
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Simeonova, Lina and Wassan, Niaz A. and Salhi, Said and Nagy, Gábor (2018) The heterogeneous
fleet vehicle routing problem with light loads and overtime: Formulation and population variable
neighbourhood search with adaptive memory. Expert Systems with Applications, 114 . pp.
183-195. ISSN 0957-4174.

DOI

https://doi.org/10.1016/j.eswa.2018.07.034

Link to record in KAR

http://kar.kent.ac.uk/68991/

Document Version

Author's Accepted Manuscript

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/189721443?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Heterogeneous Fleet Vehicle Routing Problem with Light Loads

and Overtime: Formulation and Population Variable Neighbourhood

Search with Adaptive Memory

Corresponding Author: Lina Simeonova

Affiliation: Centre of Logistics and Heuristic Optimisation (CLHO), Kent Business School

University of Kent, Canterbury, United Kingdom

Telephone: +44 7828198137

Fax: +44 1227 761187

Email: ls444@kentforlife.net

Co-Author: Niaz Wassan

Affiliation: Centre of Logistics and Heuristic Optimisation (CLHO), Kent Business School

University of Kent, Canterbury, United Kingdom

Telephone: +44 1227 823921

Fax: +44 1227 761187

Email: N.A.Wassan@kent.ac.uk

Co-Author: Said Salhi

Affiliation: Centre of Logistics and Heuristic Optimisation (CLHO), Kent Business School

University of Kent, Canterbury, United Kingdom

Telephone: +44 1227 824672

Fax: +44 1227 761187

Email: S.Salhi@kent.ac.uk

Co-Author: Gábor Nagy

Affiliation: Centre of Logistics and Heuristic Optimisation (CLHO), Kent Business School

University of Kent, Canterbury, United Kingdom

Telephone: +44 1227 827822

Fax: +44 1227 761187

Email: G.Nagy@kent.ac.uk

mailto:N.A.Wassan@kent.ac.uk
mailto:S.Salhi@kent.ac.uk
mailto:G.Nagy@kent.ac.uk

1

The Heterogeneous Fleet Vehicle Routing Problem with Light Loads and

Overtime: Formulation and Population Variable Neighbourhood Search

with Adaptive Memory

Lina Simeonova, Niaz Wassan, Said Salhi, Gábor Nagy

Centre for Logistics and Heuristic Optimisation (CLHO), Kent Business School

University of Kent, Canterbury, Kent

Abstract

In this paper we consider a real life Vehicle Routing Problem inspired by the gas delivery industry

in the United Kingdom. The problem is characterized by heterogeneous vehicle fleet, demand-

dependent service times, maximum allowable overtime and a special light load requirement. A

mathematical formulation of the problem is developed and optimal solutions for small sized

instances are found. A new learning-based Population Variable Neighbourhood Search algorithm

is designed to address this real life logistic problem. To the best of our knowledge Adaptive

Memory has not been hybridized with a classical iterative memoryless method. In this paper we

devise and analyse empirically a new and effective hybridization search that considers both

memory extraction and exploitation. In terms of practical implications, we show that on a daily

basis up to 8% cost savings on average can be achieved when overtime and light load requirements

are considered in the decision making process. Moreover, accommodating for allowable overtime

has shown to yield 12% better average ƵƚŝůŝǌĂƚŝŽŶ ŽĨ ƚŚĞ ĚƌŝǀĞƌ͛Ɛ ǁŽƌŬŝŶŐ ŚŽƵƌƐ ĂŶĚ ϭϮ͘ϱй ďĞƚƚĞƌ

average utilization of the vehicle load, without a significant increase in running costs. We also

further discuss some managerial insights and trade-offs.

Keywords

Real life Vehicle Routing; Population Variable Neighbourhood Search; Adaptive Memory; MIP

Formulation; Managerial Insights

2

1. Introduction and Literature Review

The evolution of VRP variants is typically inspired by real life operations and there is a noticeable

trend in the literature to bring VRP research closer to real life routing practice. There are many real

life inspired applications of the VRP over the years, but it was not until 2006 when real life VRPs

were presented as a class of the VRP family under the term ͚ƌŝĐŚ͛ VRPs (Gribkovskaia et al., 2006).

They can also be referred to as Multi-Attribute VRPs (Vidal et al., 2014), General VRPs (Goel and

Gruhn, 2008) or simply real life VRPs. Real life VRPs (RVRPs) proposed in the literature are very

different from one another, and are usually not revisited by researchers with the same features.

There is no universally accepted definition or consistent abbreviation for real life VRPs. For

instance, Hasle, Løkketangen and Martello (2006) state that rich VRPs include aspects that are

essential to the routing practice in real life, while Lahyani, Khemakhem and Semet (2015) suggest

that the richness of the problems can stem from various attributes/constraints of the real life

routing practice, either operational or strategic. Some authors introduce problem specific

constraints such as outsourcing of vehicles (Stenger et al., 2013), customer prioritization

constraints (Cornillier, 2009), specified times for cleaning vehicles (Oppen and Lokketangen, 2008)

or environmental protection and Green VRPs (Erdogan and Miller-Hooks, 2012). Other authors

such as, Archetti, Savelsbergh and Speranza (2016) introduce a RVRP with occasional drivers while

Naji-Azimi et al. (2016) study a RVRP with desynchronized arrivals to the depot.

To the best of our knowledge there is no paper which considers a VRP relevant to the commercial

gas delivery industry, incorporating the same real life features, namely light loads, demand-

dependent service times and allowable overtime with unlimited fleet. However, there are some

RVRPs which consider similar real life aspects, but from different perspectives. For instance,

Zachariadis, Tarantillis and Kiranoudis (2015) tackle a load-dependent VRP with an iterative

metaheuristic, while Nagy, Wassan and Salhi (2013) investigate a VRP with restricted mixing of the

load using Reactive Tabu Search. Seixas and Mendes (2013) incorporate drivers working hours into

a multiple trip VRP with heterogeneous fleet solved by Column Generation, whereas Battarra,

Monaci and Vigo (2009) impose a shift length constraint for each vehicle in a minimum multiple

trip VRP solved by a decomposition iterative heuristic with an adaptive guidance mechanism.

Similar to the RVRP introduced here, Kok, Hans and Schutten (2012) consider time-dependent

travel times where the aim is to reduce the impact of traffic congestions addressed by an adapted

Dijkstra Algorithm and restricted dynamic programming.

http://www.sciencedirect.com.chain.kent.ac.uk/science/article/pii/S0377221714006146#b0525

3

Typically, papers considering allowable overtime are researched with fixed (limited) number of

vehicles. For instance, Ren, Dessouky and Ordonez (2010) tackle a multi-shift problem with

allowable overtime which is inspired by the healthcare industry and develop a problem specific

algorithm namely the Shift Dependent heuristic. Moon, Lee and Seong (2012) propose a VRP with

time windows, allowable overtime and outsourcing vehicles solved by a Genetic Algorithm and

Simulated Annealing hybrid algorithm. This paper uses overtime with unlimited number of vehicles

from each type, which raises an interesting trade-off between using the allowable overtime or

using extra vehicles.

Most of the proposed methods for addressing RVRPs in the literature are heuristic-based. In this

paper we use Adaptive Memory Procedure (AMP) as a method in its own right which is effectively

hybridized in several novel ways with a population-based Variable Neighbourhood Search (VNS).

The AM concept is first introduced by Rochat and Taillard (1995) as a complement to Tabu Search

(TS) and refers to a special utilization of the memory during the search process. AM can be defined

as a special data structure, which initializes a set of solutions and during the search process keeps

ƚƌĂĐŬ ŽĨ ƚŚĞ ͞ďĞƐƚ͟ ĐŽŵƉŽŶĞŶƚƐ ŽĨ ƚŚĞ ƐŽůƵƚŝŽŶƐ͕ ǁŚŝĐŚ ĂƌĞ ůĂƚĞƌ ĐŽŵďŝŶĞĚ ƚŽ ďƵŝůĚ ďĞƚƚĞƌ ƋƵĂůŝƚǇ

solutions (Tarantillis, 2005). In the VRP context, the use of AMP is still mostly as a complement to

TS or other methods such as Particle Swarm Optimization (Yin, Glover and Laguna, 2010) and Path

Relinking (Li, 2010), which also have embedded memory structures.

One of the most important methodological considerations regarding AMP is the way ͞ŐŽŽĚ͟

solution components are extracted from the memory. Tarantillis and Kiranoudis (2002) proposed

the BoneRoute method, where good solution sequences are referred to as bones. Each bone has

length and frequency. The rationale is that good solution sequences appear in good, medium and

low quality solutions, hence the higher the frequency of a bone, the better the chance it is a

promising solution component. Other methods utilizinŐ AMP ŝŶĐůƵĚĞ ƚŚĞ “ŽůƵƚŝŽŶƐ͛ EůŝƚĞ PĂƌƚƐ

Search introduced by Tarantillis (2005) and the Multi-start AMP (Li, 2012). A recent paper by Matei

et al. (2015) also uses features relevant to our methodology for population survival within a

memetic algorithm with immigration techniques applied to the HVRP.

