61 research outputs found

    Current source enhancements in Electrical Impedance Spectroscopy (EIS) to cancel unwanted capacitive effects

    Get PDF
    Electrical Impedance Spectroscopy (EIS) has emerged as a non-invasive imaging modality to detect and quantify functional or electrical properties related to the suspicious tumors in cancer screening, diagnosis and prognosis assessment. A constraint on EIS systems is that the current excitation system suffers from the effects of stray capacitance having a major impact on the hardware subsystem as the EIS is an ill-posed inverse problem which depends on the noise level in EIS measured data and regularization parameter in the reconstruction algorithm. There is high complexity in the design of stable current sources, with stray capacitance reducing the output impedance and bandwidth of the system. To confront this, we have designed an EIS current source which eliminates the effect of stray capacitance and other impacts of the capacitance via a variable inductance. In this paper, we present a combination of operational CCII based on a generalized impedance converter (OCCII-GIC) with a current source. The aim of this study is to use the EIS system as a biomedical imaging technique, which is effective in the early detection of breast cancer. This article begins with the theoretical description of the EIS structure, current source topologies and proposes a current conveyor in application of a Gyrator to eliminate the current source limitations and its development followed by simulation and experimental results. We demonstrated that the new design could achieve a high output impedance over a 3MHz frequency bandwidth when compared to other types of GIC circuits combined with an improved Howland topology

    Wideband Fully-Programmable Dual-Mode CMOS Analogue Front-End for Electrical Impedance Spectroscopy

    Get PDF
    This paper presents a multi-channel dual-mode CMOS analogue front-end (AFE) for electrochemical and bioimpedance analysis. Current-mode and voltage-mode readouts, integrated on the same chip, can provide an adaptable platform to correlate single-cell biosensor studies with large-scale tissue or organ analysis for real-time cancer detection, imaging and characterization. The chip, implemented in a 180-nm CMOS technology, combines two current-readout (CR) channels and four voltage-readout (VR) channels suitable for both bipolar and tetrapolar electrical impedance spectroscopy (EIS) analysis. Each VR channel occupies an area of 0.48 mm 2 , is capable of an operational bandwidth of 8 MHz and a linear gain in the range between -6 dB and 42 dB. The gain of the CR channel can be set to 10 kΩ, 50 kΩ or 100 kΩ and is capable of 80-dB dynamic range, with a very linear response for input currents between 10 nA and 100 μ A. Each CR channel occupies an area of 0.21 mm 2 . The chip consumes between 530 μ A and 690 μ A per channel and operates from a 1.8-V supply. The chip was used to measure the impedance of capacitive interdigitated electrodes in saline solution. Measurements show close matching with results obtained using a commercial impedance analyser. The chip will be part of a fully flexible and configurable fully-integrated dual-mode EIS system for impedance sensors and bioimpedance analysis

    Conditioning electrical impedance mammography system

    Get PDF
    A multi-frequency Electrical Impedance Mammography (EIM) system has been developed to evaluate the conductivity and permittivity spectrums of breast tissues, which aims to improve early detection of breast cancer as a non-invasive, relatively low cost and label-free screening (or pre-screening) method. Multi-frequency EIM systems typically employ current excitations and measure differential potentials from the subject under test. Both the output impedance and system performance (SNR and accuracy) depend on the total output resistance, stray and output capacitances, capacitance at the electrode level, crosstalk at the chip and PCB levels. This makes the system design highly complex due to the impact of the unwanted capacitive effects, which substantially reduce the output impedance of stable current sources and bandwidth of the data that can be acquired. To overcome these difficulties, we present new methods to design a high performance, wide bandwidth EIM system using novel second generation current conveyor operational amplifiers based on a gyrator (OCCII-GIC) combination with different current excitation systems to cancel unwanted capacitive effects from the whole system. We reconstructed tomography images using a planar E-phantom consisting of an RSC circuit model, which represents the resistance of extra-cellular (R), intra-cellular (S) and membrane capacitance (C) of the breast tissues to validate the performance of the system. The experimental results demonstrated that an EIM system with the new design achieved a high output impedance of 10MΩ at 1MHz to at least 3MΩ at 3MHz frequency, with an average SNR and modelling accuracy of over 80dB and 99%, respectively

