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Abstract
Stochastic, as well as fuzzy uncertainty, can be found in most real-world systems.

Considering both types of uncertainties simultaneously makes optimization prob-

lems incredibly challenging. In this paper we propose a fuzzy simheuristic to solve

the Time Capacitated Arc Routing Problem (TCARP) when the nature of the travel

time can either be deterministic, stochastic or fuzzy. The main goal is to find a solu-

tion (vehicle routes) that minimizes the total time spent in servicing the required arcs.

However, due to uncertainty, other characteristics of the solution are also consid-

ered. In particular, we illustrate how reliability concepts can enrich the probabilistic

information given to decision-makers. In order to solve the aforementioned opti-

mization problem, we extend the concept of simheuristic framework so it can also

include fuzzy elements. Hence, both stochastic and fuzzy uncertainty are simulta-

neously incorporated into the CARP. In order to test our approach, classical CARP

instances have been adapted and extended so that customers’ demands become either

stochastic or fuzzy. The experimental results show the effectiveness of the pro-

posed approach when compared with more traditional ones. In particular, our fuzzy

simheuristic is capable of generating new best-known solutions for the stochastic

versions of some instances belonging to the tegl, tcarp, val, and rural benchmarks.
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arc routing problem, fuzzy techniques, metaheuristics, optimization, simheuristics,

simulation-optimization, uncertainty

1 INTRODUCTION

Many real-world challenges in different industries can be modeled as optimization problems and then analyzed using simula-

tion or optimization methods. These simulation or mathematical models are intended to include all the key elements and their

relationships [37]. The most important purpose of these models is to support decision-making in real-world scenarios, and

uncertainty is one of the main factors to be considered when defining the model. According to [64], uncertainty can be rep-

resented by probability distributions, fuzzy sets, interval models, or convex models. The causes of uncertainty can range from

incomplete information to complexity, subjectivity, or conflicting evidence [72]. For this reason, different ways of dealing with

uncertainty are employed. For example, in Liu et al. [39], random variables and simulation models were used to study stochas-

tic models. This paper discusses a stochastic and fuzzy version of the Time Capacitated Arc Routing Problem (TCARP), which

is an extended version of the CARP. The CARP is a routing problem where the goal is to visit a set of required arcs or edges in

a usually incomplete network. In addition, it is usual to consider some vehicle capacity constraints that limit the volume each
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2 MARTIN ET AL.

FIGURE 1 The capacitated arc routing problem with stochastic and fuzzy travel times.

vehicle can carry. CARPs are NP-hard, so it is difficult to find optimal solutions in short computing times as the network size

increases. Therefore, research has focused on identifying good lower bounds and near-optimal solutions [65]. A further special-

ization of the CARP includes the case where the vehicle capacity constraint is a time limitation rather than a volume constraint,

which is the case of the TCARP.

As explained in Chica et al. [11], a simheuristic approach allows for the integration of simulation and metaheuristics in

order to optimize systems under conditions of stochastic uncertainty. Many papers have recently employed simheuristics to

solve stochastic optimization problems in different areas, as in finance [49] or transportation [32]. Rabe et al. [57] describe a

simheuristic framework for dealing with systems involving mild stochastic uncertainty, which is a special case of uncertainty

[69]. Yet, another type of uncertainty is the fuzzy one [19]. This paper considers both types of uncertainty, stochastic and fuzzy,

so the simheuristic framework is extended to include fuzzy uncertainty. We propose a fuzzy simheuristic algorithm to solve the

TCARP, where the travel times can be deterministic, stochastic, or fuzzy in nature. Therefore, the objective is to minimize the

total time spent in servicing the required arcs. Figure 1 shows a schematic representation of a TCARP problem with different

uncertainty scenarios.

The aim of this work is to solve the TCARP problem considering different uncertainty scenarios for each of the edges, either

stochastic or fuzzy, within reasonably short computational times. Since no instances of the TCARP considering time-based

random and fuzzy capacities have been found in the literature, we have extended the existing benchmarks already employed in

Keenan [29]. The structure of the rest of the paper is as follows: first, Section 2 reviews the general concepts and works related

to the methodology shown in this paper. Some of the related work available in the literature is presented in Section 3. Our

approach to solving the TCARP is described in Section 4. A series of computational experiments are described in Section 5.

Section 6 discusses the results, and deterministic solutions under uncertainty are analyzed and compared to solutions found

using the proposed fuzzy simheuristic approach. Finally, Section 7 highlights the main outcomes of this work and points out

some future research.

2 BACKGROUND CONCEPTS

This section reviews the background concepts and works related to the methodology presented in this paper, starting with the

concepts of fuzzy systems and following with simheuristics.

2.1 Overview of fuzzy concepts
According to Pishvaee et al. [56], uncertainty in data can be classified into two categories: (i) uncertainty due to randomness;

and (ii) uncertainty caused by a lack of details (epistemic uncertainty). The first category is randomness, which is caused by
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MARTIN ET AL. 3

the random nature of parameters. If sufficiently historical data on the distribution function of the parameters is accessible,

stochastic methods are mostly accurate. Nevertheless, in the absence of previous data, the distribution function of the unknown

parameter cannot be properly calculated. The second category of ambiguity is epistemic, which results from a lack of knowledge

or information about uncertain variables.

Fuzzy set theory [67] is one of the widely used and acceptable tools to deal with non-probabilistic uncertainty [35]. While

fuzzy sets and systems have many applications, their use in rule-based systems has demonstrated their significance as a robust

design approach [44]. A fuzzy inference system (also known by many other names, such as fuzzy logic system, rule-based fuzzy

logic system, fuzzy expert system, or simply fuzzy system), is a computational system that uses fuzzy logic to make decisions

or predictions based on uncertain input information. It is a mathematical model that mimics the reasoning process of a human

expert in a particular domain. A fuzzy inference system consists of three main components:

• Fuzzification: The process of converting crisp input values into fuzzy sets. This is done by assigning membership degrees

to each input value according to a predefined set of membership functions.

• Inference engine: The process of applying a set of fuzzy rules to the fuzzy input sets to infer a fuzzy output. The inference

engine uses a set of if-then rules to make decisions based on the input information.

• Defuzzification: The process of converting the fuzzy output values into crisp values. This is typically done by calculating

the center of gravity of the fuzzy output set, which corresponds to the crisp value most likely to represent the output.

The conventional fuzzy sets, also called type-1 fuzzy sets (T1FS), generalize the traditional set concept by allowing the

degree of membership to be any value between 0 and 1 [67]. A T1FS, denoted A, in a universe of discourse X can be defined as:

A = {(x, 𝜇A(x)) |∀x ∈ X} , (1)

in which 0 ≤ 𝜇A(x) ≤ 1. The value of 𝜇A(x) is called the degree of membership, or membership grade, of x in A. If 𝜇A(x) = 1

or 𝜇A(x) = 0 ∀x ∈ X, then the fuzzy set A reduces to a crisp set. In the real world, this fuzzy approach corresponds to many

situations where it is difficult to decide, in an unambiguous manner, if something belongs to a specific class [8]. The Inference

engine is the component that applies the fuzzy rules to the fuzzified input values to infer the fuzzy output values. A fuzzy

rule has the structure “IF x is A THEN y is B,” in which “x is A” is called the rule’s antecedent and “y is B” is called the

rule’s consequent. A and B are linguistics values defined by fuzzy sets on universes of discourse X and Y , respectively. The

Inference engine matches the fuzzified input values with the antecedent (premise) parts of the fuzzy rules. Once the antecedent

parts of the fuzzy rules have been matched against the fuzzified input values, the inference engine uses a method called “fuzzy

implication” to combine the premise and consequent (conclusion) parts of the rules. It typically involves taking the minimum

(or “and” operation) of the premise parts and the maximum (or “or” operation) of the conclusion parts. The result is a fuzzy

set representing the inferred value of the output variable, which is passed to the defuzzification component to convert it into a

crisp output value. T1FS systems have been successfully applied in various fields, such as automatic control, data classification,

decision analysis, expert systems, forecasting, robotics, pattern recognition, etc. [25].

According to [44] and [45], there are different sources of uncertainties in a T1FS system:

• Uncertainty about the meanings of the words used in the rules (i.e., words mean different things to different people).

