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Abstract 

Sketch maps play an important role in communicating spatial 

knowledge, particularly in applications interested in identifying 

correspondences to metric maps for land tenure in rural communities. The 

interpretation of a sketch map is linked to the users’ spatial reasoning and the 

number of features included.  Additionally, in order to make use of the 

information provided by sketch maps, the integration with information 

systems is needed but is convoluted. The process of identifying which element 

in the base map is being represented in the sketch map involves the use of 

correct descriptors and structures to manage them. In the past years, different 

methods to give a solution to the sketch matching problem employs iterative 

methods using static scores to create a subset of correspondences. In this thesis, 

we propose an implementation for the automatic aligning of the sketch to 

metric maps, based on dynamic programming techniques from reinforcement 

learning. Our solution is distinctive from other approaches as it searches for 

pair equivalences by exploring the environment of the search space and 

learning from positive rewards derived from a custom scoring system. Scores 

are used to evaluate the likeliness of a candidate pair to belong to the final 

solution, and the results are back up in a state-value function to recover the 

best subset states and recovering the highest scored combinations. 

Reinforcement learning algorithms are dynamic and robust solutions for 

finding the best solution in an ample search space. The proposed workflow 

improves the outcoming spatial configuration for the aligned features 

compared to previous approaches, specifically the Tabu Search.  

 

Keywords:  sketch map, metric map, dynamic programming, tabu search, 

learning algorithm, link analysis, alignment. 
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CHAPTER 1 INTRODUCTION 

1.1 RELATED WORK AND MOTIVATION 

As humans, we communicate our perception of the elements 

surrounding us by using different tools: book descriptions, paintings, and 

more elaborated representations like maps in different types, including sketch 

maps.  Sketch maps contain a set of items displaying the author’s conception 

of the space, providing spatial information useful for studying and 

understanding the environment in which she lives (Malumbo Chipofya, Wang, 

& Schwering, 2011). To be able to unveil the meaning behind a sketch map 

without the author’s feedback, it is necessary to compare every structure to a 

more structured representation of geographical elements, such as metric maps 

(Klaus Broelemann, Jiang, & Schwering, 2016). By having them side-by-side, it 

is possible to identify the abstraction created in the sketched map and relate it 

to a specific item in the metric map. As the elements increase in the input map, 

the association’s complexity with the metric map also grows, and therefore the 

relationships included, requiring automatizing the aligning process. 

The difficulties in this task include the definition of appropriate 

representations of the problem space in order to structure the search for 

correspondences (Wallgrün, Wolter, & Richter, 2010). Graphs are robust 

information structures with gained popularity to represent formal structures 

for displaying relations of different types such as spatial, geometrical, or 

conceptual (Bunke, 2000). They are often used to examine the relationships 

correspondence and consistency of the data structure implemented with an 

exhaustive analysis of their distribution defined as a case of graph matching 

problems, with different approaches according to the category in which the 

graph representation belongs (Foggia, Percannella, & Vento, 2014). Diverse 

techniques to solve the matching problem include the measure of distances, 

composite graph similarities, string-based methods, and statistical graph 

matching (Emmert-Streib, Dehmer, & Shi, 2016). One of the current 

implementations for the sketch to the metric alignment problem, translated as 

a graph matching problem with the implementation of Qualitative Constraint 
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Networks, analyzes specialized local structures to evaluate candidate pairs 

while searching for correspondences (Malumbo Chipofya, Schwering, & Binor, 

2013). The correspondence problem using LCM has arisen solutions with 

exponential time complexity, which may not be a feasible solution for 

significant scale problems (Malumbo Chipofya, 2018). In the recent years, the 

artificial intelligence field has developed different techniques for giving 

solutions to large scale tasks involved with graph nature problems in 

computer vision, integrating algorithms that rely on patterns and deductions 

from the accessible information (Foggia et al., 2014). By exploiting the 

capabilities of Local Compatibility Matrices, newer algorithms for significant 

scale problems, and other similarities measures studied for matching tasks in 

other fields, how to improve the pair selection process by taking advantage of past 

exploration in local compatibility matrices? 

1.2 RESEARCH QUESTIONS AND OBJECTIVES 

This research aims to implement and compare two searching 

algorithms to identify the next optimal pair selection during the matching 

process between a sketch and a metric map. The following research questions 

are defined: 

• How can the pair selection algorithm be modified to increase the number of 

correctly matching objects for alignment between sketch and metric maps? 

• How can the exploration in the pair selection algorithm be used to recover 

critical information for the matching process between sketch and metric maps? 

• Does the new pair selection algorithm improve the alignment solution?  

In order to answer the previous research questions, the following 

objectives are defined: 

• Calculate a new selection score system for the matching process 

• Retain feedback for future decision processes during the exploration in the 

search algorithm 

• Evaluate the matching results comparing the search algorithms implemented 

to measure changes in performance 
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The open challenges identified from the sketch to metric map alignment 

process are addressed with the stated research questions as displayed in 

Figure 1:  

 

1.3 GENERAL METHODOLOGY 

The sketch to metric map alignment process workflow is divided into 5 

modules: first of all, for the Input Processing, the sketch and metric map are 

processed in the SmartSkeMa framework to translate the features from 

geometries to a set of vectors by a computer vision segmentation process and 

then identify the spatial relationships from the vectorized features are 

organized in a graph like data structure, implementing Qualitative Constraint 

Networks. Secondly, the Qualitative Analysis module analyzes the output from 

the framework and assesses the compatibility of each feature in terms of 

feature type and similarity. The next step in the workflow is the Score System, 

which provides the measurements of Link Analysis ranking score, Spectral 

Solution clustering solution, and the two Local Compatibility Matrices 

Heuristic Scores H1 and H2 to evaluate the likeliness of a candidate pair to 

belong to the alignment solution. Finally, in the Searching Algorithms 

component, we implement two different algorithms to find correspondences 

between candidate pairs: a metaheuristic approach named the Tabu Search 

and a reinforcement learning algorithm, SARSA. We compare the provided 

solutions in terms of their performance, precision, and recall. Figure 2 

summarizes the processes outlined and their outputs. 

RQ 1
Algorithm modification

Challenge 1

Lower computation expenses

Challenge 2

Decrease the omission of candidate 
pairs

RQ 2

Use exploration for information 
recovery

Challenge 1

Lower computation expenses

Challenge 3

Take into account local information 
about during search

RQ 3
Does the new algorithm improve the 

alignment solution

Challenge 2

Decrease the omission of candidate 
pairs

Figure 1 Thesis challenges outline 
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Figure 2 Methodology overview 

 

1.4 THESIS OUTLINE 

The following sections are organized as follows: 

• Chapter 2 describes the theoretical background introducing the 

concepts employed in this thesis including the use of sketch maps, the 

importance and past work for giving solution to the graph matching 

problem, the spatial representation calculus and data structures 

implemented to make use of them, and finally, a review to different 

strategies for searching algorithms. 

• In Chapter 3, the proposed methodology is outlined in detail, 

describing the sketch and metric maps used as an input and the 

assessment of the compatibility between features followed by the 

definition of the scoring system for the pair selection, and finally, the 

design and pseudo code for the Tabu and SARSA algorithms. 

• Chapter 4 displays the results of the workflow described in Chapter 3 

to automatically align sketch maps followed by the evaluation process 

to measure the performance and quality of the solution in terms of 

precision and recall for each search algorithm, discussion of the results, 

as well as the findings and the encountered limitations. 

• Finally, Chapter 5 includes the conclusions and future work. 
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CHAPTER 2 BACKGROUND 

This section presents an outline of the concepts supporting this thesis 

from the literature. Initially, we present Sketch Maps and a brief background 

to the graph matching problem, introducing qualitative spatial 

representations and the different qualitative calculi involved. Secondly, we 

outline the theory of Link Analysis to identify the importance of vicinities in 

local exploration, and finally, we portray strategies to solve searching 

problems from the perspective of artificial intelligence.  

2.1 SKETCH MAPS 

Sketch maps are representations of the space surrounding an individual 

decomposed into different spatial elements such as roads, buildings, and other 

physical features describing the relationships between the scene elements 

(Schwering & Wang, 2010). Moreover, every individual due to different 

experiences give an interpretation of the objects and their relationships being 

a topic of interest in research for map sketching in schools, governmental 

projects, and academia.  

The decoding of the information from a sketch (input) map to a metric 

(output) map is an approach by projects such as the SmartSkeMa framework 

delivering the scene spatial segmentation, qualitative representations, and 

input/output alignment process (Schwering et al., 2014). Along with the 

implementation, several analyses and techniques have been implemented to 

give solutions to the alignment process resulting in theoretical implications 

and findings such as Qualitative Constraint Matrices. On the other hand, the 

its4land project is one of the real-world applications of this kind of framework. 

By using sketch maps, communities in Kenya are able to participate in land 

delimitation and appropriation, helping to the management of natural and 

human-build resources. 

To accurate relate subjective maps and metric maps, techniques for 

assessing qualitative map alignment has been applied to find matches among 

the input representation such as a sketched entity, and one or several entities 

in a metric map using Local Compatibility Matrices (LCM) (M. C. Chipofya, 
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Schultz, & Schwering, 2016). The version of the implemented Tabu algorithm 

aims to face challenges such as the omission of promissory matching 

candidates and long execution times on large datasets. However, the dynamic 

metaheuristics generated in Chipofya’s algorithm gave better performance 

and accuracy versus standard compatibility matrices; leaving open the 

research for the refinement during the iterative match-candidates selection 

process since it rapidly leaves the matching process without candidates due to 

the removal of not compatible local pairs at a particular stage. As the search 

space grows, it may be helpful to identify how to associate potential additions 

during the exploration in previous regions of the search space (Malumbo 

Chipofya et al., 2013) 

2.2 THE GRAPH MATCHING PROBLEM 

The most significant benefit of graphs is that they can represent 

structured data and have been used to undertake problems in data mining, 

document analysis, and graphical pattern recognition, and bioinformatics 

(Cook & Holder, 2006). A graph 𝑔 = (𝑉, 𝐸, 𝛼, 𝛽) is composed by: 

• 𝑉, a set of finite nodes 

• 𝐸 ⊆ 𝑉 × 𝑉, a set of edges where and edge 𝐸(𝑣, 𝑢), starts at node 𝑣 and 

ends at node 𝑢 

• 𝛼: 𝑉 ⟶ 𝐿𝑉 , is a function to assign nodes labels 

• 𝛽: 𝐸 ⟶ 𝐿𝐸 , is a function to assign edges labels 

In Figure 3, color circles are nodes, and black lines are edges. The set of 

strings 𝑂𝑣, 𝐷𝐶 𝑎𝑛𝑑 𝐶𝑣𝑥 − 𝑂𝑣 are edges labels and represent a spatial 

relationship between nodes. Further explanation about spatial relationships can 

be found in Section 2.3. 
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Figure 3 Graph: nodes, edges, and labels (M. Chipofya et al., 2017) 

Graph matching involves estimating the configuration similarity by 

finding a correspondence between edges and nodes of a pair of graphs 

fulfilling several constraints to find similar substructures on one graph into 

the other (Conte, Foggia, Sansone, & Vento, 2004). The comparison between 

graphs is classified into two main approaches, Exact to find isomorphic 

relations or Inexact to asses an approximate solution, depending on how 

elements are paired (Foggia et al., 2014). Exact graph matching is usually 

restricted to a set of problems and have a binary solution: a match is true or 

false, whereas Inexact or error-tolerant matching is capable of handling real-

world class distortions and providing an evaluate the level of similarity 

between two graphs but is more expensive to compute (Cook & Holder, 2006; 

Emmert-Streib et al., 2016).  

