999b; Kwok and Tsang, 2004; Abrahamsen and Hansen,
2011b). The original work by Mika et al. (1999b) proposed a fixed-point iterative
approach by seeking a point in input space which maps into a point in feature
space ‘as close as possible’ to Pqφ̃ (x0) (see Figure 3.4). Thus the pre-image
estimate is defined as a point which minimizes the Euclidean distance between
φ̃ (z) and Pqφ̃ (x0) with respect to z

R (z) = ||φ̃ (z)− Pqφ̃ (x0) ||2. (3.67)

For the Gaussian kernel Mika et al. (1999b) devised a fixed point iteration
scheme to estimate pre-images based on minimization of the objective eq. (3.67).
As any other iterative approach to nonlinear optimization problems, this method
can suffer from convergence to local minima and sensitivity to the initialization.



3.7 Denoising and localized visualization using kernel principal component
analysis and pre-image estimation 67

Kwok and Tsang (2004) proposed a closed form solution to the pre-image prob-
lem. Their approach is based on the assumption that for any two observations xi
and xj there exists a simple relation between their Euclidean distance in input
space and the distance between the corresponding φ-mapped images in feature
space. The relation between the distance measures is obtained by exploiting the
idea of multidimensional scaling, where a low dimensional distance preserving
manifold is sought. Instead of using all the training points, only the k nearest
neighbors in feature space are used for the pre-image estimation. The basic
idea of the method by Kwok and Tsang (2004) is to estimate the pre-image by
projection onto the subspace in input space spanned by the chosen neighbors.

3.7.3 Global visualization of kernel principal component
analysis

The pre-image estimation provides reconstructions of localized feature space
points in input space. Another relevant issue is to assess the importance of each
input space dimension to the PC scores. Such interpretation can be achieved
for linear PCA by inspecting the basis vectors in V. Consider KPCA with a
linear kernel. Since φ̃ (x) = x −m, with m defined as the observation mean
vector, we can recover the j’th basis vector simply by

vj =

N∑

n=1

αjnφ̃ (xn)

=

N∑

n=1

αjn (xn −m) . (3.68)

Our basic idea here is to apply the sensitivity mapping procedure in order to
obtain similar interpretation of KPCA using other kernels than the linear ker-
nel. Hence, we are interested in a model visualization of a KPCA residing in
input space. To achieve this, the feature space projections β (x)j in eq. (3.66)
is used as a visualization function in the general definition eq. (3.45). For ex-
ample, consider a scenario where we are interested in the relative importance of
input dimensions to data observations’ embeddings along the j’th component
of KPCA. The gradient of the visualizing function gc (x) = β (x)j reads

∂

∂x
gc (x) =

∂

∂x

N∑

n=1

αjnk̃ (xn,x)

=
∂

∂x

N∑

n=1

αjn

[
k (xn,x)− 1

N

N∑

n′=1

k (xn,x)

]
. (3.69)
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For example, using the linear kernel we immediately have the gradient as

∂

∂x
gc (x) =

N∑

n=1

αjn (xn −m) . (3.70)

Hence, when using the gradient eq. (3.70) and the signed sensitivity map defini-
tion eq. (3.45) (k = 1) the visualization obtained with the sensitivity mapping
procedure will be equivalent to the conventional visualization of linear PCA via
visualization of basis vectors v. In general similar visualizations can be derived
from KPCA models using e.g. the Gaussian kernel with the gradient given in
eq. (3.54).



3.8 Model evaluation 69

3.8 Model evaluation

3.8.1 Prediction accuracy, model reproducibility, and NPAIRS
resampling

Different metrics can be used in order to assess the ‘quality’ of a trained predic-
tive model. A natural measure of a trained model’s ability to provide meaningful
predictions is the model’s generalization error (or similarly the prediction accu-
racy) (Mørch et al., 1997; Hastie et al., 2009) as defined by

Gθ =

∫
e (y, ŷ|θ) p (x, y) dxdy, (3.71)

where e (y, ŷ|θ) is some ‘error’ measure5 and θ denote that the model is parametrized
by a set of parameters. Examples of error measures e (·) are the squared error,
deviance, or classification error. Typically, the joint distribution p (x, y) is un-
known and we invoke the sampling distribution p (x, y) ≈ 1

N

∑
n δ (x− xn, y − yn).

The generalization error is then estimated over a finite number of samples. In
ideal settings an independent data set will be available for performance eval-
uation. However, often only a limited sized data set D is available for model
building, model selection, and performance evaluation. A strategy is to use
D for both model building, selection, and performance assessment. This leads
to the re-substitution error. When building flexible models the re-substitution
error can be overly optimistic and underestimate the generalization error. To
alleviate such bias different partitioning and resampling schemes has been pro-
posed, see e.g (Molinaro et al., 2005). Such methods partition D into disjoint
training and test sets Stest and Strain. Furthermore, the training set can be
partitioned into a training set and a validation set for model selection. Hence,
the generalization error is estimated by

GθStrain
=

1

NStest

∑

i∈Stest
e (yi, ŷi|θStrain) , (3.72)

where θStrain denote that the model parameters have been learned from the
training set.

There exist a variety of strategies for splitting D. One approach is n-fold cross-
validation. This method assigns the observations in D to one of n partitions.
n − 1 partitions will serve as a training set and the last partition will serve
as the test set. The generalization error is then assessed with each of the n
partitions being the test set, and the resulting estimates of generalization error is

5Note that the predictions depend on the variable x, i.e. ŷ (x).
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averaged. The extreme case is leave-one-out cross-validation where the number
of partitions equals the number of observations in D. Resampling leads to
estimation of the prediction error as

G =
1

n

n∑

j=1

1

NS(j)
test

∑

i∈S(j)
test

e
(
yi, ŷi|θS(j)

train

)
, (3.73)

where S(j)train and S(j)test denote assignments of observations to the training and
the test sets in the j’th partition. Another popular approach is the Bootstrap
resampling scheme, where the training set is formed by sampling with replace-
ment. The generalization error is then estimated based contribution from the
re-substitution error and a test error estimate on samples not included in the
training set, see e.g. Efron (1983); Efron and Tibshirani (1997). A general
discussion of different resampling schemes is found in Hastie et al. (2009) while
Molinaro et al. (2005) report on the performance of the different methods for
estimating the generalization error.

Strother et al. (2002) proposed the NPAIRS (nonparametric prediction, activa-
tion, influence, and reproducibility resampling) framework for quantitative eval-
uation of functional neuroimaging experiments. This resampling framework use
split-half resampling. The motivation behind NPAIRS is that models should not
only be evaluated based on estimating the prediction accuracy/generalization
error. It is equally important to assess the quality of models’ visualizations
(statistical parametric images (SPIs)), since they form the basis of experimen-
tal interpretation. In this split-half framework the data set D is split into two
splits of equal size S1 and S2. A model is built on S1 and prediction accuracy
is estimated from S2 and vice versa yielding two estimations of the prediction
accuracy metric (p). Additionally, an SPI is extracted from each model denoted
by w1 and w2. A reproducibility metric (r) is estimated based on a similarity
measure of w1 and w2. Strother et al. (2002) proposed to measure the similarity
based on the Pearson’s product correlation coefficient. The split-half resampling
procedure is repeated a number of times, each time with different combinations
of the data observations assigned to S1 and S2.

In addition to estimates of prediction accuracy and visualization reproducibility
the NPAIRS resampling scheme also provides an estimate of a reproducible SPI
(rSPI): Each of the SPIs (wi’s, i ∈ {1, 2}) are normalized by their standard
deviation and plotted against each other in a scatter plot, see Figure 3.5. Two
axes are defined in the scatter plot. A signal axis is defined along the line of
identity, and a uncorrelated noise axis is defined orthogonal to the signal axis.
The projection of the normalized SPIs onto the signal and noise axes can be
formed by (w1 + w2)/

√
2 and (w1 −w2)/

√
2 respectively. Finally, the rSPI is

obtained by rescaling the projection onto the signal axis s with the standard
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Figure 3.5: Example of a scatterplot used for generating reproducible model
visualizations (rSPIs). A Fisher’s linear discriminant analysis (FDA) model
was trained to discriminate between (left) and (right) hand finger tapping in
the finger tapping data set (Section 4.1). Two models were trained on two
independent splits of the data set S1 and S2. The weight vector w in FDA was
used as model visualization. The left plot shows a scatter plot based on weight
vectors from each split-half (each scaled by its standard deviation). The lines
indicate the signal axis and the uncorrelated noise axis. The right plot shows
the distributions of the scatter cloud projected onto the two axes in the left plot
(green is signal projection and orange is noise projection - each scaled by the
standard deviation of the projection of the scatter cloud onto the noise axis).
The dashed black line is the theoretical N (0, 1) distribution.

deviation of the distribution of the scatter cloud projected onto the noise axis
n. This rescaled rSPI is referred to as a rSPI(Z), assuming that the distribution
of n is approximated by a Gaussian N (0, 1− r) distribution, with r being the
Pearson’s product correlation coefficient. The interested reader is referred to
Strother et al. (2002) for further details. An average reproducible visualization
rSPI(Z) is finally obtained by averaging over the resampling repetitions6.

6For model visualizations with only positive values (e.g. squared sensitivity maps) we scale
the individual visualizations w to unit norm (Sigurdsson et al., 2004). In such cases the signal
projection will only have positive values. The reproducible visualizations will then be denoted
rSPI and rSPI.
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3.8.2 Statistical significance

The statistical significance of model performance can be assessed by means of
permutation analysis (Golland and Fischl, 2003). By the permutation analysis
we are interested in performing a hypothesis test, and possible reject the null hy-
pothesis at a certain level of confidence α. Under the null hypothesis we assume
that observations x and class labels y are independent, i.e. p (x, y) = p (x) p (y).
We consider the generalization error eq. (3.72) as a test statistics. First, the
test statistics is calculated with the correct labeling of data observation yielding
t0. Hereafter, the data observations are permuted and the test statistic tn is
recalculated. This is repeated M times yielding a distribution of tn under the
assumption that the data observations and labels are independent. Finally, t0
can be compared to the empirical null distribution, and the null hypothesis may
be rejected at level of significance α. The same procedure can be used to assess
the statistical significance of the reproducibility metric. Further discussions on
issues regarding the use of permutation analysis in the analysis of neuroimaging
data set are found in Nichols and Holmes (2002); Pereira and Botvinick (2011).

Different approaches exist in order to assess the statistical significance of the
models visualizations as summarized by the rSPI(Z) and rSPI. One approach
is to use the permutation analysis and consider each element in the rSPI(Z)
and rSPI as a test statistics. First the reproducible visualization is constructed
based on the correct labeling of data observations. Hereafter a permutation
distribution is formed (for each element in the visualization) by permuting data
observations and re-estimating the reproducible visualization yielding a null dis-
tribution for each element. Finally, the reproducible visualizations based on cor-
rect labeling is compared to the null distribution resulting in a p-value for each
element in the model’s visualization. If some null-distribution can be assumed
we can obtain the set of p-values by comparing to a theoretical distribution. For
example, we may compare the rSPI(Z) to the theoretical N (0, 1) distribution
(Strother et al., 2002).



Chapter 4

Data sets

This chapter describes the fMRI data sets used in the analyses presented in
the dissertation. The first data set origins from a multi-subject finger tapping
experiment. This data set was used since the underlying brain network involved
in finger tapping is relatively well characterized. Hence the models’ ability to
identify the underlying signal structure could be evaluated. The second data set
origins from a multi-subject study, where we expected a lower signal to noise
ratio in comparison to the finger tapping data set. The experimental design is
an adaption of the Trail-Making Test. The third data set origins from a multi-
subject experiment with visual checkerboard stimulation. While the evoked
brain signals are expected to be confined to visual brain areas, the experimental
design was deliberately constructed to allow for relatively complicated classifi-
cation tasks to be formulated. The forth data set is a multi-subject data set
containing several runs within each subject. This data set was included to in-
vestigate if our findings (based on multi-subject analysis using spatially filtered
data) also generalized to data without spatial filtering. Additionally, this data
set was expected to contain more subtle signal structure than e.g. the finger
tapping data set. The four data sets were acquired from different subject groups
at different centers/scanners. For compatibility with published results, we have
maintained the centers’ respective preprocessing pipelines.
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4.1 Finger tapping experiment

The finger tapping data set origins from a multi-subject study. The experimen-
tal paradigm consisted of two paced motor conditions in the following sequence:
(right) right hand finger tapping, (left) left hand finger tapping. Pacing was
provided by means of a red (left condition) or green (right condition) circle
flashing at 1 Hz presented at the center of a screen. Each condition was pre-
sented for 20 s followed by 9.88 s of rest with no finger tapping. The stimulation
cycle was repeated 10 times in the experimental run, and 240 scan volumes were
acquired in total. One experimental run per subject was conducted. The work
in the present dissertation is based on up to 28 subjects from this study. The
fMRI data were acquired on a 3T MR scanner (Magnetom Trio; Siemens AG,
Erlangen, Germany) using a standard 1 channel birdcage transmit/receive head
coil. The data set consists of functional images acquired with a repetition time
(TR) of 2490 ms and structural scans for the individual subjects. Preprocess-
ing of the fMRI time series data included the following steps for each subject:
(1) rigid body realignment, (2) co-registration of the functional images to the
structural scan, (3) spatial normalization of the structural scan to the MNI152
template (Montreal Neurological Institute template), (4) reslicing of images into
MNI space at 3 mm isotropic voxels, (6) spatial smoothing of spatial normalized
images using an isotropic 6 mm FWHM Gaussian filter, (7) low frequency com-
ponents were removed from the time series with a set of discrete cosine basis
functions up to a cut-off period of 128 seconds, (8) the mean resting-state volume
was subtracted, based on the last two images of each rest period. Additionally,
the scans were masked with a rough whole-brain mask (57,988 voxels). For
the classification analysis we extracted scans from the (right) and (left) epochs,
discarding two transition scans at the start of each block, which gave 120 scans
in total, per subject. Further information on acquisition and preprocessing is
found in Rasmussen et al. (2012b).

