16 research outputs found

    The Multi-Depot Cumulative Vehicle Routing Problem With Mandatory Visit Times and Minimum Delayed Latency

    Get PDF
    This paper introduces a novel variant of the cumulative vehicle routing problem (CCVRP) that deals with home health care (HHC) logistics. It includes multiple nonfixed depots and emergency trips from patients to the closest depot. The aim is to minimize the system's delayed latency by satisfying mandatory visit times. Delayed latency corresponds to caregivers' total overtime hours worked while visiting patients. A new mixed-integer linear programming model is proposed to address this problem. Computational experiments, with more than 165 new benchmark instances, are carried out using the CPLEX and Gurobi MIP solvers. The results indicate that patients' geographical distribution directly impacts the complexity of the problem. An analysis of the model parameters proves that instances with more depots/vehicles or longer workdays are significantly easier to solve than are original cases. The results show that Gurobi outperforms CPLEX in 55% of the instances analyzed, while CPLEX performs better in only 16% of them. To the best of our knowledge, this is the first VRP that minimizes delayed latency and the first HHC routing study to use a cumulative objective function

    The multi-depot k-traveling repairman problem

    Get PDF
    In this paper, we study the multi-depot k-traveling repairman problem. This problem extends the traditional traveling repairman problem to the multi-depot case. Its objective, similar to the single depot variant, is the minimization of the sum of the arrival times to customers. We propose two distinct formulations to model the problem, obtained on layered graphs. In order to find feasible solutions for the largest instances, we propose a hybrid genetic algorithm where initial solutions are built using a splitting heuristic and a local search is embedded into the genetic algorithm. The efficiency of the mathematical formulations and of the solution approach are investigated through computational experiments. The proposed models are scalable enough to solve instances up to 240 customers

    The cumulative capacitated vehicle routing problem with min-sum and min-max objectives: An effective hybridisation of adaptive variable neighbourhood search and large neighbourhood search

    Get PDF
    The cumulative capacitated vehicle routing problem (CCVRP) is a relatively new variant of the classical capacitated vehicle routing problem in which the objective is to minimise the sum of arrival times at customers (min-sum) instead of the total route distance. While the literature for the CCVRP is scarce, this problem has useful applications especially in the area of supplying humanitarian aid after a natural disaster. In this paper, a two-stage adaptive variable neighbourhood search (AVNS) algorithm that incorporates large neighbourhood search (LNS) as a diversification strategy is proposed. When tested on the benchmark data sets, the results show that the proposed AVNS is highly competitive in producing new best known solutions to more than half of the instances. An alternative but related objective that minimises the maximum arrival time (min-max) is also explored in this study demonstrating the flexibility and the effectiveness of the proposed metaheuristic. To the best of our knowledge, this is the first study that exploits the min-max objective of the CCVRP in addition to providing extensive computational results for a large number of instances for the min-sum. As a by-product of this study, managerial insights for decision making are also presented

    The cumulative capacitated vehicle routing problem with min-sum and min-max objectives: An effective hybridisation of adaptive variable neighbourhood search and large neighbourhood search

    Get PDF
    The cumulative capacitated vehicle routing problem (CCVRP) is a relatively new variant of the classical capacitated vehicle routing problem in which the objective is to minimise the sum of arrival times at customers (min-sum) instead of the total route distance. While the literature for the CCVRP is scarce, this problem has useful applications especially in the area of supplying humanitarian aid after a natural disaster. In this paper, a two-stage adaptive variable neighbourhood search (AVNS) algorithm that incorporates large neighbourhood search (LNS) as a diversification strategy is proposed. When tested on the benchmark data sets, the results show that the proposed AVNS is highly competitive in producing new best known solutions to more than half of the instances. An alternative but related objective that minimises the maximum arrival time (min-max) is also explored in this study demonstrating the flexibility and the effectiveness of the proposed metaheuristic. To the best of our knowledge, this is the first study that exploits the min-max objective of the CCVRP in addition to providing extensive computational results for a large number of instances for the min-sum. As a by-product of this study, managerial insights for decision making are also presented

    Solving the time capacitated arc routing problem under fuzzy and stochastic travel and service times

    Full text link
    [EN] Stochastic, as well as fuzzy uncertainty, can be found in most real-world systems. Considering both types of uncertainties simultaneously makes optimization problems incredibly challenging. In this paper we propose a fuzzy simheuristic to solve the Time Capacitated Arc Routing Problem (TCARP) when the nature of the travel time can either be deterministic, stochastic or fuzzy. The main goal is to find a solution (vehicle routes) that minimizes the total time spent in servicing the required arcs. However, due to uncertainty, other characteristics of the solution are also considered. In particular, we illustrate how reliability concepts can enrich the probabilistic information given to decision-makers. In order to solve the aforementioned optimization problem, we extend the concept of simheuristic framework so it can also include fuzzy elements. Hence, both stochastic and fuzzy uncertainty are simultaneously incorporated into the CARP. In order to test our approach, classical CARP instances have been adapted and extended so that customers' demands become either stochastic or fuzzy. The experimental results show the effectiveness of the proposed approach when compared with more traditional ones. In particular, our fuzzy simheuristic is capable of generating new best-known solutions for the stochastic versions of some instances belonging to the tegl, tcarp, val, and rural benchmarks.Spanish Ministry of Science, Grant/Award Number: PID2019-111100RB-C21/AEI/10.13039/501100011033; Barcelona Council and the "la Caixa" Foundation under the framework of the Barcelona Science Plan 2020-2023, Grant/Award Number: 21S09355-001; Generalitat Valenciana,Grant/Award Number: PROMETEO/2021/065Martín, XA.; Panadero, J.; Peidro Payá, D.; Pérez Bernabeu, E.; Juan-Pérez, ÁA. (2023). Solving the time capacitated arc routing problem under fuzzy and stochastic travel and service times. Networks. 82(4):318-335. https://doi.org/10.1002/net.2215931833582

