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ABSTRACT This paper introduces a novel variant of the cumulative vehicle routing problem (CCVRP)
that deals with home health care (HHC) logistics. It includes multiple nonfixed depots and emergency trips
from patients to the closest depot. The aim is to minimize the system’s delayed latency by satisfying
mandatory visit times. Delayed latency corresponds to caregivers’ total overtime hours worked while
visiting patients. A new mixed-integer linear programming model is proposed to address this problem.
Computational experiments, with more than 165 new benchmark instances, are carried out using the CPLEX
and Gurobi MIP solvers. The results indicate that patients’ geographical distribution directly impacts
the complexity of the problem. An analysis of the model parameters proves that instances with more
depots/vehicles or longer workdays are significantly easier to solve than are original cases. The results
show that Gurobi outperforms CPLEX in 55% of the instances analyzed, while CPLEX performs better in
only 16% of them. To the best of our knowledge, this is the first VRP that minimizes delayed latency and
the first HHC routing study to use a cumulative objective function.

INDEX TERMS CCVRP, Home Health Care, HHC, MDCCVRP, Mixed Integer Programming.

I. INTRODUCTION

IN recent years, home health care (HHC) services have
grown considerably in many countries. This growth can

be explained by the increase in the number of patients with
chronic diseases and physical disabilities [1]. These types of
services help prevent queues and congestion at hospitals and
allow patients to receive timely attention. HHC logistics man-
agement can be addressed at three different decision levels.
Strategic planning includes districting, setting the location
of infrastructure, and fleet sizing. Tactical decisions include
those related to medical staff allocation (to hospitals or other
facilities) and inventory policies. Operative planning mainly
involves routing decisions but also includes scheduling and
other short-term decisions [2]. A limited team of caregivers
tending to patients at their scheduled appointment times can
be viewed as an operative planned logistic activity [3]. From

the point of view of service providers, such a situation can
therefore be addressed as a vehicle routing problem.

Vehicle routing problems (VRPs) are one of the most
studied types of combinatorial optimization problems due
to their varied applications. A VRP aims to find the best
sequence of client visits for a fleet, generally using cost-
minimization criteria. Vehicles may or may not have a limited
capacity; if they do, then the problem can be classified as a
capacitated vehicle routing problem (CVRP) [4]. This type
of problem was introduced by [5], who proposed the first
formulation and algorithm to solve a real problem of gaso-
line distribution. Since then, several authors have conducted
research in this field. Some authors have worked on exact
solution methods, [6], [7], while others have focused on
heuristics-metaheuristics methods [8], [9]. Still others have
developed new VRP applications including HHC [10], drone
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routing [11], [12], blood transportation processes [13], and
several others [14]. The depot is the node at which vehicles
start and end routes. A classical VRP has only one depot, but
the multi-depot vehicle routing problem (MDVRP) has also
been identified. In MDVRPs, vehicles are forced to start and
end a route at the same depot [15]. However, it is possible to
relax this condition and allow vehicles to close their routes
at other depots [16]. This concept is known as a nonfixed
destination or simply as a nonfixed MDVRP [17]. A literature
review of MDVRPs can be found in [18]. One of the most
studied variants of VRPs is a vehicle routing problem with
time windows, VRPTW, which incorporates an interval of
time in which vehicles can visit each customer. There are two
kinds of time windows (TWs) in VRPs. The most studied
type is hard TWs, in which the interval must be respected.
In this case, if a vehicle arrives early, then service must be
provided at the lower bound of the TW [19]. Conversely, a
soft TW allows vehicles to violate the TW but penalizes them
for doing so [20], [21].

A relatively new branch of VRPs is the use of latency
as an objective function. Latency can be defined as the
total distance traveled, or the time required, to reach each
node. In latency problems, costs are influenced not only by
the location of the nodes but also by their position in the
route [22]. These problems are known as cumulative vehicle
routing problems.

This paper is structured as follows. Section 1 presents the
problem to be addressed and describes the relevant recent
research. Section 2 describes the materials and methods used
in this work; then, a new mathematical model used to address
the problem is introduced. Section 3 discusses the main
research results. Finally, Section 4 presents the conclusions
and directions for future research.

A. PROBLEM DESCRIPTION
Traditionally, HHC routing has been addressed mainly from
a business point of view; that is, it has focused primarily on
minimizing costs. This can be a problem if these routes do
not guarantee service quality. Low-quality services not only
imply economic consequences due to a loss of clients but
can also lead to legal repercussions. Several authors agree
that problems with cumulative objective functions (latency)
are well suited for addressing real-life problems in which the
focus is on client satisfaction [23] [24] [25]. The above aspect
is due to the nature of the objective function, which implies
that patients need to be attended to as soon as possible.
Figure 1 compares solutions under criteria for minimum
total cost/time and minimum latency. In the example, two
clients must be visited by two available vehicles. The travel
time between nodes is indicated close to the edges. The
optimal total cost-based route is D1-C2-C1-D1, using only
one vehicle. The optimal latency-based routes are D1-C1-D1
and D1-C2-D1, using two vehicles (each line type represents
a different vehicle). The total cost for the first case is 30 units,
while its total latency is 37 units because C2 is visited at 12
and C1 is visited at 25. The total cost for the second case is

34 units, while its total latency is 17 units (C1 is visited at 5
and C2 is visited at 12).

