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The Heterogeneous Fleet Vehicle Routing Problem with Light Loads and 

Overtime: Formulation and Population Variable Neighbourhood Search 

with Adaptive Memory 

 

Lina Simeonova, Niaz Wassan, Said Salhi, Gábor Nagy 

Centre for Logistics and Heuristic Optimisation (CLHO), Kent Business School 

University of Kent, Canterbury, Kent 

 

Abstract 

In this paper we consider a real life Vehicle Routing Problem inspired by the gas delivery industry 

in the United Kingdom. The problem is characterized by heterogeneous vehicle fleet, demand-

dependent service times, maximum allowable overtime and a special light load requirement. A 

mathematical formulation of the problem is developed and optimal solutions for small sized 

instances are found. A new learning-based Population Variable Neighbourhood Search algorithm 

is designed to address this real life logistic problem. To the best of our knowledge Adaptive 

Memory has not been hybridized with a classical iterative memoryless method. In this paper we 

devise and analyse empirically a new and effective hybridization search that considers both 

memory extraction and exploitation.  In terms of practical implications, we show that on a daily 

basis up to 8% cost savings on average can be achieved when overtime and light load requirements 

are considered in the decision making process. Moreover, accommodating for allowable overtime 

has shown to yield 12% better average ƵƚŝůŝǌĂƚŝŽŶ ŽĨ ƚŚĞ ĚƌŝǀĞƌ͛Ɛ ǁŽƌŬŝŶŐ ŚŽƵƌƐ ĂŶĚ ϭϮ͘ϱй ďĞƚƚĞƌ 

average utilization of the vehicle load, without a significant increase in running costs. We also 

further discuss some managerial insights and trade-offs.  

 

Keywords 

Real life Vehicle Routing; Population Variable Neighbourhood Search; Adaptive Memory; MIP 

Formulation; Managerial Insights   
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1. Introduction and Literature Review 

The evolution of VRP variants is typically inspired by real life operations and there is a noticeable 

trend in the literature to bring VRP research closer to real life routing practice. There are many real 

life inspired applications of the VRP over the years, but it was not until 2006 when real life VRPs 

were presented as a class of the VRP family under the term ͚ƌŝĐŚ͛ VRPs (Gribkovskaia et al., 2006). 

They can also be referred to as Multi-Attribute VRPs (Vidal et al., 2014), General VRPs (Goel and 

Gruhn, 2008) or simply real life VRPs. Real life VRPs (RVRPs) proposed in the literature are very 

different from one another, and are usually not revisited by researchers with the same features. 

There is no universally accepted definition or consistent abbreviation for real life VRPs. For 

instance, Hasle, Løkketangen and Martello (2006) state that rich VRPs include aspects that are 

essential to the routing practice in real life, while Lahyani, Khemakhem and Semet (2015) suggest 

that the richness of the problems can stem from various attributes/constraints of the real life 

routing practice, either operational or strategic. Some authors introduce problem specific 

constraints such as outsourcing of vehicles (Stenger et al., 2013), customer prioritization 

constraints (Cornillier, 2009), specified times for cleaning vehicles (Oppen and Lokketangen, 2008) 

or environmental protection and Green VRPs (Erdogan and Miller-Hooks, 2012). Other authors 

such as, Archetti, Savelsbergh and Speranza (2016) introduce a RVRP with occasional drivers while 

Naji-Azimi et al. (2016) study a RVRP with desynchronized arrivals to the depot. 

To the best of our knowledge there is no paper which considers a VRP relevant to the commercial 

gas delivery industry, incorporating the same real life features, namely light loads, demand-

dependent service times and allowable overtime with unlimited fleet. However, there are some 

RVRPs which consider similar real life aspects, but from different perspectives. For instance, 

Zachariadis, Tarantillis and Kiranoudis (2015) tackle a load-dependent VRP with an iterative 

metaheuristic, while Nagy, Wassan and Salhi (2013) investigate a VRP with restricted mixing of the 

load using Reactive Tabu Search. Seixas and Mendes (2013) incorporate drivers working hours into 

a multiple trip VRP with heterogeneous fleet solved by Column Generation, whereas Battarra, 

Monaci and Vigo (2009) impose a shift length constraint for each vehicle in a minimum multiple 

trip VRP solved by a decomposition iterative heuristic with an adaptive guidance mechanism. 

Similar to the RVRP introduced here, Kok, Hans and Schutten (2012) consider time-dependent 

travel times where the aim is to reduce the impact of traffic congestions addressed by an adapted 

Dijkstra Algorithm and restricted dynamic programming. 

http://www.sciencedirect.com.chain.kent.ac.uk/science/article/pii/S0377221714006146#b0525
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Typically, papers considering allowable overtime are researched with fixed (limited) number of 

vehicles. For instance, Ren, Dessouky and Ordonez (2010) tackle a multi-shift problem with 

allowable overtime which is inspired by the healthcare industry and develop a problem specific 

algorithm namely the Shift Dependent heuristic. Moon, Lee and Seong (2012) propose a VRP with 

time windows, allowable overtime and outsourcing vehicles solved by a Genetic Algorithm and 

Simulated Annealing hybrid algorithm. This paper uses overtime with unlimited number of vehicles 

from each type, which raises an interesting trade-off between using the allowable overtime or 

using extra vehicles. 

Most of the proposed methods for addressing RVRPs in the literature are heuristic-based. In this 

paper we use Adaptive Memory Procedure (AMP) as a method in its own right which is effectively 

hybridized in several novel ways with a population-based Variable Neighbourhood Search (VNS). 

The AM concept is first introduced by Rochat and Taillard (1995) as a complement to Tabu Search 

(TS) and refers to a special utilization of the memory during the search process. AM can be defined 

as a special data structure, which initializes a set of solutions and during the search process keeps 

ƚƌĂĐŬ ŽĨ ƚŚĞ ͞ďĞƐƚ͟ ĐŽŵƉŽŶĞŶƚƐ ŽĨ ƚŚĞ ƐŽůƵƚŝŽŶƐ͕ ǁŚŝĐŚ ĂƌĞ ůĂƚĞƌ ĐŽŵďŝŶĞĚ ƚŽ ďƵŝůĚ ďĞƚƚĞƌ ƋƵĂůŝƚǇ 

solutions (Tarantillis, 2005). In the VRP context, the use of AMP is still mostly as a complement to 

TS or other methods such as Particle Swarm Optimization (Yin, Glover and Laguna, 2010) and Path 

Relinking (Li, 2010), which also have embedded memory structures.  

One of the most important methodological considerations regarding AMP is the way ͞ŐŽŽĚ͟ 

solution components are extracted from the memory. Tarantillis and Kiranoudis (2002) proposed 

the BoneRoute method, where good solution sequences are referred to as bones. Each bone has 

length and frequency. The rationale is that good solution sequences appear in good, medium and 

low quality solutions, hence the higher the frequency of a bone, the better the chance it is a 

promising solution component. Other methods utilizinŐ AMP ŝŶĐůƵĚĞ ƚŚĞ “ŽůƵƚŝŽŶƐ͛ EůŝƚĞ PĂƌƚƐ 

Search introduced by Tarantillis (2005) and the Multi-start AMP (Li, 2012). A recent paper by Matei 

et al. (2015) also uses features relevant to our methodology for population survival within a 

memetic algorithm with immigration techniques applied to the HVRP. 

Many adaptations of the VNS introduced by Mladenovic and Hansen (1997) are used across the 

VRP domain. Some of its most recent applications include a Two-Level VNS for the Multiple Trip 

VRP with Backhauls (Wassan et al., 2017) and Ant Colony empowered VNS for the VRP with 
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simultaneous pickup and delivery (Kalayci and Kaya, 2016). Sze, Salhi and Wassan (2016) propose 

a hybridization of adaptive VNS and Large Neighbourhood Search for the classical VRP, which is 

later extended to the cumulative capacitated VRP with min-sum and min-max objectives (Sze, Salhi 

and Wassan, 2017).  For more information on the new advances of VNS, we refer to Mladenovic 

et al. (2016) and for further detail on hybridization search, to the recent book on heuristics by Salhi 

(2017). 