    Electronics for Sensors

    Get PDF
    The aim of this Special Issue is to explore new advanced solutions in electronic systems and interfaces to be employed in sensors, describing best practices, implementations, and applications. The selected papers in particular concern photomultiplier tubes (PMTs) and silicon photomultipliers (SiPMs) interfaces and applications, techniques for monitoring radiation levels, electronics for biomedical applications, design and applications of time-to-digital converters, interfaces for image sensors, and general-purpose theory and topologies for electronic interfaces

    Investigation of undesired errors relating to the planar array system of electrical impedance mammography for breast cancer detection

    Get PDF
    Breast cancer in women continues to be one of the leading causes of death in the world. Since the exact causes are not completely known, the most important approach is to reduce this mortality by early detection and treatment. Although the current detection techniques for breast cancer such as X-ray mammography provide useful informationfor diagnosis; development of a new imaging technique using non-ionising radiation is highly desirable in order to detect breast cancer at an early stage and overcome current limitations, such as age-dependent sensitivity. Electrical Impedance Mammography (EIM) provides a new solution to break through the current limitation for early cancer detection. The focus of this thesis is to investigate the current fourth generation Sussex EIM system. This system implements the EIM technique by examination of the tissueresponse to a multi-frequency injected current. The Sussex Mk4 system is discussed indetail followed by system hardware modelling. The hardware modelling includes both analogue and digital components. The analogue part includes modelling of the voltage to current converter (V-I) and analogue multiplexer while the digital section consists of modelling the signal generation, measurement and demodulating components. In the analogue section, bandwidth limitation due to the current source and the analogue multiplexer’s configuration is also the prime focus of investigation along with the proposal to overcome it. Possible factors affecting the system performance and signal quality are also part of the research. In this section, possible factors are characterized and discussed in detail on the basis of external and internal sources of possible errors along with predictable and unpredictable noise sources. External sources of error artefacts introduced by the patients and their movements while scanning are most likely to affect the image reconstruction. Predictable and unpredictable causes may introduce frequency dependent noise whereas internal sources, which can be also be classified as systematic errors, degrade system performance due to electronic circuit design, configuration, stray capacitance and cable connections. Further, comprehensive investigation is performed on the in-vivoun desired voltage threshold levels which come hand-in-hand with the methods to mitigate the possible factors responsible for them. A comprehensive study and analysis is also carried out to determine what ratio of electrode blockage can affect the acquired raw data and how this may compromise reconstruction. Techniques for fast detection of any such occurrences are also discussed

    Handbook of sensor technical characteristics

    Get PDF
    Space and terrestrial applications remote sensor systems are described. Each sensor is presented separately. Information is included on its objectives, description, technical characteristics, data products obtained, data archives location, period of operation, and measurement and potential derived parameters. Each sensor is cross indexed

    Detection of breast cancer with electrical impedance mammography

    Get PDF
    Electrical Impedance Tomography (EIT) is a medical imaging technique that reconstructs internal electrical conductivity distribution of a body from impedance data that is measured on the body surface, and Electrical Impedance Mammography (EIM) is the technique that applies EIT in breast cancer detection. The use of EIM for breast cancer identification is highly desirable because it is a non-invasive and low-cost imaging technology. EIM has the potential in detecting early stage cancer, however there are still challenges that hindering EIM to be provided as a routine health care system. There are three major groups of obstacles. One is the hardware design, which includes the selection of electronic components, electrode-skin contacting methods, etc. Second is theoretical problems such as electrode configurations, image reconstruction and regularization methods. Third is the development of analysis methods and generation of a cancerous tissue database. Research reported in this thesis strives to understand these problems and aims to provide possible solutions to build a clinical EIM system. The studies are carried out in four parts. First the functionalities of the Sussex Mk4 EIM system have been studied. Sensitivity of the system was investigated to find out the strength and weakness of the system. Then work has been made on image reconstruction and regularization methods in order to enhance the system’s endurance to noise, also to balance the reconstruction conductivity distribution throughout the reconstructed object. Then a novel cancer diagnosis technique was proposed. It was developed based on the electrical property of human breast tissue and the behaviour or systematic noise, to provide repeatable results for each patient. Finally evaluation has been made on previous EIM systems to find out the major problems. Based on sensitivity analysis, an optimal combined electrode configuration has been proposed to improve sensitivity. The system has been developed and produced meaningful clinical images. The work makes significant contributions to society. This novel cancer diagnosis method has high accuracy for cancer identification. The combined electrode configuration has also provided flexibilities in the designing of current driving and voltage receiving patterns, thus sensitivity of the EIM system can be greatly improved
    • …
    corecore