Many adaptations of the VNS introduced by Mladenovic and Hansen (1997) are used across the

VRP domain. Some of its most recent applications include a Two-Level VNS for the Multiple Trip

VRP with Backhauls (Wassan et al., 2017) and Ant Colony empowered VNS for the VRP with

4

simultaneous pickup and delivery (Kalayci and Kaya, 2016). Sze, Salhi and Wassan (2016) propose

a hybridization of adaptive VNS and Large Neighbourhood Search for the classical VRP, which is

later extended to the cumulative capacitated VRP with min-sum and min-max objectives (Sze, Salhi

and Wassan, 2017). For more information on the new advances of VNS, we refer to Mladenovic

et al. (2016) and for further detail on hybridization search, to the recent book on heuristics by Salhi

(2017).

The contribution of this paper is as follows.

(i) We introduce a real life VRP, which is inspired by the gas delivery industry. It is characterized

with heterogeneous vehicle fleet, maximum allowable overtime, a special light load requirement

and demand-dependent service times.

 (iii) We propose a new learning-based Population Variable Neighbourhood Search algorithm with

Adaptive Memory (PVNS_AMP). We hybridize the Adaptive Memory principles with a local search

method, where the memory aspect is incorporated in a long-term learning fashion within a

memoryless, yet powerful metaheuristic such as VNS.

(ii) A mixed integer formulation is developed and tested on small sized instances, where optimal

solutions or upper/ lower bounds can be found.

(iv) Interesting practical implications for more efficient and cost effective routing practice relevant

to the RVRP are also put forward.

The rest of the paper is organised as follows. Section 2 presents a description of the problem and

provides a mixed integer formulation of the RVRP, followed by our motivation to study the

PVNS_AMP methodology in Section 3. Computational results and their analysis alongside some

interesting practical implications are presented in Section 4. The final section summarizes our

findings.

2. Problem Definition and Formulation

The proposed RVRP in this paper is inspired by a real life gas delivery company in the UK. The

management is faced with challenges on a daily basis, regarding their routing practice. At present,

there are three main aspects of the routing which cause inefficiencies for the company. We

incorporate those into our problem and report possible savings and practical implications.

5

Light Load requirement

An important practical aspect of this particular problem is the light load requirement, because if

the load on the vehicle is too heavy, some customers who live in areas such as steep hills or soft

grounds may not be able to be accessed. Therefore, when a light load customer is serviced by a

given vehicle, the remaining load on that vehicle needs to be lighter than a certain threshold level.

The company does not have an efficient way of incorporating the light load aspect into their

delivery schedule. At the moment, if a customer has a light load requirement, for simplicity it is

manually added at the end of the vehicle route to ensure lighter load, which unfortunately can

lead to significant inefficiencies in scheduling.

Allowable Overtime

Another key aspect that is strategically not taken into account is to incorporate overtime in

advance. The current practice is to offer overtime to drivers towards the end of their regular time.

This means that any remaining customers after the regular time will be served by the driver who

agrees to perform overtime, without consideration of the routing efficiency. In addition, it is very

common that drivers refuse overtime if they are not told in advance and this may lead to delays in

delivery, unsatisfied customers and increased costs for the company.

Demand-dependent service times

Another aspect of our RVRP that needs to be mentioned is that only 150 litres of gas can be

pumped into the customer tanks per minute, which renders the service times to vary depending

on the demand size, hence the demand-dependent nature of the service time. In other words, the

ůĂƌŐĞƌ ƚŚĞ ĐƵƐƚŽŵĞƌƐ͛ ĚĞŵĂŶĚ͕ ƚŚĞ ŵŽƌĞ ƚŝŵĞ ŝƚ ǁŝůů ƚĂŬĞ ƚŚĞ ĚĞůŝǀĞƌǇ ĚƌŝǀĞƌ ƚŽ ƐĂƚŝƐĨǇ ƚŚĞ ĚĞŵĂŶĚ,

which can impact on the maximum number of customers a driver can visit in one planning period.

In this study, we incorporate the above three attributes into the RVRP, in order to show

improvements in the planning efficiency, as well as cost savings.

The RVRP is modelled on a complete directed graph  , G N A , where N is the set of customers

 0,1, ,N n  with 0 being the depot, and  , : , ,{ }A i j i j N i j   is the set of arcs where each

arc  , i j A has associated distance ijd and time ijt .There are k types of vehicles, each with a

capacity kQ , {1,..., }k K . Each vehicle is associated with a variable cost kv based on how much

6

fuel a specific vehicle consumes, given the vehicle's average speed. The number of vehicles of each

type is considered unlimited. The distance is Euclidean and the cost is proportionate to the

distance travelled. The travel time ijt takes into account the average speed of the vehicles, which

according to the company records is approximately 30 mph. Each customer i N has a known

demand iq , which is generated at random and a known service time is . The service time can be

calculated by dividing the demand by the gas pumping rate of 150 litres per minute. Customers

are divided into two types, regular R(R ك N), which can be serviced at any time during the delivery

period, and light load , ,) (L L N R L R L N      . If a customer is considered to be light

load ()i L , it means that it can only be serviced if the remaining load in the vehicle is less than a

specified threshold level, kc for {1,..., }k K . In our case the maximum proportion of customers

with light load requirement can be up to 20% of the total customers served. T is the maximum

regular time for each vehicle route (7 hours and 20 min). Table 1 provides a summary of the

problem specifications.

Table 1: RVRP Problem Specifications

Customer Coordinates Golden et al. (1984)

Customer Demands iq Randomly Generated with Uniform Distribution [630,3950]

Vehicle Capacity 13050 litres (Type A), 20880 litres (Type B)

Average Speed 30 mph

Service time is 150 litres per minute

Variable cost per mile 0.36p (Type A), 0.48p (Type B)

Set of Light Load Customers Lك N Randomly Chosen

Formulation

Decision Variables:

 0,1ijkx  , with 1ijkx  if vehicle k travels along arc (,)i j , 0 otherwise;

ijky is a non-negative continuous variable, which denotes the remaining load on a vehicle k ,

travelling along the arc (,)i j ;

ijz is a non-negative continuous variable along the arc (,)i j , which denotes the accumulated travel

time upon arrival at node j;

7

Minimize Z =
0 0 1

n n K

ijk ij k
i j k

x d v
  
 (1)

Subject to:

0 1

1;
n K

ijk
i k

x
 

 (1,...,);j n (2)

0 1

1;
n K

ijk
j k

x
 

 (1,...,);i n (3)

0 0

0;
n n

ipk pjk
i j

x x
 

   (1,...,),(0,...,);k K p n  (4)

11

;
n

i j

n

ijk
ii

iky q y
 

   (0,...,),(1,...,);j n k K  (5)

11

;
K

k ij

K

i k
k

jk
k

Q xy


  (0,...,);i j n  (6)

 1 () / ;il ki k k kl y cx Q   (0,...,),(1,...,),(1,...,);i R l L k K   (7)

 
1 1 1 1

;
n Kn n

ij ji ijk j
i k

ii
i i

z tz x s
   

     (0,...,);j n (8)

1

;
K

ij ijk
k

z T x


  (0,...,);i j n  (9)

0 0 0
1

;
K

i i ik
k

z t x


  (1,...,);i n (10)

0;ijz  (0,...,);i j n  (11)

0;ijky  (0,...,),(1,...,);i j n k K   (12)

 0,1 ;ijkx  (0,...,),(1,...,);i j n k K   (13)

The Objective Function (1) aims to minimize the total cost of travel. Constraints (2)-(3) state that

each vehicle arrives at a customer location and leaves that customer location exactly once.

Constraint (4) ensures the connectivity of the routes. Constraints (5)-(6) govern the commodity

flow conservation and capacity restriction. Constraint (7) ensures that the light load customers

8

i L will only be serviced if the remaining load on the vehicle is less than the specified threshold

kc . Constraints (8)-(10) govern the maximum time allowed for each vehicle trip. Constraints (11)-

(12) guarantee that the decision variables ijky and
ij

z are positive, where constraint (13) specifies

the binary nature of the decision variable ijkx . The MIP formulation has

(1)(2 3) 3 (1)n n n LK R     constraints, (1)kn n binary variables and (1) (1)n n n n k  

continuous variables.

In the case where overtime is allowed, we make the following additions to the formulation. O is

the maximum allowable overtime (4 hours and 30 min) and  is the variable cost of overtime

which is 1.5 times higher than the cost of the regular time. A new variable ka denotes the return

time at the depot for each vehicle and ko is a new decision variable denoting any overtime used.

The variable
ij

z is replaced by the variable ikz , which represents the arrival time at customer i , for

each vehicle {1,..., }k K , where M is a significantly large constant. The following components of

the original formulation need to be amended, in order to account for allowable overtime.

