166 research outputs found

    Dynamic programming for aligning sketch maps

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial TechnologiesSketch maps play an important role in communicating spatial knowledge, particularly in applications interested in identifying correspondences to metric maps for land tenure in rural communities. The interpretation of a sketch map is linked to the users’ spatial reasoning and the number of features included. Additionally, in order to make use of the information provided by sketch maps, the integration with information systems is needed but is convoluted. The process of identifying which element in the base map is being represented in the sketch map involves the use of correct descriptors and structures to manage them. In the past years, different methods to give a solution to the sketch matching problem employs iterative methods using static scores to create a subset of correspondences. In this thesis, we propose an implementation for the automatic aligning of the sketch to metric maps, based on dynamic programming techniques from reinforcement learning. Our solution is distinctive from other approaches as it searches for pair equivalences by exploring the environment of the search space and learning from positive rewards derived from a custom scoring system. Scores are used to evaluate the likeliness of a candidate pair to belong to the final solution, and the results are back up in a state-value function to recover the best subset states and recovering the highest scored combinations. Reinforcement learning algorithms are dynamic and robust solutions for finding the best solution in an ample search space. The proposed workflow improves the outcoming spatial configuration for the aligned features compared to previous approaches, specifically the Tabu Search

    Extracting invariant characteristics of sketch maps: Towards place query-by-sketch

    Get PDF
    In geography, invariant aspects of sketches are essential to study because they reflect the human perception of real-world places. A person's perception of a place can be ex-pressed in sketches. In this article, we quantitatively and qualitatively analyzed the characteristics of single objects and characteristics among objects in sketches and the real world to find reliable invariants that can be used to establish references/correspondences between sketch and world in a matching process. These characteristics include category, shape, name, and relative size of each object. Moreover, quantity and spatial relationships—such as topological, or-dering, and location relationships—among all objects are also analyzed to assess consistency between sketched and actual places. The approach presented in this study extracts the reliable invariants for query-by-sketch and prioritizes their relevance for a sketch-map matching process

    Täpne ja tõhus protsessimudelite automaatne koostamine sündmuslogidest

    Get PDF
    Töötajate igapäevatöö koosneb tegevustest, mille eesmärgiks on teenuste pakkumine või toodete valmistamine. Selliste tegevuste terviklikku jada nimetatakse protsessiks. Protsessi kvaliteet ja efektiivsus mõjutab otseselt kliendi kogemust – tema arvamust ja hinnangut teenusele või tootele. Kliendi kogemus on eduka ettevõtte arendamise oluline tegur, mis paneb ettevõtteid järjest rohkem pöörama tähelepanu oma protsesside kirjeldamisele, analüüsimisele ja parendamisele. Protsesside kirjeldamisel kasutatakse tavaliselt visuaalseid vahendeid, sellisel kujul koostatud kirjeldust nimetatakse protsessimudeliks. Kuna mudeli koostaja ei suuda panna kirja kõike erandeid, mis võivad reaalses protsessis esineda, siis ei ole need mudelid paljudel juhtudel terviklikud. Samuti on probleemiks suur töömaht - inimese ajakulu protsessimudeli koostamisel on suur. Protsessimudelite automaatne koostamine (protsessituvastus) võimaldab genereerida protsessimudeli toetudes tegevustega seotud andmetele. Protsessituvastus aitab meil vähendada protsessimudeli loomisele kuluvat aega ja samuti on tulemusena tekkiv mudel (võrreldes käsitsi tehtud mudeliga) kvaliteetsem. Protsessituvastuse tulemusel loodud mudeli kvaliteet sõltub nii algandmete kvaliteedist kui ka protsessituvastuse algoritmist. Antud doktoritöös anname ülevaate erinevatest protsessituvastuse algoritmidest. Toome välja puudused ja pakume välja uue algoritmi Split Miner. Võrreldes olemasolevate algoritmidega on Splint Miner kiirem ja annab tulemuseks kvaliteetsema protsessimudeli. Samuti pakume välja uue lähenemise automaatselt koostatud protsessimudeli korrektsuse hindamiseks, mis on võrreldes olemasolevate meetoditega usaldusväärsem. Doktoritöö näitab, kuidas kasutada optimiseerimise algoritme protsessimudeli korrektsuse suurendamiseks.Everyday, companies’ employees perform activities with the goal of providing services (or products) to their customers. A sequence of such activities is known as business process. The quality and the efficiency of a business process directly influence the customer experience. In a competitive business environment, achieving a great customer experience is fundamental to be a successful company. For this reason, companies are interested in identifying their business processes to analyse and improve them. To analyse and improve a business process, it is generally useful to first write it down in the form of a graphical representation, namely a business process model. Drawing such process models manually is time-consuming because of the time it takes to collect detailed information about the execution of the process. Also, manually drawn process models are often incomplete because it is difficult to uncover every possible execution path in the process via manual data collection. Automated process discovery allows business analysts to exploit process' execution data to automatically discover process models. Discovering high-quality process models is extremely important to reduce the time spent enhancing them and to avoid mistakes during process analysis. The quality of an automatically discovered process model depends on both the input data and the automated process discovery application that is used. In this thesis, we provide an overview of the available algorithms to perform automated process discovery. We identify deficiencies in existing algorithms, and we propose a new algorithm, called Split Miner, which is faster and consistently discovers more accurate process models than existing algorithms. We also propose a new approach to measure the accuracy of automatically discovered process models in a fine-grained manner, and we use this new measurement approach to optimize the accuracy of automatically discovered process models.https://www.ester.ee/record=b530061