As presented in Section 1.2, some authors have included
clients’ preferences in their HHC models. However, none
of them have looked for routes defined by the desirable
maximum workload per client. Due to the limited nature of
resources such as vehicles, caregivers, and hospitals, it is not
always possible to tend to each patient without exceeding
the aforementioned limit. Nevertheless, it is desirable to
minimize such situations. It has been proven that a heavy
workload for caregivers implies burnout, which leads to
low-quality services [26]. According to these authors, work
overload causes emotional exhaustion and depersonalization
in caregivers, leading to bad work performance.

The problem addressed is as follows. Consider an incom-
plete graph, G = (N,A), with N = C ∪ T as the set of
nodes, C as the set of patients, T as the set of hospitals, and
A as the set of feasible arcs. Additionally, let B be the set
of vehicles/caregivers. Each patient, i, has a scheduled visit
time, hi, that needs to be fulfilled. Each hospital (depot), k,
has an available fleet at the beginning of the day, QIt, and a
demand for vehicles at the end of the day, QFt. The supply
and demand may be different. After visiting all their assigned
clients, vehicles b ∈ B can finish their route at the same or
different depot than the one at which they started. An arc,
(i, j), with i ∈ N and j ∈ C, is feasible if the sum of hi
(if i ∈ T, hi = 0) and travel time dij is less than or equal
to hj . As visit time is strict, caregivers can arrive early and
wait or arrive just in time, but they can never arrive late. For
each patient, an emergency travel time to the closest hospital
must be considered in case the patient suffers an unexpected
emergency or if the medical team needs medical supplies
that are not available in their vehicle. Such a situation is an
important consideration since most of the patients on these
routes have chronic conditions. The challenge is to find the
best route for each vehicle, considering a maximum desirable
quota, lb, for client visits. This quota can be represented by
the standard workday. If necessary, services with overtime
are allowed. Nevertheless, it is an undesirable condition due
to the risk of low-quality services that it implies. The aim is
to minimize the sum of the overtime hours with which clients
are visited (if any). The more patients who are served after the
regular workday, the greater the penalization.

B. LITERATURE REVIEW
The structure of this literature review is presented in Figure
2. It focuses mainly on two kinds of problems: i) VRPs
in the HHC industry and ii) cumulative VRPs. For an in-
depth review of VRP variants and their respective practical
applications, the reader may refer to [4].

1) Vehicle Routing Problems in HHC
Two of the main operational decisions in HHC are routing
and scheduling. These two decisions can be made individu-
ally or simultaneously [27]. The literature contains a number
of studies that focus only on routing in HHC. The authors
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of [1] solved an HHC routing problem by addressing it
as a CVRP. They used the well-known savings algorithm
to solve a situation involving 20 patients. The work of
[28] addressed a simultaneous pickup and delivery VRPTW.
Drugs are delivered to patients, and simultaneously, unused
drugs or biosamples are collected. To deal with this problem,
the authors proposed two mixed-integer programming (MIP)
models. Two heuristic algorithms were also used: a genetic
algorithm (GA) and a tabu search (TS). An HHC routing
problem in the context of natural disasters was addressed by
[29], who proposed a model that included soft time windows,
mandatory rest for staff, and workday constraints. Some
interesting considerations, such as nurses’ qualifications and
language proficiency, were also incorporated. The objective
was to minimize the time spent and both client and staff
dissatisfaction. They found that the Xpress v7 solver was
not capable of solving large instances, so they proposed a
variable neighborhood search algorithm (VNS) to handle
them. The proposed model and algorithm were tested with
real data from Austria. In [30], mixed-integer linear program-
ming (MILP) models for a VRPTW with precedence and
synchronization constraints were proposed. Patients needed
to receive different kinds of services at specific intervals
of time, following a precedence pattern. The objective was
to minimize travel time, clients’ dissatisfaction with their
assigned caregivers, and wait times. It also considered a
maximum route length. Models were solved using OPL
v12.5, and they handled situations involving 45 clients. A
similar case was addressed in [31], in which the aim was to
minimize costs, and the proposed method was an iterative
local search algorithm (ILS). In turn, [32] studied an HHC
application of a VRP with the synchronization constraints
proposed by [33]. The objective was to minimize caregivers’
travel time. The authors proposed a metaheuristic based on
an ILS combined with the random variable neighborhood
descent method (RVND) to solve the problem. A multiobjec-
tive approach to this kind of problem was addressed by [34],
which sought to optimize both cost and client preferences.
The authors proposed different variants of the nondominated
sorting genetic algorithm (NSGA-II) to solve the problem
with up to 73 clients.