Minimize Z=
0 0 1 1

n n K K

ijk ij k k
i j k k

x d v o
   

  (1a)

1

1 ;
K

ijkj
k

k ik ij j M xz z t s


 
   


 


 (0,...,),(1,...,),(1,...,);i n j n k K   (8a)

 00 1 ;k ik i i i ka z t s M x   (1,...,),(1,...,);i n k K  (9a)

 ;k Oa T  (1,...,);k K (10a)

;k ko a T  (1,...,);k K (11a)

, , 0;ik kka z o  (1,...,);k K (12a)

The extended objective function equation (1a) refers to the total cost which includes the travel

cost and the cost of any overtime used. It ensures that upon return to the depot any time over the

maximum regular time T will be treated as overtime, multiplied by the overtime variable cost 

and added to the total cost of travel. Note that  should not be too small, because if the penalty

of overtime is very small it cannot influence the solution and it may be ignored. Constraints (8a)-

(9a) denote the travel time upon arrival at customer i and the return time at the depot. Constraint

9

(10a) ensures the maximum travel time (including regular and overtime) is not exceeded.

Constraint (11a) ensures that the allowable overtime occurs after the regular time, Constraint

(12a) refers to the positive nature of the corresponding variables.

The number of vehicles can also become fixed to a certain number mby adding constrain (14), but

the type of vehicle chosen remains variable. Moreover, if constraints (7)-(11) in the original model

are relaxed, the RVRP reduces to the classical VRP Fleet Size and Mix.

0
1

;
n

jk
j

mx


 (k =1,…,K); (14)

3. The PVNS_AMP Algorithm

This paper adapts the classical form of VNS to Population VNS (PVNS) and enhances it with learning

principles of AMP. We refer to the proposed method as PVNS_AMP. The main idea behind VNS is

to explore successive neighbourhoods of the incumbent solution in depth, which provides

intensification of the search process. In this paper a population based VNS is used, which means

that more than one solution structure is kept into the memory and explored during the search.

This is carried out for the purpose of diversification.

In contrast with the original AMP rationale, where memory initialization is done in advance, we

perform it through learning. The learning takes place during the local search in Stage 1 of the

algorithm, where promising solution sequences are memorized and evaluated based on their

goodness of fit (solution quality). The recognition of good node sequences depends on their length

and frequency, similar to the BoneRoute method, which is described in Section 2. However, the

length of the node sequence is variable in our case. We refer to the extracted node sequences as

Elite Strings. Moreover, a sequence of one node is also accepted, if it is a single customer route.

Another significant difference with previous AMP methods is that a node is allowed to be repeated

in the extracted node sequences. The motivation behind it is that there may be more than one

route composition and solution sequence, which could result in a best heuristic solution.

Adjacency to the depot is recognised as well, which means that if a customer is best suited to be

serviced first after the depot the Elite String can include the depot node. In addition, the

PVNS_AMP has relatively few parameters, which are mostly related to memory extraction and

10

exploitation. The parameters used in this study are listed in Table 2. They have all been empirically

tested and found most suitable for the RVRP problem.

 Table 2: Parameters of the PVNS_AMP

Parameter Description

P Initial Solution Pool, which consists of 2 Initial Solutions , (1,...,2);S P S 

M Memory Initialization Pool, which consists of a set of Neighbourhoods of S , with local

optimum 'x ;

M has variable size;

E
Memory Exploitation Pool with Elite Strings, which consists of Solutions survived to the

PVNS_AMP Stage 1 1 10 10, (' ('),..., ' ('));E M E S x S x 

1maxiter Maximum iterations for Stage 1 is variable, until no further improvement for 2

consecutive iterations

2maxiter Maximum iterations for Stage 2 is 10

Elite Strings

Recognition

Criteria

A sequence of nodes is considered Elite if it has a Frequency >= 75% across all solutions

saved in M

Proportion of Elite

Strings in E
<=30% of the solution can be fixed by the Elite Strings

Elite Strings List Variable Length

The PVNS_AMP consists of two stages. Stage 1 is called the PVNS (Learning) Stage, where

information about the structure and the quality of the candidate solutions is gathered. At the end

of the learning stage this information is used to recognize the Elite Strings which occur in more

than 75% of the candidate solutions. Stage 2, which is the PVNS_AMP Stage, is the memory

exploitation stage, where only the best 10 solutions, in terms of solution quality survive. The Elite

Strings are encoded into the solutions which have survived from the previous stage and are further

exploited using VNS until the best solution is found. Figure 1 provides a simple pseudo code for

our PVNS_AMP algorithm. Each candidate solution S which enters the PVNS Stage after the initial

solution generation has an objective function ܨሺݔሻ, which is the current local optimum, where 'S

('x) denotes the best local optimum found during the local search of S in Stage 1. In Stage 2, the

local search is further applied on each 'S ('x) in the same fashion until no further improvement is

found with bestx representing the best solution found so far.

3.1. Stage 1 (PVNS Stage)

The purpose of Stage 1 is to construct the Memory Initialization Pool through past experience, as

well as to compile knowledge about the solution space, which is then used to recognise the

promising parts of the different candidate solutions.

11

Stage 1: PVNS Stage

Generate P , Set M 

For Each S P

Do

Denote x as the local optimum of S , 'x the current

best local optimum

 Set ' , 1;x x iter 

 Do

 Apply Neighbourhood Search Operators to S

 if () (')F x F x , update 'x

 Until no improvement of x

 Add 'S to M , where 'S =
thS Neighbourhood of S

associated with 'x

 Shake by probabilistic rules (explained in Section 3.1.)

 While
1maxiter iter

Next S

End of Stage 1

Elite String Recognition in M

Select E M , 1 1 10 10(' ('),..., ' ('))E S x S x

Stage 2: PVNS_AMP Stage

For Each
'S E

 Do

 Denote bestx as the current local optimum

 Set ', 1;bestx x iter 

 Do

 Apply Neighbourhood Search Operators to 'S

 if (') (')bestF x F x , update 'bestx

Until no improvement of 'x

 Shake by probabilistic rules (explained in Section 3.2.)

While
2maxiter iter

Next
'S

End of Stage 2

End

Figure 1: Pseudo Code for the PVNS_AMP

Initial Solution Pool

There are two initial solutions, which make up the Initial Solution Pool. One is achieved through

the Sweep Algorithm (Gillet and Miller, 1974) and the other is randomly generated. This is done

for the purpose of diversification, so as to explore solutions with different topographical

structures. Here the main rationale is that if an Elite String is recognized in a solution resulting from

a construction heuristic and the same string re-appears during the search of a randomly generated

solution, then there is a good chance the string is a promising component of the final heuristic

solution.

12

Neighbourhood Search Operators

There are six Neighbourhood Search Operators used to explore a solution. The 1-1 intra-route

swap, exchanges the positions of each node with all other nodes on the same route. 1-0 and 2-0

inter-route shift insert each one / two consecutive nodes respectively, in all feasible locations on

all other routes. The 1-1 inter-route swap, exchanges the positions of one node with all other nodes

from all other routes; 2-1 inter-route swap, exchanges the positions of 2 consecutive customers

from one route with one customer from all other routes and 2-2 inter-route swap, exchanges the

positions of two consecutive nodes from one route with two consecutive nodes from all other

routes.

It is believed that randomly generated solutions can be computationally expensive to turn into

better quality solutions, especially if the best-improvement strategy is used. Therefore, the first

improvement strategy is used in order to find immediate good links between nodes, hence speed

up the learning process for the composition of the Elite Strings. All operators are used in a

systematic order, where all feasible shifts and swaps are considered until no further improvement

is found. The current best solution is saved into the Memory Initialization Pool after each iteration.

Then the shake stage of VNS takes place, which is done by probabilistic rules. In Stage 1 two

random customers from random routes are inserted into different routes at a random position.

The reason for choosing a more vigorous shake is because when the solution enters the

neighbourhood operators at the next iteration any good immediate links between nodes could re-

appear if they were broken during the shake and the frequency of the link is likely to increase.

3.2. Stage 2 (PVNS_AMP Stage)

Stage 2 is the memory exploitation stage, where the knowledge gathered in Stage 1 (PVNS stage)

is used to improve the solution quality. After Stage 1, the Elite Strings are recognised, according to

the pre-defined criteria. The Memory Initialization Pool is then reduced to the best 10 candidate

solutions in terms of solution quality and the Elite Strings are encoded into them. The Elite Strings

become the fixed part of the solution structure, which does not change during further

neighbourhood search. The remaining nodes remain a variable part of the solution. The Elite

Strings List is of dynamic length. This is because in the different data instances, different number

of Elite Strings can be recognised from the Memory Initialization Pool, which have a frequency of

13

75% and higher. When encoding the Elite Strings into the solutions, those with the highest

frequency have priority. However, the proportion of Elite Strings which are encoded into a solution

is limited to up to 30%. These solutions enter the second stage in a systematic fashion in ascending

order in terms of solution quality. The operators and execution of the VNS search is the same as in

Stage 1, but only the variable part of the solution is modified via the shift and swap operators.