 

Figure 4 Graph Matching techniques (Conte et al., 2016) 

For solving the error-tolerant matching, one of the most used 

formalizations to the use of the edges’ constraints is the weighted graph matching 

in which the graphs are illustrated by the corresponding adjacency or similarity 

matrices (Foggia et al., 2014) . Given two graphs with similarity matrices 𝐴 and 

𝐵, the compatibility between two edges (𝑢, 𝑣) and (𝑥, 𝑦) can be measure by a 

function: 

Graph 
Matching

Inexact
Graph edit distance

Iterative Methods

Exact Isomorphism-based 
measures
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𝐶𝑢𝑣𝑥𝑦 = {
0, 𝑖𝑓 𝐴𝑢𝑣 = 0 𝑜𝑟 𝐵𝑥𝑦 = 0

𝑐(𝐴𝑢𝑣 , 𝐵𝑥𝑦), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 2. 1 

where 𝑐(. , . ) is a defined compatibility function. The correspondence 

solution to this graph matching category includes algorithms designed to 

compute an approximation of the Graph Edit Distance obtained from node-

editing actions (delete, insert) and constraints are still satisfied (Conte et al., 

2004), others are based on properties related to the eigenvectors of the 

adjacency matrix referenced as Spectral Techniques, as well as Iterative Methods 

on the other hand for studying repetitive arrangements derived from the 

calculus of similarities scores (Cho, Lee, & Lee, 2010; Foggia et al., 2014). These 

methods evaluate the node’s vicinity to assign correspondences during the 

search, and their application is linked to the nature of the problem. Other 

approaches include heuristic techniques for combinatorial situations, such as 

tabu search, which are described in section 2.13 and 3.33. 

2.3 QUALITATIVE SPATIAL REPRESENTATION 

As Sketch Maps does not have a georeferenced system, it is necessary 

to automatize the analysis of spatial relationships to identify the underlaying 

correspondence between the elements represented (Wallgrün et al., 2010). 

Furthermore, the system requires the appropriate constraints design to 

establish correspondences to the desired dataset, such as a metric map 

(Malumbo Chipofya et al., 2011). These constraints are derived from the 

encoding process from physical experiences in which we applied our 

reasoning in daily activities, generating knowledge to describe the 

relationships between elements in the surrounding space  (Štěpánková, 1992).  

The spatial relations  like adjacency or inclusion for elements such points, lines, 

or regions are described by qualitative representations from the perspective of 

direction, position, or the physics of space (Jan, Schwering, Schultz, & 

Chipofya, 2015). Instead of numerical labels to define the structure of the 

physical world, qualitative representations illustrate our perception from 

specific conceptual distinctions (Freska, 1991). In order to calculate these 

representations, different qualitative spatial calculi are applied to be organized 

as constraints in a new graph and constructing a Qualitative Constraint 

Network (QCN) (M. C. Chipofya et al., 2016). This leads to the idea that finding 
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correspondences between qualitative spatial relationships from a sketch map 

to a metric map can be done through the match of the equivalent QCN for each 

map (Malumbo Chipofya et al., 2013). 

In the following subsections, we detailed the different spatial calculi 

and QCN structures developed for giving a solution to the problem of finding 

correspondences between a sketch and a metric map. 

2.3.1 Qualitative Spatial Calculi 

A qualitative calculus is defined as the set of algebraic structures to 

describe qualitative reasoning between objects which constitute the domain of 

the calculus (sharing the same type: line, points, or regions) by assigning a 

relation (Malumbo Chipofya et al., 2013). Table 1 displays a subset of the 

available spatial calculi involved in the graph matching problem for the 

alignment in sketch maps derived from empirical studies (Malumbo Chipofya 

et al., 2011; Jan et al., 2018): 

Table 1 Spatial Calculi for Qualitative Representations 

Calculi Description Example 

RCC8 Eight topological relations 
based on the primitive relation 
𝐶(𝑥, 𝑦) (Randell, Cui, & Cohn, 
1992)  

EC Externally Connected 

 

RCC11-LPC 

 

Eleven topological relations 
between city blocks based on 
the dim of the intersection of 
boundaries (line or point 
contact) (Jan et al., 2015).  

 

 

ECp Externally connected by a point 
 

Relative 
Distance 

Three relations based on 
relative metric minimum 
distance and clusters into three 
groups (near, far, very far) for 
polygonal features  (Jan et al., 
2018)  

Object D is far near to the cluster (1) and far from 
the cluster (2) 

 



 

2.11 

 

Calculi Description Example 

𝓛𝓡 Nine relative orientation 
relations to spatially express a 
situation for a starting point 
𝑎1 , reference point 𝑎2  and a 
focus point 𝑎3  (Scivos & 
Nebel, 2005) 

 

 

Looking from 𝑎1 to 𝑎2, 𝑎3 is to the left 

 

Adjacency Five relative orientation 
relations (left_of, right_of, 
front, back, and crosses). It 
computes the spatial relation 
between near-by objects (Jan et 
al., 2018) 

 

Object B is left_of object C 

 

Region 
starVars 

Relative orientation relations 
which divide the plane into 
cone-based regions. With a 
granularity factor 𝑚, the 
number of total relations is 2 ∗
𝑚 + 1 . Helps to describe the 
orientation of one polygon 
respecting other (Jan et al., 
2018; Lee, Renz, & Wolter, 
2013) 

 

A starVars object 𝐴 with 𝑚 = 8 and angle of 
orientation 𝐴𝜃 = 90° 

 

Each one of these calculi is useful for delineating and analyze specific 

arrangements regarding the world that we perceive in reality and construct 

structures called constraint networks to communicate knowledge from a scene 

(Ligozat, 2005). The next section contains the details about this structure. 

2.3.2 Qualitative Constraint Networks 

A Qualitative Constraint Network (QNC) is a complete graph in which 

the edges are labeled from a qualitative calculus (for example, RCC11), which 

describes the relation shared by the endpoints or nodes (Malumbo Chipofya 

et al., 2013). For a finite set of nodes 𝑁, a set of relations 𝐴  and 𝐶: 𝑁 × 𝑁 → 𝐴 a 

projection which to each set of nodes (𝑖, 𝑗), we assign an element 𝐶(𝑖, 𝑗) of 𝐴 

called a constraint on the edge (𝑖, 𝑗) . In Figure 5, the nodes or pairs are 

illustrated in color circles (𝑁)  and their corresponding label or constraints 

(𝐶(𝑖, 𝑗)) from the RCC8 calculus relation set (𝐴). 
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Figure 5 Graph labels and nodes (color) (M. Chipofya et al., 2017) 

There are three properties in qualitative reasoning to asses consistency 

in a constraint network. A network is said to be (Ligozat, 2005): 

1. Normalized: if the node (𝑖, 𝑗) labeled by 𝐶 and the node (𝑗, 𝑖) is labeled 

by 𝐶(𝑖, 𝑗)−1 for all (𝑖, 𝑗) 

2. Atomic: if 𝐶(𝑖, 𝑗) has only one basic relation for each pair (𝑖, 𝑗) 

3. A-Closed: if for every triplet of nodes (𝑖, 𝑗, 𝑘)  exists 𝐶(𝑖, 𝑗); 𝐶(𝑗, 𝑘) ⊇

𝐶(𝑖, 𝑘) 

Consistency is achieved if there is an appropriate structure along with 

the constraints (Ligozat, 2013). In particular, if in a constraint network every 

restriction is coherent then, it is said to be closed and stablishes the consistency 

of a QCN with a spatial calculus 𝐴, leading to the exercise of encountering 

correspondences for a set of qualitative spatial representations as the solution 

for the QCN matching problem (Malumbo Chipofya et al., 2013). 

As it is a high order dimensionality problem, we need more specialized 

structures to find matches efficiently (M. C. Chipofya et al., 2016). In the 

following sections, we highlight the use of local compatibility matrices 

constructed from the qualitative constraint networks.  

2.3.3 Local Compatibility Matrix 

A Local Compatibility Matrix (LCM) is a case of QCN derived from two 

graphs qualitative analysis, offering a global representation for the 

correspondence for a set of pairs during the match search for an input graph 

(Malumbo Chipofya, 2018).  

An LCM states the compatibility between a specified pair (𝑖, 𝑖′) ∈ 𝑁𝑥𝑁′ 

and (𝑗, 𝑗′) ∈ 𝑁𝑥𝑁′ and every other pair. In the matrix,  a row corresponds to the 

input node 𝑗 ∈ 𝑁, a column the target node 𝑗′ ∈ 𝑁′ and, the cell, the largest label 
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common to both edges 𝑙(𝑖, 𝑖′) ∩ 𝑙′(𝑗, 𝑗′). Represent the compatibility between 

every pair requires |𝑁| ∙ |𝑁′| LCMs (M. C. Chipofya et al., 2016).  

Properties from LCM are derived from its geometry. The first one is the 

possibility to sort rows and columns in a way that the cell with the same labels 

forms rectangular submatrices. Secondly, for non-overlapping and equal 

labels, these submatrices do not overlap each other (M. C. Chipofya et al., 2016). 

Extracting information about the local compatibility in this structure requires  

the computation of two heuristic scores, which is detailed in the System 

Scoring subsection 3.5.3. 

2.4 LINK ANALYSIS 

Traditional methods to recover information about a graph structure are 

focused on encountering a substructure to obtain a set of probabilities 

distribution (Dehmer, 2008). Finding a solution to the graph matching 

problem in computing engineering for pattern recognition, for example, has 

derived methods ranging from the manipulation of the similarity matrix to the 

redefinition of the graph class to obtain new similarity measures (Cour, 

Srinivasan, & Shi, 2007; Dehmer, Emmert-Streib, & Kilian, 2006). One 

approach is spectral techniques developed in computer vision, giving 

consistent results in identifying the correspondence between features 

analyzing the compatibility of the geometric constraints with the idea of 

identifying clusters from highly related items to fulfill an approximate 

solution contribute some insights to the current design of matching algorithms 

(Leordeanu & Hebert, 2005).  