• Uncertainty about the consequent used in a rule (especially when knowledge is extracted from a group of experts who

do not all agree).

• Uncertainty about the measurements that activate the fuzzy system (maybe noisy).

• Uncertainty about the data used to tune the parameters of a fuzzy system (may also be noisy).

Such uncertainties lead to rules whose antecedents or consequents are uncertain, which translates into uncertain antecedent

or consequent membership functions [28]. T1FS systems, like the ones mentioned above, cannot directly handle such

uncertainties because their membership functions are totally crisp [9, 45].

The concept of a type-2 fuzzy set (T2FS) was introduced by Zadeh [68] as an extension of the concept of T1FS. Such T2FS

are fuzzy sets whose membership grades themselves are T1FS. Basically, a T2FS is a set in which we also have uncertainty

about the membership function. They are very useful when it is difficult to determine an exact membership function for a fuzzy

set. Hence, they are useful for incorporating uncertainties [28]. A T2FS provides additional degrees of freedom for modeling

uncertainties compared to T1FS, and it can achieve a higher degree of approximation in modeling real-world problems [8].

Following Mendel and John[45], a T2FS, Ã, can be defined as:

Ã =
{
((x, u), 𝜇Ã(x, u)) |∀x ∈ X, ∀u ∈ Jx, Jx ⊆ [0, 1]

}
, (2)

where 0 ≤ 𝜇Ã(x, u) ≤ 1 is the type-2 membership function, Jx is the primary membership of x ∈ X, which is the domain of the

secondary membership function 𝜇Ã(x). A T2FS is characterized by a bounded region called the footprint of uncertainty (FOU).

It is the union of all primary membership functions, that is:
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4 MARTIN ET AL.

FIGURE 2 Example of a type-2 fuzzy set.

FIGURE 3 Type-2 fuzzy inference system.

FOU(Ã) =
⋃

x∈X
Jx. (3)

The FOU is bounded by an upper membership function 𝜇Ã(x) (UMF) and a lower membership function 𝜇Ã(x) (LMF), which

are both T1FS membership functions [46]. The FOU is very useful since it not only focuses our attention on the uncertainties

associated with a specific type-2 membership function, but it also provides a very convenient verbal description of the entire

domain of support for all the secondary grades of a type-2 membership function [45]. An example of a T2FS, which includes

the concepts of FOU, UMF, and LMF, is depicted in Figure 2.

A T2FS system also consists of fuzzy if-then rules defined as: “IF x is Ã THEN y is ̃B.” We can say that a T2FS system is

a generalization of a conventional T1FS system in the sense that uncertainty is not only limited to the linguistic variables but

also is present in the definition of the membership functions [8, 58]. In the T2FS system (see Figure 3), as in the T1FS system,

crisp inputs are first fuzzified into fuzzy input sets that then activate the inference block. The inference engine combines rules

and gives a mapping from input type-2 fuzzy sets to output type-2 fuzzy sets. To do this, one needs to compute unions and

intersections of type-2 fuzzy sets, as well as compositions of type-2 relations. The main difference between T2FS and T1FS

systems is the extra step called type-reduction in the output processing. The type-reducer transforms a T2FS into a T1FS, and

then the defuzzifier map that set into a number (as in the T1FS systems). Multiple approaches and algorithms are available in the

literature for converting a T2FS output into a crisp number (including direct defuzzification methods without type-reduction).

For a detailed explanation of the type-reduction methods and algorithms available, the reader is referred to [44] and [8]. T2FS

systems have been applied in many engineering areas, showing their ability to perform better than T1FS systems when facing

dynamic uncertainties [17, 23, 38, 41]. Uncertainty built into the definition of a T2FS system improves system resilience against

noise and handling of unknown data [58]. Due to the higher computational complexity of a T2FS system compared to a T1FS

one [47, 66], the most widely used T2FS to represent system uncertainties is interval type-2 fuzzy set (IT2FS). An IT2FS is

a special case of T2FS where all of its secondary grades in Equation (2) equal 1. An Interval IT2FS system is a compromise

between the uncertainty modeling capabilities of a general T2FS and the computational inexpensiveness of a T1FS [35]. In this

paper, we focus on IT2FS systems.
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MARTIN ET AL. 5

2.2 Overview of simheuristics
The term simheuristics comes from a mixture of the words simulation and metaheuristics. Simulation is a technique that makes

it possible to reproduce the performance of a given system over a period of time, from an initial situation, according to the input

data, and gather information about the system as output data [37]. Faulin et al. [16] state that this approach is well known for

modeling complex problems with stochastic variables and, consequently, analyzing its behavior, performance, and reliability.

Since simulation only provides information about the performance of the system, when solving problems under stochastic

uncertainty, simulation-optimization approaches have been used. They involve optimizing a stochastic objective function subject

to stochastic constraints [4]. For more detail on simulation-optimization, please refer to reviews, such as those written by [3],

[40], and [60], among others.

Simheuristics is a combination of simulation—which does not lead to any type of optimization—and heuristic-based

optimization—which uses the previous simulation stage to guide the algorithm during the search for near-optimal solutions.

These simheuristic algorithms are especially useful when dealing with large-scale and NP-hard optimization problems under

stochastic uncertainty. The metaheuristic algorithm provides a set of different solutions tested by the simulation. Then, each

event is modeled by the best-fit probability distribution, and the results produced by the simulation provide feedback to the

metaheuristic process. This feedback might contain useful information to improve the search for the best stochastic solutions.

After meeting a stop condition, a limited set of “elite” solutions are sent to a more intensive simulation process in order to obtain

accurate estimates of their behavior under a stochastic scenario. The outputs of the simulation process include not only central

statistics but also dispersion measures in order to evaluate the risk of the candidate solutions [11]. Glover et al. [18] explained

how to combine simulation and optimization and proved that this combination was able to find optimal or near-optimal solutions

in a few minutes to problems that previously took days or even months to solve. Fuzzy simheuristics extend the simheuristic

concept by allowing us to consider fuzzy uncertainty as well. In general, fuzzy simheuristics are designed to cope with stochastic

optimization problems with the following structure:

optimize f (s) = Φ(s,X,Y), (4)

subject to:

Pr (gi(s,X,Y) ≤ li(X,Y)) ≤ ti ∀i ∈ I, (5)

Pr
(
gj(s,X,Y) > lj(X,Y)

)
≤ tj ∀j ∈ J, (6)

gk(s) ≤ tk ∀k ∈ K, (7)

s ∈ S, (8)

where s is an element of the solution space S, X is a vector of random variables, and Y is a vector of fuzzy variables. The objective

function in Equation (4), Φ(s,X,Y), is a stochastic-fuzzy measure to be optimized (minimized or maximized). Equations (5)

and (6) present probabilistic constraints. For example, the probability that the time delay in solution s, gj(s,X,Y), exceeds a

certain limit, lj(X,Y), is within a user-defined threshold. Equation (7) is a typical deterministic constraint.

3 RELATED WORK

This section offers a brief review on the applications of fuzzy logic and simheuristics to solve optimization problems with

uncertainties. It also reviews recent work on the CARP.

3.1 Fuzzy and simheuristic approaches in transportation problems
Although there is previous research dealing with different vehicle routing problems under fuzzy uncertainty (mainly considering

fuzzy demands, travel times, and time-windows constraints), fuzzy set-based techniques have rarely been used in the CARP

and their variants. Wang and Wen [63] investigated a Chinese Postman Problem (CPP) with time window constraints in a fuzzy

environment while considering two application cases. The first case considered the arrival time as uncertain and a fuzzy relation

was used to describe the degree of possibility. The second case considered the upper and lower bounds of time constraints as

fuzzy numbers. Although the authors do not present a solution method, they suggested the use of an ant-colony optimization

algorithm. A multi-objective CPP was presented by Majumder et al. [42] using the uncertainty theory as a framework. The

authors proposed a model with two goals: maximizing the total expected net profit produced by the post person from a tour

and minimizing the total expected travel time of the tour. They considered uncertain variables like allowance, travel expense,

and travel time. One of the methods used to solve the multi-objective model was the fuzzy programming method proposed by

[71]. The fuzzy credibility theory is the basis for the study by Babaee Tirkolaee et al. [5]. Assuming fuzzy demands on the
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6 MARTIN ET AL.

necessary links, these authors addressed a multitrip CARP in solid waste management and coped with the unknown amount of

waste produced in urban sites. The authors proposed an ant-colony optimization metaheuristic and evaluated the applicability

of the recommended methodology using a real-world case study from Iran. All of the aforementioned works used T1FS systems

in their approaches.