    Performance Evaluation of Network Anomaly Detection Systems

    Get PDF
    Nowadays, there is a huge and growing concern about security in information and communication technology (ICT) among the scientific community because any attack or anomaly in the network can greatly affect many domains such as national security, private data storage, social welfare, economic issues, and so on. Therefore, the anomaly detection domain is a broad research area, and many different techniques and approaches for this purpose have emerged through the years. Attacks, problems, and internal failures when not detected early may badly harm an entire Network system. Thus, this thesis presents an autonomous profile-based anomaly detection system based on the statistical method Principal Component Analysis (PCADS-AD). This approach creates a network profile called Digital Signature of Network Segment using Flow Analysis (DSNSF) that denotes the predicted normal behavior of a network traffic activity through historical data analysis. That digital signature is used as a threshold for volume anomaly detection to detect disparities in the normal traffic trend. The proposed system uses seven traffic flow attributes: Bits, Packets and Number of Flows to detect problems, and Source and Destination IP addresses and Ports, to provides the network administrator necessary information to solve them. Via evaluation techniques, addition of a different anomaly detection approach, and comparisons to other methods performed in this thesis using real network traffic data, results showed good traffic prediction by the DSNSF and encouraging false alarm generation and detection accuracy on the detection schema. The observed results seek to contribute to the advance of the state of the art in methods and strategies for anomaly detection that aim to surpass some challenges that emerge from the constant growth in complexity, speed and size of today’s large scale networks, also providing high-value results for a better detection in real time.Atualmente, existe uma enorme e crescente preocupação com segurança em tecnologia da informação e comunicação (TIC) entre a comunidade científica. Isto porque qualquer ataque ou anomalia na rede pode afetar a qualidade, interoperabilidade, disponibilidade, e integridade em muitos domínios, como segurança nacional, armazenamento de dados privados, bem-estar social, questões econômicas, e assim por diante. Portanto, a deteção de anomalias é uma ampla área de pesquisa, e muitas técnicas e abordagens diferentes para esse propósito surgiram ao longo dos anos. Ataques, problemas e falhas internas quando não detetados precocemente podem prejudicar gravemente todo um sistema de rede. Assim, esta Tese apresenta um sistema autônomo de deteção de anomalias baseado em perfil utilizando o método estatístico Análise de Componentes Principais (PCADS-AD). Essa abordagem cria um perfil de rede chamado Assinatura Digital do Segmento de Rede usando Análise de Fluxos (DSNSF) que denota o comportamento normal previsto de uma atividade de tráfego de rede por meio da análise de dados históricos. Essa assinatura digital é utilizada como um limiar para deteção de anomalia de volume e identificar disparidades na tendência de tráfego normal. O sistema proposto utiliza sete atributos de fluxo de tráfego: bits, pacotes e número de fluxos para detetar problemas, além de endereços IP e portas de origem e destino para fornecer ao administrador de rede as informações necessárias para resolvê-los. Por meio da utilização de métricas de avaliação, do acrescimento de uma abordagem de deteção distinta da proposta principal e comparações com outros métodos realizados nesta tese usando dados reais de tráfego de rede, os resultados mostraram boas previsões de tráfego pelo DSNSF e resultados encorajadores quanto a geração de alarmes falsos e precisão de deteção. Com os resultados observados nesta tese, este trabalho de doutoramento busca contribuir para o avanço do estado da arte em métodos e estratégias de deteção de anomalias, visando superar alguns desafios que emergem do constante crescimento em complexidade, velocidade e tamanho das redes de grande porte da atualidade, proporcionando também alta performance. Ainda, a baixa complexidade e agilidade do sistema proposto contribuem para que possa ser aplicado a deteção em tempo real