2.5 REINFORCEMENT LEARNING ALGORITHMS 

Diverse techniques for matching a variety of features, including multi-

polygons, have been developed in computer science (Bunke & Jiang, 2000). As 

the search space increases, these techniques need to be able to handle 

significant inputs of information and offer the possibility to find patterns 

(Foggia et al., 2014). In this regard, learning algorithms offer a routine in which 

is possible to improve the performance: it stores the data during the agent-

environment interaction, maximizing the weight of the backup information 
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with a set of received rewards in a Markov Decision Process, to organize and 

structure the search and make appropriate decisions, based on the 

environment arrangement (Sutton & Barto, 1999).  

One of the keys configurations in reinforcement learning algorithms is 

the pertinent generation of the action-value and the state-value functions. By 

correctly identifying the conditions for selecting a feature in the case of the 

correspondence problem, the optimal solution computation time may 

improve, learning to associate potential aggregation with profitable regions of 

the search space to mitigate the adverse effects of an exponential expansion of 

the search space (Chipofya,2016). If the agent experiences future lower 

rewards, it returns to a past state in which a better next step or selection exists. 

Reinforcement learning techniques are an approach to make the best decision 

from the exploration and identification of situations and their consequences 

(Sutton & Barto, 1999).  

For any Reinforcement Learning problem, 

𝑡 are the steps in which the environment receives a state 

𝑠𝑡 is the environment state at the step 𝑡 such as 𝑠𝑡 ∈ 𝑆 where 𝑆 are all 

the possible states 

The agent then selects an action accordingly to its current state, 𝑎𝑡 is an 

action such as 𝑎𝑡 ∈ 𝐴(𝑠𝑡) where 𝐴(𝑠𝑡) are all the actions available in the state 

𝑠𝑡. As a result of this action, the agent receives a numerical reward, and the 

agent advance to a new state. By doing so, the agent is pursuing a mapping, 

formally called a policy, from states to probabilities of selecting each possible 

action: 

𝜋𝑡 Is a policy, a mapping from each state 𝑠 ∈ 𝑆 and action 𝑎 ∈ 𝐴(𝑠) to 

the probability 𝜋(𝑠, 𝑎) of selecting action 𝑎 when the agent is in the state 𝑠 

From this, by following the policy in a specific state, the expected state-

value is obtained in 

𝑉𝜋(𝑠) = 𝐸𝜋{∑ 𝛾𝑘𝑟𝑡+𝑘+1
∞
𝑘=0 |𝑠𝑡 = 𝑠} 2. 2 
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Furthermore, by following a policy starting in a specific state and taking 

a specific action, the expected action-value is obtained in 

 

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋{∑ 𝛾𝑘𝑟𝑡+𝑘+1
∞
𝑘=0 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎} 2. 3 

 

The goal is to have a good enough policy that maximizes the reward 

reflected in the V and Q values. Producing an optimal approximation implies 

to select the best value available, by backing up and comparing these results. 

The concept of Dynamic Learning is visible in this approach: by iteratively 

evaluate the best possible decision combination (policy) in a value function, it 

is possible to find the best solution to the selection process. 
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CHAPTER 3 METHODOLOGY 

This chapter focuses on the methods implemented to answers the 

research questions. First, a description of the implementation workflow is 

presented in section 3.1 to illustrate the connection between each module. The 

system setup is described in section 3.2, followed by the description of the data 

used to test the searching algorithms. Next, in Section 3.4, the scoring system 

components are presented, giving details on how they are calculated. Finally, 

section 3.5 describes the design and pseudocode for the Tabu and SARSA 

searching algorithms, respectively.  

3.1 IMPLEMENTATION WORKFLOW 

The process of aligning one feature to another between a sketch and a 

metric map requires the integration of the new implementation with the 

SmartSkeMa functionalities. In the following sections, we refer to the 

developed solution as the Dynamic Programming for Sketch Maps, DPSM. 

First, to recognize the drawing, the metric and the sketch maps are uploaded 

as inputs in the of the SmartSkeMa interface to be displayed and processed in 

the backend (1. Input Processing). Following the Qualitative Segmentation, a 

computer vision process that identifies the features in the sketch map (for 

more information about this process, review Murcia, 2018), the data obtained 

from the vectorization is used by the Qualitative Representation module to 

derived the relation set values and return the Qualitative Set and the Similarity 

Matrix, two inputs used in DPSM for assessing the compatibility and the 

similarity between features (2. Qualitative Analysis). Once the data is received 

from the mentioned modules, three different scores Link Analysis, Spectral 

Solution, and Local Compatibility heuristics, are calculated and provided (3. Score 

System). Next, the searching algorithms start the alignment process with the 

scores as arguments (4. Searching Algorithms). A more detailed review of the 

different modules is: 

• Input processing: Using the SmartSkeMa’s project interface, the sketch and 

metric maps are processed. SmartSkeMa will execute the Qualitative 

Segmentation (recognize the sketch maps features). 
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• Qualitative Analysis: once SmartSkeMa vectorizes the image, it will run 

the process of Qualitative Representation, giving as outputs the Similarity 

Matrix and the Qualitative Constraints datasets. In the DPSM 

implementation, we evaluate the compatibility between candidates’ pair 

and temporary solutions. 

• Scoring System: this module is useful to calculate different scores for each 

candidate pair as a criterion to evaluate if it will be added to the current 

solution. One of the tasks is to recreate the Local Compatibility Matrix for 

each candidate pair and the current solution to calculate the LCM heuristic 

score. It is also used to calculate the Link Analysis score for each pair 

considered based on the similarity matrix. Finally, by using the LA score, 

it will calculate the Spectral Solution to be considered as initial solutions 

for the algorithms as it will show highly connected pairs inside the search 

space. 

• Searching algorithms: two different algorithms are implemented to give a 

solution to the alignment problem: a Tabu search, from the non-learning 

algorithms, and a SARSA algorithm from the reinforcement learning 

algorithms. Both are fed with the output generated in the previously 

mentioned modules given. As a result, a list of sketch and metric maps 

features to be displayed in the SmartSkeMa interface. 

Finally, the searching results will be evaluated by the performance 

(execution time in seconds), precision, and recall. In this section, the concepts 

will be explained in more detail. The implementation diagram is detailed in 

Figure 6: 

 

Figure 6 Framework implementation workflow 
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For each major component, every module is responsible for a set of 

process and outputs that are going to be used in future functionalities; this 

workflow is shown in Figure 7 with gray dotted lines for the modules used 

from the SmartSkeMa framework: 

Figure 7 Thesis implementation workflow 

3.2 SYSTEM SETUP 

For workflow implementation, it is necessary to integrate different 

libraries and modules in a unique environment. For the system setup, the 

following libraries were used from and in the SmartSkeMa framework. 

3.2.1 Python 

The proposed methodology is developed in Python. Python is an object-

oriented programming language with high-level data structures as it offers 

diverse standard libraries from string processing to system interfaces, some of 

which are specially design and optimized to handle large datasets (The Python 

Software Foundation, 2009).  

The main Python libraries implemented are: 

• Numpy (v. 1.18.1): package dedicated to scientific computing with Python 

offering tools for manipulating N-dimensional array datasets. We use the 

matrix tools to store, manipulate and process data (NumPyCommunity, 

2020) 

• Intertools (v. 2.3): this module offers fast and memory-efficient tools to 

iterate through data. As in our research, it is needed to search in large 

datasets. This module helps to optimize the process in between during the 

solution exploration (The Python Software Foundation, 2003b). 
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• Collections (v. 2.4): module implementing specially designed container 

datatypes as alternatives to the Python’s standard built-in ones, with a 

high-performance outcome in our case for storing and manipulating the 

data in the implementation (The Python Software Foundation, 2003a) 

• OpenAI Gym: a library with a collection of test problems called environments 

to implement reinforcement-learning algorithms with a shared interface 

(Brockman et al., 2016)  

 

3.2.2 SmartSkeMa framework 

The Smart Sketch Map system (SmartSkeMa) is an application to record 

sketch-based information regarding land tenure in the frame of peri-urban and 

rural territories displaying an integrated vision of the end user’s sketch map 

and a cartographic dataset (M Chipofya, Jan, Schultz, & Schwering, 2017). An 

overview of the interface is displayed in Figure 8 with the input sketch map in 

the left and in the right side, the corresponding metric map. 

 

Figure 8 SmartSkeMa interface 

From the SmartSkeMa project, the main modules used are: 

• Sketch recognition: for identifying distinctive elements in the sketch maps, 

for instance, water bodies, houses or mountains, the module processes 

shapes, and features’ representations by using a symbol recognizer to 

extract visual representations and transforming them into vector 

geometries (see Figure 9) to be stored in the system, using supervised 

learning techniques, polygonal clustering methods (Ng & Han, 2002) and 
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image recognition methods (K. Broelemann, 2011; Klaus Broelemann & 

Jiang, 2013) 

z  

Figure 9 SmartSkeMa vectorization 

Through the interface, we provide the sketch and the metric map 

files and run the Automatic Vectorization process, and additionally, we 

provide more vectorized features using the Geometry Editor functionality. 

The interface described is displayed in Figure 10: 

 

 

Figure 10 SmartSkeMa Geometry Editor user interface 

• Qualitative Representation: In the sketch to map alignment problem, every 

item is defined as a node inside the qualitative map with a designated class 

and the corresponding attribute values to identify them. Spatial relations 

are used to describe the location of each item in the qualitative spatial 

representation, becoming labels between each node in a graph matching 

model, and only a set of qualitative calculus are combined with stabilizing 

the distortions captured from the sketch map (M Chipofya et al., 2017).  

As a result, the module generates the corresponding Qualified Map 

for the sketch and the metric maps and the Similarity Matrices. Both datasets 

are organized based on the candidate pairs; these are each possible 
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combination between an element in the sketch map that may correspond 

to another element in the metric map. The Qualified Map dataset describes 

the labels between each node in the graph representation of the sketch to 

map association per relation set. On the other hand, the Similarity Matrix 

contains binary information about the compatibility between each label for 

every candidate pair. 

3.2.3 Metric map generation 

For the generation of the metric map’s dataset, the software QGIS in the 

version 3.10 A Coruña is used to digitalize the areas’ features and export them 

as a geoJSON file. QGIS is an open-source and multiplatform Geographic 

Information System (GIS) application supporting raster, vector, and database 

operations and functionalities for managing geographical information 

(QGISORG, 2002). 

3.2.4 Execution environment 

All the procedures were executed on an Intel Core i7-75002U CPU at 

2.70GHz, and 8GB DDR4 memory card with a 19GB dedicated virtual memory. 

A set of environments with different Python configurations are created 

through Anaconda, a scalable data science multi-platform environment 

manager for packages and Python distributions, with an extensive collection 

of open source modules to find, access and share (Anaconda, 2020).  An 

Anaconda environment executes a Python version 3.6.4 configuration along 

with the packages required to run the SmartSkeMa framework. This version 

of Python is selected according to TensorFlow’s version requirements for the 

Qualitative Segmentation Module. 