The contribution of this paper is as follows. 

(i) We introduce a real life VRP, which is inspired by the gas delivery industry. It is characterized 

with heterogeneous vehicle fleet, maximum allowable overtime, a special light load requirement 

and demand-dependent service times. 

 (iii) We propose a new learning-based Population Variable Neighbourhood Search algorithm with 

Adaptive Memory (PVNS_AMP). We hybridize the Adaptive Memory principles with a local search 

method, where the memory aspect is incorporated in a long-term learning fashion within a 

memoryless, yet powerful metaheuristic such as VNS. 

(ii) A mixed integer formulation is developed and tested on small sized instances, where optimal 

solutions or upper/ lower bounds can be found.  

(iv) Interesting practical implications for more efficient and cost effective routing practice relevant 

to the RVRP are also put forward. 

The rest of the paper is organised as follows. Section 2 presents a description of the problem and 

provides a mixed integer formulation of the RVRP, followed by our motivation to study the 

PVNS_AMP methodology in Section 3. Computational results and their analysis alongside some 

interesting practical implications are presented in Section 4. The final section summarizes our 

findings. 

2. Problem Definition and Formulation 

The proposed RVRP in this paper is inspired by a real life gas delivery company in the UK. The 

management is faced with challenges on a daily basis, regarding their routing practice. At present, 

there are three main aspects of the routing which cause inefficiencies for the company. We 

incorporate those into our problem and report possible savings and practical implications. 
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Light Load requirement 

An important practical aspect of this particular problem is the light load requirement, because if 

the load on the vehicle is too heavy, some customers who live in areas such as steep hills or soft 

grounds may not be able to be accessed.  Therefore, when a light load customer is serviced by a 

given vehicle, the remaining load on that vehicle needs to be lighter than a certain threshold level. 

The company does not have an efficient way of incorporating the light load aspect into their 

delivery schedule. At the moment, if a customer has a light load requirement, for simplicity it is 

manually added at the end of the vehicle route to ensure lighter load, which unfortunately can 

lead to significant inefficiencies in scheduling. 

Allowable Overtime 

Another key aspect that is strategically not taken into account is to incorporate overtime in 

advance. The current practice is to offer overtime to drivers towards the end of their regular time. 

This means that any remaining customers after the regular time will be served by the driver who 

agrees to perform overtime, without consideration of the routing efficiency. In addition, it is very 

common that drivers refuse overtime if they are not told in advance and this may lead to delays in 

delivery, unsatisfied customers and increased costs for the company.  

Demand-dependent service times 

Another aspect of our RVRP that needs to be mentioned is that only 150 litres of gas can be 

pumped into the customer tanks per minute, which renders the service times to vary depending 

on the demand size, hence the demand-dependent nature of the service time. In other words, the 

ůĂƌŐĞƌ ƚŚĞ ĐƵƐƚŽŵĞƌƐ͛ ĚĞŵĂŶĚ͕ ƚŚĞ ŵŽƌĞ ƚŝŵĞ ŝƚ ǁŝůů ƚĂŬĞ ƚŚĞ ĚĞůŝǀĞƌǇ ĚƌŝǀĞƌ ƚŽ ƐĂƚŝƐĨǇ ƚŚĞ ĚĞŵĂŶĚ, 

which can impact on the maximum number of customers a driver can visit in one planning period.  

In this study, we incorporate the above three attributes into the RVRP, in order to show 

improvements in the planning efficiency, as well as cost savings.  

The RVRP is modelled on a complete directed graph  ,  G N A , where N is the set of customers 

 0,1, ,N n  with 0 being the depot, and  ,  : ,  ,{ }A i j i j N i j   is the set of arcs where each 

arc  ,  i j A has associated distance ijd and time ijt .There are k types of vehicles, each with a 

capacity kQ , {1,..., }k K . Each vehicle is associated with a variable cost kv based on how much 
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fuel a specific vehicle consumes, given the vehicle's average speed. The number of vehicles of each 

type is considered unlimited. The distance is Euclidean and the cost is proportionate to the 

distance travelled. The travel time ijt  takes into account the average speed of the vehicles, which 

according to the company records is approximately 30 mph. Each customer i N  has a known 

demand iq , which is generated at random and a known service time is . The service time can be 

calculated by dividing the demand by the gas pumping rate of 150 litres per minute. Customers 

are divided into two types, regular R(R ك N), which can be serviced at any time during the delivery 

period, and light load  ,      ,    ) (L L N R L R L N      . If a customer is considered to be light 

load ( )i L , it means that it can only be serviced if the remaining load in the vehicle is less than a 

specified threshold level, kc  for {1,..., }k K . In our case the maximum proportion of customers 

with light load requirement can be up to 20% of the total customers served. T is the maximum 

regular time for each vehicle route (7 hours and 20 min). Table 1 provides a summary of the 

problem specifications.  

Table 1: RVRP Problem Specifications 

Customer Coordinates Golden et al. (1984)  

Customer Demands iq  Randomly Generated with Uniform Distribution [630,3950] 

Vehicle Capacity 13050 litres (Type A), 20880 litres (Type B) 

Average Speed 30 mph 

Service time is  150 litres per minute 

Variable cost per mile 0.36p (Type A), 0.48p (Type B) 

Set of Light Load Customers Lك   N Randomly Chosen 

 

Formulation 

Decision Variables: 

 0,1ijkx  , with 1ijkx   if vehicle k travels along arc ( , )i j , 0 otherwise; 

ijky is a non-negative continuous variable, which denotes the remaining load on a vehicle k , 

travelling along the arc ( , )i j ; 

ijz is a non-negative continuous variable along the arc ( , )i j , which denotes the accumulated travel 

time upon arrival at node j; 
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 0,1 ;ijkx      ( 0,..., ),( 1,..., );i j n k K      (13) 

 

The Objective Function (1) aims to minimize the total cost of travel. Constraints (2)-(3) state that 

each vehicle arrives at a customer location and leaves that customer location exactly once. 

Constraint (4) ensures the connectivity of the routes. Constraints (5)-(6) govern the commodity 

flow conservation and capacity restriction. Constraint (7) ensures that the light load customers
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i L will only be serviced if the remaining load on the vehicle is less than the specified threshold 

kc . Constraints (8)-(10) govern the maximum time allowed for each vehicle trip. Constraints (11)-

(12) guarantee that the decision variables ijky  and 
ij

z  are positive, where constraint (13) specifies 

the binary nature of the decision variable ijkx . The MIP formulation has 

( 1)(2 3) 3 ( 1)n n n LK R     constraints, ( 1)kn n binary variables and ( 1) ( 1)n n n n k  

continuous variables. 

 

In the case where overtime is allowed, we make the following additions to the formulation. O is 

the maximum allowable overtime (4 hours and 30 min) and   is the variable cost of overtime 

which is 1.5 times higher than the cost of the regular time. A new variable ka  denotes the return 

time at the depot for each vehicle and ko  is a new decision variable denoting any overtime used. 

The variable 
ij

z  is replaced by the variable ikz , which represents the arrival time at customer i , for 

each vehicle {1,..., }k K , where M is a significantly large constant. The following components of 

the original formulation need to be amended, in order to account for allowable overtime. 