    Meta-parametric design: Developing a computational approach for early stage collaborative practice

    Get PDF
    Computational design is the study of how programmable computers can be integrated into the process of design. It is not simply the use of pre-compiled computer aided design software that aims to replicate the drawing board, but rather the development of computer algorithms as an integral part of the design process. Programmable machines have begun to challenge traditional modes of thinking in architecture and engineering, placing further emphasis on process ahead of the final result. Just as Darwin and Wallace had to think beyond form and inquire into the development of biological organisms to understand evolution, so computational methods enable us to rethink how we approach the design process itself. The subject is broad and multidisciplinary, with influences from design, computer science, mathematics, biology and engineering. This thesis begins similarly wide in its scope, addressing both the technological aspects of computational design and its application on several case study projects in professional practice. By learning through participant observation in combination with secondary research, it is found that design teams can be most effective at the early stage of projects by engaging with the additional complexity this entails. At this concept stage, computational tools such as parametric models are found to have insufficient flexibility for wide design exploration. In response, an approach called Meta-Parametric Design is proposed, inspired by developments in genetic programming (GP). By moving to a higher level of abstraction as computational designers, a Meta-Parametric approach is able to adapt to changing constraints and requirements whilst maintaining an explicit record of process for collaborative working

    Preparation of Silver Decorated Reduced Graphene Oxide Nanohybrid for Effective Photocatalytic Degradation of Indigo Carmine Dye

    Get PDF
    Background: Even though silver decorated reduced graphene oxide (Ag-rGO) shows max- imum absorptivity in the UV region, most of the research on the degradation of dyes using Ag-rGO is in the visible region. Therefore the present work focused on the photocatalytic degradation of indigo carmine (IC) dye in the presence of Ag-rGO as a catalyst by UV light irradiation. Methods: In this context, silver-decorated reduced graphene oxide hybrid material was fabricated and explored its potential for the photocatalytic degradation of aqueous IC solution in the UV region. The decoration of Ag nanoparticles on the surface of the rGO nanosheets is evidenced by TEM analysis. The extent of mineralization of the dye was measured by estimating chemical oxygen demand (COD) values before and after irradiation. Results: The synthesized Ag-rGO binary composites displayed excellent photocatalytic activity in 2 Χ 10-5 M IC concentration and 5mg catalyst loading. The optical absorption spectrum of Ag-rGO showed that the energy band-gap was found to be 2.27 eV, which is significantly smaller compared to the band-gap of GO. 5 mg of Ag-rGO was found to be an optimum quantity for the effective degrada- tion of IC dye. The degradation rate increases with the decrease in the concentration of the dye at al- kaline pH conditions. The photocatalytic efficiency was 92% for the second time. Conclusion: The impact of the enhanced reactive species generation was consistent with higher pho- tocatalytic dye degradation. The photocatalytic mechanism has been proposed and the hydroxyl radi- cal was found to be the reactive species responsible for the degradation of dye. The feasibility of reus- ing the photocatalyst showed that the photocatalytic efficiency was very effective for the second tim

    EG-ICE 2021 Workshop on Intelligent Computing in Engineering

    Get PDF
    The 28th EG-ICE International Workshop 2021 brings together international experts working at the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolutions to support multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways

    Recent Advances in Deep Learning Techniques for Face Recognition

    Full text link
    In recent years, researchers have proposed many deep learning (DL) methods for various tasks, and particularly face recognition (FR) made an enormous leap using these techniques. Deep FR systems benefit from the hierarchical architecture of the DL methods to learn discriminative face representation. Therefore, DL techniques significantly improve state-of-the-art performance on FR systems and encourage diverse and efficient real-world applications. In this paper, we present a comprehensive analysis of various FR systems that leverage the different types of DL techniques, and for the study, we summarize 168 recent contributions from this area. We discuss the papers related to different algorithms, architectures, loss functions, activation functions, datasets, challenges, improvement ideas, current and future trends of DL-based FR systems. We provide a detailed discussion of various DL methods to understand the current state-of-the-art, and then we discuss various activation and loss functions for the methods. Additionally, we summarize different datasets used widely for FR tasks and discuss challenges related to illumination, expression, pose variations, and occlusion. Finally, we discuss improvement ideas, current and future trends of FR tasks.Comment: 32 pages and citation: M. T. H. Fuad et al., "Recent Advances in Deep Learning Techniques for Face Recognition," in IEEE Access, vol. 9, pp. 99112-99142, 2021, doi: 10.1109/ACCESS.2021.309613