As mentioned before, T2FS systems have been used in many engineering problems. However, applications of the T2FS

systems to routing and transportation problems are still scarce. Tadić et al. [59] solved the selection of recycling center locations

using a two-objective genetic algorithm. The optimization criteria are presented as total distance, and the overall suitability

index is represented by interval triangular type-2 fuzzy numbers. Zandieh and Ghannadpour [70] minimized the transportation

risks and travel costs of a hazardous materials (HazMat) routing problem, which was solved using an evolutionary algorithm.

An interval type-2 fuzzy logic controller is used to estimate risk, including population density, vehicle load, link length, and

time of day as inputs for the system. Cengiz Toklu [10] developed a new method integrating the interval type-2 fuzzy TOPSIS

method with a savings criterion. They presented a numerical example related to a distribution problem for humanitarian aid.

The interval type-2 fuzzy TOPSIS provides the benefit of identifying safer routes by considering the various dangers that might

occur during a disaster. Men et al. [43] presented a HazMat Capacitated Vehicle Routing Problem (CVRP) under uncertainty.

To identify a set of routes with the lowest transportation risk, they proposed a model with trapezoidal interval type-2 fuzzy

variables in the objective function. Population density near the accident site is considered a fuzzy variable due to the mobility of

the population. They employed chance-constrained programming and a simulated annealing algorithm to solve the equivalent

deterministic model.

Simheuristics have been effectively used in several application fields, including production planning and scheduling [1, 14,

48, 62], portfolio selection [53], supplier selection [27], telecommunication networks [2], facility location [52], defense [36]

and transportation systems [24, 54, 61]. In order to solve the CARP with stochastic demand, Gonzalez-Martin et al. [21] pre-

sented a simheuristic approach combining Monte Carlo simulation with the RandSHARP metaheuristic. Keenan et al. [32]

proposed a strategic oscillation simheuristic algorithm for the TCARP, considering stochastic demands and service times. Deal-

ing simultaneously with stochastic and fuzzy uncertainty we can find the works by Oliva et al. [50] and Tordecilla et al. [61].

The former proposed a fuzzy simheuristic approach for the stochastic and fuzzy version of the Team Orienteering Problem

(TOP). They considered a more realistic scenario in which the reward for any customer can be given by a deterministic value,

a random variable following a probability distribution, or a fuzzy function represented using a T1FS system. In the latter, the

authors solve a CVRP and a TOP involving stochastic and fuzzy variables. Again, their simheuristic is based on a T1FS system,

a multistart metaheuristic, and a Monte Carlo simulation. To the best of our knowledge, there is no previous research in the

literature addressing the CARP with both stochastic and fuzzy uncertainty, with the latter being modeled using a T2FS system

as proposed in this paper.

3.2 The stochastic capacitated arc routing problem
The CPP is the simplest form of the CARP, in which the objective is to visit a set of connecting edges or arcs. Some additional

considerations, such as time or volume constraints, can be taken into account [12]. The graph of the CARP can be defined as

G = (V ,E), with V being the set of vertices including the depot 𝑑, and E being the set of edges or arcs in a graph. The Rural

Post Problem (RPP) is a different version of the CPP in which some arcs or edges require to be visited and some others do not.

In this case, the objective is to find a minimum cost tour visiting all the required arcs and edges [51]. The CARP was initially

introduced by Golden and Wong [20]. This type of problem is NP-hard, so it is not easy to find optimal solutions as the size

of the underlying network grows [65]. A list of the best exact algorithms proposed for CARP can be found in Pecin and Uchoa

[55], who propose a new branch-and-cut-and-price algorithm capable of solving small- and medium-sized CARP benchmark

sets. The deterministic version of the problem occasionally misses out on critical real-world factors that arise in transportation

and distribution-logistics issues. This occurs when input data or graph properties cannot be adequately modeled in a static or

deterministic environment. The CARP can then be formulated within the frameworks of robust optimization and stochastic

programming De Maio et al. [15].

If a time constraint is added, then the TCARP will consider the time constraint instead of the volume one. In this case, each

edge or arc has a nonnegative travel time representing the time it takes to traverse it. The demand for an edge or arc is based

on the time that indicates the service time. This service time also includes the travel times. Each of the available vehicles has a

positive time capacity. When an edge traversed by a route is not served, it is referred to as the “deadhead” of that route. The main

goal of the TCARP is finding a set of routes that minimizes the total time used for servicing all the required edges given that

each edge is only serviced once. The total time includes the time associated with traversing deadhead edges as well as the time

servicing the required edges. Heuristics have been used for solving rural postal delivery problems [31]. Lower bounds based on

graph theory for the TCARP were tested in Keenan [30]. A more general CARP with Deadheading Demand (CARPDD) was

also studied by Bartolini et al. [7], while Kirlik and Sipahioglu [34] developed lower bounds and an exact algorithm based on

 10970037, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22159 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [25/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



MARTIN ET AL. 7

cut-and-column generation and branch-and-price. TCARP can also be seen as a particular case of CARPDD in which the arc

demands and the objective function have the same time units. For a comprehensive review of the literature De Maio et al. [15]

summarize the methodologies used in each particular case to model ARPs and the methods used to solve the problem either

exactly or using heuristics.

4 EXTENDING THE SIMHEURISTIC FRAMEWORK WITH FUZZY
TECHNIQUES

Algorithm 1 depicts the main characteristics of our fuzzy-simheuristic methodology (Figure 4). First, a feasible initial solution

initSol is generated using the constructive savings heuristic proposed in De Armas et al. [13] (TSHARP heuristic). In order to

generate a solution, the variables of the problem are previously replaced by their expected values. Once this initial solution is

generated, it is copied into baseSol and bestSol. Next, during the second stage, an iterated local search (ILS) metaheuristic is

applied to improve the initial solution by iteratively exploring the search space. The ILS is a relatively simple metaheuristic that

Algorithm 1. Fuzzy simheuristic algorithm

1: telapsed ← 0

2: eliteSols ← ∅
3: initSol ← TSHARPHeuristic(inputs)

4: initSol ← localSearch(initSol)

5: simulation(initSol, qshort)

6: baseSol ← initSol

7: bestSol ← baseSol

8: insert(eliteSols, baseSol)

9: while (telapsed < tmax) do % Iterated local search
10: newSol ← perturbation(baseSol)

11: newSol ← localSearch(newSol)

12: Δ← cost(newSol) − cost(baseSol) % Acceptance criterion
13: if (Δ < 0) then % Improvement case
14: simulation(sol, qshort)

15: Δexp ← expCost(newSol) − expCost(baseSol)

16: if (Δexp < 0) then
17: credit ← (−Δexp)

18: baseSol ← newSol

19: if (expCost(newSol) < expCost(bestSol)) then
20: bestSol ← newSol

21: insert(eliteSols, newSol)

22: end if
23: end if
24: end if
25: if (0 < Δ ≤ credit) then % Deterioration case
26: credit ← 0

27: baseSol ← newSol

28: end if
29: telapsed ← update(telapsed)

30: end while
31: for (sol ∈ eliteSols) do
32: simulation(sol, qlong)

33: end for
34: eliteSols ← sort(eliteSols)

35: topSols ← selectTop(eliteSols)

36: return topSols
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8 MARTIN ET AL.

FIGURE 4 Flowchart of the fuzzy-simheuristic methodology.

sequentially applies a diversification method (perturbation) and a local search around the perturbed solution until a stopping

criterion is met. Hence, the process starts by perturbing the base solution (baseSol), generating a new solution (newSol). In our

case, the perturbation is based on a destruction and reconstruction procedure, which depends on the degree of destruction to be

applied, k. To reconstruct the partially destroyed solution, we use a biased-randomized version of the TSHARP savings heuristic.