Having a proportion of the solution which remains fixed, acts as a neighbourhood reduction

technique and speeds up the CPU time of the operators. The Elite Strings remain fixed during the

shake stage as well. However, in Stage 2 of the algorithm, the shake does not distort the solution

too much, where only one customer is randomly reassigned to a different route. This provides

intensification of the search, but keeps the focus of the search in better regions. The population-

based nature of the VNS (the survival of a number of candidate solutions) in the second stage is

very important for diversification. The candidate solutions which enter the second stage of the

algorithm are quite diverse in terms of solution structure; hence they contain different Elite Strings

and provide for a better coverage of good local optima.

Elite Strings Encoding

The proportion of Elite Strings incorporated into the solutions in the second stage of the algorithm

is an important methodological consideration. There is a clear trade-off between the proportion

of the solution that is fixed via Elite Strings, solution quality, and computational time. If a smaller

proportion of the solution is fixed, then the solution quality may not improve in the second stage

as it is not focused enough into better search areas. Similarly, if too much of the solution is fixed,

the Elite Strings may not in fact be elite, which can lead the search to explore a region that is falsely

recognised as good. Also, the computational time decreases as the proportion of Elite Strings

increases in the solution. Figure 3 illustrates this trade-off and shows that when the solution

contains 30% or less Elite Strings, is sufficient for good memory exploitation. Another interesting

observation is the fluctuation of the solution quality at different levels of Elite Strings encoding. It

only fluctuates less than 4%, which suggests good quality extraction of Elite Strings even with up

to 60% coverage of the solution. The example portrayed in Figure 2 is an instance with 100

customers with and without overtime. Both versions are graphically represented in order to show

consistency in the algorithmic behaviour.

14

 Figure 2: Instance N = 100, L = 10%

The population nature of the algorithm has another benefit when it comes to Elite Strings

encoding. During the computational experience we found that it is possible to recognize a solution

sequence as an Elite String, but in fact it is not an Elite String. Therefore, working with a population

of candidate solutions allows for overcoming this possible drawback. This issue is illustrated in

Figure 3, which shows two candidate solutions which survive from Stage 1 for an instance with 20

customers. The string 8-7-6 which is recognised as elite is present in the candidate solution with

objective function of 501.6. However, looking at the optimal solution obtained from Cplex, the

string 8-7-6 is not part of the optimal solution, hence it is not elite. Therefore, having a population

based VNS, where there is a pool of candidate solutions with different solution structure and

different Elite Strings is necessary.

Learning Mechanism

The PVNS_AMP hybridizes AMP with a memoryless method, which is not a common practice in

the VRP domain. Therefore, it is important to show the benefit of learning and memory

exploitation. Figure 4 shows that there is a benefit from using the AMP as a learning strategy for

VNS. It is clear from the figure that the solution quality from the PVNS Stage fluctuates more during

the runtime of the algorithm, whereas in the PVNS_AMP stage it is more stable and more focused

in lower topography. This is because the fixed part of the solution (i.e. the Elite String), is guiding

the search to remain in better regions.

15

Figure 3: Encoding of Elite Strings into candidate solutions

The instance portrayed in Figure 4 shows another interesting observation. The candidate solutions

'S enter the PVNS_AMP stage in ascending order based on their objective function value. It can

be seen that the best solution in the PVNS_AMP stage was reached towards the end of the running

time of the algorithm. This means that it was reached by a candidate solution 'S E with larger

objective function value. This is an important observation when it comes to problems with

overtime. The neighbourhood operators we use to explore the candidate solutions involve shifting

a maximum of two customers at a time. This raises an interesting trade-off between using more

allowable overtime vs. using an extra vehicle. Having a population VNS allows for the exploration

of solutions which favour overtime, as well as solutions which favour an extra vehicle. The diversity

of the solution pool means greater coverage of the search space, where not only the best cost

solution is further explored, but also those with larger objective function.

Figure 4: The RVRP with Overtime N = 100, L = 10%

1450

1550

1650

1750

1850

S
o

lu
ti

o
n

 Q
u

a
li

ty

Solution quality fluctuation during algorithmic runtime

PVNS stage PVNS_AMP stage

16

4. Computational Results and Analysis

The PVNS_AMP is coded in C++ and all experiments are conducted on a PC with Intel Core i7 with

3.4 GHz. There are no standard benchmark instances for RVRPs, as they are tailored to real life

practices, making it more difficult to comment on the algorithmic comparability aspect. It is

common for researches addressing RVRPs to use randomly generated data, data provided by a

company or adapted literature benchmark instances. We chose to adapt the problem instances of

Golden et al. (1984). The original coordinates of the instances are used, where the other

specifications for demand, vehicle capacity, average vehicle speed, service time and variable cost

are informed by a real life gas delivery company and are detailed in Section 2.

4.1. The RVRP without Overtime

The RVRP is first solved using the MIP formulation provided in Section 3 in Cplex Version 12.6. The

results are then compared to those from the proposed PVNS_AMP. Table 3 shows the results

produced by Cplex and those by the PVNS_AMP, with the corresponding CPU times. The total CPU

time (TCPU) is reported, as well as the time to the best found solution (BCPU). The last column

shows the percent improvement in solution quality when AMP is incorporated into the PVNS.

There are a few observations that can be made from Table 3. First, incorporating AMP within VNS

and exploiting the memory in Stage 2, leads to up to 5.2% improvement in the objective function.

Second, looking at the TCPU for both stages, it can be seen that generally the higher the proportion

of light load customers, the smaller the TCPU. This is a valid observation, because the higher the

number of light load customers, the smaller the search space becomes, which restricts the local

search allowable moves. The BCPU confirms the observation made in Figure 4, that some of the

best solutions are found towards the end of the total runtime for both stages of the algorithm.

This emphasizes on the benefit of using a population VNS.

To show the benefit of using the PVNS_AMP hybrid we have also performed some further testing

using different versions of our algorithm. Table 4 shows the results achieved by using the classical

VNS with the same algorithmic steps as detailed for Stage 1 of the PVNS_AMP, but applied to one

candidate solution only, since the classical VNS applies local search to a single solution. Some

interesting observations can be noted from Table 4. First, using a Population VNS results in up to

4% improvement of the solution quality on the RVRP without overtime, which shows the benefit

17

of using a pool of solutions. Second, there is up to 3% improvement on the classical VNS when

AMP is incorporated within it. However, comparing the results from the VNS_AMP and the PVNS

only, it can be seen that the PVNS performs slightly better than the VNS_AMP. One reason for this

would be that the AMP needs a more diversified solution pool in order to be able to extract

promising solution sequences, rather than only learning from one solution structure. Hence the

PVNS_AMP has superior performance, with up to 8% improvement of the solution quality from

the classical VNS. The average performance of the methods is also reported in Table 4.

It can be seen from Table 4 that the VNS_AMP results in improvement from the VNS, which means

that a greater degree of intensification of the search space can improve the performance of the

method. Therefore, we have tested the PVNS_AMP with more intensified local search, by

increasing the number of iterations for each candidate solution for Stage 1 and Stage 2 of the

algorithm. We set the number of iterations to 20, which was empirically found to be suitable.

Additionally, the PVNS_AMP has a degree of randomisation and in order to have a more thorough

testing we also have recorded the average results of the PVNS_AMP over 10 runs. These results

are shown in Table 5. Testing the PVNS_AMP using 10 runs, with different starting seed shows

some improvements on the larger sized instances with up to 1.03%, whereas giving more depth to

the search with more iterations leads to an improvement of up to 1.45%. This shows that having a

high degree of diversification is needed for good extraction of Elite Strings, but also shows an

improvement when the local search is further intensified, emphasizing on the importance of the

fine balance between diversification and intensification aspects of heuristic methods.

