Extracting invariant characteristics of sketch maps: Towards Place Query-by-Sketch

Abstract

In geography, invariant aspects of sketches are essential to study because they reflect the human perception of real-world places. A person's perception of a place can be expressed in sketches. In this paper, we quantitatively and qualitatively analysed the characteristics of single objects and characteristics among objects in sketches and the real world to find reliable invariants that can be used to establish references/ correspondences between sketch and world in a matching process. These characteristics include category, shape, name, and relative size of each object. Moreover, quantity and spatial relationships, such as topological, ordering and location relationships, among all objects are also analysed to assess consistency between sketched and actual places. The approach presented in this study extracts the reliable invariants for query-by-sketch and prioritizes their relevance for a sketch-map matching process.

Keywords: Query-by-sketch, matching, platial sketches, platial representations, sketch matching, invariant characteristics, spatial cognition, topology, location, shape

201 Introduction

21 Platial GIS, or place-based GIS, is a trending research area. Platial GIS is different from traditional 22 GIS in the sense that places are spaces that involve social relationships (Massey, 2001). People 23 usually perceive spaces cognitively; that is, they do not generally model space quantitatively 24 accurately, preferring to prioritize what is visibly, semantically or emotionally significant for them 25 (Davies \& Peebles, 2010), and people usually simplify "uninteresting" aspects of the space 26 between key places (Meilinger, Riecke, \& Bülthoff, 2014). Decades of research have shown that 27 human spatial cognition closely links "what" and "where", it distorts distance and direction and 28 seems to record it non-transitively (Lloyd \& Heivly, 1987).
29 This paper approaches platial GIS with respect to human-made sketches. We are interested in 30 studying how humans characterize places by sketching and how faithfully these places are 31 represented compared to reality to discover invariant characteristics that could guide a 32 computational application. These invariant objects/characteristics can help determine a suitable 33 correspondence between sketched objects and objects in the real world.

A sketch can be made by drawing objects using paper and pen or by using drawing software 35 on an electronic device. Annotated attributes of the sketched place can accompany the sketch 36 When a person draws a sketch, it usually reflects their cognitive perception of the place, because 37 the sketch objects are often simplified, rotated and even omitted according to the person's 38 perception. Therefore, a sketch is a visual method for communicating about "places". However, 39 how well does a sketch represent the real world? This paper analyses the similarity between the 40 features of a sketched place and the corresponding features in the real world to determine the 41 characteristics that can be used to align an artificial agent's perception with reality. To accomplish 42 this, we analysed and compared the characteristics of single objects and among objects in sketches 43 with the real world. The result is a proposal for a set of useful and prioritized invariants for query44 by-sketch.

45 People usually describe places or ideas using maps, charts, and drawings. In the literature, 46 Tolman (1984) called this behaviour "creating cognitive maps". A cognitive map is a picture or 47 visual aid that represents the mapper's understanding of particular elements of their thoughts 48 (Eden, 1992) to facilitate decision support, problem solving, etc. Barbara Tversky (2000) stated 49 that graphics/drawings/sketches reflect the author's conceptions of reality rather than reality. 50 Sketch maps are frequently combined with verbal descriptions of spatial features and vice versa 51 (Suwa, Gero, \& Purcell, 1998). Freksa et al. $(2000,2018)$ pointed out that people use different map 52 types, such as aerial photographs, topographic maps, city maps, road maps, and symbolic sketch 53 maps, to approach various types of tasks; a sketched map characterizes an abstract mental concept 54 in which only topological arrangements are spatially represented.
55 Analysis is needed to align a sketched place with a real-world place to establish the 56 correspondence between the sketch representations of objects and relationships with those of other 57 spatial data sources (Wallgrün, Wolter, \& Richter, 2010). Describing object geometry and attribute 58 information is relatively simple. Describing spatial relationships between two objects includes 59 spatial topological relationships, azimuth, and metric relationships (Egenhofer \& Franzosa, 1991). 60 The diverse information contained in a sketched place includes object semantics (category, name), 61 geometric features (perimeter, area, shape, etc.), and spatial relationships between objects 62 (topology, direction, distance, etc.). All these features establish a comprehensive multi-scene/place 63 semantic description model (Song \& Wang, 2012).
64 The remainder of this paper is structured as follows. Section 2 demonstrates related work. 65 Section 3 introduces the study, including the scenario, requirements, and volunteers' data. Section 664 describes the methods used for extracting and analysing the characteristics of sketched objects, 67 and separately, those in the real world. Section 5 investigates the invariants suitable for query-by68 sketch by comparing the characteristics between the sketched place and the metric map. Section 6 69 presents a detailed discussion with related work and an analysis of the experimental results. Finally, 79 Section 7 presents conclusions and discusses directions of future work.

712 Related Work

72 Studies of sketch-based spatial queries, scene query-by-sketch and sketch matching are popular. 73 Some of the more relevant studies are briefly described here. Egenhofer (1997) first proposed 74 sketch-based spatial queries and used network models to describe sketched scenarios. In his 74 sketch-based spatial queries and used network models to describe sketched scenarios. In his
75 network, each object corresponds to a node, the value of which includes numerical attributes such 75 network, each object corresponds to a node, the value of which includes numerical attributes such
76 as category, name, size, and length. The connecting line between the two objects represents their 77 relationship. In the study by Egenhofer (1997), a nine-intersection model is used to describe object 78 topology to group the object relationships, and the constraint relaxation mechanism is used to 79 obtain query results that are more aligned with users' expectations. Blaser (2000a) studied the 80 sketching habits of people, including characteristics of objects, relationships between objects, and 81 annotations on sketches. Blaser (2000a) established a query-by-sketch that reduced the spatial 82 relationship association graph of sketched objects by analysing only the spatial relationships 83 between adjacent objects. Blaser's (Blaser 2000a; 2000b) work shows that (i) objects in sketches 84 are highly abstract representations of their real-world counterparts, as a typical sketch only 85 contains a small number of objects (typically 12-17), and the attention given to human-built 86 objects such as roads and buildings is often higher than that given to natural objects, such as green 87 spaces; (ii) the spatial arrangement of objects and topological relationships is most relevant, while 88 the metric and orientation relationships are refinements; consequently, he focuses on topological 89 relationships for scene query-by-sketch and uses the spatial relationships between objects as a 90 second-level correction. Yuan, Wu, \& Zhuang (2006) pointed out that the traditional spatial data 91 query-and-retrieval does not use spatial topological relationships. They introduced the invariant

92 moment method based on the 9-intersection topology model (Egenhofer, 1997) and used the 93 invariants to describe complex spatial scenes. In a study by Yuan et al. (2006), component analysis 94 and fuzzy support vector machine techniques reduced the redundancy of high-dimensional 95 topological relationships in spatial scenes and established independent topological relationships. 96 Forbus et al. $(2005,2008)$ proposed the CogSketch model, which considers the relative size of the 97 glyph in the sketch and uses Region Connection Calculus (RCC-8) (Cui, Cohn, \& Randell, 1993) 98 to calculate the topological relationship between glyphs and the orientation relationship between 99 adjacent glyphs based on that topological relationship. The shape similarity between 100 corresponding glyphs is calculated using the SME (Structure-Mapping Engine) algorithm. 101 Wuersch and Egenhofer (2008) proposed a perceptual sketch graphic translation algorithm, which 102 uses the concepts of optimal scalability rules and functional morphology to distinguish and extract 103 regions, and it also sorts the extracted regions according to the morphological values. Wallgrün et 104 al. (2010) described a scene as a Qualitative Constraint Network (QCN) and used it for spatial 105 information matching by considering the spatial orientation relationship and the object connection 106 relationship. Wallgrün et al. (2010) solved the scene matching challenge by finding the largest 107 matching subgraph. Falomir (2011) automatically obtained sketches of digital images by colour 108 segmentation and automatically described them by their qualitative shape, colour, topology, and 109 orientation using Qualitative Image Descriptors (QID) and then matched the QIDs by their 110 similarity to identify indoor landmarks (corners in rooms) for robot self-location. Shen et al. (2011) 111 combined the 9 -intersection model, the depth-direction relationship matrix model, the conceptual 112 neighbourhood graph, the difference matrix, and the primary direction relationship model to study 113 a sketch-based spatial data retrieval method. Wang and Schwering (2015) analysed sketches to 114 clarify the sketched qualitative spatial information without distortion and schematizations. In the 115 study by Wang and Schwering (2015), seven sketch features that can contain invariant spatial 116 information were proposed: topology of street segments, orientation of street segments, orientation 117 of landmarks with respect to a street segment, cyclic order of street segments and landmarks around 118 a junction, linear order of street segments and landmarks along a route, topological relations of 119 landmarks and city blocks, and topology of city blocks. These seven sketch aspects of a sketch 120 map are formalized with QCNs based on existing qualitative calculi and aligned with the Tabu 121 search metaheuristic (R3Q5) (Schwering et al., 2014; Chipofya, Schultz, \& Schwering, 2016; Jan 122 et al., 2017).
123 All the studies described above provide evidence for the effectiveness of extracting invariants 124 from sketches for query-by-sketch, but all these studies have been targeted towards qualitative 125 characteristic analysis. The quantitative characteristics of objects in the sketched place (e.g. shape 126 of roads) are missed or poorly studied. The work by Egenhofer et al. (1997), Blaser (2000a, 2000b), 127 Yuan et al. (2006), Wallgrün et al. (2010) and Shen (2011) focused on spatial relationship analysis 128 for matching, including topological, direction and ordering relationships. Wang and Schwering 129 (2015), Chipofya et al. (2016) and Jan et al. (2017) proposed seven spatial invariants regarding 130 relationships among sketched objects which actually are still based on qualitative spatial 131 relationships. Here our approach presents quantitative characteristic comparisons for query-by132 sketch: the shape of road, relative size of regions, frequency of object appearances, quantitative 133 location relationships between regions, and topological closeness between regions, and topological 134 closeness between regions and roads. Moreover, some characteristics were analyzed quantitatively 135 and qualitatively in our paper, e.g. the location relationship between objects were described in 136 azimuth distance (quantitative) and Location Reference System (qualitative). Wallgrün et al. (2010 137 and Shen et al. (2011) depicted the direction relationship only in qualitative cardinal directions 138 (e.g. North, Northwest). Wang and Schwering (2015), Chipofya et al. (2016) and Jan et al. (2017) 139 also only adopted the local orientation relationship for comparison, such as front, back, etc. The 140 topological relationship comparison was also conducted quantitatively and qualitatively in our

141 paper. The 9 -intersection model was adopted for qualitative description while spatial closeness 142 was used for quantitative illustration. This is different from the work by Egenhofer et al. (1997), 43 Blaser (2000a, 2000b), Yuan et al. (2006), Wallgrün et al. (2010), Shen (2011), Chipofya et al. 144 (2016) and Jan et al. (2017) in which the 9-intersection model was only adopted for comparison. 145 Summarily, we analysed the characteristics of objects in a sketch map quantitatively and 46 qualitatively anmonalities that allow us to extract useful information from sketches, even if they have not 149 been constructed based on a fixed convention. Not all sketches employ all structural means that 150 can be used to sketch environments; therefore, not all sketches can be compared along all 151 dimensions. Our study explores commonalities and differences in sketching spatial environments. 152 The objective of our contribution is not to provide representative data, as there are great 153 interindividual differences in sketching styles, i.e. in the features employed in a given sketch 154 However, in our study we can identify stable characteristics for the features that are employed.

