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Dedication

To God.

My child, if you aspire to serve the Lord,
prepare yourself for an ordeal.

Be sincere of heart, be steadfast,
and do not be alarmed when disaster comes.

Cling to him and do not leave him,
so that you may be honoured at the end of your days.

Whatever happens to you, accept it,
and in the uncertainties of your humble state, be patient,

since gold is tested in the fire,
and the chosen in the furnace of humiliation.

Trust him and he will uphold you,
follow a straight path and hope in him.

Ecclesiasticus 1:6
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Resumo

Resumo

Atualmente, existe uma enorme e crescente preocupação com segurança em tecnolo-
gia da informação e comunicação (TIC) entre a comunidade científica. Isto porque qualquer
ataque ou anomalia na rede pode afetar a qualidade, interoperabilidade, disponibilidade, e in-
tegridade em muitos domínios, como segurança nacional, armazenamento de dados privados,
bem-estar social, questões econômicas, e assim por diante. Portanto, a deteção de anomalias
é uma ampla área de pesquisa, e muitas técnicas e abordagens diferentes para esse propósito
surgiram ao longo dos anos.

Ataques, problemas e falhas internas quando não detetados precocemente podem pre-
judicar gravemente todo um sistema de rede. Assim, esta Tese apresenta um sistema autônomo
de deteção de anomalias baseado em perfil utilizando o método estatístico Análise de Compo-
nentes Principais (PCADS-AD). Essa abordagem cria um perfil de rede chamado Assinatura Digital
do Segmento de Rede usando Análise de Fluxos (DSNSF) que denota o comportamento normal
previsto de uma atividade de tráfego de rede por meio da análise de dados históricos. Essa
assinatura digital é utilizada como um limiar para deteção de anomalia de volume e identificar
disparidades na tendência de tráfego normal. O sistema proposto utiliza sete atributos de fluxo
de tráfego: bits, pacotes e número de fluxos para detetar problemas, além de endereços IP e
portas de origem e destino para fornecer ao administrador de rede as informações necessárias
para resolvê-los.

Por meio da utilização de métricas de avaliação, do acrescimento de uma abordagem
de deteção distinta da proposta principal e comparações com outros métodos realizados nesta
tese usando dados reais de tráfego de rede, os resultados mostraram boas previsões de tráfego
pelo DSNSF e resultados encorajadores quanto a geração de alarmes falsos e precisão de deteção.

Com os resultados observados nesta tese, este trabalho de doutoramento busca con-
tribuir para o avanço do estado da arte em métodos e estratégias de deteção de anomalias,
visando superar alguns desafios que emergem do constante crescimento em complexidade, ve-
locidade e tamanho das redes de grande porte da atualidade, proporcionando também alta
performance. Ainda, a baixa complexidade e agilidade do sistema proposto contribuem para
que possa ser aplicado a deteção em tempo real.

Palavras-chave

deteção de Anomalias, Sistemas de deteção de Intrusão, Caracterização de Tráfego,
Segurança de Redes, Gestão de Redes, Análise de Componentes Principais, Redes de Computa-
dores, Assinatura Digital do Segmento de Rede usando Análise de Fluxos.
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Extended Abstract in Portuguese

Introdução

Esta seção resume, de forma alargada, os 4 anos de trabalho de investigação no âmbito
da tese de doutoramento intitulada “Performance Evaluation of Anomaly Detection Systems”.
Esta tese foca-se no estudo e na proposta de estratégias e metodologias de análise de dados
de tráfego para o monitoramento e deteção de anomalias de rede. A primeira etapa descreve
a estrutura da tese, bem como define o problema abordado e os principais objetivos do es-
tudo. As principais contribuições deste trabalho para o avanço do estado da arte também são
apresentadas.

Enquadramento

Atualmente, a comunidade científica tem uma preocupação constante com segurança
de alta eficiência e qualidade de serviço em redes de larga escala. A expansão de novas tec-
nologias e serviços de comunicação, juntamente com um número crescente de dispositivos de
rede interconectados, usuários da Web, serviços e aplicativos, contribui para tornar as redes de
computadores cada vez maiores e mais complexas como sistemas. Além disso, há o chamado
paradigma de comunicação ilimitada, para redes de próxima geração, que prevê oferecer co-
municações a qualquer hora, em qualquer lugar e de qualquer forma aos seus usuários e requer
a integração completa e interoperabilidade de tecnologias emergentes [1]. Estes problemas
tornam ainda mais complexo e desafiador manter uma gestão de redes precisa, além de con-
duzir a sérias vulnerabilidades de rede, pois incidentes de segurança podem ocorrer com mais
frequência [2, 3].

Estas instâncias de segurança podem ser causadas por indivíduos externos à rede,
como ataques maliciosos com o objetivo de desligar serviços ou roubar informações particu-
lares, ou por fatores internos (problemas operacionais), como erros de configuração, falhas de
servidor, falta de energia, congestionamento ou grandes transferências de arquivos não mal-
intencionadas [4]. Independentemente da origem, estas ameaças, comumente chamadas de
anomalias, podem ter um impacto significativo no serviço de rede e nos usuários finais e preju-
dicar as operações e a disponibilidade das redes de computadores.

O termo anomalia tem várias definições dentro da literatura. Barnett e Lewis definem
uma anomalia no conjunto de dados como “observação (ou um subconjunto de observações)
que parece ser inconsistente com o restante daquele conjunto de dados” [5]. Chandola et al.
expressa este termo como “padrões em dados que não estão em conformidade com uma noção
bem definida de comportamento normal” [6]. De acordo com Lakhina et al., “Anomalias são
mudanças incomuns e significativas nos níveis de tráfego de uma rede, que muitas vezes podem
abranger vários links” [7]. Hoque et al. define como “padrões interessantes não-conformes
comparados à uma noção bem definida de comportamento normal” [8]. Por estas definições, é
claro que o conceito de normalidade é um dos principais passos para o desenvolvimento de uma
solução para detetar anomalias de rede.
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Embora aparentemente despretensioso, o problema de definir uma região denotando
comportamento normal e distinguindo como uma anomalia qualquer ocasião contrastando esse
padrão normal, é desafiador. Diagnóstico mais rápido, menor complexidade e correções ade-
quadas das causas são os principais objetivos do campo. Todos os fatores são vitais para de-
senvolver uma abordagem de deteção de anomalias mais eficiente. Os fatores de precisão e
velocidade, juntamente com a identificação correta de tais eventos anormais em tempo há-
bil, são essenciais para reduzir a degradação significativa do serviço, danos maliciosos e custos
computacionais. Por esta razão, a comunidade de pesquisa vem desenvolvendo muitos modelos,
algoritmos e mecanismos ao longo dos anos, para desenvolver melhores soluções e abordagens
para garantir a robustez de sistemas de rede cada vez maiores e complexos.

Na literatura, os métodos de deteção de anomalias podem ser classificados de duas
formas: baseado em assinatura e baseado em perfil. Os sistemas baseados em assinaturas usam
um conhecimento prévio sobre as características de cada tipo de anomalia para identificar pos-
síveis incidentes já conhecidos anteriormente. Além disso, as abordagens baseadas em perfil
criam um perfil de rede que representa o comportamento normal do tráfego, e as anomalias
de tráfego são detetadas a partir de desvios em relação a esse perfil [9, 10]. Embora os méto-
dos baseados em assinatura tenham sido amplamente investigados na literatura, eles têm uma
clara desvantagem. É pré-requisito que as assinaturas de anomalia sejam conhecidas anteci-
padamente, dificultando o reconhecimento de novas anomalias. Além disso, os métodos basea-
dos em assinatura podem ser evitados por fontes mal-intencionadas falsificando assinaturas de
anomalias. Por outro lado, um sistema baseado em perfis cria um perfil de comportamento nor-
mal da atividade de rede, eliminando a necessidade de conhecimento prévio sobre a natureza e
as propriedades das anomalias. Essa característica leva a algumas vantagens: a possibilidade de
descobrir novos tipos de anomalias; a deteção de ataques internos; e também torna difícil para
um atacante saber com convicção que ação maliciosa ele pode realizar sem ser detetado pelo
sistema [9, 11]. Assim, a proposta desta tese é criar um sistema autônomo de monitoramento
de rede baseado em perfil capaz de identificar o comportamento normal da rede, adotando um
método eficiente de caracterização do tráfego para criar um perfil de comportamento normal
do tráfego para identificar possíveis anomalias no tráfego.

Definição do Problema

Realizar uma análise e monitoramento de tráfego completos em sistemas de rede de
larga escala é uma tarefa quase impossível de ser executada manualmente por um administrador
de rede. As altas velocidades de conexão combinadas com o grande e crescente número de links
e segmentos tornam essa tarefa ainda mais complexa [12]. Além disso, existe a necessidade de
agilidade na deteção e prevenção de problemas, pois o administrador da rede deve trabalhar
de forma proativa para evitar interrupções na operação da rede, já que uma das premissas de
governança da TIC é que os serviços de comunicação nunca devem ser interrompidos.

Se faz necessário adotar um modelo eficiente para monitorar autonomamente um seg-
mento de rede, identificar padrões de tráfego e, assim, criar um perfil de rede que represente
o comportamento regular do tráfego [13]. Esta tese aborda a criação deste perfil, utilizado
para a caracterização de tráfego e deteção de anomalias, que é denominado Assinatura Digital
do Segmento de Rede utilizando Análise de Fluxo (DSNSF). Quanto à deteção de anomalias e
problemas, assim que o modelo para estabelecer um perfil de rede que caracterize o compor-
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tamento esperado do tráfego é gerado, qualquer atividade que não esteja em conformidade
à este padrão (limiar) pode ser considerada como uma possível anomalia. Essa abordagem é
comumente conhecida como um sistema de deteção de anomalias baseado em perfis (baseados
em perfil) [9]

Objetivos de Investigação

O objetivo principal desta tese é a construção e avaliação de um sistema de deteção
de anomalias baseado na técnica estatística de Análise de Componentes Principais (PCA) para
auxiliar a gestão da rede. Esta proposta monitora automaticamente o estado do tráfego por
meio de uma abordagem baseada em perfil e assinatura para prever suas tendências normais.
Assim, essa previsão pode impedir automaticamente quatro classes de anomalias - DDoS (Dis-
tributed Denial-of-Service), DoS (Denial-of-Service), portscan e flash crowds - de prejudicar a
disponibilidade e a interoperabilidade da rede.

Para alcançar este objetivo, foram definidos os seguintes objectivos parciais:

• Uma revisão abrangente sobre o tema de deteção de anomalia, cobrindo uma visão geral
de vários aspetos pertinentes ao tema, bem como um estudo central sobre as técnicas,
métodos e sistemas mais relevantes dentro da área. A revisão foi realizada em cinco
dimensões: (i) anomalias de tráfego de rede, (ii) tipos de dados de rede, (iii) categorias
de sistemas de deteção de intrusão, (iv) métodos e sistemas de deteção e (v) questões
abertas.

• Proposta e implementação de um sistema robusto de deteção de anomalias baseado em
perfis que deteta e avisa automaticamente sobre anormalidades de rede através da Análise
de Componentes Principais.

• Avaliação de desempenho do sistema de deteção de anomalias usando métricas de avali-
ação sobre um banco de testes de rede real envolvendo usuários e componentes reais, e
sobre um ambiente simulado criado por um software simulador de anomalias de rede.

• Comparação do modelo proposto com outros modelos distintos para fins de validação e
determinação de novos meios eficazes de auxiliar na gestão de redes no quesito segurança.

Principais Contribuições

A primeira contribuição desta tese é uma revisão abrangente do estado da arte do
domínio de deteção de anomalia sob cinco direções de pesquisa; estudo detalhado das técnicas,
métodos e sistemas mais relevantes dentro da área; abordagem das principais desvantagens en-
contradas nos inquéritos analisados extraídos da literatura; análise dos quatro tipos de anomalia
de tráfego categorizados pelo aspeto causal; discussão prospectiva e análise comparativa de ou-
tras pesquisas sobre questões abertas e tendências futuras. Este estudo foi publicado na revista
Telecommunication Systems, da Springer [14].

A segunda contribuição consiste na proposta e avaliação com dados reais do PCADS-
AD, um sistema autônomo de deteção de anomalias baseado em perfis. Ele gera uma assinatura
digital usando a Análise de Componentes Principais de uma maneira diferente da PCA da litera-
tura, a fim de descrever o comportamento normal de um segmento de rede e usá-lo como base
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para a deteção de anomalias. Ainda, o Módulo de Relatório do PCADS-AD resume as informações
qualitativas sobre os intervalos anômalos para ajudar o administrador da rede a tomar medidas
rápidas para solucionar o problema. Este estudo foi publicado na revista Applied Soft Comput-
ing, da Elsevier [15].

A terceira contribuição é uma análise comparativa entre o PCADS e o ACODS (um
ADS baseado em meta heurística) usando os métodos DTW Adaptativo (ADTW) para deteção
de anomalias. Este estudo foi publicado na revista Journal of Network and Computer Applica-
tions, da Elsevier [16].

Finalmente, a última contribuição desta tese é uma análise comparativa direta de três
sistemas de deteção de anomalia de três classes distintas de algoritmos: estatístico (PCADS-AD),
previsão (ARIMADS) e clusterização (ACODS), indicando suas semelhanças e divergências quando
aplicados a um ambiente real. Este estudo foi publicado na conferência 30th ACM/SIGAPP Sym-
posium On Applied Computing, da ACM [17].

Principais Conclusões

Ao longo desta Tese, foi apresentado e avaliado um novo sistema autônomo de deteção
de anomalias baseado em perfil para auxiliar o gerenciamento de redes usando Assinatura Dig-
ital de Segmento de Rede usando Análise de Fluxo (DSNSF) gerada via Análise de Componentes
Principais. A principal contribuição consiste na aplicação e contextualização do PCA para um
ambiente de deteção de anomalias usando atributos de fluxo IP. O sistema cria uma assinatura
digital (DSNSF) com base no método estatístico PCA, explorando seu recurso de redução de
dimensionalidade, aplicando-o sobre o tráfego da semana anterior, garantindo que tais assinat-
uras sejam capazes de representar as principais características e padrões do tráfego de rede.
Outra contribuição é a criação de limiares de confiança utilizando os autovalores obtidos na fase
de caracterização do tráfego, que estabelece um intervalo para o DSNSF onde as variações de
tráfego são consideradas normais. Por fim, o Módulo de Relatório do PCADS-AD pode fornecer
aos administradores de rede informações úteis sobre anormalidades encontradas.

No Cenário 1, referente à caracterização do tráfego para criação do DSNSF, o sistema
proposto obteve bons resultados, apresentando pequenos erros (abaixo de 0,1) e bons índices
de correlação (média de 0,8) quando o DSNSF foi comparado com o tráfego real, mostrando que
pode ser eficiente na previsão do comportamento esperado de um segmento de rede. Agora,
em relação à deteção de anomalias, os resultados referentes a taxas de alarmes falsos e taxa
de precisão são encorajadores e, além de alertar o administrador da rede sobre o problema, o
sistema proposto também pode fornecer as informações necessárias para resolvê-lo

Em relação ao módulo de caracterização de tráfego, foram comparados dois méto-
dos diferentes, PCADS e ACODS. De acordo com os resultados do NMSE e do Coeficiente de
Correlação, ambos alcançaram resultados semelhantes, produzindo boas previsões de tráfego,
podendo verificar apenas pequenos erros entre o DSNSF e o tráfego real.

No módulo de deteção e identificação, o algoritmo DTW Adaptativo (ADTW) investigado
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nesta Tese apresentou desempenho satisfatório em relação às taxas de alarmes falsos. Ambos os
sistemas produziram melhores resultados ao ajustar o valor de ϕ do ADTW para 20%. Além disso,
analisando os gráficos ROC e as taxas de precisão, o PCADS teve um desempenho melhor do que
o ACODS. Além disso, a correspondência entre taxas positivas e falsos positivos demonstra que
os sistemas são capazes de uma deteção eficaz de comportamento anômalo, mantendo uma
taxa satisfatória de alarmes falsos. Além disso, a metodologia de deteção de anomalias pode
também fornecer ao administrador de rede importantes estatísticas de tráfego para ajudar na
solução de problemas, visando à deteção precisa e rápida de anomalias. Portanto, as metodolo-
gias propostas, utilizando PCADS, ACODS e ADTW, são adequadas para auxiliar o gerenciamento
da rede, detectando anomalias de tráfego e, conseqüentemente, fornecendo disponibilidade e
confiabilidade às redes e seus serviços prestados.

Por fim, no Cenário 3, foi discutido e avaliado o reconhecimento de eventos anormais
originado por três sistemas de deteção de anomalias. Embora cada um deles pertença a classes
distintas de algoritmos, eles tiveram como objetivo caracterizar o comportamento normal do
tráfego de rede criando o DSNSF.

Todos os sistemas produziram DSNSFs semelhantes, igualmente inteligentes na de-
scrição do comportamento normal do tráfego de rede analisado. Consequentemente, as vari-
ações encontradas na eficácia da deteção de anomalias estão ligadas ao mecanismo usado para
verificar as diferenças entre as assinaturas digitais e o tráfego observado. ARIMADS provou ser
mais promissor no reconhecimento de anormalidades do que os outros métodos, uma vez que
usa o DSNSF combinado com Lógica Paraconsistente para lidar com o conceito de incerteza.
ACODS teve um desempenho inferior em comparação com ARIMADS por conta de falsos positivos
relatados durante a análise. Finalmente, o PCADS-AD alcançou a menor taxa de deteção, o que
é justificado pela adoção de limites menos flexíveis para a identificação de atividades normais
na rede.

Alguns tipos de ataques e anomalias, como DoS, DDoS e Flash Crowds, causam variações
de tráfego em atributos de tráfego distintos. O DDoS, por exemplo, afeta apenas o tráfego de
pacotes e o número de fluxos. Este trabalho também contribui com a deteção de anomalias
de volume de tráfego através da análise de três atributos quantitativos de fluxos IP (bits/s, pa-
cotes/s e fluxos/s), visando a deteção efetiva de diferentes comportamentos anômalos.

A baixa complexidade computacional do processo de caracterização e do método de
deteção de anomalias, e os resultados obtidos nos testes apresentados, utilizando dados reais,
implicam que a abordagem proposta usando a Análise de Componentes Principais apresenta alta
aplicabilidade para identificação automática de anomalias. Alem disso, ainda se mostrou um
passo promissor para um sistema mais amplo de diagnóstico on-line de anomalias em redes de
larga escala.

Perspectivas de Trabalho Futuro

Para concluir este trabalho de investigação, resta sugerir futuros tópicos de estudo
resultantes do trabalho de investigação desenvolvido:

• Melhorar o sistema PCADS-AD, minimizar a geração de alarmes falsos e usar outros atributos
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de fluxo do tráfego agregado, em um esforço para detectar e identificar outros tipos de
ataques e anomalias, como portscans, probing, U2R (User-to-Root) ou R2L (Remote-to-
Local).

• Aplicar e avaliar as propostas desta Tese em um ambiente de Rede em tempo real, para
sua validação e comparação com os resultados obtidos por outros métodos similares.

• Combinar o modelo proposto com técnicas de Machine Learning, melhorando o processo e
diminuindo custos.
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Abstract

Abstract

Nowadays, there is a huge and growing concern about security in information and com-
munication technology (ICT) among the scientific community because any attack or anomaly in
the network can greatly affect many domains such as national security, private data storage,
social welfare, economic issues, and so on. Therefore, the anomaly detection domain is a broad
research area, and many different techniques and approaches for this purpose have emerged
through the years.

Attacks, problems, and internal failures when not detected early may badly harm an
entire Network system. Thus, this thesis presents an autonomous profile-based anomaly de-
tection system based on the statistical method Principal Component Analysis (PCADS-AD). This
approach creates a network profile called Digital Signature of Network Segment using Flow Anal-
ysis (DSNSF) that denotes the predicted normal behavior of a network traffic activity through
historical data analysis. That digital signature is used as a threshold for volume anomaly detec-
tion to detect disparities in the normal traffic trend. The proposed system uses seven traffic flow
attributes: Bits, Packets and Number of Flows to detect problems, and Source and Destination IP
addresses and Ports, to provides the network administrator necessary information to solve them.

Via evaluation techniques, addition of a different anomaly detection approach, and
comparisons to other methods performed in this thesis using real network traffic data, results
showed good traffic prediction by the DSNSF and encouraging false alarm generation and detec-
tion accuracy on the detection schema.

The observed results seek to contribute to the advance of the state of the art in meth-
ods and strategies for anomaly detection that aim to surpass some challenges that emerge from
the constant growth in complexity, speed and size of today’s large scale networks, also providing
high-value results for a better detection in real time.

Keywords

Anomaly Detection, Intrusion Detection System, Traffic Characterization, Network Se-
curity, Network Management, Principal Component Analysis, Computer Networks, Digital Signa-
ture of Network Segment using Flow analysis.
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Chapter 1

Introduction

This section summarizes, in a comprehensive way, the 4 years of research work un-
der the Ph.D. thesis titled ”Performance Evaluation of Anomaly Detection Systems.” This thesis
focuses on the study and proposal of data analysis strategies and methodologies for the moni-
toring and anomaly detection in networks. The first stage describes the structure of the thesis
as well as it defines the problem addressed and the primary objectives of the study. The main
contributions of this work for the advance of the state of the art are also presented.

1.1 Focus and Scope

Nowadays, the scientific community has a constant worry about high-efficiency se-
curity and quality of service in large-scale networks. The expansion of new communication
technologies and services, along with an increasing number of interconnected network devices,
web users, services, and applications, contributes to making computer networks ever larger and
more complex as systems. Moreover, there is the so called boundless communication paradigm,
for next generation networks, which envisages offering anytime, anywhere, anyhow communi-
cations to its users and requires the full integration and interoperability of emergent technolo-
gies [1]. These issues make it even more complex and challenging to maintain precise network
management and lead to serious network vulnerabilities, as security incidents may occur more
frequently [2, 3].

Such security instances can be caused either by outsiders, as malicious attacks aiming
to shut down services or steal private information, or by inside factors (operational problems),
such as configuration errors, server crashes, power outages, traffic congestion, or non-malicious
large file transfers [4]. Regardless of the source, such threats, which are commonly called
anomalies, can have a significant impact on the network service and end-users and harm com-
puter network operations and availability.

The term anomaly has several definitions. Barnett and Lewis define a data set anomaly
as “observation (or a subset of observations) which appears to be inconsistent with the remainder
of that set of data” [5]. Chandola et al. express this term as “patterns in data not conform-
ing to a well-defined notion of normal behavior” [6]. According to Lakhina et al., “anomalies
are unusual and significant changes in a network’s traffic levels, which can often span multiple
links” [7]. Hoque et al. define it as “non-conforming interesting patterns compared to the
well-defined notion of normal behavior” [8]. By these definitions, it is clear that the concept of
normality is one of the main steps toward developing a solution to detect network anomalies.

Although apparently unpretentious, the problem of defining a region denoting normal
behavior and marking as an anomaly any occasion contrasting this normal pattern, is defiant.
Faster diagnosis, lower complexity and suitable corrections of the causes are the main objec-
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tives of the field. Every factor is vital to developing a better anomaly detection approach. The
precision and speed factors, alongside with the correct identification of such abnormal events in
a timely fashion are critical to reducing significant service degradation, malicious damage, and
cost. For this reason, the research community has been developing a lot of models, algorithms,
and mechanisms, over the years, to develop better solutions and approaches to guaranteeing
the health of ever larger and complex network systems.