4.2 Trail-Making Test experiment

The Trail-Making Test data set origins from a multi-subject study. The data
set is also referred to as the trailsAB data set in this dissertation. The experi-
mental paradigm is an adaptation of the Trail-Making Test (AITB, 1944; Bowie
and Harvey, 2006), designed for the fMRI environment (Tam et al., 2011). Task
blocks alternately consisted of (Trails A), where numbers 1-14 were pseudoran-
domly distributed on a viewing screen, and (Trails B), where numbers 1-7 and
letters A-G were shown. Subjects drew a line connecting items in sequence (1-
2-3-... or 1-A-2-B-...) as quickly as possible while maintaining accuracy, over
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a 20 s block using an fMRI-compatible writing tablet and stylus (Tam et al.,
2011). After each task block, a 20 s Baseline block was shown, in which subjects
drew a line from the center of the screen to a random dot on a circle and back,
every 2 s. A 4-block, 40-scan epoch of Trails A-Baseline-Trails B-Baseline was
performed two times per run, and 80 scans were acquired in total per run. Two
experimental runs per subjects were conducted. Data from 14 subjects and only
the second run was used in the analyses. The fMRI data were acquired on a
3T MR scanner (Magnetom Trio; Siemens AG, Erlangen, Germany) using a 12
channel birdcage transmit/receive head coil. The data set consists of functional
images acquired acquired with a TR of 2000 ms and structural scans for the
individual subjects. Preprocessing of the fMRI time series data included the
following steps for each subject: (1) rigid body realignment, (2) in-plane spatial
smoothing with a 6 mm FWHM Gaussian kernel, (3) temporal filtering using
0-3rd-order Legendre polynomials, (4) spatial normalization of the structural
scan to a study specific template based on individual subjects’ structural scans
registered to the MNI152 template, (5) reslicing of images into MNI space at
3.125×3.125×5 mm voxels, (6) the scans were masked with a rough whole-brain
mask (35,132 voxels). For the classification analysis we extracted eight scans
from the Trails A and Trails B epochs, discarding two transition scans at the
start of each block, which gave 32 scans total, per subject. Further information
on acquisition and preprocessing is found in Rasmussen et al. (2012b). For other
analyses of this data set see Churchill et al. (2012a).

4.3 Xor experiment

The xor data set origins from a multi-subject study. Six subjects were enrolled
after informed consent as approved by the local Ethics Committee. In the exper-
imental paradigm the participants were subjected to four conditions presented
on a screen in the following sequence: (no) no visual stimulation, (left) revers-
ing checkerboard on the left half of the screen, (right) reversing checkerboard
on the right half of the screen, (both) reversing checkerboard on both halves
of the screen. In order to maintain attention the participants were instructed
to keep focus on a small circle presented in the center of the screen during the
experiment, and to respond with a right hand button press to a change in the
color of the circle. Each condition was presented for 15 s followed by 5.04 s of
rest with no visual stimulation. The stimulation cycle was repeated 12 times
in the experimental run, and 576 scan volumes were acquired in total. One
experimental run per subject was conducted. The fMRI data were acquired
on a 3T MR scanner (Magnetom Trio; Siemens AG, Erlangen, Germany) us-
ing an 8 channel birdcage transmit/receive head coil. The data set consists of
functional images acquired with a TR of 1670 ms and structural scans for the
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individual subjects. Preprocessing of the fMRI time series data included the
following steps for each subject: (1) rigid body realignment, (2) co-registration
of the functional images to the structural scan, (3) spatial normalization of the
mean echo planar imaging (EPI) image to the EPI template in SPM8, (4) reslic-
ing of images into MNI space at 2 mm isotropic voxels, (5) spatial smoothing
of spatial normalized images using an isotropic 8 mm FWHM Gaussian filter,
(6) low frequency components were removed from the time series with a set of
discrete cosine basis functions up to a cut-off period of 128 seconds, (7) stan-
dardization of the individual voxels time series, (8) the scans were masked with
a rough whole-brain mask (75,257 voxels). For the classification analysis we
extracted scan 7-11 in each epoch, and the remaining volumes were discarded
to avoid contaminating effects of the hemodynamic BOLD signal. Finally, the
scans extracted from each block were averaged, which gave 48 scans in total,
per subject. Further information on acquisition and preprocessing is found in
Rasmussen et al. (2011).

4.4 Object recognition experiment

This data set originates from the experiment of Haxby et al. (2001) on face
and object representation in the human ventral temporal cortex1. In the exper-
imental paradigm the subjects were viewing gray scale images of eight object
categories {bottle, cat, chair, face, house, scissors, scrambled, shoe} while per-
forming a one-back repetition detection task. Stimuli were grouped into 24
seconds blocks separated by rest periods in each experimental run. 12 experi-
mental runs per subjects were conducted. The data set contains data from six
subjects. The fMRI data were acquired on a 3T MR scanner (General Electric,
Milwaukee, USA). The data set consists of functional images acquired with a
TR of 2500 ms and structural scans for the individual subjects. Preprocessing
of the fMRI time series data comprised the following steps for each subject: (1)
The functional images were scull-stripped, (2) correction for rigid-body move-
ment, (3) different versions of the data set were created by spatially smoothing
with {0, 3, 6, 9, 12, 15} mm FWHM isotropic Gaussian filters, (4) the time series
were linearly de-trended and standardized within each run, (5) the scans were
masked with subject specific masks (mask vt.nii) provided with the data set
(307-675 voxels, voxel size (3.5 × 3.75 × 3.75 mm)). For the analysis we used
scan from the eight conditions, which gave 864 scans in total, per subject2 Fur-
ther details on the experiment and acquisition are found in Haxby et al. (2001).

1The data was obtained from the PyMVPA web site http://www.pymvpa.org. The authors
of Haxby et al. (2001) hold the copyright of the dataset and it is available under the terms of
the Creative Commons Attribution-Share Alike 3.0 license

2Only 792 scans were available for subject 5.
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Further information on preprocessing is found in Rasmussen et al. (2012a).
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Chapter 5

Experimental results

This chapter presents experimental results. The first section concerns an inves-
tigation of the relative influence of model regularization parameter choices on
both the model generalization, the reliability of the spatial patterns extracted
from the classification model, and the ability of the resulting model to identify
relevant brain networks defining the underlying neural encoding of the exper-
iment. This section summarizes results reported in Rasmussen et al. (2012b)
based on analysis of the trailAB data set and the finger tapping data set. Addi-
tional results based on the object recognition data set are presented. The next
section concerns visualization of nonlinear kernel models by sensitivity maps.
This section summarizes results reported in Rasmussen et al. (2011) and Ras-
mussen et al. (2012c). Additionally, it is shown how the sensitivity map can
provide a global visualization of a kernel principal component analysis (KPCA)
model. The final section concerns image denoising using KPCA and pre-image
estimation. These results have been reported in Rasmussen et al. (2012a).
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5.1 Discovery of brain networks

An investigation of the relative influence of model regularization parameter
choices was performed in Rasmussen et al. (2012b). Specifically, we focused
how selection of model regularization parameter affected classification models’
ability to: i) Provide good generalization (high prediction accuracy on a test
set), ii) provide a high degree of reliability/reproducibility of the spatial patterns
extracted from the models, and iii) identify relevant brain networks defining the
underlying neural encoding of the experiment.

5.1.1 Analysis setup

The analysis was based on 14 subjects from the finger tapping data set, the Trail-
Making Test (also referred to as trailsAB) data set, and the object recognition
data set. We formulated binary classification tasks as (left) vs. (right) in the
finger tapping data set, (Trails A) vs. (Trails B) in the trailsAB data set, and
(bottle) vs. (face) and (face) vs. (house) in the object recognition data set1.

The underlying brain network expected to support the classifiers decisions in
the finger tapping data set is relatively well known, see e.g. Moritz et al.
(2000a,b); Kustra and Strother (2001); Riecker et al. (2003); Eickhoff et al.
(2005); Witt et al. (2008). To investigate to what extent different brain regions
contain discriminative information we performed localized analyses of the finger
tapping data set. First, we performed a region based analysis. The regions
of interest (ROIs) were based on the Harvard-Oxford cortical and subcortical
structural atlases and the Probabilistic cerebellar atlas included in the FSL
4.1 software package (Smith et al., 2004). The ROIs were sensorimotor cortex
(SMC), cerebellum (CB), secondary somatosensory cortex (S2), and subcortical
regions (SC). We also considered a whole brain (WB) region in the analysis.
Figure 5.1 shows the ROIs projected onto brain slices. ROI identification was
based on prior knowledge from a series of experiments involving finger tapping
tasks (Moritz et al., 2000a,b; Kustra and Strother, 2001; Riecker et al., 2003;
Eickhoff et al., 2005; Witt et al., 2008). The ROIs were defined according to
Table 1 in the supplementary materials of Rasmussen et al. (2012b). Classifi-
cation of brain scans was performed by means of an SVM. The regularization
parameter C of the SVM was selected in order to maximize prediction accuracy
by nested cross-validation on the training set. Secondly, to quantify the local
information content throughout the entire brain we employed the searchlight

1In the analysis of the object recognition data we considered binary classification tasks in
order to use exactly the same modeling and model visualization framework as in the analysis
of the finger tapping data set and in the trailsAB data set.
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method Kriegeskorte et al. (2006): For each voxel in the brain, we defined a
spherical cluster with a radius of two voxels (6 mm). A local classifier was
trained based on information from the voxels within the cluster (33 voxels),
and the trained classifier was used to assign labels to scans in a test set. For
classification we used the Gaussian Näıve Bayes (GNB) classifier, e.g. Hastie
et al. (2009); Pereira and Botvinick (2011). The classifier was trained with the
searchlight cluster centered on each voxel in the brain volume, giving a map of
prediction accuracies for individual spatial positions. In both analyses the mod-
els were trained on seven subjects and tested on seven subjects. To estimate the
prediction accuracy the training/test procedure was repeated 50 times, where
subjects, in each resampling run, were randomly assigned to the two partitions.

Logistic regression (LogReg), Fisher’s discriminant analysis (FDA), and support
vector machine (SVM) models were used in a whole-brain classification analysis.
Specifically, the objective of the analysis was to investigate how selection of
the regularization parameter λ affects model performance. Hence λ was varied
over the range λ ∈ {2−40, 2−39, . . . , 240} (relative to the mean of the non-zero
squared singular values of the data matrix). Only linear models were considered
in order to simplify the analysis. By using linear models a visualization can be
directly derived from the trained model in terms of the weight vector as in
eq. (3.7). In both the finger tapping data set and the trailsAB data set we
considered subjects as the basic resampling unit. In the object recognition data
set the runs within the individual subjects were considered as resampling units.
Additionally, in the object recognition data set the impact of spatial smoothing
on classifier performance was assessed by analyzing versions of the data set
subjected to various degrees of smoothing ({0, 3, 6, 9, 12, 15} mm FWHM). The
split-half NPAIRS resampling strategy was used in order to evaluate the models
both in terms of prediction accuracy and pattern reproducibility. Furthermore,
reproducible brain images (rSPI(Z)s) were generated as described in Section 3.8.
50 NPAIRS resampling splits were performed.

Additionally, we performed analyses where sparsity in the voxel dimension was
imposed directly on the models of the finger tapping data set. This was done
in order to explore these methods impact on visualization of the known compo-
nents of the motor network. We considered two strategies for obtaining sparsity
- LogReg with the ENET penalty and SVM based recursive feature elimination
(RFE) (see the description of feature selection in Section 2.2.4). Resampling
was again performed within a split-half framework, and models were evaluated
in terms of test error averaged over two splits, with pattern reproducibility mea-
sured using the two metrics of mutual information (MI) between model weights,
and overlap between voxels retained in the two models. The rSPI(Z) map-
ping procedure was not applied to the sparsity enforcing models. To assess the
consensus in voxel selection across splits of the data, we recorded the frequency
across the resampling splits at which each voxel was included in the models. Fur-
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Figure 5.1: Visualization of the different regions of interest (ROIs) used in the
regional analysis of the finger tapping data set. The ROIs are projected onto an
average anatomical scan of the 14 subjects used in the analysis. Voxels defining
the ROIs are marked with black color. The numbers below the last row of brain
slices denote z coordinates in MNI space.

Region SMC S2 SC CB WB
Prediction accuracy 99.0 *** 78.5 *** 80.8 *** 98.4 *** 98.5 ***

Table 5.1: Region of interest analysis of the finger tapping data set. Split-half
prediction accuracies for five brain regions. Classification was performed with an
SVM. Results are based on 50 resampling splits. Statistical significance is based
on a permutation test with 5000 permutations. Significance code ***: p < 0.001.

ther details on calculation of performance metrics and specific implementations
of LogReg with ENET penalty and SVM based RFE are found in Rasmussen
et al. (2012b).

5.1.2 Results

Table 5.1 provides the results of the ROI based classification analysis of the
finger tapping data set. The classifiers trained on data from the WB, CB, and



5.1 Discovery of brain networks 83

93

55

Figure 5.2: Searchlight analysis of the finger tapping data set. Accuracy map
shown on subjects average anatomical scan. The map is thresholded according
to p < 0.05 FDR correction, based on a nonparametric permutation test with
5000 permutations. The accuracy map is the mean of 50 resampling splits.

SMC regions provided high prediction accuracy, while the SC and S2 regions
provided intermediate accuracies. Note that all regions provided prediction ac-
curacies well above chance level (50%). Figure 5.2 shows the results of the
searchlight analysis. A total of 12911 searchlight center voxels provided a sig-
nificant prediction accuracy. Statistical thresholding was performed using the
false discovery rate (FDR) control for multiple comparisons (Benjamini and
Hochberg, 1995). The SC and S2 regions provided low (but still significantly
different from chance level) to intermediate prediction accuracies, while CB and
SMC regions provided high prediction accuracies. Note the vertical line located
around SMA. Here the searchlight sphere covered voxels in both hemispheres
resulting in relatively high prediction accuracy.