At each step of the solution-reconstruction process, the next element in the savings list is selected following a decreasing

geometric distribution, where elements with higher cost savings have a higher probability of being chosen. As described in

Grasas et al. [22], this type of distribution provides a natural bias for the candidate elements in the list. In addition, it offers two

advantages over using empirical distributions: (i) they can be sampled using well-known analytical expressions and (ii) they

contain at most one simple parameter. The geometric distribution is controlled by a parameter 𝛽 ∈ (0, 1), which facilitates its

setting in most practical applications. As values of 𝛽 get closer to 0, the more uniform-randomized the selection process will be.

On the contrary, as these values of 𝛽 get closer to 1, the more greedy the selection will be. Thereby, the deterministic TSHARP

heuristic is extended into a probabilistic one by assigning different probabilities to the savings list elements. In this way, we

prevent the same solution from being obtained at every iteration, as different routes will be reconstructed at each destruction

and reconstruction step. After generating a new solution, the algorithm starts a local search procedure around newSol. This

procedure consists of applying a well-known 2-opt local search to every possible combination of two edges of a route. This is

applied to each route of the solution until no further improvement can be made this way. Thus, the routes become 2-optimal after

the complete 2-opt local search. Subsequently, we use a hash map data structure, which acts as a fast-access memory, to store

the best-known way (shortest time route) of traversing the set of edges in each route of the solution. The information in this hash

map is updated each time a set of edges is traversed so that newly generated routes are quickly improved as more information is

stored in the data structure. So far, the new solution responds to the deterministic version of the TCARP. In order to deal with

the uncertainty of the problem and estimate its cost under uncertainty, an exploratory fast simulation phase is carried out next.

Specifically, a relatively short number of simulation runs are carried out to assess the effect of stochastic and fuzzy uncertainty

on the objective value of the solution. In addition, constraints are also evaluated under uncertain conditions. Notice that, in each

simulation run, a different value is assigned to random variables or fuzzy elements according to a probability distribution or fuzzy

rules. Besides assessing the solutions under uncertainty scenarios, the examination of solutions also guides the metaheuristic

in generating new solutions. For example, a “good” solution could be the starting point for generating new solutions in the
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MARTIN ET AL. 9

subsequent iterations of the metaheuristic. Once the uncertainty cost of the solution has been computed, some evaluations are

performed to update the baseSol and bestSol solutions if needed. Specifically, if the cost of the new solution under uncertainty

is able to improve the cost of the baseSol, the latter is updated. In the same way, if the cost of the newSol improves the cost

of the bestSol found so far, the latter is updated and added to a pool of “elite” solutions. With the goal of further diversifying

the search, the algorithm might occasionally accept nonimproving solutions following an acceptance criterion based on a credit

value [26]. Once the stopping condition is met, an intensive simulation phase is launched to better assess the elite solutions

before reporting the final results. In this phase, a large number of runs are used to examine the solutions’ quality in comparison

with the first examination. Identifying the best solution might take into account measures of interest other than the expected

value, for example, the variance or the reliability of each solution. Finally, descriptive statistics are obtained for each solution,

providing detailed information.

5 DETAILS ON THE SOLVING APPROACH AND COMPUTATIONAL
EXPERIMENTS

The proposed fuzzy-simheuristic algorithm has been implemented using Python 3.10, and tested on a workstation with a

multi-core processor Intel Xeon E5-2630 v4 and 32 GB of RAM. For the computational experiments, we have set the parameters

of the algorithm using the one-factor-at-a-time (OFAT) method [6], which studies each parameter of the algorithm individu-

ally. The OFAT method has been chosen over more sophisticated design of experiments (DOE) methods since the number of

parameters to tune is reasonably small, and there are no interactions between the parameters of the algorithm. Thus, we test dif-

ferent values for each of the parameters using uniformly spaced samples and choose the values that obtain the best results over

a small set of instances. After the tuning process of the parameters, we set a computational time of 60 seconds for the small and

medium instances and 600 s for the large ones. The value of the 𝛽 parameter for the geometric distribution was set to be randomly

selected in the interval (0.10, 0.25). The exploratory and refinement stages of the examination phase were set to 100 and 1000

simulation runs, respectively. Finally, each instance has been executed 10 times using our fuzzy-simheuristic algorithm with

different seeds for the random number generator, and the best and average results are reported. To the best of our knowledge,

there are no TCARP instances using random and fuzzy times that we can use as a benchmark. Accordingly, a set of previously

published deterministic TCARP and CARPDD benchmarks have been extended to assess the performance and the quality of

the proposed algorithm. In particular, we have employed the tcarp, tegl, val, and rural data sets described in Keenan et al. [32].

Table 1 summarizes the main characteristics of the used data sets: the number of instances, the minimum number of nodes,

the maximum number of nodes, the minimum number of edges, the maximum number of edges, and time-based capacities.

Notice that not all datasets use the same value for the time capacity Q. Hence, the table shows the different values of Q employed

in each dataset.

To extend the instances mentioned above, we have assumed that the service time, Qe, is uncertain and, therefore, it is

either stochastic or fuzzy depending on the considered scenario. The service time Qe is comprised of two components: the

deterministic service time qe and the service delay De, that is, Qe = qe+De. The deterministic service time represents the travel

time required under perfect conditions, while a random or fuzzy time is considered for the service delay. The remainder of this

section describes the process used to transform the deterministic instances of each data set into stochastic or fuzzy ones. In the

deterministic scenario, no uncertainty is considered. Thus, the service time Qe is known in advance. These service times are

provided by the dataset instances themselves as there are no service delays.

Considering the stochastic scenario, the Log-Normal distribution is a natural choice for describing nonnegative random vari-

ables, such as service times [33]. In our experiments, the Log-Normal probability distribution is used to model the service delay

De of service time Qe. The Log-Normal distribution has two parameters: the location parameter, 𝜇e, and the scale parameter, 𝜎e,

which can be derived from the expected value E[De] and the variance Var[De]. We have set the expected value E[De] = 0.1 ⋅𝑑e,

where 𝑑e is the service delay, and the variance Var[De] = c ⋅ E[De]. The parameter c is a design parameter that allows us to set

TABLE 1 Summary of the datasets.

Minimum Maximum Minimum Maximum Time capacities
Dataset Instances nodes nodes edges edges (Q)

tcarp 10 17 44 24 50 40, 50, 60

tegl 8 77 140 98 190 240, 360

val 5 30 50 50 97 144–918

rural 5 221 599 245 872 360, 400, 420
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10 MARTIN ET AL.

FIGURE 5 Fuzzy sets of the fuzzy inference system. (A) Fuzzy sets of the input variable edge accessibility; (B) Fuzzy sets of the input variable client type;

(C) Fuzzy sets of the output variable service delay.
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MARTIN ET AL. 11

TABLE 2 Fuzzy rules of the fuzzy inference system.

Client-type

Edge accessibility New Returning Loyal

Bad High High Medium

Normal High Medium Low

Good Medium Low Low

up the level of uncertainty. It is expected that, as c converges to zero, the results of the stochastic scenario will converge to those

obtained in the deterministic scenario. Also, we have utilized the value c = 1, which introduces a medium level of uncertainty.

In the stochastic-fuzzy scenario, two different types of uncertainty are considered. Hence, the service time Qe can be either

stochastic or fuzzy. For experimentation purposes, half of the service delays are modeled with the described Log-Normal proba-

bility distribution, while the remaining service delays are modeled with the fuzzy inference system presented next. Specifically,

we have considered that the service time is stochastic when the end node of an arc has an even id, and fuzzy otherwise. Finally,

regarding the pure fuzzy scenario, both the type-1 and the more sophisticated type-2 fuzzy sets are generally used to model

fuzzy variables. This scenario represents the highest degree of uncertainty, where the fuzzy variables cannot be modeled using

a probability distribution due to the lack of historical observations. In our experiments, interval type-2 fuzzy sets are employed

to model the service delay De of edge e. The details of the designed fuzzy inference system are described below:

• The edge accessibility and client type are considered input variables, expressed as values ranging from 0 to 1. Considering

that deterministic instances do not specify these variables, we generate synthetic values for them. This is achieved by:

(i) dividing the time required to travel from edge e to the depot by the time required to travel from the farthest edge to

the depot; and (ii) dividing the pure service time of edge e by the maximum pure service time, respectively. Similarly,

the service delay is considered as the output variable, expressed as a value ranging between 0 and 1. This value is then

multiplied by the edge pure service time.