In the literature, anomaly detection methods can be classified into two ways: Signature-
based and profile-based. Signature-based systems use a prior knowledge about the characteris-
tics of each kind of anomaly to identify potential incidents previously known. Moreover, profile-
based approaches create a network profile representing the traffic normal behavior, and traffic
anomalies are detected from deviations with respect to this profile [9, 10]. Although signature-
based methods have been widely investigated in the literature, they have a clear drawback.
It is prerequisite that anomaly signatures are known in advance, hampering the recognition of
new anomalies. Also, signature-based methods can be avoided by malicious sources by tam-
pering anomaly signatures. In contrast, a profile-based system creates a baseline profile of the
normal network activity, eliminating the need of prior knowledge about the nature and proper-
ties of anomalies. This trait leads to some advantages: The possibility of discovering new and
unforeseen types of anomalies; the detection of insider attacks; and also makes it difficult for
an attacker to know with conviction what malicious action it can carry out without being de-
tected by the system [9, 11]. Thus, this thesis proposal is to create an autonomous profile-based
monitoring system capable of identifying the normal network behavior by adopting an efficient
method for traffic characterization in order to create a baseline profile of normal traffic to
discover possible anomalies in the traffic.

1.2 Problem Definition

To hold a complete traffic analysis and monitoring in large-scale network systems is
almost an impossible task to be manually performed by a network administrator. The high con-
nection speeds combined with the large and growing number of links and segments make this
task even more complex [12]. In addition, there exists a need for agility in detecting and pre-
venting problems, as the network administrator must work proactively to avoid interruptions in
the operation of the network, since one of the ICT (Information and Communication Technology)
governance premises is that communication services should never be interrupted.

It is necessary to adopt an efficient model to autonomously monitor a network seg-
ment, identify traffic patterns and thus create a network profile that represents normal traffic
behavior [13]. This thesis addresses the creation of this profile, used for the traffic characteri-
zation and anomaly detection, which is called Digital Signature of Network Segment using Flow
Analysis (DSNSF). Regarding the detection of anomalies and problems, as soon as that there is a
model to establish a network profile that characterizes the expected traffic behavior, any ac-
tivity that differs from this standard (threshold) may be considered as a possible anomaly. This
approach is commonly know as an anomaly detection system based on profiles (profile-based)
[9]
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1.3 Objectives

The main objective of this thesis is the construction and evaluation of an anomaly
detection system based on the statistical technique Principal Component Analysis to assist net-
work management. This proposal automatically monitors the state of traffic through a hybrid
approach using profile-based and signature-based procedures to predict its normal tendencies.
Thus, this prediction can automatically prevent three classes of anomalies- DDoS, DoS, and flash
crowds -from harming network availability and interoperability.

To achieve this main objective, the following partial objectives have been defined:

• A comprehensive review on the anomaly detection subject, covering an overview of a
background analysis as well as a core study on the most relevant techniques, methods,
and systems within the area. The review was performed under under five dimensions:
(i) network traffic anomalies, (ii) network data types, (iii) intrusion detection systems
categories, (iv) detection methods and systems, and (v) open issues.

• Proposal and implementation of a robust autonomous profile-based anomaly detection sys-
tem that automatically detect and warn about network abnormalities through the Principal
Component Analysis method.

• Performance evaluation of the anomaly detection system using robust metrics over a real
network testbed involving real users and components, and over a simulated environment
created by a network anomaly simulation software.

• Comparison of the proposed model with other distinct models aiming to validate the system
and understand different ways to assist network management.

1.4 Main Contributions

The first contribution of this thesis is a comprehensive survey review of state-of-the-
art anomaly detection domain: review the anomaly detection subject under five research direc-
tions; detailed study of the most relevant techniques, methods, and systems within the area;
address the main drawbacks found in the analyzed surveys extracted from the literature; analy-
sis of the four traffic anomaly types categorized by the causal aspect; forward-looking discussion
and comparative analysis of other surveys regarding open issues and future trends. This study
was accepted for publication in the Telecommunication Systems journal of Springer [14].

The second contributions consist in the proposal and performance evaluation of PCADS-
AD, an autonomous profile-based anomaly detection system. It generates a digital signature by
using Principal Component Analysis in an unusual way than the PCA from the literature, in or-
der to describe the normal behavior of a network segment, and then using it as the basis for
anomaly detection. Furthermore, the PCADS-AD Reporting Stage summarizes the qualitative
information about the anomalous intervals in order to assist the network administrator to take
quick measures to solve the problem. This study was accepted for publication in the Applied
Soft Computing journal of Elsevier [15].
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The third contribution is a comparative analysis between PCADS and ACODS (a metaheuristic-
based ADS) using the Adaptive DTW methods (ADTW) for anomaly detection. This study was
accepted for publication in the Journal of Network and Computer Applications of Elsevier [16].

Finally, the last contribution of this thesis is an straightforward comparative analy-
sis of three anomaly detection systems of three distinct algorithm classes: statistical (PCADS-
AD), forecasting (ARIMADS) and clustering (ACODS), stating their similarities and divergences
when applied to a real network analysis. This study was accepted for publication in the 30th
ACM/SIGAPP Symposium On Applied Computing of ACM [17].

1.5 Thesis Statement

Traffic prevenient from computer networks should be automatically monitored in order
to detect problems, attacks, and abnormalities that may harm the whole system, by guarantee-
ing availability, operability and security. Despite the complexity and size of today’s network
systems, this study demonstrates that the traffic prediction and anomaly detection can be pre-
cise using the statistical learning method Principal Component Analysis in an alternative mode.
Furthermore, this study claims that this model leads to competitive outcomes regarding false
positive and available additional data to ease a deep analysis about the problem found.

1.6 Document Organization

This thesis consists of 5 Chapters, which are organized as follows. The first chapter
presents the scope of the thesis, focusing the topics under study, the definition of the problem
and primary objectives. The research hypothesis, the main contributions, and the document’s
organization are also included in this chapter.

Chapter 2 presents a comprehensive survey focusing on the main aspects of anomaly
detection domain. It is divided into two main parts: The anomaly detection background, which
discuss anomalies and attacks, data types and Intrusion Detection systems (IDS); and the anomaly
detection core study, which surveys many techniques, methods and systems developed for
anomaly and intrusion detection using many distinct algorithm classes.

In Chapter 3, the proposed hybrid anomaly detection system PCADS-AD (Principal Com-
ponent Analysis for Digital Signature and Anomaly Detection) is presented.

Chapter 4 presents the performance evaluation of the proposed ADS compared with
other anomaly detection systems (ADS) based on different algorithm classes. The evaluation is
presented in three test scenarios.

Finally, Chapter 5 concludes the Thesis, summarizing all the main conclusions of the
thesis drawn throughout the document and proposes several insights and suggestions for future
work.
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Chapter 2

Related Work

Nowadays, there is a huge and growing concern about security in information and com-
munication technology (ICT) among the scientific community because any attack or anomaly in
the network can greatly affect many domains such as national security, private data storage,
social welfare, economic issues, and so on. Therefore, the anomaly detection domain is a broad
research area, and many different techniques and approaches for this purpose have emerged
through the years.

Researchers have been studying the anomaly detection subject since the early 19th
century, and so far, they have produced a multitude of papers, each using a variety of tech-
niques, from statistical models, up to evolutionary computation approaches. Nevertheless, it is
not a straightforward task to identify and categorize all existing anomaly detection techniques.
Plenty of topics must be considered, such as anomaly types, system types, techniques and al-
gorithms used, as well as technical dilemmas such as processing costs and network complexity.
Therefore, this leads to the fragmented literature available today, in which many works try
to summarize everything but are unable to show the bigger picture of the anomaly detection
spectrum.

As in [18] and [9], the focus is just on the most popular techniques and methods, such
as machine learning, clustering and statistical approaches. Still, surveys such as [19] and [20]
briefly discuss the whole problem statement, setting aside relevant topics such as data set,
challenges, and recommendations. Marnerides et al. [21] have a reviewed anomaly detection
over backbone networks. Although each of those inspected surveys summarizes many important
topics pertaining to anomaly detection, they are not entirely complete. For instance, some of
them emphasize anomaly types but do not cover all kinds of methods while others research upon
vast approaches but forget about the basis of intrusion detection systems and data input, and
so on. For this reason, the main objective is to review the most important aspects pertaining
to anomaly detection, covering an overview of a background analysis as well as a core study on
the most relevant techniques, methods, and systems within the area. Therefore, in order to
ease the understanding of this chapter’s structure, the anomaly detection domain was reviewed
under five dimensions: (i) network traffic anomalies, (ii) network data types, (iii) intrusion de-
tection systems categories, (iv) detection methods and systems, and (v) open issues. Table 2.1
provides a comparison between some anomaly detection surveys with regard to the variety of
techniques they address.

This chapter is organized as follows. Section 2.1 defines, categorizes, explains, and
provides examples of most common types of network anomalies. Section 2.2 gives a brief ex-
planation of network data types used as input in anomaly detection systems. Section 2.3 gives a
complete overview of intrusion detection systems and the differences between each approach.
Section 2.4 is the core section, which lists many anomaly detection methods and systems using
a variety of techniques and algorithms of different nature and purpose. Finally, section 2.5
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Table 2.1: A comparison between anomaly detection surveys

 

                                  Surveys                                         
Content 

Patcha 
and 
Park 
[9]  

Chandola 
et al. [6] 

Weiyu 
et al. 
[20] 

Thottan 
et al. 
[18] 

Yu 
et 
al. 
[19] 

Bhuyan 
et al. 
[10] 

Marnerides 
et al. [21] 

Ahmed 
et al. 
[22] 

This 
survey 

Year  2007 2009 2009 2010 2012 2014 2014 2016 2018 

Traffic 
anomalies 
by nature 

Point          

Collective          

Contextual          

Traffic 
anomalies 
by causal 
aspect 

Operational          

Flash Crowd          

Measurement          

Network attack          

Network 
data types 

TCP dump          

SNMP          

IP flows          

IDS 
overview 

-          

Detection 
techniques, 
methods 
and 
systems 

Statistical          

Clustering          

Classification          

Finite State 
Machines 

         

Information 
Theory 

         

 
Evolutionary 
Computation 

         

 Hybrid/Others          

summarizes everything discussed in previous sections into some topics considered as open chal-
lenges in the anomaly detection domain. Figure 2.1 shows all contents presented and discussed
within the survey.

2.1 Anomaly Detection

One of the first tasks envisioned by researchers in creating an anomaly detection model
is the correct identification and definition of the problem statement. It means that there must
be prior knowledge about what type of anomaly researchers would deal with. There are sev-
eral types of network traffic anomalies, and each author surveying this topic addresses them
differently. For the sake of simplicity, and after analyzing and studying the anomaly context,
Figure 2.2 illustrates its categorization and all points that are covered in this section. Network
anomalies can be categorized giving two relevant properties: according to their nature (grouped
by how they are characterized, regardless of whether they are malicious or not); and according
to their causal aspect (distinguished depending on their cause, regarding either their malicious
or non-malicious aspect).
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ANOMALY DETECTION BACKGROUND ANALYSIS

• Based on nature
 • Point
 • Collec�ve
 • Contextual

• Based on causal aspect
 • Opera�onal
 • Flash Crowd
 • Measurement
 • Network A�ack

• Based on monitored pla�orm
(data source)
 • NIDS
 • HIDS
 • Hybrid

• Based on detec�on technique
 • Misuse detec�on
 • Anomaly detec�on
 • Specifica�on-based
 • Hybrid

NETWORK DATA TYPES

• TCP dump
• SNMP
• IP Flow

Section 2.2

TRAFFIC ANOMALIES

Section 2.1

INTRUSION DETECTION SYSTEMS

Section 2.3

ANOMALY DETECTION CORE STUDY

• Sta�s�cal
 •  Wavelet, PCA,
 Covariance matrix,
 ARIMA, HOlt-Winters,
 Markov sta�s�cs

• Clustering
 • K-Means, k-NN 
 clusters, subspace 
 clustering

• Finite State Machine

• Classifica�on
 •  Naive Bayes, SVM,
 Neural Networks, 
 Ensemble

• Informa�on Theory
 • Kullback-Leibler,
 Entropy

• Evolu�onary Computa�on
 • AIS, GA, PSO,
 Differen�al Evolu�on
 
• Hybrid/Others
 • Flocking algorithm,
 FA, k-Harmonic means,
 SSO, LAMS, rough sets,
 Incremental Learning,…

ANOMALY DETECTION METHODS, TECHNIQUES AND SYSTEMS

Section 3.4
OPEN ISSUES

Section 2.5

Figure 2.1: Chapter Summary

2.1.1 Anomaly categorization based on its nature

The nature of an anomaly is an important aspect of an anomaly detection technique.
Depending on the context within which an abnormality is found, or on how it occurred, it can
be or not be an abnormality. This aspect can direct how the system will handle and understand
mined and detected anomalies. Based on their nature, there are three categories of anomalies:
point anomalies, collective anomalies, and contextual anomalies [6, 10, 22].

A point anomaly is the deviation of an individual data instance from the usual pat-
tern/behavior. These anomalies are the simplest ones, and because of that, they are the focus
of most researchers. For better understanding, suppose that the daily spending of a person is
one hundred dollars; then, on a specific day, he spends three hundred dollars. This situation
characterizes a point anomaly [6, 22].

A collective anomaly occurs when only a collection of similar data instances behaves
anomalously with reference to the whole dataset. In a collective anomaly, individual anoma-
lous behaviors themselves are not considered anomalies; however, their collective occurrence
is considered an anomaly. A point anomaly occurring continuously for an extended period or in
a cluster amid background data is a collective anomaly. Consider this example: in a sequence
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TRAFFIC 
ANOMALIES

Based on Nature
Grouped by how they are characterized, 
regardless of whether they are malicious 
or not

Point

Collec�ve

Contextual

Based on causal aspect
Dis�nguished depending on their cause, 
regarding either their malicious or 
non-malicious aspect

Opera�onal

Flash crowd

Measurement

Network a�ack

Figure 2.2: Traffic anomalies categorization

of actions in a computer like “…HTTP-web, buffer-overflow, HTTP-web, HTTP-web, FTP, HTTP-
web, SSH, HTTP-web, SSH, buffer-overflow, FTP…”, the sequence is a collective anomaly. The
individual events occurring in other positions in the sequence are not anomalies; however, the
sequence matches a web-based attack by a remote machine followed by the copying of data
from the host computer to a remote destination via FTP. Another common example is the ECG
exam output, in which low values observed over a long period indicate an anomaly, while one
unique low value is not considered abnormal [10, 22].

Contextual Anomalies, also called conditional anomalies, are events considered as
anomalous depending on the context in which they are found. Two sets of attributes define
a context (or the condition) for being an anomaly, both of which must be specified during prob-
lem formulation. Contextual attributes define the context (or environment); for instance, geo-
graphic coordinates in spatial data or time in time-series data specifies the location or position of
an instance, respectively. On the other hand, behavioral attributes denote the non-contextual
features of an instance, i.e., indicators determining whether or not an instance is anomalous
in the context [6, 22, 23]. Consider a time-series data set describing the average bits/s of net-
work traffic in a set of days (contextual attribute), in which every day, at 0 h, the server does
a regular backup (behavioral attribute). Although the backup generates an outlier in the traffic
series, it may not be anomalous since it is normal behavior due to a regular backup. However,
a similar traffic outlier at 12 h could be considered a contextual anomaly.

2.1.2 Anomaly categorization based on its causal aspect

The causal aspect distinguishes anomalies depending on their cause, regarding ei-
ther their malicious or non-malicious aspect. Anomalies are not always related to attacks in-
tended to harm computer systems or steal information. They can be both events caused by
human/hardware failure, bugs or private users when demanding heavy traffic usage, for in-
stance. Thus, as found in Barford et al. [24] and Marnerides et al. [16], anomalies are grouped
into four categories: operational/ misconfiguration/ failure events; flash crowd/ legitimate but
abnormal use; measurement anomalies; and network abuse anomalies/ malicious attacks (or
simply, network attacks) [25, 24].

Operational events (also called Misconfiguration events or Failures) are non-malicious
issues, which may occur in a network system mostly by hardware failures, software bugs or
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human mistakes. Server crashes, power outages, configurations errors, traffic congestion, non-
malicious large file transfers, inadequate resource configuration, or significant changes in net-
work behavior caused by imposing rate limits or adding new equipment, are all examples of this
category of anomaly [4]. Such problems can be perceived visually by nearly abrupt changes in
bit rate, which appear steady but occur at a different level over a time period [25].

Legitimate but not abnormal use is commonly referred to as flash crowds. Flash crowds
are large floods in traffic, which occur when rapid growth of users attempts to access a specific
network resource, causing a dramatic surge in server load. Anomalies in this category consist
of legitimate requests, which are usually an aftermath of mutual reaction to hot events but
far bigger than the load which the system can handle. Flash crowds may occur when a contest
result is published on a URL, or when an e-commerce website announces a big sale, or even due
to software release. Although it is not malicious, if there is not enough time to react and pro-
vide the necessary resources to handle overload demand, these flash events can seriously flood
or lead to complete web service failure [26, 27]. Flash crowd behavior is related to the rapid
growth of particular traffic flow types, such as FTP flows, or the gradual fall of a well-known
destination over time.

Measurement anomalies are other issues, which are not network infrastructure prob-
lems, abnormal usage, or malicious attacks. These anomalies are related to collection infras-
tructure problems and problems during data collection. Examples are the loss of flow data
caused by router overload, or when there is a collection of infrastructure problems and the UDP
NetFlow transport to the collector becomes unreadable.

Network abuse anomalies (or network attacks) are a set of malicious actions aiming
to disrupt, deny, degrade or destroy information and services from computer network systems,
compromising their integrity, confidentiality or availability. Numerous types and classes of at-
tacks currently existing may vary from simple email spam to intrusion attacks on critical network
infrastructures. Worms, malicious resource abuse, bug exploits and unauthorized access are
some examples of common computer attacks. According to Ghorbani et al. [28], attackers gain
access to a system, or limit the availability of that system through some general approaches.
These are:

• Social Engineering: when an attacker manipulates people to obtain confidential informa-
tion, making use of hostile persuasion or other interpersonal tactics [29]. Examples are
email phishing and email Trojan horses;

• Masquerading: this is a type of attack in which the attacker uses a fake identity to gain
unauthorized access or greater privileges in a system through official access identifica-
tion. The attacker illegitimately poses or assumes the identity of another legitimate user,
generally by using stolen IDs and passwords [30].

• Implementation Vulnerabilities: these are cases in which the attacker exploits software
bugs in their targets, such as software, services or applications, in order to gain unau-
thorized access. Examples are the buffer overflow vulnerability or the mishandling of
temporary files.

• Abuse of Functionality: malicious activities performed by attackers excessively perform-
ing a legal action in order to congest a link or cause a system to fail. A denial-of-service
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performed on a web-login system by flooding it with valid usernames and arbitrary pass-
words in order to lock out authentic users, when the allowed login retry limit is exceeded,
constitutes an abuse of functionality.

Based on those general approaches of network abuse anomalies (network attacks),
there are various classes of attacks. Table 2.2 shows the main attack, which commonly harms
computer networks and is the major target of anomaly detection mechanisms.

2.2 Network data types

Another essential step required for building an anomaly detection system is choosing
the network data source. The nature of the selected data set may dictate which types of anoma-
lies the system can detect. One needs to choose a data source correctly depending on what kind
of anomalies and IDS approaches are intended as the focus of the research. Because of that,
accurate data characterization results in the better performance of the anomaly detection sys-
tem. This section presents some of the most popular sources used in the anomaly detection
subject and Figure 2.3 summarizes them.

NetFlow
IPFIX
sFlow

NETWORK
DATA TYPES

TCP dump

SNMP

IP Flow

Figure 2.3: Network data types categorization

2.2.1 TCP dump

Tcpdump is a packet analyzer tool used to monitor packets on a computer network.
It shows the headers of TCP/IP packets passing through the network interface. It is a tool
for network packet capturing and analysis and is recommended to professionals who need to
perform monitoring and maintenance on computer networks, as well as to students who want
to understand the operation of the TCP/IP protocol stack. Nevertheless, this type of data is not
used as much nowadays due to its limited information.

2.2.2 SNMP

The Simple Network Management Protocol (SNMP) [34] is one of the widely used stan-
dards for managing IP network components. This protocol has a client-server structure (SNMP
managers and SNMP agents) which runs throughout the UDP protocol [31]. SNMP data has been
used on intrusion detection systems, since it is useful when it comes to collecting accurate net-
work activity data at a single host level. All collected data are stored, as SNMP objects, in a
hierarchical database called MIB (Management Information Base). SNMP objects are summary
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Table 2.2: Detailed description of most common network abuse anomalies

Attack Definition Examples Ta 

Virus 

� Piece of code inserted into a file or program which replicates itself 
without the user’s permission. 
� Harmful activities: theft of private information, data corruption, spam 
messages. 
� Needs human intervention to abet its propagation.  

Rootkit.Sirefef.Gen, 
Trivial.88.D 

 

Worm 
� Self-replicating software designed to spread through the network. 
� Exploit security or policy flaws in widely used services.  

Morris, CodeRed, 
Nimda 

 

Trojan 

� A piece of program masquerading as a benign application, when in fact 
it secretly performs malicious activities. 
� They do not replicate as viruses and worms do but can be just as 
destructive. 

ZeroAccess Rootkit, 
Beast, Zeus 

SE 

Buffer Overflow 
� Takes over programs through buffer vulnerabilities to execute arbitrary 
code by storing   more data in a buffer than the buffer can hold.  
� Can corrupt or overwrite valid data held in a buffer 

- IV 

IV 

Denial of 
Service (DoS) 

� Malicious attempts to deny access to shared network resources or 
services. 
� Generally, it uses significant packet volume containing useless traffic 
to congest and waste resources serving legitimate traffic.  
It can be a single or multi-source attack.  

SYN flood, HTTP 
flood, ping of death 
(PoD), RUDY, 
teardrop, Slowloris 

AF 

Distributed DoS 
(DDoS) 

� DDoS are DoS attacks; they are easy to launch and difficult to locate 
their source since they are implemented by a group of computers 
(botnet). 
� Defeat the target server while keeping their identity unknown by using 
compromised computers. 

UDP flood, TCP 
flood, Slowloris, 
Zero-day DDoS, NTP 
amplification 

AF 

Distributed 
Reflective DoS 
(DRDoS) 

� Attacks that just cannot be addressed by traditional on-premise 
solutions. These use legitimate hosts (reflectors) to flood a large number 
of response packets to the target system by using spoofed IP addresses. 

� The attacker sends many requests with a spoofed source IP address 
(the target server address) to legitimate nodes (reflectors), which reply 
with several voluminous responses to the spoofed IP (target server), thus 
flooding the victim.   

Smurf attack, 
Fraggle attack 

AF 

Stealthy attack 
� Quietly introduced and remain undetected by hiding the evidence of 
the attacker’s actions. 

Stealthy packet 
dropping 

 

Physical attack 

� An endeavor to harm physical components of a computer or network. 
� Attackers with physical access to a computer can retrieve encryption 
keys from a running operating system, for instance. 
� As soon as a computer is physically controlled, it can be destructive. 

 

Cold Boot attack, 
Stoned Boot, Evil 
Maid 

AF 

Password attack 
� Attempts to gain passwords. 
� They are specified by a series of unsuccessful logins (brute force) in a 
short period of time.  

Dictionary attack, 
phishing attack 

IV 

Cyber 
Reconnaissance 

� Information gathering attack. 
� Gathers information on network systems and services. 
� Exploits vulnerabilities or weaknesses by scanning or probing devices or 
systems.  

Ping sweeps, Port 
scans, packet 
sniffers 

IV 

Probe 

� It is accomplished before an attacker launches an attack on a given 
target. 
� Scans or probes the target’s network or host by searching for 
vulnerabilities, open ports, valid IP addresses, services offered, 
operating system used, etc. 

IPsweep, portsweep IV 

User to Root 
(U2R) 

� Consists of unauthorized access to local superuser privileges by starting 
as a regular unprivileged user. 
� U2R attacks may end in substantial loss of time and money. 

Loadmore, perl, 
Xterm 

M 

Remote-to-
Local (R2L) 

� Unauthorized access via a remote machine 
� Remote to local attack detection using a supervised neural network 

FTP write, 
Warezmaster 

M 

 aType: Network attack type; SE=Social Engineering, M=Masquerading, IV=Implementation Vulnerabilities, AF=Abuse of 
Functionalities. 

