
UNIVERSITY OF CAPE TOWN

Channel parameter tuning in a hybrid

Wi-Fi–Dynamic Spectrum Access

Wireless Mesh Network

by

Natasha Zlobinsky

A thesis submitted in fulfillment of the

degree of Doctor of Philosophy

in the

Faculty of Science

Department of Computer Science

May 2023

Univ
ers

ity
 of

 C
ap

e T
ow

n

University Web Site URL Here (include http://)
natzlob@gmail.com
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

The copyright of this thesis vests in the author. No
quotation from it or information derived from it is to be
published without full acknowledgement of the source.
The thesis is to be used for private study or non-
commercial research purposes only.

Published by the University of Cape Town (UCT) in terms
of the non-exclusive license granted to UCT by the author.

Univ
ers

ity
 of

 C
ap

e T
ow

n

Declaration of Authorship

I, Natasha Zlobinsky, declare that this thesis titled, ‘Channel parameter tuning in a hy-

brid Wi-Fi–Dynamic Spectrum Access Wireless Mesh Network’ and the work presented

in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for the degree of Doctor

of Philosophy at the University of Cape Town.

� Where any part of this thesis has previously been submitted for publication or has

been published in a journal or as a conference paper, this has been clearly stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

“Research is what I’m doing when I don’t know what I am doing”

Wernher von Braun

UNIVERSITY OF CAPE TOWN

Abstract

Faculty of Science

Department of Computer Science

Doctor of Philosophy

by Natasha Zlobinsky

This work addresses Channel Assignment in a multi-radio multi-channel (MRMC) Wire-

less Mesh Network (WMN) using both Wi-Fi and Dynamic Spectrum Access (DSA)

spectrum bands and standards. This scenario poses new challenges because nodes are

spread out geographically so may have differing allowed channels and experience dif-

ferent levels of external interference in different channels. A solution must meet two

conflicting requirements simultaneously: 1) avoid or minimise interference within the

network and from external interference sources, and 2) maintain connectivity within the

network. These two requirements must be met while staying within the link constraints

and the radio interface constraints, such as only assigning as many channels to a node

as it has radios.

This work’s original contribution to the field is a unified framework for channel opti-

misation and assignment in a WMN that uses both DSA and traditional Wi-Fi chan-

nels for interconnectivity. This contribution is realised by providing and analysing the

performance of near-optimal Channel Assignment (CA) solutions using metaheuristic

algorithms for the MRMC WMNs using DSA bands. We have created a simulation

framework for evaluating the algorithms. The performance of Simulated Annealing, Ge-

netic Algorithm, Differential Evolution, and Particle Swarm Optimisation algorithms

have been analysed and compared for the CA optimisation problem. We introduce a

novel algorithm, used alongside the metaheuristic optimisation algorithms, to generate

feasible candidate CA solutions. Unlike previous studies, this sensing and CA work

takes into account the requirement to use a Geolocation Spectrum Database (GLSD) to

get the allowed channels, in addition to using spectrum sensing to identify and estimate

the cumulative severity of both internal and external interference sources. External in-

terference may be caused by other secondary users (SUs) in the vicinity or by primary

transmitters of the DSA band whose emissions leak into adjacent channels, next-to-

adjacent, or even into further channels. We use signal-to-interference-plus-noise ratio

(SINR) as the optimisation objective. This incorporates any possible source or type of

University Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)
natzlob@gmail.com

interference and makes our method agnostic to the protocol or technology of the interfer-

ing devices while ensuring that the received signal level is high enough for connectivity

to be maintained on as many links as possible.

To support our assertion that SINR is a reasonable criterion on which to base the

optimisation, we have carried out extensive outdoor measurements in both line-of-sight

and wooded conditions in the television white space (TVWS) DSA band and the 5 GHz

Wi-Fi band. These measurements show that SINR is useful as a performance measure,

especially when the interference experienced on a link is high. Our statistical analysis

shows that SINR effectively differentiates the performance of different channels and

that SINR is well correlated with throughput and is thus a good predictor of end-user

experience, despite varying conditions.

We also identify and analyse the idle times created by Carrier Sense Multiple Access

with Collision Avoidance (CSMA/CA) contention-based Medium Access Control (MAC)

operations and propose the use of these idle times for spectrum sensing to measure

the SINR on possible channels. This means we can perform spectrum sensing with

zero spectrum sensing delay experienced by the end user. Unlike previous work, this

spectrum sensing is transparent and can be performed without causing any disruption

to the normal data transmission of the network. We conduct Markov chain analysis

to find the expected length of time of a sensing window. We also derive an efficient

minimum variance unbiased estimator of the interference plus noise and show how the

SINR can be found using this estimate. Our estimation is more granular, accurate,

and appropriate to the problem of Secondary User (SU)-SU coexistence than the binary

hypothesis testing methods that are most common in the literature. Furthermore, we

construct confidence intervals based on the probability density function derived for the

observations. This leads to finding and showing the relationships between the number

of sampling windows and sampling time, the interference power, and the achievable

confidence interval width. While our results coincide with (and thus are confirmed by)

some key previous recommendations, ours are more precise, granular, and accurate and

allow for application to a wider range of operating conditions.

Finally, we present alterations to the IEEE 802.11k protocol to enable the reporting of

spectrum sensing results to the fusion or gateway node and algorithms for distributing

the Channel Assignment once computed. We analyse the convergence rate of the pro-

posed procedures and find that high network availability can be maintained despite the

temporary loss of connectivity caused by the channel switching procedure.

This dissertation consolidates the different activities required to improve the channel

parameter settings of a multi-radio multi-channel DSA-WMN. The work facilitates the

extension of Internet connectivity to the unconnected or unreliably connected in rural or

peri-urban areas in a more cost-effective way, enabling more meaningful and affordable

access technologies. It also empowers smaller players to construct better community net-

works for sharing local content. This technology can have knock-on effects of improved

socio-economic conditions for the communities that use it.

Acknowledgements

To Dr David Johnson, thanks to you for the idea that sparked this work and thank you

for sticking it through with me despite circumstances changing so much, no longer being

my boss, leaving academia, and the many other endeavours that keep you so busy. This

has probably been a longer road than you expected or would have preferred, but you

remained with me and saw this PhD through to the end, so thank you. Thank you

also to my co-supervisor, Prof. Amit Mishra for your valuable insights and ideas and

for providing the structure, consistency, and direction I needed to remain on track and

publish along the way. My thanks and appreciation also to Prof. Melissa Densmore for

shouldering all the administrative load of my supervision. The Hasso Platner Insitute

and other departmental funds carried me for two years. I am indebted to all those who

gave me access to those funds, most of all Dr Densmore.

To Prof. Albert Lysko, my profound appreciation for everything. You have shown

continued and unwavering interest and support, given detailed, specific, and helpful

feedback on my work, and introduced me to several people in the field who could provide

help on varied topics when needed. I could always count on you to spend your valuable

and over-stretched time reviewing papers in minute detail or giving advice, even if you

had to do so in the middle of the night or even interrupt family lunches or dinners to do

so. Mostly, thank you for your interest in me as a whole person, not just as a colleague

and academic. Thank you for your paternal presence and caring support throughout my

PhD journey. It has been immensely meaningful, encouraging, and heartening. I believe

I can count on you as a friend and hope and trust I will be able to do so for the rest of

my career.

Prof. Fambirai Takawira, my sincere appreciation for your brilliant help and input on

the mathematical modelling and estimation of the spectrum sensing activity. You spent

hours of extremely valuable time discussing this work, writing emails, and reviewing

papers without much reward, for someone you did not know well beforehand. Your

input was insightful, academically rigorous, and invaluable. I am also grateful for the

interesting and useful discussions with Prof. Ling Cheng. I hope we can continue to

work together. Helpful input or direction was also provided by Dr Clement Nyirenda,

Dr Peter Akuon, and Prof. Thomas Olwal.

My employer, HPE and Frikkie Scholtz, my Engineering Manager in particular have

been most obliging over the last three years. They were willing to give me three months

off in total to dedicate to reaching important milestones in this work this past year. My

appreciation also goes to my original manager and the person who went out of his way

to accommodate my requests when hiring me, Michael Champanis.

vi

Now, to the person who possibly single-handedly saved this PhD when I had completely

lost momentum and gone off track and was struggling to maintain a constant PhD work

schedule with my full-time job and other commitments: Dr Lindsay Donaldson, who,

for more than a year, woke up at 5 am every morning to call me and make sure that I

was awake to work on my PhD. Because of this, I was able to course-correct and forge

ahead. My most significant progress was made during that time. I would not be here

without you. Not to mention, the thought of failing at getting a PhD when you already

had one was a great incentive ;).

I am also appreciative of the support, friendship, and collaboration of Dr Richard Mali-

watu along this journey, for late nights and weekends working at the ICT4D lab together

and long days in the hot sun doing measurements. You have been an integral part of

this journey. Another buoying part of this journey has been Magdeline Lamola, whose

vivacious spirit and energy helped fuel us through long days of measurements and pro-

vided relief in tough work days and weeks. I am appreciative too of the friendship and

support of Estie Boshoff, Marylynn Lindsay, and Kiara Navarro (i.e., sophiekovalevsky).

Last but not least, to my fiancée, Michael Ndjibu Lukusa, you too have sacrificed for me

to complete this PhD. While you may not have understood why I wanted to do this, you

understood that it was important to me and did everything to support me in every way

you could for that reason. From reading my papers and providing feedback and looking

at my code to discussing my worries and troubles, giving up most weekends for almost

four years so we could stay at home and work, flowers and notes of encouragement,

cooking and cleaning to make my life easier, being left alone in the bed most mornings

at 5 am, and weekends away or nights out just when they were most needed. You waited

patiently for this PhD to reach near completion before popping the question in the most

spectacularly beautiful and magical way. You have been with me through the most

trying parts of this journey and put up with the worst parts of it that no one else saw

– and the worst parts of me. I am ready for us to be together for many other ups and

downs in our lives.

List of Publications

Published

1. Natasha Zlobinsky, Amit Kumar Mishra, and Fambirai Takawira. Spectrum

Sensing and SINR Estimation in an IEEE 802.11s Dynamic Spectrum Access

Wireless Mesh Network. In: Proceedings of the 20th ACM International Sym-

posium on Mobility Management and Wireless Access (MobiWac ’22), pp. 55–63,

October 2022. URL: https://doi.org/10.1145/3551660.3560918.

2. Natasha Zlobinsky, David Johnson, Amit Kumar Mishra, and Albert A. Lysko.

Metaheuristic Optimisation for Radio Interface-Constrained Channel Assignment

in a Hybrid Wi-Fi–Dynamic Spectrum Access Wireless Mesh Network. In: Jin,

H., Liu, C., Pathan, AS.K., Fadlullah, Z.M., Choudhury, S. (eds) Cognitive Ra-

dio Oriented Wireless Networks and Wireless Internet. CROWNCOM WiCON

2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics

and Telecommunications Engineering, vol 427, pp. 56-76. Springer, Cham. URL:

https://doi.org/10.1007/978-3-030-98002-3_4.

3. Natasha Zlobinsky, David Johnson, Amit Kumar Mishra, and Albert A. Lysko.

Comparison of Metaheuristic Algorithms for Interface-Constrained Channel As-

signment in a Hybrid Dynamic Spectrum Access – Wi-Fi Infrastructure WMN. In:

IEEE Access, vol. 10, pp. 26654-26680, 2022. URL: https://10.1109/ACCESS.

2022.3155642.

4. Natasha Zlobinsky, David Johnson, Amit Kumar Mishra, and Albert A. Lysko.

Simulation and Improved Channel Assignment by Simulated Annealing of a Wire-

less Mesh Network using Dynamic Spectrum Access. In: Proceedings of the 19th

ACM International Symposium on Mobility Management and Wireless Access

(MobiWac ’21), pp. 157-166, November 2021. URL: https://doi.org/10.1145/

3479241.3486696.

5. Natasha Zlobinsky and David Johnson. Work in progress: a channel selec-

tion algorithm for a TVWS mesh network. Southern Africa Telecommunication

viii

https://doi.org/10.1145/3551660.3560918
https://doi.org/10.1007/978-3-030-98002-3_4
https://10.1109/ACCESS.2022.3155642
https://10.1109/ACCESS.2022.3155642
https://doi.org/10.1145/3479241.3486696
https://doi.org/10.1145/3479241.3486696

ix

Networks and Applications Conference (SATNAC): Broadband Evolution - Un-

locking “The Internet of Things”, 4-7 September 2016, George, Western Cape,

South Africa.

6. Richard Maliwatu, Natasha Zlobinsky, Magdeline Lamola, Augustine Takyi,

David L. Johnson, and Melissa Densmore. Experimental Analysis of 5 GHz WiFi

and UHF-TVWS Hybrid Wireless Mesh Network Back-Haul Links. In: Moerman,

I., Marquez-Barja, J., Shahid, A., Liu, W., Giannoulis, S., Jiao, X. (eds) Cogni-

tive Radio Oriented Wireless Networks. CROWNCOM 2018. Lecture Notes of

the Institute for Computer Sciences, Social Informatics and Telecommunications

Engineering, 2019, vol 261. Springer, Cham. URL: https://doi.org/10.1007/

978-3-030-05490-8_1.

7. David Johnson, Natasha Zlobinsky, Albert Lysko, Magdeline Lamola, Senka

Hadzic, Richard Maliwatu, and Melissa Densmore. Head to Head Battle of TV

White Space and WiFi for Connecting Developing Regions. In: Bissyande, T., Sie,

O. (eds) e-Infrastructure and e-Services for Developing Countries. AFRICOMM

2016. Lecture Notes of the Institute for Computer Sciences, Social Informatics and

Telecommunications Engineering, 2017, vol 208. Springer, Cham. URL: https:

//doi.org/10.1007/978-3-319-66742-3_18.

8. Augustine Takyi, Natasha Zlobinsky, Odametey Akuye-Shika, David Johnson,

and Melissa Densmore. Detection of Malicious Nodes Using Collaborative Neigh-

bour Monitoring in DSA Networks. In: Jin, H., Liu, C., Pathan, AS.K., Fadlullah,

Z.M., Choudhury, S. (eds) Cognitive Radio Oriented Wireless Networks and Wire-

less Internet. CROWNCOM WiCON 2021 2021. Lecture Notes of the Institute for

Computer Sciences, Social Informatics and Telecommunications Engineering, vol

427. Springer, Cham. URL: https://doi.org/10.1007/978-3-030-98002-3_

16.

9. Richard Maliwatu, Natasha Zlobinsky, Melissa Densmore, and David Johnson.

Work in progress: A Road Map for Wireless Mesh Routing with DSA. In: Proceed-

ings of Southern Africa Telecommunication Networks and Applications Conference

(SATNAC), pp. 46-47, George, South Africa.

10. Albert A. Lysko, Luzango Mfupe, Mofolo Mofolo, David L. Johnson, Lebogang

Rakgolela, Gabriel Montja, Mla Vilakazi, Sydney Sebopetse, Nosipho Khumalo,

Magdeline Lamola, and Natasha Zlobinsky. Development of a Nation-Wide

Research Platform for Dynamic Spectrum Access (DSA). In: 2019 13th European

Conference on Antennas and Propagation (EuCAP), 2019, pp. 1-5.

https://doi.org/10.1007/978-3-030-05490-8_1
https://doi.org/10.1007/978-3-030-05490-8_1
https://doi.org/10.1007/978-3-319-66742-3_18
https://doi.org/10.1007/978-3-319-66742-3_18
https://doi.org/10.1007/978-3-030-98002-3_16.
https://doi.org/10.1007/978-3-030-98002-3_16.

Contents x

11. Mokwape M. Lamola, David Johnson, Albert A. Lysko, and Natasha Zlobinsky.

TVWS Devices Spectrum Mask Test and Analysis. In: Proceedings of South-

ern Africa Telecommunication Networks and Applications Conference (SATNAC

2016), 4-7 September 2016, George, South Africa.

Under review

1. Natasha Zlobinsky, Amit Kumar Mishra, and Albert A. Lysko. Spectrum Sens-

ing and SINR Estimation in 802.11s Cognitive Radio Ad Hoc Networks with Het-

erogeneous Interference. Re-submitted to: IEEE Transactions on Wireless Com-

munications.

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements vi

List of Publications viii

List of Figures xvi

List of Tables xxi

Abbreviations xxiv

Physical Constants xxvii

Nomenclature xxviii

1 Introduction 1

1.1 Motivation . 3

1.2 Network model . 4

1.3 Problem statement . 6

1.4 Research questions . 7

1.5 Summary and guide to the dissertation . 8

1.6 Conclusion . 10

2 Review of relevant theory 12

2.1 Introduction . 12

2.2 Some definitions . 13

2.2.1 Cognitive Radio . 13

2.2.2 Dynamic Spectrum Access . 13

2.2.3 Wireless Mesh Network . 14

2.2.4 Television White Space . 14

2.3 The Channel Assignment problem . 14

2.4 Models . 16

xi

Contents xii

2.4.1 Physical models . 17

2.4.1.1 Propagation and path loss 17

2.4.1.2 Interference . 21

2.4.1.3 Antennas . 23

2.4.2 Protocol model . 24

2.4.3 Graph model . 25

2.4.4 Traffic model . 26

2.4.5 Game Theoretic models . 26

2.5 Metrics . 27

2.5.1 Shannon capacity . 27

2.5.2 Jain’s fairness index . 28

2.6 Dynamic Spectrum Access . 29

2.7 Regulation, standards, and existing protocols 30

2.7.1 TVWS regulation . 30

2.7.2 Common aspects of IEEE 802.11 32

2.7.3 IEEE 802.11af amendment 5 . 33

2.7.4 IEEE 802.11k . 34

2.7.5 IEEE 802.11s . 34

2.7.6 IEEE 802.15.4 . 35

2.7.7 IEEE 802.16 for Wireless Metropolitan Area Networks 36

2.7.8 IEEE 802.22 . 36

2.7.9 IEEE 802.19.1 . 37

2.7.10 IEEE 1900.4a . 38

2.7.11 Standard ECMA-392 . 38

2.7.12 ETSI EN 301 598 . 38

2.7.13 Other . 38

2.7.14 Protocol to Access White-Space (PAWS) Databases 39

2.8 Spectrum sensing . 39

2.8.1 Basic narrowband methods . 39

2.8.1.1 Energy Detection . 39

2.8.1.2 Cyclostationary Feature Detection 42

2.8.1.3 Coherent/waveform-based techniques 42

2.8.1.4 Matched filter techniques 43

2.8.1.5 Covariance-based detection 43

2.8.1.6 Machine learning . 44

2.8.2 Wideband methods . 44

2.8.2.1 Sub-Nyquist methods . 44

2.8.2.2 Nyquist-based . 45

2.9 Geolocation Spectrum Databases . 45

2.10 MAC layer models . 46

2.10.1 EDCA and the IEEE 802.11s MAC layer 47

2.10.2 DCF and EDCA Markov Chain analysis 49

2.11 Metaheuristic techniques for optimisation 51

2.11.1 Simulated Annealing . 51

2.11.2 Genetic Algorithm . 52

2.11.3 Differential Evolution . 53

2.11.3.1 Mutation . 54

Contents xiii

2.11.3.2 Crossover . 54

2.11.3.3 Selection . 55

2.11.3.4 Variants . 55

2.11.4 Particle Swarm Optimisation . 56

2.11.4.1 Overview . 56

2.11.4.2 Naming and Variants . 57

2.12 Conclusion . 58

3 Prior work 60

3.1 Introduction . 60

3.2 Simulations . 61

3.3 Cognitive Radio Ad Hoc Networks and WMNs using DSA 62

3.4 Channel Assignment in Wireless Mesh Networks and coexistence strategies 63

3.4.1 Interference considerations and modelling 63

3.4.2 Centralised CAs . 65

3.4.2.1 Greedy heuristic approaches 65

3.4.2.2 Metaheuristic optimisation approaches 68

3.4.3 Distributed CAs . 70

3.4.4 Summary . 75

3.5 Markov chain analysis of EDCA for WMNs 77

3.6 Spectrum Sensing . 79

3.6.1 Timing or scheduling of spectrum sensing 79

3.6.2 Spectrum sensing and estimation 83

3.6.3 Current channel scanning mechanisms 87

3.7 Conclusion . 87

4 Models, methods, and simulation environment 89

4.1 Introduction . 89

4.2 Assumptions . 90

4.3 Mathematical model . 92

4.4 Simulation Environment . 97

4.4.1 MeshSim module . 97

4.4.2 TVWS channels . 100

4.4.3 Complexity and run-time . 101

4.4.4 Limitations . 103

4.5 General feasible Channel Assignment algorithm 104

4.6 Conclusion . 104

5 Implementation and comparison between Simulated Annealing, Ge-
netic Algorithm, Differential Evolution, and Particle Swarm Optimi-
sation for Channel Assignment optimisation 107

5.1 Introduction . 107

5.2 Implementation details of CA by algorithm 108

5.2.1 Channel Assignment by Simulated Annealing 109

5.2.2 Channel Assignment by Genetic Algorithm 111

5.2.3 Channel Assignment by Differential Evolution 114

5.2.4 Channel Assignment by Particle Swarm Optimisation 117

5.3 Results . 120

Contents xiv

5.3.1 Simulated Annealing . 121

5.3.2 Genetic Algorithm . 123

5.3.3 Differential Evolution . 124

5.3.4 Particle Swarm Optimisation . 129

5.3.5 Comparison between all algorithms 135

5.4 Discussion and limitations . 139

5.5 Conclusions and recommendations . 140

6 Real-world measurements in 5 GHz Wi-Fi and TVWS bands 143

6.1 Introduction . 143

6.2 Equipment and experimental setup . 146

6.3 Experiments . 149

6.3.1 Baseline measurements . 149

6.3.2 Indoor measurements . 152

6.3.3 Line-of-sight measurements . 160

6.3.3.1 250 m distance . 161

6.3.3.2 650 m distance . 170

6.3.4 Measurements through vegetation 178

6.4 Discussion on the application of these results 188

6.5 Chapter conclusion . 189

7 Markov chain analysis of spectrum sensing time, and SINR estimation
for CA in a WMN 191

7.1 Introduction . 191

7.2 Modelling idle time . 194

7.3 Proposed SINR estimation . 204

7.3.1 Interference and Noise Power Estimation 204

7.3.2 Wi-Fi Signal Power estimation . 212

7.4 Numerical results and discussion . 213

7.4.1 Sensing time, based on Markov model 214

7.4.1.1 Number of samples per window obtainable for increasing
number of competing nodes 214

7.4.1.2 Feasibility of sampling based on the number of compet-
ing nodes . 225

7.4.2 Confidence intervals of the estimates 228

7.5 Conclusion and recommendations . 233

8 Reporting of sensing statistics and CA distribution algorithm 236

8.1 Introduction . 236

8.2 Spectrum Resource Management and Measurement 237

8.3 Proposed alterations to IEEE 802.11 to report measurements 239

8.4 Distribution of the Channel Assignment 241

8.4.1 Initial CA . 241

8.4.1.1 Option 1: Complete solution 242

8.4.1.2 Option 2: Low-complexity solution 245

8.4.2 The actual channel switch . 246

8.4.2.1 Channel switch procedure 246

8.4.2.2 Delay analysis for CA . 247

Contents xv

8.5 Some notes on implementation and limitations 252

8.6 Conclusion . 253

9 Conclusion 255

9.1 Answers to the research questions . 257

9.2 Original contributions . 263

9.3 Limitations and suggestions for future work 265

9.4 Final words . 266

A mesh-sim Network Simulator 3 module 268

B Initial Channel Assignment algorithm implementation 280

C Class definition and implementation of Simulated Annealing for CA 285

D Class definition and implementation of Genetic Algorithm for CA 294

E Class definition and implementation of Differential Evolution for CA 309

F Class definition and implementation of Particle Swarm Optimisation
for CA 323

G Measurement script 344

G.1 Measurement tool . 344

G.2 testsignal bash script . 366

H Markov chain analysis 367

H.1 Sensing time and number of samples . 367

H.2 Feasible number of nodes . 372

I CA distribution and switching delay 375

I.1 Single-hop access delay analysis . 375

I.2 Delay plot . 378

Bibliography 380

List of Figures

1.1 A triple-band infrastructure WMN using DSA. A single node is the gate-
way to the Internet and thus also to the GLSD. The WMN nodes have
TVWS and 5 GHz Wi-Fi interfaces and can use both bands. Each WMN
node acts as an AP to clients on 2.4 GHz. The DSA-WMN is in the
presence of other SUs of the TVWS spectrum, which causes interference
with our DSA-WMN. There are also PU TV transmitters that must be
protected from interference, as well as obstructions, such as trees, that
affect which spectrum bands and channels are more favourable than others. 5

1.2 Map of the objective function value of CA problem in a three-node WMN.
Each of the three links between nodes (A-B, A-C, and B-C) is represented
by an axis and the values on each axis represent the channel numbers used
on that link. 8

2.1 Illustration of a Fresnel zone . 18

2.2 The protocol model of wireless transmission 24

2.3 EDCA timing diagram showing NAV mechanism without clearing mech-
anism. When an RTS frame is sent on the channel by A, other nodes
that are not the intended recipient of the packet (C and D) set their
NAV and remain idle during that NAV period. After the completion of
the NAV time, nodes C and D wait the Arbitration Inter-Frame Spacing
(AIFS) and the random backoff (BO) time before attempting to transmit.
The Short Inter-Frame Space (SIFS) comes before CTS, DATA, and ACK
frames. 47

4.1 Mapping of connectivity graph to the conflict graph model 93

4.2 MeshSim class UML representation . 98

4.3 Down-converted Wi-Fi to TVWS channel mapping as used in the Doodle
Labs DL509-78 Broadband Radio Transceiver card 100

4.4 Run-time growth as the number of nodes in the network increases 102

5.1 Crossover of channel allocations in Genetic Algorithm. The two parent
chromosomes are the top two CAs. They produce the two offspring, shown
below the arrow, by mixing the first section of the first parent with the
second section of the second parent and the second section of the first
parent with the first section of the second parent chromosome. 112

5.2 Mapping of computed channel values outside of the allowed channel index
bounds to feasible channels by “wrapping around”. Positive values over
the maximum wrap back around to the start and count up from that
position. Values less than the minimum index wrap back to the maximum
index and are counted down from that position. 115

xvi

List of Figures xvii

5.3 Crossover of channel allocations in Differential Evolution. rand(j) ≤ CR
refers to selecting a random number in the interval (0, 1) and checking
whether it is less than the crossover rate. If it is, then the value of the
mutant is selected for crossover with the target vector xi,G at that index
(j) to form trial vector ui,G+1. 116

5.4 Mean and standard error (error bars) of the natural log (ln) of the cost
obtained from 10 runs of SA at each iteration or function evaluation over
the running time (iterations) . 122

5.5 Mean and standard error of the natural logarithm (ln) of the mean costs
of populations of 10 runs of GA over the running time (iterations) using
a mutation rate of 0.5. The mean cost per iteration is the average of the
costs of 20 function evaluations (the 20 individuals in the population). . . 125

5.6 Mean and standard error of the natural log (ln) of the mean population
cost of 10 runs of GA over the running time (iterations) using a mutation
rate of 0.25. The mean cost per iteration is the average of the costs of 20
function evaluations (the 20 individuals in the population). 126

5.7 Mean and standard error of the natural log (ln) of the mean costs of
populations of 10 runs of DE over the running time (iterations) for a
9-node WMN. 1 iteration=20 function evaluations. 127

5.8 Mean and standard error of the natural logarithm (ln) of the mean pop-
ulation costs of 10 runs of DE. 1 iteration=20 function evaluations. 128

5.9 Unsuccessful run of PSO with 9 nodes variant 1, with ω = 0.72984 and
c1 = c2 = 2.05. We note that with the recommended parameter values
there is no clear convergence within 500 iterations (where 1 iteration=20
function evaluations). These parameter values perform poorly. 129

5.10 Costs over long run for 3-node WMN, where 1 iteration=20 function
evaluations. 130

5.11 Mean with standard error of the natural logarithm (ln) of the mean cost
of populations over 10 runs of PSO at each iteration over the running time
(iterations) for a 9-node network. Each iteration represents 20 function
evaluations for a population size of 20. 132

5.12 Mean with standard error of the natural logarithm (ln) of the mean cost
of populations over 10 runs of PSO at each iteration over the running time
(iterations) for a 16-node network. Each iteration represents 20 function
evaluations for a population size of 20. 133

5.13 Mean with standard error of the natural logarithm (ln) of the mean cost
of populations over 10 runs of PSO at each iteration over the running time
(iterations) for a 49-node network. Each iteration represents 20 function
evaluations for a population size of 20. 134

5.14 Comparison between SA, GA, DE, and PSO of the log of the cost per
function evaluation averaged over 10 runs 136

6.1 Parts of an early generation of WSMN inside the enclosure. The two
antennas referred to as omni Wi-Fi antenna are omnidirectional antennas
used for client access on both 2.4 GHz and 5 GHz Wi-Fi. The panel
antenna is for mesh connectivity. The TV antenna is not shown in this
diagram but would be connected to the White space radio. 147

List of Figures xviii

6.2 Setup for the baseline (cabled) experiments. The pigtail antenna connec-
tors of two Devices Under Test (DUTs) Network Interface Cards (NICs),
one in receive mode and one in transmit mode, are connected via cables
to 30 dB attenuators on each side of a splitter. The splitter allows a spec-
trum analyser to be connected to monitor and show the signal passing
from the receiver to the transmitter. 149

6.3 Characterisation of frequency response of circuit components of the base-
line measurements . 150

6.4 Indoor measurements setup. The setup had node A at one end of the
laboratory and node B at the other. The figures only show one of the two
nodes. 152

6.5 Transmit power vs. throughput on Wi-Fi, indoors (error bars indicate
standard deviation) . 156

6.6 Transmit power vs. throughput on Wi-Fi, indoors (error bars indicate
standard deviation) . 156

6.7 Throughput vs. transmit power on TVWS, indoors 157

6.8 Channel width vs SNR on Wi-Fi and TVWS, indoors 158

6.9 Transmit power vs. received SNR on Wi-Fi and TVWS, 250 m line-of-sight164

6.10 Transmit power vs. received SNR on Wi-Fi and TVWS, 250 m line-of-
sight, directions compared . 165

6.11 Channel width vs. Noise on TVWS channels 1 and 4, 250 m line-of-sight . 165

6.12 Transmit power vs. throughput on Wi-Fi, 250 m line-of-sight (error bars
indicate standard deviation) . 167

6.13 Transmit power vs. throughput on TVWS, 250 m line-of-sight 168

6.14 Transmit power vs. throughput on Wi-Fi, 250 m line-of-sight in different
directions: node A to B and node B to A 169

6.15 Transmit power vs. throughput on TVWS, 250 m line-of-sight in different
directions: node A to B and node B to A 170

6.16 Channel width vs. SNR on Wi-Fi and TVWS, 250 m line-of-sight 171

6.17 Channel width vs SNR on Wi-Fi and TVWS, 250 m line-of-sight, directional172

6.18 Transmit power vs. throughput on Wi-Fi, 650 m line-of-sight (error bars
indicate standard deviation) . 178

6.19 Throughput vs. transmit power on TVWS, 650 m line-of-sight 178

6.20 Setup of the stationary node for the experiments with vegetative obstruction180

6.21 Illustration of spacing between trees for experiments with varying num-
bers of obstructing trees (not to scale) . 180

6.22 Number of obstructing trees vs SNR on Wi-Fi and TVWS 181

6.23 Number of obstructing trees vs throughput on Wi-Fi and TVWS 182

6.24 Transmit power vs received SNR on Wi-Fi and TVWS, vegetation 185

6.25 SNR vs throughput, Wi-Fi and TVWS . 185

7.1 EDCA timing diagram showing NAV mechanism without clearing mech-
anism. When an RTS frame is sent on the channel by A, other nodes
that are not the intended recipient of the packet (C and D) set their
NAV and remain idle during that NAV period. After the completion of
the NAV time, nodes C and D wait the Arbitration Inter-Frame Spacing
(AIFS) and the random backoff (BO) time before attempting to transmit.
The Short Inter-Frame Space (SIFS) comes before CTS, DATA, and ACK
frames. 195

List of Figures xix

7.2 Markov chain for a certain AC queue at one station. Each bubble repre-
sents a two-dimensional state {i, k} for backoff stage i and backoff counter
value k. 195

7.3 Idle fraction vs. number of nodes . 205

7.4 Idle fraction vs. τ (n = number of nodes) 206

7.5 Representation of receiver architecture with power computation. (LNA
= low noise amplifier, BPF = band pass filter, VCO = voltage controlled
oscillator, LPF = low pass filter, ADC = analogue-to-digital converter,
DFT = discrete Fourier transform) . 207

7.6 Number of samples per sampling window when sampling during EDCA
backoff idle times for data rate of 11 Mbps, and average packet size of
1000 bytes . 215

7.7 Number of samples per sampling window when sampling during EDCA
backoff idle times for data rate of 11 Mbps, and average packet size of
8000 bytes . 216

7.8 Number of samples per sampling window when sampling during EDCA
backoff idle times for data rate of 11 Mbps, and average packet size of
32000 bytes . 217

7.9 Number of samples per sampling window when sampling during EDCA
backoff idle times for data rate of 11 Mbps, and average packet size of
65000 bytes . 218

7.10 Number of samples per sampling window when sampling during EDCA
backoff idle times for data rate of 20 Mbps, and average packet size of
1000 bytes . 219

7.11 Number of samples per sampling window when sampling during EDCA
backoff idle times for data rate of 20 Mbps, and average packet size of
8000 bytes . 220

7.12 Number of samples per sampling window when sampling during EDCA
backoff idle times for data rate of 20 Mbps, and average packet size of
32000 bytes . 221

7.13 Number of samples per sampling window when sampling during EDCA
backoff idle times for data rate of 20 Mbps, and average packet size of 65
kilobytes . 222

