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The cumulative capacitated vehicle routing problem with min-sum and

min-max objectives: An effective hybridisation of adaptive variable

neighbourhood search and large neighbourhood search

Jeeu Fong Sze∗, Said Salhi, Niaz Wassan

Centre of Logistics and Heuristics Optimisation (CLHO), Kent Business School,
University of Kent, Canterbury, CT2 7PE, United Kingdom

Abstract

The cumulative capacitated vehicle routing problem (CCVRP) is a relatively new variant of the

classical capacitated vehicle routing problem in which the objective is to minimise the sum of

arrival times at customers (min-sum) instead of the total route distance. While the literature

for the CCVRP is scarce, this problem has useful applications especially in the area of supplying

humanitarian aid after a natural disaster. In this paper, a two-stage adaptive variable neig-

hbourhood search (AVNS) algorithm that incorporates large neighbourhood search (LNS) as a

diversification strategy is proposed. When tested on the benchmark data sets, the results show

that the proposed AVNS is highly competitive in producing new best known solutions to more

than half of the instances. An alternative but related objective that minimises the maximum

arrival time (min-max) is also explored in this study demonstrating the flexibility and the ef-

fectiveness of the proposed metaheuristic. To the best of our knowledge, this is the first study

that exploits the min-max objective of the CCVRP in addition to providing extensive compu-

tational results for a large number of instances for the min-sum. As a by-product of this study,

managerial insights for decision making are also presented.

Keywords: Metaheuristics, cumulative capacitated vehicle routing, OR in disaster relief,

min-max, CCVRP managerial insights, adaptive variable neighbourhood search.

1. Introduction

Since its establishment in more than fifty years ago, the classical vehicle routing problem (VRP)

has been one of the most extensively studied topics within the area of transportation optimisation.

Recently, many efforts have been taken to incorporate various attributes of real-life applications.

One of these is by considering alternative objective functions such as minimising the total arrival5
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times of the vehicles, length of the longest route, the effect of pollution (Koç et al., 2016) and

so on. The VRP which takes into account practical considerations is also termed the rich VRP

(Hartl et al., 2006; Goel and Gruhn, 2008; Lahyani et al., 2015) or multi-attribute VRP (Vidal

et al., 2014).

This study investigates a relatively new variant of the classical VRP namely the cumulative10

capacitated VRP (CCVRP). Here, the objective function is to minimise the sum of arrival ti-

mes (min-sum) at the customers, subject to the vehicle capacity constraint. The CCVRP is

motivated by the need of servicing the customers as soon as possible. This problem has many

real-world applications such as in humanitarian logistics for transferring people to a safer place

after a natural disaster (e.g., tsunamis or earthquakes), delivering food, medical supplies and ne-15

cessities to affected regions and dispatching ambulances to patients’ locations (Campbell et al.,

2008). Other applications of the CCVRP arise in the school bus routing context where the total

passengers’ travel time is concerned (Bowerman et al., 1995) and in the home-delivery service

(Méndez-Dı́az et al., 2008) where the aim is to prioritize customers’ satisfaction.

In the classical VRP, the routes are designed by optimising the total route length. In such case,20

some commodities may be served significantly later than others to minimise the total cost. To

better reflect priorities and to ensure equity and fairness, a customer-centric objective function

is usually used. For instance in the CCVRP, the waiting time of a service system from the custo-

mer’s point of view is considered. This type of objective function can be viewed as service-based

rather than cost-based as in the traditional VRP. Campbell et al. (2008) demonstrate empirically25

that the optimal solutions could be significantly different for these two objectives.

While there is a tremendous amount of work devoted to the classical VRP, the literature on the

CCVRP is relatively scarce and very recent. Ngueveu et al. (2010) are among the first to solve

the CCVRP. The authors proposed a metaheuristic method using two memetic algorithms (MA)

and tested them on the classical VRP instances from Christofides et al. (1979) and Travelling30

Repairman Problem instances from Salehipour et al. (2008). Later, an adaptive large neighbour-

hood search (ALNS) heuristic was presented by Ribeiro and Laporte (2012) who discussed seven

removal strategies and three insertion strategies to solve the instances from Christofides et al.

(1979) and Golden et al. (1998). It is reported that the ALNS outperforms the MA in terms

of solution quality and computational times. Ke and Feng (2013) also attempted to solve the35

CCVRP with a two-phase metaheuristic in which the first phase focuses on partitioning the

customers by using inter-route moves whereas the second phase attempts to optimise each indi-

vidual route. The first exact algorithm for the CCVRP was developed more recently by Lysgaard

and Wøhlk (2014), where a branch-and-cut-and-price method was adopted. Instances from the

classical VRP with up to 69 vertices are solved optimally and lower bounds are also provided for40

the others.

Related studies include the CCVRP with multiple trips of a single vehicle (see Mart́ınez-Salazar
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et al., 2015; Rivera et al., 2016), multiple trips with multiple vehicles (Rivera et al., 2014, 2015)

and a flow (or demand) based cumulative VRP by Kara et al. (2008) and Cinar et al. (2016).

In the latter two, the flow is cumulated or diminished along the tour instead of the distance45

being accumulated. The CCVRP can be reduced to the travelling repairmen problem (TRP)

by relaxing the vehicle capacity restriction. The TRP is also known as the minimum latency

problem, the travelling deliveryman problem, and the cumulative travelling salesman problem.

See Salehipour et al. (2008) and Silva et al. (2012) for the single TRP; and Fakcharoenphol et al.

(2007) and Luo et al. (2014) for the case of multiple TRP.50

While most of the literature on the CCVRP investigate only the min-sum objective, an interesting

alternative would be to explore the min-max objective, which aims to minimise the latest arrival

time at the customer. The main difference between the two objectives is that the min-sum

evaluates all routes whereas the min-max considers the bottleneck route with the latest arrival

time only. As this problem would also be explored in this paper, a brief review on existing work55

is provided. To our knowledge, the only paper that investigated both min-sum and min-max

objectives is Campbell et al. (2008). However in their study, the vehicle capacity and the number

of vehicles are predefined with the number of customers considered being relatively small (i.e.,

< 100). Based on their limited empirical study, it was observed that both problems yield similar

solutions for the case of one vehicle but not in the case of multiple vehicles. As a by-product, our60

study will also explore the impact of these two objective functions further by using a number of

large VRP instances.

The min-max objective can also be applied to the school bus routing with the objective that

minimises the maximum riding time of a student in a bus (Corberán et al., 2002; Pacheco and

Mart, 2006; Park and Kim, 2010). Besides, López-Sánchez et al. (2014) also solved a similar real-65

life problem which they referred to as the balanced open VRP using the multi-start algorithm

besides providing solutions to 19 school-bus routing benchmark problems from the literature.

Applegate et al. (2001) also studied the classical VRP with min-max objective and proposed

a branch-and-cut approach to solve a competition problem. Since the min-max objective only

considers the longest route with the latest arrival time, several optimal solutions with the same70

objective function value could be obtained (Golden et al., 2014). This property can be made use

of as the decision maker will have the added flexibility in selecting the next appropriate optimal

configuration based on other non-quantifiable measures if need be.

It is worth noting that there are two definitions of the maximum arrival time in the literature

(Golden et al., 2014). These include (a) the time when the last location (customer) is served75

(Campbell et al., 2008), and (b) the time when the vehicle arrives at the depot (Van Hentenryck

et al., 2010). Definition (a) is useful in the context of delivery where there is no time pressure for

the vehicle to return to the depot after serving the last customer, whereas (b) is more suitable

for pick-up problems including emergency evacuation situations. In this study, we consider (a)
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as it is commonly used in the existing CCVRP literature.80

The contribution of this paper is fourfold:

(i) To propose an effective AVNS algorithm for the CCVRP and present new best results. We

also tested our algorithm on the large instances besides the small and medium instances

considered in the existing literature;

(ii) To demonstrate the flexibility and effectiveness of the AVNS algorithm to solve a related85

routing problem, the min-max CCVRP;

(iii) To present for the first time a large set of results for the min-max CCVRP;

(iv) To explore the managerial insights for decision making when considering these two objecti-

ves.

The rest of the paper is organized as follows. Section 2 presents the proposed AVNS algorithm90

for the CCVRP. Explanation of the main steps of the AVNS algorithm is provided in Section

3. This is followed by our computational results in Section 4. A related routing problem with

an alternative objective, namely the min-max CCVRP is discussed in Section 5. Necessary

adaptations of the algorithm and results for the min-max CCVRP are also presented in this

section. In Section 6, for decision making purposes, managerial insight of considering the two95

objective functions is highlighted. Section 7 discusses the effects of doubling up the number of

runs on both the min-sum and the min-max CCVRP results. Finally, Section 8 concludes our

findings.

2. Problem statement and the proposed algorithm

The CCVRP is defined on a complete undirected graph G = (V,E), where V = {0, 1, ..., n, n+1}

is a set of vertices with the first and the last vertices (0 and n + 1) correspond to the depot,

and V ′ = V \{0, n + 1} is the customers set. The edge set E(i, j) : i, j ∈ V, i < j denotes the

edges connecting all the vertices. Each edge (i, j) ∈ E is associated with a distance dij. It

is assumed that the distance is equivalent to the travel time and cost, therefore they are used

interchangeably throughout this paper. Each customer i ∈ V ′ is associated with a non-negative

demand, qi and must be visited only once. The limited set of homogeneous vehicles is defined

by R and each vehicle has capacity Q. The initialization of |R| will be discussed in Section 3.1.

Let tki be the arrival time of vehicle k at customer i. The aim of the CCVRP is to define a set of

vehicle routes that start and end at the depot where the demand of each route does not exceed

the vehicle capacity. The objective function is the minimisation of the sum of arrival times at

4



the customers, which is given as follows:

min C(x) =
∑

k∈R

∑

i∈V ′

tki subject to: Λ (1)

where Λ refers to the set of constraints which includes tki ≥ 0, k ∈ R, i ∈ V ′. The mathematical100

formulation for this problem can be found in Ngueveu et al. (2010).

In this study, we propose an adaptive variable neighbourhood search (AVNS) with a guided

diversification based on large neighbourhood search (LNS). The basic idea of VNS (Mladenović

and Hansen, 1997) is to change neighbourhoods systematically while using a local search to get

into the corresponding local optimum.105

Our AVNS, as presented in Algorithm 1, consists of two stages where Stage 1 represents the

learning stage whereas Stage 2 is the multi-level Kth best improvement VNS. The purpose of

Stage 1 is to gather the useful information through learning to identify the importance of each

of the local search operators. Stage 2, on the other hand, incorporates such information to

intelligently select a smaller number of operators at each iteration when solving the problem. In110

Stage 1, the best improvement VNS is adopted and the frequency of success of each local search

operator is recorded. Stage 2 is different from Stage 1 in two ways: (i) a smaller number of local

search operator is selected pseudo-randomly based on the information recorded in Stage 1, (ii)

the multi-level Kth best improvement approach is used as the local search engine.