Minimize Z=
0 0 1 1

n n K K

ijk ij k k
i j k k

x d v o
   

        (1a) 

1

1 ;
K

ijkj
k

k ik ij j M xz z t s


 
   


 


  ( 0,..., ),( 1,..., ),( 1,..., );i n j n k K     (8a) 

 00 1 ;k ik i i i ka z t s M x    ( 1,..., ),( 1,..., );i n k K     (9a) 

  ;k Oa T      ( 1,..., );k K      (10a) 

;k ko a T                                           ( 1,..., );k K      (11a) 

, , 0;ik kka z o      ( 1,..., );k K      (12a)  

   

The extended objective function equation (1a) refers to the total cost which includes the travel 

cost and the cost of any overtime used. It ensures that upon return to the depot any time over the 

maximum regular time T  will be treated as overtime, multiplied by the overtime variable cost   

and added to the total cost of travel. Note that   should not be too small, because if the penalty 

of overtime is very small it cannot influence the solution and it may be ignored.  Constraints (8a)-

(9a) denote the travel time upon arrival at customer i  and the return time at the depot. Constraint 
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(10a) ensures the maximum travel time (including regular and overtime) is not exceeded. 

Constraint (11a) ensures that the allowable overtime occurs after the regular time, Constraint 

(12a) refers to the positive nature of the corresponding variables. 

The number of vehicles can also become fixed to a certain number mby adding constrain (14), but 

the type of vehicle chosen remains variable. Moreover, if constraints (7)-(11) in the original model 

are relaxed, the RVRP reduces to the classical VRP Fleet Size and Mix.  

0
1

;
n

jk
j

mx


        (k =1,…,K);                (14) 

3. The PVNS_AMP Algorithm 

 

This paper adapts the classical form of VNS to Population VNS (PVNS) and enhances it with learning 

principles of AMP. We refer to the proposed method as PVNS_AMP. The main idea behind VNS is 

to explore successive neighbourhoods of the incumbent solution in depth, which provides 

intensification of the search process. In this paper a population based VNS is used, which means 

that more than one solution structure is kept into the memory and explored during the search. 

This is carried out for the purpose of diversification.  

In contrast with the original AMP rationale, where memory initialization is done in advance, we 

perform it through learning. The learning takes place during the local search in Stage 1 of the 

algorithm, where promising solution sequences are memorized and evaluated based on their 

goodness of fit (solution quality). The recognition of good node sequences depends on their length 

and frequency, similar to the BoneRoute method, which is described in Section 2. However, the 

length of the node sequence is variable in our case. We refer to the extracted node sequences as 

Elite Strings. Moreover, a sequence of one node is also accepted, if it is a single customer route.   

Another significant difference with previous AMP methods is that a node is allowed to be repeated 

in the extracted node sequences. The motivation behind it is that there may be more than one 

route composition and solution sequence, which could result in a best heuristic solution. 

Adjacency to the depot is recognised as well, which means that if a customer is best suited to be 

serviced first after the depot the Elite String can include the depot node. In addition, the 

PVNS_AMP has relatively few parameters, which are mostly related to memory extraction and 
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exploitation. The parameters used in this study are listed in Table 2. They have all been empirically 

tested and found most suitable for the RVRP problem. 

  Table 2: Parameters of the PVNS_AMP 

Parameter Description 

P  Initial Solution Pool, which consists of 2 Initial Solutions , (1,...,2);S P S   

M  Memory Initialization Pool, which consists of a set of  Neighbourhoods of S  , with local 

optimum 'x ; 
 
M  has variable size;

 

E  
Memory Exploitation Pool with Elite Strings, which consists of Solutions survived to the 

PVNS_AMP Stage 1 1 10 10, ( ' ( ' ),..., ' ( ' ));E M E S x S x   

1maxiter  Maximum iterations for Stage 1 is variable, until no further improvement for 2 

consecutive iterations 

2maxiter  Maximum iterations for Stage 2 is 10 

Elite Strings 

Recognition 

Criteria 

A sequence of nodes is considered Elite if it has a Frequency >= 75% across all solutions 

saved in M   

Proportion of Elite 

Strings in E  
<=30% of the solution can be fixed by the Elite Strings  

Elite Strings List Variable Length  

 

The PVNS_AMP consists of two stages. Stage 1 is called the PVNS (Learning) Stage, where 

information about the structure and the quality of the candidate solutions is gathered. At the end 

of the learning stage this information is used to recognize the Elite Strings which occur in more 

than 75% of the candidate solutions. Stage 2, which is the PVNS_AMP Stage, is the memory 

exploitation stage, where only the best 10 solutions, in terms of solution quality survive. The Elite 

Strings are encoded into the solutions which have survived from the previous stage and are further 

exploited using VNS until the best solution is found. Figure 1 provides a simple pseudo code for 

our PVNS_AMP algorithm. Each candidate solution S which enters the PVNS Stage after the initial 

solution generation has an objective function ܨሺݔሻ, which is the current local optimum, where 'S

( 'x ) denotes the best local optimum found during the local search of S in Stage 1. In Stage 2, the 

local search is further applied on each 'S ( 'x ) in the same fashion until no further improvement is 

found with bestx representing the best solution found so far.  

3.1. Stage 1 (PVNS Stage) 

The purpose of Stage 1 is to construct the Memory Initialization Pool through past experience, as 

well as to compile knowledge about the solution space, which is then used to recognise the 

promising parts of the different candidate solutions.  



11 

 

Stage 1: PVNS Stage 

Generate P , Set M   

For Each S P  

Do 

Denote x   as the local optimum of S , 'x  the current  

best local optimum  

   Set ' , 1;x x iter   

       Do 

      Apply Neighbourhood Search Operators to S  

      if ( ) ( ')F x F x  , update 'x  

    Until no improvement of x  

  Add 'S  to M , where 'S =
thS  Neighbourhood of S      

associated with  'x  

  Shake by probabilistic rules (explained in Section 3.1.) 

   While 
1maxiter iter  

Next S  

End of Stage 1 

Elite String Recognition in M  

Select E M , 1 1 10 10( ' ( ' ),..., ' ( ' ))E S x S x   

Stage 2: PVNS_AMP Stage 

For Each 
'S E  

  Do 

 Denote bestx  as the current local optimum 

 Set ', 1;bestx x iter   

  Do 

   Apply Neighbourhood Search Operators to 'S   

   if ( ') ( ' )bestF x F x  , update 'bestx  

Until no improvement of 'x  

  Shake by probabilistic rules (explained in Section 3.2.) 

While 
2maxiter iter  

Next 
'S  

End of Stage 2 

End 

Figure 1: Pseudo Code for the PVNS_AMP 

 

Initial Solution Pool  

There are two initial solutions, which make up the Initial Solution Pool. One is achieved through 

the Sweep Algorithm (Gillet and Miller, 1974) and the other is randomly generated. This is done 

for the purpose of diversification, so as to explore solutions with different topographical 

structures. Here the main rationale is that if an Elite String is recognized in a solution resulting from 

a construction heuristic and the same string re-appears during the search of a randomly generated 

solution, then there is a good chance the string is a promising component of the final heuristic 

solution. 
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Neighbourhood Search Operators 

There are six Neighbourhood Search Operators used to explore a solution. The 1-1 intra-route 

swap, exchanges the positions of each node with all other nodes on the same route. 1-0 and 2-0 

inter-route shift insert each one / two consecutive nodes respectively, in all feasible locations on 

all other routes. The 1-1 inter-route swap, exchanges the positions of one node with all other nodes 

from all other routes; 2-1 inter-route swap, exchanges the positions of 2 consecutive customers 

from one route with one customer from all other routes and 2-2 inter-route swap, exchanges the 

positions of two consecutive nodes from one route with two consecutive nodes from all other 

routes.  