7.14 Expected sensing time available per window for mean packet size of 8000
bytes . 224

7.15 Width of the confidence interval of average interference power vs. number
of sampling windows for 20 samples per window, Chi-square method. The
curves are for the indicated means θ̂. 229

7.16 Width of the confidence interval of average interference power vs. number
of sampling windows for 200 samples per window, Chi-square method.
The curves are for the indicated means θ̂. 229

7.17 Width of the confidence interval of average interference power vs. number
of sampling windows for 1000 samples per window, Chi-square method.
The curves are for the indicated means θ̂. 229

7.18 Width of the confidence interval of average interference power vs. number
of sampling windows for 20 samples per window, Wald method. The
curves are for the indicated means θ̂. 230

List of Figures xx

7.19 Width of the confidence interval of average interference power vs. number
of sampling windows for 200 samples per window, Wald method. The
curves are for the indicated means θ̂. 230

7.20 Width of the confidence interval of average interference power vs. number
of sampling windows for 1000 samples per window, Wald method. The
curves are for the indicated means θ̂. 230

7.21 Width of the confidence interval using the Wald method vs. Chi-square
method for 500 samples per window. The curves are for the indicated
means θ̂. 231

7.22 Width of the confidence interval per average interference power for α =
0.05 at 20 samples per window. The curves are for the indicated number
of sampling windows. 231

7.23 Width of the confidence interval per average interference power for α =
0.05 at 500 samples per window. The curves are for the indicated number
of sampling windows. 232

7.24 Relative error vs. time . 233

8.1 Complete sensing and CA lifecycle . 237

8.2 Example of signal quality related IEs in IEEE 802.15.4 [1] 238

8.3 Suggested addition to the measurement type definitions for measurement
reports in IEEE 802.11. RPI = Receive power indicator, LCI = Location
configuration information. 239

8.4 Suggested report frame field format for Out-of-channel SINR report mea-
surement type . 240

8.5 Range of first GLSD query by GW node acting as a Master WSD. The
range must be twice the range of the individual node to include the max-
imum distance to the next possible hop. 242

8.6 Suggested “Bad channel” IE . 245

8.7 IBSS or MBSS DFS element contained in IEEE 802.11 Beacon frames
with channel map . 248

8.8 Maximum number of connections in a grid topology 248

8.9 Maximum number of hops in a grid topology 250

8.10 Convergence time of channel assignment for delay time given by Markov
chain analysis and average and worst-case measurements 251

List of Tables

3.1 Comparison between existing literature on CA in WMNs (MC = multi-
channel, C/D = centralised/distributed, POC = partially overlapping
channels, LA = Learning Automata, TS = Tabu Search, N = None) . . . 76

3.2 Comparison of Markov chain analysis of EDCA 77

5.1 Big-O complexity of GA components . 114

5.2 Parameters used in simulations . 120

5.3 Comparison of the final results of GA (scaled cost or value of Equa-
tion (5.1)) of the best individual at max iterations of 100) 124

5.4 Comparison of the final results of DE (scaled cost or value of Equa-
tion (5.1)) of the best individual at max iterations of 100) with parameters
F = 0.9, CR = 0.9 . 124

5.5 Comparison of the final results (scaled value of Equation (5.1)) of the best
particle at a maximum of 500 iterations = 10000 function evaluations) for
variants 1, 5, and 6 of PSO using adaptive ω 131

5.6 Comparison of final results (value of the best particle at max iterations
of 100 iterations = 2000 function evaluations) of variants 1, 5, and 6 of
PSO using adaptive ω . 131

5.7 Comparison of final results obtained from SA (2000 iterations = 2000
function evaluations), and GA, DE, and PSO (100 iterations = 2000 func-
tion evaluations) . 135

5.8 Comparison of final results obtained from SA (1000 iterations = 1000
function evaluations), and GA, DE, and PSO (50 iterations = 1000 func-
tion evaluations) . 135

5.9 Comparison of final results obtained from SA (2000 iterations = 2000
function evaluations), and GA, PSO, and DE (100 iterations = 2000
function evaluations) for a topology of 49 nodes randomly placed on a
disc . 138

5.10 Friedman test statistics . 138

6.1 Specifications of the components used in the WSMN. The WSMN used
both a DSA band (TVWS) and a traditional 5 GHz Wi-Fi band for mesh
connectivity. 146

6.2 Mapping of Doodle Labs Wi-Fi and TVWS channels to centre frequency . 148

6.3 Correction factors to be applied to measured values 151

6.4 Baseline (cabled) measurements of TVWS vs Wi-Fi 151

6.5 Measurements of TVWS vs Wi-Fi indoors, TVWS channel 1 (540 MHz)
and Wi-Fi channel 40 (5200 MHz), transmit power = 5 dBm 154

xxi

List of Tables xxii

6.6 Measurements of TVWS vs Wi-Fi indoors, TVWS channel 1 (540 MHz)
and Wi-Fi channel 40 (5200 MHz), transmit power = 20 dBm 154

6.7 Measurements of TVWS vs Wi-Fi indoors, TVWS channel 4 (555 MHz)
and Wi-Fi channel 48 (5240 MHz), transmit power = 5 dBm 155

6.8 Measurements of TVWS vs Wi-Fi indoors, TVWS channel 4 (555 MHz)
and Wi-Fi channel 48 (5240 MHz), transmit power = 20 dBm 155

6.9 Kruskal-Wallis test results for Wi-Fi channels (36, 40, 44, and 48) vs.
SNR indoors . 157

6.10 Kruskal-Wallis test results for TVWS channels (1, 4, 7, and 11) vs. SNR
indoors . 158

6.11 Kendall’s rank correlation test results for Wi-Fi SNR vs. throughput
indoors . 159

6.12 Kendall’s rank correlation test results for TVWS SNR vs. throughput
indoors . 159

6.13 Measurements of TVWS vs Wi-Fi in line-of-sight conditions, 250 m sep-
aration distance, TVWS channel 1 (540 MHz) and Wi-Fi channel 40
(5200 MHz), transmit power = 5 dBm . 161

6.14 Measurements of TVWS vs Wi-Fi in line-of-sight conditions, 250 m sep-
aration distance, TVWS channel 1 (540 MHz) and Wi-Fi channel 40
(5200 MHz), transmit power = 10 dBm 162

6.15 Measurements of TVWS vs Wi-Fi in line-of-sight conditions, 250 m sep-
aration distance, TVWS channel 1 (540 MHz) and Wi-Fi channel 40
(5200 MHz), transmit power = 15 dBm 162

6.16 Measurements of TVWS vs Wi-Fi in line-of-sight conditions, 250 m sep-
aration distance, TVWS channel 1 (540 MHz) and Wi-Fi channel 40
(5200 MHz), transmit power = 20 dBm 162

6.17 Measurements of TVWS vs Wi-Fi in line-of-sight conditions, 250 m sep-
aration distance, TVWS channel 4 (555 MHz) and Wi-Fi channel 48
(5240 MHz), transmit power = 5 dBm . 163

6.18 Measurements of TVWS vs Wi-Fi in line-of-sight conditions, 250 m sep-
aration distance, TVWS channel 4 (555 MHz) and Wi-Fi channel 48
(5240 MHz), transmit power = 10 dBm 163

6.19 Measurements of TVWS vs Wi-Fi in line-of-sight conditions, 250 m sep-
aration distance, TVWS channel 4 (555 MHz) and Wi-Fi channel 48
(5240 MHz), transmit power = 15 dBm 163

6.20 Measurements of TVWS vs Wi-Fi in line-of-sight conditions, 650 m sep-
aration distance, TVWS channel 4 (555 MHz) and Wi-Fi channel 48
(5240 MHz), transmit power = 20 dBm 164

6.21 Kruskal-Wallis test results for Wi-Fi channels (36, 40, 44, and 48) vs.
SNR LoS 250 m . 167

6.22 Kruskal-Wallis test results for TVWS channels (1,4,7, and 11) vs. SNR
LoS 250 m . 168

6.23 Kendall’s rank correlation test results for Wi-Fi SNR vs. throughput LoS
250 m . 173

6.24 Kendall’s rank correlation test results for TVWS SNR vs. throughput
LoS 250 m . 173

6.25 Measurements of TVWS vs Wi-Fi in line-of-sight conditions, 650 m sep-
aration distance, TVWS channel 1 (540 MHz) and Wi-Fi channel 40
(5200 MHz), transmit power = 5 dBm . 174

List of Tables xxiii

6.26 Measurements of TVWS vs Wi-Fi in line-of-sight conditions, 650 m sep-
aration distance, TVWS channel 1 (540 MHz) and Wi-Fi channel 40
(5200 MHz), transmit power = 10 dBm 174

6.27 Measurements of TVWS vs Wi-Fi in line-of-sight conditions, 650 m sep-
aration distance, TVWS channel 1 (540 MHz) and Wi-Fi channel 40
(5200 MHz), transmit power = 15 dBm 175

6.28 Measurements of TVWS vs Wi-Fi in line-of-sight conditions, 650 m sep-
aration distance, TVWS channel 1 (540 MHz) and Wi-Fi channel 40
(5200 MHz), transmit power = 20 dBm 175

6.29 Measurements of TVWS vs Wi-Fi in line-of-sight conditions, 650 m sep-
aration distance, TVWS channel 4 (555 MHz) and Wi-Fi channel 48
(5240 MHz), transmit power = 5 dBm . 176

6.30 Measurements of TVWS vs Wi-Fi in line-of-sight conditions, 650 m sep-
aration distance, TVWS channel 4 (555 MHz) and Wi-Fi channel 48
(5240 MHz), transmit power = 10 dBm 176

6.31 Measurements of TVWS vs Wi-Fi in line-of-sight conditions, 650 m sep-
aration distance, TVWS channel 4 (555 MHz) and Wi-Fi channel 48
(5240 MHz), transmit power = 15 dBm 177

6.32 Measurements of TVWS vs Wi-Fi in line-of-sight conditions, 650 m sep-
aration distance, TVWS channel 4 (555 MHz) and Wi-Fi channel 48
(5240 MHz), transmit power = 20 dBm 177

6.33 Kruskal-Wallis test results for Wi-Fi channels (36, 40, 44, and 48) vs.
SNR LoS . 177

6.34 Kruskal-Wallis test results for TVWS channels (1 and 4) vs. SNR LoS . . 179

6.35 Measurements of throughput and delay in TVWS vs. Wi-Fi through veg-
etation, TVWS channel 1 (540 MHz) and Wi-Fi channel 40 (5200 MHz),
transmit power = 15 dBm . 183

6.36 Measurements of TVWS vs Wi-Fi through vegetation, TVWS channel 1
(540 MHz) and Wi-Fi channel 40 (5200 MHz), transmit power = 20 dBm 184

6.37 Kendall’s rank correlation test results for TVWS SNR vs. throughput in
vegetative environment . 186

6.38 Kruskal-Wallis test results for Wi-Fi channels vs. SNR at tree 1 186

6.39 Kruskal-Wallis test results for Wi-Fi channels vs. SNR at tree 2 187

6.40 Kruskal-Wallis test results for TVWS channels (1, 4, 7, 11) vs. SNR at
tree 8 . 187

6.41 Kruskal-Wallis test results for TVWS channels (1, 4, 7, and 11) vs. SNR
in vegetative environment . 188

7.1 Contention window boundaries per Access Category 196

7.2 Simulation parameters . 213

7.3 The maximum feasible number of nodes for sampling for node separation
of 150 m . 226

7.4 The maximum feasible number of nodes for sampling for node separation
of 500 m . 226

7.5 The maximum feasible number of nodes for sampling for node separation
of 1 km . 227

7.6 The maximum feasible number of nodes for sampling for node separation
of 5 km . 227

Abbreviations

AC Access Category

ACK Acknowledgment (frame)

AIFS Arbitration Inter-Frame Space

AIFSN Arbitration Inter-Frame Spacing Number

ANPI Average Noise Power Indicator

AP Access Point

BE Best Effort

BK Background

BO Backoff

BPF Band Pass Filter

BSS Basic Service Set

CA Channel Assignment

CI Confidence Interval

CR Cognitive Radio

CRAHN Cognitive Radio Ad Hoc Network

CTS Clear-To-Send

CW contention window

DCF Distributed Coordination Function

DFS Dynamic Frequency Selection

DFT Discrete Fourier Transform

DSA Dynamic Spectrum Access

EDCA Enhanced Distributed Coordination Function

FFT Fast Fourier Transform

GLSD Geolocation Spectrum Database

GPS Global Positioning Satellite

xxiv

Abbreviations xxv

I In-phase

IBSS Independent Basic Service Set

IE Information Element

IPI Idle Power Indicator

ITU International Telecommunication Union

LCI Location Configuration Information

LHS Left Hand Side

LNA Low Noise Amplifier

LPF Low Pass Filter

LTE Long-Term Evolution

MAC Medium Access Control

MAP Maximum a posteriori

MBSS Mesh Basic Service Set

MCCA Mesh Coordinated Channel Access

MCCAOP Mesh Coordinated Channel Access Opportunity

MCF Mesh Coordination Function

MCS Modulation and Coding Scheme

MLE Maximum Likelihood Estimate

MRMC Multi-radio multi-channel

MSE Mean Square Error

NAV Network Allocation Vector

PHY Physical Layer

POMP Partially Observable Markov Decision Process

PU Primary User

Q Quadrature

QoS Quality of Service

RF Radio Frequency

RHS Right Hand Side

RCPI Received Channel Power Indicator

RPI Receive Power Indicator

RRM Radio Resource Measurement

RSNI Received Signal to Noise Indicator

RSSI Received Signal Strength Indicator

Abbreviations xxvi

RTS Request-To-end

SIFS Short Inter-Frame Spacing

SINR Signal-to-Interference-and-Noise- Ratio

SIR Signal- to-Interference-Ratio

SRM Spectrum Resource Measurement

SS Spectrum Sensing

STA Station

SU Secondary User

TDMA Time Division Multiple Access

TVWS Television White Space

TXOP Transmission opportunity

VCO Voltage Controlled Oscillator

VI Video

VO Voice

VOIP Voice over Internet Protocol

WISP Wireless Internet Service Provider

WLAN Wireless Local Area Network

WMN Wireless Mesh Network

WMN Wireless Mesh Networks

WSN Wireless Sensor Network

Physical Constants

Speed of Light c = 2.997 924 58× 108 ms−s

Boltzmann’s Constant k = 1.380 648 5× 10−23 JK−1

xxvii

Nomenclature

α 1 - the confidence level, or the probability that the confidence interval will not

include the parameter

ŷ the position of any particle in the swarm found so far with the best fitness (lowest

cost)

vi(t) the velocity of particle i at iteration t

xi(t) the position of particle i at iteration t

yi the position of the particle i found so far with the best fitness (lowest cost)

δ propagation delay

θ̂ the estimate of the parameter θ

λED the energy detection threshold

hi the complex channel impulse response for the channel between interference source

i and the receiver

w(t) the complex additive Gaussian received noise signal

xi the complex transmitted interfering signal

ω inertia coefficient in PSO

πj probability of a frame in priority j encountering a collision with other queues

inside the station before transmission

σ the slot duration

τ station transmission probability

xxviii

Nomenclature xxix

θ the mean received Interference+Noise power, and parameter of the exponential

distribution

ac access category

b backoff counter value

bj,i,k state probability distribution of Markov chain at AC j, backoff stage i, backoff

counter k

c1, c2 cognitive and social coefficients in PSO

CWmax maximum contention window size

CWmin minimum contention window size

F (θ) the Fisher information of parameter θ

J number of samples per window

M the number of interference sources

mj maximum backoff stage before retries

N the total number of samples

n number of nodes

Pi the scalar power envelope of the transmitted signal

pj conditional collision probability of a packet in priority j

pj conditional collision probability of transmitted frame in priority class j

Ps probability of a successful transmission by any node in the network

Pc\A probability of a collision encountered by a transmission by any node in the net-

work other than A

Ps\A probability of a successful transmission by any node in the network other than A

Ptr probability of transmission of the network

r ∼ U(0, 1) a (pseudo)-random number selected in the range 0 to 1

R retry limit

Nomenclature xxx

r sample rate

rI(t) in-phase component of the received signal at time t

rQ(t) quadrature component of the received signal at time t

s backoff stage

t the iteration counter

Tc duration of a packet transmission that encounters a collision

tj transmission probability of a station of a packet with priority j

Tchannel−switch channel switching delay

TCTS CTS duration

TNAV,c duration of the NAV reservation in the case of a collision

TNAV,s duration of the NAV reservation in the case of a successful transmission

TRTS RTS duration

Tsensing sensing duration

Wj,i contention window size at AC j and backoff stage i

Xk,j an observation of the random variable

CWmax maximum contention window

CWmin minimum contention window

pb the probability that a backoff instance senses the channel busy

W the number of sampling windows

For Jacobus Jan Louw Hamman, Oupa

xxxi

Chapter 1

Introduction

The South African Cities Network’s State of South African Cities Report (SoCR) re-

vealed earlier this year (2022) that one in five South Africans live in informal dwellings

[2], although the number is likely to be higher due to the difficulty of gathering accurate

data. The World Bank estimates that 32% of South Africa’s population was rural in

2021. Whether it is for doing research for school projects, advertising services, partici-

pating in community discourse, or social media and entertainment, mobile phones and

connectivity are non-negotiable parts of daily life for all South Africans, as is the case

for most of the world. Smartphone penetration was 91.2% in 2019 [3] and continues

to grow. However, only 77.5% of households have at least one member with Internet

access anywhere, and only 10.4% at home [4]. Only 1.2% of rural households have In-

ternet at home. The most common form of Internet access is through mobile cellular

devices (69.4% nationally and 59.2% in rural areas), according to the General Household

Survey of 2021 [4]. What is not made clear in this report is that Internet access in infor-

mal settlements and rural areas is mostly provided by one of four large cellular service

providers, whose data costs are high in relation to income levels and whose service is

unreliable and slow [5]. Data costs are so high that South Africans must make difficult

choices between buying data and buying food or paraffin for cooking. Satellite Internet

services are used for very remote rural areas but are far too expensive for low-income

rural communities.

Additionally, residents in informal settlements make extensive use of local file sharing

and interactions with other users in close geographic proximity, both over WhatsApp and

over Wi-Fi Direct [6]. This kind of connectivity is within the community and does not

require an Internet connection. The same function could be met by a community network

and the cost of this traffic could be reduced if it is not directed through the Internet,

around the world and back to the same geographic area. This background raises two

1

2

important needs in informal settlements and rural areas, both in South Africa and further

abroad in the global South and beyond 1. Low-cost broadband Internet connectivity

that is reliable and available to a wide area 2. Community network connectivity and

locally hosted services for local traffic.

The Alliance for Affordable Internet (A4AI) has developed a theory of “meaningful

Internet access” [7]. According to this framework, access is meaningful if it is affordable,

is of a sufficient quality, and can be used in a supportive social environment. A4AI’s

affordability targets state that the cost of 5 GB of broadband Internet should not be

more than 2% of the average monthly income. Instead, 5 GB broadband access currently

costs 5% of the average monthly income in South Africa. The cost of access relative to

income is far higher for rural and informal residents compared to the country’s average.

In these areas, we have not yet achieved meaningful Internet access for all, either in

terms of affordability or quality.

Two of the reasons that mobile connectivity is expensive are (i) that costly spectrum

licenses are required to operate in these bands and (ii) putting up and maintaining

cellular base stations in outlying areas is expensive for operators. The first challenge

can be overcome by using spectrum opportunistically (without requiring a licence), and

the second by using a mesh architecture instead of the base-station-to-client architecture

employed by cellular operators. Bringing together a Wireless Mesh Network (WMN)

architecture with Dynamic Spectrum Access can address the two major needs identified

in South Africa’s, and indeed the world’s, rural areas, informal settlements, and peri-

urban areas in general. The combination can be used to provide low-cost broadband

Internet connectivity by extending wired Internet access from a certain point to a wider

area. The mesh topology can improve reliability, capacity, and reach while also providing

connectivity for a community network that does not require permanent external Internet.

The use of Dynamic Spectrum Access (DSA) allows cheaper access to a wider range of

spectrum and unlocks the use of lower-frequency spectrum bands, such as Television

White Space (TVWS), which propagates further in space than current unlicensed bands

and is more robust to obstructions. We call this type of network a DSA-WMN. When

the WMN nodes have multiple radios allowing the use of multiple channels, this is called

a multi-radio multi-channel (MRMC) WMN.

In this work, we consider such an MRMC DSA-WMN as the basis from which we develop

our solutions. With this scenario in mind, certain technical challenges arise that must

be addressed. The content of this dissertation addresses some of these challenges. Since

we use DSA spectrum and the nodes are geographically spread out in space, both the

allowed channels would be different for different nodes, and the optimal channels will

vary across the links in the network. DSA commonly involves the use of a Geolocation

3

Spectrum Database (GLSD), which keeps a record of which Primary Users (PUs) of

the spectrum (the license holders) are using which channels at specific geolocations and

provides Secondary Users (SUs) with their allowed operating parameters at their location

at the time of querying. The main reason for this is to protect the PUs from interference

caused by SUs. In peri-urban areas, channel availability might be quite limited as TV

transmitters are more abundant, while in rural areas channel availability might be less

constrained as there are fewer TV transmitters. In other DSA bands and technologies,

such as the 3.5 GHz Citizens Broadband Radio Service and 6 GHz Wi-Fi 6E, it is also

likely that channel availability would be more constrained in peri-urban areas compared

to rural areas. Hence, finding optimal channels to use in a DSA-WMN in peri-urban

areas is more challenging than in rural areas.

The spectrum database has seen widespread adoption across the world in different bands

[8–10] as a reliable way to prevent interference to PUs. However, the SUs of the spectrum

might experience interference from other SUs of the spectrum or from PUs that leak

power into channels that are supposed to be “free” for SU use. The selection of channels

for different links at various times becomes an interesting problem in this scenario.

Channel selection requires nodes to have an up-to-date understanding of the spectrum

environment to be able to make informed choices. Questions emerge naturally about

how all the nodes in a mesh network that are not directly connected to the Internet

might learn what their allowed channels are, what sensing could be done to gain an

understanding of the network environment, and how to assign channels to all the links

in a network in an optimal way. These questions will be posed and addressed in this

dissertation.

In this chapter, we describe the network considered in this work in detail in Section 1.2.

This will provide the basis for the formal exposition of the problem statement (Sec-

tion 1.3) and research questions (Section 1.4) that are answered in the remainder of this

dissertation.

1.1 Motivation

The problem of channel allocation and other parameter tuning in DSA bands (like

TVWS) is an interesting one because it must guarantee the protection of PUs from

interference as well as ensure adequate reception for SUs despite interference from each

other and PUs, and spatial-temporal variations in channel conditions [11] and variation

in propagation characteristics across the channels in the band. The goal is to enable the

most efficient use of the available spectrum that does not cause harmful interference to

PUs [11].

4

Most regulators require that SU devices make use of a GLSD or other spectrum database

to discover spectrum opportunities [12–14]. In this method, the device determines its

location to a certain accuracy level through GPS or other means and accesses a spectrum

database to determine the channels and other operating characteristics that are avail-

able and allowed for use at that location, antenna height, and emission class or device

category. The spectrum database has been favoured even in recently opened spectrum

bands, such as Wi-Fi 6E 6 GHz Automated Frequency Coordination (AFC) and Citi-

zen’s Broadband Radio Service-Spectrum Access System (CBRS-SAS), as more reliable

than spectrum sensing in protecting PUs. This is despite the fact that spectrum sensing

might make more spectrum opportunities available to SUs and that spectrum databases

cannot account for other opportunistic users. Meanwhile, most research activity has

been centred around spectrum sensing [15–18]. Rather than being discarded completely,

spectrum sensing can be used as an auxiliary measure for SU-SU coexistence, or to assist

with interference from PUs due to leakage or inaccurate spectrum databases.

Using DSA concepts with Cognitive Radio (CR) in the opportunistic access of licensed

spectrum by secondary users has had a fair amount of interest from the research com-

munity. Combining this with WMN has not seen as much attention, specifically for the

problem of parameter tuning. Our focus is on operational parameter tuning and opti-

misation at the intersection of these three concepts: WMN, DSA and spectrum sensing.

We emphasise that, while the TV band is our specific use case, this does not limit the

application of this work. The concepts are applicable to any situation in which mesh

nodes share the spectrum dynamically with primary and secondary users in a dynamic

spatial-temporal signal environment.

1.2 Network model

The scenario we consider is a wireless mesh network consisting of nodes equipped with

both traditional Wi-Fi radios and radios capable of accessing alternative spectrum, such

as TVWS, 6 GHz Wi-Fi or CBRS, as unlicensed SUs. An example of this scenario is

shown in Figure 1.1. The mesh nodes also act as APs to clients on another radio interface

(this could be 2.4 or 5 GHz Wi-Fi). Primary Users of the alternative spectrum band are

present in the environment and need to be protected from interference, so it is required

that secondary devices use a GLSD to get a list of channels that are allowed at the

device’s location. This is the case for TVWS, Wi-Fi 6E 6 GHz Automated Frequency

Coordination (AFC), and Citizen’s Broadband Radio Service-Spectrum Access System

(CBRS-SAS). A single node is the gateway to the Internet from the mesh network and

that node also acts as the gateway to the GLSD. This node gathers the list of allowed

5

Figure 1.1: A triple-band infrastructure WMN using DSA. A single node is the
gateway to the Internet and thus also to the GLSD. The WMN nodes have TVWS
and 5 GHz Wi-Fi interfaces and can use both bands. Each WMN node acts as an
AP to clients on 2.4 GHz. The DSA-WMN is in the presence of other SUs of the
TVWS spectrum, which causes interference with our DSA-WMN. There are also PU
TV transmitters that must be protected from interference, as well as obstructions,
such as trees, that affect which spectrum bands and channels are more favourable than

others.

channels and other operating parameters for all the nodes in the network from the GLSD.

We also assume that this node acts as a controller, gathering spectrum sensing results

from all the nodes and performing, for example, a Channel Assignment optimisation

algorithm. While we concentrate on the case of one gateway node, there may be several

throughout the WMN, each serving a cluster of mesh nodes. All analysis that specifically

considers one gateway node thus refers to one cluster of the WMN. There is no inherent

limitation on the number of gateway nodes. Redundancy can also be built in by adding

multiple gateway nodes to reduce the risk of a single point of failure. However, temporary

outages of a gateway node do not immediately affect the functioning of the network.

The network is still able to communicate peer-to-peer between mesh nodes when there

is no connection to the gateway node. The allowed channels and operating parameters

only need to be updated every 12 hours for TVWS in South Africa [8]. The Federal

Communications Commission (FCC) requires that standard power devices operating in

the 6 GHz band contact the AFC only once a day [19]. Therefore, the network has 12-24

hours to restore access to the gateway node before peer-to-peer operation is affected if

there is no backup or redundant gateway node.

Ensuring that all the nodes have an initial connection to the GLSD and are associated

with the network is described in Chapter 8. In this method, nodes begin in passive

6

scanning mode, listening for beacon frames, while one node (the gateway node, in our

case) has Internet access. The node with Internet and GLSD access picks a channel

and broadcasts beacon frames on this channel, along with other allowed channels. One-

hop neighbours receive this beacon frame, tune to that channel, and query the GLSD

through the first node. The one-hop neighbour then selects a channel from the list of

alternative channels. It can now join the network and start broadcasting beacons for the

next-hop neighbour. This then allows second-hop neighbours to repeat the process and

join the network, through the one-hop neighbours. This process continues until reaching

the outermost layer of nodes.

As we investigate in detail in Chapter 6, Wi-Fi and TVWS, or other DSA bands, have

very different characteristics and strengths, and the scenarios and terrains in which

each band excels are different. That is why supporting both bands on each node and

having multiple interfaces enable the network to adapt its link topology according to

the external conditions and terrain, using the band appropriate to the scenario. It also

allows for maximum connectivity of the network. In line-of-sight scenarios or where

nodes can be placed closer together, Wi-Fi might be optimal while TVWS would cause

more interference. When there are more obstructions, TVWS would be optimal and

Wi-Fi would not be able to form reliable connections. As we also discuss in Chapter 6,

the antenna directionality and available antenna gains on the market also affect their

optimal use cases in each band.

In addition, the network may be in the presence of devices external to the network, which

are also making use of the alternate DSA spectrum band so may cause interference.

Our network must be able to identify this interference and use a Channel Assignment

(CA) that minimises this external interference. This work concentrates on this problem

of optimising performance in the presence of external SU interferers. While most DSA

regulations specify that SUs use contention to coexist, for instance, [19], SU performance

can be improved if channels are instead chosen to minimise the contention required.

1.3 Problem statement

Given this scenario, the question arises, “how to allocate channels to the mesh node ra-

dio interfaces optimally, according to certain metrics?”. The key issues are minimising

interference within the network and from external interference sources, while ensuring

connectivity within the network is guaranteed and sufficient. Connectivity must at least

be maintained along the most important routes and between as many nodes as possible.

Different channels may be allowed for use by different nodes in the network because

they are placed in different geographic locations. In addition, various channels may

7

experience varying levels of external interference, loss, fading, and utilisation. Propaga-

tion characteristics might also vary across the network’s physical footprint or across the

frequency range due to the terrain, obstructions, or environmental conditions. Hence,

the problem of assigning channels optimally is an important and difficult one in this

scenario.

The CA problem is well known to be NP-hard1. In the context of a WMN, it is even

more difficult and goes beyond a basic graph colouring problem. Firstly, this is because

the links are not equal, as mentioned, and would require a model of a weighted graph.

Secondly, this is because, while we need to avoid interference, it is also necessary to

maintain connectivity and meet the interface constraint. (The interface constraint en-

sures that the number of channels assigned to a node does not exceed the number of

radio interfaces it has.) These goals are conflicting and result in two different graph

colouring problems that need to be solved at once.

When deciding on how to address an optimisation problem, it is important to determine

whether the problem might be convex, which would allow exact convex methods to be

used instead of heuristics or metaheuristics. We have determined that the problem is

not convex, by plotting the objective function, the total SINR across the network, for

a scaled-down three-node (A, B, C) three-link (A-B, B-C, A-C) version of the problem,

shown in Figure 1.2). Each of the three axes represents the channels assigned to a

link. The key shows the values of the objective function, which is the total SINR for all

the links obtained from the simulation. The actual values are not important, but the

relation between them and the shape of the objective function is. The saw-tooth shape

in the B-C plane and the presence of higher values within the low-value regions (shown

by purple and orange values inside the black region) in the A-B plane make this problem

non-convex, even in low dimensions. This justifies our use of metaheuristic optimisation

algorithms and not convex optimisation algorithms.

1.4 Research questions

Bearing in mind the problem statement and context, we now state the research questions

more precisely. They are:

1. Which optimisation techniques (e.g., evolutionary, Monte Carlo, Linear Program-

ming or other) are best suited to finding optimal or near-optimal channel parameter

1“NP” stands for ’nondeterministic polynomial time’. The class NP is the class of problems for which
a given proposed solution for a given input can be verified by a polynomial-time algorithm, but thus far
no polynomial-time algorithm has been found for solving members of this class of problems [20].

8

Figure 1.2: Map of the objective function value of CA problem in a three-node WMN.
Each of the three links between nodes (A-B, A-C, and B-C) is represented by an axis

and the values on each axis represent the channel numbers used on that link.

settings in cognitive wireless mesh networks (WMNs consisting of CRs), and what

are the performance trade-offs in terms of computational efficiency, running time,

and solution quality?

2. Which measurements are suitable to indicate the expected performance of different

DSA channels?

3. How can such measurements be obtained?

4. How can such measurements be reported and how can the resultant parameter

settings be distributed to mesh nodes?

1.5 Summary and guide to the dissertation

This dissertation is structured as follows. Chapter 2 sketches the background theory

that might be needed to tackle the rest of the document. In this chapter, we clarify

our understanding and use of important terms. The Channel Assignment (CA) problem

is explained, and the challenges and considerations are highlighted. We also present

common models that are used for physical propagation phenomena, interference, and

antenna radiation patterns. The well-used protocol model for transmission in a wireless

network is discussed, as well as the graph model representation that is often used in CA,

traffic, models from game theory, and some metrics. We provide background on Dynamic

Spectrum Access (DSA) and outline some of the most relevant existing regulations,

9

protocols, and standards. We discuss various spectrum sensing methods as important

background to Chapter 7 that form part of DSA and explain how Geolocation Spectrum

Databases are used. We also sketch the important aspects of the IEEE 802.11 Medium

Access Control (MAC) layer and analysis thereof, as the basis for the sensing time

modelling and analysis in Chapter 7. Finally, we provide information on metaheuristic

techniques used to find near-optimal solutions to NP-hard non-convex problems and

explain the basis of the Simulated Annealing (SA), Genetic Algorithm (GA), Differential

Evolution (DE), and Particle Swarm Optimisation (PSO) techniques.

Chapter 3 discusses related prior work on WMNs making use of DSA and simulation

of such networks, Channel Assignment, Markov Chain analysis of the MAC layer of

WMNs, and spectrum sensing. The prior work shows that, while there has been some

progress on some research problems that we address in this work, there are gaps in every

area, which the contributions of this dissertation fill. Our simulations provide a complete

framework for testing Channel Assignment algorithms using an up-to-date version of the

commonly-used Network Simulator 3 (ns3). It includes external interference, Wi-Fi pro-

tocols down-converted to use the TVWS spectrum band, and SINR estimation. Studies

into Cognitive Radio WMNs are mostly high-level, consider only smaller networks, and

have differences from our scenario. For example, the main works consider the clients to

sense and use the DSA band and not the backbone mesh nodes. CA is well studied but

we bring a thorough comparison of different metaheuristic algorithms for the problem,

and a more meaningful and granular objective function.