The home health care routing and scheduling problem
(HHCRSP) is a variant of the VRP that includes simultaneous
routing and scheduling decisions [35]. In [36], different kinds
of services had to be provided to clients, and both client and
staff availability had to be considered in the time windows.
The aim was to minimize the staff required to satisfy client
demand. The authors proposed an integer linear program-
ming (ILP) model. Small and medium-sized instances were
solved by CPLEX. For large instances, a matheuristic that
decomposed the model into two subproblems (staff rostering
and vehicle routing) was proposed. A multiobjective MILP
model was proposed by [37], which optimized four objec-
tives by using the weighted linear aggregation method: to
minimize the total travel time and the arrival times of each
caregiver and to maximize caregiver operability and patient

satisfaction. This model also considered patients’ relative
priority, which was related to the health condition of each
patient. The authors used CPLEX to test the proposed model
and optimally solve instances with up to 40 nodes. Another
multiobjective model for this kind of problem was addressed
by [38]. The objective of the proposed model was to mini-
mize cost and maximize service level, and it also incorpo-
rated time windows and client preferences regarding care-
givers and visit times. The proposed solution corresponded
to a metaheuristic combining a large neighborhood search
with a multidirectional LS. In the work of [39], a matheuristic
algorithm was proposed to address a periodic scheduling
and routing problem applied to medication delivery. This
algorithm consisted of two phases. In the first phase, a mathe-
matical optimization model was used to solve the scheduling
problem; the model was solved with CPLEX. The second
phase incorporated a metaheuristic that combined simulated
annealing with a record-to-record algorithm to solve the
routing problem. The proposed algorithm was tested with
real-life pilot cases in Chile, which included up to 800 clients.
Another two-phase matheuristic algorithm that sought to
minimize transport and labor costs was proposed to solve an
HHCRSP in [40]. This approach was based on MIP modeling
and separated decisions by type of caregiver. In the first
phase, only nurses were scheduled. The solution determined
by the first phase was added as a constraint to the second
phase, in which the other caregivers and synchronization con-
straints were considered. The authors used Gurobi to perform
their experiments. They found that the proposed approach
was computationally more efficient than was solving the
complete model. Two recent literature reviews of HHCRSP
can be found in [35], [41]. TW has been a common feature
observed and analyzed in most HHC papers. Mandatory visit
times are a particular case of hard TW; here, intervals’ lower
bounds are open [21].

2) Cumulative Vehicle Routing Problems
Research on cumulative routing problems began with the
minimum latency problem (MLP), which is a variant of
the traveling salesman problem (TSP) [42]. The objective
of the MLP is to minimize the sum of the arrival times
at each client. According to [43], the MLP has also been
referred to as the traveling repairman problem (TRP) [44]
and delivery man problem (DMP) [45]. Despite the fact that
cumulative TSP variants were introduced in the 1990s, cu-
mulative VRP variants were not introduced until much more
recently, within approximately the last ten years. Seminal
work on this problem was published by [23]. The authors
called this problem The Cumulative Capacitated Vehicle
Routing Problem (CCVRP). In the same paper, the authors
also presented upper and lower bounding procedures, which
are based on memetic algorithms (MAs) and the properties
of the CCVRP, respectively. The CCVRP seeks to minimize
system latency and is a generalization of the MLP, adding
capacity constraints and homogeneous fleets.

Since the publication of these seminal works, several
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solution methods have been proposed. The authors of [46]
proposed an adaptive large neighborhood search heuristic
that outperforms the MAs of [23]. An ILS was proposed by
[47], and it outperformed the algorithm of [23] but was less
effective than that proposed by [46]. The two-phase meta-
heuristic presented by [48] also outperformed the MAs. In
some instances, this algorithm was capable of finding better
solutions than those found by [46], but it took more time
to do so. In [49], the authors proposed and compared three
methods: a GA, an evolutionary algorithm using particle
swarm optimization, and a TS. Their results indicated that
the TS provides the best solutions in most of the instances
tested. However, these algorithms were not compared with
others from the literature. In [25], a two-stage adaptive VNS
was proposed. The authors compared their proposed method
with the algorithms proposed by [23], [46], and [48]. New
best-known solutions were found for a number of instances
in the literature, proving the competitiveness of the algorithm
in terms of solution quality and CPU time. The authors
also tested the effectiveness of the algorithm with a CCVRP
that minimizes the maximum arrival time. A brainstorm
optimization algorithm was presented in [50], and the authors
compared it with those proposed by [46], [48], and [25]. This
algorithm was capable of finding new best-known solutions
for several instances, and it took less time on average. Two
new mathematical formulations were proposed by [51]. One
of them could optimally solve instances of up to 44 nodes in
less than two hours using CPLEX. The authors also proposed
two versions of the greedy algorithm for the CCVRP. The av-
erage GAP between their obtained results and the best known
solutions was less than 1%. Their algorithm was capable of
finding new and improved solutions for a few instances and
also arrived at the best known solution for several instances
in less CPU time than that required by the algorithms in [23],
[46], [48], and [25]. Recently, [52] proposed a skewed VNS
heuristic. The authors compared it with the algorithms from
[23] and [46], and it was proven to be more efficient in terms
of CPU time and solution quality. The only exact algorithm
found in the literature was proposed by [53]. They developed
a branch and cut and price algorithm, which was capable of
optimally solving instances with more than 100 clients.

Below, the variants of the CCVRP studied in the literature
are presented. In [54], the authors proposed a hybrid ant
colony algorithm to solve a multi-depot cumulative VRP
(MDCCVRP) as applied to postdisaster route planning. More
recently, an LS-based algorithm was presented in [55] to
solve the same theoretical problem, which was also studied
in [24], in which the authors proposed a matheuristic that
decomposed the problem into subproblems that could be
easily solved to optimality. Their approach was called par-
tial optimization metaheuristic under special intensification
conditions.

