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Abstract 

Kevin Ashton first used the term Internet of Things (IoT) in 1999 to describe a system in which 

objects in the physical world could be connected to the Internet by sensors. Since the inception of the 

term, the total number of Internet-connected devices has skyrocketed, resulting in their integration 

into every sector of society. Along with the convenience and functionality IoT devices introduce, there 

is serious concern regarding security, and the IoT security market has been slow to address 

fundamental security gaps. This dissertation explores some of these challenges in detail and proposes 

solutions that could make the IoT more secure. Because the challenges in IoT are broad, this work 

takes a broad view of securing the IoT. 

Each chapter in this dissertation explores particular aspects of security and privacy of the IoT, and 

introduces approaches to address them. We outline security threats related to IoT. We outline trends 

in the IoT market and explore opportunities to apply machine learning to protect IoT. We developed 

an IoT testbed to support IoT machine learning research. We propose a Connected Home Automated 

Security Monitor (CHASM) system that prevents devices from becoming invisible and uses machine 

learning to improve the security of the connected home and other connected domains. We extend 

the machine learning algorithms in CHASM to the network perimeter via a novel IoT edge sensor 

device. We assess the ways in which cybersecurity analytics will need to evolve and identify the 

potential role of government in promoting needed changes due to IoT adoptions. We applied 

supervised learning and deep learning classifiers to an IoT network connection log dataset to 

effectively identify varied botnet activity. We proposed a methodology, based on trust metrics and 

Delphic and Analytic Hierarchical Processes, to identify vulnerabilities in a supply chain and better 

quantify risk. We built a voice assistant for cyber in response to the increased rigor and associated 

cognitive load needed to maintain and protect IoT networks. 

Primary Reader and Advisor: Aviel Rubin 

Secondary Reader(s): Lanier Watkins, Anna Buczak, Anton Dahbora, and Matthew Green 
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1 INTRODUCTION 

This dissertation explores security challenges in the Internet of Things (IoT) in detail, and proposes 

solutions that will make these devices, systems built from them, and data residing on them more secure. 

Unlike many other technologies, the IoT space must address unique challenges and requirements that 

place significant constraints on possible solutions to problems. For this reason, we take a multi-prong 

approach to IoT security, considering aspects of technology, ecosystem, and policy [7]. 

Throughout this work, we will explore particular problems in depth and introduce novel technologies 

that provide solutions. Our work strives to create a more secure IoT-enabled smart system environment 

centered on the integration of the technologies proposed in this work. 

1.1 IoT Concepts and Definition 

The IoT is a concept in which everyday devices become more connected, making it possible for them 

to become smarter; processing becomes intelligent, and everyday communication becomes informative 

[8]. The term Internet of Things was first used in 1999 by British technology pioneer Kevin Ashton to 

describe a system in which objects in the physical world could be connected to the Internet by sensors 

[9]. The National Institute of Standards and Technology (NIST) provides a description, rather than a 

definition: “The Internet of Things (IoT) is a rapidly evolving and expanding collection of diverse 

technologies that interact with the physical world” [10]. Although this might seem vague, the NIST 

description importantly captures the non-static nature of technologies and modalities of interaction with 

the tangible. However, for practitioners in different domains, such a description can be too loose and 

therefore not provide essential guidance. The questions arise: What technologies? And, how do these 

technologies interact? 

There is still no universally accepted definition for the IoT. For example, the Internet Engineering Task 

Force (IETF) view of the “Internet” considers the Transmission Control Protocol/Internet Protocol (TCP/IP) 

suite and non-TCP/IP suite as protocols and classifies “things” as people, machines, or information that 
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comprise the IoT that connects objects around us to provide seamless communication and contextual 

services provided by them [11]. On the other hand, the International Telecommunication Union (ITU) 

defines the IoT as a global infrastructure for the information society, enabling advanced services by 

interconnecting (physical and virtual) things based on existing and evolving interoperable information and 

communication technologies [12]. The National IoT Strategy Dialogue recommended that “[t]he IoT 

consists of “things” (devices) connected through a network to the cloud (datacenter) from which data can 

be shared and analyzed to create value (solve problems or enable new capabilities)” [13]. The Institute of 

Electrical and Electronics Engineers (IEEE) has solicited help in developing a definition. They surveyed 

more than 12 international standards organizations and research bodies to curate a domain-neutral yet 

more granularly characterized description that is tailored to the underlying “things” of interest, scale, and 

operational needs—resulting in two definitions for small- and large-scale scenarios [14]. 

For the purposes of this dissertation, the IoT is defined as all uniquely identifiable physical or virtual 

objects that exchange information with other uniquely identifiable physical or virtual objects via the 

Internet (or other communications network) and the evolving technology that supports this exchange as 

appropriate for the scale and operational needs. Figure 1-1 (from [15]) illustrates this IoT concept and its 

three constituent elements: 

1. Things – Objects in the physical or virtual world that can be identified and integrated into a 

communications network 

2. Devices – Digital equipment with the required capability to communicate and the optional capa-

bility of sensing, actuation, data storage, and data processing 

3. A communications network (e.g., the Internet) 
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Figure 1-1 Elements of the IoT Concept 

The IoT is already very large, consisting of billions of connected devices, and it is expected to grow by 

an order of magnitude by the end of the next decade [16]. 

The IoT will be an integral part of every sector of the U.S. economy and will substantially influence 

daily activities ranging from healthcare to transportation to provision of basic services. Smart grids, with 

automated sensors and control systems to achieve increased efficiency, will be integrated into 

transportation and public utility systems. Industrial processes will become increasingly dependent on 

automation and robotics, affecting the manufacturing, chemical, and defense sectors. Financial and legal 

institutions housing vast amounts of sensitive data will be increasingly equipped with IoT-enabled sensors 

and controls including security surveillance systems. Public health and emergency services will be 

increasingly connected to biometric and geolocation sensors to provide continuous monitoring of patient 

and first responder status. 

1.2 Security Concerns of the Internet of Things 

The IoT is more than the connection of an increasing number of “smart” devices. It is one of a number 

of technology evolutions that will radically alter the way machines communicate. In this sprit, it would be 
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impossible to assess the cybersecurity requirements of the emerging IoT without also considering the 

effects of the emerging fifth generation (5G) standard. Although IoT and 5G are independent entities, 

their development paths are intertwined. Two of three core 5G capabilities [Massive Machine-to-Machine 

(M2M) Communication and Extremely-Low-Latency and High-Reliability Communications] identified by 

the ITU relate specifically to the needs of IoT. Similarly, the potential for increased bandwidth, device-to-

device communications, and increased adoption of virtualization capabilities presented by the emerging 

5G standard will profoundly affect the shape of the IoT. The 5G-powered IoT will dramatically change how 

networks operate because capability will become increasingly distributed and virtualized and devices will 

operate more independently of traditional protective infrastructures, dynamically joining and leaving 

networks. We call attention to 5G’s significant impact here in the introduction to offer a complete 

assessment of IoT challenges; however, 5G is out of scope for this body of work as we focus on issues 

related more directly to IoT. 5G will be addressed in future work. 

We surveyed critical emerging capabilities, technologies, and trends associated with the IoT and 

identified a number of factors that could create novel and/or heightened cybersecurity risk: 

• Increased scale – The increased scale of IoT (i.e., more devices, more network traffic to be 

monitored) will increase the attack surface while stressing defenses. 

• Increased M2M communications – Increased dependence on M2M and device-to-device (D2D) 

communications will require adaptation of existing network security techniques to the increased 

number of devices with limited security operating on networks and increasingly dynamic network 

architectures. 

• Increasingly virtual networks – The ability to “stack” virtual networks within a physical network 

architecture will create new requirements and provide new opportunities for network security, 

as virtual networks within the same physical architecture may have unique quality-of-service 

(QoS) and security capabilities. 
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• Evolution from cloud computing structures to fog computing structures – As existing highly 

centralized cloud computing structures are replaced by more distributed fog computing, 

centralized security approaches will need to be updated to operate in a more distributed fashion 

with security applications operating at the edge and within clients on endpoint devices. 

• Increased physical risk – IoT devices operating in public view, such as security cameras, sensors, 

and controls, may be compromised by persons with physical access, and such compromises may 

have significant negative physical effects via IoT actuators. Indeed, the sheer number of these 

devices will mean broader exposure to supply chain risks. 

• Lower-cost, lower-power devices – The IoT is enabled by cost-effective devices with low power 

consumption connected to networks. Many of these devices will not have sufficient capacity to 

support the processing of intensive cybersecurity analytic capabilities, especially those involving 

machine learning. 

Notionally, cybersecurity risk can be expressed in the following equation, which illustrates why the 

IoT introduces an increased number of security threats [17]: 

𝐶𝑦𝑏𝑒𝑟𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝑅𝑖𝑠𝑘 =  
𝑇ℎ𝑟𝑒𝑎𝑡 𝑙𝑒𝑣𝑒𝑙 ×  𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐴𝑡𝑡𝑎𝑐𝑘 ×  𝑃𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒

𝐶𝑦𝑏𝑒𝑟𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑠 𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑒𝑑
 

For each device connected to the Internet (i.e., point of exposure), the cybersecurity risk is a function 

of the threat posed by the attack, the probability that a device will be attacked and the cybersecurity 

measures implemented (which reduce the risk). As a result, as the number of connected devices increases, 

the cybersecurity risk increases. In addition, as the number of connected devices and applications (e.g., 

healthcare, industrial control, smart cities) increases, the potential impacts of a cyber-attack also 

increases. As basic functions become increasingly dependent on IoT-enabled capabilities, hackers have 

more targets, and more opportunities, to inflict damage. In addition, as the technology stack becomes 

increasingly complex to support the often-divergent needs of IoT applications, new threats across the 
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stack become possible. Critically, each device targeted by cyber-attack becomes a new threat vector, 

enabling additional attacks on other network-connected devices. 

Cybersecurity vulnerabilities in IoT devices can be used to disable or modify IoT-enabled capabilities. 

An adversary might attempt to disable key industrial processes to inflict economic damage or disable 

critical safety mechanisms to cause physical harm. Conceivably, an adversary might attempt to exploit 

gaps in IoT cybersecurity to sabotage specific products or weapon systems or to disable vital public 

services including water, electricity, or communications. However, the point of attack may not be the 

ultimate target of a cybersecurity breach. Adversaries may attempt to exploit weaknesses in IoT 

cybersecurity in one organization or sector to gain access to important financial, legal, health, or other 

private data in another organization or sector. 

IoT solution architectures require multi-layered security approaches to provide complete end-to-end 

security from device to cloud and everything in between throughout the lifecycle of the solution. 

Foundational changes are emerging with the IoT that will expose critical networks to potential 

vulnerabilities. We feel a vision is needed to assess the likely impacts of the IoT and identify potential 

capabilities to respond to the likely emerging challenges of an increasingly distributed, virtual, and 

dynamic IoT cyber environment. 

1.3 Vision and Approach 

The set of issues identified and described above cover multiple areas; thus, solutions to these 

concerns must go beyond the technical realm, requiring a multifaceted approach that examines the issues 

from multiple perspectives. Our vision is to explore these issues from the perspective of technology, the 

supporting ecosystem, and related polices that govern how IoT is implemented. This dissertation explores 

each issue and introduces approaches, processes, and techniques that can be deployed in IoT settings that 

work toward addressing each of these unique challenges. 
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1.3.1 Connected Home Automated Security Monitor (CHASM): Protecting IoT Through Application of 
Machine Learning [1] 

The IoT will dramatically transform the home experience, but it presents significant security risks. We 

propose a system that helps reduce the cognitive load on a user in keeping their smart home network 

protected. The system helps prevent IoT devices from becoming invisible or forgotten by the user and 

provides semi-autonomous capability to address key security concerns in the connected home. In this 

paper, we describe the problem, explain specifications for the system, present our work in IoT discovery 

and IoT device classification portions of the system, and show initial results related to our efforts exploring 

novel application of machine learning to build this capability. 

1.3.2 A Capability for Autonomous IoT System Security: Pushing IoT Assurance to the Edge [2] 

Complex systems of IoT devices (SIoTD) are systems that have a single purpose but are composed of 

multiple IoT devices. These systems are becoming ubiquitous; they have complex security requirements 

and face a diverse and ever-changing array of cyber threats. Issues of privacy and bandwidth will preclude 

sending all the data from these systems to a central repository and so these systems cannot totally rely 

on a centralized cloud-based service for their security. The security of these systems must be provided 

locally and in an autonomous fashion. In this paper, we describe a capability to address this problem, 

explain specifications for the system, present our work on SIoTD assurance, and show initial results of a 

novel edge-based application of machine learning to build this capability. 

1.3.3 Envisioning Cybersecurity Analytics for the Internet of Things [6] 

The IoT represents a rethinking of how we currently envision networks. It involves increases in scale 

of an order of magnitude over the next decade, increasingly distributed and virtualized architectures, and 

an ever-changing perimeter. Cybersecurity analytic capability will need to adapt to meet the demands of 

this evolving environment. In this paper, the authors assess the ways in which cybersecurity analytics will 

need to evolve and identify the potential role of government in promoting needed changes. This paper 

provides a brief summary of that effort. 
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1.3.4 Identification of Botnet Activity in IoT Network Traffic Using Machine Learning [5] 

Today our world benefits from IoT technology; however, new security problems arise when these IoT 

devices are introduced into our homes. Because many of these IoT devices have access to the Internet 

and they have little to no security, they make our smart homes highly vulnerable to compromise. Some 

of the threats include IoT botnets and generic confidentiality, integrity, and availability (CIA) attacks. 

Our research explores botnet detection by experimenting with supervised machine learning and deep 

learning classifiers. Furthermore, our approach assesses classifier performance on unbalanced datasets 

that contain benign data, combined with small amounts of malicious data. We demonstrate that the 

classifiers can separate malicious activity from benign activity within a small IoT network dataset. The 

classifiers can also separate malicious activity from benign activity in increasingly larger datasets. Our 

experiments have demonstrated incremental improvement in results for (1) accuracy, (2) probability of 

detection, and (3) probability of false alarm. The best performance results include 99.9% accuracy, 99.8% 

probability of detection, and 0% probability of false alarm. This paper also demonstrates how the 

performance of these classifiers increases as IoT training datasets become increasingly larger. 

1.3.5 A Proposed Trust Model for Assessing Cybersecurity Risk in a Supply Chain Considering IoT ’s 
Impact [3] 

As the IoT becomes increasingly integrated into industrial processes, cyber-attacks to systems using 

their supply chains as points of entry become more common. A decade ago, the Stuxnet virus 

demonstrated the ability to inflict cyber-physical damage on even a closed system via its supply chain. The 

emergence of increased levels of Internet- and IoT-based capabilities—ranging from collaborative design 

capabilities to manufacturing processes that enable fabrication directly from digital models to increased 

use of automation and robotics on factory floor—expands exposure to the Internet and to cyber-attacks. 

Even as awareness of the need to protect against malware implanted in the supply chain grows, there is 

still no effective method of assessing the cyber risk in a supply chain. This paper describes how increased 

integration of IoT-enabled capabilities has expanded the threat surface and proposes a methodology, 
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based on trust metrics and Delphic and analytical hierarchical processes, to identify vulnerabilities in a 

supply chain and better quantify risk. 

1.3.6 Toward an Ambient Computing Paradigm for IoT Cybersecurity: Lowering the Cognitive Load for 
Users [4] 

The IoT is becoming more pervasive in the home, office, hospital, and many other user-facing 

environments (UFEs) as more devices are networked to improve functionality. However, this explosion of 

networked devices in UFEs necessitates that security systems become easier to help users remain aware 

of the security of the devices on their network. Users may not have the skills or the time needed to 

continuously monitor networks of increasing complexity using common open-source tools. Specifically, 

they are not likely to fully comprehend the data that those tools present, nor are they likely to have a 

working knowledge of the tools needed to monitor and protect their IoT-enabled network environments. 

This paper expands earlier work on a CHASM to build a system that uses ambient computing to facilitate 

network security monitoring and administration for the connected home and other UFE-connected 

environments such as hospitals, smart buildings, and smart cities, through novel integration of voice 

assistant technology. Our system is designed to combine machine-learning–enriched device awareness 

and dynamic visualization of IoT networks with a natural language query interface enabled by voice 

assistants to greatly simplify the process of providing awareness of the security state of the network. The 

voice assistant integrates knowledge of devices on the network to communicate status and concerns in a 

manner that is easily understood. These capabilities will help to improve the security of UFEs while 

lowering the associated cognitive load on the users. This paper outlines continued work in progress 

toward building this capability as well as initial results on the efficacy of the system. 

1.4 Outline of this Work 

Each chapter in this dissertation explores an aspect or problem related to security or privacy in IoT. 

• Chapter 2 examines IoT security issues in the home and introduces the CHASM concept. 

• Chapter 3 extends CHASM to the IoT edge. 
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• Chapter 4 examines cybersecurity analytics capability in response to the threats from the 

perspective of a large organizational entity. 

• Chapter 5 examines the use of machine learning to identify botnet activity in IoT devices and 

networks. 

• Chapter 6 introduces and examines a proposed framework for assessing IoT motivated 

cybersecurity risks and its impacts on supply chains. 

• Chapter 7 examines ambient computing and its utility in lowering the cognitive load on users 

when protecting IoT enable networks. 

• Chapter 8 is a summary of the preceding topics explored in this dissertation. 

• Chapter 9 lists the references cited in the research and performance of work described herein. 
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2 CONNECTED HOME AUTOMATED SECURITY MONITOR (CHASM): PROTECTING IOT 
THROUGH APPLICATION OF MACHINE LEARNING 

2.1 Introduction 

Kevin Ashton first used the term Internet of Things (IoT) in 1999 to describe a system in which objects 

in the physical world could be connected to the Internet by sensors [18]. Since the inception of the term, 

estimates predict that by 2020 the total number of Internet-connected devices being used will be 

50 billion [19], and the combined markets of IoT will grow to 520 billion by 2021 [20] into every sector of 

society including the home. 

Along with the convenience, functionality, and entertainment options IoT in the home devices 

introduce, there is a host of related threats. IoT-related compromises are raising the profile of security 

concerns associated with IoT devices [21] [22] [23], but the IoT security market has been unhurried to 

address fundamental security gaps. Security is often applied to hardware, software, and system develop-

ment as an afterthought instead of being included in the initial development process; often, the 

development of IoT devices, platforms, and protocols suffers from a lack of security [24]. The security 

concerns with IoT become more apparent when considering the ubiquitous way in which IoT will be 

integrated into our everyday lives [18] [25]. 

Specifically, one risk of owning home IoT devices is their ability to become invisible to the users over 

time [26]. Once devices become connected to the network, owners tend to forget the device is connected 

and, therefore, do not actively and regularly check them, thereby overlooking the need to perform 

important updates, which exposes the user to security risks. Furthermore, technical diversity in products 

combined with immature standards complicates the task of tracking, securing, and maintaining IoT 

products in the home. 

To complicate things further, rapid change in the device vendor space means manufacturers may 

update a product only for a few years. This directly conflicts with the fact that many smart home 

appliances (e.g., refrigerators) have lifetimes of 10 to 15 years [26]. This creates a case where connected 
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devices may go many years without a software update. This is similar to having an unpatched Windows 

XP service pack 1 device on a current home network today, thereby exposing the network to all of its 

vulnerabilities. 

Compared to the relatively few general-purpose computers (e.g., PCs, smart phones, or tablets) most 

users have to administer in their homes, there could be several dozen IoT devices in a connected home. 

A study of such a home conducted in 2017 showed the average consumer has 13 connected devices [27]. 

With the adoption rate of IoT steadily increasing, that number will continue to rise [28]. With all of these 

IoT devices, the task of keeping a growing IoT network secure places an unrealistic burden on the average 

consumer [29]. In response, the task of protecting IoT-connected domains and applications will need to 

be automated. Therefore, full autonomy likely is not achievable for securing the totality of IoT. We believe 

novel methods will increase the level of autonomy in applications to provide analytically informed insights 

and recommendations, and will support homeowners in their efforts to be more efficient and effective in 

providing assurance for their IoT devices. 

To address these security issues that, to our knowledge, are not currently being fully dealt with by a 

single solution, we propose a framework and solution that combines a novel application of standards-

based detection, behavioral-based detection, verification operation of IoT devices, and application of 

active security measures that address fundamental shortcomings in securing IoT devices in the connected 

home. This approach and capability will help users understand the IoT devices on their networks and to 

maintain the security of those devices. Although this system is intended for the home, the system would 

also be useful to organizations with large numbers of IoT devices. 

Our contributions are as follows: (1) we identify a gap in the IoT home security space and propose a 

system to fill this gap, (2) we experimentally detail the ensemble machine learning model aspect of our 

system, and (3) we introduce early results from the IoT discovery aspect of our system. 
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The remainder of this chapter is organized as follows. Section 2.2 introduces and motivates the 

CHASM system. Section 2.3I introduces IoT discovery and classification efforts for CHASM and discusses 

related works. Section 2.4 presents our experimentation approaches by describing our data collection, 

feature engineering, and model development. Section 2.5 describes our results. Lastly, Section 2.6 

summarizes the paper and discusses future work. 