In Chapter 4, we define the assumptions made in this work, the mathematical model that

is the basis for our solutions, and the simulation environment that we created for testing

and analysing solutions. We also introduce the algorithm that creates initial feasible

CAs, or candidate CAs on which the metaheuristics can iterate. The mathematical

model uses both the connectivity graph and the conflict graph and aims to map channels

to a known set of links using the average SINR across the network. New modules were

created in the Network Simulator 3 framework for simulating a DSA-WMN operating

in the TVWS band and performing spectrum sensing. The initial feasible CA algorithm

grows as O(V 2) in the worst case, where V is the number of nodes.

The optimisation solutions are presented and discussed in Chapter 5. We describe how

the SA, GA, DE, and PSO algorithms have been adapted to our Channel Assignment

problem and implemented in, and integrated with, ns3. SA is implemented using a linear

cooling schedule. We provide justifications for the choice of population size, selection

and crossover methods, and the constants used in our GA implementation. For DE and

PSO, we explain how these methods that are normally used for continuous problems

10

have been made discrete and how the feasibility of the selected CA is ensured. We find

that DE produces superior results with low computational complexity.

A series of real-world measurements were taken in both the 5 GHz Wi-Fi band and the

TVWS band. These are analysed in Chapter 6. We measured received signal strength,

noise, throughput, and delay in line-of-sight conditions and with vegetative obstructions.

The measurement results provide the basis on which the simulation environment is

modelled and justify the use of the signal-to-noise-plus-interference ratio (SINR) as the

optimisation objective for the CAs. The measurements also show the usefulness of

having both Wi-Fi and TVWS available to each node, to take advantage of each in

their appropriate conditions. The ranges of SINR and interference power levels used

in Chapter 7 are also obtained from the measurements. We see that in the TVWS

band, SINR is a more useful measure to use in CA than in the Wi-Fi band. SINR

has a good correlation to the throughput observed and can also encapsulate external

interference well, so can be effective in selecting channels with good signal reception and

low interference. The differences between channels are less pronounced in the Wi-Fi

band, where other parameters have a larger influence on performance. The Kruskal-

Wallis statistical test is used to confirm the statistical significance of the results.

In Chapter 7, we propose a spectrum sensing method that does not cause any disruption

to traffic flow in the network and analyse this using Markov chain models. It is proposed

that the idle time introduced by backoff and the use of virtual carrier sensing be used

for sensing other channels. Markov chain analysis is used to find the expected time that

nodes might use for spectrum sensing. We propose an estimator for the interference

power and thus the SINR and prove that it is unbiased and efficient. We also study

the accuracy and feasibility of this new estimator. We find that less than 10% relative

sensing error can be achieved by sensing for 10-100 ms per channel.

In Chapter 8, we present alterations to existing protocols that can assist in the report-

ing of spectrum sensing results to the gateway node and suggest new procedures for

distributing Channel Assignments throughout the network. We analyse the convergence

rate for the network to switch to the new CA and find that the delay is small enough to

ensure a minimal negative impact on the end user.

1.6 Conclusion

A sizeable proportion of South Africans live in informal settlements and peri-urban areas

where access to the Internet is very costly, but also slow and unreliable. Much of the

11

traffic in these communities is within the same geographic area [5]. The use of a multi-

channel wireless mesh network using licensed spectrum in an opportunistic way as a

backbone network that extends Internet access from a certain location into peri-urban

areas, while also providing localised connectivity is an ideal combination to address some

of the challenges experienced by residents of these areas. This type of network can bring

down costs and improve reliability. According to regulation, using licensed spectrum

opportunistically requires Secondary Users to query a Geolocation Spectrum Database

to obtain allowed operating parameters and protect Primary Users of the spectrum from

interference. The allowed channels and power levels could vary across the network and

the larger and more spread out the network is, the more these may vary across different

nodes. The external interference and obstructions experienced will also vary across the

network. This external interference is not accounted for in the spectrum database and

requires spectrum sensing to identify.

We have introduced a network that makes use of DSA and Wi-Fi spectrum for forming

the mesh connections of an infrastructure mesh network that extends Internet access

from a gateway node to a wide area. This kind of network addresses the challenges

experienced by residents of peri-urban areas. The technical challenges that arise in this

network include finding optimal parameter settings, especially Channel Assignments for

the network that are both in keeping with regulatory PU protection requirements and

are optimal in the face of external interference and environmental factors that affect

propagation. In particular, finding an optimal Channel Assignment for this kind of net-

work is NP-hard, non-convex, and an interesting and useful problem to study. We have

presented our research questions that aim to find a suitable metaheuristic optimisation

technique for finding near-optimal Channel Assignments, decide on a suitable metric

or measurement to use as the optimisation objective, address how the measurements

are obtained and what statistics can be gathered from those measurements, and how

the measurements can be reported and consolidated. They also ask how the computed

near-optimal solutions can be distributed to the network nodes. This dissertation sys-

tematically addresses these research questions and thus brings us closer to providing

reliable, cost-effective, and suitable connectivity to low-income informal settlements and

rural areas.

Chapter 2

Review of relevant theory

2.1 Introduction

In order to address the research questions raised in Chapter 1, some background theory

is required to be understood. In this chapter, we discuss the most important theory that

the work in this dissertation builds on. This includes an explanation of the main concepts

that are brought together in this work: Cognitive Radio (CR), Dynamic Spectrum Access

(DSA), and Wireless Mesh Networks (WMNs). One of the main problems we tackle in

this work is that of Channel Assignment in a WMN. We describe the theory of Channel

Assignment (CA) and the complexities that must be taken into account when finding

suitable assignments in Section 2.3. The most common models used in the field are

detailed in Section 2.4, including physical models, protocol models, the graph model,

models of traffic flow, and models based on game theory. These models are used to

varying degrees in the literature to understand the environment in which CA, spectrum

sensing, and DSA is done. Dynamic Spectrum Access is one of the three key concepts in

this work so we provide background on this in Section 2.6. The regulation, standards and

protocols relating to TVWS, DSA, sensing, resource management, mesh networks, and

Medium Access Control (MAC) layer operation are discussed along with their relevance

to the current study in Section 2.7.

We detail spectrum sensing methods as well as the use of Geolocation Spectrum Databases

as an alternative to spectrum sensing in CR networks in Section 2.8 and Section 2.9.

Protocols for medium access are described in Section 2.10, along with the analysis meth-

ods that have been used to make sense of them and predict their performance. Moving

away from the network-related concepts to the optimisation aspect of the problem, we

discuss some metaheuristic techniques that can be used for solving general optimisation

12

13

problems in a close-to-optimal way in Section 2.11. In particular, we describe Sim-

ulated Annealing, the Genetic Algorithm, Differential Evolution, and Particle Swarm

Optimisation methods as some of the most common metaheuristics for optimisation.

All the theory and established research presented in this chapter form the foundation

that we build on in this dissertation. This background is a necessary basis for continued

study.

2.2 Some definitions

The three main concepts that will be combined in this work are Cognitive Radio (CR),

Dynamic Spectrum Access (DSA) and Wireless Mesh Networks (WMNs). Each of these

has become somewhat of a buzzword with various usages and definitions from different

sources. Hence, we wish to clarify our understanding of the terms that underpin our

work.

2.2.1 Cognitive Radio

A Cognitive Radio is a radio whose communication systems are aware of their inter-

nal state and environment, such as location and utilisation of radio frequency at that

location. CRs can make decisions about their operating behaviour by mapping that in-

formation against predefined objectives [21]. There are four features a radio must have

to be cognitive:

• Awareness - for example of its location, environmental conditions, and internal

state.

• Perception - it is able to acquire information about its environment or other radios.

• Reason - applying logic and analysing information received.

• Agency - being able to make and implement choices.

2.2.2 Dynamic Spectrum Access

Dynamic Spectrum Access is the adjustment of spectrum utilisation in response to chang-

ing circumstances and objectives [22]. CR technology is a key enabler for DSA because

CRs can perform spectrum sensing or geolocation database queries to determine spec-

trum availability in specific areas dynamically.

14

2.2.3 Wireless Mesh Network

A Wireless Mesh Network is a multiple-path and multi-hop wide area network consisting

of wireless networking devices. Each network user is also a provider, forwarding data

to the next node. The networking infrastructure is decentralised and simplified because

each node needs only to transmit as far as the next node [23]. Some characteristics of

mesh networks are:

• Self-forming and self-organising

• Self-healing

• Self-optimisation

• Multi-hop

2.2.4 Television White Space

Television White Space (TVWS) refers to the collection of not necessarily contiguous va-

cant channels in the television spectrum at any particular time [14]. With the migration

of television from analogue to digital services, more spectrum licensed to broadcasters

will become unused.

2.3 The Channel Assignment problem

At a minimum, for two wireless devices to be able to communicate with each other at the

physical layer, they must be tuned to the same channel and be within transmission range

[24]. In a WMN, multiple possible links can be formed between nodes. The radios on

either end of the links must be assigned channels so that the devices can communicate,

but also cause the least interference to other transmissions. The more links within the

interference range of each other are assigned the same, or overlapping, channels, the

higher the interference and the worse the performance. Interference is both time- and

frequency-dependent. In the time domain, if nodes are within interference range of each

other, they must either perform contention to access the channel or be scheduled to

transmit at different times, which causes transmission delays. In the frequency domain,

the Channel Assignment (CA) problem seeks to find a suitable mapping between the

radio interfaces of nodes in a WMN and available channels, in an attempt to optimise

certain performance criteria [24]. A CA must balance the requirements of maintaining

connectivity and limiting interference. Our specific CA problem is for a network where

15

nodes have multiple radio interfaces and can thus use multiple channels at once. This is

called a multi-radio multi-channel (MRMC) scenario. The number of available channels

is limited and the number of radio interfaces per node limits the number of channels on

which it can operate simultaneously.

A good CA must:

• minimise the interference experienced within the network and from external inter-

ference sources,

• maximise SINR,

• maintain connectivity along necessary paths between nodes and form as many links

as possible, and

• improve the overall network capacity and performance.

Proper Channel Assignment can improve spectral efficiency while also minimising inter-

ference, increasing throughput, and maintaining connectivity in the network. However,

the CA problem is well-known to be NP-complete since it is, in essence, a graph-colouring

problem [25–27]. Links that could interfere with one another are represented as the ver-

tices of a graph representation called the “conflict graph”, and edges between those

links indicate conflict or interference. The graph colouring problem is then to assign

colours to vertices (channels to links) so that no two interfering links are assigned the

same colour (channel). In fact, the CA problem is more complicated than normal graph

colouring because of the connectivity requirement. The normal conflict graph colouring

model would result in minimised interference but a highly partitioned network with little

connectivity and thus lower capacity to route and carry traffic.

The CA and routing in a network are interdependent. Optimal channels change with the

routes selected by the routing algorithm, which links are used, and where the bottleneck

links are in the network. Conversely, routing depends on the capacity of links, which

is dependent on the conditions of the channels assigned to those links. However, every

new packet that is offered to the network may need new routing. Hence, routing is a

fast-changing process. On the other hand, changing channels is a slower process for

practical reasons. It takes several milliseconds for a Network Interface Card (NIC) to

find an alternative channel, send a signal from the user space to the driver, switch its

channel, and reconnect the link for current commodity hardware [28–30]. However,

chipset manufacturers claim their hardware channel switching time is on the order of

microseconds (50-300 µs) [29, 31]. Most of the channel switching delay comes from the

driver and software levels. Channel switching must wait for the current operation in

16

which the card is engaged to complete before the channel switching commences, and

the signalling from the user space to the driver to the hardware causes delays. If the

channel switching is performed from the driver level and not from user space, ensuring

that channel switching takes priority and there is no other operation to wait for, then the

channel switch delay can be brought closer to the microseconds quoted by manufacturers.

A CA algorithm that could take into account parameters that change more quickly, e.g.,

link quality, traffic conditions, and routes, would be more adaptive to changing condi-

tions in the network. However, it would result in loss of connectivity more often. Overall,

this degrades the network’s performance. A too rapidly changing CA would also result in

the routing having to re-adapt often and may result in a race condition between routing

and CA, causing the network to become unstable. Additionally, frequently propagating

the required monitoring and control information for rapid channel switching through

a large network would significantly consume the network’s bandwidth and reduce the

achievable goodput (throughput of useful application data bits rather than control bits)

[32, 33]. For these reasons, routing must be considered in a CA to know which links to

use for the assignment, but the CA must be a more global longer-term solution than

routing. An optimal CA algorithm would have to take spectrum measurements over

time covering a variety of routing configurations and use this information as an input.

As we have hinted, CA algorithms might increase the overhead in the network due to the

communication required to distribute channel information, exchange decision-making

information, and update the state of the network. Despite considerable attention to

the question in the literature, there is currently no universally satisfactory solution to

this CA problem in WMNs. Additionally, substantial opportunities for further research

and improvements exist in the case of DSA- and CR-using WMNs where the network in

question might be competing with heterogeneous SUs for access to DSA channels while

also having to avoid causing interference to, and suffering from interference caused by,

the PUs of the spectrum.

2.4 Models

The basis for solving any problem of this nature is an appropriate model, both complete

enough to encompass all the relevant features and simple enough to use and build on.

Different levels of modelling are required to cover different aspects of the problem. Phys-

ical models related to propagation, interference, and transmission range can be used to

characterise individual links and estimate the basic capacity of links. Physical models

may be superimposed onto network models, which are generally based on graph theory

in its various forms. Graph theory is useful for investigating the interaction of links

17

in the mesh network and for the development of algorithms that adapt to the network

topology and environmental changes. At a higher level, models of the expected traffic

or load patterns and their evolution over time can also be fed into the algorithms we

develop so that the mesh network can adapt to changing traffic conditions. The models

mentioned help to represent and thus manipulate the existing conditions. Game theo-

retic models, in contrast, model interactions between the nodes in a dynamic system.

Game theory provides a framework for analysing the fight between nodes in a network

for spectrum and transmission opportunity.

2.4.1 Physical models

There are several physical layer issues that affect a signal once it is transmitted from the

radio’s antenna, which affects the noise and interference experienced by other nodes and

the performance experienced by end users. These issues are represented in the physical

models now described.

2.4.1.1 Propagation and path loss

A transmitted signal can be described as [34]

s(t) = <{A(t)ej2πfct}

= <{A(t)} cos (2πfct)−={A(t)} sin (2πfct)

= sI(t) cos (2πfct)− sQ(t) sin (2πfct)

(2.1)

where sI(t) and sQ(t) are the in-phase and quadrature components of the complex

baseband signal. The signal s(t) is affected by the channel (h(t)) and noise (n(t)), which

is normally assumed to be Gaussian, so that the received signal r(t) becomes

r(t) = <{A(t)ej2πfct}~ h(t) + n(t) (2.2)

The received signal can also be represented in terms of its I and Q components. This

representation is used in Chapter 7.

r(t) = rI(t) + jrQ(t). (2.3)

The channel results in path loss of power from the transmitter to the receiver, as well as

numerous other phenomena (fading, shadowing, multipath). One way of modelling the

channel h(t) is through path loss. In this representation, if the power of the transmitter

18

signal is Pt, the receiver power Pr is related to the path loss PL by

Pr = Pt/PL (2.4)

Path loss models can be either empirical, deterministic, or stochastic. Empirical models

are those that have been derived from observation and measurements, usually by match-

ing parameters based on the measurements and an assumed general model [34, 35]. De-

terministic methods are normally a function of distance and are based on the laws of

physics. They are often difficult to define and may require a complete three-dimensional

map of the environment [35]. Phenomena such as fading, scattering, and other multi-

path effects are often too complex to model deterministically and are more appropriate

to be modelled as random variables or several interacting random variables.

The simplest and, arguably, most well-known path loss model is the Friis free space path

loss model

Pr = GtGr

[
c

4π · d · fc

]2

Pt, (2.5)

where c is the speed of light, d is the distance between transmitter and receiver, fc is the

centre frequency of the transmitted signal and Gt and Gr are the transmit and receive

antenna gains (with respect to an isotropic radiator), which are unitless.

A radio signal is unlikely to travel freely through space without encountering other ob-

jects in the environment. In addition, radio waves propagating from an antenna spread

out in space around the direct ray between transmitter and receiver. Obstructions in

the way of the radio wave could cause absorption, reflections, diffraction, and scattering

of the signal, resulting in multiple copies of the transmitted signal arriving at the re-

ceiver, possibly at different times or phases, and having experienced different amounts

of attenuation. These are called multipath signal components. It is possible that one

single reflection off the ground dominates the multipath components. This is when the

two-ray model is used.

Figure 2.1: Illustration of a Fresnel zone

19

At some distances and angles, multipath may cause destructive interference. Fresnel

zones are a way of conceptualising and calculating when reflections would cause the most

harmful interference from reflected rays [36, 37]. Fresnel zones are three-dimensional

cylindrical conceptual ellipses constructed between the transmitter and receiver, as il-

lustrated in Figure 2.1. The nth Fresnel zone is defined as the locus of points in three-

dimensional space such that a two-segment path from the transmitter to the receiver

that deflects off a point on that surface will be between n−1 and n half-wavelengths out

of phase with the straight-line path, which would cause interference. The first Fresnel

zone is normally the most significant in causing destructive interference. If that zone is

partially blocked by an obstruction, the signal is attenuated. The critical Fresnel zone

should be at least 60% clear of obstructions. When building links or considering their

expected performance, keeping this critical Fresnel zone clearance is important.

Statistical models are often used to model fading, which is any variation in the signal

attenuation over time, space, or frequency. Multipath is one main reason for fading and

destructive interference that results in a severe drop in the signal power is referred to

as deep fading. Rayleigh fading is one of the most commonly used statistical fading

models. It assumes that the signal varies according to a Rayleigh distribution. Rayleigh

fading is the appropriate model when the entire signal is considered to be composed

of reflected components. When there is one dominant component, for example, the

line-of-sight component dominates the other reflections, the Rician distribution is used

instead [36]. The Nakagami-m fading distribution provides a more general model with

adjustable parameters [34]. The Nakagami probability density function is given as

pZ(z) =
2mmz2m−1

Γ(m)P
m
r

exp

[
−mz2

P r

]
, m ≥ 0.5 (2.6)

where P r is the average received power, Γ(·) is the Gamma function, and z(t) is the

signal envelope for r(t) with Gaussian I and Q components:

z(t) = |r(t)| =
√
r2
I (t) + r2

Q(t) (2.7)

The parameter m is the fading parameter. When m = 1, Equation (2.6) reduces to the

Rayleigh fading distribution.

Empirical models have been developed for path loss in various environmental conditions.

These models seek to quantify the expected path loss as a function of both distance

from the transmitter and conditions. The Cost-231 Hata Model [36] is widely used for

estimating path loss in mobile wireless systems, with a transmitter height in the range

30-200 m and a receiver height in the range 1-10 m for links of 1-20 km. It is designed for

frequencies in the range 1500 MHz to 2 GHz, so it is not applicable to our bands of Wi-Fi

20

or TVWS, even though it is widely used for frequencies outside of its intended band. It

also has parameters that are adapted to urban, suburban, and rural environments. The

Cost-231 median path loss is

L(dB) = 46.3+33.9 log(fc)−13.82 log(ht)−a(hr)+[44.9−6.55 log(ht)] log(d)+C (2.8)

where

fc is the frequency in MHz;

ht is the height of the transmitter (usually a base station);

hr is the height of the receiver (usually a mobile station);

a(hr) is the mobile antenna height correction factor =
(1.1 log(fc)− 0.7)hr − (1.56 log(fc)− 0.8) 1 ≤ hr ≤ 10 m suburban or rural

8.29(log(1.54hr))
2 − 1.1 fc ≤ 200 MHz

3.2(log(11.75hr))
2 − 4.97 fc ≤ 400 MHz

C = 0 dB for medium cities or suburban areas with medium tree density and C = 3 dB

for metropolitan centres.

The Longley-Rice model [36] is a detailed model with a wide range of applicable fre-

quencies, ranges, and antenna heights. It applies to frequencies in the range 40 MHz-

100 GHz, a range of 1-2000 km, and antenna heights from 0.5 m to 3 km. This model

has a point-to-point model and an area model.

Foliage and buildings may cause reflections, fading, and attenuation. Atmospheric effects

may cause multipath fading and further signal losses. Foliage is a significant factor in

our deployment scenario, so we mention a few applicable models here.

• Weissberger’s modified exponential decay model models the signal loss caused by

foliage impeding the line of site as a function of the frequency and depth of the

impeding foliage, with different constants up to 14 m distances and between 14 m

and 400 m [36]. The model is applicable for frequencies in the range 230 MHz to

95 GHz, which falls within our considered TV spectrum range.

• The International Telecommunications Union (ITU) recommended model for at-

tenuation in foliage or vegetation is applicable mainly in the UHF band and de-

pends on the frequency and the length of the path that is in foliage [36]. ITU

models cover specific scenarios, including “Terrestrial Path with One Terminal in

Woodland” and “Single Vegetative Obstruction”. Above 5 GHz, the updated ITU

model is based on the type, depth, and illuminated area of the foliage.

21

• Salameh [38] provides a model that is a combination of propagation models and

vegetation loss.

To fully optimise the transmission parameters at the physical layer, an accurate channel

model that reflects all the aforementioned influences is required; that is, a transfer

function per link that can accurately predict the SINR at each node. This may be in the

form of a channel impulse response function that is stored in each node, estimated from

obtained sampled signal data, using known deterministic channel models or stochastic

models. However, obtaining accurate models in real time is exceedingly difficult. For

this reason, we conclude that using real measurements is a better option.

2.4.1.2 Interference

The acceptable level of interference that allows successful transmission may be specified

by a single threshold ratio in dB, sometimes termed the capture threshold [39], or by the

interference temperature metric [40]. In the interference temperature model, unlicensed

SUs can operate on the same frequencies as licensed users, “provided they can quantify

and bound the additional interference” [40]. The traditional PU-SU coexistence model

was that a channel is either occupied by a PU or not, and the SU can access the channel

if it is unoccupied. The FCC introduced the interference temperature model to enable

a more nuanced approach to PU-SU coexistence. In this model, the interference is

computed similarly to noise and defined as per Equation (2.9) [40].

TI(fi, Bi) =
PI(fi, B)

kB
(2.9)

where PI is the average interference power in Watts, which is located around the centre

frequency fi and covers a bandwidth B, and k is Boltzmann’s constant = 1.38 · 10−23

Joules per Kelvin degree.

The interference temperature model forms part of a paradigm of DSA called the un-

derlay approach, discussed in Section 2.6. An acceptable level of interference to PUs

requires that the power and bandwidth occupied by interference be less than the spec-

ified interference temperature limit TL. If the bandwidth of the SU overlaps with n

licensed signals, the condition for coexistence is given by Equation (2.10) [40].

TI(fi, Bi) +
MiP

kBi
≤ TL(fi) ∀ 1 ≤ i ≤ n (2.10)

where

TI is the interference temperature;

P is the average operating power of the unlicensed transmitter (the SU);

22

fi are the centre frequencies of licensed users with signals of bandwidth Bi;

Mi is a constant value between 0 and 1 representing a multiplicative attenuation due to

fading and path loss between the SU transmitter and the PU receiver.

If we know the position of nodes in the network and their transmit power, it is possible

to get an estimate of the received signal power that can be expected from all other

nodes. The SINR at any node v is then given by the ratio of desired signal power at

the receiver to the sum of all interfering signals and noise, as shown in Equation (2.11).

This is the additive interference model.

SINRv =
Pwanted,v∑
i∈I Pi +N

(2.11)

Interfering signals are sometimes identified by distance as those that are within inter-

ference range but beyond the successful transmission range, where the signal is received

but cannot be reliably decoded or decoded with an acceptable probability of error [39].

Distance values may also be subject to weightings related to channel characteristics so

that distance is somewhat of an abstraction. This interpretation is typically used to

formulate a geometric model of the problem.

An alternative to the interference temperature model and the additive interference or

SINR model is the capture threshold model [39]. In this model, three thresholds are

defined. These are the receive threshold, the capture threshold, and the carrier sense

threshold. In this model, interference is considered for only one interferer at a time.

Packet reception on a link at a specific data rate and modulation and coding scheme

is successful if the desired signal’s received power is above the receive threshold, the

ratio of the desired received signal power to interfering signal power is above the capture

threshold, and the interfering signal is above the carrier sense threshold so that it can

be avoided with MAC layer coexistence mechanisms.

There are several weaknesses in existing models. For example, these models do not

account for the secondary effect of interference, which is that it increases the overall

noise floor as perceived by the radios, making it more difficult for spectrum sensors to

detect signals. The effect of antenna height on propagation is generally simplified or

ignored. The higher up an antenna is situated, the better the signal propagation, owing

to Fresnel zone clearance and clearance from most physical obstacles such as buildings.

However, TV antennas of SUs located at higher altitudes experience higher interfering

received power from primary TV broadcast signals, which may result in fewer available

channels, thus negating the gains of increased height [41]. As mentioned, the capture

threshold model does not account for the cumulative interference effect. The interference

23

temperature model requires SUs to know the exact location of primary transmitters,

identify PU signals, and for SUs to successfully receive SU signals that are below the

licensed signal.

In addition, neither frequency-selective fading, which causes different channels to experi-

ence different fading patterns, nor delay spread of multipath signals has been adequately

accounted for in existing models. Frequency-selective fading adds significant complex-

ity to the problem of channel selection in MRMC mesh networks since the existence

of a connection is highly frequency-dependent. Delay spread requires longer symbol

durations to counteract the blurring effect that causes higher transmission errors, thus

reducing the effective data rate. Most physical models also do not consider the effect

of low-quality filters, which cause wider spectrum masks, also increasing the noise floor

and reducing the usable bandwidth. Johnson et al. [42] found that power leakage from

primary transmitters can be experienced by secondary devices in the TV band up to

N ±4 channels away. A single static physical model is therefore not sufficient to capture

all the effects that must be included to determine optimal operational parameter settings

of SUs.

Dynamically changing signal environments may be modelled by a Finite State Markov

Chain to track the state variations over time, as in [43]. The states modelled could be

any transient phenomenon such as burst errors caused by fading or dynamic shadowing

resulting from transient propagation blockages, such as trains. Integral to the Markov

Chain model is finding accurate transition probability values based on accurate statistical

models of the fading, shadowing, and other phenomena involved. These dynamic models

can be used to make decisions on transmission parameters. However, determining the

most correct statistical models to include in the transition probabilities is challenging.

2.4.1.3 Antennas

In the spatial domain, the antenna plays a large role in the Power Spectral Density

experienced at different points in space. The antenna type (omnidirectional, sector, or

directional), its radiation pattern and reach, its direction, height, azimuth, and polariza-

tion all affect the signal experienced by receivers at different points, along with the gain,

transmit power, internal losses, and spectral mask of the transmitting node. Therefore,

this information may need to be captured and used in predictions of WMN performance.

A weakness of many of the existing physical models seen in the literature is the assump-

tion that all nodes have omnidirectional antennas and signals undergo isotropic path loss

[12, 44–47]. This increases the total area in which interference is expected if deduced

from the omnidirectional model. A more directive antenna radiation pattern will have

24

dead zones where interference is not experienced and higher gain in the direct signal

path [48]. In a situation where secondary access to the licensed spectrum is already so

limited, placing such unnecessarily conservative constraints on the problem may pre-

vent efficient usage of the spectrum, since antennas are not necessarily omnidirectional

in practice. If more accurate models that do not assume universally omnidirectional

antennas can be used, this could make spectrum available to more SUs.

2.4.2 Protocol model

Figure 2.2: The protocol model of wireless transmission

Gupta and Kumar introduce the protocol model [49]. It is illustrated in Figure 2.2. The

inner dotted-line circle represents the transmission range of the node (represented by the

filled dot in the centre) and the outer dashed-line circle represents the interference range

of the node. A perfectly circular range, i.e., omnidirectional antennas is assumed. In this

model, suppose a node Xi transmits over a certain channel to a node Xj , while another

node Xk is some distance from node Xj . This transmission is successfully received by

Xj if

|Xk −Xj | ≥ (1 + ∆)|Xi −Xj | (2.12)

for every other node, Xk, that is transmitting over the same channel at the same time,

where | · | represents the distance between nodes and ∆ > 0 is introduced as a guard

zone specified by the protocol to prevent excessive interference.

25

2.4.3 Graph model

The WMN channel selection problem is most commonly modelled as a graph colouring

problem of some kind. Having described the CA problem, and noting the definition

of a graph colouring problem as: “A proper colouring of a graph G is an assignment

of a colour to each vertex so that adjacent vertices receive distinct colours” [24], it is

clear why this is a good model to use for CA. Examples of graph models are the disc

graph and the co-channel wireless interference model (and overlapping channel), i.e., the

conflict graph.

Alicherry et al. [50] develop a directed graph model for traffic in the outgoing direc-

tion (towards an internet gateway). The model holds for both static nodes within a

specific domain and any mobility pattern. It assumes nodes can be either transmitters

or receivers (or both), that all N nodes have omnidirectional antennas, and there is no

constraint on the transmit power of nodes or the number of simultaneous flows from or

to a node. However, the model also shares the same bandwidth among all the nodes.

For a given transmitting node and its receiver, any other signal received by the intended

receiver is considered interference. They define a quantity that is the maximum data

rate below which all transmissions can be made successfully provided the SINR is above

a certain threshold value β. If the SINR is below the threshold or data is transmitted

above this rate, it is considered an unsuccessful transmission and the packet is discarded.

The model then allows the determination of upper bounds on, and necessary conditions

for, the simultaneous transmission capacity Nmax
t . The tight bound of Θ(1/N) for the

per-node end-to-end throughput capacity is proven. They conclude, in contrast to Gupta

and Kumar [49], that Nmax
t is independent of the number of nodes.

In most graph models, interference is pairwise, that is, a set of links is conflict-free if

link pairs are conflict-free [51]. This model does not capture the cumulative effect that

interference from various sources simultaneously can have on a given link. Zhou and Li

[51] build on a model developed by Xu and Song [47] that is a combination of SINR-based

and graph-based, by assigning weights proportional to the queue length to links under

the SINR constraint and considering the evolution per time slot. The model is based

on an assumed time-slotted and synchronised wireless network with a single-frequency

channel.

Assuming the graph colouring model is adopted, the problem can be solved using any

of a variety of metaheuristic optimisation algorithms, such as Genetic Algorithms [44],

linear programming [52], Boltzmann machine with Simulated Annealing [53], and other

Monte Carlo techniques such as Gibbs sampling [54] or Metropolis-Hastings. Some of

these metaheuristics are discussed in Section 2.11.

26

2.4.4 Traffic model

Moving up the Open Systems Interconnection (OSI) layers, the traffic model relies on

formulating an expression for the arrival, queueing, and processing of packets arriving

at a node per time interval. The arrival of traffic at a node from the end users is usually

considered an independent identically distributed stochastic process such as a Poisson

process with the queue state relying on the evolution of a Markov chain over time slots,

such as shown in Equation (2.13).

Q(t+ 1) = max{0, Q(t)− S(t)}+A(t) (2.13)

where Q(t) is the queue length at the input buffer of a node at time t, A(t) denotes the

number of packets arriving in slot t, and S(t) are the number of packets scheduled to be

processed in the node in time slot t.

Scheduling algorithms are deemed successful based on the stability of the queues at

nodes [47, 51]. Using Equation (2.13), a condition for stability would be Equation (2.14)

[51, 55].

lim
t→∞

E[Q(t)] <∞ (2.14)

Traffic must be modelled for each source of data. Different distributions to represent

traffic may be found to be more appropriate at different nodes and it may be necessary to

combine several distributions. Jiang et al. [56] claim that data traffic has a heavy-tailed

distribution, such as is exemplified by the Pareto distribution.

As the demand for bandwidth changes with different traffic volumes offered by the end

users to the access point interfaces of mesh nodes, one way of adjusting the transmission

parameters of nodes in the WMN is by the nodes behaving as in a game. This gives rise

to game theoretic models.

2.4.5 Game Theoretic models

Game theory is often applied to distributed wireless network coexistence problems. The

main components of a game are the decision makers or players (usually the secondary

nodes), the player-specific action space, which is the set of actions a player can take,

and the utility set, which are the utility or pay-off functions. Games can model either

non-cooperative or cooperative spectrum sharing between SUs with the system goal usu-

ally being to achieve Nash equilibrium or pareto-optimality, if possible. Some example

game models are Economic games, auction games, repeated games, myopic games, and

27

mixed strategy games. Stochastic games, which are an extension of a Markov deci-

sion process and model competition among different agents, are popular. In stochastic

spectrum sharing games, network users adapt their strategies according to the changing

environment and the strategies of other users. There are many research challenges in this

field, amongst which are defining a suitable utility function, efficiency of equilibrium,

mechanism design, and security.

2.5 Metrics

Good metrics must be used as the basis for transmission parameter tuning decisions in a

WMN. The metric used must ensure good performance over the entire network and that

resources are fairly distributed so that similar Quality of Service (QoS) is experienced

by all customers relative to their QoS requirements.

2.5.1 Shannon capacity

The primary measure of the performance of point-to-point communication links, which

cannot be omitted from this discussion as we all know, is the channel capacity defined

by Claude Shannon in his wonderful seminal work [57]. The maximum rate at which

data can be sent error-free over a noisy channel, i.e., the channel’s capacity C, depends

on its sensitivity, the interference-plus-noise relative to the received power of the signals

– the signal-to-interference-plus-noise ratio (SINR) – and the available bandwidth B by

Equation (2.15).

C = B log2(1 + SINR) (2.15)

where C is in bits per second, B is in Hertz, and SINR is the watt-power ratio (not in

dB).

However, Equation (2.15) is not in the form of the original theorem. We note that this

form of the equation assumes that the noise and interference combination are Additive

White Gaussian-distributed, even though it is often used in non-AWGN environments.

Indeed, interference is generally not white Gaussian. This assumption simplifies the true

signal environment, and it may be necessary to use more accurate noise and interference

models to improve our intended parameter tuning algorithm. The actual throughput

experienced by the user is usually lower than the Shannon capacity. The Shannon

capacity is a theoretical bound. A useful performance measure can be how close to the

Shannon capacity a link’s throughput is.