IV

IV
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traffic data constructed by the aggregation of raw data (pcap records) collected mostly by TCP
dump tools [21].

Although efficient in their proposals, the works by Cabrera et al. [32] and Yu et al.
[33] are limited to detecting only DoS/DDoS attacks, since these are volume anomalies and SNMP
objects rely on volume attributes (bits and packet counts). As presented in Moises et al. [34]
and Zarpelao et al. [35], the proposed alarm systems developed over SNMP data have shown
high anomaly detection rates by combining clustering and parameterizing techniques. However,
none of them had any other information about unknown anomalies, despite the alarms being
triggered.

A significant advantage is that SNMP is still a widely deployed protocol with available
fine-grained data. It is used in traditional network management tools for measuring perfor-
mance parameters such as error counter interfaces and traffic volume. Packet and bit interface
counters are useful; however, nowadays, understanding which IP addresses are the source and
destination of traffic and which TCP/UDP ports are generating traffic is vital.

2.2.3 IP flow

IP flow analysis is a complete management technology that has been used as an alter-
native to the SNMP protocol. The development of new services and the increasing complexity
of networks led to a need for more detailed information on transmitted data, which is essential
in understanding application behavior, users, business departments and other structures relying
on the network for their operation.

Accordingly, using flow management tools and protocols allows the construction of a
detailed database composed of essential traffic information, enabling the better understanding
of more subjective aspects of network operation [36, 37]. Thus, it was necessary to go beyond
the limited bit and packet counters provided by SNMP in order to characterize more specific
traits in the traffic, showing network trends and behavior. Moreover, although packet and byte
interface counters are useful, knowing the source and destination IP addresses of the traffic,
and which applications are producing it, is invaluable [38].

As a result of these constraints, Cisco Systems presented the NetFlow protocol in 1996
[37, 39] and pioneered the introduction of flow structure. A flow [40] is defined as a set of
IP packets passing through an observation point over a pre-defined time interval. All packets
constituting a flow have a set of common properties including source/destination IP addresses
and TCP/UDP ports, VLAN, application protocol type (layer 3 from the OSI model) and TOS (Type
of Service). Moreover, a flow also has some other important attributes, such as byte and packet
counts, timestamps, class of service (CoS) and router/switch interface. NetFlow introduced a
new practice to assist network management. This was the NetFlow probe, embedded into the
network devices (switches), which captures all packets coming through the switch and aggre-
gates them into IP flows according to their common properties. Then, after the timeout of the
previously established maximum flow duration, flows were exported out to a collector respon-
sible for analyzing the flow data [41]. NfSen [42] and nTop [43] are the most common graphical
applications enabling the analysis of exported flow data.
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Besides NetFlow, there are other protocols that have emerged for the same purpose.
sFlow was introduced by the InMon Corp. in 2001 [44, 45]. Its major difference to other proto-
cols is the usage of random sampling mechanisms during traffic flow aggregation. This feature is
appropriate for high-speed networks (gigabit or more). By the year 2008, the Internet Engineer-
ing Task Force (IETF) standardized the export of IP flow information from routers, probes, and
switches by introducing the IPFIX (IP Flow Information Export) protocol [40]. IPFIX was based
on NetFlow version 9; it was developed with more flexible data handling and is able to operate
regardless of which transport protocol or message formats are used. Recently, two NetFlow
enhancements appeared. Flexible NetFlow uses an extensible format and can export other fea-
tures apart from the traditional ones. It also has the immediate cache concept, which lets the
direct export of flow information without hosting a local cache. NetFlow-lite [46, 47] comes
at a lower price tier, compared to standard NetFlow, due to not using expensive customer ap-
plication specific integrated circuits (ASIC). It offers flexibility, similar network visibility and
maintains the same packet forwarding performance.

There are several advantages of using flow traffic to detect anomalies [48, 49, 50]:

• Lower processing cost. Since flow-based IDSs are based only on packet headers, they only
process a small number of flows compared to the big amount of packets processed in
packet-based approaches;

• Reduced privacy issues, such as the packet’s payload, are not considered in the analysis;

• Detailed traffic data, mainly regarding NetFlow v9 and IPFIX.

Regarding the disadvantages of developing anomaly detection methods under IP flow
data, most of them rely on the following:

• Untrustworthy state of UDP protocol and drawbacks of SCTP (Stream Control Transmis-
sion Protocol) in confronting scenarios, where multiple network interfaces (routers and
switches) need to interact with multiple NetFlow data collectors.

• There is also difficulty in understanding end-to-end traffic, since it may be passing through
many hops and routing paths and changing dynamically.

• Although sampling techniques for both flow and packets are efficient in reducing the load
of exported and aggregated traffic, respectively, they offer a non-reliable view of the
entire network operation. Many researchers have discussed the problems and proposed
solutions to optimizing sampling mechanisms; namely, Bartos et al. [51], Zhang et al. [52]
and Silva et al. [53].

Table 2.3 compares the two data sources discussed in this section.

2.3 Intrusion detection systems

Intrusion Detection Systems (IDS) are automated defense and security systems for mon-
itoring, detecting and analyzing hostile activities within a network or a host. Although the name
“Intrusion detection” suggests that these systems actually detect “intrusions”, it is not that sim-
ple. Kemmerer and Vigna [54] say that, in fact, IDSs do not detect intrusions at all, but they
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Table 2.3: Comparison between commonly used data sources for network anomaly detection

Source Advantages Disadvantages 
TCP dump - Provides comprehensive information 

about the operation of the TCP/IP 
protocol stack  

- Limited information 

SNMP - Widely deployed protocol 
- Available fine-grained data 
 

- Limited information. Only packet and bit interface
counters and IP/ports.

 
  

IP Flow - Lower processing cost 
- Based only on packet headers 
- Reduced privacy issues 
- Detailed traffic data 
 

- Untrustworthy state of UDP protocol  
- Drawbacks of SCTP in confronting scenarios where multiple 
network interfaces need to interact with multiple flow data 
collectors 
- Difficult to understand end-to-end traffic 
- Sampling techniques offer a non-reliable view of the entire 
network 

 

are only able to recognize evidence of intrusions, either during or after the circumstance.

Additionally, Lee and Stolfo [55] state that there are four essential elements to be
considered when creating an IDS: resources to protect (accounts or file systems, for instance);
models to identify the typical behavior of these resources; techniques that compare the actual
activities of these resources with their normal behaviors; and finally, identify what is consid-
ered abnormal or intrusive. Apart from these basic IDS functions, they may also be able to
provide reports for network administrators and track user policy violations as well as to take
self-measures to stop threats or correct problems [9, 10, 56].

An IDS detects hostile activities by either monitoring network traffic, gathering pack-
ets (mostly as a kind of sniffer) to analyze possible incidents, or by analyzing computational
system events (such as log files, for instance), in search of security policy violations, unusual
use, etc. These incidents may occur due to various reasons, from malware (worms, spyware,
etc.) to unauthorized access attacks. The goal of any IDS is to guarantee the security of a net-
work or computer system with regard to confidentiality, integrity, and availability. A firewall
is commonly the first defensive line in a network and an IDS is used when there is evidence of
an intrusion/attack, which the firewall was unable to stop or mitigate. The IDS then works as
the second line of defense. Furthermore, the task is difficult, and in fact intrusion detection
systems do not detect intrusions at all, they only identify evidence of intrusions, either while
they are in progress or after the fact.

IDSs can be categorized in many ways [57]. Depending on the monitored platform (data
source), IDSs are divided into three types: network-based IDS (NIDS), host-based IDS (HIDS), and
hybrid. Furthermore, regarding the technique of detecting unusual activity, IDSs can be cate-
gorized into four types: anomaly-based IDS, signature-based IDS, specification-based IDS, and
hybrid. Figure 2.4 and Table 2.4 condense the seven aforementioned IDS types, which are pre-
sented and discussed thoroughly in subsequent sections.
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INTRUSION 
DETECTION SYSTEMS
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Misuse detec�on
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Specifica�on-based

Hybrid IDS

Figure 2.4: Intrusion detection systems categorization

Table 2.4: IDS type classification and organization summary

Classification  IDS Type / Description Advantages Disadvantages 
DATA SOURCE 
/ MONITORED 
PLATFORM 

Network-based (NIDS) - Monitor both inbound and 
outbound network traffic 
- Detect network-specific 
attacks, such as denial-of-
service 
- Detect known worms and 
viruses, flash crowds, port scan 

- Difficulty in processing all 
packets from a large and 
overloaded network 
- Failure to recognize attacks 
launched during periods of intense 
traffic 
- Unable to analyze encrypted 
packets 
- Demand for more sensors in 
today’s large networks is costly  

Host-based (HIDS) - Detect Local suspicious 
activities 
- Detect attacks based on 
encrypted data, since they are 
located on  the destination 
- Privilege abuse, buffer 
overflows 

- Incomplete network picture 
- Since they are agent-based, 
support for different operating 
systems is required. 

Hybrid - Aggregate benefits of both 
approaches 
- Overcome many drawbacks 

- Get distinct approaches to 
interoperate and coexist in a 
single system 

DETECTION 
TECHNIQUE 

Misuse Detection  
 
- Use of prior-knowledge 
attack database 
(signatures) 

- High detection accuracy 
- Low false alarm rate 

- Unable to detect unknown 
anomalies 
- Difficult and time-consuming task 
to build and update signatures 

Anomaly Detection 
 
- Profile representing 
normal network behavior 

- Detect both known and 
unknown anomalies 
- Discover new attacks (and use 
on signature-based IDSs) 
- No demand for prior 
knowledge 

- High false positives and false 
negatives 
- Less efficient in dynamic network 
environments 
- Demand time and resources to 
construct the profile 

Specification-based 
 
- Set of constraints to 
describe and monitor the 
operation of a program 
or protocol 

- Unknown attacks discovery 
- Low false positive rates 
- Resistant to subtle attack 
changes 

- Complexity 
- Elaboration of detailed 
specifications and constraints is 
costly and time consuming 
- Restricted to the proper 
operation of a program or protocol 

Hybrid - Aggregate benefits of the 
three approaches 
- Overcome many drawbacks 

- Get distinct approaches to 
interoperate and coexist in a 
single system 

2.3.1 IDS Types by monitored platform (data source)

2.3.1.1 Network-based IDS (NIDS)

A network-based IDS is deployed in order to detect intrusions in network data over net-
work connections and to protect all network nodes. Since intrusions usually occur as irregular
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patterns, this kind of IDS analyzes and models traffic to identify the occurrence of regular traffic
and suspicious activities. They are composed of a set of sensors placed at many network points
in order to monitor traffic. Each sensor performs a local analysis and reports suspicious activity
to a central management console. A network-based IDS is capable of gathering and analyzing
entire transmitted packets as well as their payloads, IP addresses, and ports.

NIDS are effective for monitoring both inbound and outbound network traffic. This
type of IDS ensures that a large network can be monitored with only a few installed IDSs, as long
as they are well positioned. It is usually simple to add this type of IDS to a network and they are
considered well secured against attacks. However, they have some disadvantages, such as the
difficulty in processing all packets from a large and overloaded network. Thus, they may fail
to recognize an attack launched during periods of intense traffic. Moreover, many of the ad-
vantages of network-based IDSs do not apply to more modern networks based on switches since
they segment the network and require enabling monitoring ports for the sensors to function
properly. Port mirroring or spanning is used to enable a complete view in a switched network;
however, this causes overhead.

Another disadvantage of network-based IDSs is that they are unable to analyze en-
crypted network packets, since those appear only on the target machine. Finally, since NIDSs
can detect the presence of suspicious activities, there is no reassurance for their success or
failure [10, 56, 58]. Figure 2.5 illustrates a conventional network-based IDS.

2.3.1.2 Host-based IDS (HIDS)

A Host-based IDS is set to operate on specific hosts (single PCs). Its focus is to monitor
events on the host and detect local suspicious activities, i.e., attacks performed by users of the
monitored machine or attacks occurring against the host where it operates.

Since this type of IDS is designed to operate with only a host, it is capable of specific
tasks, which are not possible with an NIDS, such as integrating code analysis, detecting buffer
overflows, monitoring system calls, privilege misuse, privilege abuse, system log analysis, and

Figure 2.5: Network-based IDS example
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others. These systems are classified as agent-based, since they require the installation of soft-
ware on the host. This IDS evaluates the safety of the host based on operating system log files,
access log, and application log, for instance. It is vital because it provides security against the
types of attack that the firewall and NIDS do not detect, such as those based on encrypted pro-
tocols, since they are located at the destination. Another benefit of HIDS over NIDS is that the
success or failure of an attack can be promptly determined [10, 56, 58]. Figure 2.6 illustrates a
general host-based IDS.

Figure 2.6: Host-based IDS example

2.3.1.3 Hybrid IDS

Hybrid IDSs are developed considering data provided by the host events and the net-
work segments and by combining the functionalities of both network and host-based IDSs [57].
These systems aggregate the benefits of both approaches while overcoming many of the draw-
backs. However, hybrid systems may not always mean better systems. Since different IDS
technologies analyze traffic and look for intrusive activity in various ways, getting these differ-
ent technologies to interoperate and coexist in a single system successfully and efficiently is a
challenging task.

2.3.2 IDS types by detection technique

2.3.2.1 Signature-based (misuse detection)

Signature-based techniques, also known as knowledge-based or misuse detection, eval-
uate network activities by using a set of well-known signatures or patterns of attack stored in
the IDS database. Whenever an attempt matches a signature, the IDS triggers an alarm. This
operation ensures an efficient detection with minimal false alarms, and a good level of accu-
racy with regard to the identification and classification of abnormalities, making it easier for
network administrators to take preventive or corrective measures.

However, as any other action not recognized by the IDS knowledge database is con-
sidered normal, unknown anomalies, or little variations in known attacks, cannot be detected.
For this reason, signature-based IDSs require constant updating of their knowledge database.
Signatures must be defined in order to ensure that all probable variations of an attack are
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covered. Additionally, they do not match non-malicious activities, which can be a hard task
[21, 28, 59, 60]. Generally, misuse detection techniques work as shown in Figure 2.7.

Figure 2.7: Misuse detection (signature-based) techniques general scheme.

2.3.2.2 Anomaly-based (anomaly detection)

Anomaly-based techniques, also known as profile-based or anomaly detection, are
founded on the creation of a baseline profile representing normal/expected network behavior,
and on that any observed deviation of current activity compared to this profile is considered
anomalous. This profile is generated mostly through statistical and historical network traffic
data.

A classic example of this type of detection is when a specific user always uses the
Internet for a certain period of the day, during business hours. Imagine that this user is a man-
ager at a company being monitored by an anomaly-based IDS. This IDS has spent a whole week
creating this user’s normal profile, and from the last day of that week, it employed this profile
as mandatory for the time allowed to use the Internet. While detection is active, the manager
wants to use the Internet during night-time in order to submit a last-minute report, which is
something unusual to regular usage. The response of the anomaly-based IDS to this unusual
behavior is to restrict Internet access to that user, which would be valid if this was not an ex-
ception; however, this would actually be treated as a false positive.

Therefore, the main drawback of profile-based techniques is the possibility of in-
creased false alarm (false positive) rates, because users and system behavior may widely vary.
Additionally, attacks may be launched during the learning period and result in a profile contain-
ing intrusion behavior, which may not be able to detect some anomalous behaviors. These are
false negatives, which is even more serious than false positives. Therefore, constant retraining
of the profile is required; however, this may cause the unavailability of the detection system
or an increase of false alarms [61]. Finally, depending on the approach, profile creation may
demand an extended monitoring period or high computational resource usage.

Anomaly detection techniques are the most commonly used IDS detection type. This is
due to their ability of detecting both known and unknown attacks and anomalies, since the de-
tection is performed under the discovery of unusual patterns, which makes this technique more
dynamic than the static signature-based technique. It is also helpful in discovering new types of
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attack and behavior, and as a knowledge builder for new signatures in misuse detection systems.

Anomaly-based detection is the most popular and well-investigated topic among re-
searchers. There are many different techniques and algorithms, described in the literature,
used to build this normal profile and find unusual patterns, such as statistical procedures, ma-
chine learning, clustering, fuzzy logic, and heuristics. This has been studied for over 20 years,
and there is still a wide investigation panel to be discovered, as well as critical challenges and
open issues to overcome, as will be presented later in this survey. Figure 2.8 shows the general
structure of an anomaly detection approach.

Figure 2.8: General scheme of anomaly detection (anomaly-based) techniques

2.3.2.3 Specification-based

As described in [59] and [62], anomaly detection systems detect the effect of abnormal
behavior, while misuse detection systems recognize already known abnormal behavior. Accord-
ingly, specification-based methodologies were created in order to utilize the benefits of both
techniques. Therefore, these IDSs manually develop specifications and constraints to charac-
terize normal network behavior. This methodology is accomplished by obtaining the correct
operation of a program or protocol and monitoring its execution through the definition of set
constraints. Accordingly, this methodology can be more resistant to suitable changes in attacks
and allows the discovery of previously unknown attacks while having a very low false positive
rate.

On the other hand, specification-based techniques are much more complex since their
analysis can be performed in the layers existing below the application layer of the Internet pro-
tocol stack, or at the operating system control level. These techniques are restricted to the
proper operation of a program, or protocol, and can be excessively tedious and susceptible to
errors since they rely on user knowledge. Furthermore, the elaboration of detailed specifica-
tions and constraints is costly and time consuming.

This detection model is not as widely distributed as others cited in this thesis, espe-
cially because of its greater development complexity and restricting the intended application,
since it is aimed, for example, to be a single application.
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2.3.2.4 Hybrid techniques

Hybrid IDSs, or Compound detection, implement combinations of misuse, anomaly and
specification detection techniques. These systems can be based on the normal network profile
and also attack behavior, for instance.

An example of a hybrid IDS has been proposed by Assis et al. [63], in which a network
profile called digital signature of network segment using flow analysis (DSNSF) was created to
detect unknown anomalies within network traffic. Then, pre-loaded signatures classified the
discovered anomalous behavior as a DoS, DDoS, flash crowd or port scan attack. Another example
has been presented by Stakhanova et al. [68], who combined specification-based techniques
with anomaly-based ones in an effort to mitigate the limitations of the former. The need of user
expertise is overcome by an approach for the automatic generation of normal and abnormal
behavioral specifications as variable-length patterns, which are classified via anomaly-based
machine learning techniques.

2.4 Anomaly detection techniques, methods and systems

In this survey chapter, we focus on anomaly detection (anomaly-based IDS); the fol-
lowing chapters contain a review of its most current techniques, methods, and systems. Figure
2.9 illustrates the topics. However, since there are many emerging types of research proposing
hybrid approaches, the combination of both misuse and anomaly detections, for instance, may
be addressed as well.

Sta�s�calClustering

Classifica�on

Informa�on TheoryEvolu�onary Computa�on

Finite State Machine
ANOMALY DETECTION 

METHODS, TECHNIQUES 
AND SYSTEMS

Hybrid/Others

Figure 2.9: Anomaly detection methods, techniques and systems analyzed in this research

2.4.1 Statistical methods

Statistical methods for anomaly detection are widely used and are commonly based on
probabilistic models associated with training data for the purpose of tracking network behavior.
Anomalies are related to sudden changes in network data. Mostly, these abrupt changes are de-
tected by modeling hard thresholds. The primary challenge for statistical techniques is to find
methods reducing false alarm generation caused by hard thresholds [18]. For instance, statis-
tical signal processing procedures may be used to increase the detection rate while decreasing
false alarms, as Lakhina et al. did in their work with principal component analysis [64, 7, 65].
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2.4.1.1 Wavelet analysis

Wavelet analysis focuses on modeling non-stationary data series’. Such data series
may contain signals that can vary in both amplitude and frequency over extended periods of
time. Unlike Fourier analysis, which uses trigonometric polynomials, data series are modeled
using wavelets, which are powerful basis functions localized in time and frequency, allowing a
close connection between the series being represented and their coefficients. In this manner,
wavelet analysis is fundamentally a way to describe levels of detail with regard to particular
data, which can be images, curves, surfaces, and so on.

Callegari et al. [66] propose a real-time anomaly detection method using wavelets
combined with sketches. It is a router level analysis performed by extracting NetFlow traces
and transforming them into ASCII data files. After formatting, sketches are used to aggregate
different traffic flows in sketch tables through hash functions. Next, the time series are sub-
mitted to a wavelet transform for the purpose of discovering discontinuities.

Another study using wavelets was produced by Hamdi and Boudriga [67]. It relied on
identifying attack-related anomalies by differentiating between dangerous and non-threatening
anomalies. This task was achieved based on the concept of period observation, where wavelet
theory was used to decompose one-dimensional signals in order to analyze both their special
frequencies and time localization.

2.4.1.2 Principal component analysis

Principal component analysis (PCA) is a widely used statistical technique for anomaly
detection in computer networks. It is defined as a dimensionality reduction approach, in which
a data set consisting of n correlated variables can be mapped onto a new and reduced set of
k variables, the principal components (PCs), where k « n. These PCs are a set of orthonormal
vectors, which define a k-subspace, and are uncorrelated and arranged so that the first compo-
nents retain most of the variation present in all original variables [68, 69].

Lakhina et al. [64], who pioneered this field, addressed the anomaly diagnosis problem
in network wide-traffic by using PCA to efficiently separate traffic measurements into normal
and anomalous subspaces. The main idea was that PCA results in a reduced set of k variables
(principal components or k-subspace) which corresponds to normal network traffic behavior,
while the remaining subspace of m components (m = n – k) consist of anomalies or noise. Then,
every new traffic measurement is projected onto both subspaces so that different thresholds
can be set to classify these measurements as normal or anomalous. Their work was responsible
for the massive attention on PCA-based approaches for anomaly detection received in the last
decade. However, although it was a notorious work with good results and advances in the area,
it received some criticism from various authors, mainly related to the calibration sensitivity of
PCA, as reported in Ringberg et al. [70].

Ringberg et al. [70] and others [71, 72] have criticized the studies of Lakhina et al.
[64, 65] on PCA by outlining four main challenges regarding its sensitivity: (i) false positive
rates are affected by small noises in the normal subspace; (ii) the level of traffic aggregation
can mitigate the value of PCA; (iii) large anomalies can infect the normal subspace; (iv) no map-
ping amongst the reduced subspace PCA produced and the original spatial source of the anomaly.
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In this manner, the anomaly detection method proposed by Pascoal et al. [73] used a
robust PCA detector merged with a robust feature selection algorithm in order to obtain adapt-
ability to distinct network contexts and circumstances. Additionally, this robust PCA approach
does not require perfect ground-truth for training, which is one of the limitations of standard
PCA discussed in [70]. In [74], the authors propose ADMIRE, which is a combination of three-
step sketches and entropy-based PCA, and results in better true and false positive rates while
being capable of capturing distinct kinds of anomalies due to the different entropy time series
for PCA. Furthermore, O’Reilly et al. [75] surpassed those limitations in finding the PCs from
a dataset with anomalies by proposing a Minimum Volume Elliptical PCA (MVE-PCA) method,
consisting of the solution to a convex optimization problem by creating a soft-margin minimum
volume ellipse around the training dataset, which decreases the effect of anomalies existing in
the data.

Nevertheless, Camacho et al. [76] actively maintain that neither the original PCA
proposal nor critical researchers could effectively surpass the disadvantages of using PCA for
anomaly detection. To overcome these drawbacks, the authors used a PCA-based multivariate
statistical process control (MSPC) approach, which monitors both the Q-statistic and D-statistic.
Thereby, it was possible to establish control limits in order to detect anomalies, when they
became consistently exceeded. Additionally, the MSPC approach has contribution plots used for
finding the root cause of the anomaly. Data pre-processing relies on the feature-as-a-counter
approach in which variables are counters for the number of times some event is logged through-
out a given time interval. This is in contrast to the idea of Lakhina et al. [64], which considers
counters as simple quantitative variables.