 

It is believed that randomly generated solutions can be computationally expensive to turn into 

better quality solutions, especially if the best-improvement strategy is used. Therefore, the first 

improvement strategy is used in order to find immediate good links between nodes, hence speed 

up the learning process for the composition of the Elite Strings.  All operators are used in a 

systematic order, where all feasible shifts and swaps are considered until no further improvement 

is found. The current best solution is saved into the Memory Initialization Pool after each iteration. 

Then the shake stage of VNS takes place, which is done by probabilistic rules. In Stage 1 two 

random customers from random routes are inserted into different routes at a random position. 

The reason for choosing a more vigorous shake is because when the solution enters the 

neighbourhood operators at the next iteration any good immediate links between nodes could re-

appear if they were broken during the shake and the frequency of the link is likely to increase.  

 

3.2. Stage 2 (PVNS_AMP Stage) 

Stage 2 is the memory exploitation stage, where the knowledge gathered in Stage 1 (PVNS stage) 

is used to improve the solution quality. After Stage 1, the Elite Strings are recognised, according to 

the pre-defined criteria. The Memory Initialization Pool is then reduced to the best 10 candidate 

solutions in terms of solution quality and the Elite Strings are encoded into them. The Elite Strings 

become the fixed part of the solution structure, which does not change during further 

neighbourhood search. The remaining nodes remain a variable part of the solution. The Elite 

Strings List is of dynamic length. This is because in the different data instances, different number 

of Elite Strings can be recognised from the Memory Initialization Pool, which have a frequency of 
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75% and higher. When encoding the Elite Strings into the solutions, those with the highest 

frequency have priority. However, the proportion of Elite Strings which are encoded into a solution 

is limited to up to 30%. These solutions enter the second stage in a systematic fashion in ascending 

order in terms of solution quality. The operators and execution of the VNS search is the same as in 

Stage 1, but only the variable part of the solution is modified via the shift and swap operators. 

Having a proportion of the solution which remains fixed, acts as a neighbourhood reduction 

technique and speeds up the CPU time of the operators. The Elite Strings remain fixed during the 

shake stage as well. However, in Stage 2 of the algorithm, the shake does not distort the solution 

too much, where only one customer is randomly reassigned to a different route. This provides 

intensification of the search, but keeps the focus of the search in better regions. The population-

based nature of the VNS (the survival of a number of candidate solutions) in the second stage is 

very important for diversification. The candidate solutions which enter the second stage of the 

algorithm are quite diverse in terms of solution structure; hence they contain different Elite Strings 

and provide for a better coverage of good local optima.  

Elite Strings Encoding 

The proportion of Elite Strings incorporated into the solutions in the second stage of the algorithm 

is an important methodological consideration. There is a clear trade-off between the proportion 

of the solution that is fixed via Elite Strings, solution quality, and computational time. If a smaller 

proportion of the solution is fixed, then the solution quality may not improve in the second stage 

as it is not focused enough into better search areas. Similarly, if too much of the solution is fixed, 

the Elite Strings may not in fact be elite, which can lead the search to explore a region that is falsely 

recognised as good. Also, the computational time decreases as the proportion of Elite Strings 

increases in the solution. Figure 3 illustrates this trade-off and shows that when the solution 

contains 30% or less Elite Strings, is sufficient for good memory exploitation. Another interesting 

observation is the fluctuation of the solution quality at different levels of Elite Strings encoding. It 

only fluctuates less than 4%, which suggests good quality extraction of Elite Strings even with up 

to 60% coverage of the solution. The example portrayed in Figure 2 is an instance with 100 

customers with and without overtime. Both versions are graphically represented in order to show 

consistency in the algorithmic behaviour. 
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  Figure 2: Instance N = 100, L = 10% 

 

 

The population nature of the algorithm has another benefit when it comes to Elite Strings 

encoding. During the computational experience we found that it is possible to recognize a solution 

sequence as an Elite String, but in fact it is not an Elite String. Therefore, working with a population 

of candidate solutions allows for overcoming this possible drawback. This issue is illustrated in 

Figure 3, which shows two candidate solutions which survive from Stage 1 for an instance with 20 

customers. The string 8-7-6 which is recognised as elite is present in the candidate solution with 

objective function of 501.6. However, looking at the optimal solution obtained from Cplex, the 

string 8-7-6 is not part of the optimal solution, hence it is not elite. Therefore, having a population 

based VNS, where there is a pool of candidate solutions with different solution structure and 

different Elite Strings is necessary.  

Learning Mechanism 

The PVNS_AMP hybridizes AMP with a memoryless method, which is not a common practice in 

the VRP domain. Therefore, it is important to show the benefit of learning and memory 

exploitation. Figure 4 shows that there is a benefit from using the AMP as a learning strategy for 

VNS. It is clear from the figure that the solution quality from the PVNS Stage fluctuates more during 

the runtime of the algorithm, whereas in the PVNS_AMP stage it is more stable and more focused 

in lower topography. This is because the fixed part of the solution (i.e. the Elite String), is guiding 

the search to remain in better regions.  
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Figure 3: Encoding of Elite Strings into candidate solutions 
 
 
The instance portrayed in Figure 4 shows another interesting observation. The candidate solutions 

'S  enter the PVNS_AMP stage in ascending order based on their objective function value. It can 

be seen that the best solution in the PVNS_AMP stage was reached towards the end of the running 

time of the algorithm. This means that it was reached by a candidate solution 'S E  with larger 

objective function value. This is an important observation when it comes to problems with 

overtime. The neighbourhood operators we use to explore the candidate solutions involve shifting 

a maximum of two customers at a time. This raises an interesting trade-off between using more 

allowable overtime vs. using an extra vehicle. Having a population VNS allows for the exploration 

of solutions which favour overtime, as well as solutions which favour an extra vehicle. The diversity 

of the solution pool means greater coverage of the search space, where not only the best cost 

solution is further explored, but also those with larger objective function. 

 

 
Figure 4: The RVRP with Overtime N = 100, L = 10% 
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4. Computational Results and Analysis 

The PVNS_AMP is coded in C++ and all experiments are conducted on a PC with Intel Core i7 with 

3.4 GHz. There are no standard benchmark instances for RVRPs, as they are tailored to real life 

practices, making it more difficult to comment on the algorithmic comparability aspect. It is 

common for researches addressing RVRPs to use randomly generated data, data provided by a 

company or adapted literature benchmark instances. We chose to adapt the problem instances of 

Golden et al. (1984). The original coordinates of the instances are used, where the other 

specifications for demand, vehicle capacity, average vehicle speed, service time and variable cost 

are informed by a real life gas delivery company and are detailed in Section 2. 

4.1. The RVRP without Overtime 

The RVRP is first solved using the MIP formulation provided in Section 3 in Cplex Version 12.6. The 

results are then compared to those from the proposed PVNS_AMP. Table 3 shows the results 

produced by Cplex and those by the PVNS_AMP, with the corresponding CPU times. The total CPU 

time (TCPU) is reported, as well as the time to the best found solution (BCPU). The last column 

shows the percent improvement in solution quality when AMP is incorporated into the PVNS.  

There are a few observations that can be made from Table 3. First, incorporating AMP within VNS 

and exploiting the memory in Stage 2, leads to up to 5.2% improvement in the objective function.  

Second, looking at the TCPU for both stages, it can be seen that generally the higher the proportion 

of light load customers, the smaller the TCPU. This is a valid observation, because the higher the 

number of light load customers, the smaller the search space becomes, which restricts the local 

search allowable moves. The BCPU confirms the observation made in Figure 4, that some of the 

best solutions are found towards the end of the total runtime for both stages of the algorithm. 

This emphasizes on the benefit of using a population VNS.  