28

The Shannon capacity applies to a single link. The performance of a network can be

measured by the capacity of all links active simultaneously, noting that intra-network

interference reduces a link’s capacity and thus the network’s overall capacity. From

Equation (2.15), the fundamental influence on performance in a network is the usable

assigned bandwidth and SINR, and all the physical layer aspects affecting the SINR

experienced by a receiver node. To optimise performance, all these influences on SINR

must be understood, and the parameters that can be changed must be changed to

maximise the bandwidth and signal power, and minimise the interference and noise

experienced. These influences can be divided into the spatial domain, frequency, power,

and time domains. Lower layer performance measures taken per link may be more

accurate and appropriate, specifically because our work concentrates on the physical

and MAC layers. Fundamentally, the performance of a network is based on its Shannon

capacity, a function of the signal strength compared with the noise and interference

power levels. This suggests metrics such as maximising the signal quality and minimising

interference overall in the mesh could be applicable. Gupta and Kumar derive the

capacity of a wireless network of randomly located nodes without interference [49], which

is a measure we may use for calculating the expected performance of a network. The

expression would have to be augmented to include interference. Spectral efficiency is

another notable metric to be considered.

2.5.2 Jain’s fairness index

Apart from metrics related to individual link throughput, latency, and utilisation, one

of the common metrics used for quantifying the diversity of experience in a network

is Jain’s fairness index, defined in Equation (2.16), also included in the IEEE 802.19.1

standard [58]. If throughput, latency, or other link metrics are used, the average value

and standard deviation or range would have to be considered to take account of variations

over time, geographically, and experienced by different users in the network.

F =

(
MCM∑
m=1

Xm)2

MCM ×
MCM∑
m=1

(Xm)2

(2.16)

where MCM is the number of items or measurements over which fairness is determined

and Xm is the metric. For example, Xm could be the throughput and fairness is con-

sidered between a series of MCM flows.

29

2.6 Dynamic Spectrum Access

Access to Radio Frequency (RF) spectrum is becoming an increasingly contentious issue.

In many cases, spectrum is licensed to users who do not use all the spectrum allocated

to them, while spectrum is highly sought after by other radio users. For this reason,

Dynamic Spectrum Access (DSA) emerged as a way to remedy this artificial spectrum

scarcity issue. It emerged as a technique to help make better use of the available spec-

trum. It enables less restrictive and more flexible and adaptive access to radio frequency

spectrum [59]. Unlicensed SUs use DSA to access unused spectrum opportunistically

without requiring a licence. DSA is enabled in practice by Cognitive Radios (CRs) and

enforced by policy and regulation.

Licensing models for DSA include exclusive use, shared access, and hierarchical access.

Exclusive use is the model where specific spectrum bands are licensed for exclusive use

to certain services in a given region and at a given time [60]. To improve the efficiency

of the exclusive rights model, the licensees can rent out or sell temporary access to their

spectrum. In the open sharing or “commons” model all users have equal rights to access

spectrum, such as in the unlicensed wireless services of the Industrial, Scientific and

Medical (ISM) band. There are three types of hierarchical access, all of which must

ensure the protection of PUs from harmful interference:

• Interweave is the hierarchical model where radios with cognitive capabilities can

fill in spectrum holes in their particular geographic area where no PU activity is

extant.

• In underlay, SUs can transmit in the same bands simultaneously with PUs at power

levels below the PU sensitivity or noise floor. This is generally only a solution when

the SU nodes are in close proximity, so the signals can be detected by the intended

SU receivers without being overwhelmed by stronger PU signals.

• In overlay approaches, only channels not being used by PUs can be accessed by

SU devices [11].

In underlay, SUs must transmit below a certain interference temperature threshold (the

PU noise floor) [61, 62]. Spectrum sensing is not required. In overlay access, SUs can

transmit simultaneously with PUs and do so at their maximum power. However, this

method may require SUs to play a relay role between PUs or to cancel PU interference.

In the relay role, SUs can send their own data while also relaying PU data. The overlay

method with relay requires a high level of cooperation between PUs and SUs. For SUs

to be able to cancel PU interference at the SU receiver-end requires that SUs have full

30

knowledge of the PU signal and parameters and use advanced coding techniques [15].

Interweave access is arguably the most popular DSA paradigm. In interweave access,

SUs may transmit at their maximum power only when the PU is absent. This method

requires extensive spectrum sensing and the use of CR by SUs. In general, the SU

activity period is divided into time slots for sensing and time slots for transmission [62].

This sensing time thus detracts from the SUs transmission rate. This system is also

known as Half Duplex Cognitive Radio (HDCR) with a listen-before-talk protocol for

this reason. The goal of spectrum sensing in interweave DSA is mainly to determine

only the presence or absence of a PU. We expand on spectrum sensing in Section 2.8.

2.7 Regulation, standards, and existing protocols

To develop any new methods for channel allocation in the area of cognitive wireless mesh

networks and TVWS, we must first be aware of regulations that may place constraints

on what is allowed to be deployed or limit the capabilities of commodity devices. Ex-

isting standards may also be leveraged as a basis for our work. They can provide the

logical architectural components of a network, a starting point for channel distribution

protocols, or the information elements in the frame structures of MAC protocols that

can be used to share the information between mesh nodes. We will need the latter to

make informed channel selection and allocation decisions.

2.7.1 TVWS regulation

The Federal Communication Commission (FCC) in the USA divides TV band devices

(TVBDs) into fixed and personal/portable categories. Fixed devices can transmit up to 4

W equivalent isotropically radiated power (EIRP) with a power spectral density (PSD)

of 16.7 mW/100 kHz on channels not adjacent to TV broadcast services, must have

geolocation capability, and must be able to retrieve a list of available channels from an

authorised database. Personal/portable devices, on the other hand, may only transmit

up to 100 mW EIRP with a PSD of 1.67 mW/100 kHz on channels non-adjacent to TV

broadcast services and 40 mW with a PSD of 0.7 mW/100 kHz on channels adjacent to

an active TV broadcasting channel. The personal/portable device category is further

divided into Mode I and II devices. Mode I devices are not required to have geolocation

capability or database access but must obtain a list of available channels from a fixed

device or a Mode II device. Mode II devices must have geolocation capability and

database access to retrieve a list of available channels. None of these device types is

required by the FCC to have sensing capability since the spectrum database is the

obligatory way of discovering spectrum opportunities.

31

Sensing-only devices are required to undergo tests and must be able to detect PU signals

at a power of -107 dBm. They must continuously sense a channel for a period of at least

30 s before determining its availability. Once the device has switched to the TV channel,

sensing must be performed at least once every 60 s. If an incumbent is detected, the

channel must be vacated within 2 s. These sensing requirements would severely impact

the end-user experience of a SU device. TVBDs would also benefit from being able to

identify other SU devices. This could be done by sensing. Since SU devices are more

mobile than PU devices, it is not likely to be useful to build up a secondary device

database, even if it may simplify the coexistence of SU devices or networks. The UK

regulator, Ofcom has similar requirements to the FCC [11, 14, 22, 63].

Office of Communications (Ofcom), the United Kingdom’s regulator has similar require-

ments of requiring database access and querying for what they term “master devices”,

while “slave devices” can obtain their list of available channels through a master device

[12]. In addition, a slave device must cease transmission immediately upon instruction

from the master or within 5 s of not receiving a response to a transmission from the

master device. In terms of transmit power levels, for example, the signal level from

a white space device should be a minimum of 33 dB below the TV signal at the TV

receiver for co-channel operation. There is no provision for sensing-only devices [12].

The Independent Communications Authority of South Africa (ICASA) published reg-

ulations on the use of Television White Spaces in 2018 [8]. In that document, it is

specified that a White Space Device (WSD) must have the ability to communicate with

the GLSD automatically during initialisation and registration with the operator of the

GLSD. The GLSD is responsible for providing operational parameters that ensure PUs

are protected from harmful interference from the WSDs. These operational parameters

include:

• the lower and upper boundaries of each TV channel on which the WSD may

operate;

• the maximum permitted EIRP spectral density for each channel;

• the valid time for the parameters;

• the geographic area within which the operational parameters are valid; and

• The duration within which a master WSD must check the validity of the opera-

tional parameters with the GLSD.

The master WSD must access the GLSD only once every 12 hours to verify the continued

validity of the parameters but can continue to operate up to 48 hours after the last GLSD

32

access. Client WSDs must stop operating if they do not receive a contact verification

signal from their associated master WSD. The maximum EIRP per 8 MHz channel for

a fixed device is 36 dBm in urban areas and 41.2 dBm in rural areas, and the maximum

EIRP spectral density is 22.2 dBm/100 KHz in rural areas and 17 dBm/100 kHz in urban

areas. A WSD is allowed to operate on channels immediately adjacent to the primary

TV channels provided they adhere to the adjacent channel leakage ratios specified. The

height limits of a fixed WSD antenna are 30 m above ground level and 1.5 m for a

nomadic WSD.

In terms of standards, several IEEE standards have relevance here. We will select a

protocol or a number of protocols to use while testing the algorithms to be developed,

so describe some relevant aspects here.

2.7.2 Common aspects of IEEE 802.11

The IEEE 802.11 or, commercially, the ubiquitous Wi-Fi standard comprises protocols

for the physical (PHY) and medium access control (MAC) layers of devices participating

in a Wireless Local Area Network (WLAN). The basic IEEE 802.11 WLAN is composed

of Access Points (APs), which act as servers and stations (STAs) or clients. Together,

APs and STAs form a Basic Service Set (BSS). The Wi-Fi WLAN operates on a set of

radio frequency channels in the ISM band, mostly the 2.4 GHz and 5 GHZ Wi-Fi bands.

Although the bands in which Wi-Fi operates are specified, the specific limits of the chan-

nels differ by regulatory domain. Originally, all the Wi-Fi RF bands were unlicensed but

recently licensed bands and DSA such as 6 GHz have been added. The 2.4 GHz band

is shared with microwave ovens, Bluetooth, and other devices. Direct Sequence Spread

Spectrum (DSSS) techniques reduce the interference caused by the Wi-Fi devices operat-

ing on this band to the other non-Wi-Fi devices. Narrowband and multipath interference

are combatted through the use of Orthogonal Frequency-Division Multiplexing (OFDM)

[64]. Some consumer devices in the ISM bands use Frequency-Hopping Spread Spectrum

(FHSS). Spread spectrum techniques include rapidly switching the carrier among many

frequencies in a pseudo-random order known to both transmitters and receivers so that

interference in a certain channel is only experienced for the short duration during which

that carrier is active. DSSS has a message signal used to modulate a pseudo-noise bit

sequence code. Spread spectrum techniques have the advantages of being resistant to

both interference and noise and being difficult to intercept.

As for MAC mechanisms, IEEE 802.11 includes the Distributed Coordination Function

(DCF) for Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) mech-

anism, which coordinates the coexistence of multiple Wi-Fi clients. The extension to

33

DCF, the Enhanced Distributed Channel Access (EDCA) mechanism is important in

our work and is discussed in detail in Chapter 7.

2.7.3 IEEE 802.11af amendment 5

The “af” amendment [65], also known as “White-Fi”, specifies a general architecture

and mechanisms for spectrum sharing among WSDs in the TVWS band, which applies

to multiple regulatory domains. The standard also assumes the use of a Geolocation

Database (called a GDB in this standard, instead of a GLSD) to facilitate the coexistence

of PUs and SU WSDs. A Registered Location Secure Server acts as a local database,

providing the permitted operating parameters to the devices that form part of a small

number of BSSs. Geolocation Database Dependent (GDD)-enabling STAs communicate

with the GDB and maintain the White Space Maps (WSMs) and other relevant informa-

tion from the GDB. The Registered Location Query Protocol (RLQP) is used to share

the WSMs and current channel use among the GDD-enabling STAs. GDD dependent

devices can query either GDD-enabling STAs or the Registered Location Secure Server

(RLSS) to obtain WSMs and channel utilisation information.

The RLQP provides mechanisms for:

• Channel availability queries to obtain a White Space Map of the available channels

for that geolocation.

• Channel Schedule management with starting and ending times for available white

space channels.

• Contact Verification used by GDD-dependent STAs to verify their connection with

GDD-enabling STAs.

• GDD enablement by GDD-enabling stations that form a network and maintain

the network under the control of the GDB.

• Network channel control to inform the local channel controller that has a view of

nearby transmitters.

• White Space Map includes data about white space channels and the transmit

power restrictions for querying one of those elements.

While the IEEE 802.11af amendment has not been designed specifically with mesh net-

works in mind, RLQP may be used between mesh nodes and a gateway node that has a

White Space Map to obtain available channel information. RLQP may also be used to

communicate the channel schedules or assignments after they have been calculated by

our Channel Assignment algorithm.

34

2.7.4 IEEE 802.11k

This IEEE 802.11k amendment [66] for radio resource management (RRM) allows a

station to take local measurements, request measurements from another station, or re-

spond to requests from another station to take measurements and return the results.

The Radio measurement service is added to the list of architectural and station services.

Some of the most relevant measurements that can be requested or reported using IEEE

802.11k are:

• Beacon: this measurement request and response pair enables a station to request

a list of APs from another station from which it can receive frames on a specified

channel or channels. The actual measurement may be done by active scanning,

passive scanning, or beacon tables.

• Frame report returns measurements about the traffic in the specific channel on

which frames are received at the measuring station. The number of frames received

from each transmitter as well as the average power level for the frames is indicated.

• Channel load: channel utilisation measurement observed by the measuring sta-

tion.

• Noise histogram: a power histogram measurement of non-IEEE 802.11 noise

power by sampling the channel when the virtual carrier sense mechanism indicates

the channel is idle and the STA is neither transmitting nor receiving a frame.

• Location information.

• Neighbor report: this request is sent to an AP to report information about known

neighbour APs.

• Link Measurement: instantaneous link quality measurement.

• Measurement pilot report mechanism.

RRM capabilities are added to the association request and response frames. The Trans-

mit Power Used field is added to the management frames, indicating the actual power

emitted by a station when transmitting the frame at the output of the antenna connector.

2.7.5 IEEE 802.11s

Extending the IEEE 802.11 standard’s MAC, the 802.11s amendment [67] for mesh

networking specifies the architecture and protocol that allows wireless nodes to inter-

operate, both in ad hoc and static WLANs. The IEEE 802.11s amendment removes the

35

concept of a BSS by instead having all APs connect as peer mesh nodes. The standard

allows stations to learn the topology automatically and self-configure the wireless path

in multi-hop topologies.

Mesh points discover candidate neighbours based on the new information elements car-

ried in beacon and probe response frames. Each mesh point may have one or more

logical radio interface(s), and the standard supports either single- or multiple-channel

WMNs. In terms of channel access, the Enhanced Distributed Channel Access (EDCA)

scheme is an optional MAC add-on, providing prioritised back-off. Mesh Deterministic

Access (MDA) is based on reservation and supports QoS in large-scale distributed mesh

networks, synchronisation, reduced contention, and distributed scheduling, all of which

can be used in a physical implementation of our intended algorithm. The Common

Channel Framework is used to negotiate other channels for data exchange and provides

a means for using orthogonal channels. It does so by using a request-to-send-clear-to-

send (RTS/CTS) protocol. The transmitter node suggests a destination channel using

RTS. Then the receiver either accepts or declines the suggested channel using CTS. If

there is a successful RTS/CTS exchange, both nodes switch to the destination channel.

Nodes periodically switch to the common channel to check connectivity. This period is

known as the Channel Coordination Window.

The mandatory routing protocol of IEEE 802.11s is the Hybrid Wireless Mesh Protocol

(HWMP). HWMP uses CSMA/CA or RTS/CTS methods to access the spectrum. The

channel allocation decisions are based on metrics such as the frame loss probability and

buffer queue length. However, the standard allows for both extensible protocol and

path metrics. The mesh peering management protocol is employed to avoid beacon

signal collisions.

The IEEE 802.11s mechanism for synchronisation is as follows: mesh points may have

different beacon intervals. Each mesh node calculates the offset between its own beacon

time and the mesh time and, if necessary, updates the local offset to match the mesh

Timing Synchronization Function. The fastest clock determines the Timing Synchro-

nization Function.

2.7.6 IEEE 802.15.4

The IEEE Std 802.15.4 has an amendment [1] for the physical layer of TV White Space

between 54 MHz and 862 MHz and another that enables spectrum resource measurement

capability. Of the latter, the received channel power indicator (RCPI), the received signal

noise indicator (RSNI), and the received signal strength indicator (RSSI) metrics are of

interest. The RCPI is a “measure of the received RF power in the selected channel

36

for a received frame” [1]. It is averaged over the duration of the received frame and

measured in dBm. This measure could be an indication of the “signal” power of desired

received frames when computing SINR. The RSNI indicates the “signal to noise plus

interference ratio of a received frame” as measured on the channel and at the receive

antenna connector. All these measures can be obtained for a received frame but cannot

indicate the performance on channels on which the device is not currently receiving

frames. However, provision is made for the case when multiple channels are used with

a channel indicator for the measurement. These measures are taken at the receiver

and communicated to the higher layers of the receiving device. It is not intended as a

reporting mechanism to another controlling device.

2.7.7 IEEE 802.16 for Wireless Metropolitan Area Networks

This standard, also known commercially as “WiMAX” provides improved coexistence

mechanisms for licence-exempt operation in the licensed spectrum, including a TDMA

MAC protocol for mesh-mode supporting both centralised and distributed, coordinated

and uncoordinated scheduling. In mesh mode, mesh nodes make decisions locally, com-

peting for transmission opportunities using the scheduling information of their neigh-

bours. The details of the implementation of allocating data slots to the mesh nodes are

not give

2.7.8 IEEE 802.22

IEEE 802.22 [68] puts forward policies and procedures for cognitive wireless Radio Access

Networks that operate opportunistically in DSA bands, specifically TVWS. Originating

from IEEE standard 802.16, Orthogonal Frequency-Division Multiple Access (OFDMA)-

based PHY and centralised MAC layers have been specified by the IEEE 802.22 working

group for fixed broadband applications at distances of up to 100 km. The centralised

MAC assumes a base station (BS) is responsible for resource management and provides

scheduling with different data services and QoS parameters. However, to make decisions,

the base station relies on data sensed by the slave devices (customer premise equipment)

and their location data. The standard introduces mechanisms for spectrum sensing,

spectrum management, co-existence, and security. The standard specifies

• self-coexistence for situations where multiple BSs with overlapping coverage share

the same TV channel;

• channel management messages and methods of unsolicited spectrum grants or real-

time polling by the base station;

37

• best effort;

• contention-based bandwidth request and procedures for network entry, association,

and initialisation.

A key feature of IEEE 802.22 is the dynamic and adaptive scheduling of quiet periods for

primary channel sensing. While this standard does not support mesh or ad hoc modes,

the sensing procedures in particular are pertinent. The centralised procedures are also

pertinent to a mesh network consisting of clusters with cluster heads that may share

some of the functionality of a base station.

2.7.9 IEEE 802.19.1

This standard [58] deals with wireless coexistence between geolocation-capable devices

in dissimilar and independent TVWS networks. An architecture is proposed with logical

entities: the Coexistence discovery and information server that obtains all necessary data

about potential neighbours of White Space Objects (WSO) served by the coexistence

managers (CMs) and discovery of CMs by other CMs, and coexistence enablers (CE),

the interface element representing one or more WSOs of the same type. The standard

can be applied to heterogeneous or dissimilar devices operating in the TV band, such as

IEEE 802.22 and IEEE 802.11af devices. Algorithms are included for:

• Discovery: an algorithm based on the statistical analysis of expected interference

and one based on coverage and interference analysis.

• Decisions, such as the algorithm based on operating channel selection, one based

on negotiation among CMs, resource allocation with fairness constraint, algorithm

based on the neighbour report and radio environment information, algorithm based

on per-coordinate optimisation, load balancing or power control, and co-channel

sharing via WSO network geometry classification.

• Balanced sharing and temporarily released resources.

All the algorithms for coexistence and channel selection in IEEE 802.19.1 do not ac-

count for the requirements of a mesh network. The focus is on avoiding interference

or overloading channels and enabling fair Channel Assignment among WSOs that may

cooperate or negotiate channels but operate independently and do not need to maintain

connections among one another. When coexistence between different networks is consid-

ered, it is assumed that each network uses one channel across the network. Algorithms

for coexistence between node in a WMN using multiple channels simultaneously and

other TV band devices or networks are still required.

38

2.7.10 IEEE 1900.4a

This standard, titled “Architectural building blocks for network device distributed deci-

sion making” [69], has initial-stage architecture and functions for both fixed and dynamic

spectrum access. These architectural building blocks include network resource managers,

device resource managers, and the information to be exchanged that enables coordinated

network-device distributed decision-making. The standard facilitates distributed multi-

vendor device interoperability of heterogeneous wireless access networks.

2.7.11 Standard ECMA-392

The European Computer Manufacturers Association (ECMA) standard [70], titled “MAC

and PHY for Operation in TV White Space”, is chiefly intended for use by personal or

portable devices. It supports both mesh and centralised network topologies. Dynamic

frequency selection and transmit power control are specified for PU protection. It sup-

ports channel bandwidths of 6, 7, and 8 MHz. Both reservation-based and prioritised

contention-based PHY channel access mechanisms are specified, as well as a way for

nodes to synchronise for coordinated applications. Interestingly, the maximum data

rate for ECMA-392 is higher than both IEEE 802.22 and 802.11af standards at 31.64

Mbps.

2.7.12 ETSI EN 301 598

The ETSI EN 301 598 European Standard for Wireless Access Systems in the TV

broadcast band [71] specifies the technical characteristics of both master and client TV

WSDs and is referenced in [8]. Limits are specified for unwanted emissions from a WSD

outside of the limits of the TVWS band as well as adjacent channel leakage ratios for

emissions one, two, or three or more channels adjacent. It is required that a master

WSD communicate its channel usage parameters to the GLSD prior to transmission,

and a client WSD shall communicate its channel parameters to its master GLSD unless

the client WSD was selected by the master WSD.

2.7.13 Other

The IEEE Dynamic Spectrum Access (DySPAN) committee develops the 1900 stan-

dards, which all deal with aspects of DSA such as procedures, definitions, and rules

to allow interoperability between mechanisms and heterogeneous devices. IEEE 1900.5

provides policy language and architecture for managing cognitive radios for DSA. The

39

IEEE 1900.6 interface facilitates the sharing of spectrum sensing and other relevant data

among 1900.6-based entities and external data archives, while amendment b to 1900.6

addresses the use of data gathered by spectrum sensing to support GLSD methods in

TVWS systems. IEEE 1900.7 specifies the MAC and PHY layers of the radio interface

for White Space DSA radio systems, including cognitive radio. Also relevant is the

Protocol to Access White Space database (PAWS) protocol, which is used by gateway

nodes to perform queries to the GLSD.

2.7.14 Protocol to Access White-Space (PAWS) Databases

The PAWS protocol covers the messaging required for a device to access a database

to obtain spectrum availability information in a way that is independent of any specific

regulation or regulatory domain. The protocol includes provisions for a device to perform

these actions:

• Database discovery: Determine the relevant database to query.

• Device registration: Connect to and register with the database.

• Provide geolocation and other data to the database. This can be either a single

point or, importantly, a region described by a polygon.

• Available spectrum query: Query to obtain information about spectrum (a list of

available white space frequencies), schedule, power, etc. at the specified geoloca-

tion.

• Send an acknowledgement to the database containing the device’s operational pa-

rameters.

Two types of devices are distinguished in this protocol. One is the Master Device, which

queries the database either for itself or for another device, which is termed the Slave

Device. This latter queries a database through a Master Device.

2.8 Spectrum sensing

2.8.1 Basic narrowband methods

2.8.1.1 Energy Detection

Energy detection (ED) [72, 73] involves estimating the signal power in a channel, often

by measuring the average energy of the total received signal during a certain time period

40

and comparing that with a predefined threshold. It is a popular sensing method since

it requires no prior knowledge of the signal to be detected and only requires defining

a threshold value based on the noise. Typically, the threshold is used to differentiate

whether a certain signal is either present or absent with the desired accuracy. As such,

the ED problem is formulated as a binary hypothesis test, with H0 representing the case

where the signal of interest is absent, and H1 representing the case where the signal of

interest is present. Performance measures are usually the false alarm rate or probability,

the probability of detection, and the probability of missed detection. Both the false

alarm and missed detection probabilities should be less than a specified value. The

measures of false alarm and missed detection probabilities are usually inversely related.

That is, the smaller the false alarm probability the higher the missed detection, and

conversely, lowering the missed detection probability results in increased false alarms.

This relationship is often illustrated as receiver operating characteristic (ROC) curves.

The hypothesis test for energy detection is as follows:H0 : Y (n) = W (n) PU absent

H1 : Y (n) = W (n) + S(n) PU present
(2.17)

The Fast Fourier Transform (FFT) Y [k] of the signal Y (n) is found, the test statistic

Equation (2.18) defined in terms of the FFT, and the statistic compared to a threshold

λ.

T = 1/N
N∑
k=0

|Y [k]|2 (2.18)

for N samples.

T < λ PU absent

T > λ PU present
(2.19)

For large N , the decision statistic T can be approximated as a Gaussian distribution

[72] with the following parameters:T ∼ Normal(µ0, σ
2
0) H0

T ∼ Normal(µ1, σ
2
1) H1

(2.20)

where µ0 = Nσ2
n

µ1 = Nσ2
n(1 + SNR)

(2.21)

41

and σ2
0 = 2Nσ4

n

σ2
1 = 2Nσ4

n(1 + SNR)2.
(2.22)

The average power ratio SNR (SNR) is given by

SNR =
σ2
s

σ2
n

. (2.23)

The performance of ED is usually quantified in terms of the probability of detection of

a PU on the channel (Pd) or missed detection (1−Pd) and the probability of false alarm

(Pf). Pm occurs when T < λ given that the PU is, in fact, present. Pf occurs when

T > λ given that the PU is not present. By noting the interpretation of the erfc function

as the tails of the Gaussian distribution outside the range (−x, x) and only taking the

greater half, we can obtain [72]
Pd = P (T > λ|H1) = 1

2 erfc(λ−mu1√
(2)σ1

)

Pm = P (T < λ|H1) = 1− Pd

Pf = P (T > λ|H0) = 1
2 erfc(λ−mu0√

(2)σ0
)

(2.24)

where

erfc(z) =
2√
π

∫ ∞
z

exp(−x2)dx. (2.25)

The total probability of error is then:

Pe = P (H0)Pf + P (H1)Pm. (2.26)

Kozal et al. develop equations for the test statistic in the case of noise uncertainty [72].

The noise uncertainty is modelled with a factor α ≥ 1, which modifies the noise power

to fall within bounds

(σ2
min, σ

2
max) = (σ2

n/α, ασ
2
n).

Now, the parameters of the test statistic become

T ∼

Normal(Nασ2
n, 2Nα2σ4

n)

Normal(Nσ2
n(1/α+ SNR), 2Nσ4

n(1/α+ SNR)2
(2.27)

42

The probabilities of detection and false alarm are also modified to:

Pd =
1

2
erfc

(
λ−Nσ2

n(1/α+ SNR)√
4Nσ2

n(1/α+ SNR)

)
(2.28)

Pf =
1

2
erfc

(
λ−Nασ2

n√
4Nασ2

n

)
(2.29)

An expression for the optimal threshold level and the minimum number of samples

required for satisfying constraint on Pm and Pf is found. They then find asymptotic

performance in SNR called SNR “walls” of

SNRwalls = α− 1/α (2.30)

when the number of samples tends to infinity.

One disadvantage of ED is that it does not distinguish types of signals, e.g. PU vs.

SU signals. For this reason, a silent period for sensing is often required to avoid self-

interference confusing the results. Another disadvantage is that ED is known to perform

poorly in low SNR conditions since noise uncertainty, fading and shadowing, and hidden

terminal problems may affect the measurement [72, 74, 75].

2.8.1.2 Cyclostationary Feature Detection

Cyclostationary Feature Detection (CFD) can be used when the statistical properties

of the signal to be sensed are periodic. A received signal is called cyclostationary if the

mean and autocorrelation of the signal are periodic. In first-order CFD, the periodicity

of the mean is used. In second-order CFD, the periodicity of the autocorrelation function

is exploited. Noise, on the other hand, has zero autocorrelation so the signal and noise

can be distinguished. This means CFD can perform well even in low-SNR scenarios.

As with most detection methods, a balance between sensing time and performance must

be achieved, especially since CFD requires more sensing time than ED. It also has higher

power consumption and processing complexity [61].

2.8.1.3 Coherent/waveform-based techniques

Waveform-based sensing relies on knowledge of patterns in the waveform to be identified,

such as hopping or spreading sequences, preambles, and midambles [61, 76]. A copy of

the signal is kept and correlated with the received signal to identify the features. In this

43

method, the test statistic is given by

T = <

[
N−1∑
n=0

y[n]s∗[n]

]
(2.31)

where <[·] represents the real part of [·], y[n] is the received signal and s∗[n] is the

complex conjugate of the known copy of the signal to be correlated and identified.

The two cases H0 and H1 are then identified as:

T =

<
[∑N−1

n=0 w[n]s∗[n]
]
< λ H0∑N−1

n=0 |s[n]|2 + <
[∑N−1

n=0 w[n]s∗[n]
]
≥ λ H1

(2.32)

The key disadvantage of waveform-based sensing is that complete knowledge of the

waveform to be detected is required.

2.8.1.4 Matched filter techniques

In matched filter detection (MFD), a filter is built based on the impulse response of a

specific (usually PU) signal to be detected to maximise the SNR for that signal [77].

If an unknown received signal matches this known signal, the PU is assumed to be

present. The PU can be detected in less time with a higher probability [76]. The SU

must demodulate the received signal. This raises the disadvantage that the SU needs

a dedicated receiver for each signal type to be able to demodulate them [61], which is

challenging to implement. MFD is also susceptible to time synchronisation errors. The

operation of a matched filter is as follows:

y(n) =

∞∑
l=−∞

h(n− l)s(l) (2.33)

where y(n) is the received signal, s(l) is the unknown signal and h(n− l) is the impulse

response of the matched filter, which matches the signal that is to be identified so as to

maximise the output SNR.

2.8.1.5 Covariance-based detection

Covariance-based detection or sensing exploits the correlation between PU signal samples

in time and space [78, 79]. It requires that signals be over-sampled. Covariance-based

detection does not require the user to have any information about the PU signal or noise

[78], making it robust to noise uncertainty, which affects other spectrum sensing methods

44

such as ED [80]. The sample covariance matrix of the received signal is computed, and

the maximum and minimum eigenvalues are obtained. The test statistic is the ratio of

the maximum to minimum eigenvalue, which is compared to a threshold to make the

present/absent decision. The covariance matrix is given by

Ry(N) =
1

N

L−2+N∑
n=L−1

y(n)yT (n) (2.34)

The eigenvalues λmin and λmax are found using singular value decomposition. Then
λmax
λmin

< γ PU absent

λmax
λmin

> γ PU present
(2.35)

2.8.1.6 Machine learning

Machine learning techniques for spectrum sensing involve formulating the spectrum sens-

ing problem as a classification problem per channel, where the categories are “free” or

“occupied”. Any of a number of different features can be used as the training data.

Machine learning is advantageous in changing environments because it is adaptive. Ei-

ther supervised (e.g., using support vector machines or K-nearest-neighbour [79, 81])

or unsupervised techniques (e.g., [82]) can be used to reveal PU patterns. Lu et al.

[83] propose both a supervised and an unsupervised method for cooperative spectrum

sensing.

2.8.2 Wideband methods

2.8.2.1 Sub-Nyquist methods

Sub-Nyquist sensing is also called compressive sensing, which is possible since wideband

signals are sparse. This method is appropriate when the signal bandwidth is greater

than the coherence bandwidth of the channel [61, 84]. Compressive sensing can recover

an original sparse signal from only a few measurements. The processes involved in

compressive sensing are 1) determining the sparse representation of the primary signals,

2) sensing measurement or encoding, and 3) recovering the signal or decoding [79, 85]. A

signal x is considered sparse if it has sparsity level K � N , for N samples. If the signal

is not sparse in the given domain, it can be converted to a sparse signal by projecting it

onto a suitable basis, say φ to get a sparse signal s, i.e.,

s = φ~ x (2.36)

45

A sparse basis could be a Fourier transform (FFT or Discreet Fourier Transform), wavelet

transform, or discrete cosine transform. Sparse measurements are done by multiplying

the sparse signal by a measurement matrix Φ of size M ×N . For efficient recovery, M

should satisfy M = O(K log(N)). The compressed signal y of size (M, 1) is then

y = Φ ~ s (2.37)

then

y = A~ x (2.38)

where A = Φφ.

Finally, the original signal must be recovered from the measurements, which means solv-

ing Equation (2.38). There are two categories of ways this can be done: l1-minimisation

or other algorithms that use the convex property of the relation, or greedy algorithms.

From what has been mentioned, we can deduce some of the main challenges of compres-

sive sensing:

• estimating the sparsity level of the signal (required for greedy algorithms);

• selection of the number of measurements;

• noise uncertainty; and

• sensing where no prior knowledge is needed or available.

2.8.2.2 Nyquist-based

Nyquist-based wideband sensing techniques use standard analogue-to-digital converters

(ADCs) that sample at Nyquist frequencies. This requires a high sampling rate and

results in high power consumption. Some examples are wavelet detection, multi-band

joint detection, and filter bank sensing. In wavelet detection, the wavelet transform is

used instead of the Fourier transform [15].