Note that the Kth best improvement strategy is a compromise strategy that sits between the115

first and the best improvement strategies. The former though quicker could yield a marginal

improved solution only whereas the latter may require an excessive computational time without

a significant improvement. The Kth strategy aims to yield a good quality solution while requiring

a reasonable amount of time (see Salhi, 2017 for more details). In our Kth best improvement

strategy, K improving moves are evaluated and the best one selected.120

While most of the AVNS in the literature focus on adapting the shaking step in the VNS (see

Stenger et al., 2013, Li et al., 2015, Hof et al., 2017) or in the diversification stage in Wei et al.

(2014) to select one of the few diversification mechanisms probabilistically, our algorithm applies

an intelligent selection mechanism in the local search step instead. Very recently, the AVNS has

shown to be successful in producing very promising results for the classical VRP (Sze et al., 2016).125

We aim to adopt this effective adaptive search algorithm by introducing some new interesting

features that relate to the CCVRP.

2.1. Stage 1 of the AVNS algorithm

At the beginning of Stage 1 (line 1 in Algorithm 1), we first define a set of neighbourhood

structures Sp, for p = 1, ..., pmax, local search operators, Lh, for h = 1, ..., hmax, and set the score130
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Algorithm 1 The AVNS algorithm (Stage 1).

Require: Initial solution x.
1: Define MaxDiv, Sp; p = 1, ..., pmax, and Lh; h = 1, ..., hmax. Initialise Score(Lh) = 0,
λ = λmin, numDiv = 1 and xbest = x.

2: while (numDiv ≤MaxDiv) do
3: Set p← 1.
4: while (p ≤ pmax) do
5: Shaking : Generate x′ from the pth neighbourhood of x (i.e., x′ ∈ Sp(x)).
6: Best improvement local search: For each Lh, find Gain(Lh).
7: Select the maximum gain, max

1≤g≤hmax

Gain(Lg) and perform the move to obtain x′′.

8: Move or not :
9: if (C(x′′) < C(x)) then
10: x← x′′ and p← 1.
11: else
12: p← p+ 1.
13: end if
14: end while
15: if (C(x) < C(xbest)) then
16: xbest ← x and λ← λmin.
17: else
18: λ← λ+ 0.05n.
19: end if
20: Diversification: Apply the LNS based on λ to get x̃.
21: if (C(x̃) < C(xbest)) then
22: xbest ← x̃.
23: end if
24: Set numDiv ← numDiv + 1 and x← x̃.
25: end while
26: Learning : For each operator Lh, compute the probability, Prob(Lh) and cumulative proba-

bility, F (Lh) for h = 1, ..., hmax.

(Cont.)

of the operator, Score(Lh) = 0. An initial solution, x is generated and used as the global best,

xbest. While the stopping criterion is not met, the main steps of the VNS are repeated iteratively

(lines 2–26). In the shaking step (line 5), a random solution x′ is generated from S1(x) and then

improved by the best improvement procedures iteratively to obtain x′′. Here, for each operator

Lh, we find the Gain(Lh) in performing the move where more details are provided in Section135

3.5.3. The operator with the maximum gain is selected and performed to improve the solution x′

(i.e., Lh = Arg max
1≤g≤hmax

Gain(Lg)). In addition, the score of operator Lh is computed by adding

the current score to the marginal relative gain as shown in Equation (2).

Score(Lh) = Score(Lh) +
Gain(Lh)

max
1≤g≤hmax

Gain(Lg)
, h = 1, ..., hmax (2)
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Algorithm 1 The AVNS algorithm (Stage 2).

27: Define lcmin, lcmax, MaxDiv2 and initialise λ = λmin, nonImproveDiv = 0.
28: while (nonImproveDiv ≤MaxDiv2) do
29: Set p← 1.
30: while (p ≤ pmax) do
31: Operator selection from learning : Randomly generate mmax ∈ [lcmin, lcmax].
32: for (m = 1 to mmax) do
33: Generate α ∈ (0, 1), find L̂h = F−1(α) with F defined in Equation (3)
34: Choose the operator based on L̂h and set Wm ← L̂h.
35: end for
36: Sort the operator Wm; m = 1, ...,mmax based on their complexity.
37: Shaking : Generate x′ from the pth neighbourhood of x (i.e., x′ ∈ Sp(x)).

38: Multi-level Kth best improvement local search:
39: Set m← 1.
40: while (m ≤ mmax) do
41: Find Gain(Wm) using the Kth best improvement and perform the move to obtain

x′′.
42: if (C(x′′) < C(x′)) then
43: x′ ← x′′ and m← 1.
44: else
45: m← m+ 1.
46: end if
47: end while
48: Move or not :
49: Same as lines 9–13 except x′ is used instead of x′′.
50: end while
51: if (C(x) < C(xbest)) then
52: xbest ← x, λ← λmin and nonImproveDiv ← 0.
53: else
54: λ← λ+ 0.05n and nonImproveDiv ← nonImproveDiv + 1.
55: end if
56: Diversification: Apply the LNS based on λ to get x̃.
57: Same as lines 21–23 and set x← x̃.
58: end while

If the local minimum x′′ is better than the incumbent best solution x, we set x = x′′ and the

search reverts back to the first neighbourhood S1, otherwise the search will explore the next140

neighbourhood (i.e., p = p+1) where the VNS steps are then repeated (lines 9–13). This process

continues until p reaches pmax (lines 4–14).

After all the neighbourhoods are explored, the incumbent x is compared against the global best,

xbest (lines 15–19). If x is better than xbest, we set xbest = x and the diversification control

parameter, λ = λmin; otherwise λ is increased by 0.05n. This parameter is used to guide the145

large neighbourhood search (LNS) diversification. A new perturbed solution is then created

using the LNS (line 20) and the process reverts back to S1 to repeat the VNS. This LNS-based

strategy will be revisited in Section 3.8.
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The search stops when a predefined maximum number of diversifications is reached. Stage 1 is

ended by the learning step (line 27) where the probability and cumulative probability for each150

operator are computed using Equation (3). Such information is used in Stage 2 for the selection

of the operators.

Prob(Lh) =
Score(Lh)

hmax
∑

h=1

Score(Lh)

and F (Lh) =
∑

Lh≤Lhmax

Prob(Lh). (3)

2.2. Stage 2 of the AVNS algorithm

In Stage 2, the parameters such as λ, the number of operators to be selected and the stop-

ping criterion are first initialized. We use a fixed number of non-improved diversifications (i.e.,155

MaxDiv2) as our termination criterion. While such criterion is not met, the adaptive VNS is

carried out by first selecting a set of mmax operators pseudo-randomly based on L̂h = F−1(α)

where α ∈ (0, 1) (lines 33–36). Here, the higher the score for an operator is, the greater the

chance for such an operator to be selected. Such a mechanism as shown in Figure 1, is also

referred to as the inverse method in the literature (Elshaikh et al., 2015; Sze et al., 2016).

 

繋岫詣朕岻 

詣朕尿尼猫 

Į 

0 

1 

詣侮朕 

Figure 1: Selection of the operator using the cumulative probability.

160

The operators,Wm (m = 1, ...,mmax), are then sorted in levels such that the operator in Level 1 is

the simplest, followed by Level 2 which is the second simplest until Level mmax the most complex

one, with the order stated in Section 3.7. Next, the shaking step with the same neighbourhood

structures defined in Stage 1 is performed (line 38), and followed by the multi-level Kth best

improvement local search (lines 39–48). This local search engine is based on the multi-level165

metaheuristic originally presented by Salhi and Sari (1997) for the multi-depot VRP. Initially,

we setm = 1 and apply the first level of refinement with the local searchW1 where the calculation

of Gain(Wm) (line 42) will be revisited in Section 3.5.3. If the solution x′′, which is found based

on the Kth best improvement selection strategy is better than x′, we set x′ = x′′ and the search

reverts back to m = 1, otherwise we proceed to the next level by setting m = m + 1. Since the170

operators are sorted based on the complexity of the move, it is worth reverting back to Level 1

where the search is relatively less computationally expensive. When the solution could not be
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improved further in the current level, the next level is used with the aim to improve upon the

solution. This process continues until all levels are explored (i.e., m = mmax) where the LNS

diversification is performed (lines 57–58). The search terminates when there is no improvement175

on the solution after a maximum number of consecutive diversifications.

3. Explanation of the main steps

3.1. Initialisation of |R|

Ngueveu et al. (2010) pointed out that when there is an unlimited number of vehicles available,

the number of routes in the optimal solution of the CCVRP is simply the total number of180

customers, n. Therefore, to enable a consistent comparison of our algorithm with the others, the

number of vehicles is fixed as suggested in the literature. For those instances that have not been

solved for the CCVRP before, we initially define the number of routes using the lower bound

|R| = ⌈
∑

i∈V ′ q̃i/Q⌉ and generate the initial solution. The AVNS algorithm is then executed. If

the solution obtained is infeasible after 5 runs, we add a new route to the solution and re-run185

the AVNS. This process is repeated until the solution is feasible or the number of routes is equal

the one found in our VRP solution in Sze et al. (2016). We note that the number of routes for

the CCVRP can be smaller or equal the one found in the VRP as the route length constraint is

not imposed for the CCVRP.

3.2. Initial solution190

A parallel greedy insertion method is adopted to generate an initial solution. In other words, we

first assign the nearest |R| customers to the depot as the first customer in the routes, followed

by the computation of the insertion costs for the remaining customers. The customer with the

lowest insertion cost (among all routes) is then assigned accordingly. In the case of a tie, the

customer with a precedent index is chosen. These steps are repeated until all customers are195

inserted.

If a feasible insertion is not found for a customer ‘a’, we employ a simple perturbation strategy

by considering removing an existing customer, say customer ‘b’ one-by-one systematically from

the routes and inserting customer ‘a’ in this route, where this move must be a feasible move

irrespective of the cost of insertion. Customer ‘b’ will then be inserted to another route by200

repeating the same process until both customers ‘a’ and ‘b’ are inserted or the termination

criterion is reached. Here, we maintain a simple tabu list of size ts = max(5, 0.01n) to prevent

the same customers to be deleted each time. When a customer (‘a’ or ‘b’) is inserted, it is

flagged tabu so that it will not be deleted in the next ts iterations. This perturbation strategy

terminates when there is no other customer that can be deleted from the routes to enable a205

feasible insertion of customer ‘b’. For this case, customer ‘b’ is added to the route with the
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smallest capacity violation and the route is penalized accordingly as will be discussed in Section

3.4.

3.3. Neighbourhood reduction scheme

To increase the efficiency of our AVNS algorithm in terms of computational time, we propose210

a neighbourhood reduction scheme which is used throughout both stages of our algorithm. For

each customer i, we identify a set of neighbouring customers which could be potentially placed

next to i in a route hence restricting the search to those customers only (Salhi and Sari, 1997;

Sze et al., 2016). A binary matrix, Flag ∈ R
(n+1)×(n+1) is defined where we set Flag(i, j) = 1 if

customers i and j are potential customers to be placed next to each other. To define the values215

for Flag, a simple qth quantile method is adopted. Here, for i = 0, ..., n, the top qth quantile

nearest customers (based on distance) to i are assigned a value 1. This mechanism has an added

advantage that each vertex has approximately the same number of neighbours. For the CCVRP

problem, the arrival time at the last vertex (depot) is not considered in the cost and therefore we

set Flag(i, 0) = 0 for all i ∈ V . It is worth noting that, contrarily to the VRP, this is a special220

asymmetric case where Flag(0, i) is not necessarily equal to Flag(i, 0).