The multitrip cumulative capacitated vehicle routing prob-
lem (MTCCVRP) is another variant of the problem that has
been studied in the literature. Unlike in the classical problem,
the MTCCVRP allows vehicles to perform several trips.

It was addressed for the first time by [56], who proposed
two MIP formulations and a GRASP-based metaheuristic
for the problem; they considered a single-vehicle scenario.
The same question was addressed in [57], where the au-
thors proposed two MILP models and an exact algorithm to
solve the problem. This method was based on a resource-
constrained shortest path formulation and was capable of
optimally solving instances with up to 40 clients. The gener-
alized version of the problem, that is, the non-single-vehicle
variant, was introduced by [58], who presented an MILP
model and a hybrid metaheuristic for the MTCCVRP. The
proposed solution combined a multistart ILS with variable
neighborhood descent. The authors tested it with instances
with more than 400 clients. More recently, the authors in [59]
studied another variant of the problem, a CCVRP with prior-
ity indexes. This variant incorporated precedence constraints
to ensure that certain clients were visited before others. The
problem was addressed with biobjective optimization, and
the objectives were to minimize the system’s total latency and
total tardiness. An MIP model was proposed but was capable
of solving instances with only up to 15 customers. Therefore,
the authors proposed MAs with random keys to solve larger
instances. Regarding CCVRPs with time windows, the only
work found was that of [60]. These authors introduced the
problem and proposed a metaheuristic based on the hy-
bridization of a large neighborhood search algorithm with a
GA. They asserted that this problem was suitable for several
applications, especially humanitarian logistics in postdisaster
contexts.

Cumulative routing problems have many possible appli-
cations. The work of [61] presented a latency VRP applied
to postdisaster management; specifically, it addressed the
routing of assessment teams in disaster areas. The authors
proposed a continuous approximation approach to solve this
problem. Another latency routing problem was addressed
in [62], which also dealt with postdisaster routing. This
method considered minimum service level constraints, and
the authors developed a VNS-based heuristic. Unnamed
aerial vehicle surveillance services were also addressed with
latency routing problems in [63]. Here, the authors used
linear programming (LP) to minimize the delivery latency
in this context, proposing a model that allowed vehicles
to perform multiple trips. The cumulative VRP was also a
natural fit for modeling trucks’ fuel consumption [64]. In [65]
and [66], column generation-based algorithms were used to
address CCVRP in a fuel-consumption context. Cumulative
objective functions may also be suitable for modeling energy
management systems for electric/hybrid vehicles [67], [68].
To the best of our knowledge, VRPs minimizing latency have
not yet been used in the HHC logistics context.

C. MAIN CONTRIBUTION OF THIS WORK
The literature review revealed that studies on cumulative
routing problems have focused on solution methods for the
classic CCVRP (mainly heuristics). Few variants have been
addressed until now, including the CCVRP with priority
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index, the MTCCVRP, the CCVRPTW and the MDCCVRP.
The main contribution of the present article is that it in-
troduces a novel variant of the CCVRP to address HHC
logistics. To propose a suitable method for supporting routing
planning in HHC, our problem combines the features of
CCVRP variants that have been studied only individually.
The problem includes multiple nonfixed depots, emergency
trips to the closest depot, and mandatory visit times. To the
best of our knowledge, this is the first VRP that seeks to
minimize delayed latency. It is also the first HHC routing
problem addressed through a cumulative objective function.
The concept of a system’s delayed latency corresponds to
the total overtime hours with which each patient is visited.
A novel MILP model is proposed to handle this problem.
The proposed model is implemented with two of the most-
used commercial solvers, CPLEX and Gurobi, to benchmark
their performance. This method is designed for planning
the attention of patients with chronic diseases and physical
disabilities. Nevertheless, it is suitable for several other ap-
plications, such as humanitarian logistics, forest fire control,
and food transportation. The common feature in all of these
scenarios is that customer satisfaction is the key factor.

II. MATERIALS AND METHODS
To address the problem described in Section 1.1, we pro-
pose an MILP model. The problem is a novel variant of
the CCVRP. We have called it the nonfixed Multi-depot
Cumulative Vehicle Routing Problem with mandatory visit
times (MDCCVRmvt).

The proposed model has the following sets:
Sets
• C: Clients
• T : Depots
• N : Nodes, N = C ∪ T
• B: Vehicles
• A: Feasible arcs that comply with scheduled visit times
In the model, clients represent patients, while depots rep-

resent hospitals or other medical facilities. In this article,
“clients” are equivalent to “customers” in the classical VRP.
We use the terms “patient” and “client” because the person is
receiving a service. The term “customer” is more suitable for
goods transportation.