Figure 5.3 shows the performance of the three classifiers (SVM, LogReg, FDA)
for the whole brain classification analysis of the trailsAB data set over a range
of values of the regularization parameter λ. Figure 5.4 reports corresponding
results, where the block labeling was permuted within each subject (see Sec-
tion 3.8.2 for a description of the permutation test). As seen in Figure 5.3 all
classifiers showed a transition in prediction accuracy from best accuracy at light
regularization to a decreased accuracy at stronger regularization. Around λ = 28

we observe maximum accuracy for all classifiers. The SVM showed a somewhat
steeper transition from high to low accuracy compared to the other models. All
classifiers showed a transition from low reproducibility at light regularization
to high reproducibility at strong regularization. For the SVM, we also plot the
number of support vectors retained in the model, which tend to increase with in-
creasing reproducibility. In addition, to obtain good reproducibility (e.g., > 0.3)
we need to retain the majority of data points, with > 200 support vectors from
our 224 input scans in a split-half subsample after dropping transitions. Note
that the ‘hard-margin’ SVM corresponds to the limit with low regularization
(high C since C = 1/λ), producing the least reproducible model. In the finger
tapping data set we observed the same behavior in the performance metrics,
but with higher values of prediction accuracy and reproducibility. Figure 5.5
shows performance of the LogReg classifier as a function of the model’s effec-
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Figure 5.3: Performance of the SVM, LogReg, and FDA classifiers on the
trailsAB data set, over a range of values for the regularization parameter λ.
Large values of λ corresponds to strong regularization, while small values of λ
corresponds to light regularization (the regularization parameter λ is here re-
ported relative to the mean of the non-zero squared singular values of the data
matrix). For the SVM the conventionally used complexity parameter C is given
by C = 1/λ. Note that a ‘hard margin’ SVM corresponds to an SVM with light
regularization. Prediction accuracies are reported in the left panels, and pat-
tern reproducibilities in terms of the Pearson’s product correlation coefficient
are reported in the right panel. The number of support vectors in the SVM are
also plotted over the regularization range. The curves are based on averages of
50 NPAIRS resampling splits.

tive degrees of freedom as estimated according to eq. 3.23. The reproducibility
metrics supports a model of relatively low model complexity, while prediction
accuracy supports more complex models.

Figure 5.6 shows pr-curves based on prediction accuracies and pattern repro-
ducibilities for the three models in the finger tapping data set and in the trailsAB
data set. A point on the curves corresponds to a particular value of λ. In the
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Figure 5.4: Performance of the SVM, LogReg, and FDA classifiers on the
trailsAB data set, over a range of values for the regularization parameter λ
in permuted data. Large values of λ corresponds to strong regularization, while
small values of λ corresponds to light regularization. For the SVM the con-
ventionally used complexity parameter C is given by C = 1/λ. Prediction
accuracies are reported in the left panels, and pattern reproducibilities in terms
of the Pearson’s product correlation coefficient are reported in the right panel.
The plots are based on permutation of block labels within each subject. 5000
permutations were performed.

finger tapping data set, we observe the best reproducibilities at a high degree
of regularization and the best prediction accuracy with decreasing regulariza-
tion. The curves follow the same paths, with SVM having a somewhat lower
accuracy with strong regularization, and FDA has its maximum prediction at
lower reproducibility than the other models with weak regularization. Note that
model performance in terms of test error is ≥ 90% well above chance level for
all models. In the trailsAB data set we observe that the FDA and LogReg clas-
sifiers follow the same path, while that of the SVM has lower prediction and/or
reproducibility except for weak and strong regularization. In terms of prediction
accuracy and pattern reproducibility we observe the best combined performance
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Figure 5.5: Performance of the LogReg classifier on the trailsAB data set plotted
against an estimate of the model’s effective degrees of freedom (edf).
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Figure 5.6: Prediction/reproducibility curves (pr-curves) for the three different
classifiers. Left is the model performance on the trailsAB data set and right
is the performance on the finger tapping data set. The curves are constructed
by changing the regularization parameter in the models. The curves show the
mean of 50 NPAIRS resampling splits. Based on the curves we selected three
models within each classifier type indicated by arrows in the plots. For each
classifier type, P, PR, and R correspond to optimization of prediction accuracy,
joint optimization of prediction accuracy and reproducibility, and optimization
of reproducibility respectively.

at intermediate levels of regularization for all classifiers. Importantly, there is a
trade-off between prediction accuracy and pattern reproducibility. In both data
sets and all models, there are relatively low gains in prediction accuracy and
large losses in reproducibility when moving from PR to P on the pr-curves.

Figure 5.7 shows rSPI(Z)s for the finger tapping data set, for the 9 different
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model choices (3 classifier types and 3 selected models per classifier). Positive
voxel values represent voxels in which a signal increase will drive the classifier
towards a (right) classification. Negative voxel values represent voxels in which
a signal increase will drive the classifier towards a (left) classification. The
most reproducing voxels (with the highest Z-scores) are primarily expressed in
the contralateral sensorimotor cortex (SMC), supplementary motor area (SMA)
and in the ipsilateral regions in superior and inferior cerebellum (CB). Voxels
with intermediate Z-scores are expressed in the contralateral second somatosen-
sory area (S2), thalamus and putamen (SC). These activations are consistent
with many prior studies, for example using multivariate classification in PET
(Kustra and Strother, 2001), and a voxel-wise coordinate-based meta analysis
of fMRI and PET studies (Witt et al., 2008). In general, there is a strong con-
sistency between rSPI(Z)s of the R and PR models across all three classifiers.
For all three classifiers, and in particular for FDA, choosing prediction as an
optimization criterion has an impact of the rSPI(Z)s. The subcortical regions,
some anterior cerebellar regions, and S2 are expressed with decreased Z-scores
in the P models, and also the spatial extent of voxels with high Z-scores in SMC,
SMA, and cerebellar regions is reduced.

The rSPI(Z)s for the trailsAB task are presented in Figure 5.8. Voxels that
drive the classifier towards a (Task B) classification (i.e., positive Z-scores) are
primarily expressed in the precuneus (PreC) and superior parietal lobes (SPL),
as well as the SMA and left precentral (LP) gyrus. More ventrally, reproducible
signal is also shown in the left inferior-frontal (IF) and postcentral gyri, and
the right cerebellar (CB) lobe. Reproducible voxels that drive the classifier
towards a (Task A) classification (negative Z-scores) are also observed in the
posterior cingulate cortex (PCC) and middle temporal (MT) lobe (predomi-
nantly right-side). Reproducible signal is also observed in the superior frontal
gyrus and medial orbitofrontal (MO) gyrus, along with potentially artifactual
signal near the brainstem. These activations have also been previously observed
for multivariate analysis of the trailsAB task (Churchill et al., 2012a). Of the
three classifiers, only the LogReg rSPI(Z) appears somewhat less sensitive to the
chosen optimization criterion. For SVM, prediction has a marked influence on
the rSPI(Z), as both P and PR optimization tend to primarily reinforce dorsal
activation in the SMA, PreC and SPL, along with CB, while other loci show
reduced Z-scores. The Z-scores of voxels that drive the classifier towards a (Task
A) classification are generally reduced, indicating that these regions contribute
to a less predictive, but more reproducible model. For the FDA model, opti-
mization on P again reinforces dorsal regions of activation. However, PR and R
optimization methods now produce relatively similar rSPI(Z).

Figure 5.9 provides a quantitative comparison of the average rSPI(Z)s for all
models in both data sets: finger tapping above the diagonal and trailsAB below.
The R and PR models’ spatial patterns are very similar across the classifiers,
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whereas for the P models we observe less agreement. In addition, within each
model the P and R models at different ends of the pr-curves in Figure 5.6
are most dissimilar. Note that the correlation between the average rSPI(Z)s
generally are high - the lowest value is found for SVM P vs. SVM R with 0.79
in finger tapping. Similarities across and within models are generally higher than
the reproducibilities between splits within each model (see Figure 5.6). These
map similarities also appear consistent with the relative spatial similarities of
the un-thresholded maps in Figure 5.7 and 5.8.

To identify significant activations in the rSPI(Z)s obtained from the models, the
rSPI(Z)s were thresholded as follows: i) for each voxel we computed a p-value
based on the voxels Z-score in the rSPI(Z) (by use of the theoretical N (0, 1)
distribution, see Section 3.8.2), ii) the rSPI(Z) was then thresholded using a
statistical threshold of p < 0.05 FDR correction. Hence, for a particular classifi-
cation model with a particular regularization parameter value we obtain a brain
map that is sparse due to the statistical thresholding. For the finger tapping
data set we then counted the number of voxels in the thresholded map that were
included within each of the ROIs shown in Figure 5.1. This was repeated for all
regularization parameter values and all classification models. A second analysis
was performed for both the finger tapping data set and the trailsAB data set.
Here we considered (for each classifier type) a single ROI which was defined by
the network of voxels in the rSPI(Z) of the pr-maximizing model that survived
thresholding according to p < 0.05 (FDR correction). As in the first ROI analy-
sis we thresholded rSPI(Z)s corresponding to all regularization parameter values
and all classification models according to p < 0.05 (FDR correction) and counted
the number of significant voxels within the ROI defined from the pr-maximizing
model. Here we also recorded the number of significant voxels outside the ROI.
Figure 5.10 shows the analysis of the signal detection for FDA as a function of
the regularization parameter λ in both data sets (similar results were obtained
for SVM and LogReg). The pr-maximizing points were found at λ = 214 (finger
tapping) and λ = 212 (trailsAB). Panel (A) shows the prediction accuracy and
pattern reproducibility as a function of the value of λ in the finger tapping data
set (a corresponding plot for the trailsAB data set is provided in Figure 5.3). As
seen in Figure 5.10 there is a transition in prediction accuracy from high to low
when λ increases, whereas pattern reproducibility increases with increasing λ.
Panel (B) shows the number of voxels in the thresholded rSPI(Z)s (FDR correc-
tion) within the four known motor network regions defined from brain atlases.
In general the number of voxels identified within the four regions increases with
λ and reaches a plateau at large values of the regularization parameter. A peak
in the number of voxels detected for the SC region is observed around the pr-
maximizing point. With low values of λ we observe a dramatic decrease in the
number of identified voxels within the regions. In particular the models with
low λ (and high prediction accuracy) completely fail to detect voxels in the SC
and S2 regions. This effect is also directly observed from the average rSPI(Z)
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corresponding to the P model in Figure 5.7. Figure 5.10 panel (C) shows the
number of voxels in the thresholded rSPI(Z)s within a region defined by the
thresholded rSPI(Z) corresponding to the pr-maximizing model in Figure 5.6.
When λ decreases from the pr-maximizing value we observe a rapid decrease in
the relative voxel detection. With increasing λ values from the pr-point there is
a slight increase in the number of significant voxels outside the region defined
by the pr-maximizing model. Panel (D) shows a similar but stronger trend for
the trailsAB data set. Only relatively few voxels are detected for low λ values.
When λ increases there is an increase in the number of significant voxels out-
side the region based on the pr-maximizing model. The maximum in the total
number of suprathreshold voxels (sum of the two curves in panel (D)) is found
at 214 which corresponds to the R point on the pr-curve in Figure 5.6.

Figure 5.11 - 5.14 show pr-curves based on prediction accuracies and pattern
reproducibilities for the three models (FDA, SVM, LogReg) for two subjects
in the object recognition data set (similar results were obtained for the other
subjects). The different plots show pr-curves for various levels of spatial smooth-
ing. The relationship between regularization and the performance metrics was
as observed in the finger tapping data set and in the trailsAB data set. I.e. low
reproducibility at low levels of regularization, and increasing reproducibility at
increasing regularization. Hence, when regularization increases, one moves from
left towards right on the pr-curves. In general the pr-curves for each classifier
type tend to follow the same path. At increasing degrees of smoothing and
low levels of regularization the FDA and LogReg models show decreased repro-
ducibility in comparison to the SVM. However, note that the FDA and LogReg
models have at least the same performance as the SVM at increased levels of
regularization. For subject 1 and classification task (bottle) vs. (face) (Fig-
ure 5.11) the reproducibility increases with an increasing degree of smoothing
with best performance at 6 mm FWHM. Both prediction accuracy and repro-
ducibility decrease with larger degrees of smoothing (9-15 mm FWHM). The
best combined performance is observed at 6 mm FWHM. For subject 2 and
classification task (bottle) vs. (face) (Figure 5.13) both the prediction accuracy
and the reproducibility increase with an increasing degree of smoothing with
best combined performance at 6 mm FWHM. Both performance measures de-
crease with larger degrees of smoothing (12-15 mm FWHM). For subject 1 and
classification task (face) vs. (house) (Figure 5.12) we observe relatively high
performances with respect to prediction accuracy and also reproducibility. The
reproducibility increases with increasing degrees of smoothing, whereas predic-
tion accuracy decreases with larger degrees of smoothing. The best combined
performance is observed at 6 mm FWHM. For subject 2 and classification task
(face) vs. (house) (Figure 5.14) we observe relatively high performance with
respect to prediction accuracy for all levels of smoothing. The reproducibility
metric increases with increasing degrees of smoothing without decreases in pre-
diction accuracy as observed of the classification task (bottle) vs. (face) (Figure
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5.13). The best combined performance is observed at 9 mm FWHM. Figures
5.15 and 5.16 show consensus analyses of the reproducible brain maps rSPI(Z)s
extracted from models build on data of subject 1. Figure 5.15 is based on data
without spatial smoothing, and Figure 5.16 is based on data smoothed with
6 mm FWHM. As for the trailsAB data set and the finger tapping data set
(Figure 5.9) we observe a large degree of consensus across the classifiers. I.e.
there is a strong correlation between brain maps extracted from models selected
to maximize e.g. prediction accuracy and pattern reproducibility jointly (PR).
Note that the models showing the least degree of consensus, across classifier
type, are models chosen to maximize prediction (P). This is consistent with the
observation from the two other data sets in Figure 5.9. The significance of the
observations in Figures 5.11 - 5.16 is that the models’ behavior observed in the
trailsAB data set and in the finger tapping data set translates to the object
recognition data set. Hence, the results generalizes to a data set with poten-
tially more subtle pattern differences supporting discriminative information to
the classifiers. Additionally, the shapes of the pr-curves, as observed in the
finger tapping data set and the trailsAB data set, are also observed in versions
of the object recognition data without using spatial smoothing as part of the
preprocessing chain2.