2.9 Geolocation Spectrum Databases

A common alternative to spectrum sensing for facilitating coexistence between PUs and

SUs of a spectrum band is a Geolocation Spectrum Database (GLSD). GLSD-based

DSA has been widely employed by various regulatory bodies worldwide, most notably

for TVWS, Citizen’s Broadband Radio Service (CBRS), and Wi-Fi 6E. The Federal

46

Communications Commission (FCC) in the USA, the European Communications Com-

mission (ECC), the Office of Communications (Ofcom) in the UK, and the Independent

Communications Authority of South Africa (ICASA) are some examples of regulatory

bodies that have mandated the use of GLSDs for PU-SU coexistence. IEEE 802.11af

has also made provision for mechanisms by which White Space Devices (WSDs) can

use GLSDs regardless of the specific regulatory requirements [86]. The advantages of

GLSDs are that they can ensure that interference to PUs is eliminated, and they do not

rely on SU sensing. They can also make use of advanced propagation models.

GLSDs must be queried by SUs to obtain the spectrum availability in a specific location

at that time and the operating parameters they must adhere to. As part of the query,

the SU may need to provide information such as its location, device type, and antenna

height. The device type is necessary since different device types have different limitations

on their operation. Some of these are mentioned in Section 2.7. For example, fixed

devices have a higher maximum transmit power than portable devices. Information

obtained from the database can include the specifications of the PU transmitters, such

as estimated power levels, limits on the transmit power and time per channel imposed

on the SU, and protection rules [87, 88]. The use of a GLSD ensures interference to

PUs is avoided, improves the transmission rate of SUs since they do not need to redirect

transmission time to spectrum sensing, and is relatively easy to implement. However,

this DSA coexistence method does not make optimal use of the spectrum. The models

used may be too conservative, leaving white space unused while limiting opportunities

for SUs to access the spectrum. It has also been cautioned that spectrum databases

represent a “drastic extension of regulatory control” [89] by governments on a resource

that has no inherent borders or limits. Robert Horvitz argues that the control enabled

by GLSDs is even stricter than licensing [89].

2.10 MAC layer models

Changing focus somewhat from the frequency domain to the time domain and from

the coexistence of heterogeneous users to the coexistence of like users, we now discuss

models developed for analysing the coexistence of different nodes using the same MAC

layer protocols. IEEE 802.11s is a common standard for WMNs and includes MAC

layer functionality for nodes to share a channel in time. Not only is this review of the

protocol relevant because IEEE 802.11s mesh nodes assigned the same channel must

share that channel in time and it is important to understand the impact that has on the

performance perceived by the clients of those nodes, but also because spectrum sensing

opportunities must be found in the time domain for the mesh nodes to gather data to use

47

in making CA decisions. The functioning of the IEEE 802.11s MAC layer is pertinent

to Chapter 7 because we use these details to find spectrum sensing time in that chapter.

2.10.1 EDCA and the IEEE 802.11s MAC layer

Figure 2.3: EDCA timing diagram showing NAV mechanism without clearing mech-
anism. When an RTS frame is sent on the channel by A, other nodes that are not the
intended recipient of the packet (C and D) set their NAV and remain idle during that
NAV period. After the completion of the NAV time, nodes C and D wait the Arbitra-
tion Inter-Frame Spacing (AIFS) and the random backoff (BO) time before attempting
to transmit. The Short Inter-Frame Space (SIFS) comes before CTS, DATA, and ACK

frames.

The IEEE 802.11s MAC uses Mesh Coordination Function (MCF) for nodes to gain

access to the wireless medium. To gain access, a mesh node must obtain a transmission

opportunity (TXOP). In the MCF, a TXOP may be either an EDCA TXOP, obtained

through contention, or a Mesh Coordinated Channel Access (MCCA) TXOP, which is

reservation-based and thus contention-free. MCCA-enabled mesh stations coordinate

their intended transmission durations using Resource Allocation Vectors (RAV) to two-

hop neighbours through MCCA opportunity (MCCAOP) advertisements. The maxi-

mum time for both the MCCAOP and the EDCA TXOP is the dot11MaxDwellTime.

We focus on the EDCA mechanism in this work since it is the mandatory MAC function

and is more common in real-world implementations.

A review of EDCA might provide helpful background information for Chapter 7. We

refer to Figure 2.3 for details. EDCA extends the Distributed Coordination Function

(DCF) that was present in earlier IEEE 802.11 versions, adding QoS differentiation. In

this MAC method, a node wishing to transmit that encounters a busy channel must wait

for a time consisting of a fixed period called an arbitration inter-frame space (AIFS) and

a random backoff period (called BO in Figure 2.3). The random BO is randomly selected

from a period called the contention window (CW). Only once the node has waited for

48

both the fixed and the random backoff periods, can it perform physical carrier sens-

ing to check the channel again and possibly transmit. Carrier sensing can be physical

or virtual. The Network Allocation Vector (NAV) is used in virtual carrier sensing.

IEEE 802.11 devices use the NAV to reserve the channel for the time needed for trans-

mission. All the other nodes must count down the NAV time before initiating the AIFS

and random backoff time to try to regain access to the channel. The NAV is distributed

to neighbouring nodes in the RTS frame header of the node that wants to transmit data.

In the header of the RTS frame is a duration field with the expected amount of time

that the node will need for the TXOP. All neighbour nodes within transmission range

of the transmitting node receive the RTS frame and set their NAV to the time indicated

in the duration field. These nodes must remain in backoff until the NAV period has

counted down to 0. The NAV indicates the time during which non-transmitting nodes

can perform no carrier sensing or transmission on the operating channel and are thus

idle. During this time, the nodes in backoff could switch to a different channel, per-

form spectrum sensing for the amount of time available in the NAV period, and then

revert back to the original channel to continue operation. All of this does not, in any

way, disrupt the normal EDCA functions or data transmission. Using the NAV time for

off-channel spectrum sensing is a major contribution of our work, proposed in Chapter 7.

We can see that collisions are most likely to occur between RTS frames of different nodes

and are less likely to occur between data frames because of the use of RTS and CTS and

the NAV. EDCA defines four different access categories (ACs) to differentiate the priority

of different kinds of traffic. These are Voice (VO), Video (VI), Background (BK), and

Best Effort (BE). AC VO is the highest priority. Management frames are also sent using

this AC. Each data frame comes to the MAC layer from higher layers in a station and is

mapped to the appropriate AC. Each AC has its own FIFO queue and backoff interval

in a station independent from the other AC queues. This means that frames that are

pending in one AC cannot be transmitted in an EDCA TXOP for any other AC, even

though they are from the same station. In addition, if a backoff procedure is started

by one AC, all other ACs with lower priority must treat the medium as busy for the

NAV period. The parameters relative to an AC are the Arbitration Inter-Frame Spacing

Number (AIFSN) and the maximum and minimum contention windows (CWmax and

CWmin). Higher priority ACs have shorter contention windows and smaller AIFS so

that those packets have a statistical advantage in gaining access to the channel earlier.

A state variable for the CW[AC] is maintained for each AC queue, which is initiated to

CWmin[AC]. The backoff timer is then set to an integer value chosen randomly from

a uniform distribution in the range [0, CW [AC]]. The backoff counter decrements if an

AIFS[AC] period has passed during which the medium was considered to be idle. The

49

medium is considered busy if either PHY carrier sensing or virtual carrier sensing via

the NAV indicates as much [67].

For full NAV, each packet sets the NAV to reserve the channel until the end of the

TXOP, which may consist of several packets or packet fragments. In packet-by-packet

NAV, each packet transmission sets the NAV to reserve the channel until receipt of the

ACK following a successful transmission of one data packet. With the NAV clearing

mechanism enabled, the NAV period can be shortened in case of collision during a NAV

period [90]. In this case, stations wait for 2 × SIFS + TCTS + 2σ and if no signal is

detected during that time, the stations can update their NAVs. Hence, the total idle

time in case of a collision is AIFS[AC] + TRTS + δ + 2× SIFS + TCTS + 2σ.

All mesh stations periodically transmit Beacon frames. With the help of synchronisa-

tion and mesh beacon collision avoidance, Beacon frames have a negligible likelihood of

colliding [67]. Hence, we only consider the collision of RTS frames or data frames, with

a focus on RTS frame collisions.

2.10.2 DCF and EDCA Markov Chain analysis

Bianchi’s seminal work in 2000 [91] kicked off a trend of analysing the MAC layer per-

formance of protocols such as IEEE 802.11 using Markov models. Bianchi analyses the

behaviour of a single STA device using Markov chain analysis and then finds the sta-

tionary probability that the device transmits a packet in a random time slot [91]. Using

the CSMA/CA behaviour of 802.11’s DCF and the timings defined in the standard, the

throughput is expressed as a function of the previously defined transmission probability.

This Markov model improves on previous simulation-based models or analytical models

with simplifying assumptions for the backoff behaviour specified in DCF. The research

community was now able to obtain an analytical model with closed-form solutions that

closely resembled the behaviour of the protocol. This was a difficult problem owing to

the instability observed in the 802.11 DCF protocol. The Markov model captures the

stochastic nature of the DCF MAC process. It was found that this Markov analytical

model is very close to simulation results despite the one simplifying assumption made

that each transmission attempt has a constant and independent collision probability,

regardless of the number of retransmission attempts already experienced. The origi-

nal work concentrated on saturation conditions and found the asymptotic saturation

throughput for both the basic access and RTS/CTS access methods. This stochastic

analysis was used to find the expected throughput for a single-hop wireless network

with a finite number of nodes, ideal channel conditions, and the crucial assumption of

50

a constant independent collision probability of each packet transmitted by each node in

saturation traffic.

The assumptions made in Bianchi’s work are:

• saturation

• no hidden nodes

• constant independent collision probability p, regardless of the backoff stage

In Bianchi’s work, a two-dimensional stochastic process is defined as {s(t), b(t)}, where

s(t) is the backoff stage and b(t) represents the backoff counter counting down time slots

in the contention window (the NAV was not yet in use). The backoff stages define the

contention window size, and every time a collision occurs when the backoff counter has

reached zero, the state moves to the next backoff stage, up to the maximum backoff

stage m. The minimum contention window size CWmin = W . The contention window

size at stage i ∈ (0,m) is Wi = 2iW . The key transition probabilities in the Markov

chain are listed below:

P{i, k | i, k + 1} = 1 k ∈ (0,Wi − 2), i ∈ (0,m)

P{0, k | i, 0} = (1− p)/W k ∈ (0,W − 1), i ∈ (0,m)

P{i, k | i− 1, 0} = p/Wi k ∈ (0,Wi − 1), i ∈ (1,m)

P{m, k |m, 0} = p/Wm k ∈ (0,Wm − 1)

(2.39)

The first probability indicates that the backoff counter decreases with probability one

from the contention window size Wi−1 until 0, whether or not a collision occurs between

two other stations. The second indicates a transmission occurred once the counter

reaches 0 at stage i, and then the counter is reset to a value chosen uniformly in the

range (0,W − 1) while the backoff stage goes back to 0. The third equation represents

the case where a collision occurs, causing the backoff state to increment by one and

the backoff window to be chosen uniformly in (0,Wi). The final probability shows the

maximum backoff stage remains at m after a collision in stage m, and k is uniformly

chosen in (0,Wm).

This section provides a theoretical basis for the extensions to the Markov chain model

we introduce in Chapter 7 and an introduction to the pertinent arguments, assumptions,

and methods. The next section continues to introduce analysis techniques that are used

in this dissertation.

51

2.11 Metaheuristic techniques for optimisation

The general optimisation problem can be stated as follows. Find the

min
x
f(x)

subject to gj(x) ≥ 0, ∀ j = 1, 2, ..., J
(2.40)

where a feasible solution is one that satisfies all constraints gj .

NP-hard, non-convex, or multi-objective problems that involve great complexities cannot

be solved in a finite, acceptably short time. Hence, we must accept rather to find an

approximate solution in a reasonable amount of time. Such solutions can be provided

using heuristics or metaheuristic methods. A metaheuristic technique can find a near-

optimal solution to NP-hard problems in a way that is computationally faster than an

exhaustive search but there is no rigorous mathematical proof of convergence to the

optimal solution. Metaheuristics are both iterative and stochastic. An initial solution

is selected, and then new solutions are carefully generated using specific techniques to

improve on the initial solution. These techniques must balance the conflicting goals of

exploration and exploitation. There must be sufficient exploration of the search space

so that a diverse range of possible solutions are sampled, and local optima are not

mistaken for global optima. But there must also be proper exploitation to use the

gathered information effectively and perform finer-grained searches within promising

regions of the search space. The tradeoff between these two factors is what makes a

metaheuristic algorithm effective. Numerous metaheuristic techniques exist, and new

methods are emerging almost daily. Short of writing a book series, it is impossible to

discuss all of them in this document. We discuss four of the most established and mature

metaheuristics here, as these are the metaheuristics employed in this work.

2.11.1 Simulated Annealing

Simulated Annealing (SA) is a probabilistic search heuristic used in optimisation prob-

lems with complex, often discrete, search spaces. It is based on, and analogous to, the

physical process of annealing (of a metal, for example) in statistical mechanics, whereby

atoms are cooled in a specific slow way until reaching the state of minimum energy

[92]. The algorithm starts with the system in a certain arbitrary configuration or state,

i.e., a solution, and then it computes the “energy”, which is the value of the objective

function or cost of that solution at that iteration. From there, a new candidate neigh-

bour solution is generated by applying a slight alteration to the system state. Then,

the candidate solution’s cost value is computed and compared to the original cost. The

52

candidate solution is either accepted or rejected based on its cost value. It is always

accepted if the cost has improved (the “energy” has decreased). The candidate is ac-

cepted probabilistically if the new solution is worse, with the probability based on the

difference in cost between the new worse candidate solution and the old solution, as well

as the temperature parameter. The accepted solution is then the starting point for the

next iteration. Accepting some solutions that do not improve on the previous solution

helps steer the algorithm away from local minima and encourages more exploration of

the search space.

The temperature parameter is related to how likely the algorithm is to choose a worse

solution than the current one to prevent the algorithm from getting stuck in a local

minimum. The temperature must initially be set to a higher value and decreased ev-

ery iteration according to a defined cooling function, the choice of which is up to the

implementer. Some examples are exponential multiplicative cooling, logarithmic mul-

tiplicative cooling, and linear multiplicative cooling [93]. The aim of SA is always to

find/converge to the lowest “energy” configuration, which is the solution with the lowest

cost. As the number of iterations increases, the probability of finding the true optimal

solution increases. The process of generating a new neighbour solution and accepting or

rejecting the solution continues until predetermined termination criteria are met. For

example, a specified number of iterations or acceptable running time is reached, and

a satisfactory solution has been settled on. Certain tests and rules-of-thumb can be

followed to determine whether to stop or continue with the algorithm or estimate the

convergence time, e.g., the Geweke test [94].

2.11.2 Genetic Algorithm

The Genetic Algorithm (GA) is a well-known metaheuristic based on the evolution of

genes through generations. In GA, the fittest individuals are selected as parents, and

the fittest genes are carried on in future generations. The selected parents reproduce

and occasional mutation occurs to the genes. The required elements of a GA are:

• a fitness function (optimisation objective function);

• a population of chromosomes also called genomes (an encoding for solutions in the

solution search space);

• a selection method by which parents of the next generation are selected;

• a crossover method by which parents reproduce to create the next generation; and

53

• a mutation method by which random changes are introduced to the chromosomes,

preventing premature convergence to local minima.

The algorithm starts by generating an initial population randomly from the search space

and applies selection, crossover, and mutation in every iteration. This cycle continues

until termination. Termination may occur when the fitness value of the chromosome

with the best value thus far stays the same for a certain number of iterations, or after

an acceptable predefined total number of generations is reached. One of several parent

selection methods may be used. A popular method is Roulette Wheel selection, where

each chromosome in the current generation is given a probability of being selected that is

proportional to its fitness. This method is vulnerable to causing premature convergence.

Linear Rank selection tries to prevent the situation observed in Roulette Wheel selection,

where a single solution dominates and causes premature convergence. Linear Rank

selection instead ranks individuals according to their inverse fitness and then bases the

probability of selection on the rank rather than the actual fitness value. The best

fitness solutions are given the highest value rank (lowest rank). For example, out of ten

solutions, the best fitness will be assigned to rank position 10 (not 1), so it is the most

likely to be chosen, and the worst fitness will have rank 1, having the lowest probability of

being selected. Crossover may be single-point or multi-point. In crossover, the selected

parent chromosomes are subdivided into sections, and the sections are swapped out to

generate new combinations of genes.

2.11.3 Differential Evolution

Another member of the group of evolutionary algorithms is Differential Evolution (DE).

It was initially developed to deal with continuous variable problems using evolutionary

methods [95]. However, it has also been used in discrete settings [96].

In DE, an initial population of size NP is chosen at random, similarly to GA. Each

individual in a population is represented by xi,G ∀ i = 1, 2, ..., NP , and G denotes the

generation or time evolution. The mutation operation, which occurs at every iteration,

is different from other evolutionary algorithms. The mutant vector is generated using

the weighted difference between two other randomly chosen members of the population

and adding that to a third randomly chosen member of the population, not equal to

either of the previous two. In the crossover stage, the parameters of the mutant vector

are again mixed with the parameters of another predetermined vector, the target vector.

This is done to increase the diversity of the perturbed parameter vectors. This addition

is called “mixing” and results in a trial vector.

54

A selection operation replaces the target vector, or the parent, with the trial vector if

the latter yields a lower (better) cost value than the parent. Hence, the fitter offspring

now becomes a member of the newly generated population. These iterations continue

until one of the termination criteria is reached.

The DE parameters to be selected are the population size NP ; F ∈ [0, 2] ⊂ R, a constant

factor that controls the amplification of the difference vector; and CR, the crossover rate.

Small values of F result in smaller mutations (with less variance), resulting in slower

convergence of the algorithm. Larger values of F may cause overshoot and convergence

to the wrong value.

The steps involved in DE are detailed below.

2.11.3.1 Mutation

For each target vector xi,G in the population, randomly select three other individuals

from the population: r1, r2, r3 ∈ {1, 2, .., NP}, ensuring that

i 6= r1 6= r2 6= r3.

Mutant vector vi,G+1 is then computed using Equation (2.41).

vi,G+1 = xr1,G + F · (xr2,G − xr3,G) (2.41)

2.11.3.2 Crossover

The trial vector

ui,G+1 = (ui1,G+1, ui2,G+1, ui3,G+1, ..., uiD,G+1)

is formed, where D is the number of dimensions, according to Equation (2.42).

uij,G+1 =

vij,G+1 if rand(j) ≤ CR or j = rand(i)

xij,G if rand(j) > CR and j 6= rand(i)
∀ j = 1, 2, ..., D (2.42)

where

rand(j) is the jth outcome of a random binary number in [0, 1], or rand(j) ∼ U(0, 1),

depending on the implementation;

rand(i) is randomly chosen from [1, 2, ..., D];

CR is the crossover constant ∈ (0, 1) ⊂ R.

55

2.11.3.3 Selection

To decide whether or not it should become a member of generation G + 1, the trial

vector ui,G+1 is compared to the target vector xi,G as follows: If the trial vector ui,G+1

yields a smaller cost function value (which is better, assuming the goal is minimising

the cost) than xi,G, then xi,G+1 is set to ui,G+1; otherwise, the old value xi,G is retained

in the next generation, i.e.,

xi,G+1 =:

ui,G+1 if f(ui,G+1) < f(xi,G)

xi,G otherwise.
(2.43)

2.11.3.4 Variants

A naming convention of DE/x/y/z has been adopted. The symbol x denotes the vector

to be mutated, which can be rand (random), or best (chromosome with the lowest cost);

y denotes the number of difference vectors considered for the mutation of x, and z is the

type of crossover in use. In the previous example in Section 2.11.3.2, this was binomial,

since it was done by independent binomial trials. The method we have described would

be termed DE/rand/1/bin. Some other variants are:

DE/best/1:

vi,G+1 = xbest + F · (xr1,G − xr2,G) (2.44)

DE/rand/2:

vi,G+1 = xr1,G + F · (xr2,G − xr3,G) + F · (xr4,G − xr5,G) (2.45)

DE/best/2:

vi,G+1 = xbest,G + F · (xr1,G − xr2,G) + F · (xr3,G − xr4,G) (2.46)

DE/current− to− best/2:

vi,G+1 = xi,G + F · (xbest,G − xi,G) + F · (xr1,G − xr2,G) (2.47)

where

i 6= r1 6= r2 6= r3 6= r4 6= r5.

56

2.11.4 Particle Swarm Optimisation

2.11.4.1 Overview

Particle Swarm Optimisation (PSO) is another stochastic population-based search al-

gorithm. It was inspired by the behaviour of animals in nature, such as flocks of birds

or schools of fish, which work in groups to locate desirable positions [97]. A desirable

position might have, for example, good food sources. PSO is driven by the assumption

that each member of a swarm benefits from the experience of other members of the

swarm to the overall advantage of the group.

There are two main operations per iteration: First, the velocity of every particle is

updated. Second, the position of every particle is updated according to the calculated

velocity. The canonical velocity calculation is shown in Equation (2.48), and the position

update is shown in Equation (2.49).

vi(t+ 1) = ωvi(t) + c1r1(t)× (yi(t)− xi(t)) + c2r2(t)× (ŷ(t)− xi(t)) (2.48)

xi(t+ 1) = xi(t) + vi(t+ 1) (2.49)

where

t is the iteration counter;

r ∼ U(0, 1) is a (pseudo)-random number selected in the range 0 to 1 and r1 and r2 are

generated anew for every dimension;

vi(t) is the velocity of particle i at iteration t;

xi(t) is the position of particle i at iteration t;

yi is the position of the particle i found so far with the best fitness (lowest cost);

ŷ is the position of any particle in the swarm found so far with the best fitness (lowest

cost);

ω is a coefficient causing inertia in the movement (weighting towards the previous ve-

locity); and

c1, c2 are named cognitive and social coefficients, respectively, altering the relative weight

of the particle’s own memory and that of the swarm.

We can think of the velocity as a displacement in constant time to ease the discomfort

of inconsistent quantities when adding a “velocity” to a “position”. Each of these cal-

culations is done per dimension, the number of which is not limited. The inertia weight

ω determines the balance between local and global search. The smaller ω is, the more

the algorithm behaves like a local search, searching around its current position. In this

case, the second and third terms of Equation (2.48) dominate. The larger ω is (> 1.2),

57

the more expanded the search space becomes, and the algorithm searches more globally

[98, 99].

Several variants of PSO are based on slight changes to the velocity equation. There is also

the “bare bones” PSO in which the position is changed by using a normal distribution

centred around the mean of the personal best and group best position [100].

2.11.4.2 Naming and Variants

Several variants on the velocity computation have been put forward. Some of these are:

• Variant 2 (Equation (2.50)), where the same random variable r1 is used for both

the social and cognitive components.

vi(t+ 1) = ωvi(t) + c1r1(t)× (yi(t)− xi(t))

+c2r1(t)× (ŷ(t)− xi(t))
(2.50)

A new r1 is generated for every dimension.

• Variant 3 (Equation (2.51)), where the same two random variables are used for

all dimensions.

vi(t+ 1) = ωvi(t) + c1r1(t)× (yi(t)− xi(t))

+c2r2(t)× (ŷ(t)− xi(t))
(2.51)

A new r1 and r2 are generated once, and the same values are used for all dimen-

sions.

• Variant 4, with only one random variable used for all quantities. Variant 4 is

the same as Variant 3, except that r1 is only generated once and reused for every

dimension.

• Variant 5, where the constriction coefficient affects the whole calculation and not

just the previous velocity (Equation (2.52)). In this variant, ω is sometimes written

as χ, since it represents a slightly different quantity from the inertia coefficient.

vi(t+ 1) = ω × (vi(t) + c1r1(t)× (yi(t)− xi(t))

+c2r2(t)× (ŷ(t)− xi(t)))
(2.52)

Constriction weight ω (or χ) applies to all components.

• Variant 6 is called Fully Informed Particle Swarm (FIPS) and shown in Equa-

tion (2.53). FIPS is different from the other variations as each particle is not just

58

affected by itself and by the best neighbour or the best particle in the swarm.

FIPS includes effects from all the particles k in the swarm or neighbourhood of

size K. The random number r(t) ∼ U(0, c1 + c2).

vi(t+ 1) = ωvi(t) +
1

K

K∑
k=1

r(t)× (yk(t)− xi(t)) (2.53)

The PSO was originally conceptualised as a method in continuous space. It has, however,

been used liberally in a discrete form, e.g., [101–104] with different ways of discretising

the values and operators, normally by simple rounding or by introducing a penalty

function.

2.12 Conclusion

We have presented a review of the concepts used in the remainder of this study on

parameter tuning in a DSA-WMN and the spectrum sensing used in decision-making.

We bring together the concepts of Cognitive Radio that is aware, perceptive of the

environment, and can apply reason and agency to make decisions about its radio resource

usage, with GLSD-based Dynamic Spectrum Access in a Wireless Mesh Network. This

combination forms a network that is reliable and autonomous and makes efficient use of

the spectrum. In this thesis, we address Channel Assignment for this scenario, so the

CA problem is thoroughly described in this chapter. We show the physical models that

are used to understand and predict the signal environment in which our WMN nodes

will be. Physical propagation and channel models are useful for predicting performance

and are used in our simulations. The graph model is often used in CA, and we use both

connectivity and weighted conflict graphs in our CA.

The network that is the subject of our study must comply with the relevant regulations

in South Africa, but also in other countries. Hence, we highlight the important aspects

of TVWS regulation around the world. It is assumed that the network will make use of

existing protocols. However, there are several options of protocols to choose from cov-

ering various aspects of interest. The IEEE 802.11af amendment provides architectural

components for carrying out channel availability queries, channel schedule management

and other functionalities required for using TVWS in a Wi-Fi network. IEEE 802.11k

provides frame and message types for radio resource management. The IEEE 802.11s

mesh networking amendment will be used for forming and managing the WMN. Other

spectrum resource management protocols in TVWS are provided in IEEE 802.15.4.

Spectrum sensing is covered in IEEE 802.22, and we will compare our spectrum sens-

ing with this standard. Multi-vendor interoperability is addressed to varying degrees in

59

IEEE 802.19 and IEEE 1900.4a. We assume the Protocol to Access White Space (PAWS)

will be used for communicating with the GLSD, so its key features are described in this

chapter.

We use spectrum sensing to gather statistics about the environment that are used to

make CA decisions. An understanding of existing spectrum sensing methods is impor-

tant for choosing the method that is best suited to our scenario. We see that energy

detection is a popular and low-complexity spectrum sensing method, although it does

not perform well in low-SNR conditions. We show what SNR walls are and how the

probability of detection, probability of missed detection, and false alarm probabilities

are computed in binary hypothesis testing spectrum sensing formulations. The use of

geolocation spectrum databases for PU protection is described.

In Chapter 7, we propose the use of backoff times for performing spectrum sensing.

This requires a nuanced understanding of the IEEE 802.11 MAC layer, so this has been

detailed. We have also described the metaheuristic optimisation techniques used in

Chapter 5. Altogether, this chapter provides a comprehensive overview of the theory

that should be known to tackle the rest of this dissertation, and which we were required

to understand to be able to make the contributions that are made in this work.

Chapter 3

Prior work

3.1 Introduction

The unique aspect of our thesis is that we combine DSA and cognitive radio with a WMN

topology to form a backhaul network. This network can either form the infrastructure

to direct traffic to and from an Internet gateway or function as a community network.

The combination of all these aspects is rare but not entirely novel. What we add is

optimising the Channel Assignment (or general channel parameters) for this type of

network using optimisation criteria adapted to the specific phenomena we observed.

Also, a GLSD is used in the licensed band to obtain the allowed channels and other

transmission parameters of each node in the WMN. Yet, spectrum sensing is still required

to characterise the channels for CA. Our real-world measurements show that interference

can come from several sources and that all the channels that are said to be available

by the GLSD are not equally free of interference. Hence, both spectrum sensing and

the GLSD are necessary. In this chapter, we emphasise the novelty of that idea. We

present prior work to ours that combine DSA and WMNs, or that study CA in WMNs,

to highlight our original contribution to knowledge.

The prior work shows that, while there has been some progress in the research on aspects

of our work, there are gaps in every area that our contributions fill. We have provided an

analysis of the existing Channel Assignment work in multi-radio multi-channel (MRMC)

WMNs, which highlights how our work is different. We also provide a comparative

analysis of other Markov chain analysis methods for the Wi-Fi IEEE 802.11(s) MAC

layer and explain how ours differs. We investigate the existing literature on spectrum

sensing and clearly show what our work brings to the table that has not adequately been

addressed in the prior literature.

60

61

3.2 Simulations

Other works have also used simulation to perform wireless mesh networking experiments.

Dugaev and Siemens [105] implement a WMN in Network Simulator 3 (ns3) and com-

pare their simulation with a real testbed. In their work, the nodes are located indoors

and close together. Hence, they use the log-distance propagation loss model. There

is no consideration of external interference sources, so the default YansWifi physical

interference model is adequate for their purposes. The main performance measures that

this work captures are the UDP throughput and the average one-way delay. The most

important aspects that we require in our simulation are not included in the work of [105].

Those are external interference, long-distance propagation models, TVWS channels, and

measurement of SINR. The code was also not made available to the public.

Amiri-Nezhad et al. [106] also simulate an MRMC IEEE 802.11 mesh network in ns3.

This work was completed before ns3 introduced the MultiModelSpectrumChannel that

allows interference between heterogeneous signals. To circumvent this limitation, Amiri-

Nezhad models the external interference using a semi-Markov model that can be either

busy or idle. The idle duration is modelled as an exponential random variable, and the

noise figure and error rate parameter are adjusted by a constant value to take account

of interference when the state is busy. A single transmission rate is used, and the SINR

is not captured. The simulation environment is also used to evaluate CA algorithms.

While code snippets are provided, which help to illustrate how channel changes can be

done on the fly, the original code is not provided.

On the other hand, Cho employs an ns2-based simulation for testing an MCS Level

Adaptation algorithm based on SINR in a CSMA/CA Wireless Networks [107]. It is not

a mesh network that is considered in Cho’s work but SINR is also used as a metric on

which network tuning and adaptation decisions are made, as we do. While we adapt the

CA of a WMN based on SINR, Cho adapts the MCS Level of transmitted packets. In

Cho’s work, the SINR is extracted from ACK frames.

Ernst et al. [108] implement channel scanning across multiple channels in ns3 for a net-

work of APs and client stations. The effect of different types of traffic in an IEEE 802.11s

WMN is simulated and analysed by Viejas et al. [109]. The focus of [109] is on the per-

formance of EDCA, and no physical layer factors are modelled or captured (for example,

no SINR measurement is performed). Some researchers use different simulation frame-

works, such as OPNET [110–113] and OMNET++ [111, 114–117] for various related

simulation-based studies.

62

3.3 Cognitive Radio Ad Hoc Networks and WMNs using

DSA

Chowdhury and Akyildiz [118] introduce the concept of a cognitive WMN with DSA,

which they call a Cognitive Radio Ad Hoc Network (CRAHN). However, their envisaged

scenario is entirely distinct from ours. In our work, the WMN is the backbone. The

WMN nodes serve clients on separate Wi-Fi interfaces, and the WMN backbone links

operate on the DSA spectrum band, with the WMN nodes performing spectrum sensing

on that spectrum band. In contrast, in [118], the clients do the sensing and clients form

clusters, while the links between the mesh nodes are formed out of band through com-

munication on a different dedicated channel. The actual mechanism for forming these

WMN links is not outlined in their work. The authors also do not attempt to optimise

the CA but concentrate on the sensing problem. The channel-switching algorithm is

only for shifting some clusters from the secondary band into the primary band and not

for finding a network-wide CA.

The feasibility of using available TVWS channels for backhaul in a multi-hop topology

over non-contiguous Orthogonal Frequency Division Multiple Access (NC-OFDMA) is

studied by Kumbhkar et al. [119]. The basis of this work is also a TVWS Mesh Network

with fixed mesh nodes, to provide backhaul in rural environments. Wichita, Kansas in

the USA is used as a case study. The authors aim to maximise the minimum datarate

across the network using power control, scheduling, and routing together. The traffic

demand per cell is modelled using the results of a Cisco study that projects traffic

requirements. The International Telecommunication Union (ITU) terrain propagation

model is used. The problem is formulated as a mixed integer nonlinear program. A 3×3

grid of nodes is used in the simulation, where the distance between nodes is a variable

between 2 km and 5 km. The main finding in this work is that a service provider would

be able to meet the backhaul requirements of each tower using TVWS channels, given

the traffic models employed. This work confirms the feasibility of such a TVWS WMN,

thus justifying further research into this area. Raju et al. [120] design and analyse a

routing protocol for a CRAHN using both licensed and unlicensed spectrum. However,

we are specifically interested in CA and other longer-term parameter-tuning problems.

63

3.4 Channel Assignment in Wireless Mesh Networks and

coexistence strategies

An MRMC network has many more opportunities to form simultaneous links and in-

creased capacity compared with single-radio nodes. However, this does come with in-

creased complexity.

3.4.1 Interference considerations and modelling

The main challenges of CA in a WMN are that connectivity must be maintained within

the network while interference must be avoided or minimised. In WMNs, when two

links within the interference range of each other operate simultaneously on the same

channel, they interfere with each other, and both transmissions are likely to fail. Hence,

it is generally accepted that two links within the interference range of each other cannot

operate on the same or overlapping channels simultaneously. Still, some works study

the performance when channels that are partially overlapping are used simultaneously.

This is particularly relevant to the IEEE 802.11b/g 2.4 GHz band, where there are 11

channels available for transmission, but only three are orthogonal or non-overlapping.

Ding et al. [121], Sarasvathi et al. [122], and Wang and Shi [123] all perform CA

in WMNs using partially overlapping channels (POCs). Ding et al. show how using

POCs can improve throughput in WMNs. An interference factor is defined to evaluate

the level of interference experienced by two parallel links for differing physical distance

and channel frequency separation. A relationship between the channel separation and

interference range is found experimentally. A weighted conflict graph model is used.

The interference is evaluated by the total number of receivers affected by interference.