The parameters used in the model are as follows:
Parameters
• QIt: Number of vehicles at depot t at the beginning of

the day.
• QFt: Number of vehicles at depot t at the end of the day.
• lb: Maximum desirable quota with which vehicle b can

visit each client before being penalized (workday).
• hi: Scheduled visit time of client i.
• dij : Travel time from node i to node j.
• BigM : Sum of worst arcs from each node, mathemati-

cally,
∑
i∈N

max
j∈N
{dij}

Finally, the following decision variables are introduced:
Decision variables

• Xb
ij : 1 if the arc going from i to j is considered part of

the route of vehicle b and 0 otherwise
• U b

i : Accumulated time spent traveling to client i by
vehicle b

• CUi: Overtime hours with which client i is visited
The proposed model’s formulation corresponds to (1) –

(12):

min Z =
∑
i∈C

CUi (1)

subject to:∑
b∈B,j∈N |(i,j)∈A

Xb
ij = 1 ∀i ∈ C (2)

∑
j∈N |(j,i)∈A

Xb
ji =

∑
j∈N |(i,j)∈A

Xb
ij ∀i ∈ C, b ∈ B (3)

∑
b∈B,j∈C|(t,j)∈A

Xb
tj ≤ QIt ∀t ∈ T (4)

∑
b∈B,j∈C|(j,t)∈A

Xb
jt ≤ QFt ∀t ∈ T (5)

∑
t∈T,j∈N |(t,j)∈A

Xb
tj ≤ 1 ∀b ∈ B (6)

dtj ≤ U b
j +BigM(1−Xb

tj)

∀b ∈ B, t ∈ T, j ∈ C|(t, j) ∈ A (7)

U b
i + dij ≤ U b

j +BigM(1−Xb
ij)

∀b ∈ B, i ∈ C, j ∈ C|(i, j) ∈ A (8)

CUi ≥ U b
i +min

t∈T
{dit} − lb ∀i ∈ C, b ∈ B (9)

Xb
ij ∈ {0, 1} ∀b ∈ B, i ∈ N, j ∈ N |(i, j) ∈ A (10)

U b
i ≥ 0 ∀i ∈ C, b ∈ B (11)

CUi ≥ 0 ∀i ∈ C (12)

The objective function (1) minimizes the delayed latency
of the system. It corresponds to the sum of the overtime
hours with which each patient is visited. The greater the
number of patients visited by the vehicle, the more greater
the penalization. To the best of our knowledge, our model is
the first VRP that intends to optimize delayed latency. The
set of constraints (2) ensures that all clients are visited once.
In (3), we present flow balance constraints, which establish
consistency in the use of vehicles. The set of constraints (4)
indicates the maximum number of vehicles that can start a
route from each depot. Similarly, (5) provides the maximum
number of vehicles that can end a route at depot t. It is
important to note that the model does not force vehicles to
return to their starting depot; it is a nonfixed MDVRP. The
constraints in (6) prevent vehicles from performing more than
one route. The constraint groups (7) and (8) calculate the
accumulated time for each vehicle at each client; they also

VOLUME 4, 2016 5



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3058242, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

correspond to the subtour elimination constraints. While set
(7) considers arcs from depots, (8) accounts for between-
client arcs. The set of constraints (9) calculates the overtime
hours spent with each client. Overtime hours correspond to
the difference between the workday and the cumulative time
plus an emergency trip to the closest depot. Equations (10) to
(12) present the decision variable domains.

Finally, set A, which represents all feasible arcs, must be
defined. This definition is given by 13-15.

A1 : (t, i) | ht + dti ≤ hi ∀t ∈ T, i ∈ C (13)
A2 : (i, j) | hi + dij ≤ hj ∀i ∈ C, j ∈ C|i 6= j (14)
A3 : (i, t) ∀i ∈ C, t ∈ T (15)

A1 includes all the arcs from depots that are close enough
to patients for vehicles to arrive by the established appoint-
ment time. Note that ht represents departure times from de-
pots; we assume that this value is equal to zero.A2 represents
arcs between patients. Finally, as depots have no visit times,
A3 states that all arcs from clients to depots are feasible.

Therefore, the set of feasible arcs is represented as follows:

A = A1 ∪A2 ∪A3 (16)

It is important to note that the condition sets (13) – (16)
have a similar role to time window constraints. In this MDC-
CVRmvt, independent of the arrival time, service is provided
at the scheduled time. In real-life HHC problems, service
must be provided at the scheduled time, instead of having
an interval of possible visit times. Set A is computed prior to
the solving process.

Figure 3 illustrates an example of the proposed model with
a small instance. It consists of two depots (A and B), four
clients, and one vehicle. To force the vehicle to travel a route
from depot A to depot B, we define parameters QIA = 1,
QFA = 0,QIB = 0, andQFB = 1. The final depot does not
affect the objective function value. To simplify this example,
we assume that visit time hi is equal to accumulated travel
time Ui. Parameter lb is set equal to 150 time units. Travel
times measured in time units are indicated at the edges of
the diagram. Dashed lines represent emergency trips to the
closest depot.

Dashed lines around patients indicate that overtime hours
were used on those visits. The objective function value is
equal to 25 time units. The route performed by the vehicle
is A-C1-C2-C3-C4-B, and the normal workday time limit
is exceeded during the visit to client C3. It is important to
note that CUi is equal to lb, less the sum of the accumulated
time traveled, Ui, and the emergency trip to the closest depot.
Thus, if the emergency trip was not considered, then none of
the visits would incur overtime.