To show the benefit of using the PVNS_AMP hybrid we have also performed some further testing 

using different versions of our algorithm. Table 4 shows the results achieved by using the classical 

VNS with the same algorithmic steps as detailed for Stage 1 of the PVNS_AMP, but applied to one 

candidate solution only, since the classical VNS applies local search to a single solution. Some 

interesting observations can be noted from Table 4. First, using a Population VNS results in up to 

4% improvement of the solution quality on the RVRP without overtime, which shows the benefit 
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of using a pool of solutions. Second, there is up to 3% improvement on the classical VNS when 

AMP is incorporated within it. However, comparing the results from the VNS_AMP and the PVNS 

only, it can be seen that the PVNS performs slightly better than the VNS_AMP. One reason for this 

would be that the AMP needs a more diversified solution pool in order to be able to extract 

promising solution sequences, rather than only learning from one solution structure. Hence the 

PVNS_AMP has superior performance, with up to 8% improvement of the solution quality from 

the classical VNS. The average performance of the methods is also reported in Table 4.  

It can be seen from Table 4 that the VNS_AMP results in improvement from the VNS, which means 

that a greater degree of intensification of the search space can improve the performance of the 

method. Therefore, we have tested the PVNS_AMP with more intensified local search, by 

increasing the number of iterations for each candidate solution for Stage 1 and Stage 2 of the 

algorithm. We set the number of iterations to 20, which was empirically found to be suitable. 

Additionally, the PVNS_AMP has a degree of randomisation and in order to have a more thorough 

testing we also have recorded the average results of the PVNS_AMP over 10 runs.  These results 

are shown in Table 5. Testing the PVNS_AMP using 10 runs, with different starting seed shows 

some improvements on the larger sized instances with up to 1.03%, whereas giving more depth to 

the search with more iterations leads to an improvement of up to 1.45%. This shows that having a 

high degree of diversification is needed for good extraction of Elite Strings, but also shows an 

improvement when the local search is further intensified, emphasizing on the importance of the 

fine balance between diversification and intensification aspects of heuristic methods.   
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          Table 3: Computational Results for the RVRP without overtime 

N L (%)a 

  CPLEX   Stage 1 (PVNS Stage)   Stage 2 (AMP Stage)  

 LB/ 

Optimalb 
UB Timec 

Fleet 

Composition 
 Solution TCPUd BCPUe 

Fleet 

Composition 
 Solution TCPU BCPU 

Fleet 

Composition 
IMP 

20 10  446.2 - 4 3A 1B  446.2 3 <1 3A 1B  446.2 2 <1 3A 1B 0.00% 

20 15  446.9 - 3 3A 1B  446.9 3 <1 3A 1B  446.9 2 <1 3A 1B 0.00% 

20 20  462.3 - 3 3A 1B  462.3 2 <1 3A 1B  462.3 1 <1 3A 1B 0.00% 

30 10  560.1 - 640 2A 3B  569.3 5 2 2A 3B  560.1 2 <1 2A 3B 1.62% 

30 15  560.1 - 640 2A 3B  569.3 5 2 2A 3B  560.1 2 <1 2A 3B 1.62% 

30 20  535.9 575.4 375 m -  565.3 4 2 2A 3B  565.3 3 <1 2A 3B 0.00% 

50 10  701.1 901 1830 m -  879.1 16 5 8A 2B  852.2 10 5 6A 2B 3.06% 

50 15  706.8 958.2 248 m -  882.3 15 10 5A 5B  867.2 10 5 4A 5B 1.71% 

50 20  699.4 N/A 1109 m -  903.9 13 7 6A 4B  877.4 8 3 6A 4B 2.93% 

75 10  993.1 1541 971 m -  1269.5 36 17 2A 8B  1244.1 25 20 2A 8B 2.00% 

75 15  985.9 1391 1658 m -  1272.1 33 8 7A 5B  1254.3 22 15 6A 5B 1.40% 

75 20  985.9 N/A 2662 m -  1292.4 31 15 8A 6B  1267.5 19 7 8A 6B 1.93% 

100 10  1274.6 2908 1396 m -  1667.6 75 20 13A 5B  1646.4 55 48 13A 5B 1.27% 

100 15  1248.4 2844 1930 m -  1744.1 79 36 13A 6B  1689.9 52 50 12A 6B 3.11% 

100 20   1247.4 N/A 322 m -   1798.3 62 62 9A 9B   1705.3 40 14 10A 8B 5.17% 

a L: Percent of L ك   N            
b LB / Optimal: Optimal Solution in bold            
c Time: Cplex computational time in minutes            
d TCPU: Total runtime in seconds for the corresponding version            
e BCPU: Time to best found solution in seconds for the corresponding 

stage           
IMP: Percent Improvement with AMP            
 m  Time recorded until system is Out of Memory            
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Table 4: Performance of different versions of the proposed algorithm  on the RVRP without overtime           

N L 
 VNSa   PVNSb  VNS_AMPc   PVNS_AMPd  

 Solution CPU  Solution CPU IMP  Solution CPU IMP  Solution CPU IMP 

20 10%  446.2 <1  446.2 3 0.00%  446.2 <1 0.00%  446.2 5 0.00% 

20 15%  446.9 <1  446.9 3 0.00%  446.9 <1 0.00%  446.9 5 0.00% 

20 20%  462.3 <1  462.3 2 0.00%  462.3 <1 0.00%  462.3 3 0.00% 

30 10%  569.3 <1  569.3 5 0.00%  569.3 3 0.00%  560.1 7 1.62% 

30 15%  569.3 <1  569.3 5 0.00%  569.3 3 0.00%  560.1 7 1.62% 

30 20%  565.3 <1  565.3 4 0.00%  565.3 3 0.00%  565.3 7 0.00% 

50 10%  905.03 5  879.1 16 2.95%  893.1 11 1.34%  852.2 26 5.84% 

50 15%  912.21 5  882.3 15 3.39%  903.9 7 0.92%  867.2 25 4.93% 

50 20%  926.45 5  903.9 13 2.49%  926.4 7 0.01%  877.4 21 5.29% 

75 10%  1319.62 11  1269.5 36 3.95%  1282.6 16 2.98%  1244.1 61 5.72% 

75 15%  1324.1 10  1272.1 33 4.09%  1292.5 15 2.44%  1254.3 55 5.27% 

75 20%  1340.7 10  1292.4 31 3.74%  1305.2 15 2.72%  1267.5 50 5.46% 

100 10%  1734.2 18  1667.6 75 3.99%  1689.2 28 2.66%  1646.4 130 5.06% 

100 15%  1816.9 17  1744.1 79 4.17%  1766.3 28 2.86%  1689.9 131 7.00% 

100 20%   1859.4 15   1798.3 62 3.40%   1810.1 26 2.72%   1705.3 102 8.29% 

Average    1013.19 10.7   984.57 25.5 2.14%   995.24 13.5 1.24%   963.01 42.3 3.74% 
a Classical VNS without AMP           
b Population VNS without AMP           
c Classical VNS with AMP           
d PVNS with AMP           
IMP: Improvement from classical VNS           
CPU time in seconds 

 

            
Average: Solution, Time and IMP 
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       Table 5: Further testing of the PVNS_AMP algorithm on the RVRP without overtime 