18

 Table 3: Computational Results for the RVRP without overtime

N L (%)a

 CPLEX Stage 1 (PVNS Stage) Stage 2 (AMP Stage)

 LB/

Optimalb
UB Timec

Fleet

Composition
 Solution TCPUd BCPUe

Fleet

Composition
 Solution TCPU BCPU

Fleet

Composition
IMP

20 10 446.2 - 4 3A 1B 446.2 3 <1 3A 1B 446.2 2 <1 3A 1B 0.00%

20 15 446.9 - 3 3A 1B 446.9 3 <1 3A 1B 446.9 2 <1 3A 1B 0.00%

20 20 462.3 - 3 3A 1B 462.3 2 <1 3A 1B 462.3 1 <1 3A 1B 0.00%

30 10 560.1 - 640 2A 3B 569.3 5 2 2A 3B 560.1 2 <1 2A 3B 1.62%

30 15 560.1 - 640 2A 3B 569.3 5 2 2A 3B 560.1 2 <1 2A 3B 1.62%

30 20 535.9 575.4 375 m - 565.3 4 2 2A 3B 565.3 3 <1 2A 3B 0.00%

50 10 701.1 901 1830 m - 879.1 16 5 8A 2B 852.2 10 5 6A 2B 3.06%

50 15 706.8 958.2 248 m - 882.3 15 10 5A 5B 867.2 10 5 4A 5B 1.71%

50 20 699.4 N/A 1109 m - 903.9 13 7 6A 4B 877.4 8 3 6A 4B 2.93%

75 10 993.1 1541 971 m - 1269.5 36 17 2A 8B 1244.1 25 20 2A 8B 2.00%

75 15 985.9 1391 1658 m - 1272.1 33 8 7A 5B 1254.3 22 15 6A 5B 1.40%

75 20 985.9 N/A 2662 m - 1292.4 31 15 8A 6B 1267.5 19 7 8A 6B 1.93%

100 10 1274.6 2908 1396 m - 1667.6 75 20 13A 5B 1646.4 55 48 13A 5B 1.27%

100 15 1248.4 2844 1930 m - 1744.1 79 36 13A 6B 1689.9 52 50 12A 6B 3.11%

100 20 1247.4 N/A 322 m - 1798.3 62 62 9A 9B 1705.3 40 14 10A 8B 5.17%

a L: Percent of L ك N
b LB / Optimal: Optimal Solution in bold
c Time: Cplex computational time in minutes
d TCPU: Total runtime in seconds for the corresponding version
e BCPU: Time to best found solution in seconds for the corresponding

stage
IMP: Percent Improvement with AMP
 m Time recorded until system is Out of Memory

19

Table 4: Performance of different versions of the proposed algorithm on the RVRP without overtime

N L
 VNSa PVNSb VNS_AMPc PVNS_AMPd

 Solution CPU Solution CPU IMP Solution CPU IMP Solution CPU IMP

20 10% 446.2 <1 446.2 3 0.00% 446.2 <1 0.00% 446.2 5 0.00%

20 15% 446.9 <1 446.9 3 0.00% 446.9 <1 0.00% 446.9 5 0.00%

20 20% 462.3 <1 462.3 2 0.00% 462.3 <1 0.00% 462.3 3 0.00%

30 10% 569.3 <1 569.3 5 0.00% 569.3 3 0.00% 560.1 7 1.62%

30 15% 569.3 <1 569.3 5 0.00% 569.3 3 0.00% 560.1 7 1.62%

30 20% 565.3 <1 565.3 4 0.00% 565.3 3 0.00% 565.3 7 0.00%

50 10% 905.03 5 879.1 16 2.95% 893.1 11 1.34% 852.2 26 5.84%

50 15% 912.21 5 882.3 15 3.39% 903.9 7 0.92% 867.2 25 4.93%

50 20% 926.45 5 903.9 13 2.49% 926.4 7 0.01% 877.4 21 5.29%

75 10% 1319.62 11 1269.5 36 3.95% 1282.6 16 2.98% 1244.1 61 5.72%

75 15% 1324.1 10 1272.1 33 4.09% 1292.5 15 2.44% 1254.3 55 5.27%

75 20% 1340.7 10 1292.4 31 3.74% 1305.2 15 2.72% 1267.5 50 5.46%

100 10% 1734.2 18 1667.6 75 3.99% 1689.2 28 2.66% 1646.4 130 5.06%

100 15% 1816.9 17 1744.1 79 4.17% 1766.3 28 2.86% 1689.9 131 7.00%

100 20% 1859.4 15 1798.3 62 3.40% 1810.1 26 2.72% 1705.3 102 8.29%

Average 1013.19 10.7 984.57 25.5 2.14% 995.24 13.5 1.24% 963.01 42.3 3.74%
a Classical VNS without AMP
b Population VNS without AMP
c Classical VNS with AMP
d PVNS with AMP
IMP: Improvement from classical VNS
CPU time in seconds

Average: Solution, Time and IMP

20

 Table 5: Further testing of the PVNS_AMP algorithm on the RVRP without overtime

N L

 PVNS_AMPa PVNS_AMPb PVNS_AMPc

 Solution CPU Best Solution Average Solution
Average

CPU
% IMP Solution CPU % IMP

20 10% 446.2 5 446.2 446.2 5 0.00% 446.2 9 0.00%

20 15% 446.9 5 446.9 446.9 5 0.00% 446.9 9 0.00%

20 20% 462.3 3 462.3 462.3 4 0.00% 462.3 9 0.00%

30 10% 560.1 7 560.1 560.1 10 0.00% 560.1 25 0.00%

30 15% 560.1 7 560.1 560.1 9 0.00% 560.1 23 0.00%

30 20% 565.3 7 565.3 565.3 9 0.00% 565.3 25 0.00%

50 10% 852.2 26 852.2 852.2 31 0.00% 852.2 79 0.00%

50 15% 867.2 25 867.2 867.2 32 0.00% 867.2 76 0.00%

50 20% 877.4 21 877.4 877.4 25 0.00% 877.4 76 0.00%

75 10% 1244.1 61 1232.3 1234.9 68 0.96% 1229.6 149 1.18%

75 15% 1254.3 55 1248.8 1256.7 60 0.44% 1248.8 145 0.44%

75 20% 1267.5 50 1267.5 1269.5 56 0.00% 1267.5 139 0.00%

100 10% 1646.4 130 1629.6 1644.8 135 1.03% 1622.9 301 1.45%

100 15% 1689.9 131 1675.3 1687.5 133 0.87% 1675.3 296 0.87%

100 20% 1705.3 102 1698.2 1703.7 108 0.42% 1698.2 289 0.42%

Average 963.01 42 959.29 962.32 23 0.25% 958.67 55 0.29%
a PVNS_AMP results from one run only
b PVNS_AMP results from 10 runs with different starting seed
c PVNS_AMP results from 1 run, fixed iterations

IMP: Improvement on the PVNS_AMPa

CPU time in seconds

Average: Solution, Time and IMP

21

Table 6: Routing Schedule for RVRP without overtime with different light load customers

 Light Load Customers

 Base Case Case 1: 2,11 א L Case 2: 2,10 א L
Case 3:

 L א1,10,15

Case 4:

 L א1,10,15,8

Routes

0-1-8-3-2-0 0-1-8-3-2-0 0-1-8-3-2-0 0-5-11-16-2-3-1-0 0-5-11-16-2-3-1-0

0-5-15-10-9-16-11-0 0-5-15-10-9-16-11-0 0-12-15-10-9-11-16-0 0-12-17-15-10-9-0 0-12-17-15-10-9-0

0-14-20-7-6-0 0-14-20-7-6-0 0-14-20-7-6-0 0-14-20-7-8-6-0 0-14-20-7-8-6-0

0-18-13-19-4-17-12-0 0-18-13-19-4-17-12-0 0-18-13-19-4-17-5-0 0-18-13-19-4-0 0-18-13-19-4-0

Fleet

Composition
3A,1B 3A,1B 3A,1B 3A,1B 3A,1B

Solution 446.16 446.16 476.04 462.32 462.32

TCPU* 2 2 2 <1 <1

*TCPU: total computational time in seconds

 L: Light Load customers

 Underlined nodes are Light Load Customers

Table 6 shows a computational experiment on the efficient incorporation of the light load

customers using RVRP Instance N = 20. The first case in Table 6 is the Base Case, which shows the

routing schedule when there are no light load customers. A comparison to the base case routing

schedule is necessary in order to show the flexibility of the algorithm to incorporate light load

customers efficiently, at a minimum extra cost. It can be seen that in the case where customers 2

and 11 are light load, there is no change in the solution structure or the objective function. This is

because in the base case, these customers are serviced after the vehicles have become lighter, at

the end of their corresponding routes.

When the chosen light load customers are positioned before the light load threshold is reached as

in cases 2-4, then an adjustment in the routing is necessary. However, the base routing schedule

is mostly preserved in cases 2-4, which suggests that the PVNS_AMP can recognise good quality

Elite Strings and solution sequences, whilst adjusting for the light load requirement at a very small

extra cost.

4.2. The RVRP with Overtime

The mixed integer formulation of the RVRP with overtime provided in Section 3 is tested using

Cplex. Our computational experience suggests that the problem is computationally demanding

and only one small sized instance is solved to optimality. The RVRP with overtime results from

22

Cplex are shown in Table 7. The largest instance we solved to optimality is N = 18, which is included

in Table 7, where instances greater than N = 50 run out of memory.