Fernandes et al. [15, 17] proposed PCADS-AD, an autonomous profile-based anomaly
detection system based on a dimensionality reduction procedure and principal component anal-
ysis (PCA). It is an enhanced version of their initial work presented in [78]. The system was
divided into two main stages. First, the authors used a different interpretation of PCA to gener-
ate a network profile called Digital Signature of Network Segment using Flow analysis (DSNSF).
The system analyzed historical network traffic data over a period of days, identifying among
them the most significant traffic time intervals while reducing the data set so that the new re-
duced set could efficiently characterize normal network behavior. Then, the DSNSF was used as
a threshold to detect volume anomalies by restricting an interval, where deviations were con-
sidered normal, through some PCA parameters. This system used three IP flow features (bits/s,
packets/s and flows/s) to predict network normal behavior and generate the DSNSF. Another
four flow attributes (origin and destination IP addresses and TCP/UDP Ports) were used to pro-
duce a report containing useful information concerning the abnormal traffic interval; thus, the
network administrator was assisted in taking fast measures to resolve the identified problem.
The drawback of this approach is the usage of only volume attributes for anomaly detection,
which only considers the detection of volume-based attacks. In this manner, the system is
unable to detect attacks which do not impact on bits, packets, and flows.

2.4.1.3 Covariance matrix

Covariance matrices are second-order statistics and have been proven to be a powerful
anomaly detection method. An interesting direction in this area is finding which variables best
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label network anomalies and improve detection performance.

The work presented in [79] employs covariance matrix analysis to detect flooding at-
tacks. This approach models network traffic as covariance-matrix samples in order to make use
of statistical assets contained in the temporally sequential samples for the purpose of detecting
flooding attacks. Then, it directly uses changes of covariance matrices and differences of cor-
relation features to reveal the alterations between normal traffic and various types of flooding
attacks.

Miao Xie [80] performed anomaly detection in a segment-based manner by handling
a collection of neighboring data segments, with the aid of random variables, and exploiting
their spatial predictabilities to determine which ones behaved abnormally. This approach used
a sample covariance matrix approximated per the concepts of Spearman’s rank correlation co-
efficient and differential compression in order to substantially reduce the computational cost.

Huang et al. [81] supported the use of covariance matrix for dimensionality reduction
instead of traditional PCA discussed in the previous section. They pointed out that a static choice
of k principal components is poor at capturing real-time changes, in addition to only allowing
weak heuristics due to sensitivity to small variations in the dimensions representing the normal
subspace. Therefore, to overcome the limitations of variance-based approaches, the authors
came up with a distance-based dimensionality reduction approach for anomaly detection. De-
pending on their types, anomalies manage to cause distinct types of deviances in the covariance
matrix of observed traffic. These deviances allow the categorization of detected anomalies and
immediate decision-making with regard to mitigation actions. Their proposal was also able to
adapt to changing patterns in the test data such that the model would only use a few important
dimensions at any time.

2.4.1.4 Others

This section presents other noteworthy statistical methods, which do not fit into the
previous ones since they combine different statistical techniques.

The study by Kalkan and Alagöz [82] used traffic filtering as a way to prevent network
attacks and especially DDoS attacks. ScoreForCore was classified as a statistical filtering model
based on reaction time and collaboration, which selects the most suitable features from the at-
tack related traffic. The model calculates a score for each packet using the nominal and current
profile; then, it compares them in order to find the two features deviating the most from the
nominal profile by using collaboration between routers and thresholds. Ozkan et al. [83] stud-
ied the anomaly detection problem for fast streaming temporal data, in an online setting, and
proposed an efficient statistical online algorithm fusing Markov statistics with Neyman-Pearson
(NP) characterization. Their proposal successively learns the feasible varying nominal Markov
statistics in a time series and detects anomalous subsequences by first assigning scores to each
fixed length subsequence using pair-wise distances and then considering the magnitude of the
anomaly score and providing Neyman-Pearson characterization.

Network traffic is currently composed of cycles consisting of bursts with specific char-
acteristics directly affected by working days and user access periods. Under this assumption,
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Proença et al. [84] introduced the Digital Signature of Network Segment (DSNS), which is a set of
information capable of defining the traffic profile. It automates the task of monitoring network
segments by statistically estimating the traffic behavior based on historical traffic data. The
algorithm is called BLGBA and is based on a variation of the statistical measure mode. After
extracting SNMP traffic samples from the MIB, the DSNS is built second by second through the
analysis of a prior period. The calculation distributes the elements in frequencies according to
differences between the size of each sample. Then, the authors validated the DSNS through vi-
sual analysis, Bland-Altman plots, residual analysis, linear regression, and the Hurst parameter.

A correlational paraconsistent machine (CPM) has been proposed by Pena et al. [85]
and relies on two unsupervised traffic characterization methods and non-classical paraconsis-
tent logic (PL). The authors used both ant colony optimization for digital signature (ACODS) and
auto regressive integrated moving average (ARIMA) [86] methods in order to analyze historical
network traffic data and generate two distinct network profiles able to describe normal traffic
behavior. These profiles are called digital signature of network segment using flow analysis
(DSNSF) and is derived from the work proposed in [84]. The existence of anomalies is related
to degrees of certainties and contradictions produced by paraconsistent logic over a correlation
between two prediction profiles and associated real traffic measurements. From the Euclidian
distance calculation between the two DSNSFs and the evaluation of paraconsistent logic signals,
the model obtains real evidence for the proposition P (P -> “interval contains an anomaly”) to
be true.

Another statistical traffic characterization approach for anomaly detection by creating
the DSNSF network profile is proposed by Assis et al. [63]. It is a seven-dimensional profile-
based anomaly detection system based on the Holt-Winters forecasting technique. The IP flow
traces bits/s, packets/s, flows/s, origin and destination IP addresses, and Ports, are simultane-
ously analyzed in every one-minute time window; therefore, the system can identify different
anomalies and generate alarms. The normal network profile of how the network should behave
in the next day is predicted dynamically by using the current traffic of the day and the previous
day’s generated profile. Authors use thresholds to indicate the interval between real traffic
and the profile considered as normal. These thresholds are calculated in an asymmetric way,
using the profile, a scaling factor for its width, and a deviation measure. The intervals with
mostly greater errors are updated with the absolute deviation of the interval while the opposite
confidence band is updated with the standard deviation of the profile. Finally, the alarm system
is capable of detecting anomalies in two ways: (i) by alerts, which are related to anomalous
behaviors not existing in the system anomaly database; and (ii) by alarms, generated when the
system knows the anomalous behavior signature.

Bang et al. [87] propose an IDS using a hidden semi-Markov model (HsMM) aimed
specifically at the detection of advanced LTE signaling attacks on WSNs. According to the au-
thors, traditional hidden Markov Models (HMM) cannot represent many possible transition be-
haviors; therefore, HsMM overcomes this limitation since it has arbitral state sojourn time and
is more suitable to time-series behavior analysis. They used the HsMM to effectively model the
spatial-temporal characteristic of the wake-up packet generation process, taking the process
log-likelihood as the test basis of normality. Then, their detector compared observed spatiotem-
poral features of a server’s wake-up packet generation, with the normal criteria established by
the HsMM. Therefore, an alarm is set off whenever significant divergence occurs.
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Although classical Markov chain techniques are widely accepted in anomaly detection
applications, their short memory property may ignore interactions among the data. On the con-
trary, the long memory property of a higher order Markov model clouds the relationship between
previous and current test data and, thus, it reduces reliability. In light of this, Ren et al. [88]
defended that once Markov models are established in the training phase, their order is fixed to
detect anomalies in the testing phase. However, the fixed Markov models (n-order) force each
state of a sequence to be conditioned on previous n states and may not be enough to provide an
accurate estimate of the detecting state. Thus, the authors proposed a dynamic Markov model
to balance the length of the memory property of Markov models and keep the strong correlation
between memory (or the Markov model) and current test data. To achieve this, the proposed
approaches repeatedly calculate the Pearson correlation in order to find the proper order of the
Markov model in a sliding window, where the sequential data is segmented. To keep detection
continuous, a substitution strategy of anomalies was reported to protect the building of models
from the infection of detected anomalies.

Jazi et al. [89] explored several types of application-layer DoS attacks and proposed a
detection approach based on a nonparametric CUSUM algorithm. The proposed approach relies
on a selected combination of application and network-level attributes for anomaly detection.
According to the authors, the resulting method was evaluated on various types of attacks on
modern web servers since they represent the most common target for DoS attacks. In addition,
the study investigated the performance fluctuation in the presence of thirteen different sam-
pling methods and explored the impact of sampling on the detection of application level DoS
attacks. The results confirmed that even specialized sampling techniques could introduce some
distortion in detection quality. In this manner, detection should be tied to the sampling tech-
nique in order to compensate for distortions provided by sampling and to ensure the improved
assessment of traffic characteristics.

2.4.1.5 Summary

In summary, statistical approaches include the following advantages.

• Intrinsic capability to detect network anomalies than any other method,
• Ability to learn the expected behavior of the traffic (network system),
• Traffic analysis is based on the theory of sudden changes, which sets an alarm whenever a
significant deviation happens.

• The methods do not require any kind of prior knowledge about the system as an input.

However, there are some relevant drawbacks that must be considered.

• Some kinds of attacks may be a regular part of the training dataset andmay be incorporated
in the normal behavior, causing it to be considered as normal.

• It requires some relevant time to train the models in order to be able to set the first alarm.
• The use of thresholds may not be reliable in some real-world cases due to its limited and
static nature.

Table 2.5 summarizes the characteristics of discussed statistical approaches, regard-
ing techniques, data precedence, investigated anomalies, and validation metrics used to test
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detection performance.

2.4.2 Clustering methods

Clustering analysis aims to group a set of objects into classes of similar objects. These
classes, or groups, called a cluster, and its objects, are similar (in one way or another) to each
other and dissimilar to those in other clusters. Clustering-based processes are adaptable to
changes and help single out useful features distinguishing different groups. Clustering tech-
niques can be used for outlier detection, identifying values, which are too “far away” from any
cluster, or as a preprocessing step for other algorithms/approaches. Additionally, classification
is an effective resource for distinguishing groups or classes of objects; however, it requires the
often costly collection and labeling of a large set of training tuples or patterns, which the clas-
sifier uses to model each group [90].

Rajasegarar [91] presented a distributed hyperspherical cluster based algorithm for
anomaly detection in wireless sensor networks. Clustering was used to model the traffic data at
each node by classifying data vectors as either normal or anomalous. Anomalous clusters were
identified by using the average inter-cluster distance of the k nearest neighbor (KNN) clusters.
This works under a distributed scheme, where sensor nodes report on cluster summaries, which
are merged by intermediate nodes before communicating with other nodes and, thus, minimize
communication overhead.

Mazel et al. [92] introduce a non-supervised approach to detecting and characterizing
network anomalies. This approach initially works by using a clustering technique, combining
sub-space clustering with evidence accumulation clustering and inter-clustering results associ-
ation in order to blindly identify anomalies in traffic flows.

K-means is a popular clustering technique in the anomaly detection field and is able to
classify data into distinct categories. However, it has drawbacks such as local convergence and
sensitivity to the selection of cluster centroids. Therefore, many researchers try to combine
k-means with other techniques in order to overcome these shortcomings. Karami and Guerrero-
Zapata [93] introduced a fuzzy anomaly detection system based on the hybridization of particle
swarm optimization (PSO) and k-means with local optimization in order to determine the opti-
mal number of clusters. It is divided into two phases: the training phase aims to find the near
optimal solution by combining a novel boundary handling approach of PSO’s global search with
the fast convergence of k-means; thus, it avoids being trapped in a locally optimal solution. The
fuzzy approach is used in the detection phase, in which false positive rates are reduced with a
reliable detection of intrusive activities. This is due to any data (normal or attack), which may
be at close distance to some clusters.

Carvalho et al. [94] developed a proactive network monitoring system that can detect
unusual events and reduce manual intervention and error probability in decision-making. Their
proposal consists of creating a network profile called DSNSF (digital signature of network seg-
ment using flow analysis), which describes normal network usage using a clustering approach
through the modification of the ant colony optimization (ACO) metaheuristic, called ACODS.
ACODS characterizes network traffic discovery in the large volume of high-dimensional input
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Table 2.5: Comparison of statistical anomaly detection approaches

Paper Year Tech.a Anomaly Typeb Datasetb Sourcec Validation Metrics 

Hamdi and 
Boudriga [67] 

2007 Wavelet DoS/DDoS (S)  
Real network from MIT 
(R) 

IP flow Packet count 

Callegari et al. 
[66] 

2011 Wavelet 
Generic synthetically 
added anomalies in 
the data (S) 

Abilene/Internet2 
Network (R) 

NetFlow Detection Rate 

Lakhina et al. 
[64] 

2004 PCA 
Synthetic injection 
of large and small 
anomalies (S) 

Sprint-1 and Abilene 
backbones (R) 

NetFlow 

Detection Rate, FPR, 
Identification Rate and 
mean absolute relative 
error 

Pascoal et al. 
[73] 

2012 PCA 
Portscans and 
snapshots (R) 

Small private laboratory 
network scenario (R) 

- 
Recall, FPR and 
Precision 

Kanda et al. 
[74] 

2013 PCA 
22 attack categories 
(TCP SYN flood, port 
scan, etc.) (R)  

Backbone link from the 
MAWI traffic repository 
(R) 

IP flow 
TPR, FPR, Accuracy, F-
measure, ROC and 
Euclidean distance 

Fernandes et 
al. [15] 

2015 PCA 
DoS, DDoS and Flash 
Crowd (S) 

University network (R) 
and simulated 
anomalies (S) 

NetFlow 
NMSE, Correlation 
Coefficient, TPR, FPR, 
ROC 

Camacho et al. 
[76] 

2016 PCA 
DoS and other 
general network 
faults/anomalies (R) 

VAST 2012 2nd mini 
challenge (R) and a 
controlled scenario (R) 

Firewall 
and IDS 
logs, 
NetFlow 

TPR, TNR, FPR, FNR, 
Recall, Specificity, 
Accuracy 

O’Reilly et al. 
[75] 

2016 PCA Generic (S) (R) 

2-dimensional synthetic 
Gaussian data (S), UCI 
Machine Learning 
Repository (R) 

- 
Area Under the ROC 
Curve (AUC), FPR, TPR, 
ROC,  

Yeung et al. 
[79] 

2007 Cov. Matrix 
flooding attacks 
(DDoS) (R) 

KDDCUP 99 (R) 
TCP 
dump 

Detection Rate, FPR 

Xie et al. [80] 2015 Cov. Matrix 

Generic (constant, 
burst, small noise 
and large noise 
anomalies) (R) and 
artificially injected 
(S) 

IBRL network (R) - 
ROC, average saving 
rate (ASR) 

Huang et al. 
[81] 

2016 Cov. Matrix 
Generic labeled 
anomalies (R) 

Kyoto2006+ dataset (R) - FPR, ROC 

Proença et al. 
[84] 

2004 
Statistical 

mode 
Generic outliers (R) University network (R) SNMP 

Hurst parameter, 
residual analysis, linear 
regression, bland-altman 
plot 

Assis et al. [63] 2014 Holt-Winters 
DoS, DDoS, Flash 
Crowd, portscan (S) 

University network (R) 
and simulated 
anomalies (S) 

NetFlow 
Accuracy, TPR, FPR, 
ROC 

Pena et al. [85] 2014 
ARIMA, 

Paraconsiste
nt logic 

Generic (R) 
University network (R) 
and simulated 
anomalies (S) 

NetFlow 
Real evidence level, 
TPR, FPR, ROC 

Kalkan and 
Alagöz [82] 

2016 

Filtering 
model, 
reaction 

time 

Different types of 
DDoS (S) 

MAWI Working Group 
Traffic Archive (R) and 
simulated environment 
(S) 

- 

Precision, recall, TNR, 
Negative predictive 
value (NPV), f-measure, 
f-measure complement, 
accuracy and attack 
prevention efficiency 
(APE) 

Ozkan et al. 
[89] 

2016 

Markov 
statistics, 
Neyman-
Pearson 

Sudden change in the 
source statistics (S) 

Monte Carlo simulations 
(S) 

- ROC, FPR 

Bang et al. [87] 2017 
Hidden semi-

Markov 
model 

Advanced LTE 
signaling attack 
types (S) 

Simulated environment 
(S) 

- FPR, FNR, TNR  

Ren et al. [88] 2017 
Dynamic 
Markov 
model 

Generic outiliers (R) 
(S) 

Synthetic dataset (S) 
and Shangai airport 
traffic, UCR archives 

- TPR, FPR 

Jazi et al. [89] 2017 CUSUM 
Application layer DoS 
(S) 

ISCX dataset, academic 
network traces (R) 

- Detection rate, FPR 

aStatistical Techniques/Methods used. 
bData precedence; R=Real, S=Simulated. 
cSource types in blank are either not clearly specified by the authors or not relevant in their research. 
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data in a cluster set, and by optimizing the extraction of behavioral patterns through an un-
supervised learning mechanism. Then, to detect anomalous behavior, authors use the pattern
matching technique called dynamic time warping (DTW). They first compute the similarity be-
tween real traffic and normal profile in each time interval; then, compute the distance between
the series and provide a measure based on both form and distance. The proposed alarm system
works with seven flow attributes, using entropy to summarize information regarding IP addresses
and Port features. When an anomaly is detected, ACODS provides a full report containing IP flow
information indicating the impact of each attribute on the detected anomalous time interval.
ACODS has a square complexity, resulting in a solution convergence by many iterations, in which
authors try to mitigate by using local search and pheromone updating.

In, Dromard et al. [95] proposed ORUNADA, an unsupervised anomaly detector based
on the incremental grid clustering algorithm called IDGCA and a discrete time sliding window.
Incremental grid clustering is more efficient than usual clustering algorithms since they lat-
ter only update the previous feature space partition, instead of repartitioning the whole space
whenever few points are added or removed. Then, the system merges these updated partitions
in an effort to recognize the most dissimilar outliers. Incremental grid clustering usage con-
tributes to lowering system complexity, which makes it more feasible for real-time detection.

Regarding SDNs and their challenges, like high density and variety of hosts, He et al.
[96] recently developed a two-stage unsupervised clustering algorithm for anomaly detection.
The first stage is a feature selection procedure used to remove unnecessary features in the
dataset. Its basis is the calculation of a maximal information coefficient (MIC), which describes
the relationship between two continuous features, and relevancy, which is a symmetric uncer-
tainty estimator for discrete features. After selecting relevant features, a density peak-based
clustering algorithm classifies the reduced dataset into normal and misbehaved patterns. Their
experimental results proved that when a typical SDN hierarchy of controllers is used, the traf-
fic data can be locally analyzed in each controller. This lessens the volume of traffic shuffled
across the network.

Some of the main limitations of anomaly detection methods are basically: the absence
of labeled data; finding of new unknown anomaly patterns; noisy data; and high false alarm
rates. As an effort to overcome these problems, Bigdeli et al. [97] proposed an incremental
two-layer cluster based structure for anomaly detection. The core idea is to cluster network
data and represent these clusters as a Gaussian Mixture Model, so the model can categorize
new instances and also detect and ignore redundant ones. Moreover, the high false alarm rate
issue was addressed by a collective labeling method, which labels new inward instances in both
collective and incremental ways.

2.4.2.1 Summary

With regard to clustering-based approaches, their advantages are listed as the follow-
ing.

• Incremental clustering has a fast response generation.
• Stable performance when comparing to statistical methods or classifiers.
• Reduce computational complexity due to the ability to group large datasets into small
ones.
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However, limitations of these techniques can be seen below.

• They are highly dependent on proximity measures, and each one can affect the detection
rate in a positive or negative way.

• Time consuming.
• They are not optimized for anomaly detection.
• Sometimes, the algorithms can be trapped in the local minima.

At last, Table 2.6 summarizes some characteristics of the discussed clustering ap-
proaches with regard to data precedence, investigated anomalies, and validation metrics used
to test detection performance.

Table 2.6: Comparison of clustering anomaly detection approaches

Paper Year Tech.a 
Anomaly 
Typeb 

Datasetb Sourcec Validation Metrics 

Rajasegarar 
et al. [91] 

2014 k-NN clusters 

Randomly 
generated 
set of 
anomalous 
data (S) 

IBRL and GDI (R) 
and Banana and 
Gaussmix datasets 
(S) 

- 
ROC, Detection 
rate (DR) and False 
positive rate (FPR) 

Mazel et al. 
[92] 

2011 

Sub-Space 
clustering, 
Evidence 

Accumulation and 
Inter-Clustering 

Few ICMP 
pkts, 
network scan 
(R) 

real traffic trace 
from the public 
MAWI repository 
of the WIDE 
project (R) 

IP flow 

Cluster similarity 
graph and outlier 
similarity graph for 
destination 
aggregated data 

Karami and 
Guerrero-
Zapata [93] 

2015 
K-Means, 
PSO 

Abnormal 
Source 
Behavior, 
flooding 
attack (R) 

UCI machine 
learning 
repository / CCNx 
data repository of 
Univ. of 
Politecnica 
Catalunya (R) 

IP flow 

Detection Rate (DR 
– Recall), FPR, 
Precision, F-
measure 

Carvalho et 
al. [94]  

2016 
ACO (modified for 
clustering),  
DTW 

DoS, DDoS, 
port scan, 
flash crowd 
(S) 

University 
network (R) and 
simulated 
anomalies (S) 

NetFlow 
NMSE, accuracy, 
TPR, FPR, ROC 
curve 

Dromard et 
al. [95]  

2017 
Incremental grid 
clustering 
algorithm (IGDCA) 

RST and SYN 
attacks, and 
generic 
outliers (R) 

ONTS dataset and 
MAWILab network 
traces (R) 

IP flow TPR, FPR 

He et al. 
[96]  

2017 
Density peak 
based clustering 
algorithm 

DoS, Probe, 
R2L, U2R (R) 

KDDcup99 (R) 
TCP 
dump 

Classification 
accuracy 

Bigdeli et al. 
[97]  

2018 
Spectral-based 
and density-based 
clustering 

DoS, Probe, 
R2L, U2R 
(R/S) 

KDDCUP99, 
Darpa98, NSLKDD, 
DataSetMe, and 
IUSTSip (R/S) 

TCP 
dump, IP 
flow 

ROC curve 

aClustering Techniques/Methods used. 

bData precedence; R=Real, S=Simulated. 
cSource types in blank are either not clearly specified by the authors or not relevant in their research. 
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2.4.3 Finite state machine methods

A Finite State Machine (FSM), also called finite automata, is a mathematical behav-
ioral model composed of states, transitions, and actions, used to represent computer problems
or logical circuits. Each state stores information about the past, which are changes that have
occurred since the entry into a state from the start of the system to the present time. This
type of machine can only be in one state at a time. A transition indicates a state change and
is disclosed by a condition, which must be achieved for the transition to occur. An action is a
description of an activity, which must be carried out at a particular time. Moreover, these ma-
chines have strong analytical techniques, given that one can explore every possible sequence of
states, since their alphabet of input and output allows representing a wide variety of situations.

Estevez-Tapiador et al. [98] presented a protocol anomaly detector using a finite
state machine (FSM) approach, where network protocols were modeled from state sequences
and transitions through a Markov chain. Its main idea was to monitor a given protocol in order
to find deviations from “normal” usage. If the conditions are complete enough, the model can
detect illegitimate behavioral patterns successfully.

Su [99] employed finite state machines to implement a framework applying frequent
episode rules for a network intrusion prevention system (NIPS). The presented NIPS was de-
veloped to explore Probe attacks and anomalies that are difficult to be effectively detected
by firewalls and anti-virus software. At first, it works by mining log files, which are posteri-
orly refined, resulting in episode rules that are converted to build an FSM. Via the FSM, every
connection on a particular port is monitored and mapped out. Once a default alarm condition
is achieved, the integrated real-time firewall update tool disconnects the malicious connection.