• The fuzzy sets describe the fuzzy representation of input and output variables. The edge accessibility and client type are

both defined as three Gaussian IT2FS systems with uncertain standard deviation values. These can take the values Bad,

Normal, or Good and New, Returning, or Loyal depending on the input crisp values, respectively. Similarly, the service

delay is defined as three Gaussian IT2FS systems with uncertain SD values, which can take the values Low, Medium, or

High. Figure 5 shows the membership functions of the described fuzzy sets for each of the three fuzzy variables.

• The fuzzy rules determine the service delay for a given edge accessibility and client type pair. Thus, a total of nine rules

are defined for the different combinations of edge accessibility and client type. Table 2 shows the designed fuzzy rules

for each service delay, where each cell in the table defines a rule. The table can be interpreted as follows: that is, if the

edge accessibility is Bad and the client type is New then the service delay will be High; if the edge accessibility is Normal
and the client type is Returning then the service delay will be Medium; finally, if the edge accessibility is Good and the

client type is Loyal, then the service delay will be Low.

• The input variables with these membership functions are combined using the minimum and maximum norms to produce

the fuzzy output following the fuzzy rules. Afterward, the enhanced IASC-type reduction algorithm is used along with

the well-known centroid method to obtain the output crisp value from the interval type-2 fuzzy sets.

6 RESULTS AND DISCUSSION

Tables 3–6 present the results for the instances of the different datasets. The first column identifies the instances, while the second

column depicts the time-based capacity (Q). The remaining columns show the obtained best and average results under the four

considered scenarios. First, our best and average deterministic solutions (OBD/OAD) are reported and the best-found solutions

are compared with the best-known solutions (BKS) provided by De Armas et al. [13]. In the second section of the table, we report

the obtained results for the stochastic scenario. The OBD-S/OAD-S columns show the expected cost associated with the best and

average deterministic solutions when they are evaluated under a stochastic scenario, with the corresponding level of uncertainty.

To compute the expected cost, we have applied an intensive simulation process to the deterministic solutions. The main idea

behind this process is to assess the deterministic solutions under different levels of uncertainty. The next columns (OBS/OAS)

display the best and average solutions expected cost obtained using our fuzzy simheuristic approach for the stochastic version of

the problem. This approach considers the stochastic elements during the search for a solution. The next section of the table offers

the obtained results for the stochastic-fuzzy scenario. The OBD-H/OAD-H columns report the expected cost associated with
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12 MARTIN ET AL.

TABLE 3 Computational results for the tcarp dataset.

Deterministic scenario Stochastic scenario Stochastic-fuzzy scenario Fuzzy scenario

BKS OBD OAD GAP (%) OBD-S OAD-S OBS OAS OBD-H OAD-H OBH OAH OBD-F OAD-F OBF OAF
Instance Q [1] [2] [3] [1-2] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

tcarp-s1 60 104 104.0 105.8 0.00 114.0 113.3 110.4 113.2 124.2 126.9 121.6 126.9 138.5 140.1 134.5 140.1

tcarp-s1 50 108 108.0 108.0 0.00 117.2 117.0 115.8 116.9 128.7 131.5 128.6 132.1 147.5 147.1 144.1 146.4

tcarp-s1 40 112 112.0 112.4 0.00 119.9 121.1 119.6 120.8 136.4 136.7 132.1 135.6 152.8 153.4 150.3 153.8

tcarp-s2 60 156 156.0 156.2 0.00 165.8 165.8 164.9 165.9 188.0 184.5 180.8 185.2 214.9 213.1 205.7 214.6

tcarp-s2 50 158 159.0 159.3 0.63 170.5 169.8 168.3 170.1 195.8 194.5 186.5 193.1 230.6 228.5 213.4 224.7

tcarp-s2 40 164 164.0 165.7 0.00 174.6 176.3 173.6 177.2 202.1 200.5 195.1 199.9 230.1 232.5 229.6 234.4

tcarp-s3 60 215 215.0 215.4 0.00 234.2 236.8 231.8 234.9 270.2 275.9 260.0 270.0 302.4 308.9 297.5 307.3

tcarp-s3 50 229 229.0 230.0 0.00 246.6 248.2 246.1 248.0 289.5 289.9 277.7 288.2 326.1 331.3 320.9 329.1

tcarp-s3 40 245 245.0 249.6 0.00 263.2 266.2 262.3 266.2 309.3 307.7 289.2 303.7 349.4 355.3 345.5 352.8

tcarp-s4 60 146 146.0 146.0 0.00 154.4 154.3 154.0 154.4 172.1 173.2 169.3 173.2 203.1 200.6 195.3 200.6

tcarp-s4 50 162 162.0 162.0 0.00 169.1 169.3 168.9 169.4 180.1 183.2 179.1 182.5 209.4 208.7 203.9 208.2

tcarp-s4 40 174 174.0 174.0 0.00 181.2 181.3 181.1 181.3 194.4 194.5 191.3 194.4 222.5 224.5 219.5 223.5

tcarp-s5 60 140 140.0 140.0 0.00 149.6 150.1 149.5 150.1 173.6 171.6 167.5 170.9 181.8 188.6 181.8 187.9

tcarp-s5 50 149 149.0 149.0 0.00 162.5 161.4 157.8 159.8 183.3 183.2 175.3 179.1 210.3 205.2 193.4 199.5

tcarp-s5 40 165 165.0 165.0 0.00 174.6 174.9 174.1 174.9 198.9 198.3 192.2 197.7 222.4 219.2 213.3 219.5

tcarp-s6 60 104 105.0 105.7 0.96 110.2 111.2 110.1 111.2 128.4 129.6 126.3 129.7 138.9 141.0 138.8 141.0

tcarp-s6 50 107 107.0 109.4 0.00 114.4 116.3 114.2 116.7 132.7 133.4 127.3 132.8 149.1 146.0 137.2 144.0

tcarp-s6 40 113 113.0 113.0 0.00 118.5 118.6 118.1 118.6 137.2 137.6 132.8 137.1 161.6 153.4 146.9 153.4

tcarp-s7 60 68 68.0 68.1 0.00 71.2 71.3 71.1 71.4 77.5 78.8 76.3 78.7 87.5 89.5 87.4 89.5

tcarp-s7 50 68 68.0 68.5 0.00 71.2 71.8 71.1 71.8 77.5 80.1 77.5 80.1 87.5 92.7 87.5 92.7

tcarp-s7 40 68 68.0 69.5 0.00 71.2 72.8 71.1 72.9 78.1 81.1 77.6 80.5 89.5 93.6 89.5 93.6

tcarp-s8 60 83 83.0 83.0 0.00 86.4 86.5 86.3 86.4 95.7 94.8 91.7 94.8 115.9 107.2 103.4 107.2

tcarp-s8 50 83 83.0 83.3 0.00 86.6 87.2 86.4 87.2 97.2 97.2 94.6 97.2 108.1 110.2 103.5 110.2

tcarp-s8 40 87 87.0 87.2 0.00 90.6 91.2 90.6 91.2 105.0 104.9 101.8 104.2 117.4 119.0 114.8 118.2

tcarp-s9 60 177 177.0 177.8 0.00 187.2 188.7 186.3 189.0 226.1 225.1 210.9 216.5 248.1 252.3 238.9 246.9

tcarp-s9 50 193 193.0 193.6 0.00 203.0 203.6 202.6 204.5 237.2 238.6 231.1 237.1 276.4 271.5 264.1 270.7

tcarp-s9 40 221 221.0 221.2 0.00 229.9 230.3 229.5 230.9 264.3 264.9 257.9 261.2 299.8 298.3 289.9 298.0

tcarp-s10 60 171 171.0 172.3 0.00 183.6 183.9 180.3 184.0 216.2 214.6 204.7 214.8 246.5 243.3 234.2 236.5

tcarp-s10 50 180 181.0 181.4 0.56 192.4 192.6 192.3 192.9 223.1 223.2 212.5 221.5 251.6 251.3 240.3 249.6

tcarp-s10 40 192 192.0 192.0 0.00 203.2 202.8 202.3 203.0 238.3 237.7 223.5 235.4 280.1 275.3 265.2 273.1

Average: 144.7 144.8 145.5 0.1 153.9 154.5 153.0 154.5 176.0 176.5 169.7 175.1 200.0 200.1 193.0 198.9

the best and average deterministic solutions when they are evaluated under a hybrid stochastic-fuzzy scenario. Similarly, the

next columns (OBH/OAH) show the best and average solutions expected cost obtained using our fuzzy simheuristic algorithm

for the stochastic-fuzzy scenario of the problem. Finally, the last section of the table exhibits the obtained results for the fuzzy

scenario. The OBD-F/OAD-F columns show the expected cost associated with the best and average deterministic solutions

when they are evaluated under a fuzzy scenario, with the corresponding level of uncertainty. The last columns (OBF/OAF)

display the best and average solutions expected cost obtained using our fuzzy simheuristic approach for the fuzzy version

of the problem.