Both a greedy algorithm and Tabu search and GA are implemented and compared in

terms of the total and maximum interference, average link bandwidth, network capacity,

and overall network throughput. It is found that the GA outperforms other algorithms.

Sarasvathi et al. [122] also perform routing with POCs, where the SINR is employed as

a routing metric. Performance is evaluated by simulation in ns2 for a network consisting

of 16 nodes, and it is found that more simultaneous transmissions can take place when

using POCs. Wang and Shi [123] perform a centralised load-aware flow-based end-to-

end CA that takes into account both Internet-oriented and peer-to-peer traffic. The

WMN they study uses IEEE 802.11b/g. CA for mesh client access as well as backbone

connectivity is done simultaneously since the frequency band can be used for both in

their scenario.

64

In addition to partially overlapping channels being defined as part of the RF band,

another consideration is that leakage may occur by a transmitter with a wide spectrum

mask or due to poor filtering at the receive end, causing adjacent channel interference.

In this scenario, power leaks into neighbouring channels, so interference or a raised noise

floor can be experienced by links operating on neighbouring channels, which can cause

performance degradation on those links. This type of interference may be significant

in DSA bands, especially TVWS [12, 63, 124]. A channel selection method for Wi-Fi

APs in the presence of adjacent channel interference (ACI) is proposed by Nogueira and

Sargento [125]. The ACI is analysed probabilistically, and a pattern recognition approach

is used for each AP to decide which channel to use at what time, depending on how

other users are using the spectrum. The level of ACI depends on the transmission power

of interferers, transmit spectrum masks, the receive filters of receiving stations, and the

statistical properties of the interferers’ spectrum utilisation. Pattern recognition helps

to predict when a specific channel will be used. Because of CSMA/CA, Wi-Fi signals on

the same channel are not considered to interfere, only causing MAC delays. Hence, the

authors claim, there are situations where it is better to have Wi-Fi networks operating

on the same channel instead of adjacent channels. This work is concerned with home Wi-

Fi deployments where a single Wi-Fi AP may experience ACI from other independent

Wi-Fi APs and depends on utilisation and Received Signal Strength Indicator (RSSI)

data that are modelled as Gaussian random variables. The RSSI data is obtained using

the tcpdump tool. This means only other Wi-Fi interference can be identified.

Another important factor for consideration in CA algorithms is that different channels

may experience differing levels of external interference and utilisation, so different chan-

nels would be good choices for different nodes in the network. In our specific problem,

DSA adds another layer of complexity. Because nodes are geographically spread out, the

channels that are allowed for use by different SUs that form the WMN might be distinct.

The allowed channels of the different nodes may not overlap, making it more difficult to

maintain connectivity. A small number of the existing literature does take into account

DSA, but the majority of the existing CA work does not address this aspect.

Because interference reduction is a critical factor in CA, the interference models de-

scribed in Section 2.4 are important. These are used and applied in the CA problem,

and the accuracy of the propagation and interference models affects the accuracy and

quality of the CA solution. Chaudhry et al. study how different interference models

affect the CA in MRMC WMNs [126]. More channels are required for more accurate

models of Signal-to-Interference Ratio (SIR), which includes fading.

However, if CA algorithms are only designed to avoid interference, connectivity may

65

be low, causing a drop in capacity and not enough routes for traffic through the net-

work. Interfaces must share a common channel to be able to communicate. On the one

hand, we wish to use as many different channels as possible to minimise interference

while, on the other hand, we wish to have enough overlapping channels so that radios

can communicate. Hence, a good CA algorithm needs to address both these conflict-

ing requirements at the same time. Proper Channel Assignment can improve spectral

efficiency while also minimising interference, increasing throughput, and maintaining

connectivity in the network.

The CA problem is well-known to be NP-complete since it is, in essence, a graph-

colouring problem [25–27]. Despite considerable attention to the question in the liter-

ature, there is currently no universally good solution to this CA problem in WMNs.

Additionally, substantial opportunities for further research and improvements exist in

the case of DSA- and CR-using WMNs.

Channel assignment algorithms are often classified by their distribution or sensing method

as either centralised or distributed. The distribution method is also linked with whether

a dedicated common control channel is used or not. Alternatively, they are classified

according to the frequency in time with which they are carried out as either dynamic,

static, or hybrid. Some examples of centralised schemes are those of Li et al. [127],

Chaudhry et al. [128, 129], and Sheenam and Chadha [130]. Centralised schemes are

usually more accurate because the central entity that performs the optimisation has a

complete view of the network, while distributed algorithms necessarily have to rely on

limited pockets of information as each node only has information about its local envi-

ronment. Distributed algorithms are proposed by Sridhar et al. [131], Xin et al. [132],

and Ahmed et al. [115].

3.4.2 Centralised CAs

3.4.2.1 Greedy heuristic approaches

Li et al. investigate minimising the total delay of multiple concurrent flows in multi-hop

CR networks, where the CR network shares the spectrum with PUs [127]. In their model,

the delay of each single-hop link includes the sensing delay and the transmission delay.

The sensing time is used to characterise the PU behaviour. Constraints are placed on

the interference between flows and between links of the same flow, and the optimisation

problem is formulated to achieve the “minimum potential delay fairness”. In this work,

it is assumed that spectrum sensing perfectly identifies unused channels and that the use

by the SU CR network of any unused channels does not cause any interference between

66

the PUs and SUs. It is assumed that all routing paths are known. It is also assumed that

all SUs transmit at the same power level and have the same transmission range. The

Spectrum Assignment for Minimum Expected Delay (SA-MED) optimisation problem

is formulated, and a centralised algorithm is proposed for solving it. A common control

channel is used to inform the SUs of the computed Channel Assignment. The authors

propose a heuristic algorithm for solving the problem, called “minimum cost colouring”

(MCC), which has a time complexity of O(M4N), where M is the number of SUs and

N is the number of available channels. This is a very high time complexity. Lagrange

multipliers are used to obtain the solution for a fair end-to-end flow rate allocation for

the given spectrum assignment.

CA in WMNs using more realistic interference models is presented by Chaudhry et al.

[126]. They introduce a method for building the conflict graph based on the Signal-

to-Interference Ratio (SIR) model with shadowing for finding Channel Assignments in

MRMC WMNs. The goal is to find the minimum number of non-overlapping channels

required such that all incoming packets have an SIR above the required threshold for

correct reception. SIR instead of SINR is used because the authors assume that co-

channel interference is much larger than the noise. In this work, one radio interface

of each mesh node is dedicated to control traffic only, and all radios are tuned to a

common control channel. Greedy heuristic algorithms are proposed for the minimum

colouring CA problem, with a worst-case computational complexity of O(L2), where L

is the number of links. The network size considered in [126] is only 36 nodes. It is found

that more realistic channel models require more frequency channels to be assigned for

minimal interference.

Chaudhry et al. [129] address the CA problem with the aim of minimising the number

of channels used. Cognitive Radio aspects and DSA are not taken into account in this

work. A constraint is placed on the cumulative interference from multiple links. Prior

to the actual CA algorithm, two other problems are solved. Firstly, connectivity is

established through a topology control algorithm that forms links between the closest

possible node pairs. Secondly, multi-path routing is done to find which subset of links

is involved in message routing. The solutions to these two prior problems help form

the conflict graph and conflict matrix for the network. The problem is solved through

greedy heuristics that find a sequence of “weighted maximal independent sets” in the

conflict graph representation of the problem. Instead of using an exact measure for the

cumulative interference, an O(m) algorithm is applied, where m is the maximum degree

of the conflict graph. The overall worst-case complexity of the algorithm is O(m2). The

authors find that the heuristics find solutions that use at most two more channels than

the true optimum. Where the intersecting set of the allowed channels of different nodes

might be small, requiring two more channels than necessary is a significant drawback.

67

The same authors address the same problem by incorporating beamforming in the con-

flict graph to minimise co-channel interference and the number of channels [128]. While

these works do address interference and SIR more realistically than elsewhere in the

literature, they have a different approach from ours. The optimisation objective is to

find the minimum number of required frequency channels while meeting the constraints.

None of the above three works considers the DSA scenario explicitly. The authors as-

sume that all nodes have the same allowed channels. In addition, they do not consider

the scenario of other users outside of the network to be optimised also causing interfer-

ence. In our case, other SUs of the channels may be in a different network over which we

have no control, or they can be using different standards in the same frequency bands,

so are more difficult to identify and avoid. We use the SINR directly in the optimisation

objective rather than as a constraint. These works employ problem-specific heuristics

rather than the metaheuristic optimisation methods we employ to address our problem.

In summary, our work is a different approach to a similar, but not identical, problem.

Siraj and Alshebeili look at link scheduling in multi-hop CR WMNs based on an inter-

ference conflict graph model [133]. Their situation also involves using CRs with DSA

to access licensed spectrum such as TVWS by unlicensed SUs in WMNs. In their work,

scheduling is performed by linear programming with the limitation that it is only in the

time domain with the goal of interference mitigation. No other optimisation metrics are

considered, and scheduling is not done in the frequency domain. Hence, it is different

from our conception of Channel Assignment. These are both key differences between

this work and ours. The work also makes no mention of how the algorithm would ac-

tually be run in a physical implementation or the mechanism for sharing the spectrum

assignment amongst the mesh nodes. It is unclear whether a dedicated control channel

is required and whether the scheduling algorithm is run on a single channel manager

node outside of the mesh itself or in a distributed fashion.

Algorithms are presented by Jiang et al. [56] that aim to improve spectrum utilisation

in a multi-hop cognitive DSA mesh network in the presence of licensed users. Channels

are sensed periodically, and the availability and interference status are represented glob-

ally in a binary matrix, which is inferred statistically based on the probabilities of false

detection and correct detection. These probabilities are given assumed values, which are

fixed during a simulation instance. The traffic of PUs is assumed to follow a heavy-tailed

Pareto distribution with certain fixed parameters. In a real network, these probabilities

would be highly variable in time and frequency domains and depend heavily on envi-

ronmental conditions and the quality of the sensing devices. Obtaining realistic values

is thus a significant problem that is yet to be solved. Channel allocation is performed

using graph theory and combined time and frequency division multiplexing. The model

assumes that a channel is available during specific time slots for a centralised resource

68

manager to exchange channel allocation and sensing information and to synchronise cog-

nitive nodes, but there is no explanation as to how such a time-channel block is found

and reserved.

3.4.2.2 Metaheuristic optimisation approaches

Some works have used metaheuristic optimisation for similar and related problems to

that of this work. Simulated Annealing is evaluated by Chen and Chen for CA in

WMNs while considering the interface constraint [134]. In one method of theirs, the

interface constraint is modelled with a penalty function for candidate solutions. In their

other method, infeasible solutions are instead converted to feasible solutions by a merge

operation. Such a merge operation once again introduces the interference that the first

step aimed to minimise, which is a drawback of this work. Another weakness is that the

interference is considered binary, i.e., either present or not. Connectivity is ensured by

assigning a channel to every link.

We now discuss some GA approaches. Sridhar et al. present a CA methodology for

multi-radio WMNs that use only the Wi-Fi spectrum [131]. The optimisation goal

is minimising interference. They introduce a constraint to ensure that each link is

assigned a channel for topology preservation and weight the interference objective by

the link traffic, which is assumed to be stable and easily predicted from past behaviour.

Lagrangian relaxation is used to find lower bounds. They also present a GA-based

metaheuristic for solving the problem. In addition, a distributed algorithm is presented,

but this requires that all radios maintain a Channel Assignment matrix as well as a

radio usage matrix for all nodes in the network, both of which are difficult to realise.

Pal and Nasipuri [135] also present a GA, but for joint routing and Channel Assignment.

They optimise route quality and take into account the interface constraint. A GA is

employed by Ding et al. for minimising total interference and maximum link interference

in WMNs with partially overlapping channels [121, 136]. As is common, interference

from overlapping channels is modelled as a binary factor based on a threshold. Ghaleb

et al. [137] introduce a GA-based CA that concentrates on maximising link fairness

while minimising interference. The link fairness is defined by Jain’s fairness index, with

a twist. Instead of throughput, the measure used in the sum (XM in Equation (2.16))

is the ratio of the actual link data rate to the required rate. A constraint is then

placed that the link data rate must at least meet the required rate, and the actual

link rate is given according to the Shannon-Hartley theorem (Equation (2.15)). It is

stated in this work that SNR can be calculated from the RSS measured by hardware

sensors but it is assumed that the transmit power is known, which may not be the

69

case in reality. The interference is estimated as the number of overlapping channels

scheduled simultaneously. The IEEE 802.11a/b MAC is used for simulation. There is

no consideration of DSA or different allowed channels for different nodes, and no detail

about the sensing done to find the SINR.

Balusu et al. combine GAs with learning automata to minimise interference in WMN

CA, but for multicast tree topologies [138]. Cheng and Yang also investigate multicast

tree networks [139]. They present GA, SA, and Tabu search solutions for joint QoS

routing and CA in MRMC WMNs. Subramanian et al. [140] use Tabu search to min-

imise binary interference, first ignoring the radio constraint and then merging Channel

Assignments to comply with the interface constraint. Jang compares Tabu search, SA,

and GA methods for channel scheduling in Wireless Sensor Networks (WSNs) [141].

An evolutionary algorithm known as Biogeography-based optimisation is employed by

Tegou et al. for centralised spectrum allocation in a CR network [142].

A few works use Particle Swarm Optimisation for related problems. In the most relevant

work, Zhuang et al. [143] present a PSO-based CA algorithm for multi-radio multi-

channel WMNs to minimise interference, again considered binary. The key difference

with our work is that the same channels are allowed for use by all radios. Neighbour

solutions are chosen by switching out a link on a channel to another link, rather than

switching out the channel assigned to a link. Solutions are only considered if they

are feasible assignments, where a feasible assignment satisfies the interface constraint

(only as many channels can be assigned to a node as it has radio interfaces). The

fitness function is simply the total number of collisions relative to the total number of

edges in the conflict graph. Ghosh et al. [144] use PSO to tackle a CA problem in

mobile networks. The reassignment of channels is limited to one cell receiving a new

call, and the fitness function is a linear combination of on-off states. These factors

make this problem significantly simpler and less realistic than the one in our work.

Abdelsalam et al. [145] investigate the use of PSO for CA in CR networks (not WMNs)

by considering the mean reward and max proportional fairness objectives and different

protection ranges for the PUs. They find that PSO generally outperforms GA approaches

for their problem. A minimum interference CA in MRMC WMNs is found using PSO by

Cheng et al. [146], who concentrate on topology preservation (maintaining connectivity).

Interference is quantified simply by the number of interfering pairs of links in the WMN

based on the distance between them. The interference range is assumed to be equal to

the transmission range. No external interference is taken into account. The case of 3

and 12 available channels are simulated, with a sparse network of 25 nodes and a dense

network of 50 nodes. Their algorithm is shown to improve on previous work in network

interference and throughput.

70

Chakraborty et al. [147] consider PSO for the CA problem in mobile cellular networks,

while Sakamoto et al. [148] present a PSO-based algorithm for node placement in WMNs.

PSO is included in the Mixed Integer Linear Programming solution to a related prob-

lem, topology control in WMNs, by Rai et al. [52]. In their work, topology control

is exercised by scheduling with power control at the link layer, using SINR as a con-

straint, transforming this problem into a knapsack problem, and ensuring connectivity

is maintained. Unique to this work is that a realistic SINR model is considered instead

of simple binary interference. In contrast to our work, though, the SINR is modelled

and taken into account in the problem as a constraint rather than an objective.

Differential Evolution approaches include Da Silva Maximiano et al. [149, 150], who

assign frequencies to base stations in Global System for Mobile Communications (GSM)

using DE for minimising interference. Differential Evolution is also used for CA in DSA

CR networks by Latif et al. [151] and Anumandla et al. [152]. In Latif’s work [151], the

objectives considered are fairness and utility, while interference with PUs and other SUs

is considered only as a constraint. This problem does not have the added requirement of

maintaining connectivity or topology preservation, which is present in our work, because

WMNs are not considered, and each SU is independent. In Anumandla’s work [152],

the multi-objective optimisation encompasses three network utility functions. These are

max-sum-reward, which maximises the spectrum utilisation; max-min-reward, which

maximises the minimum reward of each user while satisfying the constraints on the

number of channels and the required total capacity of each user; and max-proportional

fairness, which is related to QoS. The researchers found that the time complexity and

solution quality of DE are superior to a Non-dominated Sorting GA.

3.4.3 Distributed CAs

A Distributed Adaptive Channel Assignment (DACA) algorithm for DSA mesh networks

is proposed by Xin, Ma, and Shen [132]. This solution does not attempt to optimise the

assignment and does not use any soft computing methods. They consider only single-

radio nodes, while our scenario considers nodes with more than one radio. There are

practical questions about their work. For example, they assume that a node randomly

switching to a channel is likely to find a node to link with on that channel. This is

an unrealistic assumption. Xin et al. also assume that the accessible channel list is

the same for all nodes in the network [132], whereas we consider the more realistic case

where the allowed and available channels might differ from node to node but have some

overlaps.

71

The problem of distributed Channel Assignment in MRMC WMNs is addressed by

Ahmed et al. [115]. They propose a “Spectrum-aware Channel Assignment” algorithm

for MRMC CR networks in the presence of PUs. By “spectrum-aware” the authors

mean that the activity duration of PUs and the error rate are known. They emphasise

that different available channels have different levels of PU activity and may experience

different data error rates, requiring smart CA algorithms to reduce retransmissions and

improve throughput. In their formulation, the PU activity is modelled as a continuous

time alternating ON/OFF Markov Renewal Process with an arrival rate that is Poisson

distributed and exponentially distributed ON and OFF times. In this distributed CA

method, each node computes the channel ranking in terms of the PU parameters, as-

suming that no changes in the network occur during the CA process. This information

is exchanged with neighbouring nodes over a common control channel. Performance is

evaluated by simulation in OMNeT++. The simulation has 12 SUs, each with three

radio interfaces, and a varying number of PUs, channels, and PU activity parameters.

Vijaya et al. present a hybrid static and dynamic channel allocation algorithm for

MRMC WMNs called Adaptive Dynamic Channel Allocation (ADCA) [153]. In this

work, radios have both a static interface and a dynamic interface. On the dynamic

interface, the device stores a queue per neighbour on the link layer, buffering data to be

sent to the corresponding neighbour. When there is data to transmit, the node deter-

mines a neighbour to which to transmit and negotiates a common channel. Neighbour

selection is done based on the expected throughput and fairness. The link states are

inferred from the queue length, and this is used to estimate the probability of interfer-

ence. Data with a more stable traffic profile is transmitted on the static interface. This

work does not consider DSA-related aspects, and the interference estimation method is

not clearly defined.

Another study that considers a hybrid static-dynamic approach and uses queue length for

making assignment decisions is [154]. Shojafar et al. [154] develop and test algorithms

that perform the interference-connectivity trade-off in MRMC WMNs using learning

automata. In this approach, at the start, one-third of the nodes are considered static,

and the remaining nodes are dynamic. The learning automata are able to convert static

links to dynamic links, or the converse, according to environmental feedback. This

implies cognition and a sensing mechanism. The channel allocation involves assigning

channels to radio interfaces. Initially, the channel and interface are chosen according

to data volume (or, equivalently, queue length as in [153]), and then state changes are

made according to the network’s feedback. A state change to another interface occurs

when the link probability drops to less than 10% of its original state.

72

We have found one other work [155] that uses a variant of measuring SINR to use in the

Channel Assignment utility function. It is mentioned that the RSSI can be employed in

some way to obtain the SINR, but this problem is not addressed in detail. The achievable

accuracy of the sensing is also not analysed. This work also employs learning automata,

like the previously mentioned work. However, in this study, the frame slots are divided

into short times for Channel Assignment, evaluation, and sensing. This is impractical,

as discussed further in Section 3.6.1. The SINR is observed at the beginning of each

frame slot, and the CA is computed from the observed value. Channel switch times

are considered negligible, which is unrealistic. The method has the advantages that

1) there is little overhead from information sharing between nodes since each node acts

independently, and 2) it does not depend on the network topology or size. The algorithm

was tested by simulation, but only 2-3 flows were simulated, and only a 25-node grid

scenario and a scenario with 9 nodes randomly placed were simulated.

The above-mentioned studies extend the work of Pediaditaki et al., who developed the

Learning-based Channel Allocation Protocol (LCAP) for multi-radio WMNs [45]. LCAP

is a distributed CA protocol for WMNs that uses learning automata. Nodes learn their

channel allocation based on their own and their neighbours’ channel usage information.

At the start, all channels have equal probability. Then, in every adaptation interval,

nodes compute the quality of all channel sets based on a specific criterion and the

information obtained from the LCAP neighbour discovery module and adjust the prob-

abilities accordingly. The unique contribution of this work is to involve client devices in

neighbour discovery so that mesh nodes can discover each other, even if not sharing a

common channel. At certain intervals, activity by the client device on the access inter-

face is suspended, and the mesh node uses the access interface to hop through unused

channels to beacon to potential neighbours. The channel quieting feature of Dynamic

Frequency Selection (DFS) in IEEE 802.11 can be leveraged for scheduling the quiet pe-

riod (DFS is for avoiding interference with radar systems). Another suggested option to

create a quiet period is for the mesh node to use the Network Allocation Vector (NAV)

mechanism. In this option, the node sends a gratuitous CTS frame with the NAV du-

ration field set, so that the client remains quiet until the specified quiet period elapses.

The mesh node’s access interface can then be used to discover potential neighbours dur-

ing that period by cycling through all possible channels. While this is a useful idea in

some situations, if we were to adopt it, it would require that the client access interface

be able to operate on the DSA band. Until typical client devices (smartphones, laptops

etc.) are equipped with TVWS network cards and antennas, this is not a feasible option

in the case of a TV spectrum backhaul as we envisage, although it can work in other

bands.

73

Zhou and Li [51] present a distributed link scheduling algorithm for throughput opti-

misation in WMNs without explicitly addressing the issue of dynamic changes. They

do this by finding a maximum weighted independent set of links (MWISL) subject to

physical interference constraints projected onto a graph-based model, similar to [47]. To

achieve the criterion of maximum throughput, they develop approximation algorithms

to find an MWISL for either fixed or variable transmit power values. The MWISL prob-

lem is not solved directly but looked at from a teletraffic engineering perspective. The

maximum-throughput link scheduling problem is solved for the supportable arrival rate

of links for multi-hop wireless networks. Xu and Song [47] derive an efficient scheduling

protocol, which can achieve an O(1/ log n) fraction of the capacity region where n is

the number of links to schedule, taking stability as the region under which the expected

number of unscheduled packets is always bounded, whereas Zhou and Li [51] develop

a scheduling policy that establishes strict Lyapunov stability, which ensures faster con-

vergence and better delay performance. The work by Xu and Song includes transmit

power control, albeit at a basic level [47]. Cases are considered with a uniform power

assignment and where the power assignment scales linearly with the link length.

A distributed cooperative channel allocation and scheduling algorithm called Load Bal-

ance Link-layer Protocol (LBLP) is proposed by Deng et al. [30]. A good feature of

this work is accounting for realistic switching delays. For ensuring that connectivity is

maintained, one interface of each node is kept static on a single channel and is always

in receive mode, while another interface that stays in transmit mode can change chan-

nels. Any other interfaces can adapt to be either sending or receiving interfaces. Once

selected, the static interface’s chosen channel information is broadcast on all available

channels to neighbour nodes. The interference model used is analytical, based on as-

sumed fixed transmission and interference ranges, the distance from neighbour nodes,

and assumed path loss exponents, which, it is assumed, the neighbours know a priori.

On the sending interfaces, packets are arranged into queues, each associated with a dif-

ferent channel. A queue switching interval is set according to the length of the queue.

The busier the queue, the longer the switching interval. In the simulation, the number

of orthogonal channels is varied between 5 and 12. It is not clear how the channels for

the static receiving interfaces are chosen. There is no external interference in the model

of this work, no spectrum sensing, and the allowed channels are the same for all nodes

in the network.

The case of a multi-radio multi-channel network as SUs coexisting with PUs is addressed

by Qin et al., using Lyapunov optimisation of throughput and average delay [156]. One

of their considered scenarios is a multi-hop network. The network scenario in this work

is simple, with only five source-destination pairs and a maximum of 15 SU nodes. In

addition, interference within the network is not adequately addressed.

74

A more practical CA algorithm is given for an infrastructure WMN using Wi-Fi spectrum

by Ramachandran et al. [157]. Their CA is built on a novel interference estimation

scheme. In this interference estimation method, a packet capture interval is used to

identify the number of MAC addresses external to the network. These MAC addresses

identify the number of interfering devices. The packet capture is also used to gather

the channel utilisation of the interfering devices. The two lists of devices and channel

utilisation are ranked and merged by averaging the quantities to form the interference

estimation. This interference estimation technique is easy to implement in real nodes,

but is not a realistic model for interference, since it is based on the number of conflicts

and does not include cumulative interference effects. It can also only identify other users

of the same technology (Wi-Fi) and would not work in the case of mixed technologies

in the same spectrum band, as our method does. The required packet capture period in

[158] causes a temporary disruption to transmissions from each capturing radio of 36 s.

The researchers also claim that this interference estimation is done every 5 minutes.

Network downtime of 36 s every 5 minutes is a significant disruption to the network

and would likely cause a bad user experience. However, the pertinent aspect of this

work to ours is that the authors address interference between the WMN itself and other

co-located wireless networks (as well as within the network itself). This mirrors our case

of interference being experienced from external SUs in the vicinity of our network, even

though [158] only considers interference between Wi-Fi devices. This contrasts with

our scenario where the external SUs may be using a different technology or standard

in the same DSA band as the network under consideration. In addition, in [158], a

default channel common to all nodes is reserved to ensure topology preservation. Their

evaluation by simulation only considered 30 nodes, but a good addition was an evaluation

of a real prototype implementation of six nodes.

A unique approach is taken by Wang et al. [159] for multi-channel access in wireless

networks where external interference can cause different channels in wireless networks to

be highly correlated. It must be noted, however, that the network studied in this work is

not multi-hop or mesh and there is only a single user that dynamically chooses a channel

per slot. In this approach, channels can be in one of two states: “good” or “bad”. In

each time slot, a single user selects one channel to transmit a packet. If the channel

in which it chooses to transmit is “good”, the transmission is successful; otherwise, the

transmission fails. The goal is to maximise the long-term number of expected successful

transmissions. The problem becomes a partially observable Markov decision process

(POMDP) since each user can only sense its selected channel in each time slot so a

complete system view is not available. Reinforcement learning using a Deep Q-Network

(DQN) is employed, with the states as input and the estimated Q-values as output. It

is shown that the DQN achieves near-optimal performance in complex situations.

75

The problem of long-term evolution (LTE) and Wi-Fi coexistence is somewhat similar to

our problem of heterogeneous SUs coexisting. A fair amount of research has been done

on this problem and is somewhat relevant to our problem, even if the added difficulties

of a mesh network are not considered in the LTE-Wi-Fi coexistence body of literature.

Reinforcement Q-learning is used in [160] for sub-channel selection for coexisting LTE

license-assisted access (LTE-LAA) and Wi-Fi. Performance is evaluated in terms of

convergence and sum throughput. When LTE-LAA or LTE-Unlicensed coexist with

Wi-Fi, this scenario is similar to managing channel selection as a SU with external

SU interference. The proposed method is fully distributed and there is no centralised

controller, nor is information exchanged between the LTE and Wi-Fi devices. However,

in this scenario, every LTE evolved Node B (eNode B) and Wi-Fi AP is independent,

and the added complexities introduced by the connectivity requirement of WMNs are

not present. Garnaev et al. [161] are concerned with the fairness of how a channel

is shared. Solutions are found based on α-fairness and the maximum fairness of the

expected throughput. Two optimal solutions are found: one sequential binary solution

based on a channel on/off strategy and another that allows simultaneous joint access.

The subcarrier assignment and power allocation are optimised for CR 5G systems with

one primary system and multiple secondary cells [162]. Successive convex approximation

is used to make the non-convex mixed-integer nonlinear programming problem tractable.

While we have mentioned frequency-domain solutions, the majority of research has been

into time-domain approaches. We only mention a few. A Reinforcement Q-learning-

based dynamic duty cycle selection method is proposed by [163] for a Time Division

Duplex (TDD) LBT LTE system coexisting with Wi-Fi. Cano and Neu suggest a Bandit

Convex Optimisation approach for the Carrier Sense Adaptive Transmission (CSAT)-

based LTE/Wi-Fi coexistence problem [164]. The Wi-Fi transmission duration, collision

probability, and transmit duration are balanced with the LTE throughput through pro-

portional fairness methods. An Almost Blank Subframe (ABS) scheme is put forward by

[165]. Shoaei et al. [166] employ p-persistent TDMA scheduling for LTE users coexisting

with Wi-Fi, aiming to ensure QoS for LTE users while preserving Wi-Fi throughput.

3.4.4 Summary

Table 3.1 provides a summary of the contributions of existing CA strategies, with the

last row highlighting our contribution. C/D refers to Centralised or Distributed, and

we have used “?” when it is unclear from the reference whether the strategy was im-

plemented in a distributed or centralised manner. In the “Metaheuristic” column, LA

= Learning Automata and includes Reinforcement Learning, TS = Tabu Search, and N

(None) means there is no metaheuristic optimisation applied. This table helps to clarify

76

Table 3.1: Comparison between existing literature on CA in WMNs (MC = multi-
channel, C/D = centralised/distributed, POC = partially overlapping channels, LA =

Learning Automata, TS = Tabu Search, N = None)

Reference WMN MC DSA C/D SINR POC Metaheuristic

[145] N Y Y ? N N PSO

[115] Y Y Y D N N N

[152] N Y Y ? N N DE

[138] Y Y N D N N GA, LA

[147] N N N C N N PSO

[128] Y Y N C Y N N

[134] Y Y N C N N SA, TS

[136] Y Y N C N Y GA

[144] N Y N C N N PSO

[141] N Y N C N N SA, GA, TS

[56] Y Y Y C Y N N

[151] N N Y D N N DE

[127] Y Y Y C N N N

[149] N N Y C N N DE

[160] N Y Y D N N LA

[125] N Y N C Y Y N

[135] Y Y N C N N N

[45] Y Y Y D N N LA

[156] Y Y Y D N N N

[158] Y Y N C N N N

[122] Y Y N C Y Y N

[154] Y Y N ? N N N

[131] Y Y N C N N GA

[140] Y Y N C N N TS

[153] Y Y N C N N N

[159] Y Y Y C N N LA

[132] Y Y Y D N N N

[143] Y Y N C N N PSO

This work Y Y Y C Y N SA, GA, DE, PSO

77

that our contribution is a comparison of SA, GA, DE, and PSO for CA in a multi-

channel WMN using DSA that is centralised and takes into account the SINR. Our

problem formulation also applies to partially overlapping channels or adjacent channel

interference and allows for convenient extension to include that factor. However, par-

tially overlapping channels have not been modelled in our current ns3 simulation setup,

so our CA results in Chapter 5 do not include it.

3.5 Markov chain analysis of EDCA for WMNs

Table 3.2: Comparison of Markov chain analysis of EDCA

Reference Non-satur- EDCA Mesh Variable Idle NAV

ated traffic retry limit time

[167] Y Y N Y N N

[168] Y N N Y N N

[169] N Y N N Y N

[91] N N N N N N

[170] Y Y Y Y Y N

[171] Y Y N N N N

[172] N Y N N N N

[173] N N Y N N N

[174] Y Y N N N N

[90] N Y Y N N Y

[113] N Y Y N Y Y

This work N Y Y Y Y Y

Markov chain analysis is used in this work to determine the amount of spectrum sensing

time that can be made available to mesh nodes. We thus discuss prior work that performs

this type of analysis for networks and scenarios related to ours. A handful of works

analyse the performance of Enhanced Distributed Channel Access (EDCA), the Quality

of Service (QoS)-aware extension to Distributed Coordination Function (DCF) [169, 175–

177]. Oh and Chen [172] and Alshanyour and Agarwal [168] add the effect of retry

limits. Oh and Chen concentrate on support for Voice over IP (VoIP) using EDCA

and present the performance in terms of saturation throughput and VoIP delay [172].

Alshanyour and Agarwal analyse transmission errors for DCF, and present performance

in terms of packet drop probability, average packet delay, and average time to drop a

packet [168]. Banchs and Vollero [169] analyse the delay with the maximum number

78

of retries equal for all ACs, keeping the analysis per AC separate. The analysis is only

done for up to 16 nodes. IEEE 802.11s EDCA based on different NAV settings is then

investigated by Yan et al. [90], while Gallardo analyses EDCA performance for IEEE

802.11p WAVE vehicular networks under different traffic loads [171]. Tantra et al. also

consider statistical traffic using the Erlang model [174]. Abu-Khadrah et al. include

analysis for both saturation and non-saturation conditions. They obtain closed-form

expressions for the probability that the system is busy and for the expected throughput

for different data types [167].

Meanwhile, the performance of the IEEE 802.11 binary exponential backoff in multi-hop

networks is studied by [173]. The researchers conclude that the DCF binary exponential

backoff algorithm leads to unfairness and link starvation in multi-hop ad hoc networks.

802.11s WMNs for Smart Grid applications are studied by Deng et al. [170]. The main

adjustment to previous models for modelling WMNs is the impact of the hidden node

problem. IEEE 802.11s performance is compared for different NAV settings by Yan et

al. [90]. Carrier sense and transmission range interference are differentiated in [113].

Deng et al. then present performance analyses for an IEEE 802.11s WMN in a Smart

Grid in two works [178] and [170]. The multi-hop nature of WMNs is taken into account

through modelling the hidden node problem. In the hidden node problem, a node (say,

C) may not be able to hear the transmissions of another node (e.g., A) when both A

and C wish to transmit to node B, which leads to node C transmitting and causing a

collision. In that work [170], Deng et al. alter the collision probability expressions to

include the hidden node problem.