In [100], the authors produced an engineering method of gathering only a small vol-
ume of relevant IP flow records and aggregated them into a state space representation. This
aggregation served as input to a finite state machine scheme. They developed an FSM with
a stream learning component, such that it would be feasible to start modeling and learning a
fine-grained communication profile in real-time. Their system produced promising detection
rates over botnet malware detection. Additionally, they concluded that it is worthwhile to use
limited IP flow data rather than large datasets for training.

2.4.3.1 Summary

Finite state machine techniques are not as popular as statistical or classification tech-
niques, however, they have some good points to consider.

• Robustness and flexibility
• Strong analytical techniques, since their alphabet of input and output, allows representing
a wide variety of situations

• High detection rate whether there is a considerable knowledge base regarding attacks and
normal cases.

Some disadvantages of these techniques are listed below.

• Time-consuming.
• Inability to detect rare or indefinite attacks.
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• Dynamic updating of rules/conditions are costly.

Table 2.7 summarizes some characteristics of the discussed clustering approaches, re-
garding data precedence, investigated anomalies, and validation metrics used to test detection
performance.

Table 2.7: Comparison of finite state machine anomaly detection approaches.

Paper Year Anomaly Typea Dataseta Sourcec 
Validation 
Metrics 

Estevez-Tapiador et 
al. [98]  

2003 
Protocol 
misusages (R) 

TCP traffic filtered by destination 
port (R) 

- - 

Su et al. [99]  2010 DoS, worm (R) 
SMB with NetBIOS Session service 
(R) 

- - 

Hammerschmidt et 
al. [100] 

2016 
Botnet 
malware (R) 

Publicly available dataset of 
manually labeled IP flow traces (R) 

- 
TP, FP, 
Precision 

aData precedence; R=Real, S=Simulated. 
cSource types in blank are either not clearly specified by the authors or not relevant in their research. 

2.4.4 Classification-based methods

Classification [101] is widely used in the anomaly detection field. The main idea of
such techniques applied to this area can be summarized as two steps. First, during the training
phase, a classifier is built (learned) using labeled training data. Then, this classifier is used to
classify an instance as normal or anomalous (testing phase). According to each available labeled
data for training, classification-based anomaly detection techniques can be either multi-class
or one-class. The latter occurs when all training data have only one normal class label. The
first assumes that training instances have multiple normal class labels. In this case, a classifier
is built to be able to distinguish instances among normal classes and those who do not belong to
any class (anomaly).

2.4.4.1 Naïve Bayesian

Naïve Bayesian is a simple probabilistic classifier commonly used for network intrusion
detection problems. It combines prior information with sample information and implements
it in statistical deduction, which uses probability to show all forms of uncertainty. Its princi-
ples are founded on the assumption that all input attributes are conditionally independent to
each other. Thus, it calculates the probability of a certain instance belonging to a singular class.

Klassen and Ning [102] proposed a Naïve Bayesian approach to detect black holes,
selective forwarding and DDoS attacks, in real time. The system monitored packets sent from
nodes; therefore, their behavior is checked in order to detect any abnormality. The classifier
assumes that data are normally distributed; then, the probability of a sample belonging to a
class is calculated by a normal distribution probability procedure. Tao et al. [103] also used
a Naïve Bayesian approach; however, they combined it with a time slicing function and, thus,
they exploited the relationship between time and network traffic, since network traffic changes
at distinct times and some traffic does not occur at a particular time. The work of Swarnkar
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and Hubballi [104] accurately detected suspicious payload content in network packets through
the use of the one class Naive Bayes classifier for payload based anomaly detection (OCPAD),
a combination of frequency information of short sequences with a one class multinomial naïve
Bayes classifier.

2.4.4.2 Support vector machines

Another classification method is Support Vector Machine (SVM) [111], which is also
used in pattern recognition. SVMs are a supervised learning concept characterized by the use
of feature vectors/kernels (such as radial basis function – RBF), the nonexistence of local min-
ima, sparseness of the solution, and capacity check achieved by operating on the border (the
distance of the solution hyperplane to its closest point). Classifiers are obtained with good gen-
eralization, which is defined as its ability to correctly predict the class of new data from the
same domain in which learning occurs.

Catania et al. [105] proposed a novel approach to providing autonomous labeling to
normal traffic, in order to overcome imbalanced class distribution situations and reduce the
presence of attacks in the traffic data used for training an SVM classifier. Amer et al. [106]
applied two modifications of the unsupervised one-class SVM: Robust one-class SVMs and Eta
one-class SVMs. Their goal was to make the decision boundary less sensitive to outliers in the
data.

Erfani et al. [107] stated that problem domains with a high number of dimensions are
an obstacle to anomaly detection since irrelevant features can cover the presence of anomalies.
Additionally, although the use of SVMs in detecting anomalies is effective on small datasets with
many features, in complex high-dimensional data, the method is likely to take a long time for
training. To overcome this limitation, the authors combined an unsupervised deep belief net-
work (DBN) with one-class SVMs. The unsupervised DBN is trained to extract the features that
are less sensitive to irrelevant deviations in the input data, producing a new data set suitable
for being used to train a one-class SVM.

Additionally, Wang et al. [108] created an effective IDS based on a SVM with augmented
features. Their framework integrates the SVM with the logarithm marginal density ratios trans-
formation (LMDRT), a feature transduction technique that transforms the dataset into a new
one. The new and concise dataset is used to train the SVM classifier, improving its detection.
By evaluating the framework using the mostly used NSL-KDD dataset, the authors could achieve
a fast training speed, high accuracy and detection rates, as well as low false alarm presences.

Kabir et al. [109] proposed an IDS based on a modification of the standard SVM clas-
sifier, known as the least square support vector machine (LS-SVM). This alteration is sensitive
to outliers and noise in the training dataset when compared to a regular SVM. Their decision-
making process is divided into two stages. The first stage is responsible for reducing the dataset
dimension by selecting samples depending on the variability of data by using an optimum al-
location scheme. Then, the next stage uses these representative samples as the input of the
LS-SVM. The algorithm was optimized to work on both static and incremental data and produced
effective results.
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2.4.4.3 Artificial neural networks

Artificial Neural Networks (ANNs) are computational techniques that present a math-
ematical model inspired by the neural structure of intelligent organisms, which acquire knowl-
edge through experience. They are self-adapting, self-organizing and able to learn according to
inputs and feedback from the ecosystem within which they operate. Although neural networks
are considered a bio-inspired model, they are used in the anomaly detection domain mostly
as classifiers. Multi-layer Perceptron (MLP) and Back Propagation (BP) algorithms are the most
common ANN techniques.

Subba et al. [110] employed an ANN model in order to introduce an intelligent agent
for classifying whether the underlying patterns of audit records are normal or abnormal while
classifying them into new and unseen records. This goal is accomplished through feed forward
and back propagation (BP) algorithms. They are responsible for feeding the neural network with
inputs processed to become vectors, comparing the calculated and expected output generated
by the ANN, and at finally, altering the weights of the ANN connections in order to approximate
the output. After some experiments, this approach proved to be high in performance and low
in terms of computational overhead.

Saeed et al. [111] proposed a two-level anomaly-based IDS using a Random Neural
Network (RNN) model in an IoT environment. The RNN model was employed in order to build
a behavior profile based on both valid and invalid system input parameters to distinguish nor-
mal and abnormal patterns. The system learns the relationship between input and output by
adjusting the interconnection weights of the RNN. The second level of the IDS is responsible for
detecting a broad range of Illegal Memory Access (IMA) bugs and data integrity attacks.

Brown et al. [112] proposed a two-class classifier using an evolutionary general re-
gression neural network (E-GRNN) for intrusion detection based on the features of application
layer protocols such as HTTP, FTP, and SMTP. Authors used evolutionary computation to evolve
parameters and salient features (feature mask) from the general regression neural network and
to find its optimal configuration. This method reduces computational complexity by eliminating
unnecessary features and increases classification accuracy.

Supervised learning models can train a classifier by only using labeled samples, which
are difficult to obtain due to requiring expert knowledge. On the other hand, unsupervised
approaches consider only unlabeled samples, which are easily available in real-world situations.
Ashfaq et al. [113] proposed a fuzziness-based semi-supervised learning approach, merging
both unlabeled and labeled data to build a better classifier. The base classifier was the neural
network with random weights (NNRW) due to its excellent learning feature. For all unlabeled
samples produced by the NNRW, their model computes fuzziness as an effort to discover relation-
ships between the output fuzzy membership vectors and misclassification rates. Subsequently,
the unlabeled samples receive a predicted label according to fuzziness groups (high, mid and
low), and the classifier is retrained with them. The authors found out that samples within low
and high fuzziness groups are vital in improving the performance of the NNRW classifier and
result in high accuracy rates. Additionally, samples belonging to mid-fuzziness groups showed
increased uncertainty of misclassification.
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2.4.4.4 Ensemble approach

An ensemble approach means combining responses of multiple classifiers into a single
one, thus yielding better performance compared to using individual classifiers. The weighted-
majority algorithm (WMA) is a well-known ensemble technique responsible for combining and
selecting the best response among all classifiers [114].

Aburomman and Reaz [115] cite that an ensemble classifier achieves success condi-
tional to the diversity in the outcomes of its component classifiers and the method chosen to
combine these outcomes into a single one. In this manner, they first trained six SVM experts (in
which an expert consists of five binary classifiers producing a binary vector of outcomes) and six
other experts using the k-nearest neighbor (k-NN). Then, they used particle swarm optimization
(PSO), meta-optimized PSO and weighted majority algorithm (WMA) techniques to combine the
experts’ opinions and accurately create three new ensembles. After testing and comparing the
three new techniques over some KDD99 datasets, the PSO ensemble approach achieved bet-
ter results, improving accuracy by 0.756%, in a short runtime. The authors explained that the
sets of generated weights, which were also optimized to produce results with the best possible
accuracy, were responsible for the success of the PSO-based ensemble. Despite the fact that
the meta-optimized PSO approach accomplished a better accuracy gain, it took 500 times more
time to achieve it. On the other hand, the WMA approach had the worst results since it had a
reasonably low accuracy of base classifiers for the occurrences of Normal and R2L classes.

Sornsuwit and Jaiyen [116] proposed a novel ensemble approach for intrusion detection
using the AdaBoost algorithm, which combines the solution of the following classifiers: naïve
Bayes, decision tree, multilayer perceptron (MLP), k-NN and SVM. The AdaBoost algorithm ini-
tializes the distribution of data, trains the classifiers, evaluates errors and assigns weights to
each of them. Then, the combination of classifiers is linear and based on a weighted voting
approach.

Bukhtoyarov and Zhuckov [117] developed an ensemble-distributed classifier for net-
work IDS based on a new tree-level approach for combining the individual classifiers’ deci-
sions. The approach relies on using ensembles of neural networks designed through genetic
programming-based ensembling (GPEN). GPEN automatically builds a program using genetic pro-
gramming operators to indicate how to combine the component networks’ predictions in order
to get a reliable ensemble prediction. This study differs from others dealing with traditional
ensemble since it provides the partial obtaining of adaptive outcomes by distinct classifiers
deprived of an ensemble classifier.

2.4.4.5 Summary

To sum up, classification-based methods are prevalent due to its simplicity and effec-
tiveness. Here are some additional advantages.

• Flexibility for testing and training by incorporating new information into the execution
strategies.

• High detection rates for acknowledged attacks.
• Artificial Neural Networks have an adaptive nature, being possible to train and test cases
incrementally.
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• Regarding efficiency, multi-level neural network techniques are better than a single-level
neural network.

• Ensemble methods perform well by combining multiple classifiers, even if they are weak
ones.

However, despite being popular among researchers, there are some disadvantages, as
follows.

• High resource consumption.
• Inability to detect unknown anomalies without some relevant training information.
• Neural network usage may cause over-fitting.
• The selection of sample datasets is slow for big datasets.
• In some cases, real-time performance is hard to acquire.

Table 2.8 summarizes some characteristics of discussed clustering approaches, regard-
ing data precedence, investigated anomalies, and validation metrics used to test detection
performance.

2.4.5 Information theory

Information Theory is a mathematical subject centered on the quantification of infor-
mation and redundancy analysis. It was formerly envisioned by Claude E. Shannon, in 1948, while
seeking data compression, transmission, and storage for signal processing and communication
operations [118]. However, its application extended to many other purposes such as telecom-
munications, estimation, decision support systems, pattern recognition and so on [119]. There
are several information-theoretic measures, such as Shannon entropy, generalized entropy, con-
ditional entropy, relative entropy, information gain and information cost.

Its use for anomaly detection purposes relies mainly on the calculus of mutual informa-
tion or entropy values for designated traffic features in order to identify anomalous distributions
on them. Since it adopts statistical properties for the time series of a traffic-related features
(e.g. Gaussian), this methodology may result in inaccuracies.

2.4.5.1 Entropy

Entropy is the most well-known information theoretical measure, defined as the equiv-
alent probabilities, or the uncertainty, involved in the value of a stochastic variable or the oc-
currence of a random process. Considering the use of entropy in the anomaly detection field,
it is efficient in describing traffic features, such as source/destination ports or IP addresses,
as distributions, since there are certain types of anomalies causing significant disturbances on
these distributions. In this manner, it is possible to detect, for instance, a port scan attack,
indicated by a change in the entropy of destination ports, or even the occurrence of a DDoS
attack, denoted by changes in the entropy of source/destination IP addresses [120].

David et al. [121] proposed an enhanced detection of DDoS attacks through a fast
entropy method and the use of flow-based analysis. Authors aggregate the observed flows into
a single one with consideration to the flow count of each connection at a certain time interval
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Table 2.8: Comparison of classification-based anomaly detection approaches

Paper Year Tech.a Anomaly Type b Dataset b Sourcec Validation Metrics 

Swarnkar 
and 
Hubballi 
[104] 

2016 
Naïve 

Bayesian 
buffer overflow, 
shell-code attacks 

Network of IIT 
Indore (R) and 
HTTP attack 
dataset (R) 

- Detection rate, FPR 

Klassen and 
Ning [102]  

2012 
Naïve 

Bayesian 

Black Holes, 
selective forwarding, 
DDoS (S) 

NS2 simulated 
network 
traffic data (S) 

- 
Confusion Matrix ( TP FP 
Precision Recall F-
measure) 

Tao et al. 
[103] 

2008 
Naïve 

Bayesian 

Scan attack, DoS, 
ARP attack, 
Fragment attack, 
and comprehensive 
attack (R) 

DARPA1999 (S) TCP dump average detection rate 

Kabir et al. 
[109] 

2017 LS-SVM 
DoS, Probe, R2L, U2R 
(R) 

KDD99 (R) TCP dump 

Precision, recall, F-
value, probability of 
detection, probability of 
correct detection, FPR, 
accuracy 

Wang et al. 
[108] 

2017 SVM 
DoS, Probe, R2L, U2R 
(R) 

NSL-KDD (R) TCP dump 
Accuracy, DR, False 
alarm rate 

Erfani et al. 
[107] 

2016 SVM Outliers (R)  

UCI Machine 
Learning 
Repository (R) 
and two 
synthetic 
datasets (S) 

- 
ROC and Area Under the 
Curve (AUC) 

Catania et 
al. [112] 

2012 SVM 
Generic attack 
distributions (R) 

1998 DARPA 
(S) 

TCP dump 
Attack Detection rate 
(DR) and False Alarm 
rate (FA). 

Amer et al. 
[106] 

2013 SVM Outliers (R)  
UCI machine 
learning 
repository (R) 

- 
area under the ROC 
curve (AUC) and ROC 
curves 

Subba et al. 
[110] 

2016 
Artificial 
Neural 

Networks 

DoS, Probe, R2L, U2R 
(R) 

KDD99 (R) TCP dump Accuracy, DR 

Saeed et al. 
[111] 

2016 
Random 
Neural 

Networks 

Data integrity 
attacks and ilegal 
memory access (S) 

wireless 
sensor nodes–
based IoT 
system (S) 

- 
Accuracy, FPR, FNR, 
TPR, TNR 

Brown et al. 
[112] 

2016 

General 
Regression 

Neural 
Network 

Generic anomalous 
instances (S) 

UNB ISCX 
dataset (S) 

features of 
application 
layer 
protocols 

Accuracy, DR, FNR, TNR, 
FPR 

Ashfaq et 
al. [113] 

2017 

Neural 
Network with 

random 
weights 

DoS, Probe, R2L, U2R 
(R) 

NSL-KDD (R) TCP dump Accuracy 

Aburomman 
and Reaz 
[115] 

2016 
Ensemble 

(SVM, k-NN, 
PSO, WMA) 

DoS, Probe, R2L, U2R 
(R) 

KDD99 (R) TCP dump Accuracy 

Sornsuwit 
and Jaiyen 
[116] 

2015 

Ensemble 
(Adaboost, 

Naïve Bayes, 
MLP, SVM, DT) 

R2L, U2R (R) KDD99 (R) TCP dump Sensitivity, Specificity 

Bukhtoyarov 
and Zhuckov 
[117] 

2014 
Ensemble 

(GPEN, neural 
networks) 

DoS, Probe, R2L, U2R 
(R) 

KDD99 (R) TCP dump DR, FPR 

aClassification Techniques/Methods used. 

bData precedence; R=Real, S=Simulated. 
cSource types in blank are either not clearly specified by the authors or not relevant in their research. 
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instead of taking the packet count of every connection. The second step is basically the calcula-
tion of the fast entropy of the flow count for each connection. Finally, an adaptive threshold is
generated based on the fast entropy and the mean and standard deviations of flow counts. The
constant update of the threshold with regard to the traffic pattern condition improves detection
accuracy, while fast entropy use reduces computational processing time.

Amaral et al. [122] proposed a feature-based anomaly detection system using both IP
Flow properties and a graph representation in order to carry out a deep inspection of network
traffic. The detection is based on the Tasallis entropy, a generalization of Shannon entropy.
The major divergence is that it has a parameter to define which probabilities will contribute
to the entropy result. It adjusts the sensibility of the anomaly detector, allowing it to adapt
to different types of networks and detect more inexpressive attacks than those detected by
methods based on volume analysis.

The work presented by Bhuyan et al. [123] brings an outlier-based anomaly detection
approach using generalized entropy and mutual information for creating a feature selection
technique capable of choosing a relevant, non-redundant subset of features. According to the
authors, since mutual information reduces the uncertainty about one random variable and gen-
eralized entropy measures the amount of uncertainty in the data, they make detection faster
and more accurate.

Moreover, Berezinski et al. [124] introduced a network anomaly detector, based on
Shannon entropy, in order to detect modern botnet malware. Their approach created a net-
work profile, which stores min and max entropy values in a sliding time window of 5 minutes.
These values were used for comparison with the observed entropy. This defines a threshold,
thus, abnormal dispersion or concentration for different feature distributions can be identified.
Finally, the authors used popular classifiers, such as decision trees and Bayesian networks, in
order to classify the anomalies.

Behal and Kumar [125] stated that since DDoS attacks and flash events cause substan-
tial alterations in network traffic patterns, information theory-based entropy or divergence can
rapidly capture such disparities in network traffic behavior. Therefore, they proposed a gen-
eralized anomaly detection algorithm, which exploits the entropy difference between traffic
flows. They employed a set of generalized ϕ-Entropy and ϕ-Divergence metrics, in which the
detection efficiency was directly connected to the information distance between legitimate and
attack traffic. The proposed algorithm resulted in high detection accuracy with regard to flash
events and High-Rate DDoS, overcoming the results of other information theory approaches in
the literature.

2.4.5.2 Kullback-Leibler distance

The Kullback-Leibler Distance or Divergence (KLD) measures the difference between
the true probability distribution P and an arbitrary probability distribution Q (an approximation
of P).

The work of Xie et al. [126] consisted of an algorithm to track long-term anomalies
in WSNs by using the Kullback-Leibler divergence to measure the differences between global
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Probability Density Functions (PDF) for each of two consecutive periods of time. This function
produces a time series to be analyzed and make decisions based on the adaptive threshold,
identifying any unusual changes. The approximate Kullback-Leibler divergences, obtained from
distributed computing with no significant accuracy degradation, is used to reduce the commu-
nication cost since it can reflect the variation among PDFs in a sensitive manner. Li and Wang
[127] proposed a differential Kullback-Leibler divergence based anomaly detection scheme for
wireless sensor networks. The authors used a clustering approach to separate the sensor nodes
into clusters. All the nodes composing a cluster had related sensed value and were physically
close to each other. Then, the Kullback-Leibler divergence was used within each cluster in order
to detect abnormal values by statistically measuring the disparity between two data sets. Their
work achieved a good detection rate and low false alarm rate while consuming less energy than
other similar studies in the literature.

2.4.5.3 Summary

In conclusion, information theoretic-based approaches have been emerging increas-
ingly in the network anomaly detection field. Their main benefits are that they can be highly
scalable, very sensitive and low to false positives. Other advantages are stated below.

• Operating in an unsupervised mode is possible.
• There are no assumptions about the primary statistical distribution for the data.
• Since information theory-based methods only use header information for calculation, the
complexity of time and space is a minor problem.

Besides, they are susceptible to these limitations.

• The adoption of statistical properties for the time series of traffic-related features (e.g.,
Gaussian) may cause inaccuracies.

• The detection of anomalies may be possible only if there is a significant presence of them
in the data set. This way, these approaches need a highly sensitive information theoretic
measure to detect irregularities made by very few anomalous patterns.

• Difficulty in associating an anomaly score with a trial case.

Table 2.9 summarizes some characteristics of discussed clustering approaches, regard-
ing data precedence, investigated anomalies, and validation metrics used to test detection
performance.

2.4.6 Evolutionary computation

The field of evolutionary computation, also named bio-inspired computing [128], is
a set of intelligent algorithms and methods inspired by natural evolution and able to learn
and adapt like biological organisms [129]. It encompasses genetic algorithms (GA), genetic
programming (GP), evolution strategies (ES), particle swarm optimization (PSO), and artificial
immune systems (AIS) [130, 131].

2.4.6.1 Artificial Immune Systems (AIS)

Artificial Immune Systems (AIS) are adaptive systems, enhanced by theoretical im-
munology and biological immune system functions, principles and models, and are applied to
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Table 2.9: Comparison of Information Theory anomaly detection approaches

Paper Year Tech.a Anomaly Type b Datasetb Sourcec Validation Metrics 

David et al. 
[121] 

2015 Entropy DDoS (R) CAIDA dataset (R) IP flow 
Empiric entropy 
variation analysis 

Amaral et 
al. [122]  

2017 Entropy 

DDoS, alpha flow, 
portscan, 
network scan 
(R/S) 

Universities traffic (R) IP Flow TPR, FPR 

Bhuyan et 
al. [123] 

2016 Entropy 
DoS, probe, R2L, 
U2R (S)  

Testbed dataset (S), 
KDDcup99, NSL-KDD, 
UCI ML repository 
datasets (R) 

Packet/ 
flow 
records 

Detection rate, 
precision, recall, f-
measure 

Berezinski 
et al. [124] 

2015 Entropy 
Port scan, DDoS 
(S) 

Legitimate traffic from 
medium size network 
(R) 

IP flow 
Correlation, 
Accuracy, FPR, TPR, 
ROC 

Behal and 
Kumar 
[125] 

2017 Entropy 
DDoS, flash 
events (S) 

MIT Lincoln dataset, 
FIFA, DDoSTB, and 
CAIDA datasets (R) and 
D-ITG traffic generator, 
Bonesi (S) 

IP flow 

DR, precision, FPR, 
TNR, NPV, F-measure, 
F-measure 
complement, 
Classification rate 

Xie et al. 
[126] 

2017 
Kullback-
Leibler 

Long-term 
anomalies 

RSS measurement from 
UMICH network (R) 

- FPR, Accuracy, ROC 

Li and 
Wang [127] 

2012 
Kullback-
Leibler 

Generic anomaly 
data values (R) real sensed data (R) - Detection rate, FPR 

aInformation TheoryTechniques/Methods used. 
bData precedence; R=Real, S=Simulated. 
cSource types in blank are either not clearly specified by the authors or not relevant in their research. 

problem-solving, as defined by de Castro and Timmis [132].