 Table 7: Cplex results of the RVRP with overtime

N L (%)

 CPLEX PVNS_AMP

 LB /

Optimal
UB

Fleet

Composition
Timea Solution

Fleet

Composition
TCPU Overtimeb

18 10 390.3 - 1A 2B 4 390.3 1A 2B 3 7

20 10 413.8 451.1 - 63 m 427.2 1A 2B 5 5

20 15 413.8 451.1 - 51 m 427.2 1A 2B 5 5

20 20 418.1 448.3 - 84 m 427.2 1A 2B 3 5

25 10 474.5 511.8 - 22 m 503.1 1A 3B 5 0

30 10 504.9 586.1 - 31 m 547.2 4B 7 49

30 15 504.9 586.1 - 3 m 547.2 4B 7 49

30 20 503.7 584.7 - 21 m 552.6 4B 7 58

50 10 699.1 - - 32 m 820.3 3A 4B 25 17
 a Computational time in minutes

 b Overtime used in the solution in minutes
 m Time recorded until system is Out of Memory

 Optimal solutions in bold

It can be seen from Table 7 that in the cases of N = 30 overtime up to one hour is used, where in

other cases, such as N = 25, L = 10% no overtime is used at all. The fleet composition and overtime

used are consistent across the instances with different percent of light load customers.

The heuristic results from the RVRP with overtime are compared to those without overtime in

Table 8. The total cost is provided as well as the fleet composition for each instance and how much

overtime is used, if any. Incorporating overtime shows the potential for cost savings up to 8% for

one planning period. The saving is not only in terms of overall cost, but also in terms of fleet size.

The RVRP proposed in this paper has an interesting characteristic which became apparent during

the computational experience. Having allowable overtime and unlimited fleet means that it is very

likely that during the search process some candidate solutions could favour an extra vehicle, as

opposed to allowing for overtime. Incorporating overtime in advance is also a very important

managerial consideration, because vehicle routing is typically characterized with decision making

in short term horizons, hence the need for quick and effective decisions. Therefore, exploring

greater range of candidate solution structures provides a more comprehensive idea for the

possibilities for cost saving.

23

The instances without overtime are characterized by a larger fleet size. This is because the

allowable maximum regular time in some cases restricts the RVRP more tightly than the capacity

constraint. That is, a new route is added either when the maximum time is reached or there is no

more capacity left in the vehicle. This is an important aspect of the routing in the gas delivery

industry, because the time it takes to service a customer (demand-dependent service time) and

the travel times (given the lower speed of the vehicles) are quite large. Therefore, considering

overtime in advance allows for servicing all customers with fewer vehicles at a lower cost. As a

general observation, this finding can be useful in practice when it comes to strategic decisions of

buying a new vehicle fleet, and also in daily operations for companies which use hired vehicles or

agency drivers.

 Table 8: The RVRP results with and without overtime

N L (%)

PVNS_AMP without

overtime
 PVNS_AMP with overtime

Solution
Fleet

Composition
 Solution

Total

overtime a

Fleet

Composition
IMP

20 10 446.2 3A 1B 427.2 5 1A 2B 4.42%

20 15 446.2 3A 1B 427.2 5 1A 2B 4.42%

20 20 462.3 3A 1B 427.2 5 1A 2B 7.59%

30 10 560.1 2A 3B 547.2 49 4B 2.30%

30 15 560.1 2A 3B 547.2 49 4B 2.30%

30 20 565.3 2A 3B 552.6 58 4B 2.25%

50 10 852.2 6A 2B 820.3 27 3A 4B 3.74%

50 15 867.2 4A 5B 827.1 36 3A 4B 4.62%

50 20 877.4 6A 4B 842.1 46 3A 4B 4.02%

75 10 1244.1 2A 8B 1230.5 19 4A 6B 1.09%

75 15 1254.3 6A 5B 1241.9 7 2A 8B 0.99%

75 20 1267.5 8A 6B 1253.3 62 3A 7B 1.12%

100 10 1646.4 13A 5B 1549.4 25 3A 10B 5.89%

100 15 1689.9 12A 6B 1579.1 29 3A 11B 6.56%

100 20 1705.3 10A 8B 1592.1 38 3A 11B 6.64%

Average 963.0 924.3 30.7 3.86%
 IMP: % improvement of the solution when overtime is considered

 a Overtime used in the solution in minutes

 Average: Solution, Overtime and IMP

24

 Table 9: RVRP at a glance Instance N = 50

RVRP without Overtime

RVRP with Overtime

Light Load

Customers
 Base Case L = Ø Case 1: L = Ø Case 2: L = 1,5,7,12,9 Case 3: L = 1,4,5,7,12,9,32,42,45,50

Routing

 0-6-24-43-40-7-23-48-0 0-1-22-28-31-26-8-48-27-0 0-6-14-24-43-40-7-23-48-27-0 0-6-14-24-43-40-7-32-48-27-0

 0-14-25-13-18-0 0-32-2-20-35-36-3-0 0-8-26-31-28-1-0 0-8-26-31-28-1-0

 0-22-28-31-26-8-27-0 0-6-23-7-40-43-24-25-14-0 0-22-3-36-35-20-2-32-46-0 0-22-3-36-35-20-2-32-0

 0-11-38-46-0 0-15-45-33-39-10-49-5-46-0 0-11-16-29-21-34-50-9-49-5-12-0 0-11-16-29-21-50-34-30-9-49-38-0

 0-1-3-36-35-20-2-32-0 0-11-16-29-21-50-34-30-9-38-0 0-38-30-10-39-33-45-15-0 0-10-39-33-45-15-5-0

 0-9-30-34-50-21-29-16-0 0-37-44-42-19-41-13-18-0 0-46-37-17-4-47-0 0-17-37-44-42-19-41-4-12-0

 0-5-49-10-39-33-45-15-37-0
0-47-4-17-12-0 0-44-42-19-41-13-25-18-0 0-47-18-13-25-0

 0-12-17-44-42-19-41-4-47-0 - - -

Fleet

Composition
 5A, 3B 1A, 6B 3A, 4B 3A, 4B

ATa 360.2 379.6 398.3 410.1

AVCb 0.31% 0.35% 0.35% 0.35%

ALc 14116 15149 15828 16132

Overtimed 0 10 27 46

Solution 848.3 825.6 820.3 842.1

 Underlined nodes are light load customers, nodes in bold are Elite Strings

 a AT is Average travel time per vehicle in minutes

 b AVC is Average variable cost per vehicle as a proportion of total cost
 c AL is Average load per vehicle

 d Overtime used in minutes in the solution

25

We have shown that there is an opportunity of cost savings when light load customers are

incorporated into the routing schedule and also if overtime is incorporated in advance. However,

we also show the combined effect of the real life attributes in Table 9, which portrays Instance N

= 50 of the RVRP with and without overtime and with different light load customers. The key

observations are summarized below.

Managerial Insights

Effects of Light Load: Similar to our findings from Table 6, here we can also observe that the route

composition is mostly preserved regardless of the overtime and the light load customer

composition. Moreover, the increase of the objective function from Case 1 to Case 3 is only 1.99%,

which has 20% light load customers and 46 minutes of overtime. This means that the PVNS_AMP

is flexible enough to identify and preserve good quality Elite Strings in a consistent manner, which

are relevant for all attributes of the RVRP at a very small extra cost.

Effects of Overtime: The examples with overtime of the RVRP tend to favour the larger vehicle type

B, which results in a smaller fleet size. Here an interesting observation is that even though the fleet

mix is composed of more vehicles of type B (larger vehicles), the average variable cost of travel

remains unchanged. Additionally, when considering overtime, the vehicle capacity is 12.5% better

utilized, because the average load carried by the fleet is greater when overtime is considered in

advance. Moreover, the working time is 12% better utilized, as the average travel time of the fleet

is higher and much closer to the maximum allowable regular time. This is an important managerial

consideration in relation to drivers working hours͛ directive and the effective management of

human resources. The minimum number of customers per route is 4, hence there are no short

routes. This suggests that incorporating overtime contributes to a better utilization of the ĚƌŝǀĞƌƐ͛

time, especially if they are in full time employment.

Combined Effect: Another interesting observation is the combined effect of having light load

customers and allowable overtime. It can be seen that for the Base Case, the objective function is

825.6, with 5 vehicles of type B and only 1 of type A. In contrast Case 2 has an objective function

of 820.3. This means that having light load customers can actually improve the efficiency of the

routing when overtime is allowed. It provides an opportunity for servicing more light load

customers on a given route after the maximum regular time when there is still capacity left, rather

26

than placing them on a different route. These findings are not only relevant to the instance

portrayed in Table 9, but also across the other test instances in this study.

Overtime vs Fleet Mix Trade-off: This aspect became apparent during our computational

experience. Having allowable overtime coupled with unlimited fleet results in an interesting trade-

off between servicing more customers in the overtime or having an extra vehicle. Looking at the

Base Case in Table 9 there are a total of 8 vehicles needed to satisfy the total demand, whereas in

Case 1 where overtime is allowed we only need 7 vehicles. Even though the fleet mix is different,

the total cost is lower. This particular aspect can be applied in practice for medium to long term

strategic planning, when companies decide to buy or replace their own fleet. In daily operations it

can also be useful if a company has a mix of owned and hired fleet, or a mix of full time and agency

drivers.