    Channel parameter tuning in a hybrid Wi-Fi-Dynamic Spectrum Access Wireless Mesh Network

    Get PDF
    This work addresses Channel Assignment in a multi-radio multi-channel (MRMC) Wireless Mesh Network (WMN) using both Wi-Fi and Dynamic Spectrum Access (DSA) spectrum bands and standards. This scenario poses new challenges because nodes are spread out geographically so may have differing allowed channels and experience different levels of external interference in different channels. A solution must meet two conflicting requirements simultaneously: 1) avoid or minimise interference within the network and from external interference sources, and 2) maintain connectivity within the network. These two requirements must be met while staying within the link constraints and the radio interface constraints, such as only assigning as many channels to a node as it has radios. This work's original contribution to the field is a unified framework for channel optimisation and assignment in a WMN that uses both DSA and traditional Wi-Fi channels for interconnectivity. This contribution is realised by providing and analysing the performance of near-optimal Channel Assignment (CA) solutions using metaheuristic algorithms for the MRMC WMNs using DSA bands. We have created a simulation framework for evaluating the algorithms. The performance of Simulated Annealing, Genetic Algorithm, Differential Evolution, and Particle Swarm Optimisation algorithms have been analysed and compared for the CA optimisation problem. We introduce a novel algorithm, used alongside the metaheuristic optimisation algorithms, to generate feasible candidate CA solutions. Unlike previous studies, this sensing and CA work takes into account the requirement to use a Geolocation Spectrum Database (GLSD) to get the allowed channels, in addition to using spectrum sensing to identify and estimate the cumulative severity of both internal and external interference sources. External interference may be caused by other secondary users (SUs) in the vicinity or by primary transmitters of the DSA band whose emissions leak into adjacent channels, next-toadjacent, or even into further channels. We use signal-to-interference-plus-noise ratio (SINR) as the optimisation objective. This incorporates any possible source or type of interference and makes our method agnostic to the protocol or technology of the interfering devices while ensuring that the received signal level is high enough for connectivity to be maintained on as many links as possible. To support our assertion that SINR is a reasonable criterion on which to base the optimisation, we have carried out extensive outdoor measurements in both line-of-sight and wooded conditions in the television white space (TVWS) DSA band and the 5 GHz Wi-Fi band. These measurements show that SINR is useful as a performance measure, especially when the interference experienced on a link is high. Our statistical analysis shows that SINR effectively differentiates the performance of different channels and that SINR is well correlated with throughput and is thus a good predictor of end-user experience, despite varying conditions. We also identify and analyse the idle times created by Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) contention-based Medium Access Control (MAC) operations and propose the use of these idle times for spectrum sensing to measure the SINR on possible channels. This means we can perform spectrum sensing with zero spectrum sensing delay experienced by the end user. Unlike previous work, this spectrum sensing is transparent and can be performed without causing any disruption to the normal data transmission of the network. We conduct Markov chain analysis to find the expected length of time of a sensing window. We also derive an efficient minimum variance unbiased estimator of the interference plus noise and show how the SINR can be found using this estimate. Our estimation is more granular, accurate, and appropriate to the problem of Secondary User (SU)-SU coexistence than the binary hypothesis testing methods that are most common in the literature. Furthermore, we construct confidence intervals based on the probability density function derived for the observations. This leads to finding and showing the relationships between the number of sampling windows and sampling time, the interference power, and the achievable confidence interval width. While our results coincide with (and thus are confirmed by) some key previous recommendations, ours are more precise, granular, and accurate and allow for application to a wider range of operating conditions. Finally, we present alterations to the IEEE 802.11k protocol to enable the reporting of spectrum sensing results to the fusion or gateway node and algorithms for distributing the Channel Assignment once computed. We analyse the convergence rate of the proposed procedures and find that high network availability can be maintained despite the temporary loss of connectivity caused by the channel switching procedure. This dissertation consolidates the different activities required to improve the channel parameter settings of a multi-radio multi-channel DSA-WMN. The work facilitates the extension of Internet connectivity to the unconnected or unreliably connected in rural or peri-urban areas in a more cost-effective way, enabling more meaningful and affordable access technologies. It also empowers smaller players to construct better community networks for sharing local content. This technology can have knock-on effects of improved socio-economic conditions for the communities that use it
    corecore