We compare the contributions of these works in Table 3.2 and show what unique features

we combine in our analysis in Chapter 7. As can be seen from the mentioned works,

the use of Markov chain methods for analysing MAC layer performance in terms of

throughput is well-established. Some do include delay analysis, which is part of the idle

time. However, idle time, including time spent by nodes waiting in backoff and taking

into account the NAV is not the focus of any of these works. Only one work explicitly

takes into account the effect of the NAV. In this work, we are interested in exploiting this

idle time inherent in contention-based WMNs to use for sensing, so we employ this kind

of stochastic analysis for determining the amount of idle time in such networks, which

can be used for sensing. The NAV is necessary for our sensing method to work; hence it

is modelled in our analysis. Most existing analyses have a fixed number of retries across

all ACs, but our model has a varying maximum number of retries.

79

3.6 Spectrum Sensing

3.6.1 Timing or scheduling of spectrum sensing

Both when spectrum sensing occurs and its duration affect the MAC layer performance

and throughput of a CR network. Prior research on spectrum sensing with a focus on

the timing and scheduling of sensing is discussed in this section.

Zhao and Shimamoto [179] present an optimal cooperative spectrum sensing threshold

that minimises the probabilities of false alarm and missed detection in cognitive WMNs

that experience non-coherent inter-channel interference. The positions of PUs on all

channels are assumed to be known. The implicit assumption is made that the position

of SUs can be changed. Multiple in-band control channels are exploited to reduce the

sensing delay. According to the formulation for inter-channel interference cancellation,

the number of SUs that must perform spectrum sensing on a channel is at least equal

to the number of PUs operating on all primary channels.

A scheme for cooperative spectrum sensing (SS) with interference mitigation in a CR

WMN using DSA is proposed in [74]. In [74], the mesh clients perform spectrum sensing

to avoid interference with PUs of the spectrum. Each channel is divided into 20 time

slots and sensing is performed in the first time slot. An energy detection threshold is

used to determine the presence or absence of PUs in the sensed channel at the time.

Each mesh client then shares its sensing results with the mesh router in the same cluster

and determines whether the channel is free. If more than half the cluster’s mesh clients

indicate that the channel is free, then that is the decision; otherwise, the channel is

considered busy. The throughput is optimised given constraints on the probability of

detection errors. The simulation is performed with five channels, 20 timeslots, and

ten mesh clients participating in sensing and sending results to one mesh router. It is

unclear in this work how long a sensing time slot is, and the sensing performance is only

quantified in terms of the probability of missed detection given additive white Gaussian

noise. The scenario is also different from ours because it is the clients that perform

sensing instead of the mesh routers, and the sensing results are sent to the mesh node.

In our case, clients cannot participate in SS since only the backhaul operates on the

DSA spectrum.

Zhang et al. present an optimal sensing scheduling policy for determining which SUs

sense which channels with what accuracy [180]. The system is a CR network where SUs

are independent, not forming a mesh network, each SU having a single radio. Better

sensing accuracy when staying on one channel for longer is traded off with discovering

more spectrum opportunities by sensing more channels. The problem is formulated as a

80

Partially Observable Markov Decision Process (POMDP). A slot length is divided into

several parts: a period where the base station distributes the sensing scheduling policy

to the SUs, a period where every SU performs its sensing, a time when the sensing results

are uploaded and channels are allocated, and finally a transmission duration. All period

durations, except the time spent per SU per channel, are fixed. The practicability of

this work is questionable for several reasons. First, a time slot in Wi-Fi MAC is only

9 or 16 µs, while channel switch duration, which can be 300 µs or more [29, 31, 118],

is not taken into account in the analysis [180]. Fitting all of these activities in before a

transmission can occur would cause considerable delays and would not be practical in

a Wi-Fi network with short slot times and considering the time it would take to switch

channels to sense. Additionally, only two channels are considered. In a real-world

scenario, more channels would need to be sensed.

The sensing period and transmission time are optimised by Xu et al. for a slotted SU

overlaying an unslotted PU [181]. Only one channel available for transmission by both

the PU and the SU is considered. The SU senses the channel at the beginning of each

slot. Then, the transmission time is allocated if the sensing result is that the PU is

absent. Energy consumption is formulated as a constraint, which is a function of the

sensing period. Interference is also considered a constraint and modelled by the overlap

in time between the PU and SU. Two problematic and unrealistic assumptions in this

work are that sensing is assumed perfect and that the “sensing time is short enough to

be ignored” [181]. The authors do not provide suggestions of the actual duration of the

slots for which the method would work if implemented in commodity transceiver cards,

and the accuracy of the sensing is not analysed.

The optimal spectrum sensing interval in CR networks is found by Xing et al. [182], by

trading off energy consumption and secondary network throughput where PUs have a

slotted access pattern. The SU can adapt the sensing interval based on the required QoS

level and the current network state. The PU busy and idle states are modelled using

a Hidden Markov Model and the expectation of the missed transmission opportunities

are found along with the user satisfaction, modelled as a Sigmoid function.

The joint sensing time-energy-throughput trade-off in a CR network is investigated by

Kulkarni et al. [16] so as to maximise the average aggregate bit throughput in each frame

duration. Constraints are placed on energy expenditure and the maximum transmitted

power. The SU is assumed to have a priori knowledge of PU occupancy. Detection and

false alarm probabilities are stated in terms of the energy detection threshold and the

average PU Signal-to-Noise Ratio (SNR) at the SU receiver. Contention and other MAC

layer phenomena are disregarded in this work. Instead, it is assumed that a base station

controls the SU transmissions in a time division multiple access (TDMA) fashion. Both

81

PU and SU activity is simply assumed to be time-slotted and synchronous. Ejaz et al.

present a method for distributed cooperative spectrum sensing for an ad hoc network

[75]. In their work, all SUs are synchronised, and each frame is divided into three slots: a

time for sensing, iterations to reach consensus among the SUs, and a period for all SUs to

transmit. Only cooperation among SUs is used to reach a decision, with neighbouring

nodes exchanging sensing data, and no centralised entity. The performance is shown

in terms of the number of iterations. It was found that 37 iterations were sufficient.

However, the actual time per iteration and the total time taken are unclear. Also, the

network size considered was only 10 nodes.

Chowdhury and Akyildiz [118] suggest that nodes in a WMN using DSA (called a Cog-

nitive Mesh Network) making use of IEEE 802.11 can use the backoff time in contention

to perform sensing on the primary channel. In this scenario, a node performs carrier

sensing, and if the channel is found to be busy, the node only needs to sense the channel

for long enough to decode the header and determine if the packet is meant for it. If not,

the node can switch to the predetermined primary channel to determine its spectrum

usage. They conclude that for a sensing time per channel of 20 µs, a channel switching

time of 100-200 µs, small packet sizes of 512 bytes, and an 11 Mbps link, less than 3

channels can be sampled in that time. This work also proposes the use of IEEE 802.11

contention backoff for sensing, which is similar to ours, but with significant differences.

First, [118] is based on the basic DCF CSMA/CA contention method and Distributed

Inter-Frame Spacing (DIFS). It does not consider the effect of QoS differentiation in-

troduced in EDCA, while we do. In Chowdhury and Akyildiz, the basic access method

is used with RTS/CTS disabled, while the use of RTS/CTS is required in our method.

The parameters used in [118] are for IEEE 802.11b; we update these to IEEE 802.11ac,

most of which are the same as IEEE 802.11ax. Additionally, the NAV is not considered

by Chowdhury and Akyildiz but is integral to our method. We provide a more detailed

mathematical analysis of the expected time available for sensing in a network using

EDCA and show what this would be for a range of operating points. Chowdhury and

Akyildiz use a small number of fixed values and disregard certain important variables,

such as propagation delay, which we include in our analysis. The goal of sensing in [118]

is to detect PUs, unlike ours, where we wish to estimate the average interference power

from other SUs using maximum likelihood estimation. We also consider the actual re-

ceived desired signal power and use SINR as the final measurement on which Channel

Assignment decisions are made. In [118], performance is given in terms of the number of

incorrectly detected PU channels. We provide a thorough performance analysis of inter-

ference estimation, evaluated by the confidence interval, sensing time, and the number

of sensing windows required.

82

Another work with some similarities to ours is that of Zhang and Hafid [183]. They

consider the trade-off between PU and SU throughput, which is affected by spectrum

sensing accuracy as well as multi-channel access contention (MAC method). They find

expressions for the probability of interference to PUs and SU throughput, most impor-

tantly, for a DCF-based MAC. As in the previously mentioned works, a frame duration

is divided into a sensing period and a transmission period and SUs are assumed to be

synchronised. In each sensing period, the SU randomly chooses one sub-channel in which

to perform spectrum sensing. It is assumed that PUs change state (from On to Off) with

a lower frequency than the SU frame rate, so the PU state remains constant during the

SU frame duration. Since DCF MAC contention is considered, the transmission period

begins with carrier sensing and counting down the backoff counter for the SU to obtain

a transmission opportunity (TXOP). Then the SU can only transmit when the backoff

counter reaches 0. The authors express the SU conditional transmission probability and

probability of successful transmission in terms of both spectrum sensing and access pa-

rameters based on the DCF model of Bianchi [91]. Among the data presented in [183]

is the optimal number of samples required for different frame durations and different

numbers of channels. These results are of interest to our current work. Two interesting

data points are that about 300 samples are considered sufficient in the case of 8 primary

channels to sense and, for a frame duration of 100 µs, the optimal number of samples

is also about 300. Cao et al. build on the previous work by assuming that the PU can

change state twice in one frame and deriving detection and false alarm probabilities and

the achievable throughput [184].

An important weakness in the majority of the aforementioned works is that channel

switching time is not taken into account, which can be significant when considering real

hardware constraints. Chauhan et al. take this factor into account by adding a channel

switching time to the sensing period [185]. Control information is exchanged using a

dedicated common control channel. They define a function for the sensing time required

to achieve a certain target probability of detection and false alarm when the received

SNR is constant. According to this function, the higher the received SNR, the lower the

sensing time required to achieve the given target detection accuracy. However, no MAC

layer contention is taken into account in this work.

The Listen-before-talk (LBT) mechanism in LTE Licence Assisted Access is similar to

CMSA/CA in Wi-Fi. The LTE eNode B performs carrier sensing (CS) before being able

to transmit [186]. In LTE-Unlicensed, CSAT has the secondary cell update its operating

duty cycle according to CS of the medium [186]. This CS is similar to Wi-Fi’s clear

channel assessment. The sensed channel is the channel in which the device wants to

transmit directly after, and the sensing is merely to identify another carrier. In our

case, the SS windows are for sensing non-operating channels to obtain samples for SINR

83

estimation that will be used in CA at a later stage. The time required for carrier sensing

is considerably shorter than the time required to perform estimation to an acceptable

accuracy, as we show in Chapter 7.

The majority of studies on the scheduling or timing of SS are for CR networks where

each node is independent and has one radio and not for MRMC WMNs. The number of

channels considered is small. In most cases, one frame duration must include sensing,

computing the best channel, and transmitting. The channel switching time is often

neglected. Considering that the channel switch time can be of the order of 100-300 µs and

a short sensing time results in large errors, this time division of one frame is impractical

and highly unlikely to work in reality while keeping an acceptable user experience. In

our work, SS is done over a number of sensing windows. The results are then shared

with the gateway node once a sufficient number of samples has been obtained. Then,

the gateway finds a suitable CA and distributes it to the nodes. Changing the CA is

done at an interval of hours, not per transmission. Only one work suggests using the

IEEE 802.11 backoff time for SS in a CRAHN [118], but that is for a different scenario

from ours, using a different MAC and with a sensing goal distinct from ours.

3.6.2 Spectrum sensing and estimation

Because the purpose of SS in CR networks in most of the existing literature is to identify

the presence or absence of PUs, almost all SS methods use a binary hypothesis test

statistic to make a decision, combined with performance measurements of false alarm

rate and detection (or missed detection) rate. A false alarm is when a PU is incorrectly

detected when there is not actually a PU within range, and a missed detection is when

a PU is present but is not detected. Even in the case of Wi-Fi and LTE-Unlicensed

(LTE-U) coexistence, which both use unlicensed spectrum, Wi-Fi is said to be treated

as a PU by the LTE-U system [62], in the sense that LTE-U responds to the sensed

presence of one or two Wi-Fi Basic Service Sets (BSSs) to protect Wi-Fi.

In the case of WMNs, the level of interference is traditionally determined based on a

threshold to find only the number of interfering devices (e.g., [158, 187]) or the level of

occupancy (e.g., [17, 188]) or utilisation (e.g., [125]), instead of estimating the true level

of interference.

In [189], Tlouyamma and Velempini analyse channel selection algorithms based on coop-

erative SS in CR networks. All the investigated SS methods rely on hypothesis testing,

and their performance is given in terms of the probabilities of missed detection and

false alarm. You et al. [190] present an efficient cooperative SS method for Wi-Fi on

the TV spectrum, which also depends on hypothesis testing and the probabilities of

84

missed detection and false alarm. Concerning SU-SU interference, Song et al. tackle a

SS scenario where interference from other SUs instead of PUs is the main concern [191].

The SU sensors are IEEE 802.22-compliant devices. The impact of noise is assumed to

be negligible and is excluded from the analysis. The test statistic used is simply the

difference between the maximum and minimum detected signal. A fusion centre collects

and combines the information to make a global decision. Once again, performance is

evaluated in terms of the probability of false alarm.

A mechanism for sensing and recognition of heterogeneous interference sources in a

wireless sensor network is put forward by Hou et al. [192]. In this work, the critical

measurement is the RSSI. The sampling window is 1 s long. The heterogeneous in-

terference is only considered above the heterogeneous interference threshold, which is

between the noise floor and the Wi-Fi Clear Channel Assessment threshold. The active

ratio is computed as the fraction of active interferers out of the total possible number

of interferers, assumed to be known.

Kozal et al. [72] develop an improved energy detection scheme for CR networks in low

SNR regions. They introduce the noise uncertainty factor and implement a dynamic

decision threshold. The minimum required number of samples is found based on sensing

constraints and the SNR walls, and it is found that the required number of samples is

inversely proportional to the square of SNR. Bagwari and Tomar [193] suggest that the

adaptive detection threshold only be used when the SNR is below a certain threshold.

1000 samples are assumed to be sufficient for QPSK modulation in a Rayleigh fading

channel. Another low-SNR detection scheme is presented by Zheleva et al. [194]. This

approach uses wavelet decomposition of the power spectral density for a high-sensitivity

unsupervised and wide-band spectrum analysis.

Some recent examples of SNR estimation are [195] and [196]. Gallyas-Sanhueza and

Studer present low complexity blind estimators for the average noise power, signal power

and the SNR in multi-antenna mmWave systems [195]. They disregard interference but

also use statistical models in the estimation of SNR. Their estimation method relies on

the sparsity of the signal, and the observed signal is assumed to be a Bernoulli complex

Gaussian random vector. Non-data-aided SNR estimation is done by deep learning

in [196]. An exponential probability density is assumed, and a maximum likelihood

estimation is derived. The method is similar to our SINR estimator, but Yang et al.

perform estimation for a coherent M-ary PSK receive signal at the symbol level, while

our method is more general and performed for a whole WMN. Yang et al. [196] find

that their deep learning approach can be used for more modulation types, has a wider

effective range of SNR estimation, and is more robust to phase and frequency offsets

than the M2M4 estimator used as the benchmark. Sekokotoana et al. [197] perform least

85

mean squares channel estimation for the downlink in non-orthogonal multiple access.

This work does not have many overlaps with ours or the other works. A pilot signal

is employed, the scenario is a two-user download single-input-single-output system, and

the estimation is of the channel impulse response and not the SINR.

A more accurate SINR prediction model for LTE systems is suggested by Ikuno et al.

[198]. The estimation is done using pilot signals received at a zero-forcing receiver. The

mean-squared error of the estimated received signal is included in the SINR estimation.

In our estimation method, pilot symbols are not used and the estimation is done over

an entire WMN, while Ikuno’s method [198] is for a single LTE downlink, albeit in the

presence of up to six interference sources. The estimation requires storage on the order

of the channel coefficient matrix × the precoding matrix × the number of subcarriers.

Ullah et al. [199] present a more recent artificial neural network approach to SINR

prediction in 5G, using a sounding reference signal and based on the location of the

device, which must be known a priori.

Manesh et al. [200] present a Bayesian probabilistic model and estimate for the SINR in

wireless networks, which can be applied to CR networks or ad hoc networks. However,

the estimation is performed based on a simplified model of a single PU receiver in the

centre surrounded by interfering SUs. The SINR model relies on the assumption of

Poisson-distributed SUs, an exponential path loss model, and identical transmission

power and antenna gain and model for all interfering nodes. Bayesian inference is used,

which is the same basis as for the maximum likelihood estimator that we find for SINR

in a WMN. The probability distributions of each of the dependent variables (interference

power, received signal power, and SINR) were found by simulation over 1000 iterations

for changing input variables, such as distance, frequency, path loss, and transmit power.

Begishev et al. [201] derive analytical expressions for the SINR experienced by a mobile

user in indoor environments where the noise is negligible. The environment that is

analysed consists of adjacent rectangular cells with base stations or APs in their centre

and mobile users uniformly distributed throughout the cell areas. The model is purely

theoretical and no measurements are used.

Spectrum sensing and channel estimation are combined in a DSA scheme, which the

authors say is distributed and cooperative [202]. Statistical channel estimation is done

to maximise SU throughput with constraints on PU outage probability, in either the

presence or absence of PUs. Pilot signals for PU communications are used by the SUs

in sensing and estimation. This method requires that SUs are synchronised with the

PU frame timing to observe the PU pilot signals. This is very unlikely to be possible in

real life. Spectrum sensing is performed to determine the presence or absence of PUs,

and then the power is minimised in the case where the PU is absent. The sequential

86

probability ratio test is used to minimise the average detection delay, and then the

minimum mean square error estimator is used to estimate the unknown channel gains.

While the scheme is described as being distributed and cooperative, SUs report their

statistics to a fusion centre, which selects the SU to transmit. The SU then calculates

its transmit power, so it is not fully distributed. A collaborative sensing method is

proposed and simulated by Ferreira et al. [203] for the TVWS band, with the intention

to use it in 5G and LTE networks in rural areas. In this concept, the user devices carry

out the sensing and send the results to the eNode B or gigabit Node B (gNode B). They

also use ns3 to simulate the sensing of SNR values. The key metric is the probability of

false alarm.

In WMNs, it is often crucial to estimate the level of interference that can be expected for

certain Channel Assignments to find an optimal or acceptable CA for the network. In

most cases, for CA, interference is modelled as binary (either present or not) when two

links operate simultaneously on the same channel. We return to the work of Chaudhry

et al. [126] with a focus on interference estimation. Their work assesses the impact

of the interference model on Channel Assignment in MRMC WMNs [126]. The models

that are compared are the protocol model, the Signal-to-Interference-Ratio (SIR) model,

and the SIR model with shadowing. In the protocol model, conflicts are represented by

a binary matrix. The simplifying assumption is made that if a node is between the

interference range and transmission range of another, it is interfering. The thresholds

are assumed to be fixed. A desired incoming signal can only be correctly received if it is

above the threshold. If the received SIR is less than the threshold, a conflict exists. If

not, the two links can be active simultaneously without causing interference. In the third

model, shadowing is also added to the SIR model. In both the SIR models, the actual

location of nodes as well as their transmit power must be known, and assumptions are

made about the propagation loss models and shadowing. None of these three methods

is practical for estimating interference if the potential interferers are not part of the

network and all their characteristics are unknown.

Sevani and Raman employ SIR-based interference modelling and estimation for WMNs

[204]. In their work, SIR is related to the packet delivery ratio so that the level of inter-

ference depends on the modulation scheme of the interferer as well as the transmitter.

This relationship is quantified through measurement. SIR is measured by obtaining the

packet-level RSS. Noise is assumed to be insignificant, hence the use of SIR instead

of SINR. Because this method requires packets to be analysed, only Wi-Fi interferers

whose received power is above the decoding threshold can be identified. In contrast, our

method is protocol-agnostic and takes into account the accumulative effect of a number

of individually weak interference sources. Sevani and Raman find that 85-90% of links

87

have a prediction error of less than 10% in the case of “non-intermediate” SIR links,

whereas, for links with “intermediate” SIR, the prediction error is noticeably higher.

While there is a plethora of research on spectrum sensing methods for PU/SU coexis-

tence, in reality, the majority of regulatory bodies have instructed the use of spectrum

databases for avoiding interference with PUs [8, 205, 206]. What is missing in licensed

bands is a way to approach coexistence among heterogeneous SUs of the spectrum, ac-

cording to prevailing conditions and obstructions, especially in the case of WMNs using

DSA. More accurate and finer-grained solutions are also needed. To the best of our

knowledge, the existing SNR estimation literature does not sufficiently address the sce-

nario of a WMN with internal and external interference using measurements. This is

what we provide in this work.

3.6.3 Current channel scanning mechanisms

In Wi-Fi, spectrum sensing on different channels is currently done in the form of channel

scanning [207, 208], also called Access Point (AP) scanning. Active channel scanning is

primarily done during network discovery by a client when wanting to join a network, by

a mesh node when seeking mesh peers, or when mobility or other factors cause changes

in SINR, requiring a hand-off. These phenomena are not expected to be common for

the mesh nodes considered in this work as they are stationary. Channel scanning is

mainly useful for capturing other Wi-Fi traffic where IEEE 802.11 management frames

can be identified. Other raw in-phase (I) and quadrature (Q) data samples that the

network card driver cannot identify as probe response or beacon frames are typically

discarded. Consequently, external interference sources – in particular, non-Wi-Fi in-

terference – cannot be adequately accounted for using these scanning methods. This

channel scanning period is also limited in the number of channels that can be sensed

per scanning window and the frequency with which this can be executed. Thus, for our

purposes, a separate spectrum sensing time is necessary to obtain the samples required

for Channel Assignment optimisation. However, existing channel scanning mechanisms

can still be helpful for our work to find the RSSI of the mesh peers and the desired

signal from the beacon and probe response management frames. We discuss this further

in Section 7.3.2.

3.7 Conclusion

Considering the existing literature, we bring novelty to this field, combining both the

connectivity preservation requirement of the WMN as well as the interference avoidance

88

requirement of DSA-using CRs. Ours is the first work to consider near optimal CA in

WMNs using soft computing methods in situations where the network uses the licensed

spectrum opportunistically as SUs, with Wi-Fi as an additional option, in the presence

of heterogeneous SU interference sources. Most other works consider Wi-Fi channels

only, while a small number consider DSA CRs only. Ours is also one of the first works

to concentrate on an infrastructure DSA WMN. We approach the problem by taking

into account that different nodes may have different allowed channels since the network

is geographically spread out. Other works do not factor this in. We also present a new

algorithm for ensuring that both the connectivity constraint and the interface constraint

are met simultaneously with the constraint on which channels are allowed at each node’s

location. We bring to this specific problem a realistic SINR model instead of an on/off

interference model. The SINR formulation enables extending the work to include adja-

cent channel interference. This is the first work to compare metaheuristic optimisation

algorithms for such a network and scenario, with all these considerations.

While the channel selection and assignment problems may appear to be well studied,

there is no existing work that applies metaheuristic optimisation algorithms for CA to

an infrastructure WMN using DSA methods. To the best of our knowledge, ours is also

one of few works to use the estimated SINR perceived by the nodes for CA in a WMN

or CR network. In contrast, it is common in the literature to use simple binary conflict-

based interference objectives, neglect the requirement of maintaining connectivity, and

use unrealistic interference and channel models. SINR estimation has been researched in

prior work to a limited extent but not in our network scenario. Having stated the research

questions we address in this thesis, introduced the theoretical background required, and

discussed the prior work on topics related to our work, we are now ready to dive into

our actual contributions.

Chapter 4

Models, methods, and simulation

environment

4.1 Introduction

1In Chapter 1, we present the scenario of a WMN formed of mesh nodes with both

Wi-Fi and DSA radios that help to extend Internet access to under-served and outlying

areas or form a community network. We highlight the problem of assigning channels to

those radios in a way that is optimal for the network as a whole. We suggest that local

sensing would help make CA decisions. We wish to address the setting of parameters,

in particular, channels, in this scenario of a DSA-WMN. Two preliminaries need to be

clarified before we can tackle the problem. The first is the mathematical representation

and model of the problem, and the second is the experimental setup used to tackle the

problem. While we have access to a small number of the White Space Mesh Nodes

(WSMNs) that will form the backbone of the DSA-WMN, the cost and practicality of

testing all our suggested algorithms at scale on a real test-bed are prohibitive. Both

gaining access to a large enough number of nodes and access to the space in which a

large-scale test-bed can be set up were not possible. In addition, creating controlled

repeatable experiments where one variable can be changed at a time and environmental

conditions can be kept stable is not possible in the real world. For these reasons, most

of our analysis is done using a simulation environment. Hence, the experimental setup

refers to the simulation environment that we have created for carrying out experiments.

This enables testing algorithms at scale and faster and more controlled experiments. Our

solution and generation of the simulation environment rely on some further assumptions.

These are clarified in Section 4.2.
1The work described in the chapter was published, in part, in the Proceedings of the 19th ACM

International Symposium on Mobility Management and Wireless Access [209].

89

90

In this chapter, we detail the mathematical model of the problem in Section 4.3. The

simulation environment and code changes that were required are discussed in Section 4.4.

We also present an algorithm by which the initial Channel Assignment can be obtained

in Section 4.5. The contributions of this chapter are

• to present the mathematical representation of the CA problem with constraints

on the number of channels assigned per node, which channels can be assigned per

node, and the receive sensitivity;

• introduces the total SINR across the network as a valid performance measure for

the CA problem;

• the creation of a simulation environment using the ns3 framework that models the

pertinent aspects of the DSA-WMN and TVWS that can be used for evaluating

CA algorithms;

• analyse the computational complexity and running time of the simulation model;

and

• presents an initial CA algorithm for finding feasible Channel Assignments given

an allowed channel set, a set of links, and a known number of radio interfaces per

node.

4.2 Assumptions

As mentioned in Chapter 1, there is an inter-dependency between routing and Channel

Assignment. The first assumption we make is about routing and it is as much an

assumption as a design decision. The goal of the CA algorithm is to assign channels

optimally to a set of links. A link is defined as a pair of radio interfaces between which

traffic could potentially flow directly if tuned to the same channel. In a network, over

the course of a day, the set of links used for relaying traffic over a day varies. The

selected paths are dependent on the capacity of the links, which is affected by the

Channel Assignment. On the other hand, channel allocation should consider the links

used, especially those with the highest traffic load. While there is an inter-dependency

between the two problems of routing and CA, our Channel Assignment is quasi-static

and does not change according to routing in near real-time.

This is a practical and advantageous decision rather than a limitation. Suppose the CA

attempts to keep up with the rapidly changing routes, and routing is, in turn, trying to

keep up with changing channel allocations. This would cause network instability, which

91

leads to a bad user experience. Channel switching causes a loss of network connectivity

during the time the NIC switches its channel and tries to re-establish connectivity. This

delay can be on the order of seconds in reality. Optimisation algorithms, such as those we

present here, are time-consuming to run and resource-intensive. This is especially true on

commodity mesh radios, which are resource-constrained, even if a dedicated controller

node is used with more computational power than the other nodes. This means we

would not want the optimisation algorithm to run often. It is entirely impractical for

routing and Channel Assignment to happen on the same timescale. CA is done on a

much slower time scale and responds much slower to changing conditions than routing.

Our CA is not dependent on the traffic load per link. The use of the DSA spectrum is

not likely to be as dynamic as routing.

Some other assumptions that apply are:

• Nodes are stationary, and the gateway node knows their locations once the network

is formed. Before nodes join the network and the gateway becomes aware of their

location, nodes are aware of their own location and can report their location to

the gateway node once they have joined the network.

• PU channel use and occupancy change on a slow time scale compared to SU channel

occupancy, and the list of allowed channels for all nodes is known upfront before

running the optimisation algorithm.

• The WMN nodes are mostly in the same geographical area. However, some nodes

on the edges may be in different geographical areas, where the GLSD defines the

boundaries. An “area” is defined by having a common list of allowed channels

at all locations within that area. When nodes are in different GLSD areas, the

network can be partitioned into clusters with largely overlapping allowed channel

lists. For this reason, we also do not present results for networks larger than 50

nodes, as a large network would be partitionable into clusters. There are also other

practical limitations on performance in the case of large networks. We consider a

network of 50 or more nodes as “large”.

• If the nodes at the cusp of two clusters do not share a sufficient number of over-

lapping allowed channels in the DSA band, they can be linked by a Wi-Fi channel.

• Channel widths are fixed to the same value for all interfaces of all nodes for a

particular Channel Assignment.

• We use the average or, equivalently, the total SINR measured across all the links

in the network in the optimisation. This is because if the total of the SINR mea-

sured at the receive ends of all links in the network is large, a high throughput can

92

be expected across the network. SINR is a direct measure of the result of chang-

ing Channel Assignments on the signal reception and interference experienced by

nodes. These measurements are gathered by all nodes for different possible Chan-

nel Assignments. An average of the samples for a particular CA is used in the

optimisation for one solution in the search space. The overall averages are sent to

the controller/gateway node to perform the optimisation. The spectrum sensing

method by which nodes obtain SINR samples is discussed in Chapter 7. Further

justification for SINR as a performance measure can be found in Chapter 6.

• The fairness of throughput experienced among nodes in the network is taken care

of by the routing algorithm.

4.3 Mathematical model

The use of a graph for modelling the CA problem in a network is well-established. In

the usual way, we model the network as a graph G = (V,E) where V is the set of nodes

(vertices) and edges E are the possible links between nodes. Edges are potential links

and not necessarily carrying traffic at this stage. Links can only be formed between

nodes that are within transmission range of each other, i.e., where the received signal

is above the receive sensitivity of the receiving node and the decoding threshold. Each

edge e ∈ E could be operating on a particular channel at any time, i.e. E 7→ C, where

C is the full set of considered allowed channels for the whole network. C is the union of

channels allowed in different locations of the WMN according to the GLSD. Each node

v has a set C(v) of channels it is allowed to use. For two nodes v1 and v2, C(v1) 6= C(v2)

in general, although they could be equal and should have channels in common. We

require C(v1) ∩ C(v2) 6= ∅ for v1 and v2 to be able to communicate on the DSA band.

We assume that if v1 and v2 are neighbours, this condition C(v1)∩C(v2) 6= ∅ will hold in

the majority of cases. Where this is not the case, either the routing must form a different

path between the two nodes, or a link must be established over the Wi-Fi interface. A

channel is specified by a channel number, a centre frequency, and a channel bandwidth.

Connectivity graph G maps to a conflict graph Gc = (Vc, Ec), where the vertices of the

conflict graph are the edges in G i.e. Vc = E. This is shown in Figure 4.1. An edge

e′ ∈ Ec exists between two vertices in Vc if the two links could interfere if tuned to an

overlapping channel. This could occur when the interfering signal power is above the

receiver’s sensitivity. An edge e′ exists if a transmission in link 2 causes power to leak

into, or be transmitted in, the channel on which link 1 is operating. This can occur

if the two links are tuned to the same channel. This can also happen if the links are

tuned to different channels while the spectrum mask of the transmitter node is wide

93

(a) connectivity graph G = (V,E) (b) conflict graph Gc = (Vc, Ec)

Figure 4.1: Mapping of connectivity graph to the conflict graph model

or the receive filtering is poor, so that power leaks into the channel on which link 1 is

operating. We also note that the conflict between different links with a common vertex

is also handled through the MAC layer protocols by being staggered in time. The fewer

edges are incident on the same vertex in G above the number of radios, the shorter the

delay experienced by transmissions on those links. The amount of power that can cause

interference is variable, depending on the distance between the links and the spectral

overlap. This variability is modelled as a weighted conflict graph denoted 〈Gc(Vc, Ec), w〉,
where the weight w represents the interference power per link. There are other external

sources of interference, such as transmitting SUs and PUs with out-of-channel emissions,

which can influence the reception of nodes in G if they are transmitting with power in

the same channel to which one of the links E is tuned. These devices are added to

the conflict graph to form Ĝc, but we note that these edges are fixed, as their channels

cannot be switched and their transmit power cannot be controlled.

Considering this conflict graph, we aim to minimise the conflict but maximise the wanted

signal power received by each node and so maintain connectivity in G. We can satisfy

both these requirements simply by considering SINR and by ensuring that all links have

an allocated channel. The SINR encapsulates the goal of having the highest desired

received signal level throughout the network while also minimising conflict (interference).

The optimisation objective is thus to find the Channel Assignment A, which is a mapping

94

of E 7→ C that maximises the total SINR, i.e.

max
A=E 7→C

∑
v∈V

Pwanted,v(A)∑
i∈I Pi(A) +N

= min
A

∑
v∈V

∑
i∈I Pi(A) +N

Pwanted,v(A)

= min
A

∑
v∈V

∑
x∈V \u Px,v(A) +N

Pu,v(A)

= min
A

1∑
v∈V SINRv(A)

≡ min
A

E
[

1

SINR(A)

]

(4.1)

subject to the radio interface constraint:

|A(v)| ≤ Rv ∀ v ∈ V (4.2)

and the available channel constraint:

A(v) ⊂ C(v) ∀ v ∈ V

C ≡ {c1, c2, c3, ..., cM} ∀ cm ∈ N
(4.3)

and a channel number cm defines a pair of centre frequency and channel width

cm 7→ (fcm, Bcm)

where:

A(v) is the Channel Assignment of node v and | · | indicates the size (number of channels

assigned to the node);

Rv is the number of radios at node v;

fc is the centre frequency of channel c;

Bc is the channel width of channel c;

Pu,v is the power received at node v from transmitting node u; and

Pi is interfering power received at node v from an interfering transmission i over the

whole channel width of channel c to which node v is tuned.

N is the noise power, which in Network Simulator 3 (ns3) is modelled as the product of

the thermal noise (Nt) and the noise figure (FN), as shown in Equation (4.4).