N L 

  PVNS_AMPa   PVNS_AMPb   PVNS_AMPc 

 Solution CPU  Best Solution Average Solution 
Average 

CPU 
% IMP  Solution CPU % IMP 

20 10%  446.2 5  446.2 446.2 5 0.00%  446.2 9 0.00% 

20 15%  446.9 5  446.9 446.9 5 0.00%  446.9 9 0.00% 

20 20%  462.3 3  462.3 462.3 4 0.00%  462.3 9 0.00% 

30 10%  560.1 7  560.1 560.1 10 0.00%  560.1 25 0.00% 

30 15%  560.1 7  560.1 560.1 9 0.00%  560.1 23 0.00% 

30 20%  565.3 7  565.3 565.3 9 0.00%  565.3 25 0.00% 

50 10%  852.2 26  852.2 852.2 31 0.00%  852.2 79 0.00% 

50 15%  867.2 25  867.2 867.2 32 0.00%  867.2 76 0.00% 

50 20%  877.4 21  877.4 877.4 25 0.00%  877.4 76 0.00% 

75 10%  1244.1 61  1232.3 1234.9 68 0.96%  1229.6 149 1.18% 

75 15%  1254.3 55  1248.8 1256.7 60 0.44%  1248.8 145 0.44% 

75 20%  1267.5 50  1267.5 1269.5 56 0.00%  1267.5 139 0.00% 

100 10%  1646.4 130  1629.6 1644.8 135 1.03%  1622.9 301 1.45% 

100 15%  1689.9 131  1675.3 1687.5 133 0.87%  1675.3 296 0.87% 

100 20%   1705.3 102   1698.2 1703.7 108 0.42%   1698.2 289 0.42% 

Average    963.01  42   959.29  962.32  23 0.25%    958.67  55   0.29% 
a PVNS_AMP results from one run only          
b PVNS_AMP results from 10 runs with different starting seed        
c PVNS_AMP results from 1 run, fixed iterations 

IMP: Improvement on the PVNS_AMPa   

CPU time in seconds 

Average: Solution, Time and IMP           
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Table 6: Routing Schedule for RVRP without overtime with different light load customers 

 

  Light Load Customers 

   Base Case Case 1: 2,11 א L Case 2: 2,10 א L 
Case 3: 

 L א1,10,15

Case 4: 

 L א1,10,15,8

Routes 

0-1-8-3-2-0 0-1-8-3-2-0 0-1-8-3-2-0 0-5-11-16-2-3-1-0 0-5-11-16-2-3-1-0 

0-5-15-10-9-16-11-0 0-5-15-10-9-16-11-0 0-12-15-10-9-11-16-0 0-12-17-15-10-9-0 0-12-17-15-10-9-0 

0-14-20-7-6-0 0-14-20-7-6-0 0-14-20-7-6-0 0-14-20-7-8-6-0 0-14-20-7-8-6-0 

0-18-13-19-4-17-12-0 0-18-13-19-4-17-12-0 0-18-13-19-4-17-5-0 0-18-13-19-4-0 0-18-13-19-4-0 

Fleet 

Composition 
3A,1B 3A,1B 3A,1B 3A,1B 3A,1B 

Solution 446.16 446.16 476.04 462.32 462.32 

TCPU* 2 2 2 <1 <1 

*TCPU: total computational time in seconds 

 L: Light Load customers 

 Underlined nodes are Light Load Customers    
 

Table 6 shows a computational experiment on the efficient incorporation of the light load 

customers using RVRP Instance N = 20. The first case in Table 6 is the Base Case, which shows the 

routing schedule when there are no light load customers. A comparison to the base case routing 

schedule is necessary in order to show the flexibility of the algorithm to incorporate light load 

customers efficiently, at a minimum extra cost. It can be seen that in the case where customers 2 

and 11 are light load, there is no change in the solution structure or the objective function. This is 

because in the base case, these customers are serviced after the vehicles have become lighter, at 

the end of their corresponding routes.  

When the chosen light load customers are positioned before the light load threshold is reached as 

in cases 2-4, then an adjustment in the routing is necessary. However, the base routing schedule 

is mostly preserved in cases 2-4, which suggests that the PVNS_AMP can recognise good quality 

Elite Strings and solution sequences, whilst adjusting for the light load requirement at a very small 

extra cost. 

4.2. The RVRP with Overtime 

The mixed integer formulation of the RVRP with overtime provided in Section 3 is tested using 

Cplex. Our computational experience suggests that the problem is computationally demanding 

and only one small sized instance is solved to optimality. The RVRP with overtime results from 
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Cplex are shown in Table 7. The largest instance we solved to optimality is N = 18, which is included 

in Table 7, where instances greater than N = 50 run out of memory. 

 Table 7: Cplex results of the RVRP with overtime 

N L (%) 

 CPLEX  PVNS_AMP  

 LB / 

Optimal 
UB 

Fleet 

Composition 
Timea  Solution 

Fleet 

Composition 
TCPU Overtimeb 

18 10  390.3 - 1A 2B 4  390.3 1A 2B 3 7 

20 10  413.8 451.1 - 63 m  427.2 1A 2B 5 5 

20 15  413.8 451.1 - 51 m  427.2 1A 2B 5 5 

20 20  418.1 448.3 - 84 m  427.2 1A 2B 3 5 

25 10  474.5 511.8 - 22 m  503.1 1A 3B 5 0 

30 10  504.9 586.1 - 31 m  547.2 4B 7 49 

30 15  504.9 586.1 - 3 m  547.2 4B 7 49 

30 20  503.7 584.7 - 21 m  552.6 4B 7 58 

50 10   699.1 - - 32 m   820.3 3A 4B 25 17 
   a Computational time in minutes 

   b Overtime used in the solution in minutes 
   m Time recorded until system is Out of Memory 

   Optimal solutions in bold 

 
 

It can be seen from Table 7 that in the cases of N = 30 overtime up to one hour is used, where in 

other cases, such as N = 25, L = 10% no overtime is used at all. The fleet composition and overtime 

used are consistent across the instances with different percent of light load customers. 

The heuristic results from the RVRP with overtime are compared to those without overtime in 

Table 8. The total cost is provided as well as the fleet composition for each instance and how much 

overtime is used, if any. Incorporating overtime shows the potential for cost savings up to 8% for 

one planning period. The saving is not only in terms of overall cost, but also in terms of fleet size. 

The RVRP proposed in this paper has an interesting characteristic which became apparent during 

the computational experience. Having allowable overtime and unlimited fleet means that it is very 

likely that during the search process some candidate solutions could favour an extra vehicle, as 

opposed to allowing for overtime. Incorporating overtime in advance is also a very important 

managerial consideration, because vehicle routing is typically characterized with decision making 

in short term horizons, hence the need for quick and effective decisions. Therefore, exploring 

greater range of candidate solution structures provides a more comprehensive idea for the 

possibilities for cost saving. 
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The instances without overtime are characterized by a larger fleet size. This is because the 

allowable maximum regular time in some cases restricts the RVRP more tightly than the capacity 

constraint. That is, a new route is added either when the maximum time is reached or there is no 

more capacity left in the vehicle. This is an important aspect of the routing in the gas delivery 

industry, because the time it takes to service a customer (demand-dependent service time) and 

the travel times (given the lower speed of the vehicles) are quite large. Therefore, considering 

overtime in advance allows for servicing all customers with fewer vehicles at a lower cost.  As a 

general observation, this finding can be useful in practice when it comes to strategic decisions of 

buying a new vehicle fleet, and also in daily operations for companies which use hired vehicles or 

agency drivers. 