2.2 CHASM 

CHASM is a proposed IoT security system that aims to reduce the cognitive load on owners in 

managing and securing their connected homes’ environment containing multiple devices, CHASM will 

maintain situational awareness of all of the IoT devices on a home network for the user, monitoring for 

vulnerabilities and detecting threats. Specifically, it will detect devices; monitor rogue, vulnerable, or 

compromised devices; and assist the user in managing the overall complexity of maintaining a safe and 

secure smart home environment addressing the key issues related to securing a connected environment 

[30]. 

The cornerstone capability of this system would be to perform automated device discovery, 

identification, and classification [31] [32] [33] [34]. Through being able to specifically identify and 

characterize all devices on a network, the user would automatically have a list of every IoT device on their 

network, and thus gain insights on what should be addressed on their network from a security point of 

view. 

However, situational awareness of connected devices is not adequate to protect home users [35]. To 

protect a smart home, one needs to have insights into many other aspects of connected devices. Examples 

include how the devices are operating, whether a device is compromised and operating outside its normal 

behavior, and whether the device is properly configured and protected via patches and other updates. 

CHASM also will seek to inform smart home users of the current level of support provided for their device 

from the manufacturer. 
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2.2.1 CHASM Capabilities and Requirements 

To meet the needs previously outlined, CHASM will provide the following functional capabilities for 

connected home users to better protect themselves: 

• Perform automated IoT device discovery. 

• Keep a tally of devices connected to a network (based on devices discovered). 

– Warn when new devices are connected. 

– Perform IoT device profiling and verification. 

• Verify devices are operating as they should. 

– Detect for attacks against devices. 

– Determine whether a device is operating outside its intended range. 

• Help users keep their devices properly patched and secured. 

– Provide device and device software patch support. 

– Notify users when the last update was made available. 

– Warn users of possible unsupported devices based on changes in the manufacturer or the 

company, or for issues specific to a device (e.g., no longer supported with patches). 

– Warn users if there are known vulnerabilities in a device. 

– Recommend and remind users to change default passwords and show the last time they were 

changed. 

Considering CHASM’s target capabilities and long-term goal to run on the edge in a user’s 

environment, requirements for machine-learning algorithms deployed to the system are as follows: 

• They can be deployed on a lightweight, affordable processing platform. 

• They do not require total session knowledge for classifications. 

• They strive to use the most computationally efficient method to meet a goal. 

• They create portable models, selecting features that work across multiple different networks. 
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• They can provide insights on devices for which they were not trained. If CHASM cannot classify a 

specific device, it will classify the type of device through its characteristics and relationships to 

other similar devices. 

2.3 IoT Device Discovery and Classification 

This chapter describes initial work done to develop the device discovery and classification capability 

of CHASM. Future work will explore anomaly detection and patch support capabilities. We focus initial 

attention to the IoT discovery processes because we believe features important for IoT device discovery 

will be reusable for device profiling and threat analysis model development tasks. Furthermore, we 

believe IoT discovery is foundational because a user needs to have a good accounting and understanding 

of the devices on a network to be able to protect and secure them. 

Although there are many ways to perform IoT discovery, each has its strengths and limitations. For 

example, with Media Access Control (MAC) addresses, one can determine the device manufacturer. This 

approach is relatively straightforward, but it also can be spoofed or be representative of another device 

in the network chain (e.g., a router or a switch) [36]. Another method to perform direct IoT device 

discovery is to investigate full TCP sessions; however, this requires waiting until the end of a session to 

extract the necessary features. In addition, for some IoT devices, the TCP sessions can last for days [31]. 

For this reason, the focus of this work is to explore discovery, profiling, and verification of IoT devices 

solely based on their network behavior or other information contained in individual or constrained groups 

of packets. The goal is to combine aspects from multiple IoT discovery approaches in an ensemble analytic 

that fuses insights from each approach. 

Outlined next are relevant related efforts from the literature in IoT discovery and classifications that 

were used for motivations in our work. 
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2.3.1 Related Work in Behavioral-based IoT Device Discovery 

Zhang et al. [32] used passive traffic measures for their research centered on the Samsung 

SmartThings platform. The authors evaluated 181 SmartThings devices by leveraging side-channel 

inference capabilities to design and develop a system to monitor SmartApps from encrypted wireless 

traffic. 

Luo et al. [33] developed an automated system that can characterize an IoT device and generate an 

automated profile. They used a set of observable traits that comprise an IoT device, including protocols 

being used, data transfer rate, heartbeat frequency, upload and download rate, and the number of global 

or public traffic packets. 

Shahid et al. [31] present a machine-learning–based approach to recognize the type of IoT devices 

connected to the network by analyzing streams of packets sent and received. Their results are promising, 

with an overall accuracy as high as 99.9% on their test set achieved by a random forest classifier. 

Meidan et al. [34] used random forest applied to features extracted from network traffic data with 

the goal of accurately identifying IoT device types from the white list. IoT devices were correctly detected 

as unknown in 96% of test cases (on average), and white-listed device types were correctly classified by 

their actual types in 99% of cases. 

Leung et al. [37] used protocol-independent network flows characteristics to compare a number of 

IoT discovery research efforts, summarized the results, and created an ensemble algorithm that leveraged 

the features invented by previous efforts from Shen et al. [38] and Pego and Nunes [36]. They then 

combined them using a random forest classification algorithm. 

The results of these related works and others indicate there is potential for a lightweight security 

application that runs in the background and is capable of performing automated device identification. 

Using a similar approach to the one proposed by Meidan et al. and Leung et al., we extend their work on 
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behavioral-based device discovery to include behavioral-based verification of devices to ensure they are 

operating normally [39] and behavioral-based detection of attacks against the device [40]. 

2.4 Experimentation 

2.4.1 Data Collection 

Our data set consisted of 2 months of network data collected from 16 IoT devices on an Internet-

connected network. The devices were part of a larger collection of 120 connected devices including 

tablets, smart phones, and other IoT devices (e.g., thermostats, smart speakers, and smart outlets). The 

devices were configured and operated normally by users during the 2-month period. The network data 

were captured using WireShark on a PC on the IoT network. The resulting captured data were segmented 

into 1-hour blocks of packet capture (PCAP) data and saved to a file. Each 1-hour block contained 

heterogeneous captures of the various IoT devices performing their normal operations. The collection of 

1-hour PCAP files was then stored in the internal network to support machine-learning exploration. 

Figure 2-1 shows the architecture for our testbed setup. Figure 2-2 shows the devices and their data 

activity patterns. Table 2-1 lists the specific devices under test. 
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Figure 2-1 IoT Testbed High-Level Architecture 

 

Figure 2-2 Select Device Activity Time Range per Device 
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Table 2-1 IoT Devices Under Test 

Device ID Device 

0c:47:c9:10:d4:6f Amazon Echo v1 

18:b4:30:1f:17:19 Nest Protect 

18:b4:30:e4:83:a2 Nest Camera #1 

18:b4:30:e4:c6:2d Nest Camera #2 

2c:61:f6:75:0a:72 Apple iPad 

48:d6:d5:79:37:85 Google Home #1 

48:d6:d5:98:71:cb Google Home #2 

4c:ef:c0:07:94:8e Amazon Echo v2 

54:c9:df:8e:88:3f LaMertic Clock 

ac:cf:23:65:e5:e4 Orvibo Outlet 

b0:c5:54:0f:4a:44 D-Link Day/Night Cloud Camera 

b4:75:0e:0c:a9:61 WeMo Switch 

b4:79:a7:24:38:1a Wink Hub 

b8:e9:37:57:30:be Sonos Speaker 

c0:56:27:54:28:91 Belkin NetCam HD+ 

d4:90:9c:d5:e1:48 Apple Home Pod 

0c:47:c9:10:d4:6f Amazon Echo v1 

 

2.4.2 Feature Selection and Engineering 

Through examining the related works, we identified a combined list of potential single-packet, 

nonweighted features and multipacket features for machine-learning algorithm development for IoT. We 

considered a number of factors in identifying potential features to extract from each packet in the PCAP 

data. Table 2-2, which references Bezawada et al. [41] and Miettinen et al. [42], outlines the single-packet 

feature set. 

Meidan et al. [34] followed each TCP session from each device from successful SYN→FIN, and then 

extracted more than 300 features from each session. The following are the most important and useful of 

these features: 

• Time-to-live for TCP packets sent from device to server: minimum, maximum, average, first 

quartile, and third quartile 

• Total number of packets in the session that contain the Reset flag 
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• Ratio between number of bytes sent from device and received by device 

Shahid et al. [31] grouped TCP flows by unique combinations of source and destination IP and port. 

For each conversation, they extracted the following: 

• The size of the first N packets sent 

• The size of the first N packets received 

• The N – 1 packet inter-arrival times between the first N packets sent 

• The N – 1 packet inter-arrival times between the first N packets received 

Using combinations of these techniques, along with analytic insights motivated from Buczak et al., we 

enhance and extend the multipacket features by applying the following statistical transforms: average, 

variance, skewness, and kurtosis [43]. 

2.4.3 Model Selection and Model Development 

Leveraging the Anaconda Data science distribution [44], we used Python pandas in a Jupyter notebook 

to form test data sets that comprised a sub-collection of the IoT devices. Ground truth was already 

established for the data set in that we knew a priori the mapping between a specific IoT device and its 

associated MAC address and associated IP addresses. We created models using Python Scikit-learn 

libraries and applied our data to these models. 

2.4.3.1 Multiclass Decision Forest Details 

The first machine learning model explored was a multiclass decision forest [45] classifier. This machine 

learning method uses decision trees and bagging to predict a target that has multiple values. The random 

forest [46] is composed of multiple decision trees, and the final answer is decided by majority voting based 

on the predictions. This produces models that are robust despite noise and have error rates that are 

similar to neural networks. We chose this model based on its proven performance exhibited in the related 

works. We trained the multiclass decision forest classifier to distinguish the type of IoT device presented 

to the classifier. 
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2.4.3.2 Multiclass Neural Network Details 

The second machine learning model explored was a multiclass neural network [47]. This is a variation 

of a Deep Neural Network that can predict a single target from a collection of multiple candidates. A neural 

network is a set of interconnected layers, where the inputs are the first layer and are connected to an 

output layer by an acyclic graph composed of weighted edges and nodes. Between the input and output 

layers are hidden layers. The number of hidden layers can be configured to optimize performance based 

on the type of classification being performed. In our experiments, we created a single hidden layer where 

the output layer was fully connected to the input layers, and the number of nodes in the hidden layer was 

set to 100. We selected this classifier to attempt to leverage the time series nature of the IoT data. 

2.5 Results 

The initial machine-learning model results were varied for our initial data set. 

2.5.1 Multiclass Decision Forest 

Using the single-packet features, the multiclass decision forest posted an overall accuracy of over 98% 

and an average accuracy of 99%. Comparing these results, this model matched or bested previous efforts 

cited in related works, and it verifies that the decision forest is a good choice and performs well for the 

purpose of IoT discovery. The total model results are shown in Table 2-3. The top six features (those with 

information gain values above 0.01) for the multiclass decision forest are tcp_payload_entropy, 

tcp_src_port, tcp_window_size, ip_ttl, and TLSv1.2, and tcp_len (Figure 2-3). 

Table 2-2 Select Features Used for Device Discovery and Classification – Machine Learning Model 
Development 

Name Example and Description Reference 

Network Layer Protocol IP, ICMP, ICMPv6, EAPoL [41] 

Transport Layer Protocol TCP, UDP, etc. [41] 

Application Layer Protocol HTTP, HTTPS, DHCP, BOOTP, SSDP, DNS, MDNS, NTP, etc. [41] 

Internet Protocol (IP) options Padding, RouterAlert [41] 

Packet Length Integer number [48] 
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Name Example and Description Reference 

TCP: source port class 

An integer from 0 to 3 

no port ⇒ f = 0 

well-known port [0, 1023] ⇒ f = 1 

registered port [1024, 49151] ⇒ f = 2 

dynamic port [49152, 65535] ⇒ f = 3 

[42 

TCP: destination port class Same as source port class [42] 

TCP: payload length Integer number [41] 

TCP: Shannon Entropy of payload Used to determine whether a file is encrypted [41] 

TCP: window size Length of the TCP receive window [36] 

UDP: source port class Similar to TPC source port class for User Datagram Protocol (UDP) [34] 

UDP: payload length Length of the UDP payload [34]] 

UDP: Shannon Entropy of payload Used to determine whether a file is encrypted [32] 

Timestamp Unix epoch time (in milliseconds) [37] 

Aggregated into sequences of five 
packets 

For each five-packet sequence, all single-packet features were 
concatenated and scored. 

[48]] 

Aggregated packets into flow 
summaries  

For each flow summary, extracted: sleep time, active volume, 
average packet size, mean rate, peak-to-mean ratio, active time, 
number of servers, number of protocols, unique DNS requests, 
DNS interval, NTP interval, and most frequent port number. 

[38] 

 

Table 2-3 Multiclass Decision Forest Results 

Overall accuracy 0.982324 

Average accuracy 0.991162 

Micro-averaged precision 0.982324 

Macro-averaged precision 0.979172 

Micro-averaged recall 0.982324 

Macro-averaged recall 0.979421 
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Figure 2-3 Information Gain for Non-Zero Features Multiclass Decision Forest 

2.5.2 Multiclass Neural Network 

The multiclass neural network had an overall accuracy of 83% and an average accuracy of 91%. 

Analyzing these results, one sees there was a great deal of variability in this model’s performance. 

Specifically, the model precision (i.e., percentage of results that are relevant) and the model recall (i.e., 

percentage of total relevant results correctly classified by the algorithm) dropped to 83%, as shown in 

Table 2-4. The top seven features (those with information gain values above 0.01) for the multiclass neural 

network are TLSv1.0, Unknown TCP, tcp_payload_entropy, tcp_src_port, ip_ttl, UDP, and TLSv1.2 

(Figure 2-4) 

Table 2-4 Multiclass Neural Network Results 

Overall accuracy 0.832727 

Average accuracy 0.916363 

Micro-averaged precision 0.832727 

Macro-averaged precision 0.862141 

Micro-averaged recall 0.832727 

Macro-averaged recall 0.78037 
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Figure 2-4 Information Gain for Non-Zero Features Multiclass Neural Network 

Another source of variability in the results was due to the wide variety in how IoT traffic presents itself 

based on operating modes. IoT traffic has significantly different characteristics in an active state versus a 

quiescent state. The takeaway is that as we train machine-learning models on these data, one will need 

to take into account the variable nature of IoT traffic and train over a broader temporal collection of data 

that includes all of the operating modes of the device (Figure 2-2, Figure 2-5). We will explore this in future 

work. 
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Figure 2-5 IoT Data Characterization Variance (Active vs. Quiescent State) 

2.5.3 Ensemble Analytics 

Using a collection of different discovery approaches, we created an ensemble analytic that combines 

multiple discovery analytics into a single score. The ensemble analytic (Figure 2-6) includes: 

• Translating device MAC address to manufacturer name 

• Quick category classifier (determine IoT device category after 20 packets) 

• Slower category classifier (determine category after 10K packets) 

• Device classifier (identify specific types devices) 

Each approach for discovery provided a view or perspective into the device that can be combined to 

improve the overall confidence of individual model results. Furthermore, any impedance mismatch or 
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changes between modes can be used as a general anomy detector for devices. We will develop and 

explore this concept for improved device detection, classification, and anomaly detection in future work. 

 

Figure 2-6 Example of IoT Discovery Ensemble Analytic 

2.6 Future Work 

Future work will further define the CHASM concept and build a reference implementation. We will 

develop machine-learning models to characterize normal behaviors and detect abnormal behavior for 

identified IoT devices. We will design an alerting capability that mines open-source data to assist users in 

keeping their devices properly patched and secured and warn them of issues specific to a device, or which 

devices are now possibly unsupported based on changes in the manufacturer or the company. 

Additionally we will explore leveraging a larger set of the features and explore ensembles of individual 

machine-learning models to try to improve the performance on the IoT discovery models. 

In conducting this research, we have captured and characterized over 250 GB of IoT data containing 

dozens of different devices. We believe this dataset would be of value to the broader academic 
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community and plan its release to support further research by the academic community at the completion 

of our research. 

Beyond its value for the connected home, we believe CHASM could have direct application to large 

constantly evolving IoT environments such as in clinical and hospital settings where devices are added and 

removed from the network frequently, providing entire classes of devices that could be added to the 

network and forgotten. CHASM could provide monitoring and security capabilities for hospital 

information technology (IT) administrators to better protect their networks, patients, and data. We also 

believe CHASM could have utility in industrial control settings, where administrators need to maintain 

strict control over what devices are connected to their networks. We are actively researching how CHASM 

can be tailored and tuned for these environments. 
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3 A CAPABILITY FOR AUTONOMOUS IOT SYSTEM SECURITY: PUSHING IOT ASSURANCE TO 
THE EDGE 

3.1 Introduction 

Complex SIoTD are systems that have a single purpose, but are made up of multiple IoT devices. These 

systems are generally comprised of many individual IoT devices working together to form a larger, 

cohesive system function. SIoTDs are becoming commonplace as IoT devices proliferate into our society 

(e.g., our homes, smart cars, smart offices, smart buildings, smart hospitals, and smart cities). These 

systems often have complex security requirements and face a diverse and ever-changing array of cyber 

threats. Devices may come and go from these systems at any time, and some systems may only be 

intermittently connected to central processing hubs (clouds). An impending increase in data transmission 

rates (5G) and constantly changing network footprints will further complicate the network defender’s job 

of maintaining situational awareness and providing security for these systems. 

In addition to these challenges, many SIoTD networks are segmented, meaning that the data from all 

devices might not be sent back to a single place. Thus, these systems cannot rely on a centralized cloud-

based service for their security. Rather, protection for these systems must occur locally and in an 

autonomous or semi-autonomous fashion. 

To obtain a complete picture of an SIoTD, and to meet the security and related analytic requirements, 

processing will need to occur close to the point of data generation. This region is known as the edge. 

(Figure 3-1, derived from [49]). 

There are three data-focused use cases related to SIoTD that motivate pushing IoT situational 

awareness and system security to the edge: 

IoT applications will generate too much localized data, making it impractical to ship all data back to a 

central location. 

Data privacy concerns from the system owner will restrict sensitive data from being stored in a public 

cloud. System owners will want to maintain control of their personal, valuable data. 
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Many IoT use cases have stringent timing requirements that cannot tolerate extensive latencies based 

on round trip timing from the point of data generation to the cloud and back. These cases require data to 

be processed and intelligence generated locally. 

This chapter describes ongoing work exploring novel techniques to build a capability providing 

real-time, edge-centric, automated situational awareness and assurance to IoT networks. 

Our contributions are as follows: (1) we identify a gap in the security of SIoTD and propose a solution 

to fill this gap, (2) we experimentally detail the machine learning (ML) pipeline and corresponding model 

development, and (3) we introduce results of porting the assurance algorithms from a server to a low size, 

weight, and power (SWaP) device running autonomously at the edge collocated at the point of data 

generation. 

 

Figure 3-1 IoT Edge Computing 

The remainder of the chapter is organized as follows. Section 3.1.1 provides an overview of the 

automation types guiding this capability. Section 3.1.2 discusses related works. Section 3.1.3 outlines the 

IoT assurance architecture. Section 3.1.4 describes the feature selection, engineering, and generation 

activities. Section 3.1.5 presents the IoT data pipeline and the associated design. Section 3.1.6 presents 

an overview of model selection and training. Section 3.1.7 describes the results. Lastly, Section 3.1.8 

presents the conclusions and discusses future work. 
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3.1.1 Automation Types 

Artificial intelligence (AI) initiatives can be broadly categorized according to their goals [50]. Two of 

the most common are: 

• Process automation 

– Automation of digital and physical tasks using “robotic (physical or virtual via computer code)” 

process automation technologies. 

• Cognitive insight 

– Using algorithms to detect patterns in vast volumes of data and interpret their meaning 

To meet the needs of this system, we will employ elements of both process automation and cognitive 

insights. This capability will operate in a semi-autonomous fashion, acting as an agent or virtual robot and 

is made up of a collection of related hardware, frameworks, algorithms and edge devices. This capability 

will essentially be an autonomous realization of CHASM for SIoTD [1].  

3.1.2 Related Works 

A literature survey was conducted to gather a list of relevant features and techniques that might be 

useful for fingerprinting/profiling IoT devices. 

Meidan et al. [51] extracted features from TCP sessions and trained a multiclass random forest 

classifier to identify IoT devices from a white list and distinguish between known and unknown devices. 

Shahid et al. [52] presented an ML-based approach to identify IoT devices by analyzing streams of 

packets sent and received with an overall accuracy as high as 99.9% on their tests et using random forest 

classifiers. 

Truong et al. [53] used a recurrent neural network to identify and classify IoT devices in network 

traffic. 
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Buczak et al. [43] used random forest augmented with the statistical moment of average, variance, 

skewness, and kurtosis to develop an ensemble algorithm to identify the presence of covert DNS tunnels 

in network traffic. 

Sivanathan et al. [54] used random forest in a smart-campus environment instrumented with a 

diversity of IoT devices over a 3-week period to distinguish IoT devices from non-IoT devices and to classify 

IoT device with 95% accuracy. 

Bai et al. [55] employed a long short-term memory (LSTM) convolutional neural network (CNN) 

cascade model to automatically identify the semantic type of a device to achieve automatic device 

classification in network traffic streams of IoT devices. 

Bezawada et al. [56] extracted a wide range of features from packet headers to build device 

fingerprint vectors, and used Gradient Boosting classify IoT devices. 