Figure 5.17 provides results of the analysis where sparsity is enforced on the
model structure in the analysis of the finger tapping data set. The top panels
(I)-(IV) show model performance over the parameter grid for LogReg with the
ENET penalty. Multiple regularization parameter combinations lead to the
same maximum model performance in terms of prediction accuracy (99.7%), but
many of these tend to have low reliability demonstrated by low overlap (II) and
mutual information (III). For further analysis we traced out the behavior of the
three model performance metrics for a fixed λ2 value and plotted these against
the average number of voxels retained in the model. The extracted models are
marked with rectangles in (I)-(IV). The λ2 value was chosen so that the path
contains the maximum prediction accuracy (top panel (I) ) and also provides
a relative high degree of overlap (top panel (II) ). Note that it is not possible
to simultaneously obtain maximum prediction accuracy, maximum overlap and
even moderate levels of mutual information. From the plots in the middle row
we observe maximum average prediction accuracy with 824 voxels retained in
the model on average, maximum in overlap (corrected) found at 824 voxels,
and maximum mutual information was with all voxels included in the model.
Corrected overlap means that the overlap is corrected for the overlap that one
would expect at chance (see Rasmussen et al. (2012b) for a description of this
correction). For the SVM with RFE (Figure 5.17 bottom panel) maximum in
prediction accuracy (99.7%) was with 1043 voxels retained, maximum in overlap

2Note that some degree of smoothing is introduced by the re-slicing step in the motion
correction as part of data preprocessing (Haxby et al., 2001; Kamitani and Sawahata, 2010).
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(corrected) was observed with 2039 voxels retained in the model, and maximum
mutual information was with all voxels included in the model. Based on the
curves for prediction accuracy we extracted maps from the models with best
prediction performance (A, C, marked with crosses in the plots of prediction
accuracy), and also a sub-optimal model (with respect to prediction accuracy)
for the LogReg ENET model (marked with B). The brain maps in Figure 5.17
show the relative fraction of times each voxel was selected by the classifiers.
These are based on 100 models (50 resampling splits with two models from
each split). The brain slices in the top panel corresponding to the (A) model
show that voxels in SMC and cerebellum are selected with high consistency
but nothing else, thereby ignoring large sections of the known motor network
subserving finger tapping. The brain slices in the top panel corresponding to
the sub-optimal model (B) provides a brain pattern that is more similar to
Figure 5.7 and also selects voxels in SMA, subcortical regions, and S2 with
high consistency. The brain slices corresponding to the (C) model of SVM RFE
(bottom panel) appears to be intermediate between A and B with voxels in SMC
and cerebellum with high consistency, and a few additional, weakly consistent
areas, e.g. subcortical regions.
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Figure 5.7: Finger tapping data set. Classification of (left) against (right). Re-
sults are based on 50 NPAIRS resampling splits. For each classifier type, P, PR,
and R correspond to optimization of prediction accuracy, joint optimization of
prediction accuracy and reproducibility, and optimization of reproducibility re-
spectively. Shown are the Z-score reproducible rSPI(Z)s. The top row shows
an average anatomical scan of the 14 subjects included in the analysis (masked
to only show voxels included in the analysis). Numbers under the slices de-
note z coordinates in MNI space. Slices are displayed according to neurological
convention (right side of a brain slice is the right side of the brain). The lines
drawn on the bottom row of slices indicate relevant brain regions: cerebellum
(CB), subcortical areas -including caudate, thalamus, putamen (SC), second
somatosensory cortex (S2), supplementary motor area (SMA), and sensorimo-
tor cortex (SMC). Note that the regions extend throughout several slices (not
marked).
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Figure 5.8: TrailsAB data set. Classification of (Trials A) against (Trails B).
Results are based on 50 NPAIRS resampling splits. For each classifier type, P,
PR, and R correspond to optimization of prediction accuracy, joint optimization
of prediction accuracy and reproducibility, and optimization of reproducibility
respectively. Shown are the Z-score reproducible rSPI(Z)s. The top row shows
an average anatomical scan of the 14 subjects included in the analysis. Num-
bers under the slices denote z coordinates in MNI space. Slices are displayed
according to neurological convention (right side of a brain slice is the right side
of the brain). The lines drawn on the bottom row of slices indicate the regions:
cerebellum (CB), medial orbitofrontal gyrus (MO), middle temporal lope (MT),
inferior-frontal gyrus (IF), posterior cingulate cortex (PCC), superior parietal
lobes (SPL), left precentral gyrus (LP), precuneus (PreC), supplementary motor
area (SMA).
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Figure 5.9: Consensus analysis of average reproducible brain maps (rSPI(Z)s)
across classifier types and models. For each classifier type, P, PR, and R cor-
respond to optimization of prediction accuracy, joint optimization of prediction
accuracy and reproducibility, and optimization of reproducibility respectively.
Each point in the plots corresponds to a voxel. Upper-diagonal plots are the
finger tapping data set, while plots below the diagonal are based on the trailsAB
data set. The Pearson’s product correlation coefficient in each plot summarizes
the scatter cloud.
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Figure 5.10: Analysis of signal detection by Fisher’s discriminant analysis (FDA)
as a function of the regularization parameter λ in the finger tapping (panel A-
C) and trailsAB data sets (panel D). Panel (A); The prediction accuracy and
pattern reproducibility in FDA as a function of the value of λ in the finger
tapping data set (a corresponding plot for the trailsAB data set is provided
in Figure 5.3 ). Panel (B); The number of voxels in the thresholded rSPI(Z)s
(FDR correction) within four regions defined from brain atlases. Panel (C-D);
The number of voxels in the thresholded rSPI(Z)s within a region defined by
the thresholded rSPI(Z) corresponding to the pr-maximizing model in Figure
5.6. The number of suprathreshold voxels outside the region defined by the
pr-maximizing model is also plotted. The number of voxels in panel (B-D) is
relative to the maximum number of voxels included across the entire λ range.
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Figure 5.11: Object recognition data set, classification task (bottle) vs. (face),
subject 1. Prediction/reproducibility curves (pr-curves) for the three classifiers
for various degrees of spatial filtering. The width of the Gaussian smoothing
kernel was varied as {0, 3, 6, 9, 12, 15} mm full width half maximum (FWHM).
The curves were constructed by changing the regularization parameter in the
models and show the mean of 50 NPAIRS resampling splits. The gray curves
show pr-curves for all classifiers at all smoothing levels, while the colored curves
highlight the pr-curves at particular degrees of smoothing. Isolines indicate
distances to the point (p, r) = (100, 1).



5.1 Discovery of brain networks 97

0.0 0.2 0.4 0.6 0.8 1.0

50
60

70
80

90
10

0

subject 1, FWHM 0

reproducibility

pr
ed

ic
tio

n 
ac

cu
ra

cy

FDA
SVM
LogReg

0.0 0.2 0.4 0.6 0.8 1.0

50
60

70
80

90
10

0

subject 1, FWHM 3

reproducibility

pr
ed

ic
tio

n 
ac

cu
ra

cy

FDA
SVM
LogReg

0.0 0.2 0.4 0.6 0.8 1.0

50
60

70
80

90
10

0

subject 1, FWHM 6

reproducibility

pr
ed

ic
tio

n 
ac

cu
ra

cy

FDA
SVM
LogReg

0.0 0.2 0.4 0.6 0.8 1.0

50
60

70
80

90
10

0
subject 1, FWHM 9

reproducibility

pr
ed

ic
tio

n 
ac

cu
ra

cy

FDA
SVM
LogReg

0.0 0.2 0.4 0.6 0.8 1.0

50
60

70
80

90
10

0

subject 1, FWHM 12

reproducibility

pr
ed

ic
tio

n 
ac

cu
ra

cy

FDA
SVM
LogReg

0.0 0.2 0.4 0.6 0.8 1.0

50
60

70
80

90
10

0

subject 1, FWHM 15

reproducibility

pr
ed

ic
tio

n 
ac

cu
ra

cy

FDA
SVM
LogReg

Figure 5.12: Object recognition data set, classification task (face) vs. (house),
subject 1. Prediction/reproducibility curves (pr-curves) for the three classifiers
for various degrees of spatial filtering. The width of the Gaussian smoothing
kernel was varied as {0, 3, 6, 9, 12, 15} mm full width half maximum (FWHM).
The curves were constructed by changing the regularization parameter in the
models and show the mean of 50 NPAIRS resampling splits. The gray curves
show pr-curves for all classifiers at all smoothing levels, while the colored curves
highlight the pr-curves at particular degrees of smoothing. Isolines indicate
distances to the point (p, r) = (100, 1).
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Figure 5.13: Object recognition data set, classification task (bottle) vs. (face),
subject 4. Prediction/reproducibility curves (pr-curves) for the three classifiers
for various degrees of spatial filtering. The width of the Gaussian smoothing
kernel was varied as {0, 3, 6, 9, 12, 15} mm full width half maximum (FWHM).
The curves were constructed by changing the regularization parameter in the
models and show the mean of 50 NPAIRS resampling splits. The gray curves
show pr-curves for all classifiers at all smoothing levels, while the colored curves
highlight the pr-curves at particular degrees of smoothing. Isolines indicate
distances to the point (p, r) = (100, 1).
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Figure 5.14: Object recognition data set, classification task (face) vs. (house),
subject 4. Prediction/reproducibility curves (pr-curves) for the three classifiers
for various degrees of spatial filtering. The width of the Gaussian smoothing
kernel was varied as {0, 3, 6, 9, 12, 15} mm full width half maximum (FWHM).
The curves were constructed by changing the regularization parameter in the
models and show the mean of 50 NPAIRS resampling splits. The gray curves
show pr-curves for all classifiers at all smoothing levels, while the colored curves
highlight the pr-curves at particular degrees of smoothing. Isolines indicate
distances to the point (p, r) = (100, 1).
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Figure 5.15: Object recognition data set, subject 1, no spatial filtering of the
data. Consensus analysis of average reproducible brain maps (rSPI(Z)s) across
classifier types and models. For each classifier type, P, PR, and R correspond to
optimization of prediction accuracy, joint optimization of prediction accuracy
and reproducibility, and optimization of reproducibility respectively. Each point
in the plots corresponds to a voxel. Upper-diagonal plots are the (bottle) vs.
(face) classification task, while plots below the diagonal are based on the (face)
vs. (house) classification task. The Pearson’s product correlation coefficient in
each plot summarizes the scatter cloud.
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Figure 5.16: Object recognition data set, subject 1, spatial filtering of the data
with a 6 mm full width half maximum Gaussian kernel. Consensus analysis of
average reproducible brain maps (rSPI(Z)s) across classifier types and models.
For each classifier type, P, PR, and R correspond to optimization of prediction
accuracy, joint optimization of prediction accuracy and reproducibility, and op-
timization of reproducibility respectively. Each point in the plots corresponds
to a voxel. Upper-diagonal plots are the (bottle) vs. (face) classification task,
while plots below the diagonal are based on the (face) vs. (house) classification
task. The Pearson’s product correlation coefficient in each plot summarizes the
scatter cloud.
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Figure 5.17: Finger tapping data set. Effect of imposing sparsity on the model
structure with the ENET penalty in LogReg and SVM based RFE. Models are
evaluated with split-half resampling with 50 resampling splits. As model perfor-
mance metrics we used prediction accuracy on the voxels retained in the model
(inset), prediction accuracy on the voxels excluded from the model (outset),
mutual information, and overlap between non-zero voxels. Corrected overlap
means that the overlap is corrected for the overlap that one would expect at
chance (see Rasmussen et al. (2012b) for a description of this correction). Top
panel; The top row shows performance of the LogReg model over the regular-
ization parameter grid. The middle row shows model performance as a function
of voxels included in the models for a fixed λ2 marked by rectangles in the top
row. The crosses A and B indicate an optimal and sub-optimal model with
respect to prediction accuracy respectively. The brains slices show for model A
and B the relative percentages how often each voxel was included in the LogReg
model across the resampling splits. Bottom panel; The top row shows the
performance metrics for the SVM as a function of voxels included in the model.
The cross C in the plot of prediction accuracy marks the accuracy maximizing
model. The relative voxels inclusion for model C is visualized in the bottom
row.



5.2 Global model visualization by sensitivity maps 103

5.2 Global model visualization by sensitivity maps

Investigations of the applicability of the sensitivity mapping procedure for vi-
sualization of nonlinear kernel models were reported in Rasmussen et al. (2011)
and Rasmussen et al. (2012c). The analyses were based on the xor data set.
Additionally, we here present a procedure for visualization of KPCA build by
use of a nonlinear kernel.

5.2.1 Analysis setup

Three classification tasks were formulated based on the scan block labeling as
follows.

• Classification task I: Scans for condition (left) were assigned to class -1
while (right) was assigned to class 1. We expected this classification task
to be relatively simple for linear (and also nonlinear) methods to solve.

• Classification task II: Scans were grouped so that (no, both) were as-
signed to class -1 and (left, right) were assigned to class 1. This task
was deliberately formulated to be harder for linear methods to solve and
possible relatively easy for nonlinear methods to solve.

• Classification task III: Here we considered a four class classification
task by partitioning the scans according to the block labels: no, left,
right, and both. This classification task was similarly to Classification
task I expected to be relatively easy for a linear classifier to solve.

Subjects were considered as the basic resampling unit, hence we build the models
on a subset of the subject and test the models on the out-of-sample subjects. The
split-half NPAIRS resampling strategy was used in order to evaluate the models
both in terms of prediction accuracy and pattern reproducibility as described
in Section 3.8. I.e. each split-half consisted of scans from three subjects. 10
NPAIRS resampling splits was performed (all possible combinations of subjects).

To underline the generality of the nonlinear modeling and the sensitivity map-
ping visualization procedure for model visualization we used the support vector
machine (SVM), kernel logistic regression (KLR), and kernel Fisher’s discrim-
inant analysis (KFDA) models for the binary Classification tasks I and II. An
illustration of signed sensitivity maps was based on the KFDA model in Classifi-
cation tasks II and III. All models have a regularization parameter that needs to
be selected (λ for KLR and KFDA and C = 1/λ for the SVM). Additionally, use
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of the Gaussian kernel also requires selection of the parameter q that controls the
kernel width. Selection of model parameters was performed within the NPAIRS
resampling framework by measuring prediction accuracy (p) and visualization
reproducibility (r) for each parameter combination. Model selection was based
on minimization of the Euclidean distance from the point (p/100%, r) to (1,1).
In the following we refer to such models as pr-maximizing models. Additionally,
we derived average reproducible brain images (rSPIs) as described in Section
3.8.

Visualization of binary classifiers with sensitivity maps

Both the linear kernel and the Gaussian kernel were considered. The visual-
ization of models build with a linear kernel was based on the squared weight
map. The grand average sensitivity map sgm2 defined as in eq. (3.60) served as
a visualization of models build with the Gaussian kernel in order to visualize
the classifiers based on a single map. The classifier output eq. (3.41) was used
as the visualization function gc (x) in eq. (3.45). The map was based on squar-
ing the individual sensitivity contributions (k = 2 in the definition eq. (3.45)).
Squaring was done in order to avoid possible cancellation effects.