 

        Table 8: The RVRP results with and without overtime 

N L (%) 

PVNS_AMP without 

overtime 
  PVNS_AMP with overtime  

Solution 
Fleet 

Composition  
 Solution 

Total 

overtime a  

Fleet 

Composition  
IMP 

20 10 446.2 3A 1B   427.2 5 1A 2B 4.42% 

20 15 446.2 3A 1B  427.2 5 1A 2B 4.42% 

20 20 462.3 3A 1B  427.2 5 1A 2B 7.59% 

30 10 560.1 2A 3B  547.2 49 4B 2.30% 

30 15 560.1 2A 3B   547.2 49 4B 2.30% 

30 20 565.3 2A 3B  552.6 58 4B 2.25% 

50 10 852.2 6A 2B  820.3 27 3A 4B 3.74% 

50 15 867.2 4A 5B  827.1 36 3A 4B 4.62% 

50 20 877.4 6A 4B  842.1 46 3A 4B 4.02% 

75 10 1244.1 2A 8B  1230.5 19 4A 6B 1.09% 

75 15 1254.3 6A 5B  1241.9 7 2A 8B 0.99% 

75 20 1267.5 8A 6B  1253.3 62 3A 7B 1.12% 

100 10 1646.4 13A 5B  1549.4 25 3A 10B 5.89% 

100 15 1689.9 12A 6B  1579.1 29 3A 11B 6.56% 

100 20 1705.3 10A 8B   1592.1 38 3A 11B 6.64% 

Average 963.0   924.3 30.7  3.86% 
       IMP: % improvement of the solution when overtime is considered  

         a Overtime used in the solution in minutes 

          Average: Solution, Overtime and IMP 
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  Table 9: RVRP at a glance Instance N = 50  

    
RVRP without Overtime 

  
RVRP with Overtime 

Light Load 

Customers 
 Base Case L = Ø   Case 1: L = Ø Case 2: L = 1,5,7,12,9 Case 3: L = 1,4,5,7,12,9,32,42,45,50 

Routing 

 0-6-24-43-40-7-23-48-0  0-1-22-28-31-26-8-48-27-0 0-6-14-24-43-40-7-23-48-27-0 0-6-14-24-43-40-7-32-48-27-0 

 0-14-25-13-18-0  0-32-2-20-35-36-3-0 0-8-26-31-28-1-0 0-8-26-31-28-1-0 

 0-22-28-31-26-8-27-0  0-6-23-7-40-43-24-25-14-0 0-22-3-36-35-20-2-32-46-0 0-22-3-36-35-20-2-32-0 

 0-11-38-46-0  0-15-45-33-39-10-49-5-46-0 0-11-16-29-21-34-50-9-49-5-12-0 0-11-16-29-21-50-34-30-9-49-38-0 

 0-1-3-36-35-20-2-32-0  0-11-16-29-21-50-34-30-9-38-0 0-38-30-10-39-33-45-15-0 0-10-39-33-45-15-5-0 

 0-9-30-34-50-21-29-16-0  0-37-44-42-19-41-13-18-0 0-46-37-17-4-47-0 0-17-37-44-42-19-41-4-12-0 

 0-5-49-10-39-33-45-15-37-0  
0-47-4-17-12-0 0-44-42-19-41-13-25-18-0 0-47-18-13-25-0 

 0-12-17-44-42-19-41-4-47-0  - - - 

Fleet 

Composition 
 5A, 3B  1A, 6B 3A, 4B 3A, 4B 

ATa  360.2  379.6 398.3 410.1 

AVCb  0.31%  0.35% 0.35% 0.35% 

ALc  14116  15149 15828 16132 

Overtimed  0  10 27 46 

Solution   848.3   825.6 820.3 842.1 

  Underlined nodes are light load customers, nodes in bold are Elite Strings 

   a AT is Average travel time per vehicle in minutes 

   b AVC is Average variable cost per vehicle as a proportion of total cost 
     c AL is Average load per vehicle 

   d Overtime used in minutes in the solution 
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We have shown that there is an opportunity of cost savings when light load customers are 

incorporated into the routing schedule and also if overtime is incorporated in advance. However, 

we also show the combined effect of the real life attributes in Table 9, which portrays Instance N 

= 50 of the RVRP with and without overtime and with different light load customers. The key 

observations are summarized below. 

Managerial Insights 

Effects of Light Load: Similar to our findings from Table 6, here we can also observe that the route 

composition is mostly preserved regardless of the overtime and the light load customer 

composition. Moreover, the increase of the objective function from Case 1 to Case 3 is only 1.99%, 

which has 20% light load customers and 46 minutes of overtime. This means that the PVNS_AMP 

is flexible enough to identify and preserve good quality Elite Strings in a consistent manner, which 

are relevant for all attributes of the RVRP at a very small extra cost. 

Effects of Overtime: The examples with overtime of the RVRP tend to favour the larger vehicle type 

B, which results in a smaller fleet size. Here an interesting observation is that even though the fleet 

mix is composed of more vehicles of type B (larger vehicles), the average variable cost of travel 

remains unchanged. Additionally, when considering overtime, the vehicle capacity is 12.5% better 

utilized, because the average load carried by the fleet is greater when overtime is considered in 

advance. Moreover, the working time is 12% better utilized, as the average travel time of the fleet 

is higher and much closer to the maximum allowable regular time. This is an important managerial 

consideration in relation to drivers working hours͛ directive and the effective management of 

human resources. The minimum number of customers per route is 4, hence there are no short 

routes. This suggests that incorporating overtime contributes to a better utilization of the ĚƌŝǀĞƌƐ͛ 

time, especially if they are in full time employment. 

Combined Effect: Another interesting observation is the combined effect of having light load 

customers and allowable overtime. It can be seen that for the Base Case, the objective function is 

825.6, with 5 vehicles of type B and only 1 of type A. In contrast Case 2 has an objective function 

of 820.3. This means that having light load customers can actually improve the efficiency of the 

routing when overtime is allowed. It provides an opportunity for servicing more light load 

customers on a given route after the maximum regular time when there is still capacity left, rather 
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than placing them on a different route. These findings are not only relevant to the instance 

portrayed in Table 9, but also across the other test instances in this study. 

Overtime vs Fleet Mix Trade-off: This aspect became apparent during our computational 

experience. Having allowable overtime coupled with unlimited fleet results in an interesting trade-

off between servicing more customers in the overtime or having an extra vehicle. Looking at the 

Base Case in Table 9 there are a total of 8 vehicles needed to satisfy the total demand, whereas in 

Case 1 where overtime is allowed we only need 7 vehicles. Even though the fleet mix is different, 

the total cost is lower. This particular aspect can be applied in practice for medium to long term 

strategic planning, when companies decide to buy or replace their own fleet. In daily operations it 

can also be useful if a company has a mix of owned and hired fleet, or a mix of full time and agency 

drivers.  

4.3. Special case of the RVRP: The Fleet Size and Mix VRP 

Similar to most heuristic methods, the solution methods designed to solve RVRPs are problem 

specific. Typically, they are not tested on well-known literature benchmark instances, because one 

cannot directly compare methods designed for different problems. However, we test the 

PVNS_AMP on the well-known literature benchmark instances by Golden et al. (1984), with fixed 

cost and variable cost. Moreover, we test our algorithm on large scale VRP instances with 

Heterogeneous fixed fleet by Li, Golden, Wasil (2007). The results from the computational 

experiments are shown in tables 10 - 12, and are compared to relevant heuristic methods, as well 

as the Best Known Solutions (BKS) from the literature, with the respective average optimality gap. 

We have used the PVNS_AMP version with a stopping criterion of 20 fixed iterations. It can be seen 

from the tables that the proposed PVNS_AMP can be successfully applied to the different versions 

of the FSMVRP, as well as to the HFVRP. Even though the method is primarily designed for a RVRP 

with specific real life attributes, it shows competitive performance, yielding less than 0.03% 

average deviation from the BKS for the FSMVRP with up to 100 customers and 1% on the HFVRP 

with up to 360 customers. Compared to some non-exact methods such as GA and TS, the 

computational time of our method is competitive. We show both average running times, as 

reported by the respective authors, as well as corresponding scaled average times, which we 

adjusted for the differences in PC performance against ours, where available, using the comparison 

website http://cpuboss.com/compare-cpus. 

http://cpuboss.com/compare-cpus
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Table 10: Results on Golden et al. (1984) FSMVRP instances with fixed cost 