3.4. Penalized objective function

During the search, the algorithm only considers moves that can improve the current solution.

To increase flexibility in exploring the search space, the improvement moves are extended to

infeasible moves by attaching penalties in the objective function. To guide the search from225

diverging in case of infeasible moves, we restrict these to be within a certain violation threshold

value.

Suppose Ck is the sum of arrival times for customers in route k, Q̃k the route demand and ηk

the penalized cost for capacity where k = 1, ..., |R|. Two user-defined parameters, β and γ are

introduced to control the penalized value, ζ. Equation (4) states that the maximum percentage of

the capacity violation allowed in a route is restricted to remain within β, whereas γ in Equation

(5) controls the percentage of increase in the total arrival times for a violated route. The value of

γ must be carefully selected such that it is effective enough to penalize even the small violation.

The penalized value ζ is defined in Equation (6), which is used to calculate the penalized cost,

ηk in Equation (7). Finally, the augmented objective function for route k is then defined by

10



Equation (8).

Q̃k ≤ (1 + β)Q (4)

Ck + ηk ≤ (1 + γ)C̄, where C̄ =
∑

k∈R

Ck

|R|
(5)

ζ = γ/β × C̄ (6)

ηk = max(0,
Q̃k −Q

Q
× ζ) (7)

C ′
k = Ck + ηk (8)

3.5. Evaluation of the cost of a move

For the CCVRP, to evaluate the cost of traversing from point i to j, we need to know not only

the distance between i and j but also the remaining customers to be visited in the route. This230

is because the time spent travelling between i and j adds to the arrival times at the remaining

customers in the route. Due to this special cost structure, we find it appropriate to provide the

necessary route cost calculations in the following subsections.

Let Ri
k, ..., R

nk
k with Rj

k being the jth customer in route k, j = 1, ..., nk, k = 1, ..., |R|. The total

cost of route k is given as the sum of the nk arrival times of the customers along the route:235

Ck =

R
nk
k

∑

i=R1
k

tki , k = 1, ..., |R| (9)

Since it is computationally expensive to calculate all the relevant values for each move, some

information is pre-computed and is updated as the search progresses. For each route k, we

compute the cumulative cost, tki up to the ith customer in the route.

3.5.1. Cost variation of removing customer(s)

The cost variation when u customers are removed, starting from the ith customer until the

(i+ u− 1)th in route k is given as:

ψ−
k (u) =

Ri+u−1
k
∑

p=Ri
k

tkp + (nk − (i+ u− 1))×∆G+(k, u, i), (10)

where ∆G+(k, u, i) =

Ri+u−1
k
∑

a=Ri−1
k

da,a+1 − dRi−1
k ,Ri+u

k

The first part of Equation (10) is the sum of the cumulative costs for the u customers that are to240
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be removed, which are already computed beforehand. The second part of the equation is based

on the original gain of this move, ∆G+(k, u, i) (i.e., as the one in the classical VRP) and the

remaining customers in the route. The calculation of the route cost using this cost variation is

explained in Section 3.5.3.

To speed up the algorithm, the cost variation of removing one (u = 1) and two customers (u = 2)245

are computed beforehand by Equation (10) and stored using a special data structure. This is

motivated by the idea of using preprocessed information for the evaluation of moves proposed by

Vidal et al. (2014) which has also been successfully implemented in Sze et al. (2016). To increase

the efficiency of the data structure proposed in Sze et al. (2016), another memory structure

that stores the cost variation of removing two customers, in addition to the removal costs for250

one customer only is also added. In other words, the cost variation of removing each customer,

Z1 ∈ R
n and the cost variation of removing two consecutive customers, Z2 ∈ R

n from the routes

are stored. Z1 is used for all the operators when a single customer is removed from a route

(i.e., the 1-insertion and the 1-1 exchange), whereas Z2 is applied for the operators that involve

the removal of two customers (i.e., the 2-insertion and the 2-1 interchange), see Section 3.6 and255

Section 3.7 for details. When a customer in route k has changed its position, the values of Z1

and Z2 for all customers of route k need to be updated. The use of this data structure speeds

up the evaluation of the moves process as this information can be used directly when needed

without the re-computation of such information again.

3.5.2. Cost variation of inserting customer(s)260

The cost variation of inserting u customers (which is removed from route k) at position j in

route l is given in Equation (11), where t
′l
p is defined as the new cumulative distances of the u

customers to be inserted in route l.

ψ+
l (u) =

Ri+u−1
k
∑

p=Ri
k

t
′l
p − (nl − j + 1)×∆G+(k, u, i, l, j), (11)

where ∆G+(k, u, i, l, j) = dRj−1
l ,Rj

l
− (dRj−1

l ,Ri
k
+

Ri+u−2
k
∑

a=Ri
k

da,a+1 + dRi+u−1
k ,Rj

l
)

Note that in Equation (11), contrary to Equation (10), the remaining customers do not change

regardless of the number of customers inserted.
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3.5.3. Evaluating the route cost

When evaluating the cost of a move, the change of the penalty cost needs also to be computed

as shown in Equation (12).265

∆ηk = ηoldk − η
new
k , k = 1, ..., |R| (12)

For a particular move in any route k, the gain of the route cost, ∆Ck(u, w) is computed by

removing ‘u’ of its customers and receiving ‘w’ customers from another route (route l) as given

in Equation (13). This is performed in a similar way for route l where w customers are removed

while u customers are inserted.

∆Ck(u, w) = ψ−
k (u)− ψ

+
k (w) + ∆ηk,

∆Cl(w, u) = ψ−
l (w)− ψ

+
l (u) + ∆ηl (13)

In Algorithm 1, the operators Lh in Stage 1 (line 6) and Wm in Stage 2 (line 42) are represented

by u and w (e.g., 1-insertion means u = 1 and w = 0 while 2-1 exchange refers to u = 2 and

w = 1 for route k and vice versa for route l). For a move that involves two routes (k and l),

Gain(Lh) is the maximum gain obtained by operator Lh which is defined by a move that removes

u customers from route k to be inserted to route l and receives w customers from route l to be

inserted into route k as shown in Equation (14). Likewise, the Kth maximum gain in Stage 2,

Gain(Wm) is represented in Equation (15), where Kmax denotes the maximum value among the

K gains.

Gain(Lh) = max
k,l∈R
{∆Ck(u, w) + ∆Cl(w, u)} (14)

Gain(Wm) = Kmax
k,l∈R

{∆Ck(u, w) + ∆Cl(w, u)} (15)

Here, a positive value of Gain(Lh) or Gain(Wm) indicates an improvement move whereas a

negative value displays a non-improving move. Note that Equation (13) is used in the evaluation

of moves in both the shaking and the local search steps in Stage 1 and Stage 2 of the AVNS

algorithm (Algorithm 1).

Finally, the new route cost for route k̄ which is affected by a move due to operators Lh or Wm270

is obtained by Equation (16).

Ck̄ = Ck̄ −∆Ck̄, (16)

3.5.4. Effect of the reversed route

One important characteristic of the CCVRP is that the route cost depends not only on the edges,

but also on the order of the customers in the solution. In other words, the route cost for any

route may be different when the route is reversed. Besides, a reduced cost is obtained when the275
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shorter edges are visited first followed by the longer ones as illustrated in Figure 2. It is therefore

necessary to compute the cost of the reversed route to check whether or not the route is worth

reversing.

Let C̃k be the cost of route k in reversed order and Dk =
∑R

nk+1

k

j=R1
k
dj−1,j the route length in the

classical VRP. C̃k can then be expressed in Equation (17) as given by Ngueveu et al. (2010):280

C̃k = nkDk − Ck (17)
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Figure 2: An example of a reversed route in the CCVRP.

3.6. Neighbourhood structures

In this study, five neighbourhood structures are defined in the following order: S1: 2-insertion;

S2: 2-1 interchange; S3: segment reshuffle; S4: cross-exchange and S5: head swap. All neig-285

hbourhoods except for S3 are inter-route moves. Here, the moves are conducted by randomly

choosing a route (donor) and its customer(s) and then moving them to other route(s) (receiver)

by considering the positions in the receiver route(s) systematically until the first feasible move

is obtained.

2-insertion : In this neighbourhood, two consecutive customers are removed from a randomly290

selected route. The customers are then split and inserted into two different receiver routes

separately.

2-1 interchange : The 2-1 exchange operator first exchanges one of the two customers removed

from a randomly selected route with a customer from the first receiver route and then inserts

the second customer into the other receiver route.295

Segment reshuffle : Since the order of the customers in a route has a significant effect on

the cost, this neighbourhood aims to shake the customers order. For this move, a segment of
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s̃1 customers in a randomly selected route (k) is reshuffled, where s̃1 is randomly chosen in the

range of [0.5nk, 0.7nk].

Cross-exchange : This neighbourhood attempts to exchange a segment of m̃1 customers in the300

donor route (j) with a segment of m̃2 customers from the receiver route (k). The values of m̃1

and m̃2 are randomly chosen in the range of [0.2nj, 0.4nj] and [0.2nk, 0.4nk] respectively.

Head swap: This neighbourhood intends to shake the first half of the routes since a good

solution of the CCVRP tends to have shorter edges in the early part of the route. Here, the first

half segment (head) of a route is swapped with the head from the other route where the size of305

the heads may be different.

3.7. Local search engine

The local search engine consists of six operators: (i) 1-insertion, (ii) 1-1 exchange, (iii) 2-insertion,

(iv) 2-opt, (v) 2-opt* and (vi) cross-tail. The first three operators consider both intra and inter-

routes moves, the 2-opt is an intra-route operator whereas the last two consider only inter-routes310

moves. In Stage 1 of the AVNS algorithm, all six operators are carried out and the move with

the overall best improvement is performed in each iteration. On the other hand, a subset of these

operators is selected in Stage 2 with the best value among K improvements is selected.

1-insertion : In this operator, a customer is removed from its position and reinserted elsewhere

either in the same or in a different route.315

1-1 exchange : This operator aims to swap two customers from two different positions or routes

in which the positions of removal and insertion are not necessarily the same.

2-insertion : Here, we remove two consecutive customers from a route and insert them elsewhere

following the original or the inverted sequence.

2-opt : The 2-opt aims to remove a pair of non-adjacent edges and replace with a new pair in320

the same route (Lin, 1965).

2-opt* : This operator considers deleting and replacing two edges in two different routes.

Cross-tail : In this operator, the tail of a route of all possible sizes are considered. This tail

is then exchanged with the tail from another route where the sizes of the two tails are not

necessarily the same and the order of the customers may be reversed (Sze et al., 2016).325

3.8. A LNS diversification strategy with a VNS structure

In both stages of the AVNS algorithm, a large neighbourhood search (LNS) diversification stra-

tegy is adopted when all the neighbourhoods are being explored. Such a strategy, which can

been seen as a more powerful shaking procedure, aims to search in other promising regions
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that may not have been visited before. Using the LNS, some customers are removed and then330

reinserted back to the routes to produce a new solution. As the success of this algorithm de-

pends highly on the intensification of the removal strategy, the perturbation intensity has to

be carefully monitored so that the algorithm is effective in guiding the search toward escaping

from the local optimum while not degrading the solution to a random restart point. Here, the

LNS which we propose follows a VNS structure. The diversification control parameter, λ, re-335

presents the number of customers to be deleted from the routes which is defined in the range

of [λmin, λmax] = [max(10, 0.1n),min(300, 0.3n)]. Initially, we set λ = λmin and its value is

gradually increased if no better solution is found. Once a new best solution is obtained, λ is

reinitialized to the minimum value. We consider four removal and two insertion strategies. In

the diversification step, one from each of the removal and the insertion strategies are chosen at340

random.