Figure 6 depicts an overview of Tables 3–6 about the performance of our algorithm using our best-found solutions for all

the considered scenarios. In these box plots, the horizontal and vertical axes represent the four uncertainty scenarios and the

percentage gap obtained with respect to the BKS reported in the literature, respectively. Notice that our best-found solutions

using the fuzzy simheuristic approach nearly reach the BKS for the tcarp, val, and rural datasets, obtaining a gap about 0.07%,

0.69%, and 0.25%, respectively. Concerning the tegl dataset, we outperform the solutions provided in De Armas et al. [13] by

about −5.41%. These results highlight the quality of our algorithm since our approach provides highly competitive solutions

for the deterministic TCARP.

Regarding the uncertainty scenarios, which is the main contribution of this paper, the obtained results show that the best

solutions provided by our approach for the different uncertainty scenarios clearly outperform the best solutions for the deter-

ministic TCARP when they are simulated under the corresponding level of uncertainty. In other words, our best-found solutions
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MARTIN ET AL. 13

TABLE 4 Computational results for the tegl dataset.

Deterministic scenario Stochastic scenario Stochastic-fuzzy scenario Fuzzy scenario

BKS OBD OAD GAP (%) OBD-S OAD-S OBS OAS OBD-H OAD-H OBH OAH OBD-F OAD-F OBF OAF
Instance Q [1] [2] [3] [1-2] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

tegl-e1-A 360 1367 1198.0 1200.0 −12.36 1297.7 1306.7 1273.0 1297.7 1523.8 1538.6 1408.5 1502.8 1740.8 1716.6 1613.3 1689.5

tegl-e1-C 240 1655 1456.0 1456.3 −12.02 1552.1 1551.3 1542.2 1552.8 1784.6 1847.1 1784.3 1835.4 2067.4 2099.6 2060.5 2093.9

tegl-e2-A 360 2023 1935.0 1940.2 −4.35 2151.8 2131.4 2102.6 2127.7 2490.1 2470.2 2419.3 2466.5 2725.0 2708.3 2669.9 2716.7

tegl-e2-C 240 2481 2379.0 2393.4 −4.11 2560.5 2549.6 2532.3 2550.1 2928.6 2926.0 2847.9 2911.5 3338.1 3352.0 3278.7 3337.9

tegl-e3-A 360 2439 2378.0 2381.6 −2.50 2598.6 2576.1 2548.1 2574.7 2960.9 3001.6 2905.3 2971.8 3308.4 3321.8 3260.8 3307.5

tegl-e3-C 240 3019 3021.0 3026.8 0.07 3212.1 3227.9 3207.6 3232.6 3597.0 3649.8 3562.2 3623.8 4066.6 4089.5 3991.8 4061.4

tegl-e4-A 360 2686 2701.0 2713.9 0.56 3000.1 2976.8 2936.3 2969.7 3441.7 3457.1 3362.5 3428.6 3799.6 3831.0 3739.0 3812.0

tegl-e4-C 240 3270 3297.0 3316.0 0.83 3525.9 3534.2 3506.3 3527.4 4079.8 4065.8 3982.6 4046.5 4662.9 4579.0 4492.9 4565.5

tegl-s1-A 360 2225 1740.0 1740.6 −21.80 1909.1 1896.1 1884.6 1900.3 2272.9 2276.6 2185.9 2251.7 2537.9 2544.4 2517.8 2535.4

tegl-s1-C 240 3094 2518.0 2526.8 −18.62 2666.3 2675.1 2651.5 2671.1 3043.4 3076.4 2993.3 3052.9 3364.9 3378.8 3360.0 3372.8

tegl-s2-A 360 4114 3938.0 3951.2 −4.28 4321.9 4353.1 4295.4 4345.1 5041.3 5048.7 4941.3 5029.5 5524.6 5586.0 5494.9 5570.3

tegl-s2-C 240 5605 5386.0 5442.6 −3.91 5706.3 5760.6 5704.5 5751.7 6503.0 6556.5 6416.3 6525.4 7242.1 7264.7 7081.2 7233.0

tegl-s3-A 360 4436 4320.0 4332.5 −2.61 4796.5 4766.2 4676.1 4757.2 5578.4 5512.8 5362.9 5491.0 6032.0 6077.9 5897.2 6050.8

tegl-s3-C 240 6122 5965.0 6018.3 −2.56 6362.7 6392.0 6324.7 6397.0 7286.9 7290.7 7099.9 7229.6 8075.6 8022.7 7906.5 7997.1

tegl-s4-A 360 5202 5226.0 5251.5 0.46 5745.9 5815.3 5742.8 5815.9 6655.0 6711.9 6644.4 6700.6 7354.3 7421.1 7344.9 7426.8

tegl-s4-C 240 7282 7325.0 7367.4 0.59 7809.7 7842.1 7777.1 7835.8 8941.0 8905.2 8812.0 8880.0 9757.8 9748.9 9664.9 9732.6

Average: 3563.8 3423.9 3441.2 −5.4 3701.1 3709.6 3669.1 3706.7 4258.0 4270.9 4170.5 4246.7 4724.9 4733.9 4648.4 4718.9

TABLE 5 Computational results for the val dataset.

Deterministic scenario Stochastic scenario Stochastic-fuzzy scenario Fuzzy scenario

BKS OBD OAD GAP (%) OBD-S OAD-S OBS OAS OBD-H OAD-H OBH OAH OBD-F OAD-F OBF OAF
Instance Q [1] [2] [3] [1-2] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

val6 918 221 223.0 233.3 0.90 245.0 245.5 245.0 245.7 294.4 293.5 291.2 293.6 346.7 346.7 344.6 346.7

val6 648 223 223.0 233.9 0.00 245.4 246.3 245.1 246.3 293.8 294.4 290.4 294.4 348.6 347.4 344.6 347.4

val6 270 239 241.0 246.6 0.84 265.2 274.1 265.0 271.4 316.6 326.7 314.9 322.5 375.3 388.6 372.7 384.1

val7 465 279 279.0 280.5 0.00 307.0 309.9 306.9 308.6 369.2 373.6 366.5 372.2 441.5 446.6 439.9 443.6

val7 349 283 283.0 283.8 0.00 311.2 313.6 310.9 312.2 376.1 380.0 375.5 378.4 449.3 451.0 447.5 449.3

val7 151 352 352.0 355.9 0.00 387.0 397.7 387.0 391.4 474.7 486.5 470.4 477.8 561.1 580.1 560.7 568.6

val8 579 386 390.0 399.0 1.04 429.1 447.3 428.8 438.9 484.2 501.4 482.5 497.3 552.3 570.5 549.5 564.0

val8 434 386 387.0 403.5 0.26 425.6 443.8 425.2 443.8 481.0 517.0 480.4 505.2 545.4 588.3 542.5 571.7

val8 188 519 523.0 546.5 0.77 575.4 612.4 574.9 601.1 673.6 721.9 671.9 699.9 769.2 834.4 766.7 805.0

val9 511 324 329.0 332.8 1.54 361.9 367.0 360.9 366.2 429.7 437.6 427.8 436.7 510.9 519.4 508.7 516.7

val9 380 326 327.0 342.5 0.31 360.9 378.0 359.7 376.7 430.0 450.4 428.8 449.3 514.8 536.4 511.9 534.5

val9 304 338 342.0 354.6 1.18 377.3 390.1 376.9 390.1 450.8 466.9 447.4 464.3 541.0 560.8 539.9 555.6

val9 152 445 445.0 464.4 0.00 490.4 515.7 489.2 510.9 581.7 610.2 578.9 601.4 718.8 762.8 715.7 744.4

val10 480 438 439.0 443.2 0.23 483.1 491.0 483.0 487.6 565.7 569.2 563.8 566.6 652.1 662.5 648.0 656.5

val10 365 449 455.0 459.3 1.34 500.3 508.7 499.6 505.3 589.0 596.8 588.0 590.7 684.2 694.8 681.6 685.2

val10 288 465 472.0 489.6 1.51 519.3 545.6 518.6 538.6 610.2 644.1 608.8 633.6 708.8 752.1 704.6 737.0

val10 144 844 859.0 867.0 1.78 945.0 957.6 944.8 953.6 1131.5 1164.3 1129.8 1147.9 1373.9 1412.0 1370.9 1387.6