Instance 
  

N 
  

BKS 
  TSA1d   ILS-RVND-SPe   GAf   PVNS_AMP 

   Sol Time  Sol Time  Sol Time  Sol Time 

3  20  961.03abc  961.03 21  961.03 0  961.03 21  961.03 32 

4  20  6437.33abc  6437.33 22  6437.33 0  6437.33 18  6437.33 29 

5  20  1007.05abc  1007.05 20  1007.05 0  1007.05 13  1007.05 28 

6  20  6516.47abc  6516.47 25  6516.47 0  6516.47 22  6516.47 31 

13  50  2406.36abc  2406.36 145  2406.36 2  2406.36 91  2406.36 65 

14  50  9119.03abc  9119.03 220  9119.03 2 
 

9119.03 42  9119.03 56 

15  50  2586.37abc  2586.84 110  2586.37 6  2586.37 48  2586.37 52 

16  50  2720.43abc  2728.14 111  2720.43 4  2724.22 107  2720.43 55 

17  75  1734.53b  1736.09 322  1734.53 12  1734.53 109  1734.53 99 

18  75  2369.65ab  2376.89 267  2369.65 12  2369.65 197  2369.65 124 

19  100  8661.81b  8667.26 438  8661.81 25  8662.94 778  8667.26 269 

20  100  4032.81  4048.09 601  4032.81 46  4038.45 1004  4038.45 237 

Average        0.09%  192   0.00% 9    0.02% 204    0.02% 89  

Scaled Average Time         -     3     74     89 
a Optimality proven by Pessoa, Uchoa, Poggi (2009)     

      
b Optimality proven by Baldacci, Mingozzi (2009)     

      
c Optimality proven by Choi and Tcha (2007)     

      
d Brandao (2009)         

      
e  Subramanian et al. (2012)       

      
f Liu, Huang, Ma (2009)         

      
Time: in seconds 

Average: Gap and Time 
  

            
Scaled average time: in seconds adjusted for PC specifications where available        
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Table 11: Results on Golden et al. (1984) FSMVRP instances with variable cost 
  

Instance 
  

N 
  

BKS 
  VNS1d   ILS-RVNDe   GAf   PVNS_AMP 

   Sol Time  Sol Time   Sol Time  Sol Time 

3  20  623.22abc  - -  623.22 4   - -  623.22 35 

4  20  387.18abc  - -  387.18 3   - -  387.18 32 

5  20  742.87abc  - -  742.87 5   - -  742.87 36 

6  20  415.03abc  - -  415.03 3   - -  415.03 28 

13  50  1491.86abc  1491.86 310  1491.86 31   1491.86  117  1491.86 69 

14  50  603.2abc  603.2 161  603.2 14   603.2  26  603.2 58 

15  50  999.8abc  999.8 218  999.8 15   999.8  37  999.8 63 

16  50  1131abc  1131 239  1131 17   1131  54  1131 61 

17  75  1038.6abc  1038.6 509  1038.6 48   1038.6  153  1038.6 142 

18  75  1800.8ab  1800.8 606  1800.8 53   1801.4  394  1801.4 121 

19  100  1105.44bc  1105.44 1058  1105.44 78   1105.44  479  1105.4 201 

20  100  1530.43bc  1533.24 1147  1530.52 87   1534.37  826  1534.37 213 

Average       0.02%  531   0.00% 30   0.02% 261    0.02% 88  

Scaled Average Time         -     11     85     88 
a Optimality proven by Pessoa, Uchoa, Poggi (2009)     

      
b Optimality proven by Baldacci and Mingozzi (2009)       
c Optimality proven by Choi and Tcha (2007)       
d Imran, Salhi, Wassan (2009)       
e Penna, Subramanian, Ochi  (2011)       
f Liu, Huang, Ma (2009)       
Time is in seconds               
Average: Gap and Time               
Scaled average time: in seconds adjusted for PC specifications where available 
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  Table 12: Results on Li, Golden, Wasil (2007) HFVRP instances with variable cost 

Instance 
  

N 
  

BKS 
  HRTRa   TSAb   ILS-RVND-SPc   PVNS_AMP 

   Sol Time  Sol Time  Sol Time  Sol Time 

H1  200  12050.08  12067.65 688  12050.08 1395  12050.08 72.1  12050.08 1023 

H2  240  10208.32d  10234.4 995  10226.17 3650  10329.15 176.43  10295.36 2698 

H3  280  16223.39d  16231.8 1438  16230.21 2822  16282.41 259.61  16305.21 3152 

H4  320  17458.65  17576.1 2256  17458.65 8734  17743.68 384.52  17761.9 5469 

H5  360  23166.56d  - -  23220.72 13,321  23493.87 621.17  23612.23 8554 

Average     0.28% 1344   0.09% 5984.4   0.92% 303   1.00% 4179 

Scaled Average Time         -     -     116     4179 
aLi et al. (2007)          
bBrandão (2011)                
cSubramanian et al. (2012)             
dFound by Brandão (2011) with different TSA calibration 

         
Time is in seconds               
Average: Gap and Time 

              
Scaled average time: in seconds adjusted for PC specifications where available 
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All of the algorithms we compare against, reported in tables 10 - 12 are coded in C or C++ (except 

for Li, Golden, Wasil (2007), which is not specified). These have very similar performances to ours. 

However, the algorithms have been tested and programmed on different machines and some 

use different operating systems. For instance, Subramanian et al. (2012) and Penna, 

Subramanian, Ochi (2011) used Intel Core i7 with 2.93GHz, Imran, Salhi and Wassan (2009) Intel 

Pentium M 1.7 GHz and Liu, Huang and Ma (2009) Intel Pentium 4, 3 GHz. Li, Golden, Wasil (2007) 

AMD Athlon 1 GHz and Brandão (2011) Intel Pentium M 1.4 GHz. Though not all machines can be 

compared consistently using one standard CPU benchmarking source, we opted for the 

comparison website http://cpuboss.com/compare-cpus. The website generates, where possible, 

an overall score out of 10 for the machines in question, which reflects their relative performance 

capability.  

5. Conclusion 

The subject of this paper is a real life routing problem which arises in the gas delivery industry, 

characterized by heterogeneous fleet, demand-dependent service times, maximum allowable 

overtime and light loads. We present a mathematical formulation, which is tested on Cplex and 

optimal solutions and lower / upper bounds are achieved where possible. We have also developed 

a new learning-based algorithm which uses memory structures embedded in a Population VNS. 

The computational experience suggests that the learning mechanisms based on Adaptive Memory 

can improve the performance of the PVNS with up to 5.2% when applied to the RVRP. The use of 

Elite Strings as a main driver of memory exploitation, results in the recognition of good solution 

sequences which can guide the search process towards better regions of the solution topography. 

Moreover, it shows that memory structures can be used with a powerful memoryless 

metaheuristic method, as long as an appropriate mechanism to recognise good solution sequences 

is in place. The performance of the PVNS_AMP is empirically tested and analysed, and it is 

compared to the solutions achieved by Cplex, as well as standard literature benchmark instances.  

The findings show that the routing efficiency can be improved significantly when light load 

customers and overtime are considered in advance. On average, there are possible savings for 

practitioners with up to 8% in the daily routing cost. Moreover, a better fleet utilization in terms 

ŽĨ ǀĞŚŝĐůĞ ĐĂƉĂĐŝƚǇ͕ ĂƐ ǁĞůů ĂƐ Ă ďĞƚƚĞƌ ƵƚŝůŝǌĂƚŝŽŶ ŽĨ ƚŚĞ ĚƌŝǀĞƌƐ͛ ǁŽƌŬŝŶŐ ŚŽƵƌƐ ĐĂŶ ďĞ ĂĐŚŝĞǀĞĚ 

with up to 12.5% and 12% respectively. We believe that further research on problems with light 

https://www.sciencedirect.com/science/article/pii/S0377221707010971#%21
http://cpuboss.com/compare-cpus
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load requirement and allowable overtime can be triggered from our findings, as well as further 

research on the hybridization of the AMP rationale with different iterative heuristic methods.  
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