3.3 INPUT DATASETS 

Sketch mapping is a drawing exercise on a large piece of paper that 

allows recreating a global image of the people’s spatial distribution of their 

territory (Štěpánková, 1992) The following sketch maps are spatial 

representations with different complexity levels to test the proposed 

algorithms. All of them have been generated by humans on different platforms, 

with two of them with the same objective: describe an area of interest 



 

3.22 

 

according to the mental image of a space previously experienced. In the 

following subsections, a detailed description of each one is provided.  

The common relevant attributes in these representations include: 

• smart_skema_type: type of feature according to the domain model 

implemented in the SmartSkeMa framework, derived from the 

workshops carried in the Maasai community in Kenya for the its4land 

project  (Karamesouti et al., 2018; Murcia, 2018). The features’ type 

catalog is detailed in Table 2. 

• name: a descriptive label for each feature for identifying purposes 

• id: feature unique identifier for different processes inside SmartSkeMa 

and the DPSM implementation. 

Table 2 SmartSkeMa feature types 

Feature type Description 

beacon An object for specifying land boundary 

boma A small place where people rest 

boundary Clear delimitation of an area 

house Standard family living unit 

marsh 
Large wetland with plants. Associated to green 

areas in the experiment 

mountain 
Represents a single mountain or chain of 

mountains 

olopololi 
Area for agricultural activities. Associated to 

bridges in the experiment 

oltinka Water collection site 

river Natural or human-made water currents 

road 
Human-made access with or without pavement 

surface 

school Building with educational purposes 

tree An area containing one or more trees 

water_tank Water storing area for a collective usage 
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3.3.1 Artificial dataset 

The artificial dataset is a set of different elements with a random 

distribution. In Figure 11, the resulting sketch map is displayed. On the left 

side is the sketch map representation, and on the right side, the objective 

metric map to align. 

  

Figure 11 Artificial dataset SVG 

Each one of the map representations contains the features described in 

Table 3: 

Table 3 Artificial dataset features 

Map type Number of features Type of features 

Sketch 6 (2) Marsh 
(1) River 
(1) Olopololi 
(1) Road 
(2) Mountain 

Metric 7 (2) Marsh 
(1) River 
(1) Olopololi 
(1) Road 
(2) Mountain 

 

3.3.2 El Remanso 

El Remanso is a small neighborhood located in Bogotá, Colombia, in a 

residential area between the Fucha river (blue line) and the Primera de Mayo 

Avenue (yellow line), as displayed in Figure 12. The community enjoys green 

areas around the river, such as the Ciudad Montes Park, which has a small 

lake (blue circle). People from the southwest side of the river can cross using a 
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bridge (purple line). Bogotá is known for the mountain chain in the east called 

Eastern Hills, as they are visible from most of the citizens and serves as an 

essential spatial reference element in the landscape (Pavony, 2000; Robson, 

van Kerkhoff, & Cork, 2019)  

 

Figure 12 El Remanso neighborhood (Google Maps view) 

 

The sketch map represents the mental image of the main elements 

recalled from the neighborhood, as shown in Figure 13: 

 

  

Figure 13 El Remanso: sketch (left) and metric (right) maps 

The metric map geoJSON file is created in QGIS A Coruña, and the 

attributes are filled according to the SmartSkeMa guidelines. Each one of the 

map representations contains the features described in Table 4: 
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Table 4 El Remanso dataset features 

Map type Number of features Type of features 

Sketch 13 (5) House 
(2) Marsh 
(1) Boma 
(1) Olopololi 
(2) Mountain 
(1) River 
(1) Road 
 

Metric 15 (7) House 
(2) Marsh 
(1) Boma 
(1) Olopololi 
(2) Mountain 
(1) River 
(1) Road 

 

3.3.3 Mailua Ranch 

The Mailua Ranch is a sketch map data set collected in the Maasai 

community located in Southern Kenya, in which the SmartSkeMa project 

participates with other partner universities to provide tools in the land rights 

for the area residents. The sketch map in Figure 14 was created by individuals 

from the Maasai community in one of the field studies where additionally the 

domain model was generated for the spatial components described including 

classes for environmental characteristics, social units, activities, shapes, 

housing, and farming (Karamesouti et al., 2018). 

 

Figure 14 Mailua Ranch: sketch (left) and metric (right) maps 

The sketch map object representations contain the features described in 

Table 5: 
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Table 5 Mailua Ranch dataset features 

Map type Number of features Type of features 

Sketch  
(geometry editor) 

16 (1) School 
(1) River 
(2) Road 
(3) Mountain 
(1) Marsh 
(3) Boma 
(5) Olopololi 

Sketch  
(vectorization) 

31 (1) School 
(1) River 
(2) Road 
(4) Mountain 
(5) Marsh 
(8) Boma 
(11) Olopololi 

Metric 106 (1) School 
(1) River 
(2) Road 
(3) Mountain 
(3) Marsh 
(n) Boma 
(n) Olopololi 

 

3.4 QUALITATIVE ANALYSIS 

The sketch to map features alignment is approached as a graph 

matching problem in which every map feature is defined as a node and each 

relation label as an edge, as described in section 3.2.2. In the SmartSkeMa Input 

Processing, the system generates the Similarity matrices and Qualitative 

Constraint Map (QCM) and stores them to be used in the Qualitative analysis 

module, responsible for providing the compatibility and the similarity 

evaluation between two candidate pairs during the execution of the searching 

algorithms. 

A candidate pair p is a set of features (𝑖, 𝑖′) where i ∈ 𝑋 and 𝑖′ ∈ 𝑌, in this 

case, with 𝑋 representing the sketch map and 𝑌 the metric map to align. 

The main tasks of this module are to return values for: 

• Similarity: the similarity between the two pairs, 𝑝1 and 𝑝2 is recovered 

from the similarity matrix 𝑁 × 𝑁′. Moreover, it is evaluated as:  
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𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑝1, 𝑝2) = {
𝑇𝑟𝑢𝑒,  𝑖𝑓 𝑁 × 𝑁′

𝑝1,𝑝2
 = 1

𝐹𝑎𝑙𝑠𝑒, 𝑖𝑓 𝑁 × 𝑁′
𝑝1,𝑝2

 = 0
 3. 1 

 

• Type Compatibility: the type compatibility for a pair (𝑖, 𝑖′) is evaluated 

from the QCM feature type attributes QM as: 

𝑡𝑦𝑝𝑒 𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦(𝑖, 𝑖′) = {
𝑇𝑟𝑢𝑒, 𝑖𝑓 𝑄𝑀(𝑖) = 𝑄𝑀(𝑖′)

𝐹𝑎𝑙𝑠𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 3. 2 

• Candidate-Solution Compatibility: given a current solution 𝑚 , for a 

candidate pair 𝑝′ the compatibility with 𝑚 is: 

𝑐(𝑚, 𝑝′) = {
𝑇𝑟𝑢𝑒, 𝑖𝑓 ∀ 𝑝 ∈ 𝑚  𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑝, 𝑝′) = 1

𝐹𝑎𝑙𝑠𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 3. 3 

The definition of these values helps to filter the search space during the 

selection of candidate pairs for a current solution to the ones who add value 

to the final solution. 

3.5 SCORE SYSTEM 

The evaluation of a pair is a critical process in the alignment problem 

as the decision of the next most fitting step must contemplate the impact of the 

extension of every QCN, each relation set, and additional considerations 

(Chipofya, 2013). In this thesis, the additional considerations are based on the 

graph matching solutions for discrete problems in a closed graph, which state 

the influence of the vicinity configuration (R. Battiti & Protasi, 2001). From the 

Similarity Matrix, a Link Analysis is used to extract the ranking scores of each 

node in terms of their connectivity, taking these results to extract an initial 

solution with the Spectral Solution Technique studying, in this case, the 

clustering behavior of the nodes. Finally, from the neighborhood properties of 

the LCM, two heuristic scores are calculated.  

3.5.1 Page Rank 

PageRank is an algorithm developed to ranking a node according to the 

number of links in a web graph, by assigning a score between 0 and 1; during 

the graph exploration, some nodes are more visited than others, creating a 

network in which profoundly explored nodes share a high number of 

connections in between. (Ceri et al., 2013; Page, Brin, Motwani, & Winograd, 
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1998a). The result is a distribution probability vector or also called the left-

eigenvector, representing the ranking score for the candidate pairs in the 

Similarity Matrix A. 

Consider a web graph G in which pages are represented by nodes 𝑁. 

Let 𝑢 be a web page (node) pointing to a set of pages (nodes) 𝐹𝑢 and in the 

same way 𝐵𝑢 the set of nodes pointing to 𝑢. Let 𝐿𝑢 = |𝐹𝑢| be the number of 

links (edges) from 𝑢 and 𝑐 to be a normalization factor.  The equation gives the 

simplified version of PageRank ranking value R: 

𝑅(𝑢) = 𝑐 ∑
𝑅(𝑣)

𝐿𝑣
𝑣∈𝐵𝑢

 3. 4 

In order to calculate the corresponding PageRank score, the following 

variables and procedures are addressed: 

• Teleport operation: if 𝑁 is the total number of nodes in the web graph 𝐺, 

the operation to move from one to another happens with a probability 

of 
1

𝑁
.  A teleport rate with probability 0 < 𝛼 < 1  is defined to avoid 

looping in nodes with low compatibility and encourage exploration. 

• Initial probability distribution vector: base vector for the distribution 

probability vector as it represents each node value procured by dividing 

the sum of the number of nodes connected to it by the total number of 

features connected. In the case of the sketch to map alignment, the 

number of nodes connected is the ones with value 1 in the Similarity 

Matrix, as it represents the compatibility of each one of the features in 

the search space.  

• Transition Probability Matrix P: Consider a graph G with a set of nodes 

N= {A, B, C}.  The matrix P represents the distributed probability of 

moving from one node to another, as seen in Figure 15:  

 

Figure 15 Transition probabilities for a graph G (Ceri et al., 2013) 
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A row represents a candidate pair in the Similarity Matrix, and 

it is divided by the number of compatible features in that row. For the 

resulting base matrix P, a Teleport Distribution ( 1 − 𝛼 ) and Teleport 

Variation  (𝛼/𝑁)  is applied.  

• Power iteration: the method implemented to calculate the left-

eigenvector and the corresponding largest eigenvalue of a matrix, 

named the Distribution Probability Vector, the ranking score. Some of 

the advantages of this method include that it does not affect the 

transition probability matrix P, can handle large sizes of data, and it 

returns the values of interest in less computational and complexity 

expenses. 