The features selected for implementation are listed in Table 3-1. 

3.1.3 IoT Assurance Architecture 

Our goal in this effort is to train models that can autonomously identify IoT device types. We want 

those models to perform well in both a controlled laboratory setting and the real world. Therefore, it is 

essential that we train the models on datasets that include large numbers of IoT devices with large 

amounts of traffic from each. It is assumed that in the case of device classification (i.e., guessing what 

category a device belongs to), it would also be best to have many different devices in each category so 

that the model does not overfit to the behavior of a few devices. 

An IoT testbed was assembled containing 56 IoT devices of various types. The IoT devices were 

installed on a network demilitarized zone (DMZ), also referred to as an isolated perimeter network, that 

had access to the Internet. This is because the devices were untrusted but needed Internet access to 

function properly. We used a span port on a switch to send all network traffic to a Jetson Nano, which ran 



32 

tcpdump and archived the data in PCAP format. That data was then transferred to a local, on-premises 

“cloud” server outside the DMZ to be used as training data for the models. 

Table 3-1 Features Used for Fingerprinting and Profiling IoT Devices 

Feature Name Description Reference 

Packet Length Integer, range 0 to 65535, but typically 0 to 1500  

Ethernet Protocol IPv4/IPv6/ARP/LLDP/EAPoL/Unknown [56] 

IP Protocol ICMP/TCP/UDP/ICMPv6/Unknown [56] 

IP Time-to-Live (TTL) Integer, range 0 to 255  

TCP Application Protocol HTTP/SSHv2/SSLv3.0/TLSv1.0/TLSv1.1/TLSv1.2/Unknown [56] 

UDP Application Protocol SSDP/DNS/MDNS/NTP/DHCP/ISAKMP/Unknown [56] 

TCP/UDP Source Port Class Each value has its own column, with a 0 or 1 value 

SYSTEM= port 1-1023 

USER= port 1024-49151 

DYNAMIC= port 49152-65535 

UNKNOWN= port > 65535 

[57] 

TCP/UDP Destination Port Class Each value has its own column, with a 0 or 1 value 

SYSTEM= port 1-1023 

USER= port 1024-49151 

DYNAMIC= port 49152-65535 

UNKNOWN= port > 65535 

[57] 

TCP: payload length Integer, range 0 to 65535 [56] 

TCP: Shannon Entropy of payload Float, range 0.0 to 8.0 [56] 

TCP: window size Integer, range 0 to 65535 [56] 

UDP: payload length Integer, range 0 to 65535  

UDP: Shannon Entropy of payload Float, range 0.0 to 8.0  

From Internet Integer, 0 or 1 

Set to 1 if the packet is coming from a public IP address 

 

To Internet Integer, 0 or 1 

Set to 1 if the packet is being sent to a public IP address 

 

 

3.1.4 Feature Selection, Engineering and Generation 

When determining what features to extract from network packet data, it is important to keep in mind 

that many IoT devices are already using encryption methods such as Transport Layer Security (TLS) to 

secure their traffic against eavesdropping and that more devices will be using this type of security in the 

future. Therefore, it would be naïve to assume that features extracted from unencrypted packet payload 

data will remain useful in the future. Rather, the selected features should be those that can be easily 
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extracted from both encrypted and non-encrypted traffic. For example, features extracted from packet 

headers such as packet length, IP time-to-live, TCP window size, and payload entropy can be extracted 

from packets regardless of whether the payload is encrypted or not. 

Furthermore, any features used for IoT discovery might be useful for IoT profiling, threat detection, 

and anomaly detection as well (future work). 

3.1.5 Data Pipeline Design 

A successful edge deployment involves more than simply pushing a trained model out to an edge 

device to be executed. The feature extraction code and other data processing logic that are part of the 

associated analytic pipeline must also be ported to run at the edge. This is because those processing 

components transform the raw sensor data into a form that is ready for ML processing. Thus, any feature 

extraction or data processing code that is part of the analytics pipeline must be designed in such a way 

that it can either be massively parallelized in a central data center for training purposes or pushed to the 

edge to run on a less capable computing platform. It is an added productivity bonus if the code can run in 

the same form on both types of platforms without modification, thus streamlining the deployment 

process. 

With this in mind, the feature extraction and processing pipeline for this system was designed to be 

portable from the ground up (Figure 3-2), making the deployment of the complete analytics processing 

pipeline to the edge straightforward. We implemented the feature extraction in C++ on top of the open-

source libtins library [58], which provides efficient methods for collecting and parsing network packet 

data. Higher layers of the software that aggregate the packet data by device and transform the data into 

vectors that are ready for ML were written in Python using a combination of scikit-learn, pandas, and 

custom Python code. Keras and TensorFlow were used for model training and inference. 

These software modules were combined into a reusable Python package named iot-ai, which allows 

the user to create modular data pipelines for subsequent ML development. Since model training is a batch 
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operation and model execution on a real-world network is ideally a streaming operation, the iot-ai library 

was designed to be a streaming capability. Batch operations are handled as streaming ones by streaming 

individual lines of a static file through the pipeline. This limits the system complexity by unifying two very 

similar processing pathways and code bases into one. With this design, no code conversion is needed 

when porting a feature extraction pipeline from batch mode in the cloud (for training) to streaming mode 

at the edge (for live inference). 

The nodes in the pipeline have flexible interfaces and can be combined in different ways to facilitate 

the many operations typically involved in training an ML model on network data. Furthermore, individual 

pipeline nodes can be parallelized to take advantage of multi-core CPUs when available. 

 

Figure 3-2 IoT Feature Extraction and Processing Pipeline 

Additionally, the libtins library provides the option of reading packets from a PCAP file or reading the 

packets directly from a network interface, which means our pipeline can be easily transitioned from 

processing static data to running on live data. 

The result is a modular pipeline design that can be easily reused for data collection at the edge, 

training in the cloud, execution of models in the cloud, and execution of models at the edge. 
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3.1.6 Model Selection and Training 

The chosen model architecture was a recurrent neural network consisting of a single LSTM single layer 

of 128 units, followed by softmax output of width 10 (one for each category of device). The LSTM layer 

was fed with fixed-length input sequences of 20 feature vectors, one vector per network packet. 

The model was trained on PCAP data that was collected from the IoT testbed over the course of 

3 months (Figure 3-3). This included data from 56 different IoT devices and amounted to 94 GB of PCAP 

(about 262M packets). This dataset was then split into 80% for training, 19% for validation during training, 

and a 1% holdout for final evaluation of model performance. 

 

Figure 3-3 Collection, Extraction, Training, and Testing Pipeline 

Traffic from each IoT device was grouped by MAC address and arranged in time order. The data from 

each device was then transformed into sequences of 20 packets each. The values in these sequences were 

then normalized, one-hot-encoded and labeled according to device category (e.g., this 20-packet 

sequence is from a camera, this other 20-packet sequence is from a thermostat, etc.). 

3.1.7 Results 

The initial ML model results were varied for our initial data set. However, the observed variation was 

in execution speed, not accuracy. 

3.1.7.1 Model Execution and Results (On the Server) 

The model was trained successfully on a single Nvidia Tesla V100 GPU in under 1 hour, and achieved 

93% accuracy on each of the training, validation, and holdout datasets. The model’s detailed performance 

results on the holdout set for each category are presented in Table 3-2. 
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Table 3-2 Model Performance Results on Holdout Set per Category 

Category Precision Recall F1-Score Support 

Unknown 0.98 0.95 0.96 10893 

assistant 0.98 0.85 0.91 19765 

audio device 0.95 0.93 0.94 1307 

clocks 1.00 0.81 0.89 3437 

hub 0.76 1.00 0.86 22254 

mobile device 0.78 0.66 0.71 397 

router 1.00 0.89 0.94 17382 

television 0.98 0.96 0.97 44895 

thermostat 1.00 1.00 1.00 5241 

triggers and switches 1.00 0.97 0.98 5463 

 

At the time of this writing, the amount of traffic being generated by the IoT devices in the testbed is 

relatively small (20 MB every 10 minutes). With a parallelization level of 3×, the end-to-end data pipeline 

including the trained model can process the aforementioned 10 minutes of network data in 47 seconds 

on a large virtual machine (VM) server with 30 Intel(R) Xeon(R) CPUs at 2.50 GHz and 512 GB of random 

access memory (RAM). In this configuration, the processing pipeline consumed only 6 CPUs and 3 GB of 

RAM. 

3.1.7.2 Port to Low-SWaP Devices 

To execute the model at the edge, a Raspberry Pi 3B was obtained, having a four-core, 1.2-GHz 

Broadcom, 64-bit ARMv7 CPU and 1 GB of RAM. Tensorflow2 was installed, followed by the iot-ai library 

and its dependencies (libtins, libpcap, etc.). This device was then connected to the same network as the 

IoT devices, and a span port was set up on the network switch to forward all the network traffic from each 

device to the Raspberry Pi (Figure 3-4). 
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Figure 3-4 Cloud-to-Edge Analytic Extraction Configuration 

3.1.7.3 Results of Model at Edge 

On the edge platform, the data pipeline was able to process 10 minutes of testbed traffic in 6 minutes. 

While this is encouraging and indicates that the edge device is currently capable of keeping up with the 

live stream of testbed data, this data volume is still somewhat small. 

The speed of pipeline execution at the edge could likely be improved by running the model on an 

ML-focused edge device such as an Nvidia Jetson TX2 or by converting the model to TensorFlow Lite, 

which Google claims will soon offer support for LSTM networks with fixed sequence lengths [59]. 

3.1.8 Conclusions and Future Work 

These results indicate that it is possible to run IoT device discovery, classification, and verification 

models at the edge on low-SWaP devices; however, we feel there are areas of improvement that can be 

explored to increase the performance of the system. 

3.1.8.1 Model Tuning 

We did not perform extensive hyper-parameter tuning, actively exercise the individual IoT devices to 

collect traffic during all phases of device operation, nor normalize the number of training examples from 

each device category. This could be explored in future work. 
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3.1.8.2 Complex Network Topologies 

The network topology used in this effort was a relatively straightforward one; all devices were 

connected to the same router, and the network traffic was captured at that router. In future work, we 

intend to apply the concepts and systems developed in this effort to more complex network topologies. 

3.1.8.3 Model Training at the Edge 

We believe that, over time, advances in low-SWaP devices will allow for model training at the edge, 

running alongside model execution. We will explore this in future work. 

3.1.8.4 Analytic Ensembles 

The IoT landscape is complex and evolving; new devices are appearing all the time. Therefore, training 

a single model for IoT discovery would be problematic, as there would be a constant need to retrain that 

model as new types of devices are produced (often). 

Two additional challenges for the single-model approach are the inherent trade-offs between 

generating results quickly and observing devices long enough to make good predictions, and the fact that 

individual models may be biased, brittle, or prone to error in certain situations. 

Combining multiple models into an ensemble may help in this regard. If some models are noisy or 

inaccurate due to a rapidly changing device landscape, they can be balanced out by others. For example, 

if four models say a given device is a camera and one says something else, it is probably a camera. 

Using an ensemble approach would also allow some models to focus on quick but less accurate 

predictions and others on much slower but more accurate predictions. This way, the user would receive 

a notification almost immediately, and the result would be refined over time. Allowing the user to drill 

down and see the results from individual models would provide an additional degree of explanation in 

these situations. 
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Other findings of this work include the following: 

• The same analytics that were designed for IoT Device Discovery also could be used for IoT Device 

Verification and Threat Detection. 

– Example 1: All ensemble analytics agree that device X is a camera, but all of a sudden, half of 

them are now claiming it is a thermostat. 

▪ Perhaps the device has begun behaving differently (may indicate a potential compromise) 

▪ OR this indicates an issue with the models 

– Example 2: None of the ensemble analytics agree on device X. 

▪ Perhaps this is a new type of device not seen before, and further investigation will be 

needed 

We believe these results indicate that a distributed, edge-based, semi-autonomous capability could 

be developed and deployed in complex, dynamic SIoTD environments, and the associated model may be 

able to maintain good performance, even if the model is presented with data on which is has not been 

trained. We will explore this in future work. 
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4 ENVISIONING CYBERSECURITY ANALYTICS FOR THE INTERNET OF THINGS 

4.1 Introduction 

The IoT is large; it is ubiquitous; and it is growing. Although it is likely not possible to place a definitive 

number on the size of the IoT, estimates of its current size range in the tens of billions, and it is expected 

to increase in size by an order of magnitude by the end of the next decade [16]. The IoT will be an integral 

part of every sector of the U.S. economy and will substantially influence daily activities ranging from 

healthcare to transportation to provision of basic services. “Smart” grids, with automated sensors and 

control systems to achieve improved efficiency, will be integrated into transportation and public utility 

systems. Industrial processes will become dependent on automation and robotics, affecting the 

manufacturing, chemical, and defense sectors. Financial and legal institutions housing vast amounts of 

sensitive data will be equipped with IoT-enabled sensors and controls, including security surveillance 

systems. Public health and emergency services will be connected to biometric and geolocation sensors to 

provide continuous monitoring of patient and first responder status. 

However, the IoT is more than the connection of an increasing number of smart devices. It is a 

consequence and a driver of an evolution in computer and communications technology that will radically 

alter the way machines and humans communicate and interact. The IoT is enabled by technological 

innovation, and it is having a profound effect on the development of new capabilities. As envisioned, the 

emerging IoT would be impossible without increased bandwidth; new decentralized network topologies; 

compact, low-power “intelligent” devices that connect to networks; and the virtualization of networks 

and network functions. In turn, the demands of the IoT for increased scale and for customized applications 

with higher reliability and lower latency to support increasing levels of computation, automation, derived 

intelligence, and robotics is a driver of new technologies. 
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With the capability, scale, and complexity of the emerging IoT comes vulnerability to cyber-attack. As 

network traffic increases in both scale and complexity, cybersecurity analysts will require new tools to 

enable rapid interpretation and response to a new, expanding set of cybersecurity threats. 

This chapter summarizes the results of an 8-month analysis of large-scale networks in support of the 

National Critical Function (NCF) set [60]. An analysis was performed to evaluate the impact of the IoT and 

associated technologies on existing cybersecurity analytics tools and capabilities. The goal of this analysis 

was to define a vision to guide the evolution of cybersecurity analytics, and to define a governmental role 

in promoting that vision. It was envisioned that government’s primary focus would be on protecting public 

sector networks, but, as a result of the interconnectedness of the emerging IoT, there was also desire to 

define a role in promoting a more secure IoT for the private sector. 

The contributions of this chapter are as follows: (1) we define an IoT taxonomy supporting the NCF; 

(2) we identify several trends that could create novel and/or heightened cybersecurity risk; (3) we define 

the role of government in developing IoT scale cybersecurity analytics; and (4) we propose recommenda-

tions based on key IoT cybersecurity vision elements that will guide organizations to realize the necessary 

level of capability to secure the IoT. 

This remainder of this chapter is divided as follows. Section 4.2 describes the IoT, the enabling 

technologies that enable it, and the cybersecurity approaches affected by it. Section 4.3 lays out a vision 

for an emerging IoT cybersecurity analytics capability. Section 4.4 attempts to define a potential role for 

government in making this vision a reality. Lastly, Section 4.5 presents conclusions. 

4.2 IoT Taxonomy 

There is no consensus definition for what constitutes the IoT. Organizations including NIST, Institute 

of Electrical and Electronics Engineers (IEEE), and International Telecommunications Union have put 

forward their own definitions or descriptions that are both roughly the same and slightly different [10] 

[14] [15]. Nonetheless, there is agreement that the IoT consists of an increasingly large number of 



42 

machines exchanging data across interconnected networks. Connected machines provide varying levels 

of processing capacity (i.e., intelligence) and perform a wide range of tasks. Devices connected to the IoT 

can act as sensors and actuators supporting relatively simple automated tasks, or they can be complex 

intelligent agents functioning as part of autonomous or robotic systems. They can be connected to 

networks using IPs (i.e., devices connected directly to the Internet or via later-generation mobile 

networks), or they can connect via gateway technologies or other non-IP communications protocols. 

IoT-enabling technologies can be divided into four categories [61]: 

• Devices 

• Networks and computing 

• Communications 

• Software 

The past decade has seen a steady rise in the number of personal devices (e.g., phones, tablets, and 

laptops) connected to the Internet. Today, a majority of citizens in the United States owns a smart phone, 

providing them access to a camera, a capable processor, and the Internet via one readily portable, 

lightweight device. [62]. In addition, advances in processor manufacturing have enabled integration of 

small processors in a wide range of household devices. The ability to provide significant processing in small 

devices with limited energy consumption is leading to increasing automation of everything from everyday 

household appliances to advanced industrial control systems. Networks are populated by personal 

communication and computing devices as well as a broad range of smaller sensors, actuators, and control 

systems providing remote control over a variety of processes. 

The rise in IoT has been abetted by and influenced an evolution in network architecture. Increased 

automation, autonomy, and robotics have led to more network traffic and a need for reduced latency and 

higher reliability. To reduce network traffic and latency, while increasing reliability, there has been a move 

from centralized “cloud” computing structures to more decentralized “fog” and “mist” computing 
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structures. Fog and mist computing enable critical computing capabilities, including analytics, to move 

toward the “edge” of the architecture to various locations capable of supporting analytics and levels of 

decision-making, as well as into the IoT devices themselves. Additionally, the demands of the varied IoT 

applications will in the future be met by enhanced use of virtualization. Virtualization, in the form of 

software-defined networks and virtualization of network functions, is already making networks more 

responsive and flexible. The advent of network virtualization will make it possible to operate networks 

within networks (i.e., network slicing). Virtual networks, all operating within a single physical space, will 

be capable of meeting the customized needs of specific applications or network segments. 

A third area of technological change is communications. Just as the IoT is a product of increased 

communications connectivity and bandwidth, the envisioned future of the IoT will also depend on greater 

bandwidth and the ability of connected devices to operate with low power consumption. Implementation 

of the 5G telecommunications standard will enable wireless devices to operate at higher frequencies, 

where bandwidth is less constrained. In addition, the 5G standard will support direct device-to-device 

(D2D) communications connectivity, enabling devices to connect directly to other devices without the 

need to access intervening service provider infrastructure. Implementation of D2D will enable ad hoc 

networking for devices outside of a coverage envelope. 

The IoT is being supported by availability of open-source software products designed specifically for 

IoT applications and the development of IoT-related standards. Industry working groups such as the Open 

Web Applications Security Project, IEEE, and the IETF have developed standards and open-source software 

capabilities to support independent development of IoT-related software [63] [64] [65]. The ZigBee 

Alliance, a consortium of industry organizations involved in the development of IoT capabilities, has 

recently established the Connected Home Over IP project to promote standardization [66]. 

Furthermore, there is a trend toward increasing levels of intelligence in networked devices and 

applications. Systems hosted across networks can display varying levels of automation, autonomy, or even 
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intelligence. In particular, systems employing machine learning—a technique in which machines are 

trained through controlled repetition to perform tasks in a process that mimics the way humans learn to 

do tasks through practice—are becoming relatively common. Machine learning can range from 

applications that employ statistical methods and feedback to more sophisticated applications (e.g., deep 

neural networks) that actually attempt to model human-learning processes. Although the use of 

sophisticated algorithms that learn can significantly improve processes and controls, the processing 

required to enable even relatively simple learning can be intensive. Thus, the drive for automation and 

autonomy within the IoT creates a need for more processing than can be supported within most devices, 

and subsequently encourages the use of more fog and mist computing structures. 

Based on our survey of IoT-related technology, we identified several trends that could create novel 

and/or heightened cybersecurity risk: 

• Increased scale. The increased scale of the IoT will expand the attack surface while stressing 

defenses. Cybersecurity analysts will have a larger quantity and variety of network traffic to 

monitor, because the IoT supports higher levels of human-to-human exchange of multimedia 

material via enhanced mobile broadband (eMBB) and increased levels of machine-to-machine 

(M2M) communications. Analytic tools will need to be both scalable and adaptable. 

• Evolution from cloud-computing to fog-computing structures. Increased automation, autonomy, 

and robotics have contributed to an evolution from highly centralized cloud computing to more 

responsive, more distributed fog and mist computing. Analytic capabilities are hosted at points 

within the communications architecture, including within devices themselves when possible, 

closer to the network edge. By distributing analytics and other processing, latency and the volume 

of network traffic are reduced, whereas reliability increases. However, the evolution from 

centralized to decentralized architectures will demand increasingly portable analytic tools. 
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• Move toward virtual networks. Increased use of “virtualization”—software-defined-networks, 

virtualization of network functions, and even virtualization of whole networks—is critical to 

meeting the varied needs of IoT applications. The ability to “stack” virtual networks, each with its 

own discrete quality of service and security, within a physical network architecture enables 

customized service to applications with unique requirements. Increased virtualization, however, 

creates new attack surfaces as network components become potential targets, and it creates 

additional challenges for analytics that must operate on a holistic level as well as provide 

cybersecurity for customized slices. Figure 4-1 illustrates the concept of network visualization in 

a notional urban environment. Both radio access and core networks are divided into virtual 

networks operating across the same physical space. Different services, each with various quality 

of service needs supporting critical functions within a shared physical space, have access to a 

virtual network customized to their discrete needs. 