1553 Sketching Place Study
156 A sketching experiment was carried out to study which invariants are useful for aligning sketched 157 places with real maps. We asked volunteers to sketch the same place: the northern part of Xianlin 158 University District of Nanjing Normal University ${ }^{1}$, shown in Figure 1.
159 Place. The reasons for selecting this place as the experimental scenario are as follows:
160 - The richness of geographic elements: the scenario includes varied objects, including 161 teaching buildings, playgrounds, dormitories, roads, and bridges. These objects can be 162

165
166
168
169
170
171
172
172
173
174
175

The complexity of spatial relationships: road intersections the adjacency relationship between one of the roads and the school building, the disconnection between buildings, and the intersection of a road and a bridge are all reflected in this scenario.
Task. Volunteers were told to sketch the place as they like. They could draw objects in any shape. They were also free to add annotations, such as objects' names or types on their sketches. The only requirement was that all volunteers were required to sketch the place (familiar regions and roads) entirely by memory, without assistance from a mobile phone, Google Maps, OpenStreetMap (OSM^{2}), or other data sources.
Results. Figure 2 shows the sketches produced by the 11 volunteers, which were numbered S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, and S11. Notice that although the volunteers sketched the same place, the general similarity between the sketches is quite low, which emphasizes the need to identify invariant relationships that allow us and any artificial agent to align objects in the sketched places with the actual places.

[^0]
(a)

Google Earth) and (b) The di

1814 Extracting Invariant Characteristics from a Sketched Place

182 After obtaining the sketches of our use-case place, we analysed them to find invariants. To extract 183 and compare the quantitative and qualitative characteristics of objects appearing in both the 184 sketches and OSM, we identified object-level characteristics (described in Section 4.1) and 185 structure-level characteristics (explained in Section 4.2). Figure 3 shows a diagram of the multi-

186 level characteristics analysed by our approach: (1) characteristics of a single object such as a road 187 or building, including shape, name, category, and relative size; and (2) characteristics of the whole 188 place, or the spatial structure of the place, such as the quantity of objects, topological relationships 189 among objects, order of appearance of objects along a road, and location relationships of objects 190 in the place.

Figure 3. Multi-level characteristics of a sketched place.
Figure 4 shows the methods used in this study to represent the characteristics above and 194 compare a sketch of a place with the actual place. Additional details are presented in the following 195 sections.

196 197

198 4.1 Analysing Object-Level Characteristic
199 In different types of geographical places, the objects of interest also differ. In urban scenes, people 200 usually pay attention to objects that are dominant in the visual range, such as buildings and roads. 201 In the countryside, people pay attention to villages, farmlands, roads, ponds, etc. In the forest, 202 more attention is paid to trees, roads, etc. In this study, 'objects' refers to tangible objects, such as 203 buildings, roads, trees, playgrounds, and ponds. Additionally, because the selected experimental 204 place is an urban scene, buildings are the most common object type. In our approach, objects are

205 divided into two groups：region and road．Region refers to an independent object that is not located 206 on a road and has human relevance，such as a building，pitch，or playground．The characteristics 207 of a sketched object（i．e．，building，road，bridge，or pitch）include category（Section 4．1．1），shape 208 （Section 4．1．2），relative size（Section 4．1．3），and name（Section 4．1．4）．These characteristics are 209 analysed as follows．

210 4．1．1 Analysing the Category of Region Objects in a Sketched Place

211 Our approach adopts the category definition from OSM^{3} to determine the similarity of region 212 category objects between a sketch and OSM．Since there is no Chinese definition of the object type 213 in OSM，our approach manually compares the sketch＇s annotations（which represent the sketched 214 region categories）with the actual region categories in OSM．Figure 5 shows the category 215 consistency between OSM and sketch S2，which shows 2 pitches at the bottom right，and the rest 216 of the objects are buildings．Moreover，our approach digitized the sketch annotations into region 217 attributes（shown in Figure 6），which is consistent with the annotations in Figure 5.

igure 5．Arrows show the correspondence between region categories in sketch S2（right）and those that are building＂損场＂means a football field＂篗球场＂means a basketball means
In Figure 6，the field＂OBJECTID＂represents region ID，the field＂fclass＂represents OSM 223 region category，and the field＂Annotation＂represents the region category annotated in a sketch． 224 ＂建筑＂means building，＂操场＂means football field，and＂篮球场＂means basketball court．

228
229 4．1．2 Describing and Analysing the Shape of an Object in a Sketched Place
230 We compared the shape of roads and regions（in terms of style，slope，and integrity）appearing in 231 the sketches and those appearing in OSM．Many drawing styles describe a road shape since，due 232 to its improvised nature，usually people do not pay attention to drawing accuracy in sketch maps． 233 For example，after analysing the sketches obtained in our study，we observed that roads can be 233 For example，after analysing the sketches obtained in our study，we observed that roads can be 234 drawn using a single line，or using double lines which can be parallel or not，they can have open 236 challenges are similar to those found by Broelemann K．，Jiang X．and Schwering A．（2016）．Figure 2377 shows examples of roads sketched with either single or double lines．Figure 8 shows the same 238 road sketched with different angular shapes．Additionally，the integrity of a single road is different 239 in various sketches，depending on the person sketching．Note also that in Figure 9，only a few 240 segments of a single road are drawn．

Analysing region shapes，we identified the same challenge as by Broelemann K．，Jiang X． 245 and Schwering A．（2016）that is＂objects of similar appearance can have different meanings and 246 objects of the same meaning can be drawn in different ways＂．Figure 10 shows that some sketched 247 regions can be approximated by rectangles which seem similar to the boundary boxes of the same 248 objects in OSM．On the other hand，as Figure 11 shows，some sketched regions are partially similar 249 to the real object；the sketched region has a similar concavity to the actual region，although the 250 shapes are mirrored．

Figure 8．OSM map（left），sketches S5（middle）and S8（right）．The different angular shapes of the same road
drawn in different sketches（marked by the red line），depend on the person sketching．

(left) and sketch S5 (right). Incomplete drawing of a single road (mark
Sometimes volunteers only sketch the part of the red ind ing to highlight.
To deal with this challenge, we adopt the approach used by Vatavu, Anthony, and Wobbrock 258 (2012) to represent the shape of objects. This method uses unordered points to represent the shape 259 and ignores the points' quantity and direction. When comparing two point-clouds, this method uses 260 an approximation of the Hungarian algorithm to solve the classical assignment problem. Our 261 approach uses this recognizer to compare the shape of each road in the sketch with the shape of 262 the actual road, one by one. Moreover, we calculate the composite shape of roads according to the 263 ordering of similarity of a single road's shape, as Figure 12 shows. Due to the diversity and 264 complexity of real buildings' shapes, our approach mainly compares the shape of roads between 265 OSM and sketches.

Figure 10. OSM map (left) and sketch S8 (right). Regions sketched in rectangular shapes are the bounding boxes
of the regions in OSM.

Figure 11. OSM map (left) and sketch S5 (right) A region sketched with a partially similar shape to the real region. Note that their shapes both involve concavity, but are mirror-reflected.

274 4.1.3 Analysing the Relative Size of Objects in a Sketched Place
275 People often use area to describe the size of a region and length to specify the size of a road. Size, 276 as a characteristic, has been extensively studied for qualitative and quantitative analysis in the area 277 of visualization, beginning with Bertin's work (1983), and followed by the work of Card, 278 Mackinlay, and Robertson (1990). Although size is a mathematically precise characteristic, it is 279 not practical to compare this factor absolutely between a sketch and OSM, because the scale of the 279 not practical to compare this factor absolutely between a sketch and OSM, because the scale of the 281 of scale during drawing. Additionally, according to the above analysis of shape factor, the shape 282 of one object differs significantly between OSM and the sketch, so the object sizes also vary. 283 Instead of an absolute comparison, we compare the relative sizes between objects to detect 284 similarity between the sketch and OSM. Relative size in our study mainly refers to an area 285 comparison of regions in the same sketched place, because drawings of roads in a sketch are often 286 incomplete (as discussed above). Note that people usually differentiate between larger and smaller 287 regions in a place when describing it.
288 Our approach uses the geometric areas of regions (as Figure 13 shows) to analyse the relative 289 area/size characteristic. The area of each region is iteratively compared with other regions in the 290 sketch and OSM to obtain the relative size between regions. The relative area relationships 291 between two regions (denoted by RelSize) is defined by the Relative Size Reference System or 292 RelSizeRS $=\{$ SR, RelSizecon, RelSizent $\}$, where SR or Size Relation refers to the relationship 033 between the areas of two regions, that is, $\mathrm{SR}=$ (area of 1st region) /(are of 2nd region), is $\mathrm{SR}=$ (area of 1st region) $/$ (area of 2nd region) 294 RelSizecon $_{\text {cof }}$ refers to the set of labels of relative size; and RelSize ${ }_{\text {INT }}$ refers to the values of SR 295 related to each label.