Visualization of classifiers with signed sensitivity maps

An illustration of the use of signed sensitivity maps (k = 1 in the definition
eq. (3.45)) was done as follows. The classifiers outputs eq. (3.32) were used as
visualization functions. In classification task III (four class task) we derived an
overall visualization of the trained classifier by means of the grand mean sensitiv-
ity map sgm2 eq. (3.60) based on squaring of individual sensitivity contributions
(k = 2 in eq. (3.60)). Additionally, signed interclass contrast sensitivity maps

s
c|c′
1 were derived as in eq. (3.61) with k = 1 (no squaring of individual sen-

sitivities) in order to interpret the classifier in terms of brain maps with sign
information. In Classification task II we expected a relatively large heterogene-
ity between single sensitivities of observations within the same class. Note that
the scans were grouped as (no, both) and (left, right) . First, interclass contrast

sensitivity maps s
c|c′
2 were constructed with k = 2 in eq. (3.61). Hence, the

individual sensitivity contributions were squared in order to avoid cancellation
effects. Second, we constructed signed interclass contrast sensitivity maps by
adopting the weighted mapping procedure in eq. (3.62). Specifically, each of

the interclass contrast maps s
c|c′
2 was refined as follows: (1) Single sensitivities

s = ∂g(x)/∂x|x=xn
were calculated for all n ∈ Ic′ . (2) A feature vector f was

constructed for each observation by stacking the single sensitivity s and the
observation x itself f = [x; s] (x and s were both scaled to unit norm to put
them on the somewhat same scale), so that f was a 2P-dimensional vector. (3)
Principal component analysis (PCA) was performed on the feature vectors f ,
and the feature vectors were projected onto the PCA subspace spanned by the
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first two components3. (4) Based on the low dimensional feature representa-
tion, we build a Gaussian mixture model (GMM). To estimate the number of
components/clusters M ∈ {1, . . . , 6} we used nested cross validation where the
GMM was trained on a subset of observations, and model generalizability was
estimated by evaluating the GMM likelihood on the left out observations. (5)
Steps (1-4) were repeated for all 10 NPAIRS splits and the number of compo-
nents M was chosen according to maximization of the mean likelihood across
the 10 splits. (6) Finally, a second pass through the NPAIRS resampling proce-
dure was performed, where M was fixed across all split-halves and resampling
runs in order to obtain the same number of clusters across all models build on
individual splits of the data. The labels of clusters identified in individual split-
halfs must be aligned across splits in order to derive rSPIs. A simple reference
filtering procedure was used, there the cluster’s labels of a particular split was
permuted in order to maximize the correlation between maps across splits. The
outcome of the steps (1-6) was weighting factors wmn in eq. (3.62). These weigh-
ing factors were defined as the posterior probability of a particular observation
xn belonging to component m as wmn = P (m|zxn) for m ∈ {1, . . . ,M}. Hence,

each of interclass contrast maps s
c|c′
2 is refined into M maps s

c|c′,cluster m
1 with

sign information.

Visualization of KPCA by sensitivity maps

In addition to visualization of supervised learning models, the sensitivity map-
ping visualization procedure was used to visualize a trained kernel principal
component analysis (KPCA) model. Specifically, we here considered the projec-
tion function β (x)j of KPCA eq. (3.66) as a visualization function gc (x) in the
sensitivity map definition in eq. (3.45). Individual sensitivities were squared
(k = 2). Details on the visualization procedure are found in Section 3.7.3.

5.2.2 Results

Visualization of binary classifiers with sensitivity maps

Figure 5.18 shows model performance in Classification tasks I and II for the
SVM with a Gaussian kernel as measured by prediction accuracy and pattern
reproducibility over a range of parameter values. The width of the Gaussian
kernel is reported relative to the average input-space distance measure of the
Gaussian kernel to the nearest 25% points across all data points. For Classifi-

3The dimensionality of the PCA subspace was chosen heuristically. More principled ap-
proaches to the clustering is a topic for future research.
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Figure 5.18: Parameter optimization grid for the support vector machine (SVM)
with a Gaussian kernel. C is the ‘complexity’/regularization parameter of the
SVM, and q is the kernel width. Models were optimized against both prediction
accuracy (p) and pattern reproducibility (4). The plots are based on mean values
of 10 NPAIRS splits. The top row shows model performance in classification
task I and the bottom row shows model performance in classification task II.
The crosses indicate models selected according to minimization of the Euclidean
distance from the point (p/100%,r) to (1,1).

cation task I (top row) we observe that for a fixed width of the Gaussian kernel
q there is a tendency of an increased prediction accuracy at large values of C.
Conversely, there is a tendency to increased reproducibility at lower values of
C. Both metrics tends to increase with increasing width of the Gaussian kernel.
Hence, there is a preference towards more linear models. For Classification task
II (bottom row) we observe preference towards a relatively small kernel width as
compared to that in Classification task I. For a particular value of the Gaussian
kernel there is a tendency to increased prediction accuracy with large values of
C and increased reproducibility with decreasing values of C.

Table 5.2 summarizes model performance for the three different classifiers with
linear kernels and Gaussian kernels. For Classification task I it is observed that
all models provide good performance both in terms of prediction accuracy and
pattern reproducibility. For Classification task II there is a major reduction in
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Task I Task II
prediction reproducibility prediction reproducibility

SVM linear 100.0 *** 0.79 *** 67.8 *** 0.57 **
SVM Gaussiana 100.0 *** 0.79 *** - -
SVM Gaussian 99.7 *** 0.81 *** 92.2 *** 0.75 ***
KLR linear 100.0 *** 0.80 *** 57.4 ** 0.57 **
KLR Gaussiana 100.0 *** 0.80 *** - -
KLR Gaussian 100.0 *** 0.81 *** 92.0 *** 0.76 ***
KFDA linear 100.0 *** 0.80 *** 57.4 ** 0.57 **
KFDA Gaussiana 100.0 *** 0.80 *** - -
KFDA Gaussian 99.9 *** 0.81 *** 92.3 *** 0.75 ***

Table 5.2: Results for classification task I and II. For all models performances
are reported for parameter settings that optimize both prediction accuracy (p)
and reproducibility (r) jointly. The width of the Gaussian kernel was fixed at
q = 215 in the models marked with a. The table reports mean values 10 NPAIRS
splits. Significance codes; **: p < 0.01, ***:p < 0.001. Statistical significance is
based on a nonparametric permutation test (5000 permutations).

both prediction accuracy and reproducibility for the linear models in comparison
to the models’ performances in Classification task I. Although also showing
decreased performance in comparison to performance in Classification task II
the nonlinear models were capable in maintaining relatively good performance
with respect to both prediction accuracy and pattern reproducibility.

Figure 5.19 shows rSPIs based on sensitivity maps derived from a trained SVM.
Figure 5.20 shows the same maps but thresholded according to p < 0.05 FDR
correction. The maps are calculated as in eq. (3.60) with squared individual
sensitivities in order to avoid potential cancellation effects. Hence the maps
contain only positive values. Figure 5.19 and 5.20 panel A-C show the rSPIs
based on models with a linear kernel, a Gaussian kernel with a large kernel
width (q = 215), and a kernel width estimated according to pr-optimization
respectively. The maps, hence the different models, tend to identify the same
voxels as important to the classifiers decisions. In Classification task I both
the linear and the nonlinear models are capable of using information in the
visual cortex, for solving the classification task. In Classification task II, Figure
5.19 and 5.20 panel D-E, there is a large degree of discrepancy in which voxels
that supports discriminative information to the models. The nonlinear model
(panels D) tends to use the same voxels as all classifiers in Classification task I
(panel A-C), while the linear model use information that are not in the primary
visual areas. This is in particular seen in the thresholded map Figure 5.20(D).
Interestingly, the linear model appears to identify relatively large regions of
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voxels with high consistency as indicated by the relatively high value in the rSPI
Figure 5.19(D). Also relatively large regions survive the statistical thresholding
in 5.20(D).

Figure 5.21 provides a consensus analysis between the rSPIs of all models in
Classification tasks I and II. Model parameters were selected according to pr-
optimization. First, we observe that within each kernel type and classification
task there is a large degree of consensus across classifiers. This observation is
consistent with the results reported in Section 5.1 that also show great similari-
ties across classifier types. In Classification task I there is also a strong consensus
between the pr-optimized linear and nonlinear models. For Classification task II
there is less consensus between the linear classifiers and the classifiers of Classi-
fication task I. This is in contrast to the nonlinear models in Classification task
II, that show larger similarities with all models in classification task I.

Visualization of classifiers with signed sensitivity maps

Figure 5.22 shows the results of Classification task III (four class classification
task) obtained with the KFDA classifier. The average prediction accuracy was
92.3%. Figure 5.22(A) shows the rSPI based on the grand average maps sga2
derived from the model as in eq. (3.60) using squared individual sensitivities.
The average reproducibility was 0.82. The map is thresholded according to
p < 0.05 FDR correction. Primarily, voxels in the visual cortex are identified
with consistency across the resampling splits as important to the classifier’s
decisions. The map has great similarities with the maps derived on models build
in Classification tasks I and II in Figure 5.20. Figure 5.22(B) shows examples of
signed interclass contrast sensitivity maps, see eq. (3.61). The maps are masked

to show the same voxels as in Figure 5.22(A). The notation e.g. s
left|no
1 means

that the map indicates how scans belonging to the (no) class should be changed
in order to move the scans towards regions of the input space where scans are

being classified as (left). According to the map s
left|no
1 a signal increase primarily

in the right visual cortex will make the scans belonging to the (no) condition

move towards the (left) class. Likewise, the map s
left|right
1 indicates that lowering

the signal in the left visual cortex and increasing signal in the right visual cortex
will make scans belonging to the (right) condition move towards being classified
as belonging to the (left) class. Finally, lowering the signal primarily in the left
visual cortex will make scans belonging to the (both) condition move towards

being classified as belonging to the (left) class as seen in the map s
left|both
1 . The

signed interclass contrast maps have rather high reproducibilities indicating that
possible cancellation effects may not be pathological.

Figure 5.23 shows both sensitivity maps and signed sensitivity maps derived
form the KFDA model in classification task II: (no, both) vs. (left, right).
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Figure 5.23(A) shows the grand average sensitivity map sga2 thresholded ac-
cording to p < 0.05 FDR correction. The map has great similarities with that
of the SVM in Figure 5.20. This similarity is also evident in the consensus
analysis in Figure 5.21. Figure 5.23(B) shows interclass contrast sensitivity

maps s
c|c′
2 based on squared individual sensitivities. These maps also had a

relatively high reproducibility ∼ 0.74 across the NPAIRS splits. These map
reproducibilities were reduced to ∼ 0.22 if the interclass contrast maps were
based on signed individual sensitivities (as in Figure 5.22). This reduction in
reproducibility may be explained by the presence of cancellation effects. Figure
5.23(C) shows signed interclass contrast sensitivity maps. The GMM cluster-
ing procedure provided evidence towards presence of two clusters in each of the
groups (no, both) and (left, right). Hence, the interclass contrast maps in Fig-
ure 5.23(B) were each decomposed into two maps with sign information. For

example s
(no, both)|(left, right),cluster 1
1 denotes that the signed sensitivity map is

based on the output class (no, both), and that the sum in eq. (3.62) is calculated
over the members of class (left, right). Furthermore, the contributions of the
individual observations xn to the signed sensitivity maps were weighted by the
weighting factor w1

n being the posterior probability for observation xn belonging

to component 1 in the GMM. For the map s
(no, both)|(left, right),cluster 1
1 we found

that members of the condition (left) had an average weighting factor of ∼ 0 in
the sum while the members of the condition (right) and an average weighting
factor of 0.9854. Hence, members of the condition (right) contribute the most
to this map. Likewise, the members of condition (left) contributed the most to

the map s
(no, both)|(left ,right),cluster 2
1 . For the map s

(left, right)|(no, both),cluster 1
1

we found that the members of condition (no) had an average weighting factor of
0.0125 in the sum while members of the condition (both) and an average weight-
ing factor of 1.00. Hence members of the condition (both) contribute the most

to the map s
(left, right)|(no, both),cluster 1
1 . Likewise, the members of the condition

(no) contribute the most to the map s
(left, right)|(no, both),cluster 2
1 . Note that the

map reproducibilities are intermediate ∼ 0.50 indicating that the cancellation
effects have been mitigated to some extend by the weighting procedure.

Visualization of KPCA by sensitivity maps

Figure 5.24 shows an example of KPCA based on a single NPAIRS split in Clas-
sification task II. The width of the Gaussian kernel was the same as identified
by pr-maximization in the analysis of Classification task II (q = 0.5), see Figure
5.18. Data from three subjects were used to estimate the KPCA basis, and data
from the remaining three subjects served as test data. Figure 5.24 shows data
observations’ projections onto principal components j ∈ {1, 2, 5}. The shown
projections were chosen to show a subspace in which the classes as defined in
Classification task II (no, both) vs. (left, right) appear to be fairly linearly
separable. Note that test points’ projection appears to be more condensed than
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training points’ projections. This phenomenon has been referred to as variance
inflation, see Abrahamsen and Hansen (2011a) for further information. Figure
5.25 provides a global interpretation of the data observations embeddings in
Figure 5.24 by a sensitivity map estimated according to Section 3.7.3. The sen-
sitivity map highlights, that changing the signal primarily in the visual cortex
will lead to a change in the data observations’ projections onto the three shown
KCPA axes.
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Figure 5.19: Interpretation of a trained support vector machine (SVM) by the
sensitivity mapping visualization strategy. Classification task I is the (left)
vs. (right) problem and Classification task II is the (no, both) vs (left, right)
problem. The rows show reproducible brain images rSPIs as estimated within
the NPAIRS resampling framework. 10 resampling splits. Panel A,D show the
rSPIs based on an SVM with a linear kernel, where the model visualization was
based on the squared model weights w2. Panel B,C,E show the rSPIs based
on an SVM with a Gaussian kernel. The width of the Gaussian kernel was fixed
at q = 215 in Panel B (approach linear classifier). The width of the Gaussian
kernel in Panel C and E was chosen according to pr-maximization. Model
visualization was based on the sensitivity map for SVMs with the Gaussian
kernel. The sensitivity map express the relative importance of each voxel to
the classifiers’ decisions. The color bar indicates each voxels’ value in the rSPI
expressing the consistency in the sensitivity measure for individual voxels across
the resampling splits. Numbers under the slices denote z coordinates in MNI
space. Slices are displayed according to neurological convention (right side of a
brain slice is the right side of the brain).
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Figure 5.20: Same analysis as in Figure 5.19 and with reproducible brain im-
ages rSPI thresholded according to a non-parametric permutation analysis and
correction for multiple comparisons using false discovery rate (FDR). A null
distribution was build by permuting scan blocks’ labels and retraining the clas-
sifiers. The rSPIs are thresholded according to p < 0.05 FDR correction. 5000
permutations were conducted. The thresholded maps are projected onto an
average anatomical scan of the six subjects.
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Figure 5.21: Across classifier consensus analysis. For each classifier we obtained
an rSPI based on 10 NPAIRS splits. The plot shows the correlation of these
brain maps across classification tasks and classification models. Models with
code I and II are build on classification task I and II respectively.
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Figure 5.22: Interpretation of a trained classifier with signed sensitivity maps.
The maps are extracted from a kernel Fisher’s discriminant analysis (KFDA)
with a Gaussian kernel in the four class Classification task III with classes (no,
left, right, both). Panel A shows the reproducible brain image rSPI based on
the grand average sensitivity map eq. (3.59) providing a model visualization
by a single brain map. The average reproducibility of the sensitivity map was
0.82 as measured within the NPAIRS resampling framework. 10 resampling
splits. The rSPI is thresholded at p < 0.05 according to false discovery rate
(FDR) correction for multiple comparisons. Panel B shows rSPIs based on
the signed interclass contrast sensitivity maps eq. (3.61). Images in Panel B
are masked with the same mask as in Panel A. Warm colors and cold colors
are positive and negative values respectively. Numbers right to the slices report
map reproducibilities.