 

Figure 4-1 Network Virtualization 
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• M2M communications. Increased dependence on M2M and D2D communications will require 

adaptation of existing network security techniques to the large number of devices with limited 

security operating on networks and more dynamic network architectures. The growing number 

of devices with limited processing and the dynamic nature of D2D connectivity will require 

reevaluation of the concept of “endpoint” in terms of cybersecurity. Specifically, robust endpoint 

security will become more challenging, and networks will require additional analytic capabilities 

to evaluate the content of a network at any moment and what is happening at its endpoints. 

• Greater physical risk. The expanding number of connected devices with at least some processing 

power at the heart of the IoT also presents new risks. Connected devices such as security cameras, 

sensors, and controls will frequently operate outside of security perimeters and may be 

compromised by persons with physical access. The number of these devices will also mean 

broader exposure to supply chain risks. 

• Lower-cost, lower-power devices. The IoT is enabled by cost-effective devices with low power 

consumption connected to networks. Consequently, many connected devices will not have 

sufficient processing capacity to support comprehensive security. The presence of relatively 

unsecured devices on the Internet will place a burden on analytic tools to detect anomalous and 

undesired behaviors. 

Best practices include adoption of a layered model of cybersecurity, as illustrated in Figure 4-2. It is 

important to put measures in place at each of these levels to secure hardware, software, networks, and 

data. As outlined in the list of trends, the emerging IoT will place new stresses at each level of 

cybersecurity as well as additional dependence on existing cybersecurity practices, including the adoption 

of Zero Trust Architectures and Endpoint Detection and Response. As the definition of the network 

perimeter shifts because more endpoint devices lack sufficient capacity to perform robust security, and 



47 

as other parts of the perimeter become more dynamic, robust cybersecurity will require a different 

approach to securing networks [67]. 

 

Figure 4-2 Key Layers of IoT Security 

4.3 Cybersecurity Analytics Vision 

A number of vignettes, scenarios, and use cases describing potential IoT-enabled attack vectors were 

developed to serve as the bases for more detailed future analyses. In developing these use cases, a 

number of new vulnerabilities arising from IoT-enabled applications were envisioned, and scenarios and 

use cases were constructed based on those vulnerabilities. Automation of industrial control systems and 

similar applications (e.g., smart home applications) was seen as not only introducing a large array of 

devices with limited processing to support cybersecurity, but also as opening a potential conduit for 

attacks on infrastructure and public services. Use of biometric measurement devices connected to 

personal area networks was seen as creating new concerns regarding privacy because cybersecurity 

vulnerabilities could be exploited to access private data. D2D communications-supporting applications 

ranging from emergency rescue to autonomous vehicles present highly dynamic, hard-to-characterize 

perimeters that were expected to present unique challenges to secure. Highly virtualized networks, which 

may be required to support applications with high levels of autonomy, will require that network analysts 

have the ability to rapidly and correctly interpret behaviors across a wide range of highly specialized 

topologies. 
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Additionally, a range of potential cyber-physical effects with impact well beyond the range of target 

surfaces were identified. Control systems that operate public utilities (e.g., water and electricity), 

industrial processes, and even home and building physical plants are becoming more automated and 

connected, and therefore vulnerable to cyber sabotage. Medical processes collect greater amounts of 

data using IoT devices and store them in databases, potentially enabling substantial amounts of sensitive 

private data to be compromised in a breach. Financial and banking agencies move large amounts of 

information and money electronically, increasing the potential for loss of private financial information and 

possibly enabling theft or manipulation of transactions by external actors. Transportation systems and 

autonomous vehicles become subject to attacks capable of causing large-scale disruptions to daily life or 

even injuries. To make things more complicated, the ultimate target of an attack may be at some distance 

from the attack surface. For example, one can readily envision an adversary attempting to access financial 

services software via an attack on a bank’s smart building network or attempting to access legal or medical 

records through an attack on an ad hoc emergency services network (see Figure 4-3). 

 

Figure 4-3 Hypothetical Attack on Legal Records via an Ad Hoc Network 

The diversity, complexity, and scale of the IoT mean that analytics will become increasingly important 

in providing cybersecurity. Specifically, cybersecurity can no longer depend on defending the perimeter 
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and keeping dangerous and malicious entities off the network—it will need to be supplemented by 

continuous monitoring and assessment of the networks to detect and identify malicious actors that have 

circumvented cybersecurity measures and entered the network. This requires a robust analytic 

capability—consisting of cybersecurity analytic software as well as trained analysts—to continuously 

monitor network performance and identify anomalies. We identified eight vision elements characterizing 

the needed evolution in cybersecurity analytics to meet the needs of the IoT. 

• Analytics will need to be increasingly portable and scalable. As processing with IoT-enabling 

architectures becomes increasingly distributed, analytics will need to be hosted in a variety of 

platforms capable of accommodating various levels of processing. In addition, they will need to 

monitor and evaluate networks with increasingly varied topologies and sizes, creating a need for 

increased scalability. 

• Analytics will need to be decomposed to enable them to support distributed execution. Advanced 

cybersecurity analytics will require decomposition to enable operation across sectors, closer to 

the edge and endpoint, and on virtualized networks with customized quality of service and 

security capabilities. It is easy to conceive of analytics consisting of thin clients in smaller devices 

with larger applications hosted in fog- or cloud-computing facilities. 

• Analysts will need the ability to compose advanced analytics from existing analytics. Even as 

analytics require decomposition for hosting in devices and in processing facilities near the 

network edge, cybersecurity analysts will need to be able to compose simple analytics operating 

at the edge into advanced cross-sector analytics while maintaining acceptable levels of analytic 

rigor. 

• Decentralized and virtualized architectures will have a profound effect on machine-learning–

based cybersecurity analytics. Similar to a human operator becoming more proficient at a task by 

performing the task, machine-learning–based analytics become more effective by repeatedly 
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performing their assigned tasks. As cybersecurity analytics become more physically distributed or 

customized to meet the needs of specific network “slices,” it is likely the analytics deployed 

toward the edge or to monitor customized slices will be exposed to a less representative cross-

section of network traffic. This constrained training could affect the quality of training, and 

mechanisms to present distributed analytics with more robust training sets may be required. It 

may be necessary to generate training sets to support supervised machine learning or to 

implement forms of federated learning to augment the data presented to the analytics during 

normal operation. 

• With the growth of the IoT, analysts will be required to rapidly interpret larger, more complex 

cybersecurity environments. Visualization capabilities of analytics packages will need to evolve to 

enable users to maintain situational awareness of larger-scale and potentially more complex 

network traffic. In particular, they may need to be adapted to enable analysts to make sense of 

more dynamic network perimeters in which devices enter and join a network on an ad hoc basis 

(e.g., a network supporting autonomous vehicles) and in which significant portions of the network 

traffic are virtualized. 

• The need for responsiveness to a cyber-attack drives the need for dynamic analytic tasking near 

the edge. As the cyber environment shifts, analysts will need to dynamically task analytic software 

with responding to the changes. Analytics deployed in platforms with limited processing may not 

be able to execute a full suite of cybersecurity analyses concurrently; it may be necessary to 

modify analytic performance dynamically based on the current environment. Analysts may need 

to modify search characteristics or insert intelligence into analytic packages to enable them to 

perform more effectively in a prevailing environment. 

• As the cybersecurity environment increases in scale and complexity with the growth of the IoT, 

automated analytics will need to help human analysts manage the ever-increasing workload. 
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Cybersecurity analytics need to be designed to maximize human-machine coordination. 

Increasingly, analytics will require the capability to interpret the cybersecurity environment and 

generate alerts for network operators. 

• Lastly, cybersecurity analytics developers need to be cognizant of the ability of threats to extend 

across critical sectors. 

4.4 Defining the Role of Government 

At a minimum, government will need to secure their own networks from intrusion and compromise 

of important data. As the IoT continues to grow and become increasingly ubiquitous, protecting 

government and partner computers’ networks from cyber threats will become increasingly challenging. 

Government agencies will be housed in smart buildings connected to city-wide smart grids. They will have 

fleets of vehicles sharing the transportation network with autonomous vehicles and connected to the 

transportation grid. Government employees will work using phones, tablets, and computers connected 

by the same service provider networks that serve the IoT. Government will require an evolving 

cybersecurity analytics capability aligned with the larger-scale, increasingly distributed, and fluid IT 

architectures described in the previous paragraphs. 

Beyond that, government has an interest in protecting interconnected networks that extend beyond 

the government domain, although it may have limited ability to do so. The IoT threatens to put industrial 

processes, public utilities, public health, transportation, and financial services increasingly at risk of cyber-

attack. It heightens the risk of economic damage (e.g., a shutdown of critical industries or services or theft 

of financial assets), compromise of sensitive data (e.g., medical, financial, or legal), or cyber-physical 

terrorism (e.g., hijacking of drones or aircraft, release of toxic materials). Yet, while each of these results 

may have clear national security implications, the fact that many of these attacks will be targeted at 

private computing networks may limit government’s ability to act. 
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The public sector will need a vision for the likely impacts to its programs and initiatives, and potential 

cyber-analytic capabilities to respond to the likely emerging challenges of an increasingly distributed, 

virtual, and dynamic IoT cyber environment. That vision needs to include comprehensive security for 

government and partner networks, and should, where possible, include increased cognizance of and par-

ticipation in securing the entirety of the IoT. As this paper is being written, much of the planet is in 

lockdown, possibly the result of trafficking animals in a relatively small corner of the planet [68]. In much 

the same way, computer systems and international networks everywhere can be placed at risk from 

failures to police networks anywhere. The ubiquity of the IoT makes it harder, if not impossible, to 

“quarantine” parts of it, and calls for a broader government role in securing the IoT. 

The public sector vision includes the following: 

• Government must first secure its own networks. This means having the ability to evaluate 

cybersecurity analytic capability, as well as maintaining access to the most up-to-date and 

effective tools and deploying them on government networks. 

• Government requires increased situational awareness, not only over its own networks, but over 

the entirety of the IoT. As the IoT grows, the ability of malicious actors to propagate will only 

increase, thus early awareness and understanding of threats will be increasingly vital to securing 

computing and network resources. Government will need to partner with its constituents to 

expand the data types, sources, and corresponding analytics to gather the appropriate situational 

awareness in IoT devices and IoT-enabled systems to meet its role as the nation’s risk advisor. 

• Government should be proactive in partnering with the private sector to provide guidance and 

assessment related to cybersecurity analytics. While its ability to affect private networks may be 

limited, government has a clear stake in promoting a secure cyber environment beyond the public 

sector. Government should, wherever it can, leverage its role as an advisor and a public advocate 

to communicate and promote adoption of best practices throughout the cyber environment. 
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• Government may need to take an active role in guiding the development of cybersecurity analytic 

capabilities to meet the demands of the IoT. Where existing tools demonstrate gaps or 

vulnerabilities, government may need to take the lead in sponsoring technical development to 

address observable shortcomings. 

4.5 Conclusions 

The IoT represents a significant change in the way humans and machines will interact in the future. 

Not only does it represent a massive change in scale as more and more devices exchange increasing 

quantities of network traffic, it also will incorporate radical new technologies that redefine what a 

network is. New physical connections, including D2D connectivity, will enable ad hoc networks that can 

rapidly be deployed in emergencies and support autonomous vehicular traffic. Virtual networks will 

enable the creation of networks within networks, each with its own unique quality of service and security. 

To respond, cybersecurity analytic capabilities will need to undergo dramatic reevaluation. 

Increasingly, the analytics designed for cybersecurity applications will need to become more portable, to 

enable them to operate in smaller devices with less computing capacity, and more scalable, to monitor 

larger and more diverse networks. Functionality will require decomposition, to support interpretation of 

local networks and network slices, and aggregation, to enable analysts to discern network trends based 

on behaviors observed on subsets of the larger network. Machine-learning–based algorithms will require 

new ways to train algorithms that are exposed only to customized traffic. Analysts will need capabilities 

that allow them to visualize the larger, more dynamic IoT, to handle the additional workload associated 

with maintaining cyber awareness, and to dynamically respond to it. 



54 

To ensure success, government has a role in promoting a more secure IoT. It must first protect 

government networks, providing the ability to access, evaluate, and deploy analytic capabilities that meet 

the challenges of the emerging IoT. Government will need to be increasingly cognizant of what is 

happening on the IoT, and will have a stake in leveraging its role as an advisor to ensure that evolving best 

practices are implemented throughout both the public sector and the private sector. Lastly, government 

may need to promote and invest in cybersecurity analytic tools to address critical gaps. 
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5 IDENTIFICATION OF BOTNET ACTIVITY IN IOT NETWORK TRAFFIC USING MACHINE 
LEARNING 

5.1 Introduction 

In recent years, botnets have emerged as a serious threat to cybersecurity because they provide a 

distributed platform for performing a multitude of malicious activity such as distributed denial-of-service 

(DDoS) attacks [69], exploitation of command and control (CnC) vulnerabilities [70], phishing, malware 

dissemination, and click fraud [71]. Although computers were the original target for botnet attacks, IoT 

devices have become an increasingly common target. In 2016, the Mirai botnet succeeded in remotely 

controlling nearly half a million IoT devices by scanning the Internet for open telnet ports and logging into 

those devices, using a set of default username and password combinations [72]. 

Several Mirai variants now exist to exploit diverse IoT security; thus, protecting IoT devices from 

botnet attacks remains a priority. IoT devices use multiple means of communication such as Wi-Fi, 

Bluetooth, or Zigbee. This causes a new issue—volume and variety in traffic flow. Typically, machine 

learning classifiers create models from monitored traffic data and then detect malicious traffic flows. 

However, with increasing IoT traffic flows, there is a need to improve detection of malicious activity in IoT 

traffic. 

The main contributions of this chapter are as follows: (1) we demonstrate that machine learning, 

supervised learning, and deep learning methods can be developed to effectively identify varied botnet 

activity and (2) we also show how the performance of these classifiers scale when a large dataset of IoT 

network connection logs is used with additional types of botnets. 

The remainder of the chapter is organized as follows. Section 5.2 discusses related works on which 

our research builds. Section 5.3 describes the IoT network connection log dataset used in this research 

along with the additional data we captured to augment this dataset. Section 5.4 describes the supervised 

learning and deep learning classifiers used, the performance metrics used, and our methodology. 
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Section 5.5 describes our experimental evaluation. Section 5.6 provides our results and discussion. 

Section 5.7 summarizes our research and describes avenues for future work. 

5.2 Related Works 

5.2.1 Anomaly Detection Models for Smart Home Security 

Our research focused on detection of botnet traffic in smart-home environment networks. Prior work 

by Ramapatruni et al. [73] focused on anomaly detection within similar home environments through 

analysis of device behavior using Hidden Markov Models (HMMs). HMMs were used to learn common 

behaviors, such as actions and signals, from devices in the smart-home environment. Using HMM with 

tuned hyperparameters, a detection accuracy of 97% was achieved. 

Although this prior work focused on the analysis of device actions and signals to detect anomalous 

behavior, our research focused strictly on network traffic to detect botnet activity. 

5.2.2 Detection of Mirai Attacks 

Our research focused on the detection of Mirai botnet and similar botnet activity. Previous work by 

Kambourakis et al. [72] proposed a network-based algorithm for detecting IoT bots in a Mirai simulation. 

Their research considered preconditions (e.g., telnet port open and default credentials) and performed 

signature-based detection against incoming Mirai packets, only sampling a fraction of the devices at a 

time. For the purpose of optimization, the algorithm minimized the cost associated with average detection 

delay in detecting a compromised device. 

Our work assessed the effectiveness of machine learning classifiers to detect botnet activity in home 

IoT environments, seeking to improve on current top performance results of the botnet detection 

capability in an IoT environment. Our work uses accuracy, detection, and false alarm rate as performance 

metrics. This differs from previous work that considered sampling rate and detection delay cost as 

performance metrics. 



57 

5.2.3 IoT Security Using Deep Learning and Big Data 

Our research was geared toward the use of big data and machine learning to enhance security for 

large volumes of packet traffic. Prior work by Amanullah et al. [74] used an LSTM model combined with a 

CNN on popular security datasets, such as NSL-KDD, KDD99, and UNSW-NB15, and achieved results of 

accuracy of 97%, detection of 98.03%, and false positive rate of 4.08%. 

Our research attempted to improve upon these results using a different dataset including benign data 

we captured from a testbed environment as well as a different set of machine learning classifiers. 

5.2.4 Imbalanced Datasets for Traffic in Industrial IoT Environments 

Our research considered a scenario in which network traffic is a “haystack” of benign data, with a few 

“needles” of malicious traffic data within. Thus, the dataset used in our research to train our classifiers 

was unbalanced. Prior research by Zolanvari et al. [75] also applied machine learning to detect attacks 

within unbalanced datasets. Their research focused on network traffic collected within Industrial Internet 

of Things (IIoT) environments; their collected traffic had low amounts of attacks, thereby resulting in an 

unbalanced dataset for training their classifiers. 

5.3 Datasets 

5.3.1 Stratosphere Lab IoT-23 Data 

The Stratosphere Lab IoT-23 dataset (hereafter simply IoT-23) contains network traffic from the 

Amazon Echo home intelligent personal assistant, Phillips Hue smart light-emitting diode (LED) lamp, and 

Somfy smart door lock IoT devices; this network traffic is labeled as either benign or infected with the 

name of the executed malware sample. The downloadable dataset, as well as details on the IoT devices 

used and the network setup, are available on the Stratosphere Lab website [76]. 

5.3.2 Additional Benign Data Capture 

Additional benign network traffic PCAPs were captured from an Amazon Echo home intelligent 

personal assistant and a Phillips Hue smart LED lamp. Additional captures used the testbed setup depicted 
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in Figure 5-1. These devices provide similar real-time activity (e.g., requests, responses, service calls), and 

the network setup is a similar unrestrained Internet connection without induced malicious activity. 

 

Figure 5-1 IoT Testbed Architecture 

Wireshark was used to capture the network traffic in this testbed and generate new PCAPs from it. 

The Zeek tool [77] then converted the PCAPs into separate connection log files. These log files provided 

traffic flows similar to IoT-23, with attributes matching those of IoT-23. 

5.3.3 Small Dataset and Large Dataset 

A small dataset and a large dataset were created for testing the performance of machine learning 

classifiers to detect malicious botnet behavior. 

The small dataset was created using a subset of the IoT-23 dataset. First, the Zeek network connection 

logs from the IoT-23 3-1, 8-1, 20-1, 34-1, and 42-1 captures, as described in [76], were combined. Then, 

from this combined dataset, 32,382 benign data points and 1,676 malicious data points were randomly 

extracted, creating a benign to malicious ratio of 95% to 5%. Of note, the malicious data included in the 

small dataset was infected with Muhstik, Hakai, Torii, Mirai, and Trojan botnet malware. The total size of 

the small dataset was 11.1 MB. 
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The large dataset was created by combining all the Zeek network connection logs from all the IoT-23 

data captures shown with the Zeek network connection logs created from the benign data captured from 

the testbed described in the previous section. There is a wider variety of botnet behavior in the large 

dataset compared to the small dataset—the malicious data contained in the large dataset was infected 

with Mirai, Torii, Trojan, Gagfyt, Kenjiro, Okiru, Hakai, IRCBot, Hajime, Muhstik, and Hide and Seek botnet 

malware. The large dataset contained a benign to malicious ratio of 95% to 5%, the same ratio contained 

in the small dataset. This ratio gives a needle-in-the-haystack representation of malicious behavior 

representative of a real-life scenario. Altogether, the large dataset contains 30,854,774 benign data points 

and 1,623,938 malicious data points. The total size of the large dataset is 3.7 GB. 

5.4 Methodology 

We used several different machine learning algorithms and performance metrics to demonstrate the 

robustness and efficacy of our approach. 

5.4.1 Machine Learning Algorithms 

The following supervised deep learning and machine learning algorithms were used to develop 

classifiers for botnet activity detection: decision tree, random forest, multiclass decision forest, two-class 

neural network, and multiclass neural network. 

The decision tree classification algorithm creates a tree structure representing a sequential decision 

process in which an input data point’s attribute values are consecutively tested to determine the data 

point’s classification. A decision tree is composed of a root node, internal nodes, and leaf nodes that 

contain the possible class labels. Within each internal node, the value of the attribute assigned to the 

node is tested to determine the next node to progress to along the tree’s path. Once a leaf node is 

reached, its label will represent the input data point’s identified classification [78]. 

The random forest classification algorithm is an ensemble-learning method in which multiple decision 

trees are constructed, and the mode value of the classes predicted by the individual trees is used to 
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classify the input data point. Each decision tree in the forest considers a random subset of features and 

only has access to a random subset of the training data, thereby increasing diversity and potentially 

resulting in more robust classification predictions compared to individual decision tree classifiers [79]. 

The multiclass decision forest algorithm uses decision trees and bagging to predict a target that has 

multiple values. The underlying model upon which this is based is the random forest, which is composed 

of multiple decision trees, with the final classification decided by majority voting based on the predictions 

[80]. 

The two-class neural network classification algorithm is a set of interconnected layers of nodes that 

perform binary classification. In concept, a neural network consists of an input layer, any number of 

hidden layers, and an output layer. This design has activation nodes at each layer, and this is done over 

iterations. Input layers use input vectors, hidden layers calculate weighted values, and the output layer 

generates a weighted sum from each input data point. The identified classification is determined after all 

iterations complete. One of the main benefits with this neural network is that it decreases the number of 

false positives in larger datasets, making it a strong selection for needle-in-the-haystack datasets [81]. 