III. RESULTS AND DISCUSSION
The proposed MILP model was implemented on AMPL
and solved using the commercial solvers CPLEX 12.9.0 and
Gurobi 8.1.0. The computer used had the following features:

Intel Core TM i7-7700K, 4.2 GHz processor, 32 GB RAM,
and a 64-bit RedHat Enterprice 8.0 operating system. Both
solvers were used with default settings and with the time limit
parameter set to 3600s.

A. DATA GENERATION

To test the computational performance of the model, we
created structured instances. These are combinations of vari-
ations in sets’ cardinality and parameters. These features are
described as follows:

• Clients (C) : {10, 20, 30, 40, 50}.
• Depots (T ) : d

√
C/2e.

• Vehicles(B) : 3T , where QIt = QFt = 3
• Quota (lb) : {100, 125, 150, 175, rand[125, 175], 200}.
• Geographic distribution of clients: random (R), clusters

(CL), and geometric (G). An example of each can be
seen in Figure [X]. Squares represent depots, and circles
represent clients.

• Cluster density parameter (D) : {3, 6, 9, 12, 15}.
This parameter affects only cluster-type instances. The
smaller the value of D is, the denser the cluster. For a
more comprehensive explanation of the cluster creation
methodology, the reader may refer to [69].

Coordinates x and y for all nodes are in the range
[−100, 100]. While the type of geographical distribution of
the clients is variable, depots are fixed and independent of
client distribution. The travel time parameter dij is assumed
to be equal to the value of the Euclidean distance between
points i and j. The visit time parameter hi may define
instance feasibility. To generate these values with a low
risk of infeasibility, the methodology considers a number of
parameters. First, for each client and depot, we define Aij

as the approximation of the next multiple of 15 of the travel
time between client i and depot j. For example, if dij = 40,
then Aij is set equal to 45. Then, for each client, one of the
|T | parameters, Aij , is randomly selected. The next step is to
sort clients by their selected Aij values and create G groups
with m members. The number of groups created for each
instance is G = {2, 3, 4, 5, 6} for C = {10, 20, 30, 40, 50}.
When the remainder of C/G = 0, we have G groups
with m = C/G members. Otherwise, we will have G − 1
groups with m = dC/Ge members and one group with
m = C − (G − 1)dC/Ge members. Each member of each
group is subject to variation parameter Vi, which affects the
selected Aij . The values of Vi are given by probabilities, as
shown in Table 1. It should be noted that ε corresponds to
an additional variation parameter, which is included to add
variability to hi values. In our experiments, we set ε = 15.

Finally, clients’ appointment time hi is given by the sum of
the selected approximation parameter and the variation that
occurred. This parameter is expressed as follows:

hi = Aij + Vi (17)
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TABLE 1. Probabilities of possible values of Vi according to problem size and
assigned group.

C Group
Vi

0+ε 90+ε 180+ε 270+ε 360+ε 450+ε

10
1 70% 20% 10%
2 20% 50% 30%

20
1 70% 20% 10%
2 20% 50% 30%
3 20% 50% 30%

30

1 70% 20% 10%
2 20% 50% 30%
3 20% 50% 30%
4 20% 50% 30%

40

1 70% 20% 10%
2 20% 50% 30%
3 20% 50% 30%
4 20% 50% 30%
5 10% 30% 60%

50

1 70% 20% 10%
2 20% 50% 30%
3 20% 50% 30%
4 20% 50% 30%
5 20% 50% 30%
6 10% 30% 60%

TABLE 2. Average CPU time (s), objective function value and GAP by
instance size for each solver.

C

CPLEX Gurobi
CPU time Z GAP CPU time Z GAP

10 0.32 172.19 0.00% 0.40 172.19 0.00%
20 0.44 0.00 0.00% 0.23 0.00 0.00%
30 1582.00 69.36 30.18% 791.74 70.31 3.92%
40 1590.22 0.71 20.00% 751.79 0.36 20.00%

B. EXPERIMENT A: PROBLEM SIZE VS. CPU TIME

The first experiment consists of an exploratory analysis.
We tested the model’s performance by instance size and
compared the results of both commercial solvers. Parameter
lb was set to 200 time units. This experiment does not contain
C = 50. For each number of clients C, five instances with
different random seeds are created (in total 20 instances). All
instances are distributed randomly (R) in the plane.

The results summarized in Table 2 indicate that the prob-
lem’s complexity grows with the number of clients. Instances
with 10 and 20 patients are solved in a few seconds on
average. However, for instances with C = 30 and 40, the
CPU time increases considerably. We found that in terms of
CPU time and GAP, Gurobi is more efficient than CPLEX for
solving the analyzed instances. Another result worth noting
is the objective function value in instances with 20 patients.
A small Z value indicates that in these instances, little or
no overtime hours are required for client visits. This can be
explained by the combination of the quota’s value and the
number of vehicles. For instances with C = 20, B = 9,
while for those with C = 10, B = 6, which is approximately
2 patients per vehicle. This implies a low risk of overtime.