5.2 Global model visualization by sensitivity maps 115

(A)

53 683823-7-8-23-38

FDR

0.73

0.74

(B)

s2
ga

(C)

0.47

0.46

0.52

0.50

s1
(no, both)∣(left, right),cluster 2

s1
(no, both)∣(left, right),cluster 1

s1
(left, right)∣(no, both),cluster 1

s1
(left, right)∣(no, both),cluster 2

s2
(no, both)∣(left, right)

s2
(left, right)∣(no, both)

Figure 5.23: Interpretation of a trained classifier with signed sensitivity maps.
The maps are extracted from a kernel Fisher’s discriminant analysis (KFDA)
with a Gaussian kernel in Classification task II, (no, both) vs. (left, right).
Panel A shows the reproducible brain image rSPI based on the grand average
sensitivity map eq. (3.59) providing a model visualization by a single brain
map. The average reproducibility of the sensitivity map was 0.75 as measured
within the NPAIRS resampling framework. 10 resampling splits. The rSPI is
thresholded at p < 0.05 according to false discovery rate (FDR) correction for
multiple comparisons. Panel B shows rSPIs based on the interclass contrast
sensitivity maps eq. (3.61) (with squared sensitivities). Panel C shows rSPIs
based on the weighted sensitivity map eq. (3.62). Each class is characterized
by two clusters. Warm colors and cold colors are positive and negative values
respectively. Numbers right to the slices report map reproducibilities.
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Figure 5.24: Kernel principal component analysis (KPCA) of the xor data set.
The Gaussian kernel was used with the same width parameter as used in Clas-
sification task II (q = 0.5) (Figure 5.18 and Table 5.2). The plots show data
points’ projections onto principal components j ∈ {1, 2, 5}. The KPCA basis
was estimated from three subjects, and the remaining three subjects was used
as ‘test data’. Filled markers are training points while the crosses mark test
points.
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Figure 5.25: Global interpretation of a trained kernel principal component anal-
ysis (KPCA) model by the sensitivity mapping strategy. The visualization is
based on feature space projections β (x)j acting as visualization functions in eq.
(3.1). The sensitivity map is calculated over principal component j ∈ {1, 2, 5}
as shown in Figure 5.24.
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5.3 Image denoising by kernel principal compo-
nent analysis and pre-image estimation

An investigation of the applicability of kernel principal component analysis
(KPCA) and pre-image estimation for image denoising was based on analy-
sis of the finger tapping data set (28 subjects included in the analysis) and the
object recognition data set (six subjects included in the analysis). The analysis
of the object recognition data set was performed on the version of the data set
without spatial smoothing as a preprocessing step (see Section 4.4). In Section
5.1 we observed that spatial smoothing could lead to increases in both predic-
tion accuracy and pattern reproducibility. Our motivations for working on data
without spatial smoothing here are: i) to keep the preprocessing minimal, ii)
it may seem controversial to smooth data where a fine-grained signal structure
is expected, iii) spatial smoothing was not applied in previous analyses of the
object recognition data set, e.g. Haxby et al. (2001); Hanson et al. (2004). Note
that, as any other preprocessing step, the KPCA denoising will interact with
all other elements of the data processing pipeline (Strother et al., 2002). A
comprehensive investigation of such interactions is a future research topic.

Results presented in this section have been reported in Rasmussen et al. (2012a)4.

5.3.1 Analysis setup

Image denoising

Image denoising was performed by means of KPCA using a Gaussian kernel
and pre-image estimation as described in Section 3.7.1 and 3.7.2. Pre-image es-
timation was based on the methods of Mika et al. (1999b) and Kwok and Tsang
(2004) referred to as Mika’s method and Kwok and Tsang’s method respectively.
Denoising requires selection of the width of the Gaussian kernel and the KPCA
subspace size. For a particular parameter combination of the width, σ, of the
Gaussian kernel and the dimensionality of the KPCA subspace, q, a denoised
version, Z(σ,q), of the original data observations X was determined. In both data
sets we performed image denoising at the subject level. A KPCA basis was esti-
mated from all scans of a particular subject, and the images were subsequently
denoised by projecting the images onto the KPCA basis followed by pre-image
estimation. For the finger tapping data set we created denoised versions of the

4Note that the notation in this section slightly differs from the previous two sections in
order to comply with the notation used in Rasmussen et al. (2012a). In this section a prediction
accuracy of 1 means perfect prediction (100% correct). Note also that σ and q denote kernel
width and subspace dimensionality respectively.
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original data set by varying the parameters over the grid σ ∈ [2−3, 2−2, ..., 210]
and q ∈ [2, 4, 8, 16, 32, 50, 75, ..., 175, 240]. For the object recognition data set
we explored the grid σ ∈ [2−3, 2−2, ..., 210] and q ∈ [10, 20, ..., 250]. The kernel
width was scaled relative to the average input-space distance measure of the
Gaussian kernel to the nearest 25% points across all data points. For Kwok and
Tsang’s reconstruction method we initially considered k = {5, 10, 15, 20, 50}
neighbors in the finger tapping data set and found no major impact on the
model performance. In the finger tapping data set we report results by use of
ten neighbors as suggested in Kwok and Tsang (2004). In the object recogni-
tion data set we found that a relatively large number of nearest neighbors was
required to achieve stable model performance (see the Supplementary Materials
of Rasmussen et al. (2012a) Figure 1). Hence, we report results based on 500
nearest neighbors for the object recognition data set. A relative change below
10−9 was used as a convergence criterion for Mika’s method.

Evaluation of impact of image denoising

The impact of image denoising was assessed by means of multivariate classifica-
tion model evaluated within the NPAIRS resampling framework (Section 3.8).
Specifically, a Fisher’s discriminant analysis (FDA) model (linear version) was
trained to predict scan labels. Model evaluation was based on evaluation of
the model’s prediction accuracy and the reproducibility of the visualizations
extracted from the model. In the finger tapping data set the model was trained
to discriminate between the conditions (left) vs. (right). In the object recog-
nition data set the model was trained to discriminate between the eight object
categories as in Hanson et al. (2004). Details on specific resampling procedures
are provided in the following.

Resampling details - Finger tapping data set

We split the finger tapping data set into a training set of 10 subjects and a
test set of 18 subjects. Selection of the denoising parameters (σ and q) was
based on the training set. The training set was repeatedly split into two disjoint
sets, each with five subjects, and model performance was evaluated using the
NPAIRS resampling scheme. To evaluate the reproducibility we used the weight
vector/single canonical variate. In the FDA model 20 NPAIRS resampling splits
were performed, and the average minimum distance on the pr-curve to the point
(1,1) was obtained across the entire parameter grid. The test set was then de-
noised using the parameter combination giving the minimum distance. The
impact of image denoising was then evaluated by constructing pr-curves based
on analysis of the raw test data and denoised test data within the NPAIRS
resampling framework. 20 NPAIRS splits was performed, where nine subjects
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were randomly assigned to each of the split-halves.

Resampling details - Object recognition data set

In the object recognition data set we performed the evaluation of image de-
noising at the subject level. For a particular subject the data was split into a
training and a test set - each with six runs. As with the finger tapping data
set the selection of denoising parameters was based on the training set. The
training set was repeatedly split into two disjoint sets, each with three runs,
and model performance was evaluated using the NPAIRS resampling scheme.
With eight classes we obtain seven canonical variates in the FDA. To evaluate
the reproducibility we considered the first canonical variate (Chen et al., 2006).
When training FDA models on different data samples the canonical variates of
the FDA models are defined up to a sign and permutation ambiguity. To align
canonical variates across splits we used the reference set filtering described in
Strother et al. (2002). In the reference filtering procedure we initially fit a model
to the entire data set and extract a set of canonical variates from this model.
This set is considered as a reference set. When performing the resampling splits,
we permute and flip signs of the split’s individual canonical variates in order to
maximize the correlation with the reference set. 10 NPAIRS resampling splits
were performed (all possible combinations of runs), and the average minimum
distance on the pr-curves to the point (1,1) was obtained across the entire pa-
rameter grid. Denoising parameters were selected according to minimization of
the distance to (1,1) metric. The impact of image denoising was then evaluated
by constructing pr-curves based on analysis of the raw test data and denoised
test data (six runs) within the NPAIRS resampling framework. The entire eval-
uation procedure was repeated 10 times, with different runs randomly assigned
to the training and test sets in each repetition. In addition to the model visu-
alization via the canonical variates, the trained models were also visualized by
means of a grand average sensitivity map, eq. (3.59).

5.3.2 Results

Image denoising in the finger tapping data set

Figure 5.26 shows results of the classification analysis of the effect of image
denoising in the finger tapping data set, where image denoising was based on
Mika’s method. Figure 5.26(A) shows model performance, as measured by the
minimum distance from the pr-curve to the point (1,1), based on the 10 subjects
in the training data set. The distance first decrease with an increased number
of retained components in the KPCA subspace and then tend to increase with
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a high number of components retained. Least distances are observed with 16-
32 components retained. For a fixed number of components there is a general
tendency to decreased distance with increasing width of the Gaussian kernel.
Figure 5.26(B) shows pr-curves based on analysis of the 18 subjects in the test
data set. In general we observe high accuracies and reproducibilities, and the
models used on denoised data are characterized by an increased reproducibility
compared to models build on the raw data. For the raw data the minimum dis-
tance was 0.100 and the corresponding prediction accuracy and reproducibility
was 0.994 and 0.900 respectively. For the denoised data based on the Mika’s
method the minimum distance was 0.0896 and the corresponding prediction ac-
curacy and reproducibility was 0.994 and 0.911 respectively, thus maintaining
the prediction accuracy and increasing the reproducibility in comparison to the
models build on the raw data set. Denoisning did not result in increased pre-
diction accuracy (p = 0.45), while the denoising lead to a significant increase in
reproducibility (p < 0.001) as assessed with a nonparametric permutation test.
See Rasmussen et al. (2012a) for details on the permutation analysis. For the
denoised data based on Kwok and Tsang’s method the minimum distance was
0.0942 and the corresponding prediction accuracy and reproducibility was 0.987
and 0.910 respectively, hence a decrease in prediction accuracy (p < 0.001) and
an increased reproducibility (p < 0.001) relative to the raw data set.

Figure 5.27 shows the effect of image denoising on spatial brain maps using
Mika’s method for pre-image estimation. Figure 5.27(A) is based on the FDA
classification models trained within the NPAIRS framework. The maps were
thresholded according to correction for multiple comparisons by means of the
FDR procedure using the theoretical N (0, 1) distribution to obtain p-values for
the rSPI(Z)s, see Section 3.8.2. Cerebellar regions (slice -40 to -11), subcortical
regions (slice 1), secondary supplementary motor area (S2)(slice 13) and senso-
rimotor cortex (SMC) and supplementary motor areas (SMA) (slice 37-61) are
consistently identified as important by models build on both raw and denoised
data. In general we observe highest Z-scores in the rSPI(Z) based on models
build on the denoised data. At edges of the superthreshold regions, primarily in
cerebellum, we observe a small decrease in Z-score values of the rSPI(Z). The
intersection mask between the FDR thresholded maps comprised 7291 voxels. In
the intersection mask 6658 voxels showed an increase in the rSPI(Z) value due to
image denoising. Additionally, 701 and 91 voxels were uniquely identified in the
maps corresponding to denoised and raw data respectively. Figure 5.27(B-C)
show that these unique voxels primarily appear on edges of the regions identified
in Figure 5.27(A).

Image denoising in the object recognition data set

Figure 5.28 depicts model performance measured in terms of minimum distance
from the pr-curve to (1,1) across the denoising parameter grid for image denois-



122 Experimental results

ing with Mika’s method. In general we observe a preference towards a relatively
low number of retained components in the KPCA subspace. For a fixed number
of principal components the distance tend first to decrease with the width of the
Gaussian kernel and again slightly increase at large kernel widths, suggesting
that the signal manifold may be nonlinear. In general the maximum perfor-
mance was observed at an intermediate kernel width. Corresponding plots for
all six subjects are provided in the supplementary materials of Rasmussen et al.
(2012a) Figure 2.