The multiclass neural network classification algorithm is similar to a two-class neural network, but is 

capable of identifying multiple labels. Additional considerations are that the inputs are the first layer and 

connected to an output layer by an acyclic graph composed of weighted edges and nodes. Between the 

input and output layers are hidden layers. The number of hidden layers can be configured to optimize 

performance based on the type of classification being performed. The nature of this multiclass neural 

network is that it performs predictions over multiple candidates and then uses the weighted values to 

predict a single output target value [82]. 
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5.4.2 Performance Metrics 

The following metrics were used to measure the performance of the machine learning classifiers on 

the small and large datasets: 

• Accuracy = (True Positive + True Negative) / (True Positive + False Negative + False Positive + True 

Negative) 

• Probability of Detection = True Positive / (True Positive + False Negative) 

• Probability of False Alarm = False Positive / (False Positive + True Negative) 

The accuracy is equivalent to the proportion of correctly classified data points, the probability of 

detection is equivalent to the proportion of correctly predicted positives, and the probability of false alarm 

is equivalent to the proportion of negatives incorrectly predicted as positives. 

K-fold cross validation was used to train, test, and evaluate the classifiers using the three metrics 

described. Using K-fold cross validation where K=10, the dataset was divided into 10 sections or folds. 

During the first iteration, the first fold was used to test the model and the remaining folds were used to 

train the model. During the second iteration, the second fold was used to test the model and the 

remaining folds are used to train the model. This process is repeated until all folds were used as the test 

set [83]. 

Additionally, information gained for each feature in the dataset was calculated to rank the relative 

importance of features used by each classifier. Information gain is a feature evaluation method that 

measures the amount of information a feature provides in terms of the change in entropy. 

Entropy is defined as: 

 𝐻 =  − ∑ 𝑝𝑘 log2 𝑝𝑘
𝐾
𝑖=1  (1) 

where pk denotes the proportion of instances belonging to class k (K = 1, …, k). 

Following from this, the change in entropy, or information gain, is defined as: 

 △ 𝐻 = 𝐻 − 
𝑚𝐿

𝑚
𝐻𝐿 − 

𝑚𝑅

𝑚
𝐻𝑅 (2) 
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where m is the total number of instances, with mk instances belonging to class k, where K = 1, …, k [84]. 

5.4.3 Methodology 

Our methodology was as follows: (1) We leveraged the IoT-23 dataset, using a small fraction of it to 

form a small dataset containing 95% benign data and 5% malicious data from five botnets; we combined 

the IoT-23 dataset without our captured benign data to form a large dataset, containing 95% benign data 

and 5% malicious data from 11 botnets. (2) We considered several machine learning models and chose 

the models with the most promising initial performance on the small dataset to further optimize. (3) We 

ran our optimized machine learning models on the small dataset and increasingly bigger subsets of the 

large dataset, using accuracy, probability of detection, and probability of false alarm as performance 

metrics. (4) We described the best practices from our research that has produced competitive results. 

5.5 Experimental Evaluation 

In our experimental evaluation, we considered several machine learning algorithms and both small 

and large datasets. We used this approach to determine whether the problem of effectively identifying 

anomalous IoT network traffic is dependent on the amount of data and/or the type of machine learning 

method used. 

5.5.1 Experimental Setup 

For small datasets, the Waikato Environment for Knowledge Analysis (Weka) was used to calculate 

information gain on the features of the datasets. Classification accuracy is the standard on which Weka 

calculates information gain for each feature and rank each feature of the set. Using Weka and the Python 

Scikit-learn library, the machine learning classifiers were applied to the small dataset within a local 

environment, as shown in Figure 5-2. 
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Figure 5-2 Local and Big Data Environment 

For large datasets, the Microsoft Azure environment was used to store and combine IoT-23 data with 

the captured benign data from the testbed to create the large dataset. The Azure environment includes 

the Azure Machine Learning studio that was used to calculate information gain on the features of the 

datasets, specifically a Permutation Feature importance module that calculates information gain on a set 

of features [85]. Classification accuracy and recall are the standards on which the Azure Machine Learning 

studio calculates information gain for large datasets. The Azure environment further includes a Structured 

Query Language (SQL) server hosting an SQL database that stores the large dataset and natively connects 

to Azure Machine Learning services where machine learning pipelines can be created. Machine learning 

classifiers were applied to the large dataset within the Azure environment as shown in Figure 5-2. 

5.5.2 Small Dataset Experiment 

The following models were generated on the small dataset: decision tree, random forest, multiclass 

decision forest, two-class neural network, and multiclass neural network. This was done to measure initial 

performance feasibility of the models and to choose the models with the most promising initial 

performance to optimize. From this initial comparison, the best performing models in terms of the 

performance metrics described in the previous section were the multiclass decision forest and multiclass 

neural network models. 
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Fields from the Zeek network connection log files were used as features for each of the machine 

learning classifiers tested. Preprocessing was performed to one-hot encode the non-numerical features 

in the dataset. Additionally, a packet spacing feature was derived by calculating the timestamp-delta of 

packets sent from the same IP address. 

For the multiclass decision forest, the resampling method, number of decisions trees, maximum depth 

of the decision trees, number of random splits, and minimum number of samples per leaf node 

hyperparameters were optimized. Specifically, the bagging resampling method was used. With bagging, 

each tree is grown on a new sample, created by randomly sampling the original dataset with replacement 

until the dataset is the size of the original. The number of decision trees used was 16, the maximum depth 

of the decision trees used was 32, and the number of random splits used was 128. The minimum number 

of samples per leaf node used, representing the minimum number of cases required to create any leaf 

node in a tree, was 20. 

For the multiclass neural network, the hidden layer specification, number of hidden nodes, number 

of learning iterations, learning rate, initial learning weight, and normalizer hyperparameters were 

optimized. Specifically, one hidden layer with 100 nodes was used, with the number of nodes in the input 

layer equal to the number of features in the training data. One thousand learning iterations were used. A 

learning rate, representing the speed at which the model changes according to estimated errors, of 0.1 

was used. An initial learning weight of 0.95 was used. A binning normalizer was used, which creates bins 

of equal sizes, then normalizes every value in each bin by dividing by the total number of bins. 

5.5.3 Large Dataset Experiment 

Increasingly large subsets of the large dataset were used to test the performance of the multiclass 

decision forest and multiclass neural network classifiers until high performance was achieved. 
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The following sizes of large dataset subsets were tested: 

• 80,000 data points 

• 160,000 data points 

• 320,000 data points 

• 480,000 data points 

• 560,000 data points 

Importantly, each subset contained 95% benign and 5% malicious data as well as the same ratio of 

the 11 botnets as found in the large dataset. 

The Microsoft Azure machine learning environment was used for its big-data storage and 

supplementary compute power. Experimental pipelines were created within the Azure environment. The 

large dataset experimental methodology allowed for determining how well the classifiers performed on 

increased data, with a variety of malicious botnet behavior. 

The large dataset comprised multiple PCAP files, exported into connection logs format using Zeek, 

imported and aggregated at the Azure SQL database using Microsoft SQL Server Management Studio 

(SSMS). This centralized all the traffic data so that it could be used for experiments in the Microsoft Azure 

machine learning studio with optimized performance. 

For the multiclass decision forest, the bagging resampling method was used. With bagging, each tree 

is grown on a new sample, created by randomly sampling the original dataset with replacement until the 

dataset is the size of the original. The number of decision trees used was 32, the maximum depth of the 

decision trees used was 64, and the number of random splits used was 1024. The minimum number of 

samples per leaf node used, representing the minimum number of cases required to create any leaf node 

in a tree, was 1. 

For the multiclass neural network, the hyperparameters optimized were the number of learning 

iterations, an initial learning rate, an initial learning weight, a momentum parameter, a shuffle parameter, 



66 

and normalizer; 160 learning iterations were used. A learning rate of 0.04 was used. A momentum of 0 

was also used, with a shuffle parameter set to True. The initial learning weight of 0.1 was used. A min-

max normalizer was used that linearly rescales every feature to a closed-interval from 0 to 1. 

5.6 Results and Discussion 

Table 5-1 shows the features of the dataset that were used by the multiclass decision forest and 

multiclass neural network classifiers. 

Table 5-1 Classifier Features 

Feature Feature Description 

Derived packet 
spacing 

The timestamp-delta of packets sent from 
the same IP address. 

id.orig_p Source port. 

id.resp_p Destination port. 

proto – tcp Transport layer protocol of the connection 
is tcp. 

proto – udp Transport layer protocol of the connection 
is udp. 

proto - icmp Transport layer protocol of the connection 
is icmp. 

resp_bytes Number of payload bytes the responder 
sent. 

conn_state – 
OTH 

A partial connection that was not later 
closed. 

conn_state – SF Normal connection establishment and 
termination. 

conn_state – REJ Connection attempt rejected. 

conn_state – S0 Connection attempt seen, no reply. 

conn_state-RSTO Connection established and aborted by 
originator using RST. 

history – C History of a tcp/udp connection packet 
with a bad checksum. 

history – Sr History of a tcp connection with a SYN 
request followed by a RST (reset) flag set 
to 1 from the responder. 

history – 
ShAdDaFf 

History of a tcp connection with a 
successful three-way handshake, packets 
with payload exchange from both ends 
and terminated gracefully. 

history – I History of an inconsistent packet (e.g., 
both FIN+RST bits set). 

history – S History of a tcp connection with a SYN 
without ACK bit set. 
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Feature Feature Description 

history – R History of a connection packet with RST bit 
set. 

history – ShR History of a tcp connection with SYN, ACK 
and RST bits set. 

history – ShAFr History of a tcp connection that includes 
SYN+ACK requests as well as inconsistent 
packets of FIN+RST bits set. 

resp_pkts Number of packets that the responder 
sent. 

resp_ip_bytes Number of IP-level bytes the responder 
sent. 

 

5.6.1 Small Dataset Classification Results 

For the multiclass decision forest classifier applied to the small dataset, the most impactful features 

were the derived packet spacing with an information gain score of 0.076, id.resp_p with an information 

gain score of 0.061, and history – S with an information gain score of 0.014. The least impactful features 

were history – Sr, conn_state – REJ, and conn_state – S0, each with an information gain score of 0. 

For the multiclass neural network classifier applied to the small dataset, the most impactful features 

were the derived packet spacing feature with an information gain score of 0.087, conn_state – SF with an 

information gain score of 0.071, and id.resp_p with an information gain score of 0.067. The least impactful 

features were conn_state – REJ, conn_state-RSTO, and history – I, each with an information gain score 

of 0. 

Table 5-2 shows the performance results for the multiclass decision forest and multiclass neural 

network run on the small dataset. 

Table 5-2 Results of Classifiers Run on Small Datatset 

Performance Metric Multiclass Decision Forest Multiclass Neural Network  

Dataset size 34,058 data points 34,058 data points 

Percent True Positive 63.9% 71.0% 

Percentage True Negative 99.6% 99.4% 

Percentage False Positive 0.4% 0.6% 

Percentage False Negative 36.1% 29.0% 

Accuracy 81.75% 85.2% 
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Performance Metric Multiclass Decision Forest Multiclass Neural Network  

Probability of Detection 63.9% 71.0% 

Probability of False Alarm 0.4% 0.6% 

 

5.6.2 Large Dataset Classification Results 

For the multiclass decision forest classifier applied to the large dataset, the most impactful features 

were the id_resp_p with an information gain score of 0.075, the derived packet spacing with an 

information gain score of 0.059, and resp_bytes with an information gain score of 0.033. The least 

impactful features were history – R, conn_state – S0, and history – S, all with an information gain score 

of 0. 

For the multiclass neural network applied to the large dataset, the most impactful features were the 

id_resp_p with an information gain score of 0.026, id_orig_p with an information gain score of 0.023, and 

derived packet with an information gain score of 0.022. The least impactful features were proto – udp, 

conn_state – RSTO, and conn_state – SF, all with an information gain score of 0. 

For the large dataset, the multiclass decision forest exhibited an upward trend in accuracy, growing 

from 99.93% to 99.98% as dataset size increased. Interestingly, accuracy of the multiclass neural network 

fluctuated as dataset size increased; the accuracy ranged from ranging from 99.49% to 99.70%, with no 

steady trend as data size increased. 

Table 5-3 shows the performance results for the multiclass decision forest and multiclass neural 

network run on the large dataset. 

Table 5-3 Results of Classifiers Run on Large Datasets 

Performance Metric Multiclass Decision Forest  Multiclass Neural Network  

Dataset Size  560,000 data points 480,000 data points 

Percent True Positive 99.8% 99.7% 

Percentage True Negative 100% 100% 

Percentage False Positive 0% 0% 

Percentage False Negative 0.2% 0.3% 

Accuracy 99.9% 99.8% 
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Performance Metric Multiclass Decision Forest  Multiclass Neural Network  

Probability of Detection 99.8% 99.7% 

Probability of False Alarm 0% 0% 

 

5.6.3 Results Discussion 

Considering the unbalanced nature of our dataset (95% benign to 5% malicious ratio), the classifiers 

performed well as the dataset size increased. The following were the most consistently important features 

in terms of information gain: packet spacing, id_resp_p, resp_bytes, history – S, conn_state – SF, and 

resp_pkts. The results showed how increased dataset size and botnet diversity (i.e. amount of network 

traffic flow considered) improved classifier performance. Larger dataset sizes had more traffic flow; with 

additional traffic, the overall information gain of the features increased. The classifiers benefited from 

features with higher information gain, as they contributed to improving the probabilities of accuracy and 

detection, while minimizing the probability of false alarm. 

Results also represent real-world scenarios of IoT environments and attack vulnerabilities. Botnets 

infect IoT devices by exploiting vulnerable nodes in the network that have open ports of protocols such 

as telnet/23 and control these devices using a CnC server. The botnet binary is then transferred and 

downloaded on the target. The Mirai botnet and its variants (e.g., Okiru, Gafgyt, and Hajime) use infected 

devices to recruit new bots to join the botnet network using different techniques such as performing a 

horizontal port scan or a SYN flood attack where the bot floods the network with non-legitimate SYN 

requests to scan for random IP addresses. Having a successful connection indicates a new target was 

found, and the CnC server is notified about the connection. 

These parameters of botnet functionality can be aligned with the features our research found to have 

the highest information gain score using multiclass decision forest and multiclass neural network 

classifiers. For example, the responding port feature (id.resp_p) indicates that the victim responded to a 

request targeting one of its vulnerable open ports such as telnet to initiate a connection and load the 
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botnet binary. The history feature (history – S) indicates there was an attempt to initiate a TCP three-way 

handshake by sending multiple SYN requests without waiting for acknowledgment from the responder. 

This is evidence of a SYN flood attack to recruit new bots. Furthermore, a history of complete connections 

(history – ShAdDaFf, conn_state – SF) as well as the number of responding packets (resp_pkts) indicate a 

successful connection between the infected device and scanner and that the device is compromised. On 

the other hand, there were other features that had zero information gain scores, such as rejected 

connection attempts (conn_state – REJ), where the IoT device has potentially rejected a connection 

request from a botnet or a CnC. Similarly, (conn_state – RSTO) and (history – I) are features of connections 

that were reset and aborted by the source before reaching the destination. The presence of these features 

is an indication that the data point is negative because the compromise attempt has failed. 

The performance results of our classifiers are competitive with recently published results. Our 

research uncovered best practices that can be applied when attempting to detect malicious botnet activity 

in relatively small, unbalanced datasets. First, it is advantageous to understand the behavior of botnets 

and the aspects of network activity their presence may impact. Through this understanding, researchers 

may identify and prioritize features to use within detection classifiers that would provide the most 

information gain. Second, additional features may be derived that may make network activity patterns 

more apparent to machine learning classifiers. For example, in our research, we calculated and included 

a packet-spacing feature that made more obvious to the classifiers the time between packets sent from 

the same IP address. This derived feature was discovered to provide high information gain and greatly 

improved the performance of our classifiers. Although our research used only features found in and 

derived from the Zeek connection log, additional features may be found and derived from information 

provided in the original PCAP files. Lastly, our research showed how increasing the amount and variety of 

botnet behavior in our datasets greatly improved performance of our classifiers. Even by using just a small 
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subset of our large dataset, we were greatly able to improve performance in terms of accuracy, probability 

of detection, and probability of false alarm compared to the small dataset. 

5.7 Summary and Future Work 

In our research, we created small and large datasets leveraging the IoT-23 dataset and our own 

captured benign data. These data had an unbalanced needle-in-the-haystack makeup of small amounts 

of malicious behavior compared to benign behavior. We considered several machine learning models, 

ultimately choosing to optimize the multi-forest decision tree and multiclass neural network classifiers to 

detect malicious botnet activity. We ran these optimized models on the small dataset and increasingly 

bigger subsets of the large dataset, using accuracy, probability of detection, and probability of false alarm 

as performance metrics. We found that performance of our classifiers increased as the size of the dataset, 

amount of malicious activity, and diversity of malicious activity increased. We highlighted how our results 

are competitive with recently published results attempting to solve similar problems and described the 

best practices from our research that produced the competitive results. 

Future work could be extended to consider a wider range of IoT devices, larger datasets, and the use 

of unsupervised learning classifiers. Our research only considered network activity from three devices, 

although many more smart-home devices exist and are continuing to be manufactured. There is 

motivation to perform anomaly detection on specific brands of the same IoT devices; this would provide 

insight into network and application layers of the specific IoT devices. Lastly, our research only considered 

training from a labeled dataset; additional work could consider the implementation of unsupervised 

learning techniques, such as K-means clustering, on unlabeled data, to detect malicious activity. 
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6 A PROPOSED TRUST MODEL FOR ASSESSING CYBERSECURITY RISK IN A SUPPLY CHAIN 
CONSIDERING IOT’S IMPACT 

6.1 Introduction 

The IoT is the product of a number of intersecting technologies that have enabled ever-increasing 

levels of processing and communications to be integrated into ever smaller and less expensive devices. It 

is already ubiquitous and having a profound effect on many aspects of human activity, including the design 

and development of most products. However, even as integration of IoT-enabled capability into a supply 

chain can enhance efficiency and productivity, it also increases exposure to Internet-based threats. One 

area of particular concern is the potential for introduction of malware into a system via its supply chain. 

In this chapter, we propose a methodology for objective evaluation and decision-making related to 

cyber vulnerabilities in a supply chain. We describe potential threats to systems within their supply chains, 

identify potential trade-offs between IoT-related capabilities and vulnerabilities, and discuss a method-

ology for describing cybersecurity risks as trust relationships. Although it is not deemed possible to create 

a fully objectively quantifiable method to measure cybersecurity vulnerability, it should be possible to use 

the proposed methodology to support decision-making and identify weak links in the supply chain. 

Our contributions include (1) a brief description of the evolving cybersecurity threat, (2) an analysis 

of areas in which IoT-enabled capabilities enhance productivity at a cost of introducing additional cyber 

vulnerability, (3) a proposed trust model, and (4) a proposed methodology for evaluating cybersecurity 

vulnerabilities in a supply chain using the Delphic Hierarchy Process (DHP) and Analytic Hierarchy Process 

(AHP). Our analysis differs from other supply chain analyses in that it focuses on threats to a system via 

the supply chain, rather than on threats targeted at disrupting the supply chain. 

6.2 Background 

It has long been projected that the IoT would be a target for future cyber-attacks. The combination of 

large numbers of connected devices and the weak protections for many of those devices make IoT devices 

an ideal point of entry. This possibility became a reality a little over a decade ago. Although neither the 
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perpetrators nor their goals are known, the Stuxnet attack on the Natanz uranium enrichment plant in 

Iran demonstrated the ability of a cyber-attack to inflict physical damage across international boundaries. 

Running undetected for months, it damaged more than 1000 centrifuges, thereby degrading facility 

capability by more than 20% [86]. Stuxnet presents a model of an IoT-directed attack in that it has the 

following characteristics: 

• It targets industrial control systems. In this case, the targets were Siemens programmable logic 

controllers. 

• It depends on lateral movement to move from an opportunistic attack surface to its ultimate goal. 

In this case, the virus had to be introduced into a number of domains outside the target domain, 

and it eventually found its target even though that target was inside an air-gapped domain. 

• It is stealthy. The proliferation of devices on the IoT, even in a local slice of the IoT, makes it 

increasingly difficult to detect persistent agents. 

Another potential risk is the introduction of counterfeit components, especially electronics. Despite 

efforts to protect the integrity of supply chains, it is estimated that 15% of all spare and replacement parts 

for military systems are counterfeit [87]. There is growing concern that a nation state might attempt to 

exploit this increased dependence on automation to introduce counterfeit parts as part of an intentional 

program of sabotage. In June 2014, a U.S. contractor admitted to conspiring to ship counterfeit 

semiconductors from Hong Kong to a U.S. Navy base in Connecticut for use in nuclear submarines [88]. 

The problem is exacerbated by IoT technology. Not only are more devices autonomous and 

connected, components and subsystems within systems are connected. The average automobile has more 

than 30 connected computers, whereas a luxury automobile may have as many as 100 [89]. A modern 

Airbus A320 has approximately 2000 computers [90] that control everything from entertainment and 

environment, to maintenance and diagnostics, to key functions like fuel injection and braking in 
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automobiles and most aspects of flying an airplane. Increasingly, systems are themselves self-contained 

IoT ecosystems. 