RelSize $_{\text {Con }}=\{$ smaller $(<)$, same $(=)$, bigger $(>)\}$
RelSize $_{\text {INT }}=\{(0,0.9),[0.9,1.1],(1.1, \infty)\}$
Table 1 shows an example of the relative area comparison of sketched regions in Figure 13. Then, we analyse the similarity between corresponding regions in the sketch and OSM using string 300 comparison.

303
able 1．Relative size comparison between regions drawn in Figure 13：each cell indicates the relative area of the region ID in the row compared to the region in the column．Region 0 and Region 2 were not drawn in this sketch．

306 4．1．4 Analysing the Annotated Object Name in a Sketched Place
307 The annotations drawn on sketches（object names）were extracted and compared to the 308 corresponding names in OSM．We found that volunteers prefer to describe objects with abbreviated 309 names．As Figure 14 shows，the real name of one region in OSM is＂地理科学学院＂（＇school of 310 geography’ in English），while in sketches，volunteers just marked＂地＂，or＂地科院＂（the 311 abbreviated name of school of geography in Chinese，outlined in red in Figure 14），which is an 312 abbreviated name of that building．Figure 15 displays object names annotated in OSM，S1 and S5．

Figure 14．Place in OSM（left），sketch S1（middle）and sketch S5（right）showing regions annotated with name

（c）Object names in sketch S igure 15．Object names in OSM（left），sketch S1（middle），and sketch S5（right）．（Field＂OBJECTID＂represent
the object ID，field＂Name＂represents the object name，and＂EnName＂represents the English object name．）

319 Our approach compares the object annotations in sketches with their names in OSM using the 320 Levenshtein distance（Levenshtein，1966），which obtains the similarity of two strings by taking 321 into account how many characters are different，and their position in the string，as Table 2 shows． 322 Table 2．Levenshtein distances between names in OSM and sketch S1（column 5）and between names in OSM and sketch S 5 （column 6）w．r．t．Figure 15．（ - ＇－indicates that this object was not drawn in this sketch，and a blank cell
indicates that the volunteer did not annotate this object．）

Object ID	Name in OSM	Name in Sketch S1	Name in Sketch S5	$\begin{aligned} & \text { Levenshtein Distance } \\ & \text { btw. OSM and sketch } \end{aligned}$	Levenshtein Distance btw．OSM and sketch S5
1	北区田径场	体育场	田洤场	4	2
2	33 栋	－	宿舍区	－	3
3	31 栋			3	．
5	北区学生活动中	超市	超市	8	8
6	北区食堂	食堂	食堂	2	2
8	35 妳	35	35\＃	1	1
9	34 栋	34	34\＃	1	1
10	36 梂		36\＃	3	1
11	37 栋		37\＃	3	1
12	学行楼	环境	环境学院北教	3	6
14	$\begin{array}{\|l\|} \hline \text { 行知楼(K4)-生科院 } \end{array}$	生俞科学	生科院	10	8
15	行远彞一地理科子院	地	地科院	9	7

325 4．2 Analysing Structure－Level Characteristics
326 Regarding the spatial structure of the sketched places，the following features can be extracted：（i） 327 quantitative characteristics，such as the frequency of appearance of objects in sketched places 328 （Section 4．2．1），and（ii）qualitative characteristics，such as the location relationship（Section 4．2．2）， 329 the order relationship（Section 4．2．3），and the topological relationship（Section 4．2．4）among 330 objects in the sketched place and OSM

331 4．2．1 Calculating the Frequency of Appearance of Objects in a Sketched Place

332 The frequency of appearance of objects in a place can help us determine the common objects that 333 are repeated in several sketches，which indicates that the objects are considered relevant for more 334 people．To accomplish this，we numbered all the regions from right to left and from bottom to top． 335 One example of counting the drawing frequency of regions is shown in Figure 16 and Table 336 3．The numbering for the corresponding regions in OSM and the two sketches are shown in Figure 337 16．Table 3 counts whether each region is drawn to the corresponding region in OSM and the 338 frequency of appearance of these different regions in two sketches（S1，S8）．

（The numbers
represent region IDs.)
Table 3. Frequency of regions drawn in sketches according to Figure 16. (' x ' means drawn and blank cell mean

$$
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c}
& \text { Region ID } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\text { Sketch ID } \\
\hline \text { S1 } & & \times & & \times & & \times & \times & & \times & \times & \times & \times & \times & & \times & \times & & \\
\hline \text { S8 } & & \times & & & & \times & \times & & \times & \times & \times & \times & \times & & \times & \times & & \\
\hline \begin{array}{c}
\text { Drawing } \\
\text { Frequencies }
\end{array} & 0 & 2 & 0 & 1 & 0 & 2 & 2 & 0 & 2 & 2 & 2 & 2 & 2 & 0 & 2 & 2 & 0 & 0
\end{array}
$$

We also compared the drawing frequency of each road in a sketch. One example of counting 345 the frequency of drawn roads in sketches is shown in Figure 17 and Table 4. Figure 17 shows the 346 numbering of roads from one place in OSM and two sketches (S1, S8). The statistics of whether 347 each road is drawn in the place from Figure 17 and the frequency of drawn roads in these two 348 sketches are shown in Table 4.

17. Numbering of all roads of a
numbers represent road IDs.)
Table 4. Frequency for roads drawn in the sketched place according to Figure 17. (Note that \times means drawn and
blank means not drawn.)

354 4.2.2 Location Relationship of Object in the Sketched Place

355 As described in Section 4.1.2, sketched road drawings can be incomplete, so the location 356 relationships of sketched objects in our approach are focused on location relationships between 357 regions. The location relationships are described qualitatively and quantitatively. The qualitative 358 location refers to the relationship between two objects, for example, object A is located south of 359 object B. The quantitative location involves the azimuth distance between two objects. To locate 360 objects with respect to each other, we calculated the azimuth distance between their centres of 361 gravity, as shown in Figure 18.

Figure 18. Quantitative location relationship.
Table 5 shows the azimuth distances between Region 0 and other regions in OSM and sketch 367 S2.

Our approach also obtains the qualitative location relationship between two objects (denoted 369 by L), which is defined by the Location Reference System or LRS $=\left\{\right.$ UL, LCON, $\left.\mathrm{L}_{\text {INT }}\right\}$, where UL 370 or Unit of Location is the azimuth distance (in degrees over an interval of $\left[0^{\circ}, 360^{\circ}\right]$); $\mathrm{L}_{\text {CON }}$ refers 371 to the set of qualitative location relationship labels; and $\mathrm{L}_{\mathrm{INT}}$ refers to the internal values of UL 372 related to each label, as Figure 19 shows
$373 \operatorname{L}_{\text {con }}=\{\operatorname{North}(\mathrm{N})$, NorthEast(NE), East(E), SouthEast(SE), South(S), SouthWest(SW), 374 West(W), NorthWest(NW)
$375 \mathrm{~L}_{\mathrm{INT}}=\left\{\left[0^{\circ}, 10^{\circ}\right]\right.$ or $\left(350^{\circ}, 360^{\circ}\right),\left(10^{\circ}, 80^{\circ}\right],\left(80^{\circ}, 100^{\circ}\right],\left(100^{\circ}, 170^{\circ}\right],\left(170^{\circ}, 190^{\circ}\right],\left(190^{\circ}\right.$, $\left.376260^{\circ}\right],\left(260^{\circ}, 280^{\circ}\right],\left(280^{\circ}, 350^{\circ}\right]$

South
Figure 19. Judgement model of qualitative location relationship between regions.

Figure 20. Object numbering in OSM (left) and sketch S2 (right) for the following location analysis. (The numbers represent region IDs)

382 Table 6 shows the results of the qualitative location relationships of objects shown in Figure 38320 . We used a string comparison to compare the similarity of the qualitative location between the 384 corresponding objects in sketch S2 and OSM.
385

$$
\text { Cable 5. Azimuth distance between Region } 0 \text { and other regions in OSM and sketch S2. }
$$

	${ }_{\text {Region }}^{\text {dio }}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
osm	0	24.75	26,42	567	288.9	529	${ }^{33628}$	${ }^{336.89}$	327.03	318.36	388.06	294.53	30943	22	212	41	${ }^{284} 3$	33.20
S2	0	258.09	2631	254.56	22246	356,38	43.19		336.98	331.66	32408	312.93	325,44		29260	29.01		

386
Table 6. Qualitative location relationship between Region 0 and other regions in OSM and sketch S 2 .

	$\underset{\substack{\text { Region } \\ \text { ID }}}{\text { cose }}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
osm	0	sw	w	sw	sw	N	Nw	sw	w	N	Nw	Nw						
S2	0	sw	w	sw	w	N	Nw	-	Nw	Nw	nw	Nw	Nw	-	Nw	Nw		
Consistent w.t.t		\checkmark	\checkmark	\checkmark	\times	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-				

387 4.2.3 Analysing the Order Relationship of Regions along a Road
388 The spatial order relationship refers to the arrangement of geographical features in geographical 389 space. In this paper, the order relationship refers to the order of regions along roads. Our approach 390 computes the shortest distance between the centre of gravity for each region and roads to obtain 391 the intersection between a region and a road

Figure 21 shows an example of region order along Road 19, as presented in Table 7. Note that 393 if the nearest point on a road to the centre of gravity of a region is at one of the road's endpoints, 394 that region is not considered in computing its order of appearance along that road. For example, as 395 shown in Figure 21 and Table 7, Region 14 is not included in the order of appearance calculation 396 along Road 19 in OSM.

Legend
O Gravity Center of

Figure 21. Regions' ordered relationship along one road from OSM (left) and sketch S8 (right). Road 19 is shown in dark purple.

Table 7. Region order along Road 19 in OSM and sketch S8.	
	Region Order along Road 19
OSM	$11,15,10,9,12,8,17,7,6,5,16,0,2,1,4,3,13$
S8	$11,10,44,9,8, \mathbf{1 5}, \mathbf{1 2 , 6 , 1 , 0 , 5}$

401 In Table 7, numbers with a strikethrough indicate the corresponding object does not appear 402 in the OSM order, and numbers in bold indicate that their order is inconsistent with OSM

The total number of regions in S8 is 10, and the order relationship of 6 regions in S8 are 404 consistent with the corresponding region order relationships in OSM. Thus, the accuracy of regions 405 along Road 19 in S8 compared to OSM is $6 / 10$.