Figure 5.30 demonstrates the impact of image denoising for all six subjects in
the object recognition data set. Figure 5.29 shows the corresponding pr-curves.
For both reconstruction methods, (Figure 5.30(A) based on Mika’s method and
Figure 5.30(B) based on Kwok and Tsang’s method), we observe an increase in
model performance across all subjects, i.e. decrease in the minimum distance
from the pr-curve to (1,1). In the prediction plots (column 2) the image denois-
ing tend to induce both slightly increases and decreases in prediction accuracy
for most subjects, whereas a more dramatic decrease is observed subject 4. The
reproducibility plots (column 3) show a prominent increase in reproducibilities
in most subjects. We also observe an increase in the reproducibility of the sensi-
tivity map for all subjects (column 4). Note that model selection was based on
the minimum distance from the pr-curve to (1,1). Hence, the decrease in pre-
diction accuracy for subject 4 (Figure 5.30 column two), is fully compensated
by the increased reproducibility (Figure 5.30 column three) leading to a general
decrease in distance (Figure 5.30 column one and Figure 5.29). As a statisti-
cal test of the impact of image denoising we used a nonparametric Wilcoxon
Signed Rank Test. For all measures except prediction accuracy we could reject
the null-hypothesis, that the median difference between pairs of preprocessing
methods was zero, at significance level 0.05. Hence, denoising lead to changes
in the minimum distance from the pr-curve to (1,1), reproducibility of the FDA
basis, and reproducibility of the sensitivity map, while prediction accuracy was
not significantly affected.
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Figure 5.26: Effect of denoising in the finger tapping data set with Mika’s es-
timation method. Panel (A); Model performance across part of the explored
parameter grid (kernel width and kernel principal component analysis (KPCA)
subspace dimensionality) based on 10 subjects. Denoising was performed at
the subject level. The model performance was measured as the minimum dis-
tance on the pr-curve to the point (1,1). Resampling was performed within the
NPAIRS resampling framework. The grid show the average distance across 20
NPAIRS resampling splits. The white numbers indicate the frequency at which
a particular parameter combination had the lowest distance on the pr-curve to
the point (1,1) across the splits. Panel (B); Model performance based on de-
noised and raw data from 18 test subjects (different from subjects used in Panel
(A)). Denoising parameters were selected according to the red square in Panel
(A). The pr-curves show model performance in terms of prediction accuracy
and pattern reproducibility, where the pr-curves are traced out by varying the
regularization parameter in the FDA classification model. The isolines indicate
distances to the point (1,1). Denoisning did not result in increased prediction
accuracy (p = 0.45), while the denoising lead to a significant increase in repro-
ducibility p < 0.001 (nonparametric permutation test).
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Figure 5.27: Spatial maps showing the effect of denoising in the finger tapping
data set. The evaluation was based on Fisher’s discriminant analysis within the
NPAIRS resampling framework. Panel (A); Average rSPI(Z)s from models
build on raw and denoised data were thresholded according to p < 0.05 FDR
correction for multiple comparisons. Voxels shown are in the intersection mask
of the two thresholded rSPI(Z)s. Voxel coloring indicate sign and magnitude of
the difference between the absolute value rSPI(Z)s. Warm colors correspond to
higher Z-scores in the map based on denoised data, and cold colors correspond
to higher Z-scores in the map based on raw data. Panel (B-C); Binary masks
showing voxels surviving thresholding according to FDR correction. Color cod-
ing: yellow is an intersection mask (same voxels as in panel (A)), red in panel
(B) are unique to the rSPI(Z) based on denoised data, and red in panel (C)
are unique to the rSPI(Z) based on the raw data. Numbers under the slices de-
note z coordinates in MNI space. Slices are displayed according to neurological
convention (right side of a brain slice is the right side of the brain).
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Figure 5.28: Effect of denoising in the object recognition data set - impact of
denoising parameters. Denoising was performed, with Mika’s method, at the
subject level for each combination of the kernel width and the number of prin-
cipal components. For each parameter combination an evaluation of the impact
of image denoising was performed within the NPAIRS resampling framework,
and the distances between the pr-maximizing point on the pr-curve to (1,1) was
measured and used as a model performance metric. The distance metric was
based on prediction accuracy and reproducibility of the first canonical variate in
a Fisher’s discriminant analysis model. Selection of denoising parameters was
based on six randomly selected runs. The remaining six runs served as a test set
for the evaluation of denoising in Figure 5.30. The plot shows the average dis-
tance metric across 10 resamping iterations (with 10 nested NPAIRS resamping
splits within each iteration). The white numbers indicate the frequency at which
a particular parameter combination had the lowest distance on the pr-curve to
the point (1,1) across the 10 resampling iterations.
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Figure 5.29: Denoising of the object recognition data set by kernel principal com-
ponent analysis and pre-image estimation. Denoising parameters were selected
according to minimization of the distances between the pr-maximizing point on
the pr-curve to (1,1) was measured and used as a model performance metric.
The distance metric was based on prediction accuracy and reproducibility of
the first canonical variate in the Fisher’s discriminant analysis (FDA) model.
Selection of denoising parameters was based on six randomly selected runs. The
remaining six runs served as a test set for the evaluation of denoising. The
curves are based on averages of test set curves over 10 resampling iterations.
Dashed curves are based on ‘raw’ data while dense curves are based on denoised
data. The pr-curves are traced out by varying the regularization parameter in
the FDA classification model.
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Figure 5.30: Effect of denoising in the object recognition data set - changes in
model performance at the subject level. Panel (A) is based on Mika’s image
reconstruction method and panel (B) is based on Kwok and Tsang’s method.
Comparisons are based on pr-maximizing models with denoising parameters
selected across the denoising parameter grid (on a training set) (see Figure 5.28),
and pr-maximizing models build on the raw data. The first column shows model
performance measured as the minimum distance from the pr-maximizing point
on the pr-curve to (1,1). The second column shows prediction accuracy, the third
column shows pattern reproducibility - both measured at the pr-maximizing
point, and the fourth column shows the reproducibility of the corresponding
sensitivity map. The symbols {◦,M,+,×, �,O} correspond to subject 1-6.
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Chapter 6

Conclusion and outlook

The main focus of the research presented in this dissertation has been on pattern-
based analysis approaches in neuroimaging. Until recently the main approach to
data analysis within the neuroimaging community has been the mass-univariate
analysis (Friston et al., 1995b). This being despite the fact that the principles
and methodologies underlying pattern-based analysis are not novel, e.g. Moeller
and Strother (1991); Lautrup et al. (1994); Friston et al. (1995a); McIntosh
et al. (1996); Mørch et al. (1997). Within the past decade there has been an
appreciation within the neuroimaging community of the usefulness of pattern-
based analysis procedures. The study of Kamitani and Tong (2005) provides
an excellent example of pattern-based analysis allowing for detection of signal
structures that conventional mass-univariate analyses may fail to identify.

Importance of selecting regularization parameters

Usually, the pattern-based analysis is implemented in terms of classification
analysis. One of the most frequently adopted classifiers within the neuroimag-
ing community is the support vector machine (SVM). The SVM has proven
to be useful in providing good decoding performances (as measured by predic-
tion accuracy) in a long series of recent papers. Many researchers motivate
their preference for selecting the SVM based on results of early papers intro-
ducing the SVM to the neuroimaging community, e.g. LaConte et al. (2003);
Mourão-Miranda et al. (2005). LaConte et al. (2005) reported consistent high
predictive performance at high levels of the SVM regularization parameter C,
while Mourão-Miranda et al. (2005) argued for the use of the ‘hard-margin’
SVM. A considerable number of recent papers build on observations from these
studies and use the hard-margin SVM, a ‘default’ value or a ‘high’ value of C.
By means of the NPAIRS resampling framework we have studied the relative
influence of model regularization parameter choices on the model generalization,
the reliability of the spatial patterns extracted from the classification model, and
the ability of the resulting model to identify relevant brain networks defining
the underlying neural encoding of the experiment. We observed the following
important behaviors:



130 Conclusion and outlook

• Model reproducibility, as measured within the NPAIRS resampling frame-
work, may vary considerably as a function of model regularization.

• While prediction accuracy may appear quite stable over a range of values of
the regularization parameter, the reproducibility of the extracted pattern
may vary.

• The hard-margin SVM may neither be optimal with respect to prediction
accuracy nor with respect to the reproducibility of the extracted patterns.

• For the SVM, logistic regression (LogReg), and Fisher’s discriminant anal-
ysis (FDA) we found a large degree of consensus between patterns ex-
tracted from the models.

• It may be more important carefully to select model regularization param-
eters than to select a particular model type. In particular we observe that
FDA and LogReg have at least the same performance as the SVM. Note
that the the first studies comparing SVM and FDA (LDA) considered
unregularized versions of FDA.

We have used the NPAIRS resampling framework in order to assess model per-
formance. In this framework we measure performance within a prediction (p)
/ reproducibility (r) space. By varying the model complexity one moves along
a pr-curve. In general, moving along the pr-curve may allow the investigator
to explore brain patterns within a hierarchy of brain↔behavior coupling, see
also Strother et al. (2004). That is, there is no single classification model that
optimally links task states and brain responses. By varying the regularization
parameter we obtain a continuum of models, that may each provide information
about a particular aspect of the brains response in terms of the modeled activa-
tion pattern. By selecting a particular point along the pr-curve the investigator
can focus on a particular aspect of the underlying signal structure. For example,
selecting the point optimizing prediction allows for identification of the subset
of voxels that provides the best predictions of the scan labels. Selection of more
reproducible models may allow for a more complete identification of the under-
lying brain network as our results suggest. This issue has indeed been discussed
in a series of studies, e.g. Strother et al. (2002, 2004); Kjems et al. (2002);
LaConte et al. (2003); Yourganov et al. (2010). Note that using an SVM with a
‘default’ regularization parameter value will in general result in a model located
at an arbitrary location along the pr-curve. In such cases it becomes less clear
which aspects of the underlying signal the investigator seeks to capture by the
model.

An important approach to modeling, that we have not addressed in this dis-
sertation, is the Bayesian approach. For example, consider logistic regression,
e.g. Yamashita et al. (2008). Within a Bayesian framework we specify a prior
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distribution, e.g. a normal distribution, over the model’s weights. The prior is
governed by a hyperparameter effectively controlling the regularization strength.
Again we can specify a hyperprior, e.g. a gamma distribution, over the hyper-
parameter. The gamma distribution is parametrized by two parameters (hyper-
hyperparameters) that need to be selected. In our research we experience, that
by varying these hyper-hyperparameters we move along the pr-curve. Hence,
instead of selecting the hyperparameter (regularization parameter) one needs to
select the hyper-hyperparameters - a task that is indeed not trivial. Procedures
for specifying such Bayesian hyperparameters is a topic for future research. One
possible strategy is to use the NPAIRS resamping framework to facilitate the
selection. Jacobsen et al. (2008) performed an evaluation of Bayesian models
within the NPAIRS resampling framework. It could be interesting to perform a
formal investigation of e.g. Bayesian logistic regression, logistic regression with
automatic relevance determination (Yamashita et al., 2008) or the Multiclass
Sparse Bayesian Regression (Michel et al., 2011a) within the NPAIRS resam-
pling framework in order to get insight into the impact of hyper-hyperparameter
choices on the model’s ability to identify relevant brain networks, for example,
in the finger tapping data set.

In our analysis we have studied the impact of selecting model regularization
parameter while holding all other components in the neuroimaging pipeline con-
stant (with exception of the smoothness investigation in the object recognition
data set). It is important to note, that different components/choices regard-
ing the pipeline interact - a fact that has been highlighted several times, e.g.
Strother et al. (2002, 2004). In several data sets presented in this dissertation,
characterized by, for example different experimental designs and preprocessing
strategies, we have observed a strong and consistent dependence of regulariza-
tion on model performance. Our results and conclusions may therefore general-
ize to other settings of the neuroimaging pipeline.

Visualization of nonlinear kernel models by sensitivity maps

Model visualization is an important aspect in the analysis of neuroimaging data
sets. Often the generation of model visualizations or ‘brain maps’ is the ulti-
mate goal of neuroimaging analyses. Based on such brain maps the investigator
seeks to formulate claims about how information is represented in the brain.
Such brain maps can be directly derived from linear models by visualizing the
model’s weights. It is not equally straightforward to visualize nonlinear models.
Earlier studies have proposed the sensitivity map as a potential visualization
strategy for kernel based methods (Kjems et al., 2002; LaConte et al., 2005).
In Rasmussen et al. (2011) we investigated the sensitivity map as a technique
for generation of global summary maps for kernel classification models. The
sensitivity map visualization strategy proved to be a versatile and computa-
tionally efficient tool for such model visualization. The work on visualization of
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nonlinear models were further extended in Rasmussen et al. (2012c) that investi-
gated procedures for deriving model visualizations containing sign information.
An important aspect of our analysis of the sensitivity maps as a visualization
technique has been to assess the reliability/stability of the model’s visualization
as measured within the NPAIRS resampling framework. The sensitivity map
proved as a reliable model visualization. A natural future application is to ap-
ply the nonlinear modeling and visualization framework in data sets containing
more subtle and possible nonlinear effects.

Model sparsity and brain pattern interpretation

Model visualization is closely linked to the interpretation of neuroimaging ex-
periments. Traditionally, the neuroimaging community has reported sparse sta-
tistical parametric images, where the sparse nature of the spatial maps origins
from the statistical testing. Statistical tests are performed at the voxel-level.
The resulting statistical parametric image is subsequently thresholded in or-
der to control e.g. the family-wise error rate. Building pattern-based analysis
models of neuroimaging data sets generally results in an estimate of the predic-
tion accuracy. Inspecting prediction accuracies allows the investigator to assess
whether the model succeed in capturing the relevant underlying signal struc-
ture, i.e. is capable of performing the mapping from brain scans to scan labels.
Additionally, it is often relevant to identify the brain locations that supports
discriminative information to the models. For example, it may be expected
that the information is encoded in a distributed pattern of localized clusters.
Pattern-based analysis analysis that enforce spatial sparsity has been introduced
to the neuroimaging community as interpretable models, implying that dense
predictive models are difficult to interpret. We find that this distinction between
sparse and dense models is overly simplified. Sparse models are not necessar-
ily more interpretable than dense models. Consider a data set with scans of
105 voxels. Of these voxels a subset A is closely coupled to the experimental
task. Another subset B shows an intermediate level of task coupling while the
remaining voxels C are uncoupled to the experimental task (and hence irrelevant
in a decoding context). A sparse linear model optimized to maximize predic-
tion accuracy may primarily identify voxels in A as having non-zero weights.
However, it is important to note that such a model still is parametrized by 105

weights. Most of these weights are set to zero, which in itself is a strong state-
ment. Brain maps based on sparse models may often be presented with lack of
quantification of the stability or significance of the sparse pattern identified by
the models. Hence, there remains several open questions to be answered. What
is the statistical significance of the sparse brain pattern? Is the brain pattern
stable across resampling splits? What characterizes the voxels with non-zero
weights? Do voxels with a weight set to zero have no discriminative informa-
tion? It may be challenging and difficult to interpret a dense model, and we
may prefer a model identifying a subset of voxels. However, cautions must be
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taken if claims about information representation is based on the sparse model,
e.g. the voxels in B may be part of the underlying brain network. However,
such voxels are not identified as important by the model since we formulate the
optimization objective in order to maximize the prediction accuracy. Sparse
models are not necessary interpretable per se. Other types of sparsity are seen
in models that are sparse in the observation dimension (e.g. the SVM) and in
sparse feature representation as identified by e.g. a PCA subspace. In Ras-
mussen et al. (2012b) we found that maximizing prediction accuracy lead to
models in which the weight vector depended on relatively few training observa-
tions. However, more observations’ support to the weight vector was required in
order to increase reproducibility and enhance the model’s ability to detect the
relevant underlying brain networks. Models supported by relatively few data
observation tended also to produce sparse brain patterns following a statistical
thresholding procedure. In many general machine learning applications sparsity
(in the observation dimension) is a desirable model property, since it can speed
up processing in e.g. digit recognition systems. It is questionable if such spar-
sity is of equal desire in the analysis of neuroimaging data, if the purpose of the
modeling is to learn the underlying information representation in the brain. Our
results in Rasmussen et al. (2012b) suggest that solutions based on a relatively
high fraction of the training observations will produce model visualizations that
are more stable than visualizations based on only few data observations.