    Solving the time capacitated arc routing problem under fuzzy and stochastic travel and service times

    Get PDF
    Stochastic, as well as fuzzy uncertainty, can be found in most real-world systems. Considering both types of uncertainties simultaneously makes optimization problems incredibly challenging. In this paper we propose a fuzzy simheuristic to solve the Time Capacitated Arc Routing Problem (TCARP) when the nature of the travel time can either be deterministic, stochastic or fuzzy. The main goal is to find a solution (vehicle routes) that minimizes the total time spent in servicing the required arcs. However, due to uncertainty, other characteristics of the solution are also considered. In particular, we illustrate how reliability concepts can enrich the probabilistic information given to decision-makers. In order to solve the aforementioned optimization problem, we extend the concept of simheuristic framework so it can also include fuzzy elements. Hence, both stochastic and fuzzy uncertainty are simultaneously incorporated into the CARP. In order to test our approach, classical CARP instances have been adapted and extended so that customers' demands become either stochastic or fuzzy. The experimental results show the effectiveness of the proposed approach when compared with more traditional ones. In particular, our fuzzy simheuristic is capable of generating new best-known solutions for the stochastic versions of some instances belonging to the tegl, tcarp, val, and rural benchmarks.This work has been partially supported by the Spanish Ministry of Science (PID2019-111100RB-C21/AEI/10.13039/01100011033), as well as by the Barcelona Council and the “laCaixa” Foundation under the framework of the Barcelona Science Plan 2020-2023 (grant21S09355-01) and Generalitat Valenciana (PROMETEO/2021/065).Peer ReviewedPostprint (published version

    Preventing premature convergence and proving the optimality in evolutionary algorithms

    Get PDF
    http://ea2013.inria.fr//proceedings.pdfInternational audienceEvolutionary Algorithms (EA) usually carry out an efficient exploration of the search-space, but get often trapped in local minima and do not prove the optimality of the solution. Interval-based techniques, on the other hand, yield a numerical proof of optimality of the solution. However, they may fail to converge within a reasonable time due to their inability to quickly compute a good approximation of the global minimum and their exponential complexity. The contribution of this paper is a hybrid algorithm called Charibde in which a particular EA, Differential Evolution, cooperates with a Branch and Bound algorithm endowed with interval propagation techniques. It prevents premature convergence toward local optima and outperforms both deterministic and stochastic existing approaches. We demonstrate its efficiency on a benchmark of highly multimodal problems, for which we provide previously unknown global minima and certification of optimality

    The heterogeneous fleet vehicle routing problem with light loads and overtime: Formulation and population variable neighbourhood search with adaptive memory

    Get PDF
    In this paper we consider a real life Vehicle Routing Problem inspired by the gas delivery industry in the United Kingdom. The problem is characterized by heterogeneous vehicle fleet, demand-dependent service times, maximum allowable overtime and a special light load requirement. A mathematical formulation of the problem is developed and optimal solutions for small sized instances are found. A new learning-based Population Variable Neighbourhood Search algorithm is designed to address this real life logistic problem. To the best of our knowledge Adaptive Memory has not been hybridized with a classical iterative memoryless method. In this paper we devise and analyse empirically a new and effective hybridization search that considers both memory extraction and exploitation. In terms of practical implications, we show that on a daily basis up to 8% cost savings on average can be achieved when overtime and light load requirements are considered in the decision making process. Moreover, accommodating for allowable overtime has shown to yield 12% better average utilization of the driver's working hours and 12.5% better average utilization of the vehicle load, without a significant increase in running costs. We also further discuss some managerial insights and trade-offs

    Applied (Meta)-Heuristic in Intelligent Systems

    Get PDF
    Engineering and business problems are becoming increasingly difficult to solve due to the new economics triggered by big data, artificial intelligence, and the internet of things. Exact algorithms and heuristics are insufficient for solving such large and unstructured problems; instead, metaheuristic algorithms have emerged as the prevailing methods. A generic metaheuristic framework guides the course of search trajectories beyond local optimality, thus overcoming the limitations of traditional computation methods. The application of modern metaheuristics ranges from unmanned aerial and ground surface vehicles, unmanned factories, resource-constrained production, and humanoids to green logistics, renewable energy, circular economy, agricultural technology, environmental protection, finance technology, and the entertainment industry. This Special Issue presents high-quality papers proposing modern metaheuristics in intelligent systems
    corecore