Random removal

In this removal strategy, a set of λ customers are randomly selected and removed from the routes.

The random removal tends to result in a poorer solution but it gives a reasonable diversification

to the solution.345

Worst removal

Suppose C(x) is the cost of the solution x and C−i(x) is the cost after customer i is deleted, the

gain(i) is defined as the difference between the cost when customer i is in, and removed from,

the solution. This is given as gain(i) = C(x) − C−i(x). The customer is chosen based on its

corresponding gain ratio which is stated as follows:350

ratio(i) = demand(i)/gain(i)

To avoid a deterministic removal, the customers are selected based on probability values (Ropke

and Pisinger, 2006). Let L̃ be the array of all customers sorted in descending ratio, z be a uni-

formly distributed random number chosen in the range [0, 1), and θ is a user-defined parameter.

The algorithm then selects customer a = L̃[⌈zθn⌉] from array L̃ and removes it. This process is355

repeated until λ customers are deleted from the solution. Here, the value of θ is defined such

that the customer with a small demand and a high gain has a higher chance to be selected. Since

array L̃ is sorted in descending order, we set θ < 1 leading to zθ closer to 1 which will guarantee

a high value of zθn (i.e., closer to n). A similar sorting scheme can also be used by sorting the

ratio in ascending order while setting θ > 1. As an illustration example, we set θ = 0.2 (this360

is the value we used in our experiments) and suppose n = 100. When z = 0.3, L̃[79] will be

selected and for z = 0.8, L̃[96] is deleted. This rule can also be considered as a simple look-ahead

strategy to allow for more freedom at the insertion stage.
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Worst-distance removal

The worst-distance removal simply computes the distances between every edge in the routes and365

sorts them in increasing order. The selection of customers that are connected by the edges is

performed at random, using the probability method as previously described.

Conflicting sector removal

This removal strategy starts by dividing the route plane into different sectors based on the angle

from the depot where the vertices are given in X-Y coordinates, and computing the number of370

routes contained in each sector. The sector which has the largest number of routes is identified

and λ customers in the sector are then removed. When there are two or more sectors having an

equal number of routes, the tie is broken by choosing one of these sectors randomly. To provide

diversity when defining the sectors, the initial point of computing the angle from the depot

starts at a randomly chosen customer which can be considered in clockwise or anti-clockwise375

direction.

Basic greedy insertion

In the repair phase, we apply the basic greedy least-cost insertion. Let ∆fi,k be the change

in the objective value when customer i is inserted into route k at the position that increases

the objective function the least. We set ∆fi,k = ∞ if customer i cannot be inserted into route380

k. Let Ω be the set of customers that is removed using the LNS removal strategy. For each

unassigned customer i ∈ Ω, the algorithm computes ∆fi,k and then inserts customer i that

yields mini∈Ω∆fi,k. This process is repeated until all customers in Ω are assigned to the routes.

For the case when a feasible insertion is not found, the same perturbation strategy, as discussed

in Section 3.2, is applied.385

Regret cost insertion

The regret cost insertion tries to improve the myopic behaviour of the greedy insertion (Ropke and

Pisinger, 2006). Here, for each removed customer i, the regret value is defined as the difference

between the cost of inserting customer i to the best position and the second best position. The

customer with the highest regret value is chosen to be inserted in each iteration, until all the390

customers are added back to the routes. This rule is commonly used in the generation of an initial

solution for the classical transportation problem (i.e., Vogel Approximation Method).

4. Computational experiments for the CCVRP

The proposed AVNS algorithm is coded in C++ and run on a Intel Core i7 3.4 GHz PC with 8

GB RAM. The effects of diversification and Stage 2 in the AVNS algorithm are first investigated,395

followed by a full experiment to evaluate the performance of our algorithm compared to the
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ones published in the literature. Four VRP benchmark data sets which consist of the small

(Christofides et al., 1979; Fisher, 1994), medium (Golden et al., 1998) and large (Li et al., 2005)

instances are used for computational experiments. They are referred to as Set 1a, Set 1b, Set

2 and Set 3 hereafter. The data points, which are given in X-Y coordinates in Set 1a and Set400

1b are randomly distributed whereas instances in Set 2 and Set 3 are based on some geometry

structures (concentric circles, squares and stars). There are 7 and 20 instances in Set 1a and

Set 2 respectively, where the results are reported in the CCVRP literature. However for Set 1b

and Set 3 which consist of 3 smaller and 12 larger instances respectively, there are no results

available for comparison as these are tested for the CCVRP for the first time. For convenience,405

all the data can be downloaded from CLHO (2016).

Preliminary experiments show that qth = 3% is sufficient to be used in the neighbourhood

reduction scheme. In Stage 2 of the AVNS algorithm, we define K = 3 for the Kth best impro-

vement and the range for the number of local search operators, [lcmin, lcmax] = [3, 5]. For the

penalized objective function, β = 0.05 and γ = 0.60 are used. We set the parameter, θ in the410

worst removal and worst-distance removal of the LNS to be 0.2, whereas the angle used to define

the sector in the conflicting sector removal is π/12.

For comparisons purpose, we present, as previously shown in the literature, the best and the

average results obtained by our algorithm together with the results found in the CCVRP papers.

Moreover, the relative percentage deviation: ((CBest−CBKS)/CBKS)× 100 is computed for each415

instance, where CBest and CBKS represent the best result found using our algorithm and the best

known solution value reported in the literature respectively.

4.1. The effects of diversification and Stage 2 in the AVNS algorithm

To study the effect of diversification, we first run the algorithm by fixing the stopping criterion

as four diversifications for Stage 1 and four non-improved diversifications for Stage 2 and record420

the time consumed. The same amount of time is used to execute the algorithm without diversi-

fication. Similarly, we run Stage 1 only by fixing the running time at the same value as the one

consumed when the algorithm is executed fully for both stages. This test is performed over 5 runs

for each variant in Set 1–Set 3 and the results are presented in Table 1 with C
(1)
Avg, C

(2)
Avg, CAvg,

TAvg refer to the average cost without diversification, without Stage 2, average cost and time425

with both diversification and Stage 2 respectively. It is apparent that the use of both of these

strategies achieves better solution compared to the one without. More specifically, the results

are improved by 2.72% when the diversification is included and 1.64% when Stage 2 is executed

in the algorithm. In addition, the effects are more significant for medium and large-sized test

instances. This experiment illustrates the effectiveness of the diversification strategy and the use430

of Stage 2 making such additions worthwhile to be included.
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Table 1: The effects of diversification and Stage 2 in the AVNS algorithm.

No Diversification No Stage 2 With Diversification & Stage 2

C
(1)
Avg C

(2)
Avg CAvg TAvg (s)

Set 1a 4431.54 4357.60 4348.91 42.97
Set 1b 3637.45 3594.70 3562.64 8.99
Set 2 66360.17 65776.93 64804.86 570.62
Set 3 921002.35 912138.03 886431.52 2190.55

Gap (%) 2.72 1.64

Gap (%) = (C
(p)
Avg − CAvg)/CAvg × 100, for p = 1, 2.

4.2. Comparisons with existing CCVRP algorithms

In this section, we present the results obtained using the AVNS algorithm compared to the

existing three algorithms available in the literature. The stopping criterion we apply is four

diversifications for Stage 1 and four non-improved (consecutive) diversifications for Stage 2.435

This setting is found after some preliminary experiments.

The computational results for Set 1a and Set 2 are summarized in Table 2 and Table 3 respecti-

vely. Our results are shown in the last three columns under AVNS. For each instance, we show

the best and the average solutions obtained by our algorithm over 5 runs, such that they are

consistent with the other algorithms in the literature that use the same number of runs. It440

is worth mentioning that the CBest reported is the best result obtained in 5 independent runs

with each run using the same initial solution. The deviation of the best solution from the BKS

value is stated as Dev. The gap between the average solution and the best solution obtained

(Gaprobustness) is also reported here. For instances where new solutions are found, the values of

these new results are used as the BKS instead.445

For Set 1a, our solutions reach all previously best known solutions while identifying one new

best result (i.e., C5), with a 0.06% improvement over the previous best solution obtained by the

two-phase metaheuristic (Ke and Feng, 2013). Optimal solutions were reported for five instances,

namely C1–C4 and C12, by Lysgaard and Wøhlk (2014). These instances are marked with a

‘*’ in Table 2, where our results match all these optimal values. Besides, based on the lower450

bounds (LB) provided in the literature (see Lysgaard and Wøhlk, 2014), the optimality gap of

our solutions for C5 and C11 are 0.53% (LB=5775.28) and 1.62% (LB=7197.69) respectively.

These results demonstrate that the AVNS is very effective at solving the CCVRP. In addition,

the gap between the average solution and the best solution is just about 0.35%, which indicates

that our algorithm is very robust for tackling this class of routing problems.455
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Table 2: Results for Set 1a (Christofides et al., 1979) instances.

MA1 MA2 ALNS 2-phase meta AVNS

#(n) |R| BKS CBest CAvg Dev CBest CAvg Dev CBest CAvg Dev CBest CAvg Dev CBest CAvg Dev
(%) (%) (%) (%) (%)

C1(50) 5 *2230.35 2230.35 2230.35 0.00 2230.35 2245.74 0.00 2230.35 2235.27 0.00 2230.35 2240.21 0.00 2230.35 2243.82 0.00
C2(75) 10 *2391.63 2421.90 2443.07 1.27 2429.18 2556.24 1.57 2391.63 2401.72 0.00 2391.63 2430.48 0.00 2391.63 2393.16 0.00
C3(100) 8 *4045.42 4073.12 4073.12 0.68 4073.12 4079.69 0.68 4045.42 4063.98 0.00 4045.42 4064.22 0.00 4045.42 4075.25 0.00
C4(150) 12 *4987.52 4987.52 5020.75 0.00 4987.52 4996.84 0.00 4987.52 4994.93 0.00 4987.52 5001.67 0.00 4987.52 4993.57 0.00
C5(199) 17 5806.02 5810.12 5842.00 0.07 5810.12 5840.77 0.07 5838.32 5857.76 0.56 5809.59 5856.46 0.06 5806.02 5836.75 0.00
C11(120) 7 7314.55 7317.98 7395.83 0.05 7347.49 7395.46 0.45 7315.87 7341.28 0.02 7314.55 7334.09 0.00 7314.55 7335.51 0.00
C12(100) 10 *3558.92 3558.92 3559.23 0.00 3559.43 3559.43 0.01 3558.92 3566.06 0.00 3558.92 3561.11 0.00 3558.92 3567.90 0.00

Average 4342.84 4366.34 0.30 4348.17 4382.02 0.40 4338.29 4351.57 0.08 4334.00 4356.45 0.01 4333.49 4348.91 0.00