Nonlinear denoising and analysis with kernel principal component analysis and
pre-image estimation

In Rasmussen et al. (2012a) we investigated the use of kernel principal compo-
nent analysis (KPCA) and pre-image estimation as a means for image denoising
as part of the image preprocessing pipeline. We based the investigation on
two fMRI data sets, and evaluated the proposed method within the NPAIRS
resampling framework. The proposed denoising strategy proved primarily to
increase pattern reproducibility as measured within the NPAIRS resampling
framework. Important future research topics include procedures for identifica-
tion of signal/noise components from the KPCA feature representation. Another
natural extension is to develop a nonlinear generalization of the multivariate,
data-driven method for the characterization and removal of physiological noise
in fMRI data, (PHYCAA) proposed by Churchill et al. (2012b). This method
uses canonical correlation analysis (CCA) to identify noise structures in fMRI
data. Pre-image estimation could be used directly in conjunction with kernel
CCA in a similar nonlinear denoising scheme. In Rasmussen et al. (2012a) we
further proposed a manifold navigation procedure for exploration of a nonlinear
data manifold as an extension to existing technology applicable to linear models
(Sato et al., 2008). The proposed method can be used to generate brain maps
in the continuum between experimentally defined brain states. We provided an
illustration that the method is capable of exploring a nonlinear manifold by con-
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structing interpolated images via pre-image estimation. However, it is important
to emphasize that we provide an illustration and nothing more. The nonlinearity
was mainly observed for extrapolated data points. In future research it is rele-
vant to acquire an fMRI data set, where interpolated/extrapolated data points
can be compared with actual brain scans residing in the continuum between the
brain states. Hence, an assessment whether the method is capable of predicting
novel stimuli that are not in the training set should be performed (Raizada and
Kriegeskorte, 2010).

Concluding remarks

The work presented in this dissertations is motivated by two overall goals.
Firstly, we attempted to obtain further insight into commonly applied pattern-
based analysis models’ ability to identify relevant signal structures in neuroimag-
ing data sets. In our research we used the NPAIRS resampling framework
(Strother et al., 2002) to evaluate the model visualization reproducibility as
means for model evaluation in addition to prediction accuracy. We hope that
our results highlights that there are open issues to be addressed - even when one
considers models that may be considered to be well established. How should the
models and models’ parameters be selected in order to maximize the scientific
outcome of the analyses? How do we formulate an objective that enhances sci-
entific discovery rather than prediction accuracy? We hope that our results will
stimulate investigators in continuing pursuing these research topics in future re-
search. Secondly, we performed an investigation of the applicability of nonlinear
methods within the context of the preprocessing and analysis of neuroimaging
data sets. We hope that our illustrations and analyses convinces the reader that
nonlinear methods provide means for enhanced signal detection in cases where
linear modeling may be too restrictive. We look forward to future applications
of nonlinear learning within the analysis of functional neuroimages. Finally, we
here formulate two ultimate goals to be addressed by pattern-based analyses:

• Given a brain scan, can we, based on the activation pattern, infer which of
multiple brain states a subject was engaged in when the scan was acquired?

• What is the most complete and reliable spatial pattern reflecting the un-
derlying neural encoding of the experiment defining the multiple brain
states?

We advocate that both goals should be pursued in order to maximize the neu-
roscientific outcome of the analysis of functional neuroimages.
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Meier, L., Van De Geer, S., Bühlmann, P., 2008. The group lasso for logis-
tic regression. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 70 (1), 53–71.

Michel, V., Eger, E., Keribin, C., Thirion, B., 2011a. Multiclass Sparse Bayesian
Regression for fMRI-Based Prediction. International Journal of Biomedical
Imaging 2011, doi:10.1155/2011/350838.

Michel, V., Gramfort, A., Varoquaux, G., Eger, E., Keribin, C., Thirion, B.,
2011b. A supervised clustering approach for fMRI-based inference of brain
states. Pattern Recognition doi:10.1016/j.patcog.2011.04.006.

Michel, V., Gramfort, A., Varoquaux, G., Eger, E., Thirion, B., 2011c. To-
tal Variation Regularization for fMRI-Based Prediction of Behavior. Medical
Imaging, IEEE Transactions on 30 (7), 1328–1340.
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Smola, A. J., 1999. Input space versus feature space in kernel-based methods.
IEEE Transactions On Neural Networks 10 (5), 1000–1017.

Schölkopf, B., Smola, A., Müller, K.-R., 1998. Nonlinear component analysis as
a kernel eigenvalue problem. Neural Computation 10 (5), 1299–1319.

Shawe-Taylor, J., Cristianini, N., 2004. Kernel Methods for Pattern Analysis.
Cambridge University Press.

Shmuel, A., Chaimow, D., Raddatz, G., Ugurbil, K., Yacoub, E., 2010. Mech-
anisms underlying decoding at 7 t: Ocular dominance columns, broad struc-
tures, and macroscopic blood vessels in v1 convey information on the stimu-
lated eye. NeuroImage 49 (3), 1957–1964.

Sigurdsson, S., Philipsen, P., Hansen, L., Larsen, J., Gniadecka, M., Wulf, H.,
2004. Detection of skin cancer by classification of Raman spectra. IEEE Trans-
actions on Biomedical Engineering 51 (10), 1784–1793.

Smith, S., Jenkinson, M., Woolrich, M., Beckmann, C., Behrens, T., Johansen-
Berg, H., Bannister, P., De Luca, M., Drobnjak, I., Flitney, D., Niazy, R.,
Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J., Matthews, P.,
2004. Advances in functional and structural MR image analysis and imple-
mentation as FSL. NeuroImage 26 (S1), 208–219.



BIBLIOGRAPHY 147

Song, S., Zhan, Z., Long, Z., Zhang, J., Yao, L., 02 2011. Comparative Study
of SVM Methods Combined with Voxel Selection for Object Category Clas-
sification on fMRI Data. PLoS ONE 6 (2), e17191.

Song, X., Ji, T., Wyrwicz, A. M., 2008. Baseline drift and physiological noise
removal in high field fMRI data using kernel PCA. In: ICASSP. pp. 441–444.

Stephan, K., Kasper, L., Harrison, L., Daunizeau, J., den Ouden, H., Break-
spear, M., Friston, K., 2008. Nonlinear dynamic causal models for fMRI.
NeuroImage 42 (2), 649–662.

Strother, S., Anderson, J., Hansen, L., Kjems, U., Kustra, R., Sidtis, J.,
Frutiger, S., Muley, S., LaConte, S., Rottenberg, D., 2002. The Quantita-
tive Evaluation of Functional Neuroimaging Experiments: The NPAIRS Data
Analysis Framework. NeuroImage 15 (4), 747–771.

Strother, S., Conte, S. L., Hansen, L. K., Anderson, J., Zhang, J., Pulapura,
S., Rottenberg, D., 2004. Optimizing the fMRI data-processing pipeline using
prediction and reproducibility performance metrics: I. A preliminary group
analysis. NeuroImage 23, Supplement 1, S196–S207.

Strother, S., Oder, A., Spring, R., Grady, C., 2010. The NPAIRS Computational
Statistics Framework for Data Analysis in Neuroimaging. Proc. 19th Int. Conf.
on Computational Statistics, Paris, 111–120.

Strother, S. C., Lange, N., Anderson, J. R., Schaper, K. A., Rehm, K., Hansen,
L. K., Rottenberg, D. A., 1997. Activation pattern reproducibility: Measuring
the effects of group size and data analysis models. Human Brain Mapping 5,
312–316.

Tam, F., Churchill, N. W., Strother, S. C., Graham, S. J., 2011. A new tablet for
writing and drawing during functional MRI. Human Brain Mapping 32 (8),
240–248.

Thirion, B., Faugeras, O., 2003. Dynamical components analysis of fMRI data
through kernel PCA. NeuroImage 20 (1), 34–49.

Thirion, B., Flandin, G., Pinel, P., Roche, A., Ciuciu, P., Poline, J.-B., 2006.
Dealing with the shortcomings of spatial normalization: Multi-subject par-
cellation of fMRI datasets. Human Brain Mapping 27 (8), 678–693.

Thomas, C. G., Harshman, R. A., Menon, R. S., Nov. 2002. Noise reduction in
BOLD-based fMRI using component analysis. Neuroimage 17 (3), 1521–1537.

Tibshirani, R., 1996. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society. Series B (Methodological) 58 (1), 267–288.



148 BIBLIOGRAPHY

Tohka, J., Foerde, K., Aron, A. R., Tom, S. M., Toga, A. W., Poldrack,
R. A., 2008. Automatic independent component labeling for artifact removal
in fMRI. NeuroImage 39 (3), 1227–1245.

Valente, G., De Martino, F., Esposito, F., Goebel, R., Formisano, E., 2011.
Predicting subject-driven actions and sensory experience in a virtual world
with relevance vector machine regression of fmri data. NeuroImage 56 (2),
651–661.

Van Essen, D. C., 2004. Surface-based approaches to spatial localization and
registration in primate cerebral cortex. NeuroImage 23, Supplement 1 (0),
S97–S107, mathematics in Brain Imaging.

Wallentin, M., Nielsen, A. H., Vuust, P., Dohn, A., Roepstorff, A., Lund, T. E.,
2011. BOLD response to motion verbs in left posterior middle temporal gyrus
during story comprehension. Brain and Language 119 (3), 221–225.

Wang, Z., 2009. A hybrid SVM-GLM approach for fMRI data analysis. Neu-
roImage 46 (3), 608–615.

Wang, Z., Childress, A., Wang, J., Detre, J., 2007. Support vector machine
learning-based fMRI data group analysis. NeuroImage 36 (4), 1139–1151.

Witt, S. T., Laird, A. R., Meyerand, M. E., Aug. 2008. Functional neuroimaging
correlates of finger-tapping task variations: an ALE meta-analysis. NeuroIm-
age 42 (1), 343–356.

Wolbers, T., Zahorik, P., Giudice, N. A., 2011. Decoding the direction of audi-
tory motion in blind humans. NeuroImage 56 (2), 681–687.

Worsley, K., Friston, K., 1995. Analysis of fMRI Time-Series Revisited-Again.
NeuroImage 2 (3), 173–181.

Yamashita, O., aki Sato, M., Yoshioka, T., Tong, F., Kamitani, Y., 2008. Sparse
estimation automatically selects voxels relevant for the decoding of fMRI ac-
tivity patterns. NeuroImage 42 (4), 1414–1429.

Yourganov, G., Schmah, T., Small, S. L., Rasmussen, P. M., Strother, S. C.,
2010. Functional connectivity metrics during stroke recovery. Archives Itali-
ennes de Biologie 148 (3), 259–270.

Yunqian Ma, Cherkassky, V., 2005. Characterization of data complexity for svm
methods. IEEE International Joint Conference on Neural Networks 2, 919–
924.

Zhang, J., Anderson, J. R., Liang, L., Pulapura, S. K., Gatewood, L., Rot-
tenberg, D. A., Strother, S. C., 2009. Evaluation and optimization of fMRI
single-subject processing pipelines with NPAIRS and second-level CVA. Mag-
netic Resonance Imaging 27 (2), 264–278.



BIBLIOGRAPHY 149

Zhang, Z., Dai, G., Xu, C., Jordan, M., 2010. Regularized Discriminant Analy-
sis, Ridge Regression and Beyond. Journal of Machine Learning Research 11,
2199–2228.

Zou, H., Hastie, T., 2005. Regularization and variable selection via the elastic
net. Journal of the Royal Statistical Society, Series B 67, 301–320.

Zurada, J., Malinowski, A., Cloete, I., 1994. Sensitivity analysis for minimiza-
tion of input data dimension for feedforward neural network. 1994 IEEE In-
ternational Symposium on Circuits and Systems, 1994. ISCAS’94. 6, 447–450.

Zurada, J., Malinowski, A., Usui, S., 1997. Perturbation method for deleting
redundant inputs of perceptron networks. Neurocomputing 14 (2), 177–193.


	Summary
	Resumé
	Preface
	Acknowledgements
	Publications
	1 Reading guide
	2 Dissertation background, context, and contribution
	2.1 Neuroimaging background
	2.2 The neuroimaging pipeline
	2.3 Project contribution

	3 Statistical modeling and model evaluation
	3.1 Univariate modeling
	3.2 From univariate encoding models to multivariate decoding models
	3.3 Decoding as predictive modeling
	3.4 Linear predictive models
	3.5 Nonlinear predictive models - Kernel models
	3.6 Global model visualization by sensitivity maps
	3.7 Denoising and localized visualization using kernel principal component analysis and pre-image estimation
	3.8 Model evaluation

	4 Data sets
	4.1 Finger tapping experiment
	4.2 Trail-Making Test experiment
	4.3 Xor experiment
	4.4 Object recognition experiment

	5 Experimental results
	5.1 Discovery of brain networks
	5.2 Global model visualization by sensitivity maps
	5.3 Image denoising by kernel principal component analysis and pre-image estimation

	6 Conclusion and outlook