The authors of [133] presented EPAADPS, a proactive anomaly detection and preven-
tion system based on an Artificial Immune System (AIS) aiming to identify and prevent new and
undetected anomalies. Their motivation lied on gaps found in related previous studies, such
as the lack of co-operation between detectors in order to classify any pattern as anomalous,
the identification and inhibition of novel and zero-day attacks and lacks in self-configuration,
learning, adaptability and preventive abilities. The whole system consists of three modules:
the repertoire training module (RTM), responsible for selecting efficient detectors to generate
a detector set (DS); the vulnerability assessment module (VAM), which creates collaborative de-
tector agents (DA) able to correctly identify and flag any test set instance happening to be an
anomaly; and response module (RM), which takes appropriate preventive actions in the cases
where VAM found an anomalous instance. Saurabh and Verma also combined PCA and min-max
normalization as a pre-processing feature in order to make the dataset both substantial and
stable, respectively. In this manner, the number of features is reduced, helping the choice of
better-trained detectors.

Moreover, Igbe et al. [134] proposed a distributed NIDS against cyber-attacks using
the Negative Selection Algorithm (NSA), which exist in the AIS field. The entire system has au-
tonomous agents communicating with each other while running the NSA to create classification
rules. These rules and identified threat vectors are shared among all agents and enhance the
fast detection of more problems.
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Shahaboddin et al. [135] introduced Co-FAIS, a cooperative-based fuzzy artificial im-
mune system for detecting malicious activities in a WSN. The adopted defense strategy is mod-
ular and derived from the danger theory of the human immune system as an AIS. The agents
work in a mutual way in order to identify attackers or any abnormalities in sensor behavior re-
garding the context antigen value (CAV). Then, agents inform the Fuzzy Q-learning algorithm
initiation threshold, which examines the attack behavior and checks if the system can respond
and defend itself. That response was designed to act similar to the ability of rapid response
to recurring attacks present in a natural immune system. The response module elaborates an
attack signature and eliminates it from the safe list; therefore, if repeated, the reaction to the
same attack will be quicker.

2.4.6.2 Genetic algorithms (GA)

Genetic algorithms (GA) are commonly used as part of a whole intrusion detection
system together with other techniques. As in [136], the authors use a genetic algorithm to
transform the data set such that an SVM classifier can better process it. In [124], for instance,
the authors combine a genetic algorithm (GA) with kernel principal component analysis (KPCA).
The genetic algorithm creates a new optimal set of features and assigns a separate group with
a certain priority to each obtained feature.

In their research [137], Singh and Kushwah employed genetic algorithms to build an op-
timized cluster-based intrusion detection system in wireless sensor networks. The entire system
was divided into four modules: the data collection module, which makes the head node observe
the movement of the member sensor node; the intrusion information module, which gathers
intrusion information for explanation; the intrusion detection module, responsible for setting
a device activity as the misbehavior or legitimate behavior prior to a threshold; and the alert
module, in which the cluster-head node alerts nearby nodes about the existence of intrusion. A
genetic algorithm is used to mutate the nodes presenting less energy by a mutation parameter
with a mutation probability in order to flip the node energies; thus, power consumption and
network efficiency are improved.

Another approach using Genetic Algorithms is presented by Hamamoto et al. [138].
The GA is used to deal with uncertainties in network traffic, and through natural selection, learn
the normal characteristics of the traffic flows. As all traffic attributes used in the research are
numeric, the authors applied a numeric chromosome encoding to optimize each time interval
separately and each attribute in parallel. The result is the Digital Signature of Network Segment
using Flow Analysis (DSNSF), a prediction of the network traffic behavior in each time interval.
Moreover, the authors also added a Fuzzy logic approach to assess whether a time interval in
the IP flows data has an anomaly or not. The evaluation was conducted by using a real network
traffic from an university with simulated anomalies injected in some flow entries.

2.4.6.3 Differential evolution

Differential evolution is a global search evolutionary algorithm also used for detecting
anomalies. Although it is not widely used yet, it has great potential in order of being worthy to
mention in this section. It encompasses two concepts within the area: the idea of using larger
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population from genetic algorithms and self-adapting mutation from evolutionary strategies.
Elsayed et al. [139] applied a feature reduction mechanism using a flexible neural tree to
select significant traffic features and then adopted a differential evolution algorithm to evolve
individual (rules) for anomaly detection. A fitness function calculates the quality of every rule
or individual.

2.4.6.4 Particle swarm optimization

Particle Swarm Optimization is a common evolutionary computation technique used
for anomaly detection. Its main purpose is to perform an optimum search, and that is why
this algorithm is mainly combined with clustering techniques and classifiers, such as k-means
[34, 93] and SVM [115, 140, 141], for instance (please refer to works discussed in sections 6.2
and 6.4).

Bamakan et al. [142] proposed a novel intrusion detection framework by using a modi-
fication of the PSO, called time-varying chaos particle swarm optimization (TVCPSO). It is a new
adaptive, robust, precise optimization method, aimed at doing parameter setting and feature
selection for multiple criteria linear programming (MCLP) and SVM simultaneously. The authors
introduced time varying inertia weight and a time varying acceleration coefficient, along with
the adoption of the chaotic concept in the PSO. In this manner, the PSO algorithm searches the
optimum faster than normal, while avoiding the search being stuck to a local optimum.

2.4.6.5 Summary

Evolutionary computation methods are increasingly obtaining distinction due to their
intelligent algorithms that can learn and adapt like real living organisms, therefore being able
to produce latent solutions to many of the complex network problems that have been intensified
recently. Other advantages of these methods are the following.

• They add to intrusion detection systems capabilities for parallel processing.
• Prior knowledge of the problem space is not required.
• The natural retraining ability makes the entire system more adaptable.
• Noise and discontinuities existing in the dataset do not cause a considerable impact on
solutions.

Although their efficiency, evolutionary methods also have some limitations.

• The fitness function may not be trivial to find.
• Choosing the optimal parameters is hard.
• Sometimes, it can be a complicated task to map the problem into a biological approach.

Table 2.10 summarizes some characteristics of the discussed evolutionary computation
approaches, with regard to data precedence, aimed network paradigm, techniques, anomalies,
and validation metrics used to test detection performance.

2.4.7 Hybrid/others

This section presents hybrid approaches to anomaly detection, which are a combi-
nation of various classes of algorithms, techniques, and methods. Additionally, unclassified
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Table 2.10: Comparison of evolutionary computation anomaly detection approaches

Paper Year Techa Anomaly Typeb Datasetb Sourcec Validation Metrics 

Saurabh and 
Verma [133] 

2016 AIS 
DoS, Probe, R2L, 
U2R (R) 

KDD99 (R) TCP dump FPR, DR 

Igbe et al. 
[134] 

2016 AIS 
DoS, Probe, R2L, 
U2R (R) 

KDDTrain+20% 
(R) 

TCP dump DR, FPR 

Shahaboddin 
et al. [135] 

2014 
AIS, 
FQL 

DDoS (S) NS-2 simulation 
(S) 

UDP traffic Accuracy, FNR, FPR 

Singh and 
Kushwah [137] 

2016 GA WSN node issues 
Sensor Field of 
Area 100×100 m 
(R) 

- 

Packet delivery rate, end-to-
end delay, distance vector, 
system lifetime and 
throughput 

Hamamoto et 
al. [138] 

2017 GA 
DoS, DDoS, Flash 
crowd (S) 

University 
dataset (R) 

NetFlow 
Accuracy, precision, recall, F-
measure, FPR, ROC AUC, Mis. 
Rate 

Elsayed et al. 
[139] 

2015 DE 
DoS, Probe, R2L, 
U2R (R) 

KDD99 (R) TCP dump DR, FPR, FNR 

Bamakan et 
al. [142] 

2016 PSO 
DoS, Probe, R2L, 
U2R (R) 

KDD99 (R) TCP dump Accuracy, DR, FPR 

aEvolutionary Computation Techniques/Methods used. 

bData precedence; R=Real, S=Simulated. 
cSource types in blank are either not clearly specified by the authors or not relevant in their research. 

techniques, which are not listed in previous sections but are still interesting and promising, are
also listed here.

Grill and Pevný [143] state that successive alarm analysis is costly and cannot cover all
alarms, only a small portion, as well as the noise in training data is always an important feature
to consider. Moreover, combining anomaly detectors, although simple, may become a signifi-
cant challenge when it attempts to combine the output of individual detectors. Therefore, the
authors propose a novel approach to finding a convex combination of various anomaly detector
outputs and carried out a study on the effects of label noise in the training dataset over the
accuracy of combinations achieved by different detectors. They compare their approach to two
existing ensemble methods, one using NetFlow and the other using HTTP server logs.

Another interesting hybrid intrusion detection system is proposed by Al-Yaseen et al.
[144], in which the authors combine the SVM and extreme machine learning (EML) classifiers and
the k-means clustering technique. The classifiers are responsible for reducing false positives as
well as improving detection accuracy. The categories of attacks are divided into three groups;
four SVMs classify instances as DoS, U2R, R2L, or Normal while an ELM classifier detects probe
attacks, since they are better for them than an SVM. On the other hand, k-means is modified to
build a suitable training dataset, which can meaningfully contribute to improving the classifiers’
training time and overall performance. The modification consists of selecting the initial cen-
troids of clusters conditional to the maximum distance between them and dataset instances.
Five datasets are produced to each one of the five classification categories and serve as the
basis of creating accurate SVM and ELM classifiers.

Forestiero [145] used a swarm intelligence technique to build a bio-inspired clustering
algorithm in order to identify anomalies in distributed data streams. Bio-inspired agents fol-
low the principles of the flocking-based examination approach, which states that agents will
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interact autonomously with immediate neighbors and form flocks (clusters) of similar agents.
The similarity between agents depends on the carried data items and can be calculated using
various techniques such as measuring the Euclidian distance of associated data items.

Salem et al. [146] developed a framework for anomaly detection that operates in
wireless body area networks (WBAN). They combined the SVM classification algorithm with the
statistical linear regressive model. The SVM part classifies incoming sensor data as normal or
abnormal. Then, whenever an abnormality is found, a linear regressive prediction model ana-
lyzes it and decides whether the patient is entering a dangerous state or a sensor is reporting
incoherent readings. This decision is accomplished by building a decision tree and searching for
linear coefficients from normal vital signs falling inside a given threshold.

Wang et al. [147] combined three classes of algorithms for the purpose of introducing
a data abstraction phase situated between the well-known attribute construction and detec-
tion of model building phases that most IDSs have. Their idea was applied to process big data
by reducing the amount of data while keeping the valuable information they carry. For that
purpose, three strategies were proposed and evaluated. The attribute abstraction strategy was
based on applying PCA for reducing the data to a low dimensional subspace and then projecting
the testing data onto it in order to detect anomalies. The attribute selection strategy consists
of calculating the information gain (IG) to rank the correlations of each attribute to the class -
whether it is normal or attack - and select key attributes based on this ranking. After the se-
lection, the authors combined this with a k-nearest neighbor and a PCA or SVM-based detection
approach. Finally, the exemplary extraction strategy uses either k-means or affinity propaga-
tion clustering techniques to extract exemplars from the large audit data. After the extraction,
authors also combined this with a k-nearest neighbor, a PCA or an SVM based detection approach.

Adaniya et al. [148] created a hybrid anomaly-based clustering approach for anomaly
detection, combining the k-harmonic means (KHM) clustering method with the bio-inspired
heuristic firefly algorithm (FA). The traffic profile is created through the GBA tool by using
the historical traffic data, proposed by Proença et al. [149]. KHM solves the initialization sen-
sitivity of k-means and the FA helps it converge to local optima. This approach groups data
points in order to separate normal from abnormal ones. They achieved good outcomes, with
true-positive rates above 80% and false-positive rates below 20%.

Chen et al. [150] managed to build a novel classifier through an evolutionary com-
putation basis for intrusion detection. The central segment of this IDS is an artificial immune
system (AIS), which is enhanced by a population-based incremental learning (PBIL) procedure.
The PBIL enhancement in the AIS consists of evolving new antibodies with higher affinities than
older ones, which are not capable of properly recognizing the class (removal of weak antibod-
ies). Then, the authors combined the AIS-PBIL with collaborative filtering (CF) in order to cluster
all antibodies related to a target-occurrence and categorize target intrusions.

Bostani and Sheikhan [57] proposed a novel hybrid IDS framework consisting of anomaly-
based and specification-based modules. Their goal was the detection of two routing attacks that
cause significant problems in IoT: sinkhole and selective-forwarding attacks. The framework is
divided into three stages. In the first stage, the specification-based agents in the router nodes
identify suspicious nodes by analyzing the behavior of their host nodes and sending it to the root
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node. In the second stage, an anomaly-based agent located in the root node uses that informa-
tion to extract traffic features and create samples for each source node. This is accomplished
by using an unsupervised optimum-path forest algorithm and a MapReduce architecture for pro-
jecting clustering models. Finally, the last stage uses the first stage results to make decisions
about mistrustful behavior detected in the second stage through a voting mechanism.

Grill et al. [151] propose a local adaptive multivariate smoothing (LAMS) method to
effectively smooth an anomaly detector output in order to reduce the rate of unstructured false
positives by the Nadaraya–Watson estimator. It replaces the output of a networking event with
an aggregate of its output on similar network events observed previously.

Guo et al. [152] combine both misuse detection and anomaly detection to build an IDS.
The development is divided into 2 phases. The first phase is the elaboration of a lightweight
misuse detector based on the change of location of cluster centers. In phase 2, two anomaly
detectors are built using the k-nearest neighbor (k-NN) algorithm. By this combination, authors
were capable of detecting both known and unknown anomalies with a low false positive rate
(FPR).

As an emergent network paradigm, Software-Defined Networks (SDN) also face the
problem of DoS attacks, since massive malicious requests can truly harm their centralized control
characteristic. Thus, although many researchers propose detection mechanisms, most of them
only focus on detection itself. In this manner, Assis et al. [150] proposed GT-HWDS, a hybrid
autonomic defensive approach for SDNs against DoS/DDoS attacks by applying a game theory (GT)
decision-making model together with their Holt-Winters-based anomaly detection system (HWDS
[153]). The GT-HWDS system is fully able to detect, identify and mitigate events of DoS/DDoS in
SDN traffic. Their core contribution is the mitigation module performed by a GT-based method.
GT consists of changing a problem with opposing interests into a game, where many “players”
take actions to optimize the results of trying to achieve their objectives. Therefore, the system
analyzes a set of probable actions for both attacker (malicious nodes) and defense systems,
estimates rewards and costs for all measures, and finally, performs an optimal countermeasure.
This blocks (mitigates) any traffic originating from the attackers’ IP and port.

2.4.7.1 Summary

In summary, hybrid techniques are an excellent choice for situations in which the same
system might solve many distinct problems. Also, one technique may overcome the limitations
of others, leading to a more reliable system. These are the main advantages of hybrid anomaly
detection methods.

• Hybrid methods can benefit from the main features of both anomaly and signature-based
approaches.

• They can detect both known and unknown anomalies.

However, when developing hybrid methods, there some limitations to consider.

• As more techniques are used together, there is a high demand for computational resources,
increasing its cost.

• Dynamism is still an unsolved problem.
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Table 2.11: Comparison of hybrid/unclassified anomaly detection approaches

Paper Year Techa Anomaly Typeb Datasetb Sourcec 
Validation 
Metrics 

Al-Yaseen 
et al. [144] 

2017 
SVM, EML, k-
Means 

DoS, Probe, 
R2L, U2R (R) 

KDD99 (R) TCP dump 
FPR, detection 
rate, accuracy 

Bostani and 
Sheikhan 
[57] 

2017 
optimum-path 
forest algorithm 

Sinkhole attack, 
selective-
forwarding 
attack 

WSN simulator (S) - 
Accuracy, TPR, 
FPR 

Grill and 
Pevný [143] 

2016 
Classification 
methods 

Portscans, SSH 
brute force (R) / 
ZeroAccess and 
other malwares 
(R) 

Czech Technical 
University 
network (R) / 30 
arbitrary 
companies traffic 
data (R) 

NetFlow / 
HTTP logs  

Precision and 
recall 

Forestiero 
[145] 

2016 Flocking algorithm 
Generic 
anomalies 

Gauss and 
STREAM (S); UCI 
Machine Learning 
Repository and 
1998DARPA (S) 

TCP dump 

Normalized 
Mutual 
Information 
(NMI), Precision 
and recall 

Salem et 
al. [146] 

2014 
SVM and Linear 
Regression 

Outlier 
detection (R) 

Physionet 
database (R) 

- FPR, TPR, ROC 

Wang et al. 
[147] 

2016 
PCA, IG, AP, k-
means, SVM, k-NN 

http common 
attacks, DoS, 
Probe, R2L, U2R 
(R) 

Real http traffic 
dataset and 
KDD99 (R) 

- 
Detection rate, 
and execution 
time  

Adaniya et 
al. [148] 

2013 
K-Harmonic 
Means, Firefly 
Algorithm 

DoS, Flash 
Crowds (R) 

University 
network (R) and 
simulated 
anomalies (S) 

SNMP  

Chen et al. 
[150] 

2016 

AIS, population-
based incremental 
learning, 
collaborative 
filtering 

DoS, Probe, 
R2L, U2R (R) 

KDD99 (R) TCP dump Accuracy,  

Grill et al. 
[151] 

2017 
local adaptive 
multivariate 
smoothing (LAMS) 

Generic 
artificial attacks 
(S) and 
malwares (R) 

Czech Technical 
University (CTU) 
network (R) and 
varyed HTTP 
database (R) 

NetFlow, 
HTTP 
proxy logs 

AUC,  

Guo et al. 
[152] 

2016 
location of cluster 
centers, k-NN 

DoS, Probe, 
R2L, U2R (R) 

KDD99 (R) TCP dump 
DR, TNR, FPR, 
Accuracy 

Assis et al. 
[150] 

2017 
Game Theory 
(GT), Holt-Winters 

DoS, DDoS (S) 
University 
network traffic 
(R) 

NetFlow 
Precision, 
accuracy, drop 
rate 

aTechniques/Methods used. 

bData precedence; R=Real, S=Simulated. 
cSource types in blank are either not clearly specified by the authors or not relevant in their research. 

Table 2.11 summarizes some characteristics of the approaches discussed in this section,
with regard to data precedence, aimed network paradigm, techniques, investigated anomalies,
and validation metrics used to test detection performance.
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2.5 Open Issues

There are a significant number of challenges within the anomaly detection field. This
section aims to summarize the most relevant open issues found during the development of this
thesis and also to consider those most discussed in the literature. All of them were identified
by analyzing and comparing all surveys [9,12–18] listed in table 1 and every research addressed
in this survey. The list and a brief discussion upon each topic can be seen below:

• The concept of normality: It is one of the main steps to build a solution to detect network
anomalies. The question “how to create a precise idea of normality?” is what has driven
most researchers into creating different solutions through the years. This can be consid-
ered as the main challenge related to anomaly detection and has not been entirely solved
yet. Many of the works discussed in this survey tried to achieve this goal.

• Adaptability: Anomalies keep changing every time new ones are introduced or old ones are
improved to overcome current detection solutions. Therefore, IDSs need to be constantly
updated in order to adapt to those changes, and this is not an easy task.

• Dynamic profile update: Whenever an unknown attack is detected and addressed by
anomaly-based IDSs, the profile database needs to be updated with these new data. Nev-
ertheless, it is a challenge to carry out such updates dynamically, without compromising
performance and generating conflicts.

• Standard datasets: There are only a few openly available intrusion datasets with enough
information about attacks; however, none of them is a standard evaluation dataset for
anomaly detection. The lack of reliable public standard datasets, which can simulate
accurate network environments, is still a problem.

• Noisy data: Normal variations in datasets are also a problem when creating a profile since
they can be misunderstood as abnormalities if they are not well defined. Moreover, this
information is neither always clear in public datasets nor private ones.

• False alarm rates: Another problem is to keep false alarms as minimal as possible; although
it is still not possible to completely avoid them and build a one hundred percent reliable
IDS. That still remains a challenge.

• Real-time monitoring: The amount of traffic generated by computer networks today is
constantly increasing as Internet traffic doubles every year. Therefore, it has been difficult
to produce a reliable monitoring process on a network, in real time.

• Complexity: As researchers try to cover all the challenges mentioned above, the complex
nature of the systems increases by adding and mixing different techniques and approaches.
Additionally, regarding data collection and preprocessing, the complexity of today’s net-
work architectures also contributes to the persistence of this issue.

The graph in Figure 2.10 shows the relevance of each open issue discussed in this
section amongst the other analyzed surveys [6, 18, 9, 19, 20, 21, 10, 22] presented in Table
2.1, showing the most concerning issue in the anomaly detection field based on the study in
this survey. For instance, the complexity issue appeared in 43% of the other surveys, while
the standard dataset problem was considered in 60%. So, it can be observed that although
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many of the other discussed topics had a significant rate of discussion, the problem of not
having a standard and updated dataset that simulates a real environment and contains labels
for anomalies is a major concern among practitioners in the literature.

Figure 2.10: Occurrences (%) of discussed open issues in the analyzed surveys
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Chapter 3

The Proposed Anomaly Detection System using
Principal Component Analysis

In this chapter, the hybrid anomaly detection system using principal component analy-
sis is presented. However, before explaining its full process, Figure 3.1 summarizes the overall
operation of it. The system is divided in two parts: Traffic Characterization and Anomaly Detec-
tion. The traffic characterization is responsible for extracting quantitative attributes (bits/s,
packets/s and number of flows/s) from a flow database containing historical data about the
network segment activity, and generate the corresponding DSNSFs.

In the anomaly detection phase, the first step is the creation of confidence bands based
on the DSNSFs. The Detection Stage analyses those confidence bands along with the real time
network traffic observed from a network device (switch). This analysis is performed using only
the three quantitative attributes, and it identifies time intervals where an anomalous event
occurred. Then, the Reporting Stage is informed about those time intervals, which uses the
qualitative attributes observed from the network device in order to generate a top-N ranking
list. It contains useful and detailed information about the abnormal interval identified, such as
source and destination IP addresses and ports with higher occurrence frequency. At last, the
network administrator is notified about the abnormality and its qualitative information, so he
can direct its efforts in solving that issue.

3.1 Traffic Characterization

Principal Component Analysis (PCA) was first introduced in 1901 by Karl Pearson [154],
and it is a statistical technique used for data compression and classification. The main idea
of PCA is to reduce the dimensionality of a data set comprised of a large number of corre-
lated variables, retaining as much as possible of the variation of the data set. This is achieved
through transformation into a new set of variables, the principal components (PCs), which are
uncorrelated and arranged so that the first components retain most of the variation present in
all original variables, i.e., the input data can be represented by a reduced set of dimensions
without much loss of information [68, 69].

In the standard PCA algorithm, the input is an n×p matrix, composed by p columns
representing the dimensions (variables) and n lines, as the n samples of each variable.

Data collected from flow records are arranged in such a way that the traffic movement
of each day is denoted by three vectors containing a total of bits, packets and flows correspond-
ing to the 24 hours of each day. Thus, the input matrix of PCADS-AD algorithm is constructed
for each attribute separately. The p dimensions will be the p traffic movements (days) chosen
as a basis to generate the DSNSF, and the n lines will be the n measurements of bits, packets or
number of flows transmitted per second extracted from the flow records.
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Figure 3.1: PCADS-AD System Description

The PCA method used in the PCADS-AD characterization process is presented in Algo-
rithm 1. Since each traffic period has its own characteristics and seeking to prevent a period
from interfering in another one, the algorithm is performed in a one-minute time window (t =
24 hours/1 minute = 1440 time intervals).

First, it is required to move the origin to the mean of the data set, by subtracting the
mean from each column in the input matrix, so that its columns have zero mean. This is called
a mean-centered matrix, and it is important because it ensures that PCA dimensions capture
the true variance, and hence avoid distorted results due to differences in mean link utilization
[64].
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Algorithm 1 - Algorithm used for DSNSF creation

Require: Set of bits/s, packets/s or flows/s collected from historic database arranged in a n×p matrix.