Average: 383.4 386.4 396.3 0.7 425.2 437.9 424.8 434.6 503.1 519.7 501.0 513.6 593.8 615.0 591.2 605.7

for the deterministic version of the problem might be sub-optimal for the different uncertainty versions. Moreover, the aver-

age solutions of the 10 execution runs are always relatively close to the best solutions obtained in those 10 executions runs for

each instance-uncertainty level combination, with an average gap of 0.5% with respect to the gap obtained by the best-found

solutions. This implies that our fuzzy simheuristic algorithm is expected to perform quite well every time it is run. Hence, the

importance of integrating fuzzy-simulation methods when dealing with optimization problems with fuzzy and stochastic uncer-

tainty. Notice also that the OBD can be seen as a reference lower bound in an ideal scenario with perfect information—that is,

without uncertainty—for the expected cost under uncertainty conditions. Similarly, the OBD-S, OBD-H, and OBD-F can be

seen as an upper bound for the expected cost in the different uncertainty scenarios. All things considered, the results presented
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14 MARTIN ET AL.

confirm the importance of accounting for the uncertainty during the solution search process, since this might have a signifi-

cant impact on the quality of our best-found solutions. For instance, the simulation of our best deterministic solution in a fuzzy

scenario provides a much higher expected cost, while our best fuzzy solution gives a lower expected cost. Thus, considering

uncertainty elements in the search process produces better results than just solving a deterministic version of the problem and

then applying this solution in a real-life scenario with stochastic and fuzzy uncertainty.

Once the computational results using the fuzzy simheuristic approach have been discussed, we could compare our approach

to other classical frameworks, such as stochastic programming and robust optimization. Pages-Bernaus et al. [52] compared the

simheuristic methodology with stochastic programming and concluded that simheuristics perform better than stochastic pro-

gramming for larger instances. A robust optimization approach assumes a uniform distribution, while our method models times

using different distributions. Thus, we compare our fuzzy simheuristic method with a robust optimization approach after gen-

erating the service delays with a uniform distribution. To illustrate this comparison, the following analysis has been conducted

for the rural2 instance. We generate 100 samples following the Log-Normal distribution presented in Section 5, and compute

the minimum and maximum values of the samples. These values will be the lower and upper bound of a uniform distribution,

which will be used to generate the new service delays. As illustrated in Table 7, the best and average stochastic results of our

fuzzy simheuristic approach have been compared with the best and average results obtained by the robust optimization method.

The percentage gaps show that the simheuristic approach computes more optimal solutions compared to the robust optimiza-

tion. This is to be expected, as robust optimization equally considers the best- and worst-case service delays as it searches for

new solutions, which could be useful for obtaining reliable solutions in risk aversion decision scenarios. Hence, we optimize for

minimizing the maximum cost of the solution and consequently generate solutions with a certain measure of robustness, while

our fuzzy simheuristic approach minimizes the solution expected cost.

In summary, the fuzzy simheuristic methodology presented here offers unique advantages over other existing approaches

for solving the TCARP under uncertainty. Some of the potential benefits of our approach are presented next: (i) an efficient

metaheuristic is employed as the basis for solving the TCARP under uncertainty, which ensures that good quality solutions are

generated even for instances of large sizes; (ii) the simulation component guides the search of new promising solutions, which

considers the TCARP uncertainty conditions during the search for near-optimal solutions; and (iii) the simulation component

is able to incorporate any probability distribution with a known mean, either theoretical or experimental, or fuzzy inference

system fuzzy sets and fuzzy inference rules to model the uncertainty conditions. However, as with any methodology, there are

also limitations when using the extended simheuristic. Some of these limitations are presented next: (i) the metaheuristic basis

does not guarantee an optimal solution to an optimization problem, but rather a good enough solution in a reasonable amount

of time; (ii) the simulation component requires additional effort when designing the probability distributions or fuzzy inference

systems to model the uncertainty conditions; and (iii) the integration of a simulation component within a metaheuristic requires

high computational efforts, especially simulation components including type-2 fuzzy inference systems.

7 CONCLUSIONS

In this paper, we have considered a rich version of the Arc Routing Problem in which: (i) the capacity constraints are given by a

time threshold instead of a loading factor; and (ii) travel and service times might show a deterministic, stochastic, or even fuzzy

behavior. In this context, we have modeled fuzzy elements by employing a type-2 fuzzy set system, which represents one of the

novelties of the paper. Then, in order to solve the TCARP under general uncertainty conditions, a fuzzy-simheuristic algorithm

has been proposed. This algorithm combines an iterated local search metaheuristic framework with Monte Carlo simulation and

a T2FS system.

In order to test our approach, four data sets from the TCARP literature have been adapted and extended, so they consider

both fuzzy and stochastic uncertainty. A series of computational experiments contribute to validate our approach by showing a

common pattern in all instances and considered uncertainty conditions: as we increase the level of uncertainty (from stochastic to

hybrid stochastic-fuzzy and pure fuzzy), the quality of the solution is increasingly reduced when compared with a deterministic

scenario, which can be considered as an ideal (yet unrealistic) scenario. As a general conclusion, one should never employ

near-optimal solutions to deterministic versions of a TCARP in a real-life scenario with fuzzy and stochastic elements. Another

interesting contribution of the paper is that we have been able to improve the best-known solutions for the stochastic version of

the problem in the case of the tegl dataset.

One open research line that we want to highlight is the integration of the fuzzy-simheuristic algorithm with the machine

and statistical learning methods, with the goal of improving the quality of the feedback provided by the simulation component.

This, in turn, could be employed to select solutions of special interest. Machine learning methods could also be employed to

build surrogate models that make computations faster by saving many simulation runs.
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MARTIN ET AL. 15

TABLE 6 Computational results for the rural dataset.

Deterministic scenario Stochastic scenario Stochastic-fuzzy scenario Fuzzy scenario

BKS OBD OAD GAP (%) OBD-S OAD-S OBS OAS OBD-H OAD-H OBH OAH OBD-F OAD-F OBF OAF
Instance Q [1] [2] [3] [1-2] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

rural1 420 1195 1196.0 1198.8 0.08 1284.0 1291.4 1283.1 1292.3 1477.4 1481.9 1459.3 1479.7 1680.9 1679.4 1663.2 1673.0

rural1 400 1195 1195.0 1197.7 0.00 1285.4 1293.6 1281.1 1290.8 1461.6 1479.6 1458.2 1478.0 1656.5 1671.3 1653.8 1673.2

rural1 360 1193 1193.0 1195.7 0.00 1292.0 1289.4 1279.9 1287.6 1502.2 1480.7 1450.7 1476.0 1676.7 1677.0 1665.3 1671.9

rural2 420 1844 1847.0 1854.3 0.16 2008.4 2027.3 2008.0 2027.8 2388.3 2407.8 2368.7 2402.8 2770.0 2791.5 2748.5 2782.2

rural2 400 1840 1841.0 1847.1 0.05 1986.2 2006.8 1985.3 2003.7 2359.4 2393.8 2355.1 2386.3 2739.2 2764.5 2731.7 2761.5

rural2 360 1836 1845.0 1847.7 0.49 2010.2 2006.8 2008.2 2003.6 2381.9 2372.2 2368.9 2368.9 2788.7 2737.9 2748.5 2735.3

rural3 420 2218 2222.0 2233.3 0.18 2409.5 2441.0 2408.9 2440.0 2782.5 2799.9 2747.1 2797.7 3086.9 3100.2 3048.9 3098.4