#Best 3 2 5 6 7

#Worst 1 4 1 0 0
Gaprobustness (%) 0.45 1.06 0.30 0.61 0.35

*optimal solution (Lysgaard and Wøhlk, 2014),
MA1 and MA2: Ngueveu et al. (2010), ALNS: Ribeiro and Laporte (2012), 2-phase meta: Ke and Feng (2013), Dev = (CBest − CBKS)/CBKS × 100, Gaprobustness = (CAvg − CBest)/CBest × 100

Table 3: Results for Set 2 (Golden et al., 1998) instances

MA1 MA2 ALNS 2-phase meta AVNS

#(n) |R| BKS CBest CAvg Dev CBest CAvg Dev CBest CAvg Dev CBest CAvg Dev CBest CAvg Dev
(%) (%) (%) (%) (%)

G1(240) 9 54683.36 54815.17 54878.25 0.24 54826.53 54917.44 0.26 54786.92 54853.76 0.19 54683.36 54752.56 0.00 54749.30 54789.30 0.12
G2(320) 10 100560.00 100836.90 100918.54 0.26 100800.33 100924.25 0.22 100662.53 100934.34 0.08 100666.06 100780.92 0.09 100560.00 100638.10 0.00
G3(400) 10 170924.00 171277.26 171400.35 0.21 171311.81 171523.42 0.23 171613.59 172231.14 0.40 171040.04 171330.48 0.07 170924.00 171098.60 0.00
G4(480) 10 261993.00 262584.23 262830.96 0.23 262646.37 263020.99 0.25 263433.03 265207.46 0.55 262145.12 262587.54 0.06 261993.00 262178.40 0.00
G5(200) 5 114163.64 114163.64 114237.00 0.00 114163.64 114338.39 0.00 114494.66 114846.27 0.29 114163.64 114171.15 0.00 114163.64 114218.70 0.00
G6(280) 7 140430.09 140430.09 140456.96 0.00 140463.67 140556.57 0.02 140804.64 140929.10 0.27 140430.09 140530.01 0.00 140430.09 140547.20 0.00
G7(360) 8 179388.00 183282.64 186702.15 2.17 190371.53 192578.18 6.12 180481.56 181610.82 0.61 183509.62 184277.02 2.30 179388.00 180131.60 0.00
G8(440) 10 193698.00 194312.60 194510.99 0.32 194273.58 194454.29 0.30 194988.74 195174.85 0.67 193855.58 194171.80 0.08 193698.00 193978.10 0.00
G9(255) 14 4723.77 4730.70 4740.42 0.15 4737.32 4744.14 0.29 4725.58 4728.05 0.04 4723.77 4727.45 0.00 4723.95 4731.05 0.00
G10(323) 16 6712.53 6732.36 6747.10 0.30 6721.16 6742.76 0.13 6713.92 6717.76 0.02 6714.94 6719.24 0.04 6712.53 6724.70 0.00
G11(399) 18 9210.45 9243.05 9259.66 0.35 9240.37 9257.23 0.32 9214.07 9216.60 0.04 9217.63 9225.56 0.08 9210.45 9228.90 0.00
G12(483) 19 12507.50 12629.37 12649.21 0.97 12659.15 12708.54 1.21 12526.17 12543.04 0.15 12549.73 12570.26 0.34 12507.50 12567.80 0.00
G13(252) 26 3628.30 3653.07 3660.93 0.68 3686.62 3965.98 1.61 3628.30 3638.50 0.00 3635.44 3656.13 0.20 3632.61 3658.95 0.12
G14(320) 29 5205.75 5770.02 6045.20 10.83 5826.43 6420.08 11.91 5216.80 5257.95 0.20 5290.05 5309.65 1.61 5205.75 5218.60 0.00
G15(396) 33 7010.13 7077.48 7140.11 0.96 8576.61 8576.61 22.35 7010.41 7023.12 0.00 7026.96 7075.33 0.24 7010.13 7028.93 0.00
G16(480) 37 9248.37 9300.74 9339.45 0.57 9347.02 9420.36 1.07 9250.98 9268.30 0.03 9271.40 9293.68 0.25 9248.37 9276.40 0.00
G17(240) 22 3063.02 3089.99 3130.99 0.87 3095.32 3117.79 1.04 3065.46 3068.29 0.07 3064.47 3073.96 0.03 3063.02 3068.41 0.00
G18(300) 27 4216.01 4528.16 4582.44 7.34 5083.70 5138.01 20.51 4221.14 4244.60 0.06 4311.06 4352.10 2.19 4216.01 4235.92 0.00
G19(360) 33 5502.08 5570.35 5589.12 1.24 5600.05 5631.68 1.78 5523.38 5531.78 0.39 5513.72 5534.05 0.21 5502.08 5537.58 0.00
G20(420) 38 7209.31 7413.58 7473.69 2.83 8453.96 8453.96 17.26 7223.08 7240.86 0.19 7237.40 7303.18 0.39 7209.31 7239.89 0.00

Average 65072.07 65314.68 1.53 65594.26 65824.53 4.35 64979.25 65213.33 0.22 64952.50 65072.10 0.42 64707.39 64804.86 0.01

#Best 2 1 1 4 17

#Worst 3 13 5 0 0
Gaprobustness (%) 0.66 1.20 0.26 0.30 0.26
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In Set 2, we obtain 15 new best known results out of 20 instances as shown in Table 3. These

include G2–G4, G7–G8, G10–G12, G14–G20 instances. Besides, two of our other solutions (G5–

G6) match the best known values whereas the remaining three are very close to the best known

results. The largest solution improvement is observed for instance G7 where 0.61% reduction

over the previous best solution (Ribeiro and Laporte, 2012) is recorded. On the other hand,460

the worst performance are instances G1 and G13 where a 0.12% deterioration is observed. In

addition, the average percentage deviation obtained by our algorithm is less than a tiny 0.01%,

which is the smallest among all the existing CCVRP algorithms in the literature. In terms of

the relative performance, our algorithm is also one of the most robust, as shown by a small gap

of 0.26% between the average and the best solution.465

Table 4: Computational time for Set 1a (Christofides et al., 1979) instances.

#(n) |R| TAvg (s)

MA1 MA2 ALNS 2-Meta AVNS

C1(50) 5 10.63 3.70 30.29 14.70 11.89
C2(75) 10 27.78 2.04 60.77 18.73 15.04
C3(100) 8 97.91 40.46 172.45 50.80 41.03
C4(150) 12 449.44 188.41 235.12 77.23 60.54
C5(199) 17 1035.45 629.27 277.37 112.80 89.75
C11(120) 7 160.64 68.83 202.07 59.70 48.32
C12(100) 10 38.20 23.66 152.74 44.77 34.21

Average 260.01 136.62 161.54 54.10 42.97
Comp spec 3.4GHz 3.4GHz 2.0GHz 2.4GHz 3.4GHz

Table 4 and Table 5 record the corresponding average computational time over 5 runs (TAvg in

seconds) for different algorithms. On average, the best solutions in Set 1a are obtained within

42.97 seconds, and within 570.62 seconds for Set 2. While most of the existing algorithms (MA

and ALNS) are quite computational intensive, the AVNS alongside the two-phase metaheuristic

are very competitive.470

Table 6 presents the new results for Set 1b. Since these instances have not been tested by any

other algorithm for the CCVRP, we report the average and the best solution value, the gap

between these two as well as the average computational time. The gap between the average and

the best solution for Set 1b is 0.48%, which is the greatest among all the four data sets tested

but it is still acceptable. The computational time is rather small, with just about 8.99 seconds475

on average.

In addition, the results on the large data set (Set 3) are also shown in Table 7. It can be observed

that the time spent on the largest instance with 1200 customers (L12) is about 2.9 times the time

spent on the L1 instance of 560 customers. The robustness behaviour of our algorithm has shown

again to be strong given its tiny gap of 0.29% between the best and the average solution.480
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Table 5: Computational time for Set 2 (Golden et al., 1998) instances.

#(n) |R| TAvg (s)

MA1 MA2 ALNS 2-Meta AVNS

G1(240) 9 1593.60 866.80 1038.27 289.69 252.51
G2(320) 10 4549.05 2054.68 1484.74 707.13 710.65
G3(400) 10 9295.64 3336.09 2061.75 1222.34 1217.24
G4(480) 10 12810.31 6557.67 2626.89 1622.14 1484.21
G5(200) 5 471.45 246.05 1200.67 291.52 248.45
G6(280) 7 2358.40 788.71 1547.43 456.82 478.60
G7(360) 8 1537.36 258.45 1926.19 357.77 660.21
G8(440) 10 9598.42 5165.83 2330.34 1244.40 1089.35
G9(255) 14 2453.61 1582.86 864.89 258.62 216.58
G10(323) 16 7652.00 4332.24 1092.34 403.54 441.65
G11(399) 18 8835.74 7429.60 1356.99 590.97 573.07
G12(483) 19 9881.24 3449.06 1540.32 691.26 626.36
G13(252) 26 2012.17 74.31 632.72 163.07 125.93
G14(320) 29 2263.84 9.59 682.19 132.36 161.77
G15(396) 33 5597.98 0.00 855.25 665.37 604.68
G16(480) 37 16204.52 5307.29 1104.53 1015.31 944.18
G17(240) 22 1631.86 431.31 618.70 287.68 237.98
G18(300) 27 2410.30 0.10 630.47 337.73 344.73
G19(360) 33 5535.25 763.56 853.43 525.52 465.40
G20(420) 38 6264.59 0.00 881.92 604.83 528.79

Average 5647.87 2132.71 1266.50 593.40 570.62

Table 6: New results for Set 1b (Fisher, 1994) instances.

#(n) |R| AVNS Gap (%) TAvg (s)

CBest CAvg

F1(44) 10 2411.82 2428.52 0.69 4.34
F2(71) 14 1781.86 1789.54 0.43 8.04
F3(134) 10 6449.04 6469.85 0.32 14.60

Average 3547.57 3562.64 0.48 8.99

5. The CCVRP with min-max objective

An alternative objective that minimises the latest arrival time instead is also investigated in this

study. As the cumulative effect is represented by the last customer in the longest route (i.e., the

arrival times are accumulated from the previous customers), this problem reduces to the min-max

open VRP (OVRP). For convenience and to keep within the framework of cumulation, we refer485

to this problem as the min-max CCVRP though the min-max OVRP could also be used.

Let T be the latest arrival time at a customer, the min-max objective function is then stated in

Equation (18) where T ≥ tki for all i ∈ V ′ and k ∈ R. The constraints of this problem are similar

to the ones in the CCVRP given by Ngueveu et al. (2010).

min C(x) = T (18)
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Table 7: New results for Set 3 (Li et al., 2005) instances.