Ensure: µ: a vector representing the bits/s, packets/s or flows/s sets of a day, arranged in 1440 intervals
of 1 minute, i.e. the DSNSF.

1: for t=1 to 1440 do.

2: Normalize the input data (mean deviation form).

3: Calculate the covariance matrix.

4: Calculate the eigenvectors and eigenvalues.

5: Select the eigenvector associated to an eigenvalue of intermediate value amongst the others

6: Multiplies the selected eigenvector by the input matrix in mean-centered form

7: end for

8: return µ

Then, the covariance matrix is calculated by the algorithm, using the mean-centered
matrix, as can be seen in Equation 3.1:

CX =
1

n− 1
XTX, (3.1)

where CX is the covariance matrix with p rows and p columns, X is the input n×p
matrix in mean-centered form, and n is the number of bits, packets or flow samples.

The covariance matrix measures in what way the variables of X change together and
provides a main diagonal of variances, specifying the direction and strength of the linear corre-
lation amongst two variables [155]. It is used to compute two important structures: the eigen-
vectors and eigenvalues. Each dimension has an associated eigenvector, which points toward
the variance of data, and an eigenvalue, a numerical value which indicates the significance of
its associated dimension among the others. In other words, it shows the amount of information
of the data set that a dimension can represent. These structures are obtained by decomposing
CX as shown in Equation 3.2):

CX = QDQT , with QTQ = I, (3.2)

where CX is the covariance matrix, the columns of the matrix Q are the orthonor-
mal eigenvectors of CX, and D = (δ1, δ2, δ3, . . . , δn) is the diagonal matrix of eigenvalues.
This decomposition is computed by solving the symmetric eigenvalue problem, as presented
in [156, 157].

After computing all eigenvectors and eigenvalues, the eigenvectors with the highest
eigenvalues are called principal components, and they are used by standard PCA to compose
a new reduced dataset. In the proposed algorithm, a digital signature using only one princi-
pal component (eigenvector) is created. However, instead of selecting the eigenvector with
the highest eigenvalue, an eigenvector with a corresponding eigenvalue of intermediate value
is chosen. This is because the most significant eigenvector represents the dimension with the
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largest variance among all components of the dataset, and creating a digital signature based on
that premise will cause an impact on the normal traffic pattern of the network segment, such
as the incorporation of irregular outliers present in the traffic of the day. And similarly, the use
of an eigenvector of low significance may involve the incorporation of situations where there
has been server crash or power outage.

After numerical experiments, it was observed that a component, whose variance corre-
sponds to an average (intermediate) value between the components of maximum and minimum
variances, produces a more uniform digital signature, befitting with the normal behavior. So, it
prevents possible disparities (anomalies) in the training dataset to generate noise in the DSNSF.
Figure 3.2 shows the difference between digital signatures (DSNSFs) generated using eigenvec-
tors of maximum, intermediate and minimum significance. In green, there is the real traffic in
bits/s for the 24 hours of November 08th, 2012, and in blue, the DSNSFs generated for that day.
Note that in Figure 3.22 (a), where an intermediate eigenvector is used, the DSNSFs are closer
to the real traffic behavior. In contrast, the signatures from Figure 3.2(b) and Figure 3.2(c) do
not show good traffic estimations, as they notably deviate from observed real traffic behavior.
Furthermore, note that in Figure 3.2(c), there are some spikes in the DSNSF, which is a result
of outliers or anomalies in the historical traffic data used to create the DSNSF. Thus, a median
eigenvalue is chosen among all p eigenvectors.

Figure 3.2: Comparison between DSNSFs generated using eigenvectors of intermediate (a), minimum (b)
and maximum (c) significance

In step six of Algorithm 1, for each time interval t, the selected eigenvector is multi-
plied by the mean-centered matrix, as show in Equation 3.3:

µt = q̃Tt ×XT , with t = 1, . . . , 1440, (3.3)

where µ is the DSNSF, q̃ is the selected eigenvector that has an eigenvalue with an
median value, and X is the input matrix in mean-centered form.

Finally, after computing it for each time interval t, the output is the DSNSF.
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3.2 Anomaly Detection

The DSNSF is a network profile which estimates the traffic behavior of a network seg-
ment, and Figure 3.2 (a) illustrates an example. The blue line is the DSNSF, which describes
the expected network behavior for the traffic of bits transmitted per second, while the green
area is the real network activity. Based on this, wherever the real traffic exceeds or goes below
the DSNSF, that particular time interval will be classified as an anomalous event, which is the
central idea of a profile-based anomaly detection approach. The detection system will then
trigger an alarm so that the network administrator can direct its efforts to that problem. How-
ever, there are some time intervals which deviate slightly from the DSNSF and cannot possibly
be a real anomaly. If all deviations were considered an anomaly, hundreds of alarms would be
generated for each day, contrasting with the idea of self-management, as the network adminis-
trator would be notified numerous times to observe and analyze an excessive number of alarms,
where most of them might not be relevant.

Then, to minimize the excessive appearance of alarms and to classify as anomaly only
critical and important volume deviations, it is proposed the creation of confidence bands or
thresholds, based on the DSNSF. According to Assis et al. [63], confidence bands are an ef-
fective approach for anomaly detection, in which it is possible to specify an interval where
deviations are considered normal. In this manner, a higher and a lower threshold to the DSNSF
are created, so that the real traffic which slightly varies from the DSNSF will not set off an
alarm. These percentages are based on the eigenvalue of the eigenvector chosen by the algo-
rithm to create the DSNSF in the traffic characterization phase. The sum of all the eigenvalues
of a data set results in the total variance of that dataset, and since the DSNSF is generated from
an eigenvector, explicit in Section 3.1, the eigenvalue that represents the eigenvector variance
(significance) may thus represent the variance of DSNSF itself, leading to a percentage, α. From
α, the thresholds, called Eigenvalue Limit (EL), are calculated as described in Equation 3.4 and
Equation 3.5:

ELup = µ+ µ
α

100
, (3.4)

ELdown = µ− µ
α

100
, (3.5)

where ELup is the upper threshold, ELdown is the bottom threshold, µ is the DSNSF,
and α is the percentage obtained from the eigenvalue associated with the eigenvector used in
the DSNSF composition.

In addition, as the system analyses the traffic of bits, packets and flows, it was devel-
oped to trigger an alarm only when an abnormal event is detected in two or more attributes in
the same time interval.

Hereafter, PCADS-AD uses the qualitative attributes extracted from traffic flows, as
shown in Figure 3.1. After collecting this information, they are processed in order to find the
total occurrence for each IP address and Port number. When an alarm is triggered, the system
starts the Reporting Stage, which generates a top-N list for the detected anomalous time interval
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containing the N source and destination IP addresses and Ports, and their occurrences. These
qualitative statistics help the network administrator to find the source and target of the attack,
while Port numbers can identify the application that was targeted by the attacker or had a
problem.
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Chapter 4

Performance Evaluation

In this chapter, all evaluations and experiments to consolidate the proposed anomaly
detection system is divided into evaluation scenarios. In each scenario, the performance of
PCADS-AD is evaluated by using real and simulated data, statistical measures and comparisons
with other methods.

4.1 Scenario 1

In this scenario, the performance of PCADS-AD is evaluated regarding the traffic char-
acterization phase used to create the DSNSF, and the anomaly detection accuracy. Also, the
Reporting Stage is demonstrated.

4.1.1 Data Set

All experiments were performed using real flow data in order to test whether the pro-
posed system can operate in a real environment. Traffic flows were collected from a core switch
of the State University of Londrina (UEL) from September 10th to November 9th 2012. The uni-
versity network consists of 5000 equipment and 3000 wireless devices with a core type Extreme
BD 8801. It is used NFDUMP tools to collect and export traffic flows from the core switch. Flows
are exported using a 1:256 sampling rate in the version 5 of sFlow format. This protocol is widely
used in high-speed networks (gigabit or above) due to its sampling mechanism [34]. The Core
Switch is the University main router, where the entire aggregate traffic from border segments
is concentrated.

Due to sampling in the sFlow flow extraction process, the general traffic flows ex-
tracted for both packets/s and flows/s of the university presents a total correlation that will
be observed in the experiments performed. This is because each flow is an aggregation of a
number of packets, and according to the use of a 1:256 sampling rate, each flow aggregates 256
packets, ensuing a similar behavior between these two attributes.

4.1.2 Evaluation Metrics

The effectiveness of the digital signatures (DSNSF) were measured by submitting it to
two experiments: Normalized Mean Square Error (NMSE) and Correlation Coefficient (CC). The
NMSE test measures the differences between time series predicted by a model and what was
really observed. This metric has 0 (zero) value as its optimal measure [158]. The Correlation
Coefficient indicates how much two objects are associated. In this metric, the value 1 indicates
total correlation, 0 indicates that two objects are not correlated, and -1 specifies an inverse
correlation [159].
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The detection rate was evaluated by using Accuracy Rates and the Receiver Operating
Characteristics (ROC) graph. A ROC graph is defined as a technique to measure the performance
of classifiers and is widely used in signal detection theory to describe the trade-off between hit
rates (true-positive rates) and false alarm rates (false-positive rates). TPR (true-positive rate)
describes correctly detected signals, while FPR (false-positive rate) describes how often a signal
was wrongly detected. Then, the Accuracy measure describes the overall hit rate, i.e., the hit
rate of both classes (positive and negative) [160].

4.1.3 DSNSF Creation

The methodology of the proposed system assumes that a DSNSF is generated for each
workday, based on the network activity history of the previous weeks [38] [39]. However, before
evaluating the characterization, we aimed to find out the number of weeks in which PCADS-AD
would achieve better results in generating the DSNSF. Figure 4.1 shows the NMSE of the DSNSFs
created for bits, packets and flows using from one to ten weeks prior to the second week of
November (from 11/05 to 11/09). As can be seen in Figure 4.1 (a), for the traffic of bits/s,
PCADS-AD started to produce better NMSE indices using five weeks. Above five weeks, the re-
sults are almost the same. For the traffic of packets/s and flows/s presented in Figure 4.1 (b),
there was a divergence in the results by using one to four weeks, but the NMSE indices of the
five analyzed days started to steady by using five weeks.

Figure 4.1: NMSE indices over the generated DSNSFs and the real movement of analyzed days using from
1 to 10 weeks

Hence, through this analysis, the data set was divided into two groups: The workdays
of the first five weeks are used by PACDS-AD as historical information for DSNSF creating, and
the last four weeks for system evaluation.

4.1.4 Traffic Characterization Evaluation

Figure 4.2 illustrates the DSNSFs for the traffic of bits, packets and number of flows
transmitted per second generated by the traffic characterization phase. They were compared
with the real traffic of the university (in green) observed during the 24 hours of a day. By analyz-
ing the figure, the digital signature curves of the three attributes could efficiently estimate the
normal behavior of the network, as a great adjustment between the DSNSF and the real traffic
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can be observed. During the period from 3:30 to 5:30 a.m. there was a disparity between the
DSNSF and the real traffic due to a particularity of the university network behavior. Every day a
backup is made at the university during that period, resulting in an excessive amount of traffic.
Since the backup was performed during the past weeks but not during that period presented
in the figure, the traffic characterization algorithm learned that behavior. By the time the
backup was no longer made, the DSNSF rapidly adapted to the new network behavior without
the backup.

Figure 4.2: Traffic Characterization example comparing the DSNSFs of bits, packets and number of flows
transmitted per second generated for four days in November 2012

The first evaluation metric used was the Normalized Mean Square Error, and results are
presented in Figure 4.3. The presented system showed good results for all the three attributes,
obtaining error indices closer to zero (bellow 0.1). In some cases, the error is higher because
October 15th and November 2nd are national holidays, resulting in a network activity different
from the usual behavior.
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Figure 4.4 presents the results when calculating the Correlation Coefficient (CC) over
the DSNSFs and the Real traffic. Figure shows that the correlation test for the DSNSF of Bits/s
was better than for Packets/s and Flows/s, but all had good results, with an average of 0.9 for
bits/s and an average of 0.7 for Packets/s and Flows/s.

Figure 4.3: NMSE tests between the generated DSNSFs and the real traffic from October 15th to
November 09th

Figure 4.4: Correlation tests between the generated DSNSFs and the real traffic from October 15th to
November 09th

4.1.5 Anomaly Detection Evaluation

To properly evaluate the anomaly detection system, it was used a tool to artificially
inject anomalous events in the real traffic. Anomalous situations simulated in the data set by
using a tool named Scorpius [161], developed by our network research group, which simulates
network anomalies in real traffic flow data, such as DoS, DDoS, and Flash Crowd, used by the
network group to help test anomaly detection methods. The anomalies are injected in the col-
lected flow data without real and direct intervention in the network, preserving it from impacts
caused by anomalies.

A DoS is a single-source attack that attempts to deny access to shared network services
or resources. Generally, it uses a great packet volume containing useless traffic to congest and
wastes network resources that could service legitimate traffic, for example, TCP SYN flooding,
UDP flooding. When that denial is composed of multi sources, it is called DDoS. In DDoS, popula-
tions of network nodes are corrupted with malwares, so that the attacker can manipulate them
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in order to set up his attack against the targeted service, strengthening the attack. Therefore,
as it comes from diverse and common network nodes, it makes defense more complicated [162].
According to [163, 164], the affected attributes for DoS/DDoS are packets and number of flows.

A Flash Crowd is defined as large floods in traffic. It occurs when a rapid growth of
users attend to access a specific network resource, causing a dramatic surge in server load.
Unlike DoS/DDoS attacks, this anomaly consists of legitimate requests, usually an aftermath
of mutual reaction to hot events. For example, when a contest result in published on a URL,
when there are multiple access on an on-line play-along web site for a popular television pro-
gram, or an e-commerce web site carries a big sale. Although it is not malicious, if there is not
enough time to react and to provide necessary resources to handle the overload demand, those
flash events can seriously flood or lead to a complete web service failure [27, 26]. Flash Crowd
anomaly affects all three volume attributes studied in this thesis (bits, packets and number of
flows) as presented in [164].

Thus, DoS, DDoS and Flash Crowds were simulated in the data set described in section
4.1.1, in order to create a template containing all infected time intervals, aiming to compare
it with the alarms generated by the proposed system. Therefore, in Table 4.1 all information
and parameters regarding the anomaly simulation is presented. All IP and port numbers are
ficticious, created for testing purposes.

Figure 4.5 illustrates the alarm generation for the traffic of bits, packets and number
of flows transmitted per second for two days with artificially injected anomalies. The thick
blue line is the DSNSF, and the thin lines are the lower and higher thresholds, called ELdown

and ELup, which are calculated using the eigenvalue limit. Any time interval where the real
traffic remains inside the area between the thresholds is considered normal, triggering an alarm
(red) wherever it deviates from those boundaries. Also, at figure bottom, the time-frames when
the corresponding simulated attacks took place are depicted for comparison. The alarms in red
shown in the figure are the possible anomalies detected for each attribute distinctly, but ac-
cording to the proposed approach, the system will only notify the network administrator when
an alarm sounds in two or more attributes. It is observed that the system correctly identified
the occurrences of anomalous traffic caused by the artificially injected anomalies.

Figure 4.6 shows the ROC graph for the four weeks selected for study. The ROC graph
was constructed by calculating the true-positive and false-positive rates for each day based on
the labeled anomaly data set that defines what is an anomaly or not in the traffic. Also, the
detection using other threshold values to compare with the Eigenvalue Limit was tested. These
other values were produced varying the threshold calculated via PCA by 2% and 4% to more and
less. Analysis of the curves showed there were few great improvements or losses in the TPR and
FPR by varying the eigenvalue limit. PCADS-AD performed well, with 94% true-positive rates in
94% and 23% false-positive rates.

Also, Figure 4.7 presents the calculated accuracy for the same studied period of four
weeks and the same threshold comparison performed in Figure 4.8. This measure is the propor-
tion of true results (true-positives and true-negatives) obtained, thereby achieving an accuracy
average of 85%. Again, it can be noted that there was little improvement or loss in accuracy
results by varying the eigenvalue limit. Thus, the Eigenvalue Limit approach proved to be ef-
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Figure 4.5: Alarm generation example, depicting alarm time-frame and attack time-frame
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Table 4.1: Anomaly simulation parameters using Scorpius tool

Day Anomaly Time 
interval Source IP Source 

port Destination IP Destination 
port Protocol 

10/16/12 DoS 9h - 11h 28.235.160.128 617 83.94.15.23 6008 TCP 

10/17/12 DDoS 12h - 15h 10.90.123.456 - 60.89.255.157 6724 ICMP 

10/19/12 DDoS 5h - 7h 5.90.123.456 - 180.122.5.131 8188 UDP 

10/22/12 DDoS 3h - 8h 5.90.123.456 - 220.151.209.46 3486 TCP 

10/23/12 Flash 
Crowd 0h - 8h 15.90.123.456 - 108.57.76.10 7213 TCP 

10/25/12 Flash 
Crowd 17h - 19h 5.90.123.456 - 12.12.12.12 5055 TCP 

10/26/12 DDoS 6h - 10h 7.90.123.456 - 
125.127.254.176 

 
2222 

TCP 

10/29/12 DDoS 16h - 19h 5.90.123.456 - 
3.40.112.112 

 

9031 

 

TCP 

10/31/12 Flash 
Crowd 4h - 8h 7.90.123.456 - 

148.236.85.173 

 
3446 

TCP 

11/01/12 DDoS 16h - 18h 10.90.123.456 - 
218.209.223.219 

 
2717 

TCP 

11/05/12 Flash 
Crowd 15h - 17h 10.90.123.456 - 254.234.112.61 2365 TCP 

11/06/12 DoS 5h - 8h 130.232.209.93 7530 67.17.25.44 673 TCP 

11/07/12 DoS 10h - 13h 74.110.154.14 8006 122.191.184.218 2346 ICMP 

11/08/12 DDoS 9h - 10h 5 - 10.10.10.10 4041 TCP 

fective.

After an anomalous situation is detected, the PCADS-AD Reporting Stage can display
the qualitative information about the anomalous interval in order to assist the network adminis-
trator to take measures to solve the problem. IP addresses and Port numbers are very useful and
significant information for accurate and fast anomaly detection. These attributes may reveal
where the problem occurred, or who caused it, and also what kind of application was targeted.

To exemplify this module, two days with artificial anomalies was selected from the
data set, both using fictitious IP addresses and Port numbers. Table 4.2 summarizes the infor-
mation about the attack simulation in this testbed.

Figure 4.8 and Figure 4.9 display the PCADS-AD Reporting Stage. Both Figures show the
top-3 source and destination IP addresses and Ports that occurred for a time interval when the
alarm was triggered, and also a graph showing the traffic anomalous behavior. The Reporting
Stage can exhibit the top-N statistics, but it is only used the top-3 because it was enough for
these examples.
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Figure 4.6: ROC graph showing TPR and FPR trade-offs of four weeks of experiments

Figure 4.7: Accuracy Rate of four weeks of experiments

By analyzing the results in Figure 4.8 and Figure 4.9, the top-1 destination IP addresses
and Ports identified by PCADS-AD were actually the fictitious attributes from Table 4.2 used in
the anomaly simulation. It can be verified that an anomalous situation affects a large traffic
flow proportion when compared to normal activity not just related to volume, but likewise to
qualitative attributes.
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Table 4.2: Anomaly simulation

Day Anomaly Time Interval Nº of SrcIP DstIP DstPort 

10/25/2012 Flash Crowd 17:00pm to 
19:00pm 5 12.12.12.12 5055 

11/08/2012 DDoS 9:00am to 10:00am 5 10.10.10.10 4041 
 

Figure 4.8: PCADS-AD Reporting Stage for Flash Crowd simulation

Figure 4.9: PCADS-AD Reporting Stage for DDoS simulation
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4.2 Scenario 2

In this Scenario, the proposed PCADS-AD Traffic Characterization Module is compared
with ACODS (Ant Colony Optimization for Digital Signature), another traffic characterization
method based on clustering.

ACODS [165, 94] is a modification of the Ant Colony Optimization (ACO) meta-heuristic
for DSNSF creation using a clustering approach, which is capable of characterizing network traf-
fic through the discovery of a cluster set from the large volume of high dimensional input data.
It seeks solutions for grouping data, minimizing the variance between the elements of a given
set and maximizing with respect to the other groups, so that it is possible to extract patterns
of network measurements. For more details about ACODS, please refer to [165, 94]

However, The detection mechanism is constructed over an adaptation of the pattern
matching technique Dynamic Time Warping (DTW) [166], called ADTW (Adaptative DTW). This
technique is used to recognize shifted behavior between the DSNSF and real traffic series through
time alignment, enabling improved analysis of sudden events and those that occur along the
time. This aims to improve the accuracy and reduce false alarm rates in anomaly detection.
The ADTW is introduced below.

4.2.1 Adaptive Dynamic Time Warping

In order to find traffic behaviors which are different from DSNSF, a similarity measure
should be adopted. The Euclidean distance between each point of the same index has been
widely used in time series for this purpose [167]. However, this metric is not suitable for iden-
tifying shifts in data sequence. Thus, given two time series, one of them shifted on the time
axis, it is possible for the calculation of the Euclidean distance to consider totally different
series. Believing that normal traffic behavior can suffer such displacements due to the changes
in the schedule of users’ activities, an adaptive similarity measure to fit these situations was
developed.

Dynamic Time Warping (DTW) is a pattern matching technique widely used in speech
recognition utilized to find an optimal alignment between two series, where one may present
alterations being partially elongated or shortened relative to other, along the time axis [166].
Assuming the analysis of DSNSF series denoted by X = x1, x2, . . . , xn and real traffic series
Y = y1, y2, . . . , ym, the DTW result can be given by a correlation factor between the two se-
ries, calculated after alignment. For this measure, when result is closer to zero, the input
sequences are more similar. Another way to obtain the DTW result is by a graphical representa-
tion, provided using a matrix of size n×m where the axes denote the analyzed series. Using this
approach, the algorithm creates an optimal path alignment, ω, between the input sequences,
minimizing the distortion D expressed by Equation 4.1.

D =

nm∑
n=1

d(X(n), Y (m)), (4.1)

where m = ω(n) and each element (i, j) contains the distance d between the points
(xi, yj), calculated as observed in [166]. The DTW calculation of the optimal alignment to com-
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pare the time series using is given by four basic steps:

Step 1: Create the solution matrix S, which must consists of n rows and m columns,
wherein each element in row i and column j represents the modulus of difference between each
interval of comparative series, since n corresponds to the DSNSF length and m corresponds to
the length of the time series that describes the real traffic.

Step 2: Establish the Accumulated Distance matrix (DA), composed of n rows and m

columns. This matrix is given by the sum of its own values with the upper element of the solution
matrix, as shown in equation Equation 4.2.

ADi,j = ADi−1,j + Si,j , for i > 1, j > 1 (4.2)

Step 3: Create of the dimensions movement matrix, composed of n rows and m

columns. This matrix must be initiated by assigning the value zero to the last element of the
first column. Therefore, an iteration towards bottom-up should be performed in AD matrix, to
know which is the lowest value. If the lowest value is below the current element of the itera-
tion, the movement matrix must be filled with value 1; if the lowest value in AD is on the left,
the matrix motion should receive value 3. Finally, if the smallest value is in the left inferior
diagonal or the values are equal, the attributed value to the movement matrix current element
is 2.

Step 4: Create the best path matrix w. For this purpose, the movement matrix is
analyzed from the last element of the first row. Therefore, it is selected element with a smaller
distance, d, between other elements, as suggested by Equation 4.3.

d = min(|wi,j − wi−1,j |, |wi,j − wi,j−1|, |wi,j − wi−1,j−1|), for i > 1, j > 1 (4.3)

The Adaptive Dynamic Time Warping (ADTW) approach for anomaly detection is per-
formed at preset time intervals of one minute and consists of two steps. The first one comprises
the similarity calculation, St, between real traffic and DSNSF at time interval t, using the con-
ventional DTW algorithm. Even small shifts in a series are verified, the results indicate a good
match between them because of the time alignment. Until then, only the correspondence found
between the shapes of analyzed time series were verified.