The Link Analysis (PageRank) score computation in DPSM is executed 

with the Similarity Matrix, calculated from the input sketch and metric maps, 

as an argument, and the system retrieves the ranking scores for all candidate 

pairs. The link analysis results are used in the Spectral Score Technique (SST) 

as an argument to calculate an initial solution and, in the Tabu Search, to make 

a move in the selection process. In Figure 16, the PageRank implementation 

for the sketch to map aligning problem is detailed. 

 

Figure 16 Link Analysis evaluation diagram 
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3.5.2 Spectral Solution Technique 

The Spectral Solution Technique is an algorithm from Leordeanu and 

Hebert's research, able to find secure correspondences between a pair set of 

features as nodes in the graph matching problem, by calculating the 

eigenvector of a graph matrix M and processing these scores to get a collection 

of highly linked assignments. In this algorithm, selected features are highly 

related and expose high links scores showing a clustered behavior among 

them. On the other hand, low related features do not show any links rates, or 

if they appear, they show a considerable distance concerning the central 

cluster (Leordeanu & Hebert, 2005).   

Consider a graph G with a set of nodes N represented by the matrix A. 

Initially the similarity matrix is constructed, followed by the definition of 

environment variables: L as the number of nodes, x as the elements of the row 

in the iteration, and x* the maximum eigenvalue or affinity scores for the 

Similarity Matrix M.  As the SST addresses the use of maximum eigenvalue, it 

makes use of an algorithm that pursues the identification of links between 

large amounts of objects connected. One approach is Google’s algorithm, 

PageRank, which calculates a feature relevance inside a network according to 

the number of links shared with other features (Page, Brin, Motwani, & 

Winograd, 1998b). The algorithm will reject all the objects in the iteration with 

a lower value and a corresponding label in conflict with x* and collect the high 

scored and compatibles ones as long there are features left to analyze in L. 

Finally, x will contain the pairs candidates with the highest confidence of being 

correct assignment. The algorithm executes the steps described in Figure 17. 

In general, in the graph matching problem, the SST candidate pairs serve as a 

start point for the exploration in the search space. For the sketch to map 

alignment, these selected features represent the pairs candidates with the most 

number connections or relation labels inside the sketch-metric map graphs 

being good candidates for initializing the search. Moreover, according to the 

Link Analysis theory and Leordeanu findings, from the analysis of the 

candidate pair’s vicinity and identifying the existence of robust correlated 

features, the definition of the first steps during the search task make the results 

more profitable than resume from a point with no information available (R. 

Battiti & Protasi, 2001). 
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Figure 17 Diagram for the Spectral Solution Technique algorithm 

 

3.5.3 Heuristic scores from LCM 

The third score component is based on the properties of the Local 

Compatibility Matrices described in section 2.3.3, especially the non-

overlapping labels property in which matrix cell with the same label generate a 

non-overlapping square submatrix inside the LCM from which two heuristic 

scores are derived (Malumbo Chipofya et al., 2013): 

Consider a candidate pair (𝑖, 𝑖′) with LCM ℒ(𝑖,𝑖′)and its corresponding 

submatrices denoted by ℒ(𝑖,𝑖′),𝑅  with rows 𝑟𝑜𝑤𝑠(ℒ(𝑖,𝑖′),𝑅)  and columns 

𝑐𝑜𝑙𝑠(ℒ(𝑖,𝑖′),𝑅), where R is a label 𝑅∁𝑹. The first observation of this configuration 

is the possibility of identifying a set of submatrices inside ℒ(𝑖,𝑖′) furthermore 

considering the square submatrix property, get the minimum submatrix 
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dimension which indicates the highest contribution of each ℒ(𝑖,𝑖′),𝑅  into the  

extension of the current candidate pairs match 𝑚 in the future: the highest the 

total sum of the min dimension of the submatrices in the LCM, higher the 

chances to find in the future more compatible candidates in the solution as 

indicated in the equation: 

𝑒𝑣𝑎𝑙𝑖,𝑗|𝑚 = ∑ min (dim (ℒ(𝑖,𝑖′)(𝑅)))

𝑅∁𝑹

3. 5 

The result is a greedy selection of candidate pairs, as the selection 

follows the paths labeled as useful in the first consideration. The second 

heuristic H2 complements the first heuristic H1 by providing a peak in the 

estimation of a good pair in the solution evaluating the impact of the current 

pair (𝑖, 𝑖′) into future solutions by ordering the candidate pairs in ascending 

order of H1 and considering the most significant feature, ℎ𝑒𝑎𝑑𝑖 as the possible 

solution that contains the node  (𝑖)  (M. C. Chipofya et al., 2016) as described 

in the equation: 

𝑐𝑜𝑢𝑛𝑡𝑘(𝑚) = |{𝑖 ∈ 𝑁|𝑘 ≤ 𝑒ℎ𝑒𝑎𝑑𝑖|𝑚}| 3. 6 

 
In the DPSM implementation, the first heuristic is calculated by 

recovering the LCM from the Qualitative Constraint Map (QCM) for a set of 

candidate pairs. The result is a batch of scores indicating the value of H1 per 

each relation set identified from the QCM and finally summarizing them to 

get a global score. Secondly, the heuristic H2 is updated for the input map 

(sketch map) and extended by the SmartSkeMa framework, merging the 

implementation of the first heuristic. The procedure happens as the candidate 

pairs are evaluated during the calculus of H1, maintaining an updated score 

structure as the search is executed, adding new features into the solution. 

Figure 18 describes the implementation for generating the LCM and 

calculating the H1 and H2 scores: 
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Figure 18 Heuristic scores calculation workflow 

3.6 SEARCHING ALGORITHMS 

The aligning of a sketch map feature to a feature in a metric map is the 

examination of a large set of options that comply with specific characteristics 

to be a good match. We explore all the options on the metric map to find which 

one is the most like to match a specific feature in the sketch map. Diverse 

techniques from non-learning and learning algorithms have arisen from 

research. In this thesis, we implement two different search algorithms, with 

different approaches, advantages, and configurations: a Tabu Search and a 

SARSA, an incremental dynamic programming algorithm to solve 

reinforcement learning problems (Saad, 2011). 

3.6.1 Tabu Search 

Tabu search approach is to solve combinatorial optimization problems 

like the ones in graph theory by using a list of banned or taboo moves obtained 

from a number of iterations in a local search to construct a final solution 

(Roberto Battiti & Tecchiolli, 1994; Glover, 1989a).  
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For the configuration of the Tabu algorithm, the main arguments are 

the search space, the local search space or neighborhood, the list of banned 

moves, and the criteria to establish whether they belong to the current solution 

or need to be penalized at each iteration. An overview of the general workflow 

is shown in Figure 19: 

 

Figure 19 Tabu Search workflow diagram 

 

In the context of the sketch to metric map alignment, the overview for 

each of these aspects and their processing is as follows: 

• Search Space: the space of every possible item that can be contemplated 

as part of the final solution during the search (Gendreau & Potvin, 2005). 

For the interest of this study, the search space is all possible 

combinations 𝑚  composed only by compatible candidate pairs 𝑃 =

(𝑖, 𝑖′) where 𝑖 and 𝑖′ represent a feature from the sketch and metric map. 
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• Current solution: denoted by 𝑆. The solution used as the initial one is the 

output from the Spectral Solution Technique.  

• Neighborhood: the set of available pairs to add to the current solution. 

For each iteration, a modification or move is applied to the solution 𝑆 to 

add or remove a pair. The result is a collection of available compatible 

pairs called neighboring solutions, a subset of the search space. The 

evaluation of items belonging to the neighboring solutions is done 

using the functions created in the Qualitative Analysis module. Each new 

pair added to the current solution 𝑆  during the Tabu Search is 

compared to every item in the search space 𝑆  to check their 

compatibility. If old items are not compatible with the most recently 

added one, they are removed. In the same way, if items from the search 

space are compatible with the recently added one and with the 

remaining items, the neighborhood is updated with new available 

moves. 

• Move: for each iteration, the algorithm performs a modification to the 

currently available solution considering all potential actions. For the 

current implementation, two actions are possible: ADD or REMOVE. 

The criteria for choosing one or another depends on the evaluation of 

the neighborhood explained in the following points. The dynamics of a 

move during the search are displayed in Algorithm 1. 

 

Algorithm 1. Tabu Search 

input: 𝑆0, number iterations iter, LA, QSM, QMM, metric_size 

output: 𝑆 
// initialize 
1 Set S=initial solution S0; 
2 Set tabu_in list; 
3 Set tabu_out list; 
4 while iterations 
5  Update available moves 
6  Select best non-tabu available move 
7  if move is ADD 
8   Insert move into S 
9   Insert move into tabu_out 
10  else move is REMOVE 
11   Remove move from S 
12   Insert move into tabu_in 
13 return best matching result S  
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• Best non-tabu available move (best_move): for each iteration, the item with 

the highest LA score in the neighborhood is selected as the best 

candidate to be considered in the current solution 𝑆. 

• ADD pair:  the search next action is said to be ADD if the best_move does 

not exist in the current solution. The new pair is evaluated using the 

Qualitative Analysis module. For each item in the neighborhood, it 

assesses the Candidate-Solution and Types Compatibility values. If both 

values are positive, the pair is added and labeled as best_add. 

• REMOVE pair: the search next action is said to be REMOVE if best_move 

already exists in 𝑆  or there are not useful items to be added in the 

current solution 𝑆 , with not useful meaning a candidate pair that is 

incompatible with one or more features in 𝑆 . The procedure is to 

discard the item with the lowest LA score in 𝑆, named best_remove. 

After executing an ADD or REMOVE move, in both cases, the 

output element, best_add or best_remove, is appended to a tabu list. In this 

implementation, two lists are created: tabu_in and tabu_out.  

• Tabu lists update: These are managed by a FIFO (First-In, First-Out) 

method; each time a new element is added to the bottom of the list, the 

first added element on the list is removed (Glover, 1986). The tabu_in 

list manages the items that we discarded from 𝑆 and tabu_out list the 

ones we join to the solution. At the beginning of each iteration, the 

available moves are updated additionally by removing the items in the 

tabu lists. Instead of using a unique list, we implemented two list, this 

with the objective of encouraging exploration but on the other hand to 

not over consider useful elements into the solution, this approach seems 

to have an advantage in terms of the activity of each list in the algorithm 

assuring no duplicated solutions while considering candidates inside 

the solution 𝑆 (Glover, 1986, 1989b). The size of the tabu lists is fixed to 

25% of the size of the current solution.  

The algorithm search is executed, and for a given number of iterations, 

it explores a set of solutions, adjusts the initial solution 𝑆  by adding or 

removing pairs from a neighborhood 𝑁(𝑠) of 𝑠, appearing according to the 

compatibility to a new solution 𝑆′. (Glover, Taillard, & Taillard, 1993). Finally, 
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the best solution is returned with a set of compatible pairs with a size at least 

equal or more significant than the initial solution. 