Future technology evolutions may further exacerbate the threat: 

• Reverse engineering and cloning technologies are becoming more sophisticated. (In part, this is 

driven by foreign governments that want to reduce their dependence on U.S.-produced 

components, for fear that they contain malware.) [91] 

• The number of system components containing processors is increasing. 

• Trusted Foundry programs are no longer keeping pace with the state-of-the-art in integrated 

circuit (IC) design. Where military and aerospace applications were once a large driver of the IC 

market, they now account for only about 1% to 2% of the market [92]. 

• Lastly, introduction of Micro-Electrical-Mechanical Systems (MEMS) and nanotechnology make it 

possible to develop smaller and lower-power devices, like smart dust. This may eventually enable 

miniature electronic components to be stealthily introduced into larger non-electronic 

components. 

Critically, there is no way of knowing how many vulnerabilities exist in deployed systems or even how 

many attacks have already been launched, with persistent agents awaiting activation. In August 2020, the 

Department of Homeland Security Cybersecurity and Infrastructure Security Agency’s U.S. Computer 

Emergency Readiness Team issued a warning regarding a collection of vulnerabilities, referred to as 

Ripple20. Ripple20 contains approximately 20 vulnerabilities, including four rated as critical using NIST 

guidelines that an adversary could use to launch zero-day cyber-attacks against systems with the Ripple20 

vulnerabilities. These vulnerabilities exist within the TCP/IP stack of a popular line of commercial products. 

It is estimated these vulnerabilities are present in systems across a wide range of critical infrastructure 

[93]. 
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AI and ML are frequently applied to protect systems from cyber threats. Both of these technologies 

can enable security systems to assess and adapt to a changing threat environment more rapidly than 

humans can react. To date, neither AI nor ML driven malware have been observed “in the wild.” Although 

there are threats capable of autonomous behavior, none exhibit the adaptability of an AI/ML-capable 

agent. Agents can be programmed to respond to cues within their environment, but to date malware 

capable of altering its behavior spontaneously based on its environment has not been observed. 

AI/ML-enhanced malware could take two forms. In the first, the malware agent itself would be 

intelligent; however, this may be difficult to achieve. Both AI and ML are processing intensive. The 

processing required by an intelligent agent might limit its ability to operate in smaller, less well-protected 

devices. It might also render it easier to detect because the need for processing resources would make it 

more readily suspicious to any antivirus or security analytics. In the second form, an agent might be 

intelligently designed, controlled, and reprogrammed. Once launched, an agent could provide “cyber 

reconnaissance” information back to the control module, which in turn could modify instructions or agent 

programming intelligently. Either implementation could provide a capability for an agent that learns based 

on what works and what does not, responding to successful detections by adaptation. 

Integration of AI into malware has the potential to increase the scale and speed of future attacks and 

make them ever harder to detect. 

6.3 Developing a Framework for Evaluating the Cyber Supply Chain 

The first step in developing a framework for evaluating risks within the cyber supply chain was to 

identify how the IoT was being integrated into existing industrial systems throughout the engineering life 

cycle. To do this, we performed a literature review, looking at both currently existing practices and likely 

future practices. 

Since the advent of ICs in the 1980s and the Internet in the 1990s, there has been a move toward 

increasing connectivity and mobility. As the ability to implement complex processing in ever smaller 
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devices has increased, devices housing critical functions have become smaller and more mobile, and 

processing has been integrated into ever more devices. It has also changed the way work forces operate. 

• Devices, ranging from household appliances to complex machine tools, are often designed with 

processing capability and Internet connectivity. It is not unusual that the first task a new device 

performs is a search for local Wi-Fi to access the Internet. 

• Design processes are becoming distributed and collaborative. It is common for complex systems 

to be designed by teams of engineers and stakeholders, located in different parts of country (or 

even the planet), to leverage cloud-based collaborative services and models to develop system 

designs (a practice that has become even more common because of the Covid-19 pandemic). 

• Software development has been profoundly affected. New Internet-friendly programming 

languages ranging from Java to Python are becoming more common. Common software 

development tools, including those for managing requirements, tracking system defects, and 

configuration management, are often cloud-based and leased as software-as-a-service (SaaS). 

Lastly, as software grows in size and complexity, thereby making comprehensive testing more 

difficult, software development has become dependent on the ability to “push” upgrades and 

patches to systems via the Internet. The Windows 10 operating system has an estimated 

50 million lines of code (Google may have as many as 2 billion) [94]. An entire software industry 

has emerged that depends on selling imperfectly tested software and identifying and fixing 

problems faster than its customers can become aware. IoT devices do not contain operating 

systems with tens of millions of lines of code, but they are designed by developers whose practices 

are built around the ability to implement system upgrades via Internet [95]. 

• In the near future, manufacturing processes will be changed by the adoption of greater levels of 

automation and robotics. It is already possible for an engineer to develop a digital model of a 

component on their laptop using customized software, and have that design implemented on a 
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machine without a human intermediary. There may come a time when the entire role of 

“machinist” disappears, replaced by automation. 

6.3.1 IoT in the Supply Chain 

Figure 6-1 provides a notional view of the Internet-enabled functions that may be performed by the 

notional factory of the future, with functionality expressed at levels varying from cloud services and edge 

services down to processing performed at a factory or even at a component (tool) level. Potential 

functionality of this factory of the future include the following: 

 

Figure 6-1 Functional View of IoT-enabled Manufacturing 

Network-enhanced collaboration. Industries and government are moving to commercial cloud 

computing services. Commercial platforms such as Amazon Web Services and Microsoft Azure offer 

infrastructure-as-a-service (IaaS), platform-as-a-service (PaaS), and SaaS. These structures are readily 

scalable and tailored to collaborative use of software tools. Future designs will be executed in the cloud, 

with geographically dispersed design teams having access to designs, models, and software tools, 
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including requirements, configuration, and risk management tools. This concept was arguably 

implemented on a large scale for the first time by Boeing for use in the design and development of their 

777-commercial airliner. For the Boeing 777, approximately 2000 workstations were linked to eight 

mainframes in the Seattle area to provide development teams with the ability to electronically assemble 

and analyze the airplane. Engineers were required to develop designs at workstations, using the CATIA 

computer-aided design (CAD) system. Those designs were shared and incorporated into an evolving model 

and design. Initial models were low fidelity, but over time evolved into a manufacturing quality model 

[96]. 

Use of virtual and augmented reality to improve process and design. The Internet of the future will 

support use of virtual and augmented reality in design processes. Users will have the ability to visualize 

design and performance and even interact with design models. One application of virtual processing that 

more closely models the physical world is the use of digital twins. The concept of a digital twin is two 

decades old. It was a mirrored system, a precursor of the digital twin concept, that enabled NASA 

engineers to determine how to rescue the Apollo 13 astronauts. In the future, digital twin technology is 

expected to integrate real-time sensor data to support product, process, and service enhancements. The 

eMBB capability built into 5G-enabled IoT networks will move real-time telemetry data collected in edge 

servers to digital twins hosted in cloud platforms [97]. 

Rapid prototyping. This involves several technologies that enable rapid design, fabrication, and testing 

of prototype components for systems. In the context of this paper, it is arguably a combination of 

networked collaboration and direct digital fabrication (as discussed later). It will soon be possible for a 

team of design engineers to collaboratively develop a design for a component using cloud-based 

modeling, convert that design into an executable digital model, and deliver that software to a 3D printer 

for fabrication [98]. 
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Automated, autonomous, and robotic assembly and fabrication. Automation and robotics are already 

widely used in manufacturing. However, the IoT-enabled factory floor, in which IoT-enabled sensors, 

controls, and actuators support collection of greater amounts of data and increasing levels of intelligence, 

will be capable of greater levels of autonomy. Processing that is currently performed by programmable 

logic controllers operating in closed systems with their own unique operating systems is expected to 

migrate into edge processors. 

Direct digital manufacturing. A key component of future rapid prototyping is the ability to go directly 

from a digital design to a manufactured component or model. Engineers using CAD programs at their 

workstations can develop designs, have them converted into digital models, and transmit them directly 

to an additive manufacturing or computer numerically controlled machining center. This process enables 

more efficient rapid prototyping and production, which in turn facilitates the exploration and testing of 

novel concepts [99]. In addition, additive manufacturing processes, such as 3D printing, can save costs 

through increased efficiency. By constructing components layer by layer, rather than by cutting, these 

processes can substantially reduce waste, and, when working with expensive materials, costs. Although 

additive manufacturing is primarily used in the development of models, it has been applied in the 

aerospace and defense industries, particularly in the fabrication of titanium components [100]. 

Diagnostics and telemetry. IoT-enabled technology will support enhanced diagnostics and telemetry 

process for product improvement. Systems of the future will be equipped with sensors to monitor 

environmental conditions and effects. It will be possible to detect and identify conditions that could lead 

to system degradation and set maintenance schedules to be proactive. Telemetry data can be input into 

models to predict component failures before they happen. 

Chain-of-custody verification and unit testing. Lastly, the envisioned factory will require enhanced 

capabilities to verify the integrity of components and raw materials entering the manufacturing process. 

IoT-enabled technologies, including radio frequency identification (RFID) and micro-tagging, will enable 
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monitoring of the supply chain and environmental conditions throughout the distribution process. In 

addition, all components with processing capability entering the factory will need to be scanned for 

introduced malware. 

6.3.2 Areas of Potential Exposure 

As design, development, and production become increasingly tied to Internet-enabled capabilities, 

supply chain exposure to the Internet, and by extension to cybersecurity threats, will increase. Figure 6-2 

illustrates the life cycle of the system from the mining of required raw materials through the fabrication 

of components to the assembly, integration, and testing of components to form a system, and lastly 

through deployment and upgrade of a system during its life cycle. Throughout that process, there are 

interactions with external organizations and entities, and each of these interactions presents at least some 

level of risk. 

 

Figure 6-2 Internet Exposure within a Product Life Cycle 
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Interactions identified in Figure 6-2 include the following [101]: 

• Collaborative interactions with stakeholders and developers. Design of complex systems is likely 

to migrate toward the adoption of collaborative virtual environments. Many industries have 

adopted their own versions of this process, including digital design models, cloud services, and 

widespread access for engineers operating remotely from workstations. This efficiency comes at 

a cost of increased Internet access and thus increased risk. 

• Digital design to fabrication. The ability to go directly from a digital design to a fabricated 

component provides its greatest benefits when design engineers can develop components 

designs, possibly using cloud services such as those previously described, convert model output 

into an executable digital model, and input that directly into an additive manufacturing device 

such as a 3D printer. However, this highly efficient rapid prototyping capability will lead to broader 

access and Internet exposure. 

• Access to software development sites and tools. There are numerous tools available to support all 

aspects of software development, including coding, configuration management, requirement 

management, and defect tracking. Development sites may even be hosted in cloud services, and 

tools are frequently hosted on external servers. 

• Software upgrades. A typical system will require numerous software builds prior to deployment. 

It is unusual for software builds to be performed manually for large systems. 

• Software upgrades to manufacturing tools. In addition to the product that will be dependent on 

external software upgrades, any automated tool used in the assembly, fabrication, or production 

process will also require periodic software upgrades. 

• Distribution processes. One of the existing vulnerabilities in the supply chain is the distribution of 

components and raw materials. Processes are required to ensure the integrity of system 

components and raw materials throughout the distribution chain. 
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• Post-deployment telemetry and diagnostics. A common feature of modern systems is the use of 

diagnostic and telemetry data to support maintenance and to identify design flaws. 

• Post-deployment upgrades. A key feature of the existing software production life cycle is the 

timely deployment of software upgrades to operational systems via the Internet. 

6.4 Applying Trust 

Evaluating cybersecurity vulnerabilities in an architecture or a supply chain is currently a subjective 

process, often requiring specific subject matter expert input. Although NIST provides guidelines to help 

organizations protect themselves against cybersecurity vulnerabilities within their supply chains, they do 

not provide guidance on how to measure those vulnerabilities. There is a need for a transparent method 

for measuring cyber risk within a supply chain. 

Trust measurement deals with a problem analogous to the problem of cybersecurity measurement in 

a supply chain. A number of processes, including supply chain management, rely on trust relationships—

relationships in which one party is dependent on a second party to meet specific obligations. A substantial 

portion of the field of game theory is devoted to finding ways to model trust (“The Prisoners’ Dilemma,” 

the ubiquitous example used to introduce students to the concept of game theory, is a model to 

understand and measure the effects of trust). The cyber supply chain presents as a trust problem, and a 

critical hypothesis of our effort is that principles associated with the measuring and modeling of trust 

relationships can be applied to this problem. Specifically, every entity within the supply chain has a trust 

relationship with the entities below it in the supply chain; each must trust that antecedent entities have 

controlled exposure to cyber risks and applied best practices. Trust metrics are present in a number of 

common applications, including search engines [102]. 

There are three steps to developing a methodology for applying trust: 

• Identifying the system or network architecture to which a trust model can be applied. 
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• Identifying a trust model. For this particular study, this requires identification of the attributes 

that contribute to cybersecurity trust between two entities in the supply chain. It also requires 

development of techniques for evaluating and weighting attributes. 

• Conducting aggregation. Results from the previous two steps must be aggregated to provide an 

estimate of the cybersecurity trust of a proposed supply chain. 

The goal of this study is not to provide an absolute measure of the cybersecurity risk inherent in a 

particular supply chain, but to develop a methodology that can be used to compare supply chains and 

identify likely vulnerabilities. Development of a more precise measure would require data not currently 

existing. 

6.4.1 Identify an Architecture 

Identifying the architecture is straightforward—the supply chain itself represents an architecture. 

Each of the suppliers (of components, subsystems, and services) is an entity in the architecture. Layers 

can be identified, as can flows between entities and layers. 

6.4.2 Identify a Trust Model 

Five attributes of a cybersecurity trust relationship are proposed. The first is HISTORY, which is a 

measure of the reputation of an entity within the supply chain. Critical aspects of a HISTORY measurement 

focus on an entity’s past performance. In a supply chain in which Entity A has contracted Entity B to deliver 

a product or a service, HISTORY centers on Entity B’s reputation (i.e., does Entity B have a reputation for 

strong cybersecurity) and on Entity A’s past experiences with Entity B. Because cybersecurity incidents 

frequently are not publicized, a strong historical relationship may be more important than an industry 

reputation. 

The second attribute identified for this analysis is EXPOSURE, which is intended as a measure of 

exposure to Internet threats. A primary tenet of this analysis is that all contact with the Internet represents 

a risk, although the risk is not uniform for all processes that use the Internet. It is proposed that each 
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entity in the supply chain would report any activities requiring access to the Internet. Not all of these 

activities would have equal risk, and subject matter experts would have to be enlisted to evaluate the risk 

of each activity. However, it is intended that EXPOSURE would provide an estimate to the risk involved in 

each supplier’s development processes. 

The third attribute, PRACTICES, provides a measure of the things an entity performs to reduce cyber 

risk. There are a number of steps an entity can take to lower its cybersecurity risk, even if the Internet is 

integrated into its processes. First, it can enforce industry best practices and compliance with security 

standards. It can employ tools to detect, track, and remediate cybersecurity attacks. It can also implement 

processes for vetting employees to reduce the risk of insider threats. Again, subject matter experts would 

need to assess each entity’s security practices. PRACTICES provide a measure of what an entity does to 

mitigate cybersecurity risk. 

The fourth attribute, DEPENDENCE, reflects inherited cyber risk. In particular, cyber threats entering 

lower levels of the supply chain may, if not detected and remediated, propagate up the supply chain. 

DEPENDENCE is intended as an aggregate measure of cyber vulnerability inherited from lower levels of 

the supply chain. Measuring DEPENDENCE requires a knowledge of all the entities in the supply chain, 

including those that supply materials, products, and services. As discussed previously, there are a number 

of services in a supply chain that present a low risk of disruption to the supply chain, but could be large 

sources of risk to its cybersecurity. These services can include the following: 

• IT contractors. Outside companies contracted to supply IT services (e.g., set up and operate a 

company’s Internet) could represent an additional risk. 

• Security services. Services contracted to support Internet security, ideally, serve to reduce the risk; 

however, whom a company uses to secure its IT services will affect its cybersecurity. 

• Cloud services. Any PaaS and IaaS used by lower-level suppliers can affect a supplier’s 

cybersecurity. 
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• Automated tools. Automated tools connected to the Internet and any tools implemented as SaaS 

can present vulnerabilities. 

• SaaS, IaaS, and PaaS. Capabilities as a service that rely on the Internet as a delivery and access 

mechanism could represent risk. 

• Distribution services. Distribution services refers to the transport and warehousing of 

components. Delivery mechanisms for software also need to be evaluated. 

The final attribute, TRANSPARENCY, indicates a measure of a supplier’s willingness to provide 

complete and accurate information. Trust in cybersecurity depends on transparency between 

organizations. If Company A contracts Company B to provide a product or service, Company A has to be 

confident that Company B is being transparent about processes that require Internet access and about its 

practices to protect its networks and information. Figure 6-3 illustrates how these attributes can be 

applied. 

 

Figure 6-3 Applying the TRUST Framework 

Perhaps the greatest challenge in using trust to evaluate cyber risk is identifying methods for assigning 

values and weights to the attributes. Because of the large quantity of unknowns associated with 
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cybersecurity and cyber-related threats, these evaluations are largely subjective and dependent on 

subject matter expertise. Thus, there is a need for a process to elicit subject matter expertise and present 

it in an objectively quantifiable manner. 

A number of techniques are available to support objective assessments based on subjective criteria. 

Two popular techniques are DHP and AHP. The two can be used in tandem [103]. 

DHP is a systematic procedure for eliciting expert opinion, relying on anonymity, controlled feedback, 

and statistical group response. Critical features of DHP are that it is structured, it is executed in a step-

wise fashion, and all responses are, to some extent, reflected in the final result. A goal of DHP is to move 

toward a consensus result [103]. 

In AHP, experts are presented a comprehensive series of pairwise comparisons, pairing options to 

selection criteria. Experts are asked to provide input as to which is better and to rate the comparisons 

based on importance. They may also be asked to provide a rough estimate of the magnitude of the 

difference between options. Posing more concrete comparisons, rather than abstract assessments, 

enables experts to provide assessments that are more accurate. AHP is commonly used in trade studies 

and other situations in which a group decision is required to select between options. DHP and AHP are 

candidate methods for identifying weights and evaluating attributes. 

6.4.3 Aggregation 

A number of techniques have been proposed for the aggregation of attribute values in trust 

relationships: 

• A weighted sum approach is the simplest approach. It enables evaluators to input a value and 

weight to each attribute. Weight and value are multiplied for each attribute and then summed 

for all the attributes pertaining to a particular entity in the supply chain. 

• Fuzzy-logic–based modeling is a form of mathematics specifically intended for Boolean 

mathematical-like problems in which multiple values are possible. Specifically, it arose out of the 
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need for methods to indicate partial truths. Trust calculations, in particular, would seem well 

suited to fuzzy-logic–based approaches. Trust and its attributes are seldom likely to be absolute 

(no network is absolutely safe from a cyber-attack, and no system is absolutely vulnerable). Fuzzy 

models have the advantage in that they are designed to provide useful responses to ambiguous 

input. Fuzzy logic has a number of applications, including computer-aided medical diagnoses. 

• Belief theory (also referred to as the Dempster-Shafer theory) provides a method for combining 

the “beliefs” of multiple experts, taking into consideration their confidence in the result as part 

of the calculation. In assessing a supply chain, experts provide estimates of their confidence in the 

levels of protection and exposure of each entity. 

• Lastly, Bayesian methods provide a methodology for updating assessments as additional 

information becomes known. 

All of these methods are valid candidates for assessing the amount of trust a company can have it its 

supply. Because of the limited data available, it is proposed that initially aggregation be performed using 

a weighted sum as presented in the following equation: 

TRUST = HISTORY + DEPENDENCE + EXPOSURE + PRACTICES + TRANSPARENCY 

Weighted sum aggregation is simpler than the other methods; however, given the unknowns still 

associated with the use of trust to measure trust in cybersecurity, it is deemed the best approach for initial 

efforts. 

6.5 Conclusions 

The IoT is a ubiquitous, intersecting set of technologies that is changing much of the modern world. 

Because of the IoT, systems and systems of connected systems of unprecedented scale and autonomy are 

possible. These capabilities are available to both the U.S. and its adversaries; in both cases, they increase 

what is possible as well as introduce new vulnerabilities for an adversary to exploit. This paper identifies 

some instances of the former, but its focus is not the latter. 
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Military and industrial systems historically have been closed systems; they have had limited to no 

outside exposure. Although it is feasible military systems will continue to be isolated from the Internet, 

industrial systems are becoming increasingly integrated with the IoT. A consequence will be that while 

military deployed systems will continue to have limited exposure to cybersecurity threats, the industrial 

systems used to design, develop, and produce them will become increasingly dependent on the Internet 

and thus increasingly exposed to cyber threats. Although it may remain possible to operate an 

infrastructure insulated from the Internet, the cost of doing so will likely be prohibitive. A deployed system 

may have limited exposure to the Internet, but its supply chain will be intertwined with the Internet. 