#(n) |R| AVNS Gap (%) TAvg (s)

CBest CAvg

L1(560) 10 374376.00 374875.60 0.13 1209.00
L2(600) 14 218301.00 219345.40 0.48 1491.60
L3(640) 10 506252.00 507575.80 0.26 1406.40
L4(720) 10 659440.00 661735.62 0.35 1599.00
L5(760) 17 251756.00 252297.30 0.22 2132.40
L6(800) 10 835039.00 836743.50 0.20 1932.60
L7(840) 19 263303.00 264943.60 0.62 2258.40
L8(880) 10 1030330.00 1031806.50 0.14 2379.00
L9(960) 10 1243250.00 1251148.90 0.64 2594.40
L10(1040) 10 1479510.00 1481868.30 0.16 2740.20
L11(1120) 10 1736150.00 1738320.43 0.13 3084.60
L12(1200) 10 2013670.00 2016517.30 0.14 3459.00

Average 884281.42 886431.52 0.29 2190.55

Differences between the min-sum CCVRP, min-max CCVRP and the min-max

VRP

The min-max objective aims to minimise the route with the largest cost. However, the cost of a

route is defined differently for the min-sum, the min-max CCVRP and the VRP as follows:490

(a) min-sum CCVRP – the total cumulative distances (i.e., sum of arrival times) at the custo-

mers excluding the last vertex (the depot),

(b) min-max CCVRP – the maximum distance travelled (i.e., the arrival time at the last cus-

tomer) excluding the return trip from the last customer to the depot,

(c) min-max VRP – the maximum distance travelled for the complete round-trip (i.e., the495

arrival time at the depot).

It is worth noting that the min-max CCVRP is different from the min-max VRP in terms of the

inclusion of the last edge in the route. In other words, the former aims to reduce the cumulative

distance at the last customer whereas the latter intends to minimise the total distance of the

longest route including the return trip from the last customer back to the depot. In the context500

of humanitarian relief, it is more important to deliver aid supplies promptly to the victims than

sending the vehicles back to the depot quickly.

Since the return trip to the depot is excluded, the min-max CCVRP can also be seen as the

counterpart of the min-max open VRP, although the number of vehicles is predefined for the

former. In addition, the open routes (the min-max CCVRP) instead of the closed ones (the505

min-max VRP) may affect the solutions to some extent.

To better illustrate the difference between the min-max CCVRP and the min-max VRP, an

example is provided in Figure 3. Here, route R2 is the longest for the former, and route R1
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for the latter. Therefore, the min-max CCVRP intends to reduce the arrival time at the last

customer (customer ‘b’) in route R2.510

 

(t) = arrival time at the customer 
 d = distance of the edge 

(3) 

(7) 
(12) 

(18) 

4 
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5 

(2) 

(14) 
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5 

(7) 

(19) 
 For the min-max CCVRP, the longest 

route is  (19 > 18)  

 For the min-max VRP, the longest 

route is  (30 > 27)  
8 

12 
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b 

Depot 

Figure 3: An illustration example highlighting the difference between the min-max CCVRP and the min-max
VRP.

Note that another version of the min-max CCVRP would be the minimisation of the route with

the largest sum of arrival times (i.e., the largest cost for the min-sum CCVRP). However in

practice, it is more meaningful to minimise the arrival time at the last customer as defined in (b)

than the route with the largest total cumulative cost as in (a). For example in Figure 3, for the

case of the CCVRP (min-sum), the longest route is R1 (sum of arrival times for R1 = 42 versus515

40 for route R2). If the aforementioned version is adopted, route R1 will be chosen. Nevertheless,

the vehicle arrival time at the last customer in route R1 (customer ‘a’) is 18, which is smaller

than the arrival time of the last customer in route R2 (arrival time at customer ‘b’ = 19). This

implies that customer ‘b’ actually waits longer than customer ‘a’. In terms of practicality, the

min-max CCVRP considered in this paper aims to minimise the arrival time of the vehicle at520

the last customer, which is consistent with the one discussed by Campbell et al. (2008).

5.1. Adaptations of the AVNS algorithm

As we aim to minimise the latest arrival time which is governed by the longest route, some

strategies that capture this characteristic are proposed in the following subsections: (i) the

heuristic method for the construction of an initial solution, (ii) the move evaluation process and525

(iii) the necessary adaptations of the local search engine used in the AVNS algorithm.

5.1.1. Heuristic for the initial solution

A similar greedy insertion method, as discussed in Section 3.2, is also employed here to construct

the initial solution. For customer i, we first determine if this customer can be inserted without

an increase in the current objective function value. If there is more than one option available,530

the move that causes the smallest increment to the maximum arrival time of the associated route
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is selected. If there is no such move, the customer will be assigned to the route that has the

smallest increment in the objective function value.

To achieve this, the cost of insertion of customer i is defined as the difference between the new

maximum arrival time fi,k after customer i is inserted into route k, and the current objective535

value, C(x) as follows: ∆fi,k = fi,k − C(x), where k ∈ R. The customer with the smallest

∆fi,k (which could also be negative) is inserted each time, until all customers are assigned to the

routes.

5.1.2. Evaluation of the cost of a move

The cost variations of removal and insertion are computed in a similar way as in the classical540

VRP, except that the last edge of the route is not considered since the vehicle arrival time at the

depot is not included in the objective function. For example, consider the set of customers in

route k (R0
k, R

1
k,..., R

nk
k , Rnk+1

k ) with R0
k and Rnk+1

k being the depot. To remove u customer(s)

starting from the ith to the (i+u− 1)th customer from the route, the cost variation of removing,

ψ−
k (u) is given in Equation (19). Note that this equation is similar to ∆G+(k, u, i) in Equation545

(11) except that the distance of the last edge in the route is set to be zero.

ψ−
k (u) =

Ri+u−1
k
∑

a=Ri−1
k

da,a+1 − dRi−1
k ,Ri+u

k
, if Ri+u

k = Rnk+1
k , dRi−1

k ,Ri+u
k

= dRi+u−1
k ,Ri+u

k
= 0 (19)

Similarly for insertion, if a customer is to be placed at the last position of a route, the last edge

is omitted. Using the same route in the example above, to insert u customers which is being

removed from route k at position j in route l, the cost variation of insertion, ψ+
l (u) is stated in

Equation (20).

ψ+
l (u) = dRj−1

l ,Rj
l
− (dRj−1

l ,Ri
k
+

Ri+u−2
k
∑

a=Ri
k

da,a+1 + dRi+u−1
k ,Rj

l
), if Rj

l = Rnl+1
l , dRj−1

l ,Rj
l
= dRi+u−1

k ,Rj
l
= 0

(20)

5.1.3. Adaptations of the AVNS local search engine

The following three in the AVNS algorithm, as discussed in Section 2, is modified: (i) the

parameter used to define the neighbourhood reduction, (ii) the shaking step, and (iii) the local

search step. As our aim here is to reduce the longest route, we allow more flexibility to shift550

customers from the longest route to the shorter ones. To achieve this, in (i), the qth value of the

neighbourhood reduction in Section 3.3 is increased from 3% to 8%.

Moreover, in (ii), the shaking is performed on the longest route only. In other words, in the
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inter-route neighbourhood structures, we aim to remove some customers from the longest route

and relocate them to other routes which are sorted in increasing order of the route cost. The555

algorithm first considers shifting customer(s) to the shortest route, and if there is no feasible

move then the second shortest route is checked and so on. Note that the routes can also be

sorted according to the route capacity instead of the route cost. In some cases, the route may

have a high capacity but the cost is relatively low. The customers can be inserted in such routes

that remain within a certain violation as discussed in Section 3.4.560

In (iii), we define the local search engine for both stages of the AVNS algorithm in two ways:

(1) Basic Search (BS) and (2) Extended Search (ES). More specifically, the BS only evaluates

moves between the longest route against the other routes whereas the ES examines all routes in

the solution. The idea is when the longest route cannot be further reduced, it is worth refining

the other routes, with the aim that the longest one could have more chances for improvement at565

a later point given the changes in the configuration of the other routes. The steps of the local

search in the AVNS Stage 1 are presented in Algorithm 2.

In brief, firstly the BS evaluates and performs moves for the longest route, l and against other

routes until there is no more improvement (lines 3–8 in Algorithm 2). The ES is then activated by

exploring all routes. Here, we define the gain of a move in two versions: (a) when one of the routes570

considered is the longest route, and (b) when none of the routes is the longest. For (a), the gain is

defined asGain(Lh) = max
l∈R
{∆Cl(u, w)} (lines 13–14) where ∆Cl(u, w) is the gain in route l due to

an operator that removes u customer(s) from, and inserts w customer(s) into route l (see Section

3.5.3 for details). For (b), the evaluation of the cost of a move is based on the total gains obtained

in the non-longest routes a and b, which is given as: Gain(Lh) = max
a,b∈R\{l}

{∆Ca(u, w)+∆Cb(w, u)}575

(lines 15–16). This type of move cannot reduce the objective value, but it can improve the arrival

time at the last customer in the non-longest routes. Therefore, customers from the longest route

may now have more flexibility to be inserted to these routes.

Similarly, both the BS and the ES are also implemented in the multi-level local search engine

in Stage 2 of the AVNS as shown in Algorithm 3. The algorithm first evaluates if there is580

improvement on the longest route (lines 4–11 in Algorithm 3), and then on the other routes

(lines 16–22). It is worth mentioning that when evaluating the moves in both Stage 1 and Stage

2, any move that increases the current objective value is discarded from further examination,

leading to an effective and guided search.

5.2. Computational experience for the min-max CCVRP585

The adapted AVNS algorithm is run on Set 1–Set 3 and the results are presented in Table 8. For

consistency, the AVNS algorithm is executed over 5 runs using the same stopping criterion as

previously defined. The best results obtained together with the average time are also reported
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Algorithm 2 The best improvement local search in the AVNS algorithm (Stage 1): case of the
min-max CCVRP.

1: Define the longest route, l.
2: (1) Basic Search (BS):
3: repeat
4: for (h = 1 to h = hmax) do
5: Search in route l and against other routes.
6: end for
7: Select the maximum gain, max

1≤g≤hmax

Gain(Lg) and perform the move to obtain x′′.

8: until (maximum gain ≤ 0)
9: (2) Extended Search (ES):
10: repeat
11: for (h = 1 to h = hmax) do
12: Evaluate moves using operator Lh on all routes.
13: if (one of the routes is l) then
14: Gain(Lh) = max

l∈R
{∆Cl(u, w)}.

15: else
16: Gain(Lh) = max

a,b∈R\{l}
{∆Ca(u, w) + ∆Cb(w, u)}.

17: end if
18: end for
19: Check Gain(Lh) recorded for route l.
20: if (Gain(Lh) for route l > 0) then
21: Select the maximum gain in route l.
22: else if (Gain(Lh) for the other routes > 0) then
23: Select the maximum gain.
24: end if
25: Perform the move to obtain x′′

26: until (maximum gain ≤ 0)

in this table. Here, we restrict the number of routes for each instance to be the same as the ones

used in the CCVRP.590

5.2.1. The results for the min-max CCVRP

To the best of our knowledge, there are no results published in the literature for this problem.

Performance measures to evaluate the quality of our solution exist, some of which include: (i)

lower and upper bounds as in the study of Lysgaard and Wøhlk (2014) for the CCVRP; (ii)

tight upper bounds obtained by other powerful and effective metaheuristics; and (iii) derivation595

of the corresponding solution values from an already known solution of a related problem. In (i),

useful information could be found for small size instances whereas in (ii), a good quality solution

could be obtained. For instance in (iii), the min-sum CCVRP solution can be converted to the

maximum arrival time. This is achieved by retrieving the arrival time at the last customer in

the longest route from the min-sum solution. Obviously these corresponding objective function600

values would be inferior but can still be used as a basis for comparison purposes as highlighted
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Algorithm 3 The multi-level Kth best improvement local search in the AVNS algorithm (Stage
2): case of the min-max CCVRP.