3.6.2 SARSA 

SARSA learns an optimal action-value function 𝑄∗  from experience 

gained by an agent while interacting with an environment in an iterative 

manner in a set of episodes by regularly calculating the value of each state-

action 𝑄(𝑠, 𝑎) (Saad, 2011; Sutton & Barto, 1999). In Figure 20, the dynamics of 

the SARSA algorithm are described: 

 

Figure 20 SARSA dynamic 

On every step into the environment, the value of the state-action pair 

(𝑠, 𝑎) in a step 𝑡, is updated according to the received reward at step 𝑡 + 1and 

the following selected state-action pair (𝑠′, 𝑎′) with a probability 𝜀 alternately 

to selecting it at random (Sutton & Barto, 1999), using a discounted rate 

𝛼 (Ratitch & Precup, 2015) to encourage the exploration and avoid cycling 

behaviors during the search in contrast with the tabu scheme based on a fixed 

list size, that is not strict and, therefore, the possibility of cycles remains 

(Roberto Battiti & Tecchiolli, 1994).  The updating of the action-value function 

is given by: 

𝑄(𝑠𝑡 , 𝑎𝑡)  ← 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)] 3. 7 

The equation leads to the progression of (𝑠, 𝑎) to (𝑠′, 𝑎′) by using the 

values (𝑠𝑡, 𝑎𝑡, 𝑟𝑡+1, 𝑠𝑡+1, 𝑎𝑡+1) in a sequence of State, Action, Reward, State, 

Action. The algorithm learns during the episode that some policies are weak 

and switch to another one. For the specific case of the sketch to metric map 

alignment, we define the following attributes for the algorithm set up:  
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• Step: a step is an iteration in which the agent will take action for the 

current state 

• Action: an action in the graph matching problem is each one of the 

candidates' pairs the search space as they are the options available to 

move into the environment. Each action returns a reward if they are 

added to the current state or solution. An action is said to be the next 

action when a new candidate pair is selected among the available pairs 

from the calculus of the action probabilities. The action probabilities are 

returned by the policy and represent the probability for each action to 

be chosen in the next step. The values are calculated based on the LCM 

scores modified by 𝜀.  

• State: a state in the graph matching problem is every set of compatible 

candidate pairs. Every state is different, has a different accumulated 

reward at a step 𝑡, and represents a possible solution for the search. At 

every step into the environment, a new action is executed (this means a 

pair is added to the solution) and creates a new state (a new solution is 

generated from the previous solution plus the new pair). In the SARSA 

algorithm implementation, the initial state is selected randomly from 

the action space or candidate pairs returned by SST. The final state is 

found when there are no more items compatible with the current 

solutions, this means, a peak has been found and the algorithm “walked” 

into a dead end while connecting the candidate pairs. 

• Reward: is a numerical value that the algorithm maximizes in the search. 

At each step, a reward is calculated based on the effects of future action 

on the current state. For the sketch to map alignment, the reward is 

based on the score of the candidate pair from the LCM calculus.  

• Discount rate 𝛾: determinates the current value of the next rewards by 

considering a reward earned in the forthcoming 𝑘 time steps with 𝛾𝑘−1. 

The discount rate 𝛾 ∈ [0, 1] is a constant, the closest to 0 it will maximize 

the most recent rewards; the closest to 1 the later rewards will have 

more weight. From empirical results, a discounted rate 𝛾 = 0.9 is used 

in most of the cases to avoid getting into a greedy algorithm, that is, 

maximizing only immediate rewards (Sutton & Barto, 1999, p. 55) 
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• Step-size 𝛼 :  fixes the updating pace for the values. The step-size 

parameter 𝛼 ∈ [0,1] is a constant, as the reward probabilities do not 

change over time (Sutton & Barto, 2018, p. 32) 

• Probability 𝜖 : to avoid selecting the best option while evaluating the 

available actions that is a greedy action, they are affected by a 

probability  𝜀 ∈ [0,1], resulting in a random selection. For all the actions 

𝑎 ∈ 𝐴, the low scored actions are given a probability of selection equal 

to 
𝜀

|𝐴(𝑠)|
 and for the high scored actions, in the case of this 

implementation only to the best possible action from the LCM scores, 

the probability 1 − 𝜀 +
𝜀

|𝐴(𝑠)|
 is given. 

For the current implementation, the workload is divided into two 

modules: the SARSA Main, which controls the action-value function updates, 

and the SARSA Environment, which contains the logic behind the policy 

evaluation.  

• Episode: An episode consists of an alternating sequence of states and 

state-action pairs (Sutton & Barto, 1999). The number of episodes is a 

set parameter. The larger the number of episodes, the longer the 

exploration into the environment. 

• Environment: contains the set of functionalities behind every step the 

agent takes. The general template is based on OpenAI Gym for reset, 

step, and policy. Other functionalities are included to support the 

policy in assessing the actions. In reset, the environment restarts the 

search and set the initial action and initial state by selecting a candidate 

pair randomly from a portion size of the SST solution, to avoid 

frequently selecting the same high scored item. For step, the 

environment updates the current state with the provided action.  

• Policy: returns the actions to be considered for the next step and the 

probability of each one, affected by 𝜀. The set of actions returned are the 

ones compatible with the current state. Each action represents a 

candidate pair compatible with the current solution represented by a 

state. In order to measure the compatibility, the LCM scores are 

calculated for the available features and per relation set. The global 

score is returned per candidate pair, and the policy selects as the best 
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action the one with the maximum LCM score. Additionally, it selects the 

best action according to the current state from 𝑄 if the state has been 

experienced, or it will create a new entry.  

 

Algorithm 2 SARSA Main 

input: env, number episodes episode, 𝛼, 𝛾 

output: 𝑄 
// initialize 
1 Set Q(s,a)= initial value-function 
2 Set 𝛼 
3 Set  𝛾 
4 
5 for each episode 
6  reset environment 
7  get action a using policy 
8  do 

9   Take step, set s’,r, terminal state 
10   Get a’ from s’ using policy 
11   Set 𝑇𝐷𝑡𝑎𝑟𝑔𝑒𝑡 = [𝑟 + 𝛾𝑄(𝑠′, 𝑎′)] 

12   Set 𝑇𝐷𝑑𝑒𝑙𝑡𝑎 = 𝑇𝐷𝑇𝑎𝑟𝑔𝑒𝑡 − 𝑄(𝑠, 𝑎) 

13   Update 𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼 ∗ 𝑇𝐷𝑑𝑒𝑙𝑡𝑎 
14   Update a=a’ 
15   Update s=s’ 
16  while terminal state is False  
17 return Q 

 

Algorithm 3 SARSA Environment: Policy 

input: observation, QSM, QMM, metric_size, similarity, compatible_pairs 

output: LCM scores, terminal state 
// initialize 
1 Set LCM=0 
2 Set 𝜖 
3 Set terminal state = False 
4 Get available pairs 
5 if available pairs length is 0 
6  Set terminal state = True 
7 else 

8  Get LCM scores 
9  Set nA=number of LCM values 
10  Set action probabilities LCM_p =LCM* 𝜖/𝑛𝐴 
11  Set best_a=max(LCM_p) 
12  Update LCM_p[best_a]=LCM_p[best_a]+(1- 𝜖) 
13 return LCM,  terminal state 
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SARSA searches for solutions for a set of episodes, for which it will run 

several iterations until the final state is reached. In the main algorithm, new 

actions and states are found on every step into the environment, and the 

action-value function  𝑄 is updated, to be used in the policy evaluation. The 

first action is selected randomly from the SST scores to take the agent one step 

inside the environment. In the environment, with the provided action and 

state at step 𝑡, the policy will calculate the next action probabilities with the 

LCM scores. As the search continues, and the following episodes are 

completed, the agent learns which combinations of action-states are the best 

ones according to the rewards received and applied this knowledge to make a 

better decision in the remaining episodes.  

Finally, the algorithm returns the action-value function 𝑄 , with the 

assortment of all states (solutions), actions (candidate pair), and rewards (total 

score) that modified that solution. The last added solution is the result of an 

on-policy approach, whereas the complete set of solutions represents an off-

policy procedure. 

3.7 EVALUATION 

Once the algorithm design is stable, the performance analysis includes 

a review of the matched features. Consider a decision process to evaluate 

correctly aligned sketch to metric features labeling a correct or incorrect 

assignment. There are four possible combinations (categories) organized in a 

Confusion Matrix, as in Table 6, containing the labels True Positive, False 

Positive, False Negative, and True Negative.  

 

  True Condition 

Predicted 
Condition 

Condition Condition Positive Condition Negative 

Predicted Positive True Positive False Positive 

Predicted Negative False Negative True Negative 

Table 6 Confusion Matrix 

 

A True statement refers to a correctly classified feature (positive or 

negative), and the False statement refers to an incorrect classified feature 
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(positive or negative), then a True Negative label out an alignment correctly 

rejected (Davis & Goadrich, 2006). Based on the Confusion Matrix 

configuration, four metrics can be derived: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
   3. 8 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
3. 9 

 

Then, it is possible to define the concepts of Precision and Recall as: 

• Precision: the portion of positive features correctly aligned by the 

algorithm implementation (True Positives) 

• Recall: the portion of positive features correctly labeled by the algorithm 

implementation  

For the environment performance measure and analysis, as the 

algorithm implementation is in Python, each algorithm is executed for several 

steps to stress the environment. The results are stored in a data frame to be 

exported with the following values: iteration number, execution time in 

seconds, true positives features, true negatives, false positives, false negatives, 

and final iteration solution. 
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CHAPTER 4 RESULTS AND DISCUSSION 

The implementation results for the Tabu and SARSA algorithms, as 

well as their backup functionalities from the Qualitative Analysis and the 

Score System, are presented in this chapter. Initially, we describe the overall 

results from the processing and scoring modules. The first subsection (4.1) 

describes the performance rates in terms of the execution time during the 

alignment process for each one of the datasets. Secondly, the alignment results 

are displayed, followed by their discussion. Finally, we highlight some of the 

limitations encountered. 

For Input Processing, the sketch maps are processed in the SmartSkeMa 

framework creating the vectorized features per dataset. The three datasets' 

attributes are then edited on the Inkscape software. In order to illustrate these 

steps in Figure 21, the Mailua Ranch processed features are recovered from the 

SmartSkeMa vectorization to remove the small features later not associated 

with the smart schema data type.  

 

Figure 21 Mailua Ranch vectorized sketch map 

For all sketch and metric maps datasets, the SmartSkeMa’s id and name 

attributes are revised in the XML feature editor to aid the match identification. 