At the same time that it is becoming harder to insulate a product supply chain from the IoT, the threats 

present within the IoT are becoming more sophisticated. The huge number of devices on the IoT, the 

limited processing power (and limited anti-malware capability) of many of those devices, and the 

complexity and heterogeneity of communications architectures that connect them make the IoT a target 

gateway for adversaries looking to breach networks. Developing capabilities to protect networks of such 

large scale and different topologies represents a possibly insurmountable challenge. At the same time, 

the avenues of attack have become more sophisticated and capable. The last decade has seen the advent 

of persistent agents and agents capable of achieving cyber-physical effects. The next decade may see 

attempts to implant counterfeit components with malware and intelligent malware. 

Although the risk of malware introduced through a product supply chain has become an accepted 

threat, there is still no accepted methodology for assessing that threat. This paper includes a nascent 

methodology, using trust measurement, for assessing cybersecurity risk in a supply chain. It includes a 

system engineering analysis of a supply chain, identifies potential use cases, and identifies architectures, 

attributes, and methods of aggregation for applying principles of trust. However, the proposed 

methodology requires validation primarily because the actual product supply chain is decades away from 
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definition. Further analyses are recommended, including efforts to refine and validate the proposed 

methodology by applying it to a number of supply chains. 

6.6 Related Efforts 

During the course of our research, we identified a several related concurrent efforts focused on the 

same problem: 

NIST has an ongoing effort to evaluate and protect against supply chain cybersecurity risks [104]. In 

August 2020, it released a tool to evaluate risk [105]. However, unlike our project, NIST efforts focus on 

preventing disruptions to the supply chain. 

The National Telecommunications and Information Administration (NTIA) has launched the Software 

Bill of Materials to protect supply chains from introduced malware [106]. The NTIA effort focuses on 

identifying software with known vulnerabilities. 

The Department of Defense (DoD) administers the Defense Federal Acquisition Regulation 

Supplement (DFARS) [107] and the Cybersecurity Maturity Model Certification (CMMC) [108] to identify 

requirements and policies on federal contractors to ensure compliance with cybersecurity best practices, 

including best practices for securing the supply chain. 

6.7 Voice Assistant Cyber Scenarios and Use Cases 

Users interact with a large amount of data and associated computing and processing through a variety 

of devices. Incorporating ambient computing through a voice interface for cyber capabilities opens the 

aperture on its value to a wider range of situations. Provided next are examples where this voice assistant 

interface could improve current user experiences. 

6.7.1 Use Case #1: Low Cyber Skilled (Average Smart Home, IoT Devices Owner) 

A homeowner with limited understanding of computing and the Internet installs a personal cyber 

assistant to help protect their devices and personal information. The personal assistant connects with the 

main router in the house; the homeowner provides the serial number. Once installed, the personal 
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assistant detects and inventories all the devices connected to the associated IP address. The personal 

assistant provides that inventory to the homeowner, who then provides confirmation for each device. 

Whenever a new device is detected for the first time, the personal assistant sends an alert and requests 

confirmation that the device belongs on the network. 

In addition, the personal assistant continues to monitor the home network for suspicious activity and 

alerts the homeowner. Because the personal assistant is envisioned to consist of a primary application 

connected to a router and a client, which could be loaded into a phone, the personal assistant could 

provide remote alerts to the homeowner. 

6.7.2 Use Case #2: Traveler’s Assistant (High-end IoT Application Owner with Minimal Networking) 

A tech-savvy businessperson spends a large amount of time traveling and is highly dependent on 

Internet and cellular. Their business requires the secure transmission of large amounts of proprietary and 

otherwise sensitive data. As a result, they are not comfortable transmitting that data from or receiving it 

at a hotel room, local coffee shop, or the airport. 

The personal assistant can provide real-time assessments of the security of local networks and access 

information about potentially more secure networks nearby. In addition, the personal assistant can help 

the businessperson set up a virtual private network (VPN) or other security structures to ensure secure 

transmission of information. 

6.7.3 Use Case #3: The Factory of the Future (Highly Skilled Cyber Defender) 

The IT chief of a modern factory complex has to manage a sophisticated 5G-enabled network. The 

factory contains several robotic systems connected to a low-latency, highly reliable machine-to-machine 

communications network. It also employs several digital twins. These virtual systems do not have the low-

latency requirements of the robotics systems; however, they depend on large volumes of data 

transported across broadband. Lastly, the factory deploys a state-of-the-art health-monitoring system to 
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ensure the health and safety of its workforce. Because this health-monitoring system transmits large 

amounts of personal data, it requires additional security to protect against compromise. 

Each of these networks is implemented on a single physical infrastructure. The factory leverages 5G 

features like network slicing to divide this physical infrastructure into separate virtual networks, each with 

its own discrete QoS and security requirements. The IT chief can ask the personal assistant questions, and 

the assistant can provide the IT chief guidance in constructing network slices and providing the customized 

security required for each virtual network. In addition, the personal assistant can send alerts when 

anomalous traffic is detected and interface with the IT chief to assist in assessing whether an anomaly is 

indicative of a malicious act or actor or is just an anomaly. 

6.7.4 Use Case #4: Ad Hoc Emergency Response Network (Field Operator) 

In the aftermath of a hurricane, a large urban area is flooded and loses power and communications. 

Rescue teams operating in the affected area will need to bring their own communications equipment. 

However, although their radios support limited voice communications, which will help to coordinate 

activities, many of their devices require connectivity to the Internet, and their radio systems will not 

support the anticipated level of IP traffic. 

To achieve robust IP communications, the first responders depend on an ad hoc mobile networking 

capability. Key features of this capability will be self-organizing networks and 5G-enabled device-to-device 

communications. The personal assistant will be able to assist in establishing and maintaining these ad hoc 

communications. The personal assistant will have the ability to interact with the onsite officer in charge 

of communications to identify objectives and set priorities (e.g., identifying which communications to 

drop first if networks become overburdened). It can also support stationing of unmanned aerial vehicles 

as relays. 
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7 TOWARD AN AMBIENT COMPUTING PARADIGM FOR IOT CYBERSECURITY: LOWERING THE 
COGNITIVE LOAD FOR USERS 

7.1 Introduction 

The IoT is becoming pervasive in the home, business, and mission-critical environments as more 

consumer, business, and industrial control devices are networked and IoT enabled, thus improving 

functionality in UFEs. UFEs are smart environments that have deep technological foundations, but strive 

to present only a portion of the technology to the user. This explosion of networked devices exposes users 

to many security vulnerabilities thus necessitating that those smart-system owners become more aware 

of the activity on and security of the devices on their network. 

System owners likely do not have the skills necessary nor the time needed to continuously monitor 

their network using common open-source tools. Furthermore, network defenders are often inundated by 

the sheer number and diversity of devices and associated traffic and alerts. No one individual is likely to 

be able to fully use and comprehend the data that those tools present. We propose a system that uses 

ambient computing to facilitate network security monitoring and administration for smart and connected 

environments. Ambient computing refers to technologies that allow people to use a computer without 

realizing they are doing it [109]. This work is an extension of earlier work on CHASM [1]. In this chapter, 

we combine dynamic visualization of IoT networks with a natural language query interface enabled by 

voice assistants to simplify the process of providing information about the security state of the network 

to the casual user as well as the more seasoned network defender. 

Using ML, the voice assistant integrates knowledge of the name, type, and function of devices on the 

network to communicate potential security concerns in a manner that is easily comprehensible and to 

recommend the appropriate actions needed. These capabilities will help improve the security of 

connected domains by providing the system owner a unique view into the IoT network and devices. When 

combined with other information, such as a topographical map, the enriched view could give the network 

owner the ability to monitor and protect their network with minimal cognitive load. 
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This chapter (1) demonstrates a voice assistant capability for IoT security applications that lowers the 

cognitive load on the end user, independent of their security and network skill level, (2) integrates trigger-

based PCAP capability for deep packet inspections and IoT ML development, (3) integrates an ML-based 

discovery capability to characterize devices on a network, and (4) introduces a graph analytics capability 

for visualizing network connectivity and situational awareness. 

The remainder of this chapter is organized as follows. Section 6.7 discusses voice assistant cyber 

scenarios and use cases. Section 7.2 describes voice assistant applications and related works on which our 

research builds. Section 7.3 presents an overview of the system architecture. Section 7.4 overviews voice 

assistant interface design and associated commands. Section Error! Reference source not found. d

escribes the embedded underlying capability. Section 7.6 details the experimental evaluation we 

conducted. Section 7.7 explores voice assistant security concerns. Lastly, Section 7.8 presents conclusions 

and describes avenues for future work. 

7.2 Voice Assistant Applications and Related Works 

The voice assistant capabilities can be catalogued into two areas: (1) network monitoring smart 

assistance and (2) general voice user interface (VUI) applications. 

7.2.1 Network Monitoring Smart Assistants 

The growth of common IoT devices in UFEs and their respective networks opens up considerable risk 

possibilities. To combat this issue, network monitoring is useful for alerting and guiding network users 

through the security statuses of their devices. Narayanan et al. [110] developed systems that use smart 

assistance technology to regularly scan networks and users in search of needed backups, notifying a 

previously designated client in the event of positive detection. Without regular backups, systems become 

vulnerable to permanent data loss from a data breach or attack. With the combination of technology and 

human-driven backup systems, users can eliminate this vulnerability through double-layered authentica-

tion and the removal of sole human or computer error. 
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Additionally, with the constantly changing landscape of cybersecurity threats, early detection of such 

attacks has become more challenging. Even with advanced monitoring protocols, hackers can be present 

on a system for more than 100 days before being detected. Bassett et al. [111] developed a cybersecurity 

system that intakes data from a number of sources to have multiple collaborative smart agents complete 

a collection of network security tasks. This results in more data-informed decisions for security 

administrators, while simultaneously lowering their cognitive load and the potential for human error. 

7.2.2 General VUI Applications 

The diverse applications of VUI-enabled smart home devices can be further divided into two 

categories: convenience and practical. Convenience applications simplify lifestyles, without working to 

resolve any specific issue. Practical applications replace human activity to achieve necessary actions using 

the connected IoT devices. 

The majority of convenience in both home and professional UFEs involves the replacement of 

traditional appliances with smart devices for easier use. Smart home assistants can control an 

interconnected network of Wi-Fi-connected light bulbs, alarms, thermostats, and other instruments 

without any practical need for automation [112].For instance, the Amazon Alexa smart home interacts 

with users through a VUI, and is able to control any device connected to Wi-Fi through either their own 

application or Wi-Fi-connected smart plugs. Although mainly implemented through VUI, Amazon Alexa’s 

nature allows communication through e-text on mobile devices and on Amazon-provided screen displays. 

Other examples of the simplified lifestyle effects these VUI assistants provide include starting workouts, 

ordering online purchases, controlling smart homes, scheduling routines, and performing calculations. 

The variety of practical applications includes uses with real demand and necessity in home and office 

use. An IoT-based fall-detection system proposed by members of the Department of Electrical and 

Computer Engineering at the University of Kentucky uses cameras and motion sensors to identify 

potentially life-threatening falls in homes with vulnerable occupants [113]. Once activated, the connected 
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smart assistant launches a VUI-based dialogue, prompting endangered users to notify the police or 

caregivers. Such application of the smart assistant relies heavily on the vocal component of the device 

because the use of a touch-based system may not be possible in a risk situation. This allows for more 

independent living, thereby saving money and time. 

7.3 System Architecture 

The ambient computing capabilities presented in this paper leverage both internally facing and cloud-

based capabilities. This section provides an overview of the computing and network infrastructure and 

describes an end-to-end flow of a user query and its associated response through the system. 

The voice interface provides access to a set of underlying cyber-focused capabilities exposed as edge-

based RESTful services running on Raspberry Pi devices. We used two Raspberry Pi 3B devices, each having 

a four-core, 1.2-GHz Broadcom, 64-bit ARMv7 CPU, and 1 GB of RAM. The REST services return results via 

JavaScript Object Notation (JSON) to an ESXi server running Linux VMs. The Pi edge devices monitored 

collection of more than 70 IoT network devices connected to the same network, and a span port on the 

network switch forwarded all the network traffic from each device to the Raspberry Pi (Figure 7-1). 

 

Figure 7-1 Raspberry Pi 

We used Amazon Alexa for business (A4B) to create the user interface. Any Alexa user registered on 

our network can connect via Wi-Fi and access A4B services in the cloud. Upon joining, the user is 

authenticated and their voice commands go to the A4B cloud account and they can access related backend 
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services in the IoT testbed. (See Section Error! Reference source not found. for an overview of the b

ackend embedded cyber services.) Figure 7-2 illustrates the data and information flowing though the 

network. 

1. An ESXi IoT VM retrieves IoT device classification from an edge-deployed Raspberry Pi (IoT Pi) 

running ML-based device classifiers. The IoT Pi monitoring the collection of Pi sends JSON 

messages via a standard syslog port (UDP port 514). 

2. The ESXi IoT VM stores the Feature File on the IoT Pi in the DMZ. All data collected here are 

processed and stored on a DMZ that can be reached by the Internet. 

3. The user’s voice commands are streamed by Alexa, using TLS 1.2, to an A4B account for processing 

by Amazon Voice Services (AVS). Amazon’s Automatic Speech Recognition (ASR) processes the 

stream into text strings that are then forwarded to Amazon’s Natural Language Understanding 

(NLU) system. NLU interprets the result and produces an intent. The service then routes the intent 

to one of our custom skills. 

4. The Skill retrieves the IoT network data from the IoT host located in our DMZ. 

5. The Skill formulates the raw data into Simple Speech Markup Language (SSML) text . The response 

system then takes the SSML and uses text-to-speech to generate an audio speech file. The 

resulting audio is then streamed back to Alexa. 

6. The user sees a visualization of their IoT network from the IoT DMZ host. 
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Figure 7-2 Alexa IoT Device and Network Status 

7.4 Voice Assistant Interface Design 

Although there are many existing frameworks for the creation of voice assistant capabilities, our cyber 

assistant was developed specifically as an Amazon Alexa skill. Amazon allows for the creation of custom 

cyber-assistant capabilities through the creation of Alexa skills, which can be published and then added 

to a specific Alexa device. This framework was chosen specifically because Amazon provides a robust 

Software Development Kit (SDK) for Alexa skill development and handles any necessary speech-to-text 

and natural language processing, allowing us to focus on the development of the VUI and underlying logic. 

Internally, an Alexa skill splits an individual piece of functionality into intents, each having frontend and 

backend pieces. A specific intent’s frontend consists of the VUI, also known as “utterances” or invocation 

phrases that trigger this specific piece of functionality. The backend consists of an IntentHandler, and 

deals with the actual logic of the triggered intent [114]. The development of the Alexa skill thus began 

with the design of the voice interface and the intended functionality, with a focus on user experience. 

The Alexa skill’s goal is to provide an easy-to-use, easy-to-understand, natural cyber voice assistant; 

therefore, we gave particular care to the multiple ways in which a user could interact with the skill, as well 
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as the types of functionality provided by the skill; for instance, the voice interface needed to be able to 

handle cases where users may phrase the same request differently. Alexa specifically handled this by 

allowing multiple utterances to be tied to each intent. The specific intents and commands supported by 

the cyber assistant were also chosen by considering the kinds of information both technical and 

nontechnical users may want to know about their network. 

The different commands supported by the Alexa skill can be divided into three categories. The first 

includes administrative commands that control the overall skill and the underlying ML capability. For 

instance, a user can start and stop the Alexa skill, change certain settings including the setting of certain 

triggers and alerts, and ask for help. On the backend side, a user will also be able to start, stop, and reboot 

the ML pipeline as well as check its status. 

The second category of commands forms the bulk of the assistant’s core functionality. These are the 

commands that query the ML pipeline for specific information about the user’s network, including the 

number of devices, categories of the devices, newest device, etc. The goal of these commands is to give a 

user increased access to information about their network in a way that is user friendly and nontechnical 

so that any network owner may use this capability. 

The final category of commands includes those aimed toward users with more advanced knowledge 

of cybersecurity and networking to support a range of users. These commands will give a network owner 

access to more technical information regarding their network and allow for the configuration of 

combinations of event triggers. This category also includes the commands that integrate other cyber 

capabilities that the skill supports, including the directed PCAP and network visualization. 

This effort was focused on implementing this functionality as an Amazon Web Services (AWS) Lambda-

hosted Alexa skill, with corresponding utterances and intents. Table 7-1 briefly summarizes the commands 

that the skill currently supports, including sample invocation phrases and intended behavior. 



99 

Table 7-1 Core Functionality 

Intent Request Name Purpose Sample Utterances 
Slots 

(optional) 
Returns 

GetNetworkSummaryIntent Provide an overview of 
connected devices and 
status of network. 

“Tell me about my 
network.” 

“Summarize my 
network.” 

“Tell me a summary.” 

 Number of total con-
nected devices, number 
of devices active in the 
last 24 hours, and last 
device added 

GetDevicesSummaryIntent Provide a summary 
about the connected 
devices and their 
categories. 

“How many devices do I 
have?” 

“What devices are on my 
network.” 

“Tell me about the 
devices on my network.”  

 Number of connected 
devices and number of 
connected devices in 
each category 

GetNewestDeviceIntent Provide an overview of 
the newest device on 
the network. 

“What’s the newest 
device?” 

“Get the newest device.” 

“Tell me about the 
newest device.” 

 The newest device 
added to the network, 
the time it was added, 
and the type of device it 
is 

GetLatestDevicesIntent Provide a list of 
devices added after a 
certain specified time. 
If no time is specified, 
default to last time the 
skill was used. 

“Any new devices since 
yesterday?” 

“Any new devices?” 

“How many new devices 
do I have since last 
week?” 

Amazon.DATE 

Amazon.TIME 

A list of devices added to 
the network after the 
specified time and the 
category breakdowns 

GetNetworkMapIntent Provide to the user a 
graphical representa-
tion of the network 
and devices connected 
to it. 

“Show me my network 
map.” 

 A user-viewable network 
map with labeled nodes 
and edges 
representative of the 
network and activity on 
the network 

GetPacketDataIntent Provide the user PCAP 
data collected from 
the network. 

“Capture data from the 
network for me.” 

 PCAP data from tcpdump 

HelpIntent Suggest commands to 
ask Alexa about your 
network. 

“Help.” 

“What can I ask?” 

“What can you tell me 
about my network?” 

 A list of commands 
available to ask the Alexa 
skill 
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7.5 Embedded Underlying Capability 

The voice interface provides an interface to a set of underlying cyber-focused capabilities. This section 

describes the collection of applications exposed to the user. 

7.5.1 IoT Device Discovery and Classification 

IoT discovery is foundational to providing good cybersecurity because a user needs to have a good 

accounting and understanding of the devices on a network to be able to protect and secure them. 

Furthermore, because IoT networks are dynamic by nature, the landscape will change often and thus 

require constant monitoring. Therefore, automated methods are needed to maintain situational 

awareness of networks. Our IoT device discovery and classification capability can autonomously identify 

IoT device types. Although there are many ways to perform IoT discovery, each has its strengths and 

limitations. For example, with MAC addresses, one can determine the device manufacturer. This approach 

is relatively straightforward, but it also can be spoofed or be representative of another device in the 

network chain. 

Therefore, the focus of this work is to explore discovery, profiling, and verification of IoT devices solely 

based on their network behavior or other information contained in individual or constrained groups of 

packets [1]. 

To support this goal, an ML model was trained to analyze packet sequences and predict what type of 

IoT device each packet sequence came from [2]. To construct the training data set, traffic from more than 

60 IoT devices was collected, grouped by MAC address, and arranged in time order. The data from each 

device was then transformed into sequences of 20 packets each. The values in these sequences were then 

normalized, one-hot encoded, and labeled according to device category (see Table 7-2), and an ML model 

was trained on that data. The result was a model that can take a 20-packet sequence of network data 

from a device and provide a prediction as to that device’s category. 
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Table 7-2 Supporting Metadata 

Metadata Tag Description 

“predicted_category”: “television” # This line and the next 
two are a summary of the category_scores 

Category with the highest evaluated score 

“confidence_level”: “Low”,  Confidence level of the prediction 

“confidence_percent”: 49, Score of the prediction 

“device_id”: “b8:27:eb:3d:c2:a2”, #  Unique identifier for tracking devices inside the ML pipeline 

“first_seen_ts”: #  Unix timestamp in ms (This is the time that the device was first 
detected on the network.) 

“first_seen_utc”: “2020-06-05 14:33:52.013460+00:00”, #  Human-readable version of first_seen_ts 

“last_seen_ts”: 1591887289012.231, #  Unit timestamp in ms (This is the most recent time that the 
device was seen on the network.) 

“last_seen_utc”: “2020-06-11 14:54:49.012231+00:00”, #  Human-readable version of last_seen_ts 

“ground_truth”: { Ground truth for the MAC address (if known) 

“iot_testbed_alias”: ““, Testbed alias for a device (if available) 

“iot_testbed_category”: ““ Category with the highest evaluated score 

“ip_addresses_used”:  IP addresses that the device was seen using 

“mac_address”: “b8:27:eb:3d:c2:a2”, # MAC address of the 
device 

MAC address of the device 

“mac_manufacturer”: “Raspberry Pi Foundation”, #  Possible manufacturer of the device, based on first three octets 
of MAC address 

 

IoT device categories are as follows: 

• Television 

• Assistant 

• Unknown 

• Hub 

• Audio device 

• Clocks 

• Router 

• Mobile device 

• Triggers and switches 

• Cellular device 
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• Thermostat 

• Camera 

• VPN router 

• Human interface device 

The model was deployed to run in streaming mode on a Raspberry Pi, resulting in a stream of output 

predictions. A dashboard was created to aggregate and display these predictions (see Figure 7-3). 