C. EXPERIMENT B: VARIATIONS IN QUOTA
PARAMETER
The objective of Experiment B is to determine the influence
of lb on model performance. This analysis was applied only
to instances that presented an objective function value equal
to 0 in Experiment A (with lb = 200). Furthermore, we only
used Gurobi. A total of 35 instances were analyzed, 7 for each
value of lb = {100, 125, 150, 175, rand[125, 175]}. Three of
these 7 instances correspond to C = 20, two to C = 30 and
two others to C = 40.
As the value of lb increases, the objective function’s value
for each instance size C improves. This situation can be
explained by the fact that penalization starts later when the
value of lb is larger. CPU time is demonstrated to be indi-
rectly proportional to the value of lb. As the quota parameter
increases, the problem becomes less complex. Indeed, it is
possible to observe a significant diminution in computational
time between lb = 150 and 175 and from 175 to 200. This
phenomenon is visible in all instance sizes, but especially
in C = 30 and 40. The results of this experiment are
summarized in Figure 5. The first horizontal axis contains
the number of clients, while the second contains lb values.
CPU time is represented by blue bars (left vertical axis), and
Z is represented by green bars (right).

D. EXPERIMENT C: ANALYSIS OF GEOGRAPHICAL
DISTRIBUTION TYPE
Here, we analyze whether the geographical distribution of
clients influences model behavior. Additionally, both com-
mercial solvers are compared. Instances include variations
in the quota and the number of clients. While lb =
{150, rand[150, 200], 200}, C = {10, 20, 30, 40, 50}. For
the random distribution case, five seeds were generated for
each value of C. These seeds were used for the three quota
values. In the cluster distribution, for each combination of
number of patients C and quota lb, five instances were cre-
ated, each with different cluster density D. In the geometric
case, only one seed for each number of clients was created
and used for the different values of lb. A total of 165 instances
were created in this experiment: 75 for random distribution,
15 for geometric distribution, and 75 for clustering.

By analyzing the results in Table 3, we conclude that
the geometric distribution is the most complex, while the
cluster distribution is the easiest to solve. All small instances,
that is, C = 10 and C = 20, were solved to optimality
for random and cluster distributions but not for geometric
distribution. By analyzing instances with 30 or more clients,
we found that all cluster types were solved to optimality.
By comparing random and geometric distributions, we found
that in most cases, random distribution presents better aver-
age CPU times. For geometric type, none of the instances
with C = 30 could be optimally solved. Regarding cluster
distribution, the objective function was found to be equal
to 0 for all instances analyzed. The above situation means
that no overtime has occurred. Regarding cluster density,
we found that the denser the cluster is, the less CPU time
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required to solve the problem. The effect of density on model
performance is easily visible in large instances. The behavior
of cluster instances (and its difference compared to other
distributions) can be explained by the level of closeness
between clients and depots. The results of instances with
50 clients are summarized in Figure 6. Regarding solvers’
benchmark, for instances with C = 10 and C = 20, we
found that CPLEX performs better than Gurobi in geometric
distribution and tight quotas. For lb = 200, a significant
difference in favor of Gurobi was observed. For instances
with 30 and 40 clients, Gurobi requires considerably less
computational time to solve most of the random and cluster
instances. In geometric instances of these sizes, both solvers
reach the time limit, but Gurobi presents lower GAPs than
CPLEX. Furthermore, in three instances with C = 30,
CPLEX runs out of memory. In these instances, the branch
and bound algorithm explores a large number of nodes that
are not able to be pruned, leading to a large number of
nodes left to explore and high memory usage. In cluster
instances with C = 50, Gurobi outperforms CPLEX. For
other instances, no notable differences are found.
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E. EXPERIMENT D: INSTANCE SMOOTHING –
INCREASE IN THE NUMBER OF DEPOTS AND SIZE OF
THE FLEET
The final experiment involves tripling the number of depots
(smoothed(D)) and vehicles (smoothed(V )). We consider
both cases separately and together (smoothed(V + D)).
Only instances with random and geometric distributions were
analyzed because these reached the time limit with high
GAP values in the previous experiment. The same instances
as those in experiment C were smoothed: 75 instances of
random type and 15 instances of geometric distribution.
Furthermore, we used only Gurobi.
The reader can observe the results of this experiment in
Table 4. In most of the cases studied, compared to the
original situation, the proposed variations decrease the prob-
lem’s complexity in terms of CPU time, GAP, and objective
function value for both distribution types. By comparing
the effect of depots and vehicles (geometric instances), we
found that larger fleets lead to lower GAPS and CPU times
in most cases. These results are consistent and can be val-
idated by property 1 of the MDCCVRP described in [24].
Furthermore, there is no pattern that indicates the parameter
with the greatest impact on the objective function value.
The improvement produced by smoothing both parameters
is greater than that by doing so separately. As the number
of available vehicles and depots increases, the possibility of
a caregiver using overtime hours to visit a client decreases.
In the new scenario, each vehicle can perform shorter routes,
which reduces the risk of incurring overtime. All instances
were solved to optimality in considerably low computing
times for the smoothed(V +D) case.
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F. SUMMARY OF THE BENCHMARKING OF
COMMERCIAL SOLVERS
A total of 165 instances were used to compare the com-
mercial solvers CPLEX v12.9 and Gurobi v8.1 in experi-
ments A and C. While Gurobi exhibits better computational
performance in 90 instances (55%), CPLEX does better in
27(16%). In 48 instances, (29%), the solvers are found to
have a similar performance, which is mainly due to the
fact that they both reach the time limit in the more com-
plex instances. Nevertheless, Gurobi presents lower GAPs
than CPLEX in most of these instances. Another important
conclusion from the comparison is illustrated in Figure 7,
which presents a graphical analysis of the benchmarking
by plotting CPLEXCPUtime − GurobiCPUtime for each
instance. Thus, instances with negative values indicate that
CPLEX is more efficient than Gurobi, while positive values
indicate the opposite. The reader can observe not only that
Gurobi has better behavior in more instances but also that
when this solver outperforms CPLEX, the magnitude of the
difference in CPU time is considerable. Figure 7 presents
only those instances in which differences in CPU time are
greater than 50 s. For further details of all instances, the
reader may check the supplementary materials. Instances’
names are constructed as follows: distribution type, number
of patients, and quota. For cluster instances, densityD is also
included at the end. For example, instance CL50-200-D9 is
a type-one cluster distribution with C = 50, lb = 200, and
D = 9.