In Table 7 for the Marsh feature in the Mailua ranch dataset, the attribute and 

values for the sketch and metric map are described: 
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Table 7 Mailua Ranch Marsh feature attributes 

Feature Attribute Value 

 

Sketch map 

id sm_marsh1 

name sm_marsh1 

smart_skema_type marsh 

 

Metric map 

id mm_marsh1 

name mm_marsh1 

smart_skema_type marsh 

 

In Qualitative Analysis, the vectorized sketch maps are handled to 

calculate the QCN matrix in the SmartSkeMa framework. The qualitative 

representation process is carried per feature in both maps constructing the 

relations network and assigning a label from each relation set considered. In 

Figure 22, the arrangement for some features from the Mailua sketch and 

metric map data set are displayed: 

 

Figure 22 Qualitative representation input maps 

 

    

     

        

     
         

        
         
             
                 
              

          
            
              
               
              

        
         
              
                                 
              

          



 

4.45 

 

Each object is represented by a node with labels describing the spatial 

relationship between each other according to the spatial calculi detailed in 

2.3.1. The purple line connecting the sketch and metric map label, highlights 

the relation identified for the sketch and metric map in 

ℛ𝑙𝑒𝑓𝑡_𝑟𝑖𝑔ℎ𝑡(𝑏𝑜𝑚𝑎, 𝑟𝑖𝑣𝑒𝑟) = ′𝑙𝑒𝑓𝑡, 𝑙𝑒𝑓𝑡_𝑜𝑓′  as this type of similarities give 

insights about their characteristics in the search space for the matching process. 

The same mechanism is applied to every feature in the three data sets resulting 

in three different QCN matrices used by the Scored System and the Qualify 

Analysis modules to asses and measure the compatibility between candidate 

pairs. Some calculi return an N/A value as the geometry type arguments to 

calculate the relation are not met. One of the considered calculi, starVars, is 

removed due to incompatibilities with the current inputs during the 

qualification. 

As for the Scoring System, the Link Analysis process is executed with 

the QCN matrices, delivering the score ranking to the SST evaluation function 

from which we retrieved a subset of candidate pairs highly connected with 

other features in the search space. In some cases, the output included correctly 

aligned features; one example is shown in Table 8: 

Table 8 Link Analysis sample results 

Dataset Link Analysis Sample 

Artificial SVG 'sm815': 'rect815', 'sm817': 'rect817', ' 

El Remanso 'sm_lake': 'mm_lake', 'sm_marsh1': 'mm_marsh1' 

Mailua 'sm_river': 'mm_river', 'sm_road': 'mm_road' 

 

For the LCM scores, we derived two different approaches to evaluate 

future-promissory candidate pairs to add in the solution: the first heuristic H1 

evaluates each pair candidate local compatibility before adding during the 

iteration process returning the scores per each one of the considered relation 

sets as shown in Table 9. Next, the second heuristic H2 is calculated after adding 

based on the pairs in the current solution, providing a set compatible pairs 

additionally from the qualitative representation. These differentiations had an 

essential repercussion in the learning algorithm reviewed in the discussion 

section. 
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Table 9 LCM(H1) score sample 

Calculi H1 Score 

RCC8 29 

RCC11 29 

REL_DIST 27 

LEFT_RIGHT 21 

ADJACENCY 20 

 

Finally, the Searching algorithms module is executed. The Tabu Search 

algorithm implements a scoring system based on LA and the SST. SARSA 

employs two different configurations: the first one is solely based on the H1 

heuristic and SST, the second one analyzes the H2 heuristic and SST. This 

distinction arises from two separate results returned during the 

implementation. In the following subsections, the algorithm's results are 

illustrated in more detail. 

4.1 PERFORMANCE 

4.1.1 Execution time 

Both algorithms execute their tasks for a maximum of 1000 iterations, 

and a built-in function in Python measures the timing. In general, for a small 

number of iterations, Tabu is faster, but as the number increases, SARSA 

shows a recovery using less time despite the number of tasks needed to 

compute a sub solution.  

In the smallest dataset, Artificial SVG, with six features in the sketch 

map for aligning to 7 features in the metric map, in Figure 23, Tabu takes more 

time after 350 iterations approximately. SARSA consumes more time in the 

beginning, but as the search continues, it spends less time computing the 

results. Due to the backup nature of SARSA, in a lower number of iterations 

employs more time assessing all the subset solutions (states) to recover the 

values later when they are recalled. 
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Figure 23 Artificial SVG execution time 

 

For a larger dataset, El Remanso, with 13 features in the sketch map for 

aligning to 15, in Figure 24, the Tabu algorithm execution time increases with 

some peaks: as the number of iterations increases, the population of the 

neighborhood consumes more time as the tabu lists banned the access to 

compatible candidate pairs. The peaks in SARSA, are related to states in which 

new items are being explored and added to the solution. 

 

Figure 24 El Remanso execution time 
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Finally, for the most extensive dataset Mailua Ranch, with 17 features 

in the sketch map and 106 in the metric map, in Figure 25, the behavior of both 

algorithms is more visible. In the beginning, SARSA consumes the most 

considerable amount of time, but it decreases over time. Tabu displays peak 

points over time due to the available neighborhood update once the tabu lists 

are full, limiting the access to compatible pairs and encouraging exploration.  

 

Figure 25 Mailua ranch execution time 
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For the Artificial SVG dataset, the average precision and recall statistics 

in Table 10 for Tabu are higher for 11.62% and 4.84%. In the alignment results 

review, the SARSA algorithm varies the precision every number of iterations 

in between 40% and 100% with a maximum recall of 83%, whereas Tabu from 

54% reaches 80% of precision with a maximum recall of 80%, and it does not 

improve in future iterations once the solution is stable. 

Table 10 Artificial SVG: Precision and Recall Results 

Algorithm Tabu SARSA 

AVG. Precision 80% 68% 

AVG. Recall 80% 75% 

Min. Precision 60% (0%)* 40% 

Max. Precision 80% 100% 

Min. Recall 75% (0%)* 67% 

Max. Recall 80% 83% 

* For the first iteration, the algorithm did not find a solution and returned an empty list 

The precision and recall statistics for El Remanso dataset are displayed 

in two different tables to illustrate the difference between the implementation 

of SARSA(H1) and SARSA(H2). In Table 11, the average precision in Tabu is 

7% higher than SARSA(H2), with average recall differing for 15%, with 99%. 

In terms of minimum and maximum precision, SARSA(H2) has higher results, 

returning on every iteration a solution, whereas, for the recall, Tabu aligns 

100% of the relevant items selected in contrast to SARSA(H2), with 89%. 

Table 11 El Remanso: Precision and Recall Results (H2) 

Algorithm Tabu SARSA (H2) 

AVG. Precision 58% 51% 

AVG. Recall 99% 84% 

Min. Precision 55% (0%)* 27% 

Max. Precision 58% 73% 

Min. Recall 86% (0%)* 75% 

Max. Recall 100% 89% 

* For the first iteration, the algorithm did not find a solution and returned an empty list 
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In the course of the approach implementation, we run several times the 

SARSA algorithm with only the first heuristic scores. The results differ from 

SARSA(H2) in terms of precision, recall, performance, and spatial 

configuration. For the SARSA(H1), the average precision displayed in Table 

12 is higher than Tabu and SARSA(H2) algorithms with an 84% average recall. 

With just the first score of the LCMs, we surpassed the 70% window. On the 

other hand, SARSA(H1) takes more time computing the final solution: for a 

range of 400 iterations, it takes 35 seconds.  

Table 12 El Remanso: Precision and Recall Results (H1) 

Algorithm Tabu SARSA (H1) 

AVG. Precision 58% 73% 

AVG. Recall 99% 84% 

 

The Mailua Ranch data set presents the lowest statistics for both 

algorithms, as shown in Table 13. For the average precision and recall, the 

Tabu search is 20% higher, with maximum values reached without variation 

in future iterations. SARSA(H2) keeps a variation during the search as it 

explores newer candidate pairs returning in some cases a final solution with 

False Negative results, indicating a requirement for a more substantial number 

of iterations to explore all candidates' information and return a solution for the 

non-considered features during the matching process. 

Table 13 Mailua Ranch: Precision and recall results 

Algorithm Tabu SARSA (H2) 

AVG. Precision 31% 11% 

AVG. Recall 46% 21% 

Min. Precision 0% 0% 

Max. Precision 56% 53% 

Min. Recall 0% 0% 

Max. Recall 100% 89% 
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4.2 ALIGNMENT RESULTS 

The algorithms are executed for a maximum of 1000 iterations, and the 

output result contains the sketch map feature and an assigned metric map 

feature. We present three samples from the alignment results for each 

algorithm, per dataset in which we compare both approaches, followed by the 

discussion in the next subsection. 

For the smallest dataset displayed in Table 14, SARSA aligned more 

items in less time for the same number of iterations. Most of the results from 

Tabu are concentrated in one area with one False Positive item returned. The 

SARSA alignment is more dispersed in the search space aligning 5 of 6 features 

correctly with one False Negative. 

Table 14 Artificial SVG: Alignment result sample 

Tabu Results SARSA Results 

  

Execution time 0.068991 s Execution time 0.0203 s 

Number Iterations 996 Number Iterations 996 

Number of features aligned 5/6 Number of features aligned 5/6 

True Positives 4 True Positives 5 

False Positives 1 False Positives 0 

 

El Remanso dataset doubles the features from the simple sketch map. 

In this scenario, Tabu is faster and returned one additional False Positive 

aligned feature in half of the time. In the case of SARSA, the additional feature 

not displayed is a False Negative. Both algorithms return a similar solution. 
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Table 15 El Remanso: alignment result sample 

Tabu Results SARSA Results 

  

Execution time 0.25819 s Execution time 0.56543 s 

Number Iterations 986 Number Iterations 986 

Number of features aligned 12/13 Number of features aligned 12/13 

True Positives 7 True Positives 7 

False Positives 5 False Positives 4 

 

The Mailua Ranch dataset is the largest one with both algorithms 

returning similar matches for which the differences are noticeable in the not 

correctly aligned features. Tabu returns an additional True Positive feature and 

SARSA one False Negative. The alignment stats are illustrated in Table 16: 

Table 16 Mailua Ranch: alignment result sample 

Tabu Results SARSA Results 

  

Execution time 3.9044 s Execution time 4.5988 s 

Number Iterations 901 Number Iterations 901 

Number of features aligned 16/16 Number of features aligned 15/16 

True Positives 9 True Positives 8 

False Positives 7 False Positives 7 
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4.3 DISCUSSION 

The Score System module results can be sensitive to the quality of the 

input sketch map. With the wrong feature type, the LA and SST scores can be 

corrupted by giving more scores to meaningless objects such as triangles 

derived from the vectorization process in the SmartSkeMa. We recommend 

reviewing the quality of the vectorized sketch map and clean the features with 

a non-compatible object type. Additionally, it is necessary to examine further 

the dangling factor and the number of iterations for the LA scores, considering 

factors such as the size of the graph and the geometries type as they influence 

the size of the initial solution in SST. For the LCM scoring, the outcome for the 

LCM(H1) provide to the learning algorithm a free exploration inside the 

environment space as it evaluates the score per pair. 