 

 

Figure 7-3 Dashboard to Aggregate and Display Predictions 

7.5.2 Integrated PCAP 

The key element to providing cyber protections to a system is to have timely relevant data with labels 

related to the time, event, and situation that generated the event of interest. Monahan et al. states that 
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organizations using PCAP as part of their normal toolsets were more confident in the information they 

received about their environments and therefore were better prepared to protect them. Specifically, they 

had: 

• Shorter breach detection and response time 

• More confidence in their workflows and processes 

Therefore, the use of PCAP is key to providing useful cybersecurity in a network [115] [116]. However, 

gathering these data is hard because the storage capacity for full PCAP is expensive. In addition, being 

able to capture data coincident with a specific incident can be difficult because of the unpredictability of 

cyber events. To meet this challenge, we integrated a trigger-based PCAP capability that captures data 

based on passed-in configuration parameters. This gives the users the ability to perform offline deep 

packet inspection on data that are coincident with an event, and have relevant, insightful metadata stored 

with the data itself. To provide PCAP, we integrated tcpdump [117], a software program that allows the 

user to capture network packets being transmitted or received over a network to which a device is 

attached. 

The PCAP capability is composed of two parts: an Edge Sensor Service that runs on each network 

sensor and a Sensor Management Service that runs in the cloud. 

The network sensors are currently deployed as Raspberry Pis, each running the ML pipeline as well as 

a copy of the Edge Sensor Service. The Edge Sensor Service sends periodic heartbeat messages to the 

Sensor Management Service, indicating the sensor’s name, location, status (e.g., CPU utilization, CPU 

temperature, remaining disk space), and universally unique identifier. The Edge Sensor Service also listens 

for commands from the Sensor Management Service and manages the execution of those commands. 

The Sensor Management Service listens for heartbeat messages from the network sensors and uses 

that data to determine which sensors are available for tasking. The Sensor Management Service exposes 
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a REST Application Programming Interface (API) that allows a user (or other software program) to perform 

the following actions: 

• Obtain a list of all available sensors and their status. 

• Reboot a specific sensor. 

• Start the ML pipeline on a specific sensor. 

• Instruct a specific sensor to capture packets via tcpdump. The full range of tcpdump’s filtering 

capability is available, including the ability to filter by IP addresses, IP address ranges, MAC 

addresses, port numbers, and protocols. 

• Obtain the status of ongoing and completed PCAPs on a specific sensor. 

• Retrieve completed PCAPs (in PCAP file format) from a specific sensor. 

Because the Sensor Management Service exposes the above functionality through the REST API, it 

could easily be connected to other software in support of several novel use cases: 

• When a new device is detected on the network, automatically capture some of its network traffic 

for later analysis. 

• Allow the user to ask Alexa for a PCAP from a device by name. For example, “Get me some 

network data from that new thermostat that showed up on the network today.” 

• To support a cybersecurity analyst with some knowledge of ML, build additional APIs for retraining 

and redeploying the ML pipeline on the sensor, which would then allow an Alexa conversation 

such as: 

“Alexa, capture packets from that unknown device that showed up on my network today.” 

“Alexa, that device is a thermostat.” 

“Alexa, retrain the machine learning model with the new data from the thermostat.” 

“Alexa, is my new model ready?” 

“Alexa, deploy my new model to sensor X.” 
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• For the home user, a similar set of steps could be performed automatically because the average 

home user would not know about the intricacies of ML model training. An example conversation 

might be: 

Alexa: “There is one new device on your network this morning. I can’t figure out what it is.” 

User: “Oh, that’s my new smart refrigerator.” 

Alexa: “Got it. I’ll update my list.” (In the background, Alexa retrains the existing ML model to 

be able to recognize smart refrigerators, and automatically deploys the new model.) 

• In addition to training models to categorize IoT devices, this capability could be used to learn 

“normal” patterns of life of different IoT devices on the network, and alert the user if any devices 

deviate from those patterns. An example conversation might be: 

User: “Alexa, how’s my network looking today?” 

Alexa: “Your back-porch security camera started acting like a router at 3 a.m. today. You might 

want to get that checked out.” 

7.5.3 Network Mapping 

As previously discussed, the IoT device testbed implements a pipeline model in which data are 

ingested from the IoT devices via a sequential process of PCAP, feature extraction, model training, and 

model inference. To gain a sense of network situational awareness, an additional processing layer is 

needed that is responsible for network visualization, analytics, and general user interaction. This layer, 

termed IoTA for IoT Analytics, primarily taps into the pipeline after feature extraction is complete; 

however, it was designed to fuse information across several points in the pipeline (e.g., in the model 

training and execution phases). The rationale behind this design is to enable the user to aggregate and 

view IoT data from a low-level (device connections) point of view while still leveraging higher abstractions 

of data processing to provide a more complete understanding of the device network while minimizing 

user cognitive loads. IoTA leverages the IoT ML processing pipeline to enrich the visual rendering of low-
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level network data with context-aware inferences, such as device type labeling and potential threat 

quantification. 

As with most computer networks, the IoT device testbed generates large amounts of data. When 

implementing a visualization interface, one critical decision is where to position data ingest within the 

processing pipeline and where to implement the frontend to maximize deployment flexibility while 

minimizing local compute resources. For this reason, the IoTA architecture consists of two processes: the 

backend processor and the frontend renderer. The backend processor is designed to run in a convenient 

location behind the enterprise firewall, where access to network and computing resources is most 

optimal. This processor gathers and fuses information from the various levels within the processing 

pipeline and then presents a streamlined collection of data to the frontend for rendering. This process is 

intended to run on a server with sufficient computational resources to enable real-time transformation 

of data. In determining how best to aggregate data for visual representation, the system identifies 

repeated communications within a given timeframe specified by the frontend and generates a data 

structure that contains a summary of these communications. The level of detail of the summary is 

dependent on information from the frontend renderer about the context of the visualization (e.g., 

topology visualization, anomaly detection, network querying). 

The frontend renderer runs in a standard web browser for maximum flexibility. This enables 

practically any network-enabled computing device to interface with the processing pipeline across the 

enterprise firewall. Because of the limited computational resources available at the frontend, the backend 

processor essentially compresses the available data through context-based slicing and aggregation 

operations. To minimize operator cognitive load, the interface of the renderer is intentionally minimalistic 

because research has shown that cluttered interfaces greatly increase operator distraction and negatively 

influence their focus on other tasks [118]. The renderer is divided into four main sections in which content 

changes are context sensitive. In this way, only the information pertinent to the task is displayed. 
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Figure 7-4 shows the primary interface for IoTA, where the display is segmented into (1) data trans-

formations and rendering controls, (2) network device listing with filtering, (3) micro network rendering, 

and (4) macro network rendering. 

 

Figure 7-4 IoTA Frontend Renderer with Fixed Context Areas: (1) data transformation and rendering, (2) 
network device listing and filtering, (3) micro network rendering, and (4) macro network rendering 

The primary visualization method used by IoTA is force-directed clustering with semi-radial layouts 

that minimize link crossings. After careful consideration and experimentation, this method proved to be 

the most robust in presenting device network information to highlight relationships between devices 

while minimizing clutter and occlusion. Figure 7-5 presents a screenshot of this visual layout. The display 

supports zoom operations and an infinite canvas to scale well with large network collections, while using 

minimal resources on the client device. All node positions can be altered by simply clicking and dragging 

nodes across the canvas. During this operation, the layout manager continuously updates the force-

directed layout through smooth animations. This aspect is important for preserving operating context as 

the network analyst interacts with the visualization [119].Furthermore, node positions can be correlated 

(1) 
 

(2) 
 

(3) 
 

(4) 
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to physical spatial coordinates and overlaid on spatial maps that can represent building schematics, 

geographic maps, or any other spatially relevant maps, as illustrated in Figure 7-5. 

 

Figure 7-5 Node Position Correlation with Spatial Mapping 

The visualization employs a streamlined list of visual cues, such as node/link position and size, 

node/link color, and dynamic labels, to always present an uncluttered interface that minimizes operator 

cognitive load. For example, node labels are selectively displayed based on criteria such as communication 

frequency, external network device connections, and alerts derived from the model inference output of 

the pipeline. Additional information about devices can be obtained by simply hovering the mouse over 

the device node, with click events activating various charts that capture communication patterns to and 

from the node in question. The visual renderings automatically update with new data while still presenting 

a simple horizontal scroll bar to scrub backward in time. As new network nodes are loaded, smooth 

animation sequences help preserve context as devices pop in and out of existence based on the specified 

window size and aggregation level. 

The Data Transformation and Rendering section houses controls to adjust which data sets are loaded 

for rendering. For example, the user is able to adjust the aggregation factor for communications between 

the same source and destination units, the attributes to be considered source and destination for the 

node-link model, and when and how often to update the display. Depending on the task the network 

analyst wishes to the perform, they can select from preconfigured source and destination combinations 
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that are designed to highlight important aspects of the network, such as identifying unusual system-to-

system communications or uncharacteristic communication bursts for the device involved or determining 

the type of devices with which systems communicate. 

The Network Device Listing and Filtering section of the renderer displays lists of information about 

the network (e.g., device IP address, device name, device type with associated color encodings for the 

renderer). Lists can be sorted and filtered through inexact queries, which enables rapid information 

retrieval. In addition, the visual representation in the Macro Network Rendering section is always mirrored 

by the filtered lists in this section. This approach preserves application context as the network analysist 

explores the network through query operations. 

The Macro Network Rendering section employs various visual renderings to provide a macro (or birds-

eye) view of the network under study. The purpose of this section is to provide the analyst with a quick 

method of assessing the global behavior of devices on the network. In the view shown in Figure 7-4, a 

matrix heat map is used to show the connections between all devices as well as the amount of 

communication between devices through cell color. Hovering the mouse over each cell provides more 

details about the communication between the associated devices, with click events leading to charts that 

capture historical communication patterns between devices. 

The IoTA client and server models enable additional functionality to improve human-machine 

interfacing. The server processor supports extensions to external devices to control the transformation 

and aggregation stages, which in turn affects what is rendered on the client. An extension was built to 

support interfacing with the AVS API so network analysts could perform natural language queries against 

the device network and have the filtered network displayed as instructed on the client renderer. The use 

of natural language queries combined with uncluttered visual renderings has the potential to significantly 

improve the effectiveness of network defenders and casual users alike. 
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7.6 Experimental Evaluation 

Because the goal of this work was to reduce the cognitive load on the user and make the system 

owner/user more effective, we conducted a limited study that compared aspects of preforming 

commands associated with each utterance to evaluate the cognitive load and relative difference in 

difficulty performing a command manually versus using the voice assistant. Table 7-3 compares the 

cognitive load needed for a skill and a comparative measure of reduction of the cognitive load achieved 

by leveraging the voice assistant. 

Table 7-3 Preliminary Evaluation and Comparison of Intents 

Intent Request Name Returns 

Tools 
Needed To 

Perform 
Intent 

Level of Difficulty 
To Perform the 
Intent – Manual 

(1–5) 

Level of 
Difficulty To 
Perform the 

Intent – Voice 
(1–5) 

Time (voice 
assistant) 

GetNetworkSummaryIntent Number of total 
connected 
devices, number 
of devices active 
in the last 24 
hours, and last 
device added 

Wireshark 4 1 15 seconds 

GetDevicesSummaryIntent Number of con-
nected devices 
and number of 
connected devices 
in each category 

Wireshark 4 1 22 seconds 

GetNewestDeviceIntent The newest device 
added to the net-
work, the time it 
was added, and 
the type of device 
it is 

Wireshark 3 2 20 seconds 

GetLatestDevicesIntent List of devices 
added to the 
network after the 
specified time and 
the category 
breakdowns 

Wireshark, 
router admin 
console 

3 2 25 seconds 

GetNetworkMapIntent User-viewable 
network map with 
labeled nodes and 
edges representa-
tive of the 
network and 
activity on the 
network 

tcpdump, 
python, 
tableau 

5 3 40 seconds 
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Intent Request Name Returns 

Tools 
Needed To 

Perform 
Intent 

Level of Difficulty 
To Perform the 
Intent – Manual 

(1–5) 

Level of 
Difficulty To 
Perform the 

Intent – Voice 
(1–5) 

Time (voice 
assistant) 

GetPacketDataIntent PCAP data from 
tcpdump 

tcpdump 3 4 Variable 
based on 
tcpdump 
query 

 

To formulate Table 7-3, we asked a cyber subject matter expert and a typical home IoT device owner 

to quantitatively evaluate the level of difficulty to perform each of the skills manually and with the voice 

assistant using a five-level Likert scale. We also measured the time needed to perform the skill using the 

voice assistant. This timeframe was measured from the moment the user began speaking to invoke the 

Alexa skill to the moment when Alexa stopped speaking her response to the user. The measurement for 

each intent also included the time it took for the intent to reach out to the REST API to receive a network 

summary, although the skill caches that data within sessions for increased efficiency when multiple intents 

are invoked per session. 

From these preliminary results we see that the voice can lower the relative level of difficulty to 

perform a command. Specifically, intents that provide a summary of the networks were most impacted. 

As we continue to add skill and intents, we will expand the testing to more completely evaluate the 

effectiveness of the voice assistant 

7.7 Security Concerns 

Smart Personal Assistants (SPAs) will change the way users interact with UFEs; however, they also 

present significant security and privacy issues. Keeping these applications safe without sacrificing the 

benefits of efficiency is key. Some security concerns of SPAs include synthesized speech, voice squatting, 

weak authentication, and profiling [120]. 
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7.7.1 Synthesized Speech 

Smart assistant technology lacks the ability to recognize whether the user is the legitimate owner of 

the device or an illegitimate user making a request to the device. This weakness makes SPAs unable to 

detect whether inaudible sounds or signals are requests to the device. As a result, radio signals or other 

sound waves from other technology can interfere with SPAs and cause the smart assistant technology to 

approve illegitimate requests. For example, a Burger King TV ad requests Google Home to open up 

Wikipedia and read information about the “Whopper hamburger.” 

7.7.2 Voice Squatting 

Voice squatting is a method wherein a threat actor takes advantage of or abuses the way a skill or 

action is invoked. This threat can be activated when a user prompts a request, but receives a response 

that can be a potential threat to the owner. For example, a user can prompt Alexa by saying “Alexa, open 

Capital One” to run the Capital One skill. Then, an unknown threat actor can potentially create a malicious 

app with a similarly pronounced name, such as Capital Won. 

7.7.3 Weak Authentication 

To ensure the safety of users and their networks, proper implementation of authentication controls 

is necessary for the usability of SPAs. Vulnerabilities regarding weak authentication include inadequate 

lockout implementations and the inability to determine one authenticated user from another. An example 

of weak authentication is when an SPA confuses an unauthenticated user as the owner of the device. For 

example, the daughter of an owner prompts an SPA to order a dollhouse; as a result, the SPA takes her 

order as a legitimate request to the device and orders the dollhouse without authenticating the identity 

of the user. 

7.7.4 Profiling 

Beyond the issue of authorization, SPA users face the threat of profiling. Profiling is when data are 

collected about the user’s personal information such as their interests, behaviors, and preferences. There 
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are three main types of profiling: en route profiling, profiling by third-party developers, and profiling by 

SPA providers. Attackers leverage en route profiling to determine a user’s presence during traffic analysis. 

The attacker can then use these techniques to conduct threats that are more serious. Profiling by the 

third-party developers involves the sharing of valuable personal and network information, resulting in 

malicious apps that combine various data the user has shared, thereby creating a complete profile of the 

user that may compromise the privacy of the SPA owner. In the profiling by SPA providers threat, the SPA 

makes compromises to uphold the user’s privacy by collecting sensitive data such as the user’s 

conversations, online search habits, and other information stored on the SPA. The SPA then may have 

access to personal data of the SPA user, which poses a security and privacy risk to the user [120]. 

Addressing security concerns is beyond this specific effort and therefore an area of focus for future 

work. 

7.8 Conclusions and Future Work 

7.8.1 Conclusions 

This chapter summarizes ongoing work toward integration of voice assistant technology to lower the 

cognitive load placed on a user to monitor and maintain their smart environments by providing access to 

complex capabilities in a natural way. We developed a proof-of-concept cyber voice assistant as an Alexa 

skill, which implements a set of intents that allow users to access information on their networks and the 

associated devices. Together, these intents make up the most basic user commands, which provide a 

network owner awareness of their connected devices. We evaluated the effectiveness of the voice 

assistant by capturing qualitative perceptions on the ease of use of an intent and quantitatively capturing 

the time to perform an intent from a limited user base. 

The advantage of integrating voice capability in a cyber personal assistant is that it can guide the user 

to ask the right questions the right way despite limited expertise. We understand that the ability to use 

natural language processing to support dialogue using a specialized language in which the machine may 
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be more proficient than the user will be a real challenge to achieve. Nonetheless, even with limited voice, 

the analytics that enable even rudimentary monitoring of home networks integrating voice is a potentially 

large step in securing the IoT as a whole. 

7.8.2 Future Work 

In future work, we will continue developing the capabilities of the Alexa skill to add more intents and 

incorporate more in-depth uses of visuals. Visuals are useful for enriching a user’s experience in 

combination with the voice assistant, and there are many devices that support screen visuals. We intend 

to enhance the display of connected devices through a dashboard to assist in following along with the 

information returned from the Alexa skill about the network. 

In addition to providing statistics about the network and its devices, we believe there exist other 

security capabilities worth integrating into the Alexa skill intents. The same analytics used for IoT discovery 

can be used to identify threats. For instance, if the system classifies device X as a camera but then later 

classifies it as a thermostat, this may be indicative of a compromised device. Incorporating these findings 

allows users to remain aware of and monitor the integrity of their devices to remain protected. 

Beyond work on the assistant itself, we would also like to expand our understanding of how the voice 

assistant for cyber can lower the cognitive load for a wider range of users. Our current testing methods 

rely on feedback from a cybersecurity expert and a typical home IoT owner; however, this is not a 

complete profile of all possible users. To address this, we intend to perform a more complete study to 

evaluate the efficacy of the voice assistant in lowering the cognitive load on a user by expanding the test 

user base to include a broader set of participants that span skill level and experience. Lastly, we plan to 

address the security vulnerabilities of the virtual assistants, port the edge devices to more capable 

hardware to support more in-depth integration of anomaly detection capabilities, and provide support 

for contextual conversations, thus allowing follow-on utterances and responses to be conversationally 

dependent on a previously asked question. 
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8 SUMMARY 

In this dissertation we have explored many aspects of security and privacy in the IoT space. We 

examined IoT security issues in the home and introduced the CHASM concept. We extended CHASM to 

the IoT edge deploying machine learning algorithms coincident to where data is generated. We examined 

the cybersecurity analytics capability in response to the threats from the perspective of a large 

organizational entity. We examined the use of machine learning to identify botnet activity in IoT devices 

and networks. We researched and introduced a proposed framework for assessing IoT-motivated 

cybersecurity risk and its impact on supply chains. Lastly, we examined ambient computing and its utility 

in reducing the cognitive load on users when protecting IoT-enabled networks. Lastly, we examined 

applications of these research topics to projects at JHU/APL. 
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Appendix A. Acronyms 

5G Fifth Generation 

ACK Acknowledgment 

AHP Analytic Hierarchy Process 

AI Artificial intelligence 

AM Additive Manufacturing 
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AVS Amazon Voice Services 

AWS Amazon Web Services 

CAD Computer-Aided Design 

CHASM Connected Home Automated Security Monitor 

CIA Confidentiality, Integrity, and Availability 

CnC Command and Control 

CNN Convolutional Neural Network 

CPU Central Processing Unit 

DDoS Distributed Denial of Service 

DENG Doctor of Engineering 

DHP Delphic Hierarchy Process 

DMZ Demilitarized Zone 

DNS Domain Name Server 

DoD Department of Defense 

HMM Hidden Markov Models 

HPSC High Performance and Smart Computing 

IaaS Infrastructure-as-a-Service 

IC Integrated Circuit 

IDS Intelligent Data and Security 

IIoT Industrial Internet of Things 

IoT Internet of Things 

IoTA IoT Analytics 

IP Internet Protocol 

ISI Intelligence and Security Informatics 

IT Information Technology 

ITU International Telecommunication Union 
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JHU The Johns Hopkins University 

JSON JavaScript Object Notation 

LED Light-Emitting Diode 

LSTM Long Short-Term Memory 

MAC Media Access 

MEMS Micro-Electrical-Mechanical Systems 

MILCOM Military Communications 

ML Machine Learning 

NCF National Critical Function 

NIST National Institute of Standards and Technology 

NLU Natural Language Understanding 

NTIA National Telecommunications and Information Administration 

PaaS Platform-as-a-Service 

PCAP Packet Capture 

RFID Radio Frequency Identification 

SaaS Software-as-a-Service 

SDK Software Development Kit 

SIoTD Systems of Internet of Things Devices 

SPA Smart Personal Assistants 

SQL Structured Query Language 

SSML Simple Speech Markup Language 

SSMS SQL Server Management Studio 

SWaP Size, Weight, and Power 

TCP Transport Control Protocol 

TLS Transport Layer Security 

UDP User Datagram Protocol 

UFE User-Facing Environment 

U.S. United States 

VM Virtual Machine 

VPN Virtual Private Network 

VUI Voice User Interface 
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