406 4.2.4 Topological Relationships between Regions and Roads
407 For each sketched place, our approach describes the topological relationships between regions, 408 between roads, and between regions and roads, as shown in Figure 22.

411
The 9-intersection model is used to represent the topological relationship between objects, 413 separated our equal, disjoint, touch, contains, and others. While most of the real buildings are 414 disjoint regions and between disjoint regions and roads. Figure 23 shows the flow chart of 415 computing topological relationships between regions in our approach.

The relative closeness between two disjoint objects (denoted by RelCloseness) is defined by 419 the Relative Closeness Reference System or RelClosenessRS $=\{\mathrm{CR}$, RelClosenesscon, 420 RelClosenessint \}, where CR or Closeness Relation refers to the relative closeness between two 421 objects; RelClosenesscon refers to the set of relative closeness labels; and RelClosenessint refers 422 to the values of CR related to each label.
423 RelClosenesscon $=\{$ Short Distance (SD), Middle Distance (MD), Long Distance (LD) 424 RelClosenessint $=\{(0,0.3],(0.3,0.7],(0.7,1]\}$

Our approach uses the shortest distance between objects to represent the closeness 426 relationship (shown in Figure 24). The distances between all points on the two regions/roads are 426 relationship (shown in Figure 24). The distances between all points on the two regions/roads are 427 compared in turn, and the shortest distance between the points is considered to be the shortest 428 distance between the two regions/roads. Due to the inconsistent scale between OSM and the sketch, 429 the shortest distance is normalized. The normalization here is the shortest distance divided by the 430 largest distance in OSM and sketches, respectively. Table 8 shows the normalized closeness values 431 between Region 1 and other regions in sketch S1 and OSM. The relative closeness according to 432 Table 8 is shown in Table 9.

(a) Closeness between regions
(b) Closeness between region and road

Figure 24. Calculation of closeness or the shortest distance between two regions or a region and a road.

$$
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c}
& \text { Redion } & 0 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
\hline \text { OSM } & 1 & 0.021 & 0.054 & 0.052 & 0.207 & 0.232 & 0.241 & 0.460 & 0.413 & 0.337 & 0.482 & 0.461 & 0.120 & 0.004 & 0.526 & 0.312 & 0.103 & 0.525 \\
\hline \text { S1 } & 1 & - & - & 0.115 & - & 0.448 & 0.558 & - & 0.922 & 0.633 & 0.878 & 0.629 & 0.218 & - & 0.644 & 0.359 & - & -
\end{array}
$$

438 Table 9. Relative Closeness relationship between Region 1 and other regions in OSM and sketch S1 according to
RelClosenessRS. (-- - represents an object not drawn in the sketch.)

	${ }_{\text {Region }}^{\text {Rep }}$	0	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
osm	1	SD	sD	SD	sD	sD	sD	D	MD	MD	MD	MD	SD	SD	MD	MD	SD	MD
s1	1	-	-	sd	-	MD	MD	-	${ }_{\text {LD }}$	MD	${ }_{\text {LD }}$	MD	sd	-	MD	MD	-	-

440
The qualitative topological relationships between roads are also analysed with the 9441 intersection model. Figure 25 shows roads in OSM and sketch S1; the topological relationship 442 between Road 19 and other roads from OSM and sketch S1 are shown in Table 10. It can be found 443 that the topological relationships are consistent between OSM and sketch S1. But there are also 444 inconsistencies of topological relationships between roads from the sketches and the metric map. 445 The inconsistencies stem from two reasons: (i) incorrectly drawn roads. For example, Figure 26 446 (a) shows the topological relationship between two roads (displayed in red and green) was disjoint 447 in the metric map, while that of the corresponding two roads in sketch S1 was touching (see Figure 44826 (b)); and (ii) partially drawn roads. In Figure 26 (c), the topological relationship is touching 449 between two roads (displayed in red and green) in the metric map, while the corresponding two 450 roads (displayed in red and green) in sketch S6 is disjoint (see Figure 26 (d)).
451 Table 10. Topological Relationship between Roads in OSM. ""D" represents disjoint, "T" represents touching, "C"

Figure 25. Roads in OSM (lef) and setch SI (rgi) (Road rod IDs.)

(c) Two roads (red and green lines) in OSM. (d) Two roads in sketch S 1 (red and green lines). Figure 26. Inconsistently drawn roads in OSM and two sketches.

Our approach also uses relative closeness to describe the spatial proximity between a region and a road. Figure 27 shows regions in OSM and sketch S1. Table 11 shows the normalized 465 closeness between Road 19 and all regions in OSM and sketch S1, and Table 12 shows the relative 466 closeness according to Table 11.

Figure 27. Roads and regions in OSM (left) and sketch S1 (right). (The numbers represent region IDs; Road 19 is
Table 11. The normalized closeness between Road 19 and all regions in OSM and sketch S1. (' - ' represents an object not drest sketch.) jet 6 drawn in this skech.

472
Table 12. The relative closeness between Road 19 and all regions in OSM and sketch S1 according to
RelClosenessRS. ((-' represents an object not drawn in this sketch.)

	${ }_{\text {Roadilion }}^{\text {Red }}$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		17
osm	19	sD		SD																
S1	19	-	SD	-	sd	-	sD	sd	-	MD	sD	sd	sD	SD		MD	SD			

4745 Analysis of Invariant Characteristics as Matching Factors
475 We compared all sketches with OSM using the characteristics mentioned above to find suitable 476 invariants between them. Comparisons of object-level characteristics include region categories and 477 relative sizes (Section 5.1 and Section 5.2), region names (Section 5.3), relevance of regions and 478 roads (Section 5.4 and Section 5.5), and object shape (Section 5.6). Moreover, we also analysed 479 structure-level characteristics, including location relationship (Section 5.7) and topological 480 relationship (Section 5.8). To find the invariants between a sketched place and OSM, we divided 481 all characteristics into either matching characteristics or non-matching characteristics.

482 5．1 Comparing Region Categories

483 Due to the lack of object category definition in Chinese，our approach uses visual comparison to 484 obtain the similarity between the categories annotated in sketches with the corresponding actual 485 categories in OSM．According to our comparison，as Table 13 shows，the selected categories for 486 the sketched objects are entirely correct in this sketched place．It means that in people＇s spatial 487 cognition，the judgement of the categories of sketched objects is accurate．Note that some 488 volunteers preferred to annotate objects with names，so only sketches with category annotations 489 were compared here
490

491 5．2 Comparing the Relative Sizes of Regions
492 As described in Section 4．1．3，the size of each region is calculated separately，and then our 493 approach compares the areas of two regions to find the relative size．Table 14 shows the consistent 494 rate of relative size between regions in each sketch to those in OSM．
495
Table 14．The consistent rate of relative size in each sketch w．r．t．OSM．

Sketch ID	S1	S2	S3	S4	S5	S6	S7	s8	S9	S10	S11
Quantity of Region Pairs	55	91	66	36	55	55	28	55	78	45	36
Consistent Quantity w．r．t OSM	26	75	51	12	35	46	10	38	40	13	12
Consistent Rate w．rt．OSM	0.47	0.82	0.77	0.33	0.63	0.84	0.36	0.69	0.51	0.29	0.33

496 In Table 14，the row labelled＂Quantity of Region Pairs＂gives the number of region pairs 497 included in each sketch，the row＂Consistent Quantity w．r．t．OSM＂means the number of object 498 pairs that have the same relative size as the corresponding objects in OSM，and the row＂Consistent 499 Rate w．r．t．OSM＂means the consistent rate of relative size in each sketch to those in OSM through 500 comparing the numbers from the＂Consistent Quantity w．r．t．OSM＂row and the＂Quantity of 501 Objects Pairs＂row．

A ranking of sketch similarity with OSM based on the relative size consistency between 503 regions gives the following order：S6＞S2＞S3＞S8＞S5＞S9＞S1＞S7＞S4＝S11＞S10，where the sketch 504 with the worst relative size consistency is S 10 ，and S 6 has the best relative size consistency．

505 5．3 Comparing Region Names

506 Our approach uses the Levenshtein distance（1966）to compare the annotations of objects in the 507 sketched place with the names of the corresponding objects in OSM，as described in Section 4．1．4． 508 Figure 28 shows the names defined in OSM，and Table 15 shows the Levenshtein distances 509 between names defined in each sketch and OSM，from which we can find that bigger distances 510 occur in objects with longer names，because volunteers preferred to use abbreviated names．Some 511 volunteers used different names to annotate one region，which resulted in a distance larger than 1 ． 512 For example，in S4，the name Region 12 that volunteer annotated was＂环境学院＂，which is 513 different and longer than the corresponding object name annotated in OSM．With regard to name 514 similarity，the worst sketch is S 1 ，and the best are S 4 and S9．

Figure 28．Regions names defined in OSM．
Table 15．Levenshtein distances between names defined in each sketch and OSM．（Note that－represent
annotation of an object not drawn in the sketch；only sketches with name annotations are compared．）

SkecthiD ${ }^{\text {Ojiect ID }}$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Sı	－	0.80	－	1.00	－	1.00	0.50	－	${ }^{0.33}$	0.33	1.00	1.00	1.00	－	0.91	0.90		－
54	－	0.80	－	－	－	1.00	0.50	－	0.00	0.00	0.00	－	1.33	－	0.73	0.70	－	－
ss	－	0.40	1.00	－	－	1.00	0.50	－	0.33	0.33	0.33	0.33	2.00	－	0.73	0.70	－	－
S6	0.40	0.80	－	－	－	1.00	0.50	－	0.33	0.33	0.00	0.00	1.67	－	0.73	0.70	－	－
s9	－	0.80	0.00	0.00	0.00	1.00	0.50	－	${ }^{0.00}$	0.00	0.00	${ }_{0} .33$	1.00	－	0.73	0.70	－	－