On the other hand, LCM(H2) heuristic is restricted to future promissory 

pairs in the current solution. The immediate effects of this finding are visible 

from the alignment results, as the first heuristic recall is higher than the second 

heuristic. Due to the time constraint, experimenting with the single use of H2 

instead of the SST solution for the SARSA algorithm and the corresponding 

environment configuration update is open for future work.  

For the Tabu and SARSA algorithms, the execution time, the number of 

correct matches, spatial configuration, and complexity are the main aspects 

evaluated. Tabu works faster with a small number of iterations due to the less 

elaborated processes required for searching, and with a higher number of 

iterations, the contribution to the solution decreases to a point in which the 

output solution is stable, and no significant changes occur. As the number of 

features to align increases, the longer time will take to arrive at this 

convergence point. By using two tabu lists instead of one, the exploration was 

encouraged to add non-high-scored features in the solution, but as the process 

continues with the same configuration in the search space, nevertheless it is 

possible to keep receiving the same candidate pairs subset and get into cycling 

solutions. On the other hand, changing the size of the tabu list can cause the 

solution to break as the search space is constrained to the number of available 

features; thus, the minimum size should be related to the length of the initial 

solution, in our case the SST.  
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Concerning the alignment results, features aligned by Tabu are 

attached to a clustering behavior: as displayed in Figure 26, for the Mailua 

Ranch sketch map, features A, B, C and R share their immediate space, but 

they are not located correctly in the metric map solution (left side). 

Furthermore, the distribution does not consider the orientation between them: 

feature R is in front of the A-B-C neighborhood, and in the output solution, it 

is in between and far from the feature M. 

 

Figure 26 Tabu clustering alignment 

 

Despite SARSA taking a longer time to complete a high volume of tasks 

initially, the precision of the solution varies over time, coming to values higher 

than 80% for small to medium-sized datasets for both SARSA(H1) and 

SARSA(H2). By comparing the results from SARSA(H2) for the same cluster 

discussed in Tabu for Figure 26, the solution is distributed, not only 

considering how close the objects are but also is visible the relationships with 

vicinity features, as illustrated in Figure 27. The A-B-C features are distributed 

closer to the feature M as well as R. Moreover, feature A should be the one very 

far from M in the original arrangement in the Mailua Ranch dataset, with 

SARSA(H2) returning the displayed spatial configuration correctly.  
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Figure 27 SARSA(H2) clustering alignment 

The improvement in H1 from the observation present in H2 has its roots 

in the state-value function in SARSA, the sub-solution-score backup. As 

SARSA(H1) explores more the environment, better-rewarded solutions for the 

same configuration are calculated, and eventually, it selects the best one, 

contrary to SARSA(H2), that is constrained to a subset of future solutions and 

may not find an appropriate match in the environment on time. In the results 

for both configurations in Figure 28, SARSA(H2) ignores aspects of the spatial 

configuration for feature C as it needs to be the closest to features B and A, 

regardless of the objects in between as SARSA(H1) solution returned. 

 

Figure 28 SARSA(H2) compared to SARSA(H1) alignment 
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For the second heuristic, the spatial configuration is preserved, but the 

search space is limited to the compatible pairs derived from the similarity 

matrices evaluation. The algorithm is considering highly connected features 

as the initial solution, and not all of them exist as promissory candidates 

according to the H2 criteria. Until both conditions are meet, the algorithm 

keeps exploring the environment, and thus, the solutions are linked to this 

restriction. One approach to encourage the search from the second heuristic is 

to implement the identified subset as an initial solution, instead of looking for 

highly connected features in SST. Another procedure includes the 

modification of the Link Analysis process and combining the H2 subset for a 

hybrid approach.  

Correctly aligning features between sketch and the metric maps are 

linked to the spatial configuration complexity and the number of features in 

the sketch and the metric map. Both algorithms increased the precision once 

the vectorized sketch map was cleaned from small polygons as the matching 

process consists of an exhaustive evaluation of candidate pairs. In order to 

boost the alignment process, it is crucial to filter the data included in the 

Qualitative Representation to avoid using resources on meaningless relations. 

4.4 LIMITATIONS 

One of the limitations encountered for the alignment process is the 

definition of the number of iterations needed for each algorithm to reach their 

potential. It is necessary to analyze the conditions to calculate an equivalent 

ratio for the running times as it can be derived from the performance results in 

El Remanso dataset in which the inflection point for SARSA to overcome the 

Tabu results is not reached.   

Another limitation encountered for the alignment process in the 

SmartSkeMa framework is the noise caused by vectorized features such small 

triangles or the split of sketch map features into smaller pieces that are included 

or excluded in the qualitative segmentation. To overcome this challenge, the use 

of the module Geometry Editor at the beginning offered a didactic way to 

digitalize features, but it needed to run a first version of the Vectorize module 

from which small, not useful features were created. The final procedure was to 

manually add the objects to artificial vectorized sketch and metric maps by using 



 

4.57 

 

the Inkscape software and exporting them to SVG, providing the corresponding 

geoJSON file for the metric map. Additionally, we encountered conflicts in the 

use of the relation set starVars as it faced long execution times and raising 

errors during the qualitative representation. The temporary solution was to 

remove starVars from the functionality’s arguments until a more in-depth 

analysis is done for understanding the implementation of this calculi during 

the qualitative analysis. Lastly, because the Sketch to Metric alignment 

problem is very particular to our interest, the current configurations defined 

in OpenAI Gym to run learning algorithms had limited use, leading to the 

implementation of a new setting based on the predefined templates. 
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CHAPTER 5 CONCLUSIONS 

For the Sketch to Map alignment problem, we proposed the use of two 

different algorithms and a scoring system to evaluate each possible candidate 

match. The workflow combines five main modules: input processing, 

qualitative analysis, score system, search algorithms, and evaluation. In the 

input processing module, we provided the SmartSkeMa framework with the 

sketch and metric maps to be processed and vectorized, for which we 

manually edit the SmartSkeMa attributes, providing three input maps with 

different levels of complexity in terms of the number of features and spatial 

configurations. In the qualitative analysis component, we outline the process 

for evaluating compatibility between each candidate pair in terms of 

consistency of the constrained network and feature type with the retrieved 

QCN using these functionalities during the scoring process. The Score System 

offers the possibility to calculate four scores that can be used combined or 

some separately: the Link Analysis (LA) score provided information about the 

level of connectivity of each feature in our search space, Spectral Solution 

Technique (SST) processes the LA ranking to return a set of highly compatible 

features giving us an initial solution, and finally, the two Heuristics Scores 

based on the Local Compatibility Matrices deliver a measure for forthcoming 

solutions derived from each candidate pair. Then, the different scores are used 

in the Searching Algorithms module which consists of two implementations: 

a new Tabu Search incorporating LA and SST scores, returning a set of features 

from the sketch and metric maps from iteratively evaluating the compatibility 

of each pair candidate and banning time to time the ones considered to be out 

of the solution or recently added; on the other hand, the SARSA algorithm by 

using SST and LCM scores experiences several sub solutions with different 

sizes, and selects over time the ones with the highest scores to construct a final 

solution based on the best possible combination of subset matching solutions. 

At the end of this thesis, we analyzed the results of the workflow and 

mentioned the limitations encountered. The Qualitative Analysis module 

helped to accurately identify the compatibility between features, visible in the 

results as the output solutions are coherent regarding the type and the shared 

constraints. Secondly, the Score System delivered on each call the evaluation 
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measurements making use of the SST initial solution showing the influence of 

highly connected pairs in the search space, as well as the calculus of Local 

Compatibility Matrices with the evaluation of the corresponding heuristics per 

candidate set. The new Tabu algorithm surpasses the statistics of average 

precision for the SARSA algorithm with LCM(H2) (80% vs. 68% smallest 

dataset), increasing the gap as the number of features increases (31% vs. 11% 

largest dataset). Nevertheless, analyzing the solutions derived from both 

algorithms, it is vital to notice that the False Positives features for SARSA are 

closer to the original spatial configuration in the sketch map, especially for the 

implementation with only LCM(H1), and the maximum precision of the 

algorithm varies as the number of iterations changes, reaching 100% in specific 

cases indicating a relevant percentage of True Positives matches compared to 

Tabu.  

The Tabu solution is faster in a shorter number of iterations, more 

straightforward and offers higher results in terms of precision, but on the other 

hand, the SARSA performance improves over time with consistent spatial 

distribution compared to Tabu. As the number of iterations goes on, the 

dynamic programming algorithm can offer a range of matches, giving 

highlights about how the search is being approached thanks to the backup of 

the subset solutions and their scores, whereas for Tabu once the solution is 

stable, it will be returned repeatedly over the time without further exploration 

of the search space or improvement. Two main configurations for the policy 

calculus in the learning algorithm were implemented: solely the first heuristic 

and with both LCM(H1) and LCM(H2) heuristics, returning higher or lower 

precision and recall statistics than Tabu, which leaves the door open to 

implement different LCM scores configurations in the same environment.  

In conclusion, the main contributions of this master thesis are the 

performance improvement for QCNs in large scale datasets, and the support 

during the matching process with a global overview of the spatial 

configuration described on them by including the implementation of four 

different scores: link analysis, spectral solution, and two heuristics from the 

Local Compatibility Matrix. In SARSA, the Q values summarize the 

information about the SST and LCM scores allowing the search to invest the 

time saved, exploring more the search space updating information about the 
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candidate pairs and sub solutions, whereas Tabu only uses information from 

the immediate neighborhood. Next, we implemented the module for the 

construction of the LCM scoring: the search results retrieved from the 

implementation of both heuristic scores returns consistent information about 

the local spatial configuration for the pairs belonging to the subset solution in 

the SARSA algorithm avoiding wrong alignments with a less complete 

solution compared to Tabu,  which returns a more complete set of matched 

features by allowing mistakes.  

Finally, we implemented two different searching algorithms with 

distinct advantages: Tabu is more straightforward and works in this case for 

immediate analysis of alignment results. For long-term, more spatially 

structured matches, SARSA by taking advantage of the backup of subset 

solutions and learning from the exploration process in the search space, 

presents a selection of pairs with coherent arrangements with reference to 

other features.  

5.1 FUTURE WORK 

During the workflow implementation, different ideas to improve the 

current solution arose from the use of the score modules to the learning 

algorithms. One approach is to analyze the features clusters retrieved from the 

Spectral Solution Technique and review how the different clusters can be 

labeled to work as subset solutions to limit the search space and apply the 

Local Compatibility Matrices score to answer the question: Does clustering 

identification or limiting the search to identified clusters improve the alignment 

solution?  

Secondly, the inclusion of the qualitative calculus starVars into the 

algorithm should be reviewed as orientation type relationships can add value 

to the matching score during the search, enlarging the subset of compatible 

pairs to keep improving the spatial configuration. Lastly, new dynamic 

programming algorithm implementations compatible with the characteristics 

of the QCN should be considered given the potential found in reinforcement 

learning algorithms in the graph matching problem.  
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