rural3 400 2193 2195.0 2206.1 0.09 2436.1 2416.9 2382.1 2410.4 2746.5 2749.4 2717.3 2746.9 3063.7 3063.8 3001.7 3060.9

rural3 360 2182 2182.0 2196.1 0.00 2413.2 2395.6 2409.6 2395.4 2806.5 2728.3 2772.4 2728.3 3119.0 3040.5 3060.2 3040.2

rural4 420 2518 2519.0 2536.3 0.04 2683.0 2711.1 2681.8 2711.5 3226.6 3251.4 3198.3 3251.2 3604.7 3621.7 3580.0 3621.7

rural4 400 2489 2480.0 2494.8 -0.36 2646.9 2651.9 2617.4 2648.1 3161.2 3132.9 3082.6 3131.8 3550.0 3513.2 3478.7 3513.2

rural4 360 2450 2498.0 2502.1 1.96 2662.6 2669.1 2656.2 2667.8 3206.1 3211.9 3168.1 3186.9 3584.7 3593.9 3540.0 3564.4

rural5 420 1674 1676.0 1687.4 0.12 1774.7 1771.9 1772.5 1771.9 2101.7 2095.1 2048.5 2095.0 2422.9 2381.3 2375.1 2377.8

rural5 400 1655 1670.0 1678.6 0.91 1744.1 1765.1 1743.1 1764.7 2051.8 2074.1 2028.0 2074.1 2352.8 2358.1 2315.9 2358.1

rural5 360 1666 1666.0 1676.8 0.00 1755.5 1758.7 1755.0 1758.8 2016.8 2043.4 2004.9 2043.2 2315.9 2329.1 2297.1 2327.7

Average: 1876.5 1881.7 1890.2 0.2 2026.1 2033.1 2018.1 2031.6 2378.0 2380.1 2348.5 2376.5 2694.2 2688.2 2660.6 2684.0

FIGURE 6 Percentage gaps of our fuzzy simheuristic approach w.r.t. the best-known solutions (BKS). (A) Gaps of tcarp instances w.r.t the BKS; (B) Gaps

of tegl instances w.r.t the BKS; (C) Gaps of val instances w.r.t the BKS; (d) Gaps of rural instances w.r.t the BKS.
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16 MARTIN ET AL.

TABLE 7 Computational results for the robust optimization comparison.

Simheuristic Robust optimization

OBS OAS OBS-R OAS-R GAP (%) GAP (%)
Instance Q [1] [2] [3] [4] [1-3] [2-4]

rural2 420 2008.0 2027.8 2687.3 2704.2 33.8 33.4

rural2 400 1985.3 2003.7 2642.2 2683.7 33.1 33.9

rural2 360 2008.2 2003.6 2642.1 2665.4 31.6 33.0

ACKNOWLEDGMENTS

This work has been partially supported by the Spanish Ministry of Science (PID2019-111100RB-C21/AEI/10.13039/

501100011033), as well as by the Barcelona Council and the “la Caixa” Foundation under the framework of the Barcelona

Science Plan 2020-2023 (grant 21S09355-001) and Generalitat Valenciana (PROMETEO/2021/065).

DATA AVAILABILITY STATEMENT
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

ORCID
Xabier A. Martin https://orcid.org/0000-0003-4182-0120

Javier Panadero https://orcid.org/0000-0002-3793-3328

David Peidro https://orcid.org/0000-0001-8678-6881

Elena Perez-Bernabeu https://orcid.org/0000-0002-9221-7623

Angel A. Juan https://orcid.org/0000-0003-1392-1776

REFERENCES

[1] V. Abu-Marrul, R. Martinelli, S. Hamacher, and I. Gribkovskaia, Simheuristic algorithm for a stochastic parallel machine scheduling problem
with periodic re-planning assessment, Ann. Oper. Res. 320 (2022), 547–572.

[2] S. Alvarez Fernandez, D. Ferone, A. A. Juan, and D. Tarchi, A simheuristic algorithm for video streaming flows optimisation with qos threshold
modelled as a stochastic single-allocation p-hub median problem, J. Simul. 16 (2022), 480–493.

[3] S. Amaran, N. V. Sahinidis, B. Sharda, and S. J. Bury, Simulation optimization: A review of algorithms and applications, 4OR 12 (2014),

301–333.

[4] S. Amaran, N. V. Sahinidis, B. Sharda, and S. J. Bury, Simulation optimization: A review of algorithms and applications, Ann. Oper. Res. 240
(2016), 351–380.

[5] E. Babaee Tirkolaee, I. Mahdavi, M. M. Seyyed Esfahani, and G. W. Weber, A hybrid augmented ant colony optimization for the multi-trip
capacitated arc routing problem under fuzzy demands for urban solid waste management, Waste Manag. Res. 38 (2020), 156–172.

[6] A. Banu, M. Y. Ali, M. A. Rahman, and M. Konneh, Stability of micro dry wire edm: Ofat and doe method, Int. J. Adv. Manuf. Technol. 106
(2020), 4247–4261.

[7] E. Bartolini, J. F. Cordeau, and G. Laporte, An exact algorithm for the capacitated arc routing problem with deadheading demand, Oper. Res.

61 (2013), 315–327.

[8] O. Castillo and P. Melin, Uncertain rule-based fuzzy systems: Introduction and new directions, Springer, Berlin, Heidelberg, 2008.

[9] O. Castillo, P. Melin, J. Kacprzyk, and W. Pedrycz. Type-2 fuzzy logic: Theory and applications, 2007 IEEE Int. Conf. Granul. Comput. (GRC

2007), San Jose, CA, USA, 2007, p. 145.

[10] M. Cengiz Toklu, A fuzzy multi-criteria approach based on clarke and wright savings algorithm for vehicle routing problem in humanitarian
aid distribution, J. Intell. Manuf. 34 (2022), 2241–2261.

[11] M. Chica, A. A. Juan, C. Bayliss, O. Cordon, and W. D. Kelton, Why simheuristics? Benefits, limitations, and best practices when combining
metaheuristics with simulation, Stat. Oper. Res. Trans. 44 (2020), 1–24.

[12] Á. Corberán and G. Laporte, Arc routing: Problems, methods, and applications, Society for Industrial and Applied Mathematics, Philadelphia,

2014.

[13] J. De Armas, P. Keenan, A. A. Juan, and S. McGarraghy, Solving large-scale time capacitated arc routing problems: From real-time heuristics
to metaheuristics, Ann. Oper. Res. 273 (2019), 135–162.

[14] A. De León, E. Lalla-Ruiz, B. Melián-Batista, and J. Moreno-Vega, A simulation–optimization framework for enhancing robustness in bulk
berth scheduling, Eng. Appl. Artif. Intel. 103 (2021), 104276.

[15] A. De Maio, D. Laganà, R. Musmanno, and F. Vocaturo, Arc routing under uncertainty: Introduction and literature review, Comput. Oper. Res.

135 (2021), 105442.

[16] J. Faulin, A. A. Juan, C. Serrat, and V. Bargueno, Predicting availability functions in time-dependent complex systems with SAEDES simulation
algorithms, Reliab. Eng. System Saf. 93 (2008), 1761–1771.

 10970037, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22159 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [25/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0003-4182-0120
https://orcid.org/0000-0003-4182-0120
https://orcid.org/0000-0002-3793-3328
https://orcid.org/0000-0002-3793-3328
https://orcid.org/0000-0001-8678-6881
https://orcid.org/0000-0001-8678-6881
https://orcid.org/0000-0002-9221-7623
https://orcid.org/0000-0002-9221-7623
https://orcid.org/0000-0003-1392-1776
https://orcid.org/0000-0003-1392-1776


MARTIN ET AL. 17

[17] J. Figueroa, J. Posada, J. Soriano, M. Melgarejo, and S. Rojas. A type-2 fuzzy controller for tracking mobile objects in the context of robotic
soccer games, The 14th IEEE Int. Conf. Fuzzy Syst., 2005. FUZZ’05, Reno, NV, USA, 2005, pp. 359–364.

[18] F. Glover, J. P. Kelly, and M. Laguna. New advances and applications of combining simulation and optimization, Proc. 1996 Winter Simul.

Conf., Piscataway, N.J., 1996, pp. 144–152.
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