519 5．4 Obtaining Region Relevancy

520 We counted the frequencies of all regions drawn in each sketch to detect the importance of various 521 regions in volunteers＇perceptions．Table 16 shows the statistics of different regions drawn in all 522 sketches according to their categories
－Regions closely related to everyday needs，such as supermarkets，restaurants，dormitory buildings and teaching buildings are most often drawn，indicating that these region categories are most profound in the human perception and these object categories can be used as the primary matching factors in place query－by－sketch．
－The drawing frequencies of the abandoned bathhouse and boiler house are relatively small．
Additionally，because the basketball court and football field are adjacent to each other，some volunteers combined these two into one．This is why the basketball court was drawn less 532 frequently．This is also called semantic neighbourhood（Rodríguez \＆Egenhofer，2003），which 533 means semantically similar entity classes（i．e．，sport fields and courts，and bars and restaurants） 534 can have quite different names but are likely to share some common features，and their spatial 535 relationship is often＂next－to＂each other in a specific area（Schwering 2004）．
536
Table 16．Drawing frequencies of regions in all sketches．

Place ID	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Name Code	B	F	33^{4}	31^{4}	$32^{4 / 4}$	SA	C	AB	35^{h}	$34^{4 h}$	$36^{4 /}$	377^{4}	SB	FMS	SLS	SG	FT	ABH
Drawing																		
Frequencies	4	11	3	6	2	10	11	0	10	10	9	10	11	0	11	10	0	0

537 In Table 16，B represents a basketball court，F represents a football field， $33^{\text {rd }}$ represents the $53833^{\text {rd }}$ dormitory， $31^{\text {st }}$ represents the $31^{\text {st }}$ Dormitory， $32^{\text {nd }}$ represents the $32^{\text {nd }}$ Dormitory，SA represents 539 the student activity centre， C represents a restaurant， AB represents an abandoned bathhouse， $35^{\text {th }}$

540 represents the $35^{\text {th }}$ dormitory, $36^{\text {th }}$ represents the $36^{\text {th }}$ dormitory, SB represents a school building, 541 FMS represents a field management station, SLS represents a School of Life Science building, SG 542 represents a School of Geography building, FT represents a fountain, and ABH represents an 543 abandoned boiler house.

544 5.5 Obtaining Roads Relevance

545 We also counted the frequencies of all roads in each sketch to obtain the importance of roads in 546 volunteers' perceptions. Table 17 shows the drawing frequencies of different roads drawn in all 547 sketches according to their categories.
548 - Roads 2 and 9 with the highest drawing frequencies are the central roads in the experimental scenario, as Figure 29(a) shows

- Roads 0, 8, and 16 are those leading to the dormitory and the teaching building, as Figure 29(b) shows.
- Roads 7, 9, 11, 13, 14, 17, and 18 with the lowest drawing frequencies are auxiliary roads leading to the restaurant and the teaching building, as Figure 29(c) shows.
As a result, the roads at the centre position can be given a higher matching priority. It is essential to point out that road 20 is a bridge, so although it is drawn less frequently in all sketches, 556 due to its uniqueness, it still can be given a higher matching priority
557

$$
\begin{array}{c|c}
& \text { Table 17. Frequency of roads in all sketches. } \\
\hline \begin{array}{c}
\text { Road ID }
\end{array} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\
\hline \text { Frounumencies } & 6 & 4 & 9 & 4 & 3 & 1 & 4 & 0 & 5 & 0 & 1 & 0 & 2 & 0 & 0 & 3 & 6 & 0 & 0 & 9 & 3 & 4
\end{array}
$$

(c)

Figure 29. (a)The most frequently drawn central roads in all sketches (displayed in green) (b)The roads that were less frequently drawn in all sketches (displayed in blue) (c)The roads that were never drawn in the sketches (displayed in red)

We also found that some roads were schematically sketched, and the drawings did not reflect 564 their actual shapes, as Figure 30 shows; these schematics only represent the accessibility between 565 two regions. The volunteers who drew these sketches lack a geoscience background. Consequently, 566 the sketched roads were not considered in our subsequent road-related calculations.

569 5.6 Comparing the Shapes of Sketched Roads with those in OSM

570 As described in Section 4.1.2, some roads are sketched completely, while others are sketched 571 partially. Additionally, the angular shapes of sketched roads in different sketches vary. Our 572 approach compares all roads in OSM (shown in Figure 31) with the roads drawn in all sketches 573 (shown in Figure 32) and finds that it is difficult to find any similarities.

574
575

S6

S2

s7

s8

s9

Figure 32. Roads extracted from the volunteers' sketches.
To further clarify the similarity in road shapes between sketches and OSM, Road 19 and 2 578 with the highest drawing frequencies were analysed for specific shape analysis, as Figure 33 579 shows. Table 18 shows that Roads 19 and 2 are present in all sketches. The shapes of these two 580 roads in all the sketches have a higher similarity to the shapes of the corresponding two roads in 581 OSM

giure 33 . Road 19 (cyan line) and Road 2 (blue line) in OSM have the highest sketched frequencies in a ketches.

585 We adopt a shape matching approach to sort the roads from OSM by similarity. The approach 586 includes comparison of shape distance (Vatavu et al., 2012), topological relationship between 587 roads, and others. The results from searching all roads in Nanjing (data from OSM, including a 588 rads, an 15,242 records) are shown in Table 19 and Table 20

589

Sketch ID	S1	S2	S3	S4	S5	
Most Frequently Drawn Road 19 and 2						
Sketch ID						
Most Frequently Drawn Road 19 and 2						

590
Table 19. Some matching results with Road 19 from OSM.

Ranking 17	Ranking 18	Ranking 19	Ranking 20		

591 Table 20 shows the results of matching the two composite main road shapes (Road 19 is 592 shown in green and Road 2 is shown in blue). If the road is completely drawn, we can obtain the 593 correct result through shape retrieval, but if the road is only partially drawn, the search results 594 differ from the actual road. If there were more than three matching results, Table 20 displays only 595 the top three results for each match.

596 Table 20. Results of matching the composite shape of two main roads -Road 19 (cyan line) and Road 2 (blue line) in sketch S1 with OSM

Sketch ID	Two Main Roads: Road 19 and 2 from Sketches	Matched Roads in OSM Ranked According to Similarity		
S1				
S2				
S3				
S4		F		
S5	Γ			
S6				

24

S7				
S8				
S9				

598 Due to the differences in building shapes between sketches and OSM described in Section 599 4.1.2, and because sketched buildings are typically drawn as rectangles, our approach does not 600 consider shape matching for buildings.

601 5.7 Analysis of the Relative Location Relationship

602 In our approach, qualitative location relationship between regions (Section 5.7.1), quantitative 603 location relationship between regions (Section 5.7.2), and order relationships of regions along 604 roads (Section 5.7.3) are used to compare the similarity between sketched places and OSM to 605 represent the overall location relationship.
606 5.7.1 Analysis of the Qualitative Location Relationship between Regions
607 The qualitative location relationship between regions includes east, west, south, north, northeast, 608 southeast, northwest, and southwest, as described in Section 4.2.2. We used the absolute string 609 comparison method to obtain the correct rate of qualitative location relationship between regions 610 from all sketches, as Table 21 shows.
611
Table 21. The correct rate of qualitative

Sketch ID	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11
Correct NumberTotal	$36 / 45$	$60 / 78$	$39 / 55$	$13 / 36$	$40 / 55$	$36 / 45$	$22 / 28$	$35 / 45$	$59 / 78$	$23 / 45$	$27 / 36$
Number											
Correct Rate	0.80	0.76	0.70	0.36	0.72	0.80	0.79	0.78	0.76	0.52	0.75

612
The similarity of all sketches to OSM based on the accuracy of the qualitative location 613 relationship has the following order: $\mathrm{S} 1=\mathrm{S} 6>\mathrm{S} 7>\mathrm{S} 8>\mathrm{S} 2>\mathrm{S} 9>\mathrm{S} 11>\mathrm{S} 5>\mathrm{S} 3>\mathrm{S} 10>\mathrm{S} 4$. The worst 614 sketched place in terms of qualitative location relationship is S 4 , and the best are S 1 and S6.
615 5.7.2 Analysis of Quantitative Location Relationship between Regions
616 Our approach uses the azimuth distance to represent the quantitative location relationship, as 617 described in Section 4.2.2. To compare the quantitative location relationships between the 618 corresponding regions in a sketch and OSM, the RMSE (Root Mean Square Error) is calculated to 619 get the difference between them. RMSE is defined as:

621 where $A_{\text {sketch(i,j) }}$ refers to azimuth distance, which represents the quantitative location 622 relationship (described in Section 4.2.2) between the $\mathrm{i}^{\text {th }}$ region and the $\mathrm{j}^{\text {th }}$ region in one 623 sketch. $A_{\operatorname{OSM}(i, j)}$ refers to azimuth distance, which represents the quantitative location relationship 624 between the $\mathrm{i}^{\text {th }}$ region and the $\mathrm{j}^{\text {th }}$ region in OSM. The RMSE statistics are calculated between each 625 sketch and OSM, as Table 22 shows.

$$
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c}
\text { Sketch ID } & \text { S1 } & \text { S2 } & \text { S3 } & \text { S4 } & \text { S5 } & \text { S6 } & \text { S7 } & \text { S8 } & \text { S9 } & \text { S10 } & \text { S11 } \\
\hline \text { RMSE } & 0.64 & 0.24 & 1.41 & 9.53 & 1.05 & 2.48 & 0.64 & 0.70 & 0.45 & 27.66 & 0.95
\end{array}
$$

An analysis of Table 22 yields the following results
A complete sketch with a small RMSE value has a high region location similarity to OSM. According to the RMSE numerical analysis of all sketches and OSM, sketches with higher similarity to OSM, such as S2 and S9, have smaller RMSE values.

- Some sketches with small RMSE values have high similarity to OSM. Sketch S7, which contains few regions, still has a high similarity to OSM regions, and its RMSE value is small.
- Sketches with large RMSE values have low OSM region location similarity. Sketches S4 and S10 are less similar to OSM, which is consistent with their larger RMSE values
- The volunteers have varying geographical backgrounds. Sketches S10 and S11 were drawn by volunteers whose only geographical experience was using Google Maps. The RMSE value obtained for S11 indicates little similarity to OSM, so the geographical background of the volunteer is not a decisive factor affecting sketching.
The order of similarity of all sketches based on the quantitative location relationship RMSE value is: $\mathrm{S} 2>\mathrm{S} 9>\mathrm{S} 1>\mathrm{S} 7>\mathrm{S} 8>\mathrm{S} 11>\mathrm{S} 5>\mathrm{S} 3>\mathrm{S} 6>\mathrm{S} 4>\mathrm{S} 10$. The sketched place with the worst quantitative location relationship is S 10 , and the best is S 2 .