1: Define the longest route, l.
2: (1) Basic Search (BS):
3: while (m < mmax) do
4: Evaluate moves using operator Wm on the longest route l and against other routes with:
5: Gain(Wm) = Kmax

l∈R
{∆Cl(u, w)}.

6: if (Gain(Wm) < 0) then
7: m← m+ 1.
8: else
9: Perform the Kth best improvement move to obtain x′′.
10: m← 1.
11: end if
12: end while
13: (2) Extended Search (ES):
14: if (no improvement move is found for all operators) then
15: while (m < mmax) do
16: Evaluate moves using operator Wm on all routes.
17: if (one of the routes is l) then
18: Gain(Wm) = Kmax

l∈R
{∆Cl(u, w)}.

19: else
20: Gain(Wm) = Kmax

a,b∈R\{l}
{∆Ca(u, w) + ∆Cb(w, u)}.

21: end if
22: Same as lines 6–11.
23: end while
24: end if

in Campbell et al. (2008).

Measures (i) and (ii) are interesting but fall beyond the scope of this study. Here we opt for

alternative (iii) as the results for the min-sum CCVRP solution configurations are already availa-

ble to us (see Section 4.2). The best results of the min-max CCVRP and the converted values of605

the maximum arrival time obtained from the CCVRP best solutions are given in Table 8.

The result shows that the maximum arrival time for the min-max CCVRP is 7.21% better than

the value converted from the min-sum CCVRP. Besides this improvement being positive as one

may expect, this also demonstrates that it is better to solve the ‘true’ problem directly instead

of its counterpart. Furthermore, the average CPU time for the min-max is slightly higher than610

the one of min-sum problem although the average deviation indicates that the former is about

7.55% shorter than the latter. The conversion time of the solution is negligible and hence not

reported here.

It is also interesting to observe that the solutions for G2–G6 in Set 2, L3 and L9 in Set 3 have

the same values for both the min-max and the min-sum objectives. These values are underlined615
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in Table 8. Since these instances establish a concentric circle structure, all the routes found have

the same structure as shown in Figure 4 where the solutions for G2–G4 are plotted. A further

evaluation of the route configurations shows that the solutions obtained for these instances are

nearly optimal. Here, each route has an equal number of customers and the same cost.

Table 8: New results for the min-max CCVRP and the converted best results of the min-sum CCVRP.

Min-max (MM) Min-sum (MS)best Min-max (MM) Min-sum (MS)best

#(n) ma TAvg (s) ma T
+
Avg(s) #(n) ma TAvg (s) ma T

+
Avg(s)

C1(50) 90.20 9.85 105.72 11.89 G11(399) 40.79 559.41 43.46 573.07
C2(75) 62.96 12.17 67.63 15.04 G12(483) 46.72 605.10 47.70 626.36
C3(100) 85.55 34.41 110.46 41.03 G13(252) 25.10 94.65 27.83 125.93
C4(150) 65.00 57.12 70.85 60.54 G14(320) 29.20 151.32 29.93 161.77
C5(199) 56.42 92.32 60.27 89.75 G15(396) 31.14 462.70 32.32 604.68
C11(120) 118.96 44.10 141.29 48.32 G16(480) 33.96 848.21 35.43 944.18
C12(100) 63.88 32.14 78.26 34.21 G17(240) 22.92 186.10 25.70 237.98
F1(44) 147.66 4.54 161.30 4.34 G18(300) 27.24 198.49 30.66 344.73
F2(71) 49.94 7.04 61.92 8.04 G19(360) 31.70 385.82 35.84 465.40
F3(134) 152.66 14.65 182.70 14.60 G20(420) 38.68 440.68 45.45 528.79
G1(240) 523.65 219.65 528.36 252.51 L1(560) 1514.21 1138.60 1570.70 1209.00
G2(320) 734.85 713.95 734.85 710.65 L2(600) 871.84 1488.30 887.21 1491.60
G3(400) 993.68 1321.65 993.68 1217.24 L3(640) 1770.17 1431.60 1770.17 1406.40
G4(480) 1252.51 1504.20 1252.51 1484.21 L4(720) 2031.87 1627.54 2029.00 1599.00
G5(200) 1234.21 247.78 1234.21 248.45 L5(760) 778.50 2134.64 798.38 2132.40
G6(280) 1119.48 485.87 1119.48 478.60 L6(800) 2304.52 2178.60 2402.48 1932.60
G7(360) 1171.67 566.95 1210.18 660.21 L7(840) 726.65 2794.80 748.86 2258.40
G8(440) 1047.27 1075.65 1057.85 1089.35 L8(880) 2558.00 2608.90 2652.07 2379.00
G9(255) 32.48 190.28 34.66 216.58 L9(960) 2805.49 2665.20 2805.49 2594.40
G10(323) 36.49 424.83 38.65 441.65 L10(1040) 3065.03 2910.94 3064.32 2740.20

L11(1120) 3324.86 3204.81 3323.15 3084.60
L12(1200) 3590.37 3647.84 3630.81 3795.00

Average 826.39 924.37 842.60 913.40
Devma,T (%) 7.21 7.55

ma: maximum arrival time, T+
Avg : average computational time over 5 runs for the min-sum CCVRP where the conversion time

is negligible, underline means both the min-max and the min-sum objective values are the same.
Devb = (b(MSbest)− b(MM))/b(MM)× 100, b = {ma, T}.

Figure 4: Graphical representations of the solutions for instances G2(320), G3(400) and G4(480).

For completeness, a similar table that shows the sum of arrival times for the min-sum CCVRP620

and the converted best results from the min-max CCVRP is also presented (see Table 9). The

computational times are omitted here as they have been previously displayed in Table 8. One

can see that the solutions for the min-sum CCVRP are, on average, 3.94% better than the ones

for the min-max CCVRP.

29



Table 9: The sum of arrival times for the min-sum CCVRP and the converted best results of the min-max CCVRP.

#(n) sa(MS) sa(MMbest) #(n) sa(MS) sa(MMbest) #(n) sa(MS) sa(MMbest)

C1(50) 2230.35 2416.82 G5(200) 114163.64 114163.64 G19(360) 5502.08 5889.51
C2(75) 2391.63 2469.83 G6(280) 140430.09 140430.09 G20(420) 7209.31 8199.46
C3(100) 4045.42 4234.24 G7(360) 179388.00 182658.00 L1(560) 374376.00 378482.00
C4(150) 4987.52 5131.48 G8(440) 193698.00 195370.00 L2(600) 218301.00 221163.00
C5(199) 5806.02 6104.95 G9(255) 4723.95 4815.50 L3(640) 506252.00 506252.00
C11(120) 7314.55 7812.06 G10(323) 6712.53 6867.99 L4(720) 659440.00 660294.00
C12(100) 3558.92 3949.35 G11(399) 9210.45 9577.25 L5(760) 251756.00 255167.00

F1(44) 2411.82 3147.09 G12(483) 12507.50 13238.20 L6(800) 835039.00 850949.00
F2(71) 1781.86 1956.22 G13(252) 3632.61 3720.00 L7(840) 263303.00 265799.00
F3(134) 6449.04 7512.79 G14(320) 5205.75 5449.60 L8(880) 1030330.00 1033370.00

G1(240) 54749.30 55353.10 G15(396) 7010.13 7155.76 L9(960) 1243250.00 1243250.00
G2(320) 100560.00 100560.00 G16(480) 9248.37 9707.84 L10(1040) 1479510.00 1481930.00
G3(400) 170924.00 170924.00 G17(240) 3063.02 3123.59 L11(1120) 1736150.00 1737590.00
G4(480) 261993.00 261993.00 G18(300) 4216.01 4434.47 L12(1200) 2013670.00 2017250.00

Average 284440.52 285657.02
Devsa (%) 3.94

sa(MS): sum of arrival times for min-sum CCVRP, sa(MMbest): converted sum of arrival times for min-max CCVRP, underline means
both the min-sum and the min-max objective values are the same.
Devsa = (sa(MMbest)− sa(MS))/sa(MS)× 100.

5.2.2. The effect of the Extended Search (ES)625

To evaluate the effect of the ES, the AVNS algorithm with and without the ES and using the

same stopping criterion, as defined in Section 4.2, is tested. In other words, the local search

engine only evaluates improvement moves on the longest routes and performs the moves until

the stopping criterion is reached (i.e., the BS only) when the ES is omitted. With the use of

the ES, it is observed that the solutions in Set 1–Set 3, improved on average by 3.08% while630

consuming about 20.79% extra computational time. Interestingly, the sum of arrival times of the

min-max solution is reduced by 24.36% when the ES is considered. Note that for the min-max

objective, it is possible to have many solutions under the same maximum value. This empirical

experiment suggests that the ES could be an effective mechanism in improving the solution in

terms of the maximum arrival time as well as ensuring a reasonable total arrival times at the635

customers.

6. Managerial insights of using different objective functions for decision making

To compare the solutions under different objective functions, we construct the bar charts for

the solutions obtained using the min-sum and the min-max alongside with the classical VRP

objective as shown in Figure 5. Note that the classical VRP solutions are based on the results640

obtained in Sze et al. (2016), which are shown to be competitive with the BKS published in

the literature besides the details of the routes are available to us for conversion purpose. The

notations used include sa (sum of arrival times), ma (maximum arrival time) and d (distance)

which correspond to the objective function values of the min-sum, min-max CCVRP and VRP
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respectively. Note that the VRP solutions for some instances are not comparable with the645

CCVRP and the min-max CCVRP in terms of the number of routes and the presence of the

route length constraint, and therefore are omitted from the graphs. These instances are G1–G8,

G14–G15 from Set 2 and all instances in Set 3.

It is clear that the solution of a particular problem based on its own objective function should be

better. Moreover, the differences between the min-sum and the min-max objectives are relatively650

small compared to the VRP, for all three values of sa, ma and d. Besides, one can note that the

VRP solution has significantly higher sa and ma values. This implies that the VRP objective

is not suitable in the context when the arrival times at the customers is crucial such as the

humanitarian logistic. On average, the min-sum solution is 7.41% better in terms of the sa

and 0.84% lower in the d than the min-max whereas the min-max is 13.07% improved in the655

ma compared to the min-sum. Furthermore, there is a significant gap between the VRP total

distance and the min-sum and the min-max solutions (25.23% and 26.21% respectively).
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Figure 5: Comparing the min-sum, the min-max and the VRP objective function values.

While it is clear that the VRP solution appears to be relatively poor in the min-sum and the

min-max contexts, the differences between the min-sum and the min-max CCVRP in terms of

the sa and ma values may be considered small but can be very important from a managerial660

perspective. Therefore to further evaluate the trade-off between the improvements in the sum

of arrival times and the maximum arrival time using the two objectives, we plot the points

(x, y) = ( sa(MM)−sa(MS)
sa(MS)

, ma(MS)−ma(MM)
ma(MM)

) for Set 1–Set 3, as shown in Figure 6. For example,

the notation sa(MM) represents the sum of arrival times when using the min-max objective.