In the second step, the distance between the series is calculated, ∆t, considering their
amplitudes. Thus, a subtraction between the average values of both time series is made at the
same interval t, as shown in Equation 4.4. The result used in the detection of significant changes
in network traffic with respect to normal model is calculated normalizing the multiplication
between vectors S and ∆, as shown in equation Equation 4.5.

∆t = Ȳt − X̄t, (4.4)
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R =
S ×∆

max(S ×∆)′
, (4.5)

in which ∆ = ∆1,∆2, . . . ,∆t, . . . and S = S1, S2, . . . , St, . . .. The goal is to provide a
measure based in both form and distance of the series in which they are complementary, e.g.,
it may be that the result of St is close to zero, but the distance between the series at interval t
is accentuated. It could be a consequence of a failure or misconfiguration, affecting the normal
use of the network, since traffic presents normal behavior but a different intensity. Figure 4.11
(a) exemplifies analysis by ADTW for comparing the series, in contrast to the approach of the
Euclidean distance shown in Figure 4.10 (b).

Figure 4.10: Comparison schemes of two time series: (a) by using ADTW and (b) by comparing time series
using Euclidian distance.

To improve the detection system efficiency, real traffic movement and DSNSF are eval-
uated in the same time window t, which comprises a one-minute interval. This approach allows
recognition of both punctual anomalies as those which occur over time. Additionally, only an
alarm is generated in a time window, ensuring that the administrator is alerted only in event of
situations which actually deserve attention.

The flow attributes are analyzed separately, checking the correspondence with the
DSNSF created for each of them. A significance coefficient ϕ = 20% is used as threshold for error
between the real traffic and DSNSF at interval t, i.e., Rt. This value is set to compensate for
possible inaccuracies occurred during the calculation of r, as well as the small variations of the
legitimate use of the network. Moreover, the choice of this value occurred by checking several
other thresholds, and this proved to be the most suitable for the proposed application, as can
be seen in the session results.

4.2.2 Performance evaluation of PCADS x ACODS

Aiming to validate whether the proposed methods can operate in a real network en-
vironment, we collected IP flows from a core switch at State University of Londrina (Brazil)
network, which is composed of about seven thousand interconnected devices. Due to the large
traffic volume, a sampling rate 1:256 was used, implemented by the collection protocol sFlow
[168].
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The collection period comprises two months, starting on September 10th and ending
on November 09th, 2012. To ease the evaluation, the data set was separated in two groups: The
traffic data of first weeks were used by ACODS and PCADS as historical information for DSNSF
creating and the workdays of following period - from October 15th to November 09th - was used
for traffic characterization and anomaly detection evaluation.

Figure 4.11: Traffic Characterization example comparing the DSNSFs of bits, packets and number of flows
transmitted per second with the real traffic movement observed at November 08th for both PCADS (a)

and ACODS (b) methods

Figure 4.11 illustrates the DSNSFs of November 8th for the three traffic attributes stud-
ied in this thesis compared with the real traffic observed, each of them describing the 24 hours
of the day. As we can observe, the digital signature curves generated by both PCADS (Figure
4.12 (a)) and ACODS (Figure 4.12 (b)) could estimate efficiently the normal behavior of that
network segment, as there is a great adjustment between the DSNSF and the real traffic.

To measure the accuracy of each method on DSNSFs generation, we adopted two dif-
ferent evaluation metrics: Normalized Mean Square Error (NMSE) and normalized Correlation
Coefficient (CC). The Normalized Mean Square Error (NMSE) [158] evaluates the difference be-
tween the expected and what was actually verified. This measures’ limit is the value zero,
which indicates the situation where the expected value is exactly equal to the verified. Thus,
higher values of this metric indicate more distant results from the expected.

The normalized Correlation Coefficient [159] indicates the degree of correlation be-
tween two variables, as well as the direction of this correlation (positive or negative). The
values obtained are within the range of -1 to +1. Value 1 indicates total correlation, score 0
(zero) shows that the two variables are not correlated, and -1 specifies a full inverse correla-
tion, that is, where a variable increases, the other decreases and vice versa.

Figure 4.12 (a) depicts results obtained using the NMSE metric for the traffic of bits/s.
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Figure 4.12: NMSE indices between the generated DSNSFs and the real traffic movement of analyzed days

As can be seen, PCADS and ACODS achieved similar results, obtaining small errors. October 15th
and November 2nd presented accentuated errors since they are national holidays, where the
network traffic behavior differs from its normal pattern. Another anomalous behavior can be
noted in October 30th, in which a large traffic volume is observed in all flow attributes ana-
lyzed, with peaks up to 56% in excess of the traffic forecasted by DSNSF. It is due to the result
of a public tender of the university, which was released on this day, causing a large number
of accesses to the university server. Likewise, Figure 4.12 (b) exhibit NMSE outcomes for the
traffic of packets/s and flows/s, and we can observe that both methods reached low errors and
resembling results again.

Now, Figure 4.13 shows the results relating to bits/s pointed by normalized Correla-
tion Coefficient. The results for bits/s (Figure 4.13 (a)) ranged between 0.8 and 1 for the two
methods. Furthermore the results relating to packets/s and flows/s (Figure 4.13 (b)) have lower
correlation values, achieving a mean of 0.7. Both PCADS and ACODS produced similar results,
which can be classified as strong correlation, as it can be observed in [159], where authors
points out that it occurs in cases where correlation coefficient values are above 0.7.

To properly evaluate the proposed anomaly detection system, it was used a tool to
artificially inject anomalous events in the real traffic. We simulated anomalous situations in
the data set by using a tool named Scorpius, which was developed by a network research group
[161]. Scorpius is a tool which simulates network anomalies in real traffic flow data, like DoS,
DDoS, Port Scan and Flash Crowd, used by the group to help in testing anomaly detection sys-
tems. The anomalies are injected in the collected flow data without real and direct intervention
in the network, preserving it from impacts caused by anomalies. Thus, it was simulated DoS,
DDoS and Flash Crowds in the real data set in order to create a template containing all infected
time intervals, aiming to compare it with the alarms generated by the proposed system.
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Figure 4.13: Correlation Coefficients between the generated DSNSFs and the real traffic movement of
analyzed days

Figure 4.14: ROC curve of workdays from October 15th to November 9th for both PCADS and ACODS using
different ϕ values

In order to measure the overall efficiency of proposed detection system, it was used
the Receiver Operating Characteristics (ROC) graph and the Accuracy measure. A ROC graph
is defined as a technique to measure the performance of classifiers, being widely used in sig-
nal detection theory to describe the trade-off between hit rates (true-positive rates) and false
alarm rates (false-positive rates). TPR (true-positive rate) describes correctly detected signals,
while FPR (false-positive rate) describes how often a signal was detected wrongly [160]. Then,
the Accuracy measure describes the overall hit rate, i.e., the hit rate of both classes (positive
and negative).
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Figure 4.15: Accuracy Rate of four weeks of experiments for both PCADS and ACODS using different ϕ
values

Figure 4.14 shows the ROC graphs calculated for both PCADS (Figure 4.14 (a)) and
ACODS (Figure 4.14 (b)) for the four weeks selected to study (from October 15th to November
9th) with the artificial anomalous behaviors. Also, the detection was tested using different ϕ

values, aiming to verify which is the best threshold for detecting events that differentiate from
the DSNSF. As seen, the proposed approach was able to recognize a higher percentage of inter-
vals containing anomalous traffic behavior using smaller values of coefficient significance. It is
important since ϕ cannot be large enough so that anomalous behaviors are classified as normal,
because only anomalies which cause great impact on the flow attributes behavior would be rec-

Figure 4.16: Network traffic statistics from two kinds of anomalies
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ognized.

Several other values were examined for ϕ; however, it is clear that values lower than
15% have worse results for TPR and FPR. This occurs due to the reduction of threshold, allow-
ing minimal traffic variation in relation to DSNSF, including legitimate behaviors, to be wrongly
characterized as anomalies. On the other hand, when this value is higher than 20%, anomalies
are detected only when their behavior deviates greatly from the traffic pattern established by
DSNSF. Through the ROC curve analysis, it can be inferred that such a situation causes lower
rates of true-positive, and this deficiency is enhanced while the value of ϕ increases. In gen-
eral, as can be seen in the zooms in Figure 4.14, the one based on PCADS performed better
than ACODS, with reduced false-positive rates, reaching a trade-off of 92% TPR with 21% FPR,
as ACODS reaches 92% TPR with 24% FPR.

In Figure 4.15, the Accuracy measure for the same study period of four weeks and the
same comparison using different ϕ values performed in Figure 4.14 is shown. This measure is
the proportion of true results (true-positive and true-negative). Both systems produced better
accuracy rates when ϕ = 20%, perceiving that for ϕ values above or below this threshold, the
accuracy rate begins to decrease. So, ω = 20%, both systems achieved worthy results, obtaining
an average accuracy rate of 96%.

After an anomalous event is detected, the detection system can provide the network
manager a detailed report about that time interval, containing information like IP source and
destination addresses, and origin and destination ports. These descriptive attributes may unveil
where the problem ensued, or who caused it, as well as what kind of application was targeted.

To demonstrate this service, we selected two days with artificial anomalies from the
actual data set, both using fictitious IP addresses and Port numbers. Figure 4.16 presents a top
3 list of traffic statistics of a Flash Crowd (a) and a DDoS attack (b). The top 1 destination IP
addresses and Ports identified by the proposed system are actually the fictitious attributes used
in the anomaly simulation. It can be observed that an anomalous situation affects a large traffic
flows proportion when compared to normal activity not just related to volume, but likewise in
descriptive attributes.

4.3 Scenario 3

This Scenario focuses on analyzing and comparing three anomaly detection systems
founded on distinct algorithm classes, and they are: the statistical procedure Principal Com-
ponent Analysis for Digital Signature (PCADS-AD) proposed in this Thesis; the Ant Colony Opti-
mization for Digital Signature (ACODS) metaheuristic [165, 94]; and the forecasting method Au-
toRegressive Integrated Moving Average for Digital Signature (ARIMADS) [85, 86]. These methods
potentially exhibit extremely diverse behaviors, therefore, by exploring its own characteristics,
seeking to determine which yields better results regarding detection rate, runtime and com-
plexity.

PCADS-AD [15, 78] is developed under a different interpretation of Principal Compo-
nent Analysis (PCA) multivariate statistical procedure. Its pattern recognition and dimensional-
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ity reduction features enables the reduction of an initial large traffic dataset to only network
traffic intervals which can be used to efficiently represent the normal behaviour of a network
segment and create the DSNSF. Also, PCADS analyses eigenvectors and eigenvalues to create
thresholds for anomaly detection and alarm generation.

ACODS [165, 94] is a modification of the Ant Colony Optimization (ACO) metaheuristic
for DSNSF creation using a clustering approach, which is capable of characterizing network traf-
fic through the discovery of a cluster set from the large volume of high dimensional input data.
It seeks solutions for grouping data, minimizing the variance between the elements of a given
set and maximizing with respect to the other groups, so that it is possible to extract patterns
of network measurements.

ARIMADS [85, 86] is a training-based forecasting model focused on temporal processes.
It uses the ARIMA model for investigating normality and linear trends in network traffic and then
builds a Digital Signature of Network Segment related to series of traffic features. By using ARI-
MADS prediction capabilities, it is possible to accurately establish normal patterns for high-speed
network traffic.

These models perform a six-dimensional flow analysis by extracting normal patterns
of traffic features from a real data set. They are able to combine information related to the
volume of traffic (bits and packets) along with the dispersion of the IP addresses and ports used
during the communication process (entropy).

Although they share the same methodology of creating a digital signature and dividing
tasks into two well-defined categories, characterization and detection of anomalous events,
each one implements different routines to fulfill their role. These approaches are established
by the class of the algorithm which the method belongs to.

The accurate notion of an anomaly may be different for different application domains.
When observing simultaneously multiple characteristics of traffic data, a simple euclidean dis-
tance may be unable to perceive similar behavior, even though they are not mathematically
alike. For this reason, each system has employed a different approach to evaluate dispersion
between real measurements and normal traffic profile.

4.3.1 Data Preparation

Aiming to test whether the systems can operate in a real environment, all experiments
were performed using real flow data. Flows were extracted from a core switch of the State Uni-
versity of Londrina (UEL), comprising workdays from October and November, 2012, using the
sFlow format. The first month is used to train the systems on generating the DSNSFs of the six
analyzed attributes, while a day from November is selected as a specific case study, in order to
accomplish a punctual and detailed performance evaluation.

The majority of the approaches discussed in the literature employs five-minute win-
dow analysis interval for detecting anomalies. This thesis concerns in characterizing the traffic
behavior and detect anomalies throughout the day by considering a time window of one-minute.
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In this manner, there are a total of T = 1440 intervals (24hours×60minutes = 1440intervals) to
be investigated for each day monitored. This approach reduces the time required for anomaly
notification, which contributes to availability and control of the network.

To properly evaluate anomaly detection rates, it was used Scorpius [161], a tool de-
veloped by a network research group, to artificially inject anomalous events in the real traffic,
like DDoS and Port Scan. The anomalies are injected in the collected flow data without real and
direct intervention in the network, preserving it from impacts caused by anomalies.

Table 4.3: Artificial Anomaly Simulation on 11/08

DDoS

Start Time End Time SrcIP number DstIP

10:00 13:00 5 145.52.155.26

Port Scan

Start Time End Time DstIP Port Range

03:00 04:00 70.203.136.78 50 to 40000

DDoS and a Port Scan attacks were simulated in a particular day from the data set,
and detailed information about them are shown in Table 4.3. DDoS attack is composed of multi-
source generating requests to a single destination. In this experiment, the fictitious IP address
145.52.155.26 received in its port 1170 numerous requests via TCP coming from five different
sources. According to Chang etal. [169], this anomaly directly affects the behavior of attributes
source and destination IP addresses entropy, destination port entropy and transmitted packets.

In a port scan attack, multiple sources send a packet with the SYN flag enabled to
different ports of destination, aiming to receive the confirmation whether they are operative.
The proposed model scanned the port range 50-40000 of the fictitious IP address 70.203.136.78.
The attributes most affected by this activity were IP addresses entropy and destination port
entropy.

4.3.2 Evaluation

Figure 4.17 shows the DSNSFs generated for the six analyzed traffic attributes on
November 8th, 2012. It is possible to notice that the digital signature generated by the sys-
tems are similar, except for certain behaviors. Furthermore, the graphs depict the behavior
of traffic during Portscan and DDoS attacks. As can be seen, each of these anomalies affects
differently the attributes by changing their distributions, which means that they detract from
the normal pattern described by the DSNSF.

Figure 4.18 illustrates a labeling process where hits and false alarms are seem on time.
For this study, a group of network specialists have deeply evaluated the traffic data available
and properly set an anomaly template for the entire day analyzed. Then, each approach for
anomaly detection provides its classification for comparison of results.
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The Receiver Operating Characteristics (ROC) graph and the Accuracy measure, trustful
evaluation metrics most commonly used in the area, are used in this thesis. A ROC graph is
defined as a technique to measure the performance of classifiers, being widely used in signal
detection theory to describe the trade-off between hit rates (true-positive rates) and false alarm
rates (false-positive rates). TPR (true-positive rate) describes correctly detected signals, while
FPR (false-positive rate) describes how often a signal was detected wrongly. Then, the Accuracy
measure describes the overall hit rate, i.e., the hit rate of both classes (positive and negative)
[160].

Figure 4.19 shows the ROC curve for the selected case study with artificial anoma-
lies. The ROC plot was generated by calculating the TPR and FPR for it, based on the labeled
template. By analyzing the zoom part of the figure, it is observed that ARIMADS and ACODS
performed better, both achieving similar results, obtaining trade-offs with nearly null FPR. This
indicates a lower number of intervals wrongly detected, avoiding the analysis of false alarms by
the network administrator. ARIMADS had a trade-off of 98% TPR with 0% FPR, as ACODS reaches
98% TPR with 1% FPR. In contrast, PCADS results diverges from the others. Although its TPR is
high, it flashes a high number of false alarms, resulting in a trade-off of 98% TPR with 8% FPR.
Concerning the accuracy measure, ACODS and ARIMADS preserved its similarity in results, with
96% and 97% of accuracy, respectively. PACDS had an accuracy of 90%.

The approach used by each system for detection of anomalous intervals is the differ-
ential in the results. PCADS creates thresholds for the DSNSF, which although effective, has a
static nature, hindering the detection of anomalies, many of which may vary and present dy-
namic behaviors. ACODS fared better due to ADTW dynamicity, which takes into account the
duration and amplitude of the anomalous event. ARIMADS, in turn, uses the training data set as
a second verification which based on paraconsistent metrics, showed better accuracy.

Regarding execution time, although there is a meaningful disparity between the sys-
tems, all three approaches proved to perform in a timely fashion. In more detail, the required
time for traffic characterization and anomaly detection using ACODS is higher than the other
systems. It is explained by having a metaheuristic with a robust character intrinsic to its deploy-
ment. The two other deterministic systems presented similar runtime; however, PCADS spends
less time for both characterization and detection of abnormal events.

4.4 Computational Complexity Analysis

The computational complexity of the whole anomaly detection system proposed in this
Thesis (PCADS-AD) is based on the complexity of the traffic characterization phase, since the
system is totally based on the DSNSF and the thresholds that are also calculated during the char-
acterization phase. Therefore, for PCADS, computing all the principal components of a given
n× p matrix X, according to Lakhina et al. [64], is equivalent to solving the symmetric eigen-
value problem for a covariance matrixXT . To solve this problem, it is necessary to compute the
Singular Value Decomposition (SVD), a method used to obtain the eigenvectors and eigenvalues
of a matrix X [170]. Thus the computational complexity of a complete SVD of a n×p matrix is
limited by O(np2).

74



Chapter 4. Performance Evaluation

Figure 4.17: Traffic characterization using the proposed methods. The graphs show the prediction
calculated for each analyzed attribute and the observed traffic behavior on November 8th, 2012
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Figure 4.18: General alarm comparison

Figure 4.19: ROC curves comparing the trade-off between TPR and FPR rates of the proposed methods

Under a 3.0 GHz Intel-based processor, PCADS-AD performed well, taking less than
three seconds to create a DSNSF for bits, packets and flows. This performance indicates the
feasibility of the proposed system for real-time anomaly detection with reduced use of compu-
tational resources.
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Chapter 5

Conclusion

This chapter presents the main conclusions that result from the research work de-
scribed in this thesis. Furthermore, it discusses several research topics related to the work
developed along the doctoral programme that can be addressed in further research works.

5.1 Final Remarks

In this Thesis, a novel autonomous profile-based anomaly detection system to help
network management using Digital Signature of Network Segment using Flow analysis (DSNSF)
generated via Principal Component Analysis was presented and evaluated. The main contribu-
tion consists in the application and contextualization of PCA to an anomaly detection environ-
ment using IP flow attributes. The system creates a digital signature (DSNSF) based on the PCA
statistical method, exploring its dimensionality reduction feature by applying it over past week
traffic, ensuring that such signatures are able to represent the main characteristics and patterns
of network traffic. Another contribution is the creation of confidence bands using the eigen-
values obtained in the traffic characterization phase, which states an interval for the DSNSF
where traffic variations are considered normal. At last, PCADS-AD Reporting Stage can provide
to network administrators useful information about abnormalities found.

In Scenario 1, regarding the traffic characterization for DSNSF creation, the proposed
system achieved good results, showing small errors (below 0.1) and good correlation indices
(0.8 average) when the DSNSF was compared with the real traffic, showing that it can be a
good choice for predicting the expected behavior of a network segment. Now, on the subject
of anomaly detection, results pertaining to false alarm and accuracy rate are encouraging, and
also, in addition to warning the network administrator about the problem, the proposed system
can also provide the necessary information to solve it through the PCADS-AD Reporting Stage.

In Scenario 2, it is presented and evaluated two profile-based anomaly detection sys-
tems to help network management. The major contribution consists in the application and
contextualization of Principal Component Analysis, Ant Colony Optimization and Dynamic Time
Warping methods to an environment of pattern recognition and anomaly detection. It also stands
out as a contribution, the analysis of seven IP flow attributes, where: i) three quantitative at-
tributes - bits, number of packets and flows - are used in order to characterize the network
traffic through DSNSF generation, a key to effectively identify anomalous behaviors and ii) four
descriptive attributes - source IP, destination IP, TCP/UDP source port and TCP/UDP destination
port - which are used by the Information Module to provide the network manager information
needed to identify the problem and take specific measures against it.

Regarding Traffic Characterization module, iw was compared two different methods,
PCADS and ACODS. According to NMSE and Correlation Coefficient results, both accomplished
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similar results, leading to good traffic predictions, since small errors can be verified between
the DSNSF and the real traffic in Figure 4.11.

In the Detection and Identification module, the Adaptive DTW (ADTW) algorithm inves-
tigated in this work had satisfactory performance pertaining to false alarm rates. Concerning
that subject, both systems produced better results when adjusting the ADTW ϕ value to 20%.
Moreover, by analyzing the ROC graphs and Accuracy rates, PCADS-AD performed better than
ACODS. Moreover, the correspondence between true-positive and false-positive rates demon-
strates that the systems are able to enhance the detection of anomalous behavior by maintaining
a satisfactory false-alarm rate. In addition, as presented in Figure 4.16, the proposed anomaly
detection methodology can supply the network administrator with important traffic statistics in
order to help in problems solution, aiming for accurate and fast anomaly detection. Therefore,
the proposed methodologies, by using PCADS, ACODS and ADTW, is suitable to help network
management, detecting traffic anomalies and consequently, supplying availability and reliabil-
ity to networks and their provided services.

Finally in Scenario 3, the recognition of abnormal events held by three anomaly detec-
tion systems was discussed and evaluated. Although each of them belongs to distinct algorithm
classes, they aimed to characterize network traffic normal behavior by creating the DSNSF (Dig-
ital Signature of Network Segment using Flow analysis).

All the systems produced similar DSNSFs, equally clever in describing the normal be-
havior of the analyzed network traffic. Accordingly, variations found in the effectiveness of
anomaly detection are linked with the engine used for scanning differences between digital
signatures and the observed traffic. ARIMADS proved more promising in recognizing abnormal-
ities than the other methods since it uses the DSNSF combined with Paraconsistent Logic for
handling the concept of uncertainty. ACODS had an inferior performance compared to ARIMADS
on account of false positives reported during analysis. Finally, PCADS-AD achieved the lowest
detection rate, which is justified by the adoption of less flexible thresholds for normal network
activity provision.

The low computational complexity of the characterization process and the anomaly de-
tection method and the results obtained in the presented tests using real data implies that the
proposed approach using Principal Component Analysis shows high applicability for automatic
anomaly identification and is a promising step towards a broader system for online diagnosis of
anomalies in large scale networks.

Some kinds of attacks and anomalies such as DoS, DDoS and Flash Crowds cause traffic
variations in distinct traffic attributes. DDoS, for example, affects only the traffic of packets
and number of flows. This thesis also contributes by detecting traffic volume anomalies through
the analysis of three IP flow quantitative attributes (bits/s, packets/s and flows/s), aiming for
effective detection of different anomalous behaviors.
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5.2 Future Work

To conclude this research work, it remains to suggest future study topics resulting from
the developed research work:

• To improve PCADS-AD system by minimizing false alarm generation and use other flow
attributes from the aggregate traffic, in an endeavor to detect and identify other kinds of
attacks and anomalies, like port scans, probing, U2R or R2L.

• To apply and evaluate the proposals of this Thesis on a real-time environment, for their
validation and comparison with the results obtained by other similar methods.

• Combine the proposed method with Machine Learning techniques, improving the detection
and reducing costs.
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