5.7.3 Analysis of the Order Relationship of Regions along Roads

644 To compare the order relationship of sketched regions with OSM, the order correctness rate of 645 each sketch is calculated using the method described in Section 4.2.3. Considering Road 2 and 646 Road 19, which had the highest drawing frequencies, we analysed the correct rate of the order 647 relationship of regions along these two roads, and the results are shown in Table 23. The sketches 648 are presented in each column. In rows, we analyse (i) the quantity of order accuracy along Road 2 649 (in Row 1) and Road 19 (in Row 3) with respect to the corresponding order in OSM; (ii) the 650 accuracy rate of ordering along Road 2 (in Row 2) and Road 19 (in Row 4), which refers to the 651 proportion of the correct order of regions along one road with respect to the corresponding order

653

Sketch ID	S1	s2	S3	S4	S5	S6	S7	S8	S9
Order Accuracy	3/3	5/5	5/5	2/2	3/3	5/6	3/4	5/6	2/3
Accuracy Rate along Road 2	1	1	1	1	1	0.83	0.75	0.83	0.67
Order Accuracy along Road 19	810	10/12	$7 / 11$	$6 / 8$	7/10	7/10	4/5	$6 / 10$	$8 / 12$
${ }_{\substack{\text { A }}}^{\text {Accuracy Rate }}$ along Road 19	0.80	0.83	0.63	0.75	0.70	0.70	0.80	0.60	0.67

654 From Table 23, the order accuracy along Road 2 is higher than the order accuracy along Road 655 19. By sorting the sketches according to order accuracy along Road 2 and Road 19, we obtain the
655 19. By sorting the sketches according to order accuracy along Road 2 and Road 19, we obtain the 656 following: 662 sketches based on Roads 2 and 19. Figure 34 shows the reason: these objects are in a nearly paralle 663 position in OSM. As a result, volunteers can decide to alternate their relative positions in sketches.

- Along Road 2: $\mathrm{S} 1=\mathrm{S} 2=\mathrm{S} 3=\mathrm{S} 4=\mathrm{S} 5>\mathrm{S} 8=\mathrm{S} 6>\mathrm{S} 7>\mathrm{S} 9$. The worst sketched place regarding egion order relationship along Road 2 is $S 9$, and the best is $S 1$
- Along Road 19. $\mathrm{S} 2>\mathrm{S} 1=\mathrm{S} 7>\mathrm{S} 4>\mathrm{S} 5=\mathrm{S} 6>\mathrm{S} 9>\mathrm{S} 3>\mathrm{S} 8$ The worst sketched place region order relationship along Road 19 is S8, and the best is S2
Regions $0,1,5,8,12$ and 15 have the highest frequency of arrangement differences in all

Figure 34. Regions with the highest frequency of order errors based on Roads 2 and 19 in sketches (displayed with
lue triangles and purple squares)
667 5.8 Topological Relationship between Regions and Roads
668 The 9 -intersection model is used to calculate the topological relationships between objects, as 669 described in Section 4.2.4. Due to the differences of scale between the sketch and OSM, our 670 approach uses spatial closeness to analyse the topological relationships between regions (Section 671 5.8.1), topological relationships between roads (Section 5.8.2) and topological relationships 672 between a region and a road (Section 5.8.3).

673 5.8.1 Analysis of Topological Relationship between Regions

674 Figure 1 shows that the topological relationship between all pairs of regions in this place is disjoint. 675 Our approach uses the method described in Section 4.2.4 to obtain the relative closeness 676 relationship between regions in all sketches and OSM. The absolute string comparison method is 677 adopted to analyse the similarity between sketches and OSM
678 Table 24 shows the consistent rate of closeness between sketched regions to OSM. By 679 arranging the sketches in terms of the consistent rate of closeness between regions to those in 680 OSM, we obtain: $\mathrm{S} 2>\mathrm{S} 3=\mathrm{S} 6>\mathrm{S} 9>\mathrm{S} 8>\mathrm{S} 5>\mathrm{S} 10>\mathrm{S} 1>\mathrm{S} 4>\mathrm{S} 11>\mathrm{S} 7$; the most consistent is S 2 and the 681 least consistent is S 7
682
Table 24. Consistent Rate of Closeness between Regions in Sketches w.r.t. OSM.

Sketch ID	S 1	S 2	S 3	S 4	$\mathrm{S5}$	S 6	S 7	S 8	s 9	S 10	S 11
Pairs of Objects	55	91	66	36	55	55	28	55	78	45	36
Ounnity of coseness Consisent CintosM	16	70	44	10	30	37	2	32	51	19	5
Consistent Rate	0.29	0.77	0.67	0.28	0.54	0.67	0.07	0.58	0.65	0.42	0.14

683 5.8.2 Analysis of Topological Relationship between Roads
684 Our approach adopts the 9 -intersection model to analyse the qualitative topological relationship

685 between roads, as described in Section 4.2.4. Table 25 presents the rate of correct identification of 686 the topological relationships between roads and two main roads (Road 2 and Road 19) in our 687 experimental area for all sketches. Inconsistencies appear in Table 25. For example, the ratio of 688 correct / total quantity of topological relationships between roads in sketch S1 w.r.t OSM is $8 / 9$. 689 This means one of the topological relationships in sketch S1 is inconsistent with the corresponding 690 relationship in OSM. The inconsistency is caused by: incorrectly drawn roads and partially drawn 690 relationship in OSM. The inconsistency is caused by: incorrectly drawn roads and partially drawn 692 inconsistent topological relationships due to incorrect drawing is 2 , and that due to partial drawing 693 is 3 .
694
695
Table 25. The rate of correct identification of the topological relationships between roads and two main roads

Sketch ID	S 1	S 2	S 3	S 4	$\mathrm{S5}$	S 6	S 7	S 8	S 9
Correct Quantity Total Quantity									
and Road 2	$8 / 9$	$6 / 6$	$3 / 3$	$4 / 4$	$6 / 7$	$6 / 7$	$2 / 2$	$10 / 10$	$5 / 6$
Correct Quantity and toat Quantity	$8 / 8$	$6 / 6$	$2 / 2$	$4 / 4$	$7 / 7$	$6 / 7$	$2 / 2$	$8 / 8$	$7 / 7$

696
697
697 tw
698
699
699 700 701 geospatial.

702 5.8.3 Analysis of Topological Relationship between Regions and Roads
703 Our approach uses relative spatial closeness to obtain the spatial topological relationships between 704 roads and regions, as described in Section 4.2.4. Table 26 shows the spatial closeness between 705 roads and regions in all sketches compared to OSM 706

Table 26. Rate of Consistent Closeness between Region and Road in Sketches w.r.t. OSM.

Sketch ID	S1	S2	S3	S4	S5	S6	S7	S8	S9
Pairs of Objects	108	111	47	44	98	${ }^{77}$	16	109	104
$\begin{aligned} & \text { Quantity of Closeness } \\ & \text { Consistent with OSM } \\ & \hline \end{aligned}$	48	${ }^{73}$	25	${ }^{31}$	74	${ }^{36}$	5	88	${ }^{69}$
Consistency Rate	0.44	0.66	0.53	0.70	0.76	0.47	${ }_{0} .31$	0.81	0.66

707
The order of spatial closeness similarity between roads and regions in the sketches and OSM 708 is $\mathrm{S} 8>\mathrm{S} 5>\mathrm{S} 4>\mathrm{S} 2=\mathrm{S} 9>\mathrm{S} 3>\mathrm{S} 6>\mathrm{S} 1>\mathrm{S} 7$; the best is S 8 and the worst is S 7 .

7096 Discussion

710 Let us sum up our findings. Table 27 summarizes the comparisons between the sketches and OSM 711 for each characteristic (in bold) with a similarity greater than a given threshold. We chose a 712 threshold of 0.75 as a baseline for this study, which has been found by experimentation and can be 713 turned for more precise similarity. The average value (represented as \bar{X}), standard deviation 714 (represented as S) and reliability are calculated to determine which characteristics can be used as 715 reliable invariants for aligning sketch maps and metric maps.
716
According to the values presented in Table 27, only three characteristics have higher 717 similarities between the sketch maps and the metric map: category of regions, shape of main roads, 718 and topological relationship between roads and main roads. As Table 27 shows, the averages in 719 category of regions are all 1 , and the S value is all 0 . Comparing the shapes of main roads and 720 topological relationship between main roads, our approach can obtain reasonable matching results

721 from OSM，as Table 20 shows．In this table，five of the nine sketches had the correctly matched 722 results in the top 3，including sketches S1，S2，S3，S6，and S8．The other four sketches（S4，S5，S7， 723 and S9）did not get correctly matched results，because the sketched roads in these sketches were 724 partially drawn．This means more accurate matching results can be obtained by using a completely 725 drawn road rather than a partially drawn road．And，the accurate matching rates based on 725 drawn road rather than a partially drawn road．And，the accurate matching rates based on
726 completely drawn roads are all 1．Characteristic topological relationship between roads and main 727 roads also has large \bar{X} values（ 0.94 w．r．t Road 2 and 0.98 w．r．t Road 19），and small S values（ 0.03 728 w．r．t Road 2 and 0.01 w．r．t Road 19）．

For object level characteristics，similarities in relative size of objects and annotated object 730 name are low between the sketch maps and the metric map．As illustrated in Table 27，the \bar{X} value 731 in relative size of objects is low（ $0.55<0.75$ ），because only three sketches（ $\mathrm{S} 2, \mathrm{~S} 3$ ，and S 6 ）have 732 high similarities (>0.75) to OSM．Furthermore，the S value of this characteristic (0.20) is large． 733 The reason is volunteers tend to use rectangles，which are similar to bounding boxes of regions 734 that do not accurately represent a region＇s shape，as explained in Section 4．1．3．For characteristic 735 annotated object name，although the S value（ 0.06 ）is relatively small，the \bar{X} value is low（ 0.50 ） 736 and similarities in this characteristic are wholly lower（ <0.75 ），see Table 27．This is because 737 volunteers all preferred to use abbreviated names to describe regions（Section 4．1．4）．For example， 738 volunteers annotated＂地＂or＂地科院＂（the abbreviated name of the School of Geography in 739 Chinese），which is an abbreviated form of the full name＂行远楼－地理科学学院＂（School of 740 Geography in Chinese）