This plot shows the percentage increase in the sum of arrival times using the min-max objective665

against the percentage increase in the maximum arrival time using the min-sum objective. Since

most of the points lie above the line y = x, it is reasonable to conclude that the relative increase

in the maximum arrival time is more significant when the min-sum objective is used than the

relative increase in the sum of arrival times when the min-max objective is applied. It appears

that the min-max objective is able to obtain high quality solutions in terms of the maximum670

arrival time as well as achieving a satisfactory total arrival times. One reason for this is the use

of the extended search when solving the min-max CCVRP that also reduces the total arrival

times.

Let t̃i be the arrival time of a vehicle serving customer i, where i ∈ V ′. To analyse the arrival
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Figure 6: Improvement in the sum of arrival times versus the maximum arrival time.

time at individual customer in the min-sum and the min-max solutions, we compute the standard675

deviation, σ in Equation (21). A solution with a lower standard deviation tends to have more

balanced arrival times among the customers.

σ =

√

∑

(t̃i − t̄)2

n− 1
, where t̄ =

∑

i∈V ′ t̃i

n
(21)

The minimum, average and maximum ratio of σ(MS)/σ(MM) are presented in Table 10. For

example, the minimum ratio of Set 1a is computed by the minimum value of σ(MS)/σ(MM)

in that set whereas the average ratio weights each of the instances equally which provides a680

simple comparison among the different data sets. Here, the further this ratio deviates from 1

the greater the objective function changes the individual customer’s standard deviation in the

solutions.

It is observed that the ratios are smaller than 1 for most instances except for the maximum ratios

in Set 2 and Set 3, where the values are slightly greater than 1. This suggests that the CCVRP685

min-sum objective is able to balance the overall individual customer’s arrival time compared to

the min-max objective. Another observation made is that when the customer points exhibit a

geometric structure (i.e., concentric circles, squares and stars in Set 2 and Set 3), the solutions

for both the min-sum and the min-max appear to be similar. In managerial decision making, the

min-sum would be preferable if one aims to reduce the overall customers arrival times. On the690

other hand, if the situation requires that the last customer must be served before the deadline,

especially for the case where there is a high penalty for lateness, the min-max objective would

provide promising and practical result.
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Table 10: The standard deviation ratio for the min-sum and the min-max CCVRP.

σ(MS)
σ(MM)

σ(MS)
σ(MM)

σ(MS)
σ(MM)

σ(MS)
σ(MM)

Set 1a Min 0.804 Set 1b Min 0.736 Set 2 Min 0.911 Set 3 Min 0.989
Avg 0.839 Avg 0.848 Avg 0.978 Avg 0.999
Max 0.929 Max 0.910 Max 1.004 Max 1.006

7. The effects of doubling up the number of runs

Our experiments for the min-sum and the min-max CCVRP in Section 4 and Section 5.2 re-695

spectively are executed using 5 independent runs of the AVNS algorithm as this is used in the

literature. In this section, we conducted the same experiments to evaluate the effect of a larger

number of runs on the solutions. The results for the min-sum and the min-max CCVRP are pre-

sented in Table 11 and Table 12 respectively where the best values (saBest and maBest), average

values (saAvg and maAvg) together with the average time (TAvg) are shown.700

It can be observed that there is not much difference between the results for 5 and 10 runs for

the min-sum CCVRP. More specifically, the deviations are just about 0.01% between 5 and 10

runs for the min-sum saBest and 0.03% for the saAvg. For Set 1a and Set 1b, both 5 and 10 runs

achieve the same saBest for all instances, whereas in Set 2, 7 better results are found for 10 runs

and in Set 3, 9 new results are obtained. These new results are underlined in Table 11. Note that705

all the values provided in Table 11 are the BKS except for instances G1, G9 and G13 (marked

by a ‘+’) where better results are reported in Table 3.

Similarly, the difference between the results of 5 and 10 runs for the min-max CCVRP is also

relatively tiny. As Table 12 shows, the gap is 0.06% for the maBest and 0.09% for the maAvg

between 5 and 10 runs. To be specific, all the maBest are the same for Set 1a and Set 1b, 7 better710

results are obtained for Set 2 and 6 for Set 3 by using 10 runs as compared to 5 runs. It is worth

mentioning for some instances although the maximum arrival time (maBest) is the same for both

5 and 10 runs, the average gap for the sum of arrival times is about 0.66% between the two sets

of runs. The small deviation between 5 and 10 runs indicate the robustness of our algorithm in

achieving consistent and high quality results even for a small number of runs.715

8. Conclusion

The CCVRP is a relatively new variant of the classical VRP with useful applications particularly

in humanitarian logistic. In this study, an effective AVNS algorithm which incorporates a LNS

diversification strategy is proposed to solve the CCVRP. The prominent features of the algorithm

include: (i) the intelligent and effective selection of local search operators, (ii) an efficient cost720

evaluation scheme of moves, (iii) the use of the LNS diversification strategy, and (iv) its robustness

and easiness to use and to modify. The proposed algorithm besides being robust is proven to
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Table 11: Results for the min-sum CCVRP using 10 runs.

#(n) saBest saAvg TAvg (s) #(n) saBest saAvg TAvg (s)

C1(50) 2230.35 2242.47 11.70 G11(399) 9210.45 9230.59 583.79
C2(75) 2391.63 2392.54 14.98 G12(483) 12506.40 12550.20 614.57
C3(100) 4045.42 4068.71 41.76 G13(252) +3632.61 3654.13 123.90
C4(150) 4987.52 4991.65 61.47 G14(320) 5205.75 5216.86 157.42
C5(199) 5806.02 5828.57 86.09 G15(396) 7010.13 7031.42 609.84
C11(120) 7314.55 7330.97 46.62 G16(480) 9243.35 9269.51 964.59
C12(100) 3558.92 3560.18 35.15 G17(240) 3063.02 3066.02 234.20

F1(44) 2411.82 2417.62 4.69 G18(300) 4216.01 4237.85 363.40
F2(71) 1781.86 1797.53 8.83 G19(360) 5501.21 5534.90 451.73
F3(134) 6449.04 6460.75 15.08 G20(420) 7207.88 7228.96 520.98

G1(240) +54739.80 54778.90 248.34 L1(560) 374285.00 374865.40 1269.20
G2(320) 100560.00 100626.45 707.61 L2(600) 218263.00 219265.10 1427.90
G3(400) 170924.00 171067.61 1237.18 L3(640) 506252.00 507468.06 1498.32
G4(480) 261993.00 262166.98 1480.98 L4(720) 659440.00 661788.10 1561.05
G5(200) 114163.64 114264.27 251.94 L5(760) 251711.00 252270.80 2164.20
G6(280) 140430.09 140568.73 469.81 L6(800) 834861.00 836689.50 1948.69
G7(360) 179378.00 180124.94 654.80 L7(840) 263299.00 264877.60 2249.60
G8(440) 193689.00 193954.60 1067.26 L8(880) 1029060.00 1031879.01 2372.60
G9(255) +4723.95 4730.46 209.47 L9(960) 1243250.00 1250196.50 2589.60
G10(323) 6712.53 6724.12 437.66 L10(1040) 1479270.00 1481956.70 2687.10

L11(1120) 1735980.00 1738516.50 2989.30
L12(1200) 2013640.00 2016821.40 3534.50

Average 284390.45 285088.41 904.95
Avg Gap with 5 runs (%) 0.01 0.03

Gap(saBest) = (sa5Best − sa10Best)/sa
10
Best × 100, Gap(saAvg) = (sa5Avg − sa10Avg)/sa

10
Avg × 100.

Underline means this value is better than the CBest for 5 runs, + means this value is not the BKS (see Table 3).

outperform the recently published methods by obtaining many new best results when tested

on the benchmark data sets. New results for the larger VRP instances, which have not been

previously tested for the CCVRP, are also reported.725

In addition to the original min-sum objective, this study also considers the min-max CCVRP

where appropriate adaptations of our algorithm are introduced. Interesting results are reported

for the first time on many test instances. It was empirically found that the gap between the

min-sum and the min-max results is rather small, especially when the data points exhibit some

geometric structures. However, the maximum arrival time tends to increase at a higher rate730

when the min-sum objective is considered compared to a relatively smaller increase in the sum

of arrival times when the min-max objective is applied. From a managerial decision making

viewpoint, the min-sum objective will be preferable if one aims to reduce the overall customer

arrival times, while the min-max will be more appropriate in the context of meeting deadline

especially for the last customer.735

A hybridisation of exact method and powerful metaheuristic would be an interesting challenge

that could be explored to solve both the min-sum and the min-max CCVRP. For an easy to

read overview on heuristics hybridisation and other related implementation issues, see the recent
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Table 12: Results for the min-max CCVRP using 10 runs.

#(n) maBest maAvg TAvg (s) #(n) maBest maAvg TAvg (s)

C1(50) 90.20 90.25 9.66 G11(399) 40.70 40.82 548.45
C2(75) 62.96 63.04 12.08 G12(483) 46.67 47.97 604.39
C3(100) 85.55 85.69 35.64 G13(252) 25.10 25.32 95.72
C4(150) 65.00 65.18 58.40 G14(320) 29.10 29.38 154.87
C5(199) 56.42 56.77 95.67 G15(396) 31.14 31.69 470.26
C11(120) 118.96 119.04 45.81 G16(480) 33.94 34.79 840.49
C12(100) 63.88 63.93 31.98 G17(240) 22.92 23.06 183.57

F1(44) 147.66 148.38 5.08 G18(300) 27.24 28.67 202.43
F2(71) 49.94 50.03 7.83 G19(360) 31.62 32.31 382.49
F3(134) 152.66 153.85 15.10 G20(420) 38.58 39.27 437.61

G1(240) 523.65 524.33 223.42 L1(560) 1514.21 1516.62 1094.68
G2(320) 734.85 735.98 715.36 L2(600) 871.84 873.13 1498.81
G3(400) 993.68 994.31 1319.42 L3(640) 1770.17 1771.06 1546.23
G4(480) 1252.51 1253.14 1500.47 L4(720) 2029.00 2032.03 1654.80
G5(200) 1234.21 1234.30 247.02 L5(760) 778.08 779.34 2167.42
G6(280) 1119.48 1120.14 467.63 L6(800) 2304.52 2305.82 2283.17
G7(360) 1171.67 1172.76 568.95 L7(840) 725.40 726.88 2674.11
G8(440) 1046.99 1047.67 1089.42 L8(880) 2558.00 2559.61 2638.40
G9(255) 32.48 32.69 194.32 L9(960) 2805.49 2807.64 2768.92
G10(323) 36.49 36.84 422.71 L10(1040) 3064.32 3068.17 2968.15

L11(1120) 3323.15 3326.15 3298.30
L12(1200) 3586.69 3590.05 3681.08

Average 826.12 827.10 934.77
Avg Gap with 5 runs (%) 0.06 0.09

Underline means this value is better than the maBest for 5 runs.

monograph by Salhi (2017). From a practical point of view, a multi-objective optimisation

routing problem that combines the VRP, min-sum and min-max objectives could also be worth740

attempting. A related problem that focuses on the environmental aspect by considering the

accumulated load (demand) of the vehicles, as studied by Zachariadis et al. (2015), would be a

useful extension that deserves exploration.
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