IV. CONCLUSIONS AND DIRECTIONS FOR FUTURE
RESEARCH
In this paper, we introduced a new variant of the CCVRP. It
corresponds to the nonfixed MDCCVRPmvt with minimum
delayed latency. Contrary to similar CCVRPs found in the
literature, our problem includes features present in real-life
HHC routing problems. These characteristics include fulfill-
ing mandatory visit times, multiple depots, and emergency
trips in case patients need special attention at a hospital.
The novel objective function used helps define routes by the
minimizing overtimes hours with which clients are visited,
leading to better service quality. A novel MILP model to
address this problem is proposed, the performance of which
is analyzed with new structured instances. The main idea is
to simulate different potential real-life cases. We find that in-
stance size is directly proportional to computation time. Most
instances with 10 and 20 clients are solved with relative ease
by both solvers. In our analysis of patients’ geographical dis-
tribution, we conclude that geometric is the most difficult in-
stance type to address, while cluster distribution is the easiest.
The density parameter also influences model performance.
The denser the cluster is, the better the model’s behavior. It is
important to note that instances of up to 50 clients are solved
optimally for cluster cases. For the other two distribution
types, most instances with C = 40 and 50 reach the time
limit without finding the optimal solution. In some of these
cases, the GAP is 100%. Regarding the effect of parameters

on the problem’s complexity, we find that tighter quotas
make the instance more difficult to solve. By increasing the
number of depots and the fleet size, the complexity can be
reduced. This situation can be explained by the improved
workload distribution that additional vehicles/depots provide.
The benchmarking between CPLEX and Gurobi indicates
that Gurobi requires less computational time in most of the
instances analyzed. Remarkable differences in CPU time and
GAP are found in favor of Gurobi for several instances.

Although we present this novel model for HHC applica-
tions, it can easily be extended to other problems as follows:

• In forest fire control (considering planes with more than
one water discharge mechanism). In this case, hot spots
are clients. Depending on when a fire starts, hot spots
have a defined maximum time to be reached by plane.
The parameter lb could correspond to the maximum
flight time, which could be limited by gas availability
or other technical constraints. Planes could stay on
route even when the quota is reached. Nevertheless, it
is a dangerous situation, the risk of which increases
with each new hot spot visited. Emergency trips to the
closest depot must be performed when the plane runs
out of water or gas or when it faces other technical
emergencies.

• Humanitarian logistics in a postdisaster context. Natural
disasters such as earthquakes have the potential to affect
wide swaths of the population. Rescue vehicles must
take certain routes to pick up these individuals and
take them to shelters. In this context, a good response
time is essential, and the goal is to reach all the people
before a maximum time, lb, after the event occurrence.
If a person needs emergency medical attention, then an
emergency trip to the closest facility must be made.

• In the delivery of frozen/fresh products or warm bread.
Note that in many Latin American countries, it is com-
mon to eat fresh, warm bread at breakfast and dinner. In
both cases, products have a certain time available before
the cold chain is broken or they get cold. The desir-
able outcome is to deliver products that have not had
their quality negatively impacted by transport. Standard
time lb violations are expected to be minimized. The
emergency trip could be related to clients who reject the
delivery if, for example, the order is incomplete or the
products are in poor condition. This would imply a trip
to the closest depot to correct the order.

• Truck/bus companies that provide scheduled delivery
or pickup services. In this case, lb corresponds to the
maximum number of hours that drivers should be at
the wheel. They can drive more hours, but it increases
the risk of accidents. In the same industry, lb can also
correspond to the number of km at which each vehicle
should undergo routine maintenance. Vehicles can be on
the road without maintenance, but it increases the risk of
operational failures, which can, in turn, lead to accidents
or scheduling problems. In this case, since lb, U b

i and
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CUi are distances, a simple conversion using a speed
parameter is needed.

For future research, we propose adding new features and
components to the model to improve its representation of the
real world. Such components can include service time, dif-
ferent types of services, or precedence constraints. The pro-
posed model can also be extended to a cumulative HHCRSP.
A multiobjective approach that allows for the study of the
tradeoff between delayed latency and total cost/time-based
objectives may be adequate. Furthermore, new solution meth-
ods to handle more complex instances are also an interesting
possibility.
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FIGURE 1. Optimal solution by objective function. (a) Minimum total cost/time.
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FIGURE 3. Explanatory example of the problem.
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