The structure level characteristics also have low similarities，including qualitative and 742 quantitative location relationship between regions，order of appearance of regions along Road 19， 743 topological closeness between regions and between regions and roads．The S value of 744 characteristic qualitative location relationship between regions is large（ 0.13 ），due to the low 745 similarities in sketches S3，S4，S5 and S10 $(0.70,0.36,0.72$ and 0.52$)$ ．The average and standard 746 deviation of RMSE values in quantitative location relationship are large（ 4.16 and 8.23 ，calculated 747 based on Table 22），because of the big RMSE values in sketches S4 and S10（9．53 and 27．66， 748 respectively－see Table 22）．The S value of characteristic order of appearance of regions along 749 Road 19 is small（ 0.07 ），while that for Road 2 is large（ 0.12 ）．This instability is due to the erroneous 750 location of some regions drawn in one sketch．Volunteers alternated objects locations that are 751 almost parallel，as analysed in Section 5．73．The topological closeness between regions and 752 between regions and roads are two characteristics with low \bar{X} values $(0.46<0.75,0.59<0.75)$ and 753 large S values $(0.22,0.14)$ ．The can be attributed to the inconsistent distance scale between the 754 sketched map and OSM，as explained in Section 4．2．4．

Table 27．Summary of all characteristics in all sketches：similarity values (>0.75) are highlighted in bold．QCH represents the quantity of qualitative characteristics with higher similarities (>0.75) ）in one sketch．ACH represent the quantity of all characteristics with higher similarities（ >0.75 ）in one sketch．X shows the average precision of

Charactersisic	Section	S1	5	53	S4	S5	s6	57	s8	59	S10	Sl1	$\underline{\underline{x}}$	s
Category of Regions	5.1	1	1	1	1	1	1	1	1	1	1	1	1	0
Relative Size of Objects	5.2	0.47	0.82	0.77	0.33	0.63	0.84	0.36	0.69	0.51	0.29	0.33	0.55	0.20
Annotated Object Name	${ }_{5} 5$	0.38		－	0.57	0.48	0.51	－		0.57	－		0.50	0.06
Qualitative Location btw Regions	5.7 .1	${ }^{0.80}$	0.76	0.70	0.36	0.72	${ }^{0.81}$	0.79	0.78	0.76	0.52	0.75	0.70	0.13
Order of Regions along Road 2	5.7 .3	1	1	1	1	1	0.83	0.75	0.83	0.67	．		0.90	0.12
Order of Regions along Road 19	5.73	0.80	0.83	0.63	0.75	0.70	0.70	0.80	0.60	0.67	．		0.72	0.07

Topological Closeness btw Regions w．r．t． OSM	5.8 .1	0.29	0.77	0.67	0.28	0.54	0.67	0.07	0.58	0.65	0.42	0.14	0.46	0.22
Topological Relationship btw Roads and Road 2	5.8 .2	0.89	1	1	1	0.86	0.86	1	1	0.83	，	－	0.94	${ }^{0.03}$
$\begin{gathered} \text { Topological } \\ \text { Relationship btw } \\ \text { Roads and Road } 19 \\ \hline \end{gathered}$	5．8．2	1	1	1	1	1	0.86	1	1	1	－	－	0.98	${ }^{0.01}$
$\begin{gathered} \text { Topological Closeness } \\ \text { btw Region and Road } \\ \text { w.r.t. OSM } \\ \hline \end{gathered}$	5．8．3	0.44	0.66	0.53	0.70	0.76	0.47	0.31	0.81	0.66	0.44	0.66	0.59	0.14
$\begin{aligned} & \text { Quantity of Higher } \\ & \text { Consistence w.r.t. } \\ & \text { OSM } \end{aligned}$	－	6	8	5	5	5	6	6	6	4	1	2	－	
есн／асн		${ }^{616}$	618	$4 / 5$	5／5	$4 / 5$	5／6	${ }_{6}^{6}$	5／6	44	1／1	22		

According to our analysis，the qualitative characteristics have higher similarities than the quantitative characteristics between the sketched map and the OSM map in this paper，as shown 763 profoundly from the real roads in the OSM，as discussed in Section 4．1．2．We found no difference 764 766 767 768 769 771 ac 772 H 779 The relative size of objects has a 95% probability of falling within the interval $[0.4,0.69]$ 779 The rest is read similarly．Note that characteristic category of regions is not involved in this 781 are all 1 which means theause the similan

Characteristic	Df	Sig．	95% Confidence Interval for Mean	
			Lower Bound	Upper Bound
Relative Size of Objects	11	0.17	0.40	0.69
Annotated Object Name	5	0.35	0.40	0.59
Qualitative Location btw Regions	11	0.01	0.61	0.79
Order of Regions along Road 2	9	0.01	0.79	0.99
Order of Regions along Road 19	9	0.66	0.65	0.78
Topological Closeness btw Regions w．rt．OSM	11	0.36	0.30	0.62
Topological Relationship btw Roads and Road 2	9	0.01	0.88	0.99
Topological Relationship btw Roads and Road 19	9	0.00	0.94	1.02
Topological Closensss tww Region and Road w．r．t．OSM	11	0.57	0.48	0.69

Table 28 shows that four characteristics have significances lower than 0.05 （in bold）．The similarities in these four characteristics do not have 95% probability of falling within the 785 corresponding confidence intervals，including qualitative location between regions，order of

The shapes of roads drawn by study volunters win low geography knowledge difference with respect to other characteristics．For example，S11 has a high similarity value in＂Qualitative ation btw Regions＂to the OSM，as Table 27 shows
Reliability was used to measure the extent to which an accurate sketch aspect yielded the ame result in repeated conditions of same participants and homogeneous study areas（Wang \＆ chwering，2015）．If the similarity of one characteristic differs significantly among each sketch， e consider that characteristic a significant one and vice versa．The Shapiro－Wilk test（W test） Shapiro et al．，1965；Ghasemi \＆Zahediasl，2012）was adopted in our approach to compute curacy distributions，because of its robustness when being applied to small data sets．The Null－ ypothesis that distributions are the same is retained on a 95% confidence level．We identify those ignificant variations with having a p－value higher than 0.05

We set the null and the alternative hypothesis as：
H_{0} ：The accuracy of each sketch aspect is normally distributed
H_{A} ：The accuracy of each sketch aspect is not normally distribute
Table 28 shows the obtained results．As an example，note that the similarity in the

786 regions along Road 2, topological relationship btw roads and Road 2, and topological relationship 787 btw roads and Road 19. While combining with the similarities in Table 27, characteristics 788 topological relationship btw roads and main roads ($\operatorname{Road} 2$ and $\operatorname{Road} 19$) both have large \bar{X} values 789 (0.94 and 0.98) and low S values (0.03 and 0.01). Therefore, these two characteristics still can be 790 taken as reliable invariants for alignment. The other five characteristics in this table have higher 791 significances (>0.05). Thus, the differences of similarities in these characteristics among each 792 sketch are not significant. Furthermore, it can be found that the upper bounds of the confidence 793 intervals in four of these characteristics (relative size of objects, annotated object name, 794 topological closeness btw regions and road w.r.t. OSM and topological closeness btw regions w.r.t. 795 OSM) are all lower than $0.75(0.69,0.59,0.69$ and 0.62 , respectively). As a result, these four 796 characteristics are not reliable invariants for alignment. Characteristic order of regions along Road 79719 (main road in the experimental area) has a high upper bound of the confidence interval 798 ($0.78>0.75$), but characteristic order of regions along Road 2 (the other main rod in the 799 experimental area) has low significance ($0.01<0.05$). So characteristic order of regions along main 800 roads is not a reliable invariant for query-by-sketch
801 Since RMSE values were calculated for analysing the differences in the characteristic 802 quantitative location btw regions-azimuth distance-between each sketch and OSM (see Table 803 22), Cronbach's Alpha (Cronbach, 1951) is adopted for computing the coefficient of consistency 804 in this characteristic. Table 29 shows the results. According to DeVillis's (1991) study it is 805 acceptable if the Cronbach's Alpha is higher than 0.70 . Based on this, only one sketch (S2) has 806 higher Cronbach's alpha than 0.70 (0.78 in bold) in Table 29. So, the characteristic quantitative 807 location btw regions has no consistency among each sketch. It is not a reliable invariant for 808 alignment

$$
\begin{aligned}
& \text { Table 29. Cronbach's Alpha coefficient of azimuth distances between each sketch and OSM. } \\
& \begin{array}{c|c|c|c|c|c|c|c|c|c|c|c}
\text { Sketch ID } & \text { S1 } & \text { S2 } & \text { S3 } & \text { S4 } & \text { S5 } & \text { S6 } & \text { S7 } & \text { S8 } & \text { S9 } & \text { S10 } & \text { S11 } \\
\hline \begin{array}{c}
\text { Cronbach's } \\
\text { Alpha }
\end{array} & 0.48 & \mathbf{0 . 7 8} & 0.63 & 0.23 & 0.50 & 0.38 & 0.32 & 0.56 & 0.30 & 0.55 & 0.66
\end{array}
\end{aligned}
$$

Finally, Table 30 summarizes the invariant characteristics based on our above analysis. The shapes of main roads, categories of objects, and qualitative topological relationship between main 812 roads can be taken as reliable invariants for aligning the sketched map with the metric map.
813
814
Table 30. Invariant characteristics/factors that can be used as a reference for comparing/matching sketched
and actual places.