4.3. Special case of the RVRP: The Fleet Size and Mix VRP

Similar to most heuristic methods, the solution methods designed to solve RVRPs are problem

specific. Typically, they are not tested on well-known literature benchmark instances, because one

cannot directly compare methods designed for different problems. However, we test the

PVNS_AMP on the well-known literature benchmark instances by Golden et al. (1984), with fixed

cost and variable cost. Moreover, we test our algorithm on large scale VRP instances with

Heterogeneous fixed fleet by Li, Golden, Wasil (2007). The results from the computational

experiments are shown in tables 10 - 12, and are compared to relevant heuristic methods, as well

as the Best Known Solutions (BKS) from the literature, with the respective average optimality gap.

We have used the PVNS_AMP version with a stopping criterion of 20 fixed iterations. It can be seen

from the tables that the proposed PVNS_AMP can be successfully applied to the different versions

of the FSMVRP, as well as to the HFVRP. Even though the method is primarily designed for a RVRP

with specific real life attributes, it shows competitive performance, yielding less than 0.03%

average deviation from the BKS for the FSMVRP with up to 100 customers and 1% on the HFVRP

with up to 360 customers. Compared to some non-exact methods such as GA and TS, the

computational time of our method is competitive. We show both average running times, as

reported by the respective authors, as well as corresponding scaled average times, which we

adjusted for the differences in PC performance against ours, where available, using the comparison

website http://cpuboss.com/compare-cpus.

http://cpuboss.com/compare-cpus

27

Table 10: Results on Golden et al. (1984) FSMVRP instances with fixed cost

Instance

N

BKS
 TSA1d ILS-RVND-SPe GAf PVNS_AMP

 Sol Time Sol Time Sol Time Sol Time

3 20 961.03abc 961.03 21 961.03 0 961.03 21 961.03 32

4 20 6437.33abc 6437.33 22 6437.33 0 6437.33 18 6437.33 29

5 20 1007.05abc 1007.05 20 1007.05 0 1007.05 13 1007.05 28

6 20 6516.47abc 6516.47 25 6516.47 0 6516.47 22 6516.47 31

13 50 2406.36abc 2406.36 145 2406.36 2 2406.36 91 2406.36 65

14 50 9119.03abc 9119.03 220 9119.03 2

9119.03 42 9119.03 56

15 50 2586.37abc 2586.84 110 2586.37 6 2586.37 48 2586.37 52

16 50 2720.43abc 2728.14 111 2720.43 4 2724.22 107 2720.43 55

17 75 1734.53b 1736.09 322 1734.53 12 1734.53 109 1734.53 99

18 75 2369.65ab 2376.89 267 2369.65 12 2369.65 197 2369.65 124

19 100 8661.81b 8667.26 438 8661.81 25 8662.94 778 8667.26 269

20 100 4032.81 4048.09 601 4032.81 46 4038.45 1004 4038.45 237

Average 0.09% 192 0.00% 9 0.02% 204 0.02% 89

Scaled Average Time - 3 74 89
a Optimality proven by Pessoa, Uchoa, Poggi (2009)

b Optimality proven by Baldacci, Mingozzi (2009)

c Optimality proven by Choi and Tcha (2007)

d Brandao (2009)

e Subramanian et al. (2012)

f Liu, Huang, Ma (2009)

Time: in seconds

Average: Gap and Time

Scaled average time: in seconds adjusted for PC specifications where available

28

Table 11: Results on Golden et al. (1984) FSMVRP instances with variable cost

Instance

N

BKS
 VNS1d ILS-RVNDe GAf PVNS_AMP

 Sol Time Sol Time Sol Time Sol Time

3 20 623.22abc - - 623.22 4 - - 623.22 35

4 20 387.18abc - - 387.18 3 - - 387.18 32

5 20 742.87abc - - 742.87 5 - - 742.87 36

6 20 415.03abc - - 415.03 3 - - 415.03 28

13 50 1491.86abc 1491.86 310 1491.86 31 1491.86 117 1491.86 69

14 50 603.2abc 603.2 161 603.2 14 603.2 26 603.2 58

15 50 999.8abc 999.8 218 999.8 15 999.8 37 999.8 63

16 50 1131abc 1131 239 1131 17 1131 54 1131 61

17 75 1038.6abc 1038.6 509 1038.6 48 1038.6 153 1038.6 142

18 75 1800.8ab 1800.8 606 1800.8 53 1801.4 394 1801.4 121

19 100 1105.44bc 1105.44 1058 1105.44 78 1105.44 479 1105.4 201

20 100 1530.43bc 1533.24 1147 1530.52 87 1534.37 826 1534.37 213

Average 0.02% 531 0.00% 30 0.02% 261 0.02% 88

Scaled Average Time - 11 85 88
a Optimality proven by Pessoa, Uchoa, Poggi (2009)

b Optimality proven by Baldacci and Mingozzi (2009)
c Optimality proven by Choi and Tcha (2007)
d Imran, Salhi, Wassan (2009)
e Penna, Subramanian, Ochi (2011)
f Liu, Huang, Ma (2009)
Time is in seconds
Average: Gap and Time
Scaled average time: in seconds adjusted for PC specifications where available

29

 Table 12: Results on Li, Golden, Wasil (2007) HFVRP instances with variable cost

Instance

N

BKS
 HRTRa TSAb ILS-RVND-SPc PVNS_AMP

 Sol Time Sol Time Sol Time Sol Time

H1 200 12050.08 12067.65 688 12050.08 1395 12050.08 72.1 12050.08 1023

H2 240 10208.32d 10234.4 995 10226.17 3650 10329.15 176.43 10295.36 2698

H3 280 16223.39d 16231.8 1438 16230.21 2822 16282.41 259.61 16305.21 3152

H4 320 17458.65 17576.1 2256 17458.65 8734 17743.68 384.52 17761.9 5469

H5 360 23166.56d - - 23220.72 13,321 23493.87 621.17 23612.23 8554

Average 0.28% 1344 0.09% 5984.4 0.92% 303 1.00% 4179

Scaled Average Time - - 116 4179
aLi et al. (2007)
bBrandão (2011)
cSubramanian et al. (2012)
dFound by Brandão (2011) with different TSA calibration

Time is in seconds
Average: Gap and Time

Scaled average time: in seconds adjusted for PC specifications where available

30

All of the algorithms we compare against, reported in tables 10 - 12 are coded in C or C++ (except

for Li, Golden, Wasil (2007), which is not specified). These have very similar performances to ours.

However, the algorithms have been tested and programmed on different machines and some

use different operating systems. For instance, Subramanian et al. (2012) and Penna,

Subramanian, Ochi (2011) used Intel Core i7 with 2.93GHz, Imran, Salhi and Wassan (2009) Intel

Pentium M 1.7 GHz and Liu, Huang and Ma (2009) Intel Pentium 4, 3 GHz. Li, Golden, Wasil (2007)

AMD Athlon 1 GHz and Brandão (2011) Intel Pentium M 1.4 GHz. Though not all machines can be

compared consistently using one standard CPU benchmarking source, we opted for the

comparison website http://cpuboss.com/compare-cpus. The website generates, where possible,

an overall score out of 10 for the machines in question, which reflects their relative performance

capability.

5. Conclusion

The subject of this paper is a real life routing problem which arises in the gas delivery industry,

characterized by heterogeneous fleet, demand-dependent service times, maximum allowable

overtime and light loads. We present a mathematical formulation, which is tested on Cplex and

optimal solutions and lower / upper bounds are achieved where possible. We have also developed

a new learning-based algorithm which uses memory structures embedded in a Population VNS.

The computational experience suggests that the learning mechanisms based on Adaptive Memory

can improve the performance of the PVNS with up to 5.2% when applied to the RVRP. The use of

Elite Strings as a main driver of memory exploitation, results in the recognition of good solution

sequences which can guide the search process towards better regions of the solution topography.

Moreover, it shows that memory structures can be used with a powerful memoryless

metaheuristic method, as long as an appropriate mechanism to recognise good solution sequences

is in place. The performance of the PVNS_AMP is empirically tested and analysed, and it is

compared to the solutions achieved by Cplex, as well as standard literature benchmark instances.

The findings show that the routing efficiency can be improved significantly when light load

customers and overtime are considered in advance. On average, there are possible savings for

practitioners with up to 8% in the daily routing cost. Moreover, a better fleet utilization in terms

ŽĨ ǀĞŚŝĐůĞ ĐĂƉĂĐŝƚǇ͕ ĂƐ ǁĞůů ĂƐ Ă ďĞƚƚĞƌ ƵƚŝůŝǌĂƚŝŽŶ ŽĨ ƚŚĞ ĚƌŝǀĞƌƐ͛ ǁŽƌŬŝŶŐ ŚŽƵƌƐ ĐĂŶ ďĞ ĂĐŚŝĞǀĞĚ

with up to 12.5% and 12% respectively. We believe that further research on problems with light

https://www.sciencedirect.com/science/article/pii/S0377221707010971#%21
http://cpuboss.com/compare-cpus

31

load requirement and allowable overtime can be triggered from our findings, as well as further

research on the hybridization of the AMP rationale with different iterative heuristic methods.

Acknowledgements

The first author is grateful to the Kent Business School for the PhD funding and support.

References

Archetti C., Savelsbergh M., Speranza M. (2016) The Vehicle Routing Problem with Occasional

Drivers, European Journal of Operational Research 254, 472ʹ480.

Baldacci R., Mingozzi A. (2009) A unified exact method for solving different classes of Vehicle

Routing Problems, Mathematical Programming 120 (2), 347ʹ380.

Battarra M., Monaci M., Vigo D. (2009) An adaptive guidance approach for the heuristic solution

of a minimum multiple trip Vehicle Routing Problem, Computers & Operations Research

36, 3041ʹ3050.

Brandão J. (2009) A deterministic tabu search algorithm for the fleet size and mix

vehicle routing problem, European Journal of Operational Research 195, 716ʹ728.

Brandão, J. (2011) A tabu search algorithm for the heterogeneous fixed fleet vehicle routing

problem, Computers & Operations Research 38, 140ʹ151.

Choi E., Tcha D. (2007) A column generation approach to the heterogeneous fleet Vehicle Routing

Problem, Computational Operations Research 34, 2080ʹ2095.

Cornillier F., Laporte G., Boctor F., Renaud J. (2009) The petrol station replenishment problem with

time windows. Computers & Operations Research 36(3), 919ʹ935.

Erdogan S., Miller-Hooks E. (2012) A green Vehicle Routing Problem, Transportation

Research Part E: Logistics and Transportation Review 48 (1), 100ʹ114.

Gillet B., Miller L. (1974) A heuristic algorithm for the vehicle dispatch problem, Operations

Research 22, 340ʹ349.

Goel A., Gruhn V. (2008) A General Vehicle Routing Problem, European Journal of Operational

Research 191, 650ʹ660.

32

Golden B., Assad A, Levy L, Gheysens F. (1984) The fleet size and mix Vehicle Routing Problem,

Computers & Operations Research 11, 49ʹ66.

Gribkovskaia I., Gullberg B.O., Hovden K.J., Wallace S.W. (2006) Optimization model for a livestock

collection problem, International Journal of Physical Distribution & Logistics Management

36, 136ʹ52.

Hasle G., Løkketangen A., Martello S. (2006) Rich models in discrete optimization: Formulation and

resolution, European Journal of Operational Research, vol. 175, pp. 1752ʹ1753.

Imran A., Salhi S., Wassan N. (2009) A variable neighborhood-based heuristic for the

heterogeneous fleet vehicle routing problem, European Journal of Operational Research,

vol. 197(2), pp. 509ʹ518.

Kalayci C., Kaya B. (2016) An ant colony system empowered variable neighborhood search

algorithm for the vehicle routing problem with simultaneous pickup and delivery, Expert

Systems with Applications 66, 163ʹ175.

Kok A.L., Hans E.W., Schutten J.M.J. (2012) Vehicle routing under time-dependent travel times:

The impact of congestion avoidance, Computers & Operations Research 39, 910ʹ918.

Lahyani R., Khemakhem M., Semet F. (2015) Rich Vehicle Routing Problems: From a taxonomy to

a definition, European Journal of Operational Research 241, 1ʹ14.

Li, F., Golden, B., Wasil E. (2007) A record-to-record travel algorithm for solving the

ŚĞƚĞƌŽŐĞŶĞŽƵƐ ŇĞĞƚ ǀĞŚŝĐůĞ ƌŽƵƚŝŶŐ ƉƌŽďůĞŵ͕ CŽŵƉƵƚĞƌƐ Θ OƉĞƌĂƚŝŽŶƐ RĞƐĞĂƌĐŚ

vol. 34, pp. 2734ʹ2742.

Li X., Tian P., Aneja Y.P. (2010) An Adaptive Memory programming metaheuristic for the

heterogeneous fixed fleet Vehicle Routing Problem, Transportation Research Part E 46,

1111ʹ1127.

Li X., Leung S., Tian P. (2012) A multistart Adaptive Memory-based tabu search algorithm for the

heterogeneous fixed fleet open Vehicle Routing Problem, Expert Systems with Applications

39, 365ʹ374.

Liu S., Huang W., Ma H. (2009) An effective genetic algorithm for the fleet size and mix Vehicle

Routing Problem, Transportation Research Part E 45, 434ʹ445.

Matei O., Pop P.C., Sas I. and Chira C. (2015) An improved immigration memetic algorithm for

solving the heterogeneous fixed fleet vehicle routing problem, Neurocomputing, 150, 58ʹ

66.

http://www.sciencedirect.com.chain.kent.ac.uk/science/article/pii/S0377221714006146#b0525

33

Mladenovic N., Hansen P. (1997) Variable Neighbourhood search, Computers & Operations

Research 24, 1097ʹ1100.

Mladenovic N., Salhi S., Hanafi S., Brimberg J. (2016) Recent Advances in Variable Neighbourhood

Search, Computers & Operations Research 52, 147ʹ148.

Moon I. K., Lee J.H., Seong J. (2012) Vehicle Routing Problem with time windows considering

overtime and outsourcing vehicles, Expert Systems with Applications 39, 13202ʹ13213.

Naji-Azimi Z., Salari M., Renaud J., Ruiz A. (2016) A practical Vehicle Routing Problem with

desynchronized arrivals to depot, European Journal of Operational Research 255, 58ʹ67.

Nagy G., Wassan NA., Salhi S. (2013) The vehicle routing problem with restricted mixing of

deliveries and pickups, Journal of Scheduling 16 (2), 199ʹ213.

Oppen J., Loketangen A. (2008) A tabu search approach for the livestock collection problem,

Computers & Operations Research 35, 3213ʹ3229.

Ren Y., Dessouky M., Ordonez F. (2010) The multi-shift Vehicle Routing Problem with overtime

Computers & Operations Research 11, 1987ʹ1998.

Penna P., Subramanian A., Ochi L. (2011) An iterated Local Search heuristic for the Heterogeneous

Fleet Vehicle Routing Problem, Journal of Heuristics 19 (2), 201ʹ232.

Pessoa A., Uchoa E., Poggi de Aragão M. (2009) A robust branch-cut-and-price algorithm for the

heterogeneous fleet Vehicle Routing Problem, Networks 54, 167ʹ177.

Rochat Y., Taillard E.D. (1995) Probabilistic diversification and intensification in local search for

vehicle routing, Journal of Heuristics 1, 147ʹ167.

Salhi S. (2017) Heuristic search: The emerging science of problem solving, Cham, Switzerland:

Palgrave MacMillan, Spring International Publishing AG.

Seixas M.P., Mendes A.B. (2013), Column generation for a multitrip Vehicle Routing Problem with

time-windows, driver work hours, and heterogeneous fleet, Mathematical Problems in

Engineering, 1ʹ13.

Stenger A., Vigo D., Enz S., Schwind M. (2013) An adaptive Variable Neighbourhood Search

Algorithm for a Vehicle Routing Problem arising in small package shipping, Transportation

Science 47, 64ʹ80.

Subramanian A., Penna P., Uchoa E., Ochi L. (2012) A hybrid algorithm for the Heterogeneous Fleet

Vehicle Routing Problem, European Journal of Operational Research 221, 285ʹ295.

http://www.sciencedirect.com/science/journal/09574174
http://www.sciencedirect.com/science/journal/03050548

34

Sze J.F., Salhi S., Wassan N. (2016) A hybridisation of adaptive variable neighbourhood search and

large neighbourhood search: Application to the vehicle routing problem, Expert Systems

with Applications 65, 383ʹ397.

Sze J.F., Salhi S., Wassan N. (2017) The cumulative capacitated vehicle routing problem with min-

sum and min-max objectives: An effective hybridisation of adaptive variable

neighbourhood search and large neighbourhood search, Transportation Research Part B

101, 162ʹ184.

Tarantillis C.D., Kiranoudis C.T. (2002) BoneRoute: An Adaptive Memory-based method for

effective fleet management, Annals of Operations Research 115, 227ʹ241.

Tarantillis C.D. (2005) Solving the Vehicle Routing Problem with Adaptive Memory programming

methodology, Computers & Operations Research 32, 2309ʹ2327.

Vidal T., Crainic T.G., Gendreau M., Prins C. (2014) A unified solution framework for multi-attribute

Vehicle Routing Problems, European Journal of Operational Research 234, 658ʹ673.

Wassan Naveed., Wassan N., Nagy G., Salhi S. (2017) The multiple trip Vehicle Routing Problem

with backhauls: Formulation and a two-level Variable Neighbourhood search, Computers

& Operations Research 78, 454ʹ467.

Yin PY., Glover F., Laguna M. (2010) Cyber Swarm Algorithms ʹ Improving particle swarm

optimization using Adaptive Memory strategies, European Journal of Operational Research

201, 377ʹ389.

Zachariadis E., Tarantilis C., Kiranoudis C. (2015) The load-dependent vehicle routing problem

and its pick-up and delivery extension, Transportation Research Part B 71, 158ʹ181.