Can it be used as an invariant factor?		$\frac{\text { Categories of Objects }}{\text { Yes }}$	$\begin{aligned} & \frac{8}{\text { Relative Size of Objects }} \\ & \text { No } \end{aligned}$	$\frac{\text { Annotated Object Name }}{\text { No }}$	
	Yes				
Structure Level Matching Factors					
Can it be used as an invariant factor?	$\begin{gathered} \text { Order of Regions } \\ \text { along Main } \\ \text { Roads } \end{gathered}$	Quantitative Location between Regions	Qualitative Location between Regions	Topological Relationship between Roads and Main Roads	Topological Closeness between Regions and between Region and Road if Disjoint
		No	No	Yes	

8157 Conclusion and Future Work
816 This paper described a sketching study in which 11 volunteers drew the "place" where they study, 817 that is, the North part of Xianlin University District of Nanjing Normal University. We proposed 818 eight types of characteristics to represent and analyze objects in the sketch map from the object 819 level and scene level. Among these characteristics, location relationship and topological 820 relationship were further compared quantitatively (azimuth distance and spatial closeness) and 821 qualitatively (Location Reference System and 9 -intersection model). Moreover, the similarity and

822 reliability were evaluated for each characteristic statistically. The experimental results 823 demonstrated that three characteristics can be chosen as reliable invariants for alignment: 824 categories of regions, topological relationship between roads and main roads and shape of main 825 roads. The similarities of characteristic categories of objects are all 1. The similarities of 826 characteristic topological relationship between roads and main roads (Road 2 and Road 19) are 827 both large (0.94 and 0.98). Sketches with complete drawn roads can be used to query out the 828 corresponding place from OSM in top 3 based on matching the shapes of main roads. The 829 evaluation also shows that the characteristics qualitative location btw regions and ordering of 830 regions along Road 2 cannot be chosen as reliable invariants, as the differences in these two 831 characteristics are significant ($<0.05,95 \%$ confidence interval). Furthermore, characteristics 832 relative size of objects, annotated object name, ordering of regions along Road 19, topological 833 closeness btw regions and topological closeness btw region and road are also not selected as 834 reliable invariants, even though they have higher significance ($>0.05,95 \%$ confidence interval), 835 because their average accuracy precisions are all smaller than 0.75 . The characteristic quantitative 836 location btw regions is also not chosen as a reliable invariant for alignment due to the low 837 Cronbach's Alpha coefficients (<0.7 in ten of eleven sketches).

Moreover, we also observed that volunteers' level of geographical knowledge is not correlated 839 with their production of sketches more or less similar to OSM. We had two cases: the volunteers 840 who produced sketches S10 and S11 did not have a GIS studies background, and one obtained a 841 sketch quite close to OSM (sketch S11), while the other (sketch S10), was not as spatially precise. 842 Although the sample size of our study was small, the dataset collected had enough potential to 843 allow us (i) to find out diverse examples of different human spatial perceptions of a place (i.e. 844 roads drawn using one or two lines, same regions drawn with different shapes even approximated 845 to bounding boxes, etc.) and (ii) to identify useful invariants for finding a match between a 846 sketched place and a place in OSM (ie using a road network)

As future work, we intend to explore this cognitive aspect further by performing another 848 empirical study to assess volunteers' level of spatial reasoning skills (i.e., using psychological 849 tests). Moreover, we also intend to use the same methods adopted in the approach presented in this 850 paper (summarized in Figure 4) to analyse the sketches of other places (i.e., other university 851 campuses) drawn by different volunteers, to validate whether these additional sketches have the 852 same invariant characteristics as those obtained in the current study, and to analyse the cause of 853 any differences found

855 Acknowledgements

The project data has been removed to ensure a double-blind review.
All the authors particularly thank all the volunteers who participated in this empirical study and our colleagues who gave us helpful and significant comments

Refere

Bertin, J. (1983). Semiology of graphics: Diagrams, Networks, Maps
Blaser, A. D. (2000a). Sketching spatial queries (Doctoral dissertation, in Spatial Information Science and Engineering, University of Maine)
864 Blaser, A. D. (2000b). A study of people's sketching habits in GIS. Spatial Cognition and Computation, 2(4), 393-419.
Broelemann K., Jiang X., \& Schwering A. (2016). Automatic understanding of sketch maps using context-aware classification, Expert Systems with Applications, 45, 195-207.
868 Card, S. K., Mackinlay, J. D., \& Robertson, G. G. (1990, March). The design space of input devices.

870 Chipofya, M. C., Schultz, C., \& Schwering, A. (2016). A metaheuristic approach for efficient and effective $871 \begin{aligned} & \text { sketch-to-metric map alignment. International Journal of Geographical Information Science, 30(2), } 405-10\end{aligned}$ 872425.

873 Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. psychometrika, 16(3), 297-334. 874 Cui, Z., Cohn, A. G., \& Randell, D. A. (1993, June). Qualitative and topological relationships in spatial databases. 876 In International Symposium on Spatial Databases (pp. 296-315). Springer, Berlin, Heidelberg.
876 Davies, C., \& Peebles, D. (2010). Spaces or scenes: Map-based orientation in urban environments. Spatial 877 Cognition \& Computation, 10(2-3), 135-156
878 DeVillis, R. F. (1991). Scale development: Theory and applications
879 Eden, C. (1992). On the nature of cognitive maps. Journal of Management Studies, 29(3), 261-265
880 Egenhofer, M. J., \& Franzosa, R. D. (1991). Point-set topological spatial relations. International Journal of Egenher, M J (1997) Query (2), 161-174
Egenhofer, Falomir Z (2011) Qualitative
and Recognition in Robotics Universitätsbibliothek Bremen (SuUB): http://nbnerished at University of Bremen (Staats- und with Universitat Jaume 1, Castellon, Spain, (ISBN 978-84-695-3694-0, Tesis Doctorals en Xarxa, http://www.tdx.cat/handle/10803/52897).
Forbus, K. D., Lovett, A., Tomai, E., \& Usher, J. (2005). A Structure Mapping Model for Solving Geometric Analogy Problems. In Proceedings of the Annual Meeting of the Cognitive Science Society (Vol. 27, No. 27).

Forbus, K. D., Usher, J. M., Lovett, A. M., Lockwood, K., \& Wetzel, J. (2008). CogSketch: Open-domain Sketch Understanding for Cognitive Science Research and for Education. SBM, 8, 159-166
Freksa, C., Moratz, R., \& Barkowsky, T. (2000). Schematic maps for robot navigation. In Spatial Cognition II (pp. 100-114). Springer, Berlin, Heidelberg.
Freksa C., Barkowsky T., Dylla F., Falomir Z., Olteteanu A-M., van de Ven J. (2018). Spatial problem solving and cognition, in: Zacks J, Taylor H, eds, Representations in Mind and World, 156-183, New York: Routledge, Taylor and Francis. ISBN: 978-1-138-82970-1.
899 Ghasemi, A., \& Zahediasl, S. (2012). Normality tests for statistical analysis: a guide for non900 statisticians. International Journal of Endocrinology and Metabolism, 10(2), 486.
901 Jan, S., Schwering, A., Schultz, C., \& Chipofya, M. C. (2017). Cognitively plausible representations for the alignment of sketch and geo-referenced maps. Journal of Spatial Information Science, 2017(14), 31-59.
Levenshtein, V. I. (1966, February). Binary codes capable of correcting deletions, insertions, and reversals In Soviet Physics Doklady, 10(8), 707-710.
905 Lloyd, R., \& ers, 77(2), 191-207.
Massey, D. (2000). Living in Wythenshawe. The unknown city: contesting architecture and social space, 458-
Meilinger, T., Riecke, B. E., \& Bülthoff, H. H. (2014). Local and global reference frames for environmental spaces. The Quarterly Journal of Experimental Psychology, 67(3), 542-569.
Rodriguez, M. A., \& Egenhofer, M. J. (2003). Determining semantic similarity among entity classes from different ontologies. IEEE Transactions on Knowledge and Data Engineering, 15(2), 442-456.
Schwering, A. (2004). Semantic neighbourhoods for spatial relations. In Third International Conference on Geographic Information Science (GIScience).
Schwering, A., Wang, J., Chipofya, M., Jan, S., Li, R., \& Broelemann, K. (2014). SketchMapia: Qualitative representations for the alignment of sketch and metric maps. Spatial Cognition \& Computation, 14(3), 220 254.

Shaphiro, S. S., \& Wilk, M. B. (1965). An analysis of variance test for normality. Biometrika, 52(3), 591-611. Shen, S.Q. (2011). Study on Qualitative Spatial Reasoning and Its Application in Spatial Data Query. (Doctoral
Song, T. Y., \& Wang, M. (2012). Multi-feature based spatial scene matching model and its application. Journal of Image and Graphics, 17(10):1274-1282
923 Suwa, M., Gero, J. S., \& Purcell, T. (1998). The roles of sketches in early conceptual design processes 924
925 Erlbaum Hillsdale, New Jersey

926 Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55(4), 189
927 Tversky, B. (2000). Some ways that maps and diagrams communicate. In Spatial Cognition II (pp. 72-79). 929 Vatavu, R. D., Anthony, L., \& Wobbrock, J. O. (2012, October). Gestures as point clouds: a \$ P recognizer for 930 user interface prototypes. In Proceedings of the 14th ACM international conference on Multimodal interaction (pp. 273-280). ACM.
932 Wallgrün, J. O., Wolter, D., \& Richter, K. F. (2010, November). Qualitative matching of spatial information. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems (pp. 300-309). ACM.
935 Wang, J., \& Schwering, A. (2015). Invariant spatial information in sketch maps-a study of survey sketch maps 936 of urban areas. Journal of Spatial Information Science, 2015(11), 31-52.
937 Westerholt, R., Mocnik, F., \& Zipf, A. (eds., 2018). On the Way to Platial Analysis: Can Geosocial Media 938 Provide the Necessary Impetus? Proceedings of the 1st Workshop on Platial Analysis (PLATIAL'18). 940 Handling (pp. 19-38). Springer, Berlin, Heidelberg. 941 Yuan, Z.M., Wu, F., Zhuang, Y. T. (2006). Spatial topol 942 Zhejiang University (Engineering Science), 40(10), 1663-1668.

[^0]: The northern part of Xianlin University District of Nanjing Normal University htp://www.njnu.edu.cn/Link/map.html
 OpenStreetMap: https://www.openstreetmap.org