N = Nt × FN = kT0B × FN (4.4)

where k is Boltzmann’s constant (= 1.380649 × 10−23JK−1), T0 is the temperature in

95

Kelvin and B is the channel width. T0 = 290 K is the standard noise temperature,

but further noise is introduced by non-ideal circuit components, such as the resistive

elements in the receiver frontend. The equivalent noise temperature of these non-ideal

components is denoted Te [36]. The noise figure is then given by FN = (1 + Te/T0). In

this expression, the noise factor is given as unitless and not in dB.

A transmitting node is considered interfering with v if it is in the set of nodes V minus

the node u, the node transmitting the desired signal to v. We only consider there to be

one wanted receive signal per timeslot.

We can find Pi using Equation (4.5):

Pi =

∫ fc+Bc/2

fc−Bc/2
p(fb)St(fb)Sr(fc) df

= Px,v(A) ∀ x ∈ V \ u
(4.5)

where

p(fb) is the power spectral density of the interfering signal at the central frequency of

channel b in which the interfering node is transmitting (it is possible that b = c);

St(fb) is the spectrum mask of the transmitter (interfering signal) centred at the central

frequency of channel b;

Sr(fc) is the receive filter’s frequency response, which is tuned to channel c, and all is

integrated over the width of the considered channel c.

This formulation allows for extension to the case of adjacent channel interference or

interference between any two channels, which are kept as future work.

Each transmitted signal is subject to propagation loss as well as frequency-selective

fading. The received signal power at node v from node u’s transmitted power Pu,v (in

W) (before receive filtering) is related by the propagation loss L according to the chosen

propagation loss model. We apply the Friis free-space transmission loss model, shown

in Equation (4.6) [36], although the work is easily extensible to other propagation loss

models, as well as real-life measured channel responses. From the measurements we

performed in a wooded environment, analysed in Chapter 6, we see that vegetation has

a large effect on the received SINR in Wi-Fi but less so in the TVWS band. Depending

on the band in question, it may be useful to use a propagation loss model that can show

these effects. Since we focus on the TVWS band, we claim that the effect of obstructions

is not significant and, to analyse CA algorithms, the free-space model is sufficient. The

reader should please note that the actual algorithms and CA method are not dependent

on the specific models used or the channel response experienced. We use an isotropic

antenna model in the simulation, but this can also be changed in the simulation for

96

future work and is also not required for our method to work.

Pu,v = Pu
GvGuλ

2

(4πd)2
=

Pu
Lu,v

(4.6)

where

Gu is the transmission gain of node u’s antenna (unitless);

Gv is the receive gain of node v’s antenna (unitless);

λ is the wavelength (in m), inversely proportional to the frequency, so is affected by the

Channel Assignment;

d is the distance between the nodes (in m);

or, in dB,

Pu,v(dB) = Pu(dB)− Lu,v(dB) (4.7)

where path loss L(dB) is the absolute value of the loss in dB.

Before considering interference, a link only exists if the effective received signal power

on that link is above the receive sensitivity sv of the receiver node v. That is, the link

will be pruned unless

Pu,v ≥ sv
Pu
Lu,v

≥ sv

SNRv ×N ≥ sv

SNRv ≥ sv/N

(4.8)

SNR can only be measured if it is above the receiver sensitivity/noise. This constraint

reduces the number of links that require channel assignment and reduces the edges in

the conflict graph that need to be considered. We also have to ensure that in the CA,

condition Equation (4.8) is met for critical links, so that connectivity is maintained

within the network. Additionally, interference is only considered if the interference

power at the receiver is above the energy detection threshold of the receiver.

In the simulation framework of ns3, frames are split into constant SINR chunks and

overlapping frame chunks are considered as additional contributions to the overall noise

[210]. Interfering signals are only considered as interference when the frame chunks

overlap with those of the wanted frame at each considered receiving node in time. The

preamble and payload parts of frames are treated separately because the payload might

have a higher modulation and coding rate than the BPSK-encoded preamble. Interfering

signals below the energy detection threshold are not included in the computation.

97

4.4 Simulation Environment

Simulation is an indispensable tool for network research, in particular for novel scenarios

such as our own, where mesh-mode capable hardware with DSA capabilities is not yet

commercially available and is prohibitively expensive to obtain enough for experimenta-

tion at a large scale. Simulation also provides a controlled environment in which to test

and prove our ideas. To evaluate the performance of the algorithms, we have selected

the simulator Network Simulator 3 (ns3) [211]. The existing ns3 simulation framework

includes models for many of the network components required for our scenario, has

thorough documentation and a lively support community, and is widely used. For these

reasons, ns3 was our simulation tool of choice. We have built on top of the existing

ns3 classes and created a module for the multi-radio multi-channel WMN simulation

with interference, which models the spectrum sensing part of the DSA and the flow of

traffic in a WMN. Our ns3-dev fork contains the code used for generating the simulation

results. The code can be found at [212].

As far as possible, we have configured the simulation to mimic a WMN consisting of the

WSMNs and the conditions that were found in our real-world measurements, described

in Chapter 6. We assume mostly line-of-sight conditions but have adapted the simulation

to the TVWS band, using channels defined in a similar way to the Doodle Labs TVWS

cards found in the WSMN and a transmit power that was found by measurements to

be appropriate to the band. The main purpose of the simulation-based study is to

find feasible Channel Assignments of DSA channels that minimise internal and external

interference. Therefore, the Wi-Fi band is not included in these simulations as it is

not relevant to the problem of self-interference within a network using the same bands,

nor is it relevant to the study of the effects on CA of interference by external SUs in

a DSA band. As mentioned in point 4 of Section 4.2, the Wi-Fi band is a backup and

complementary band, not the primary consideration.

4.4.1 MeshSim module

We model the network scenario described in Section 1.3 in a new ns3 module we call

mesh-sim, found at https://github.com/natzlob/ns-3-dev-git/tree/mrmc-fresh/

contrib/mesh-sim. The implementation details are in model/mesh-sim.cc. We also

include the relevant code listing in Appendix A. The class is described in Figure 4.2.

The module consists of a configurable number of nodes that can be arranged in either

a grid or a random layout. In the grid layout, all nodes are placed at an equal vertical

and horizontal distance from one another. The random layout places nodes in random

positions within a disc area according to a uniform distribution of polar coordinates

https://github.com/natzlob/ns-3-dev-git/tree/mrmc-fresh/contrib/mesh-sim
https://github.com/natzlob/ns-3-dev-git/tree/mrmc-fresh/contrib/mesh-sim

98

Figure 4.2: MeshSim class UML representation

99

(angle and radius) relative to the centre of the disc [213]. The number of radio interfaces

per node is configurable, but we fix the number of radio interfaces that can participate

in the WMN to two DSA interfaces for this study. The number of radios is fixed at two

partly because the particular White Space Mesh Nodes we model have two DSA radio

interfaces that can participate in mesh connectivity. This is also a practical choice in

general, considering cost constraints in the rural and semi-urban areas that are our focus,

particularly in the African context. More radios might allow an increase in throughput

but make the devices more expensive and complex and increase power consumption.

These costs can counteract the price benefits of using secondary spectrum bands instead

of licensed bands. There is also a restriction on the number of available and utilisable

channels (due to the leakages between channels, larger frequency separations might be

required). Hence, it might not be possible to make use of all the radios if there are more

than two.

Each interface runs the Wi-Fi MAC layer of a mesh point device. A link-to-channel map-

ping is passed to the Run() function along with a vector of links. Each link is defined as a

tuple of node IDs, where the first element denotes the transmitter and the second the re-

ceiver. Links are half-duplex. The MultiModelSpectrumChannel channel type has been

applied along with the SpectrumWifiPhy. This combination of channel and physical

layer implementation enables different types of PHY to interact, which is necessary for

simulating interference from non-Wi-Fi devices. These classes facilitate the simulation

of heterogeneous interference. We have used the Friis propagation loss model with the

frequency set appropriately. However, several propagation models are available and can

easily be configured. While this propagation model is not the most accurate, it is accept-

able for comparing the performance of the CA algorithms as we compare them on the

same basis. We use the ConstantSpeedPropagationDelayModel. The channel widths

are fixed at 20 MHz. We have also fixed the transmit power to 10 dBm, as this work

does not consider optimal power levels, and this is the power level at which our measure-

ments show that TVWS has good performance (see Chapter 6). The receiver sensitivity

is -101 dBm. This receive sensitivity level is 2 dB above the variations we observed in

Chapter 6. We chose this level so that tiny noise fluctuations are prevented from having a

significant effect on the simulation results. The IEEE 802.11s MAC “ns3::Dot11sStack”

is applied to the mesh nodes on top of WIFI_PHY_STANDARD_TVWS_8MHZ as the standard.

Optimised Link State Routing (OLSR) has been configured for the network although our

method is not dependent on the routing algorithm, and other routing algorithms could

also be applied and experimented with in future. Channels are assigned and bound to in-

terfaces according to the link-channel mapping passed to the MeshSim::Run() function.

The MeshSim::GetSetChannelNumber() function allows switching channels on the fly.

100

In this work, interference towards the PUs is avoided by using a GLSD to determine

the allowed channels. The GLSD interaction is modelled by passing a constrained set

of channels to the CA and optimisation functions. This constrained set of channels is

the intersecting set of the allowed channels for the nodes participating in the simula-

tion. We create two external SU interference sources, set to interfere with our WMN

node transmissions on certain channels. We have implemented two new SpectrumModel

instances to model these interfering devices. The waveform powers of the interfering

sources are configurable, and the period and duty cycle are set appropriately to interfere

with our WMN transmissions. These external interference sources must be avoided for

the network to function optimally. Otherwise, the interference will lower the SINR and

the throughput in the network.

To obtain the SINR samples, we use the existing InterferenceHelper code, where

SINR is calculated for every transmission. The InterferenceHelper is accessed from

our module using a callback. These snapshot SINR values are averaged over the dura-

tion of one mesh-sim simulation run. In this way, we obtain the average SINR in the

network for a particular CA, network topology, and interference configuration.

4.4.2 TVWS channels

In order to use TVWS channels along with the standard Wi-Fi implementation, it is nec-

essary to define a new WIFI_PHY_STANDARD, which we add to the existing WIFI_PHY_STANDARD

instances in the wifi module in wifi-phy-standard.h and wifi-phy-standard.cc.

The PHY layer implements Orthogonal Frequency-Division Multiplexing (OFDM) with

most of the characteristics of IEEE 802.11ac. These characteristics include a SIFS of

16 µs and slot time of 9 µs, contention windows in the range [15, 1023], and rates up

54 Mbps. We also define the TVWS channels as pairs of channel numbers and (fre-

quency, channel width) tuples. The channel numbers 21 to 34 have been added as the

TVWS channels in band 474 MHz - 578 MHz. This mapping of channels mimics what

was done in the Doodle Labs TVWS cards of the real WSMNs we use, which is de-

scribed in more detail in Chapter 6. The mapping of the channels for the “Doodle Labs

DL509-78 Broadband Radio Transceiver for TV” card is shown in Figure 4.3.

Figure 4.3: Down-converted Wi-Fi to TVWS channel mapping as used in the Doodle
Labs DL509-78 Broadband Radio Transceiver card

101

4.4.3 Complexity and run-time

The components of mesh-sim module’s main Run() function (in Appendix A) and their

related asymptotic complexity (worst-case growth) are:

1. Create node container: O(V)

2. Create interferer nodes: O(I)

3. Set PHY and channel characteristics: constant

4. Set the number of interfaces per node: O(R)

5. Install the PHY and MAC layers to all nodes: O(V R)

6. Set positions: O(V)

7. Set waveforms of interfering devices: O(I)

8. Install Internet stack: O(V R)

9. Install Server applications: O(V)

10. For each link: L×

10.1 find the channel mapped to the link: O(logL),

10.2 set server and client nodes: constant,

10.3 set channel number per interface: O(R)

10.4 install client application: O(log V) to find the right node

11. Run: Using the MapScheduler [214], this is logarithmic in the length of the event

queue

where V is the number of nodes, L is the number of links, I is the number of exter-

nal interference sources, and R is the number of radio interfaces. The O(logL) and

O(log V) complexities are because of the vector lookup operation in those steps, which

is logarithmic in C++. The overall asymptotic complexity is:

O(V + I +R+ V R+ L× (logL+R+ log V)) (4.9)

In general, R � V and in this simulation I � V , therefore the complexity reduces to

O(V + L(logL+ log V)) (4.10)

102

In the worst case, O(L) ≈ O(V 2). Therefore the worst-case complexity of the simulation

is

O(V + V 2(log V 2 + log V)) ≈ O(V 2 log V) (4.11)

Alternatively, since V � L, the complexity also reduces to O(L logL).

For the optimisation algorithms, each CA solution is evaluated by running the mesh-sim

simulation for a duration of 1 virtual second and returning the average SINR. There

are stochastic aspects to the ns3 models used. These include each node beginning its

first beacon at a random time and a random error model. When a simulation runs, the

IEEE 802.11 EDCA MAC also kicks in, resulting in randomness in which nodes gain

access to the channel at which time. The random aspects require the simulation to be

run for long enough for those random aspects to converge, the central limit theorem to

start applying, and the average SINR across the network to converge on one value. By

repeating the experiment several times using the same Channel Assignment and settings

for different lengths of time, we found that 1 s virtual simulation time is long enough

for the averages to converge sufficiently to similar values.

We found that 1 s in ns3 time takes between 2.5 and 2.8 s to run in reality for 9 nodes,

about 5.4 s for 16 nodes, and around 28 s for 49 nodes. This simulation runtime growth

is illustrated in Figure 4.4. The figure shows that the real average growth is roughly

exponential in the number of nodes.

Figure 4.4: Run-time growth as the number of nodes in the network increases

For our population-based algorithms, we use a population size of 20 individuals. The

population size of 20 individuals makes one iteration of each optimisation algorithm

expensive at virtual 20 s or almost 1 minute in real-time. Therefore, we have determined

103

that run lengths for the population-based algorithms of longer than 200 iterations are

impractical, and algorithms that can find acceptable solutions in much fewer runs than

this maximum are preferable.

We use the mesh-sim simulation time to gather the average SINR across the whole

network. This method differs from our actual spectrum sensing proposal in which each

node performs its own sensing for a number of windows and then reports the results.

That is why the virtual simulation time differs from the spectrum sensing intervals we

find and analyse in Chapter 7.

4.4.4 Limitations

Since we are analysing performance using simulation, there are inevitable breaks from

reality and parameters that cannot be accurately modelled due to the limitations of the

tools we use. We have mentioned the propagation model we use is the Friis free-space

path loss model. One problem with the ns3 implementation of this model is that it

is required to set the frequency for this model upfront before assigning it to a channel

representation. When the channel number and operating frequency of that channel

change, the loss model does not change. However, this results in no more than 1-2 dB

discrepancy. For example, the free-space loss for a 500 m distance at 474 MHz (TV

channel 21) is 79.93 dB, whereas channel 33 at 578 MHz has a loss of 81.66 dB, which

is only 1.73 dB difference per link. This limitation in the simulation is thus not that

significant.

Another limitation is that ns3 does not easily model adjacent channel interference. In-

terference is only accounted for signals in the same channel. Fading is not modelled in

this iteration of our implementation, although ns3 does allow for adding Nakagami-type

fading. Obstructions that may affect that propagation are also not represented in the

simulation. Obstructions such as vegetation are shown in Chapter 6 to have varying

impacts on the propagation in different spectrum bands and channels. The inclusion of

these effects would improve the accuracy of this simulation.

Another non-ideality that is not modelled is rate- and modulation-dependent receive

sensitivity. Wi-Fi transceiver cards will usually quote the receive sensitivity as a ta-

ble of values for different modulation and coding schemes (see, for example, https://

www.comx-computers.co.za/WPEA-121N-specifications-228552.htm and https://

manuals.plus/doodle-labs/acm-db-3-r2-industrial-wi-fi-transceiver-manual.

We have used a single constant value instead. The SINR samples gathered in the sim-

ulation from the callback are constructed by the code implementation. It is not read at

the receiving end of the nodes. The difference in the computation of the average SINR

https://www.comx-computers.co.za/WPEA-121N-specifications-228552.htm
https://www.comx-computers.co.za/WPEA-121N-specifications-228552.htm
https://manuals.plus/doodle-labs/acm-db-3-r2-industrial-wi-fi-transceiver-manual
https://manuals.plus/doodle-labs/acm-db-3-r2-industrial-wi-fi-transceiver-manual

104

across the network might be an inadequate model of the actual SINR spectrum sensing

activity.

There are likely more practical phenomena that are not, or cannot be, adequately mod-

elled in our simulation. The aforementioned are the most notable. Nevertheless, the

simulations are useful for comparing the performance of different Channel Assignment

algorithms based on SINR for a DSA-WMN with external interference. The most im-

portant phenomena are modelled and taken into account. Therefore, we contend that

our simulation environment is “good enough”. Future work can refine the simulation

model and add more realistic phenomena and scenarios.

4.5 General feasible Channel Assignment algorithm

In this work, we aim to find a near-optimal CA using metaheuristics. Each of these

metaheuristics requires an initial feasible solution, i.e., satisfying Equation (4.2) and

Equation (4.3). The initial solution is then iterated on according to the method of

the specific metaheuristic algorithm to generate new solutions while ensuring that all

the new solutions are also feasible. Algorithm 1 describes the method by which we

find this initial solution, allocating channels to radios within the interface and channel

constraints, given a set of links. The implementation of the algorithm and its use in a

simulation are shown in the code listing Appendix B. This method is used within all

CA optimisation methods. For Simulated Annealing, a new solution is generated by

this method every iteration and then either accepted or rejected. For Particle Swarm,

both the initial swarm is created using this method to generate solutions, and, in a new

replacement method we propose for “bad particles”, we use it again to generate new

particles. The operations performed to generate new solutions from the old must be

checked to ensure the new solutions are feasible.

4.6 Conclusion

In this chapter, we introduce the models and methods used for evaluating the solutions

to the CA optimisation problem. We introduce assumptions that are made to make the

problem more tractable. Some of the most important assumptions are that nodes are

stationary, channel widths are fixed, and PU activity changes on a slower time scale

than SU activity. We also assume that it is likely for neighbouring nodes to have at

least one allowed channel in common because neighbouring nodes are likely to be in the

same geographic area. On the occasion where this is not the case, the Wi-Fi interface

can still act as a backup. We also assume that all the links are traffic saturated.

105

Algorithm 1: Initial feasible Channel Assignment

Data: C = allowed channel set, c = single channel in C, ni = node number i, L =
set of links, l = link in L, A = channels assigned = ∅, r = number of
interfaces per node=2

Result: complete A(l) ∀ l ∈ L
for l = (ni, nj) ∈ L do

if A(ni) < r and A(nj) < r then
c = random channel ∈ C(ni) ∩ C(nj);
A(ni) = c;
A(nj) = c;

end
else if A(ni) == r and A(nj) < r then
{c} = A(ni) ∩ C(nj);
if {c} 6= ∅ then

c = {c} [0];
end
else

c=choose one of C(nj);
A(nj) = c;

end

end
else if A(ni) < r and A(nj) == r then
{c} = A(nj) ∩ C(ni);
if {c} 6= ∅ then

c = {c} [0];
end
else

c=choose one of C(ni);
A(ni) = c;

end

end
else

both interfaces already assigned channels;
{c} = A(ni) ∩ A(nj);
if {c} 6= ∅ then

c = {c} [0];
end
else

continue;
end

end
A(l) = c;

end
∀ l unassigned, assign a 5 GHz Wi-Fi channel

A weighted conflict graph model is used along with the connectivity graph to model the

problem, and we show that the average SINR across the network can provide a suitable

tradeoff between the connectivity requirements and the interference minimisation goal.

106

Constraints are placed on the number of assigned channels (they cannot be more than

the number of radios) and the assigned channels (they must be allowed for use by the

nodes to which they are assigned).

We have described in detail how the simulation environment has been set up to model

the infrastructure DSA-WMN scenario as accurately as possible and elaborated on what

additions we have made to the ns3 framework to make that possible. The complexity

of the main mesh network simulation was shown to be exponential in the number of

nodes. While exponential complexity growth is not desirable, it is unavoidable. Some

limitations of the simulation are also highlighted in this chapter.

In this chapter, we also introduce the algorithm used to ensure feasible Channel Assign-

ments. This algorithm forms the basis for all the metaheuristic optimisation methods

used. The foundations have now been lain for developing the solutions to the problem of

near-optimal CA in a DSA-WM. The next chapter on the metaheuristic implementations

and results further develops our argument that we have provided a suitable framework

for channel parameter tuning in a DSA-WMN in this work.

Chapter 5

Implementation and comparison

between Simulated Annealing,

Genetic Algorithm, Differential

Evolution, and Particle Swarm

Optimisation for Channel

Assignment optimisation

5.1 Introduction

1 We have shown that the problem of Channel Assignment (CA) in a DSA-WMN is

challenging. It is NP-hard and is not convex. For these reasons, metaheuristic optimi-

sation methods are recommended to find near-optimal CAs. There are several of these

algorithms at our disposal and it is not clear which would be most suited to the prob-

lem and which would be superior, not only in complexity but in accuracy. Some of the

most well-known and readily available stochastic-based metaheuristic optimisation algo-

rithms are Simulated Annealing (SA), Genetic Algorithm (GA), Differential Evolution

(DE), and Particle Swarm Optimisation (PSO) [217]. We have chosen to implement and

compare these algorithms because of their relative maturity, ubiquity, and promise of

1NOTE: This work has been published in part in [215] and presented at the International Conference
on Cognitive Radio Oriented Wireless Networks (CROWNCOM 2021), in part in the IEEE Access journal
[216], and in the Proceedings of the 19th ACM International Symposium on Mobility Management and
Wireless Access (MobiWac/MSWiM’21)[209].

107

108

performing well in a variety of applications. We expect that these algorithms would be

easier to implement in a real network because there is more precedent and open-source

code available, and our experiments can be replicated readily, either in other simulation

frameworks, other coding languages, or real-world networks.

In this chapter, we present how we have adapted these algorithms to our purpose and

implemented them to perform optimisation of the Channel Assignment in our Network

Simulator 3 (ns3) simulation environment. We then compare the performance of each of

the algorithms. In this chapter, we start by detailing how each of the chosen metaheuris-

tic algorithms has been adapted to the problem and implemented (Section 5.2). The

results of comparing the different algorithms are presented in Section 5.3. We discuss

some limitations and future work associated with the CA optimisation in Section 5.4

and conclude in Section 5.5.

The contributions of this chapter are

• adapting SA, GA, DE, and PSO to the Channel Assignment problem;

• presenting the complexity of our implementations of each of the metaheuristic

algorithms for CA;

• comparing the performance of our implementations of the different metaheuristics

for the CA problem in terms of the quality of solutions;

• performing statistical analysis of the results to show that the differences in perfor-

mance are statistically significant; and

• making recommendations based on our performance analysis.

5.2 Implementation details of CA by algorithm

The metaheuristic methods are all iterative. For each of the metaheuristics, the initial

Channel Assignment is chosen at random using Algorithm 1, and the result of that

iteration is found by a single complete run of the mesh-sim simulation. A single run

of the mesh-sim simulation gathers a large set of sample SINR values for traffic flow

through the network with that particular CA for that setup. The inverse of the mean of

these SINR sample values is the objective function value for that CA. In each iteration,

a/multiple new solution/s (CA/s) is/are chosen according to the method of the specific

algorithm.

109

5.2.1 Channel Assignment by Simulated Annealing

A single complete run of the mesh-sim simulation gathers a large set of sample SINR

values for traffic flow through a particular CA for a particular interference environment

and network setup and topology. In the SA algorithm, we need the objective function

(so-called “energy” value E) to incorporate these SINR samples in a way that the desired

result is the lowest cost since SA is designed to minimise an objective function. Hence,

the selected cost E is based on 1/SINR, shown in Equation (5.1), where j is the SA

iteration number, n is the number of SINR samples per node, and V is the number of

nodes.

Ej =
1

V

V∑
v=1

[
1

n

n∑
i=1

1

SINRj(i)
(v)

]
=

1

V

V∑
v=1

1

SINRj
(v) (5.1)

In SA, the change in cost every iteration is used to decide whether to accept or reject

the particular solution. If the new solution is better than the previous solution, the

new solution is always accepted. However, if the new CA has a higher cost, this worse

solution is accepted with a probability given by Equation (5.2).

h = exp(−∆E

kT
) = exp(−Ej − Ej−1

k · Tj
) (5.2)

where k is Boltzmann’s constant (≈ 1.3806485×10−23JK−1) and Tj is the temperature

at iteration j.

This is realised by selecting a random value a between 0 and 1 and evaluating condition

(5.3).

a < h (5.3)

If Equation (5.3) holds, the solution is accepted. If not, the solution is rejected. If Equa-

tion (5.2) always evaluates close to 1, higher-cost solutions are almost always accepted,

and the SA algorithm takes very long to converge. Conversely, if Equation (5.2) always

evaluates very close to 0, almost no “worse” solutions are accepted, and the algorithm

converges prematurely to a local minimum that may be much worse than the true op-

timum. Therefore, a careful balance of temperature ranges, ∆E ranges, and k must

be formulated to tune the algorithm appropriately. Boltzmann’s constant k could be

omitted from this relation (or set to 1) in practice if it makes the probability of accepting

a point extremely low, leading to converging on a local minimum. Including or leaving

this constant out, or even changing its value, is part of the parameter tuning required

to ensure the algorithm behaves well.

The other parameter tuning that is required is the selection of the starting temperature

and the temperature cooling function. A starting temperature that is too high causes

110

slower convergence, as does a cooling function that decreases too slowly. On the other

hand, starting with too low a temperature or a cooling function that reduces too quickly

may result in converging prematurely. Starting temperature and the temperature cool-

ing function must be adjusted according to the number of iterations the algorithm is

expected to run for, or that is considered acceptable. We examined various cooling func-

tions in this work, e.g., exponential multiplicative cooling and logarithmic cooling [93].

After experimentation with these different cooling strategies, it was found that linear

multiplicative cooling (Equation (5.4)) was the most effective.

Tj = Tstart − α · j (5.4)

where j is iteration count and α is a constant set (to 0.02 or 0.01) by reversing Equa-

tion (5.4) for the appropriate starting temperature (found to be 20), a final temperature

close to 0, and the desired number of iterations (1000 or 2000). We confirmed by exper-

imentation that these values work well. We start with a lower temperature value of 20,

selected by observation of the ∆E values for our problem, and scale the 1/SINR values

appropriately. With these adjustments, the algorithm converges sufficiently within 1000

iterations.

The neighbour generation procedure, whereby a new solution is generated from a pre-

vious CA, is to randomly shuffle the order of the links and channel list C with size

|C| and then perform Algorithm 1. The shuffle operations together have asymptotic

computational complexity O(|L| + |C|) since C++’s std::random_shuffle has linear

complexity in the distance between the first and last iterators of the vector to be shuf-

fled [218]. Algorithm 1 has a complexity of O(|L|). Therefore, the neighbour generation

procedure has asymptotic complexity

O(|L|+ |C|) +O(|L|) ≈ O(|L|).

Finding the cost of every solution has the complexity of the mesh-sim Run() function,

which is O(|L| log |L|), from Section 4.4.3. Therefore, the overall complexity of our SA

implementation grows as

O(|L|) +O(|L| log |L|) = O(|L| log |L|)

if we assume R � |L| and |C| � |L|. If we take into account the number of iterations,

the time complexity is

T (N |L| log |L|)

for N iterations. This complexity is much lower than finding an exact solution would

be. To find an exact solution by brute force would require trying all of |L||C| possible

111

solutions. Our implementation code of SA for CA can be found in Appendix C.

5.2.2 Channel Assignment by Genetic Algorithm

Algorithm 2: Outline of the Genetic Algorithm

Data: C = channels, N = number of nodes, L = set of links, CA = channels
assigned= ∅, r = number of interfaces per node, P = population size, G =
max number of generations, f(·) = fitness function, f ′ = current best fitness
= ∞, i′ = current best genome/individual

Result: quasi-optimal CA(l) ∀ l ∈ L
for g = 1 to G do

Generate genome; add genome to population;
end
for g = 1 to G do

for i = 1 to P do
Get genome i;
Calculate genome fitness f(i);
Calculate population average fitness;
if f(i) < f ′ then

f ′ ← f(i)
end
;
for j = 1 to P/2 do

select two parents;
add parents to next generation ;
do crossover;
for both offspring do

do mutation as per mutation rate
end
;
add resulting offspring to next generation;

end
current population ← next generation;

end

end

The GA is implemented as per Algorithm 2. Our C++ implementation can be found

in Appendix D. For the GA, we need to define the fitness function, parent selection

method, population size, number of generations, and mutation rate. We encode a genome

as a link→channel mapping, where the links are all node pairs possible in the WMN

and where condition (4.8) is met. To generate a new genome, we randomly shuffle

the set of links, randomly shuffle the set of allowed channels, and use Algorithm 1 to

generate a feasible genome. We then generate a population by generating a new genome

P times. Each instance of C++ std::random_shuffle has linear complexity in the

distance between the initial and final iterators minus one [218]. This results in complexity

112

Figure 5.1: Crossover of channel allocations in Genetic Algorithm. The two parent
chromosomes are the top two CAs. They produce the two offspring, shown below the
arrow, by mixing the first section of the first parent with the second section of the
second parent and the second section of the first parent with the first section of the

second parent chromosome.

O(|L| log |L|) for generating a genome and O(P (|L| log |L|)) for generating the initial

population of size P . We determined from experimentation that P = 20 functions well

without excessive computational burden. This population size is confirmed as a good

choice by Kononova et al. [219], who find that a population size of 20 presents less

structural bias than populations of 5 or 100 individuals, in general. The fitness function

for our GA CA implementation is the inverse of the SINR returned from mesh-sim’s

Run(genome, links) function with the chosen genome and set of links as input because

our GA is designed to find the lowest fitness value.

Both Roulette Wheel selection and Linear Rank selection methods were implemented.

For the Roulette Wheel selection, we generate a piecewise constant probability distribu-

tion with P intervals representing the individuals in the population:

{[0, 1), [1, 2), [2, 3), ..., [P − 1, P)}

where P is the size of the population. The weights are the inverse fitness values of

the individuals in the population, where the fitness values are 1/SINR returned from

mesh-sim’s Run() function for the individual. For Linear Rank selection, we sort the

chromosomes by their inverse fitness values so that the genome with the best fitness has

the lowest rank (highest number). For example, if there are 20 individuals ranked 1 to 20,

rank 1 will have the worst fitness, and the individual ranked 20 will have the best fitness

113

(the highest average SINR). We then create a piecewise constant probability distribution

of the ranks and select two parent chromosomes randomly according to that distribution.

We use the C++ std::sort algorithm for Linear Rank selection, which has complexity

O(P log(P)) [220]. We observed that Linear Rank selection outperforms Roulette Wheel

selection, so only the results for Linear Rank selection are presented in Section 5.3. We

select as many parents as the current population, and each pair of parents generates two

children. The previous generation is eliminated once they reproduce, so the size of the

population remains stable.

Once two parents have been selected, the next operation is crossover. We use single-

point crossover. In this implementation, the crossover operator randomly selects an

index in the genome (a link) greater than the first and smaller than the last index as

the crossover point. We then split both parents at this crossover point and generate

two new children by joining the first section of the first parent with the second section

of the second parent and the first section of the second parent with the second section

of the first parent. The crossover operation is illustrated in Figure 5.1, with the two

selected parent chromosomes at the top and the generated offspring below the bold

downward-pointing arrow. The single-point crossover operation includes two calls to

C++ std::find, which has complexity up to O(|L| − 2) = O(|L|) [221], and four calls

to std::map::insert, which has worst-case complexity of O(|L| log |L|) [222] for our

variables.

Experiments were run for mutation rates of both 0.5 and 0.25. The mutation probability

is implemented by choosing a random number in (0, 1); then, if the random number is

less than the mutation rate (0.5 or 0.25, in our case), mutation is performed. The

mutation operation is done by randomly selecting one link and randomly selecting a

new channel for that link and replacing the currently assigned channel with the new one.

This operation has logarithmic complexity in the size of the genome, i.e., logarithmic in

|L|. The 0.5 probability was found to provide a suitable trade-off between exploration

and exploitation for the relatively small population size and the specific problem. This

follows the findings of [223], who find a good region of performance between mutation

rates of 0.4 and 0.6, although this was for a small population of 6 individuals. Deb

and Agrawal [224] also find that smaller population sizes (less than 100 individuals)

require higher mutation rates. These researchers find that for the combination of a

population size of 20 individuals, a mutation rate of 0.5, and a high crossover rate of

0.9, the performance is superior to lower mutation rates. We also ran experiments with

a lower mutation rate of 0.25 to determine whether convergence can be achieved in

fewer iterations. Lower mutation rates can be considered more traditional [225]. Several

researchers have found that a lower mutation rate is more optimal, even for small and

medium-sized populations of 4-20 individuals [226–228].

114

The worst-case complexity of the components of the GA implementation is given in

Table 5.1.

Table 5.1: Big-O complexity of GA components

Operation Complexity

Generate a genome O(|L|)

Generate a population O(P |L|)

Selection O(P logP)

Crossover O(|L| log |L|)

Mutation O(log |L|)

Fitness function O(|L| log |L|)

Overall, the computational complexity of our implementation of GA is

O(P (|L|) +O(G · (P |L|+ P logP + P (|L|+ |L| log |L|+ log |L|)))

≈ O((P (|L|)) +O(G(P (|L|+ logP + |L| log |L|) + log |L|))

≈ O(GP (logP + |L| log |L|))

(5.5)

assuming |C| � |L| and R � |L|. Each generation of GA contains a population of size

P . All operations performed on an individual genome are equivalent to one iteration

of SA. We denote this iteration equivalent as a “function evaluation”. This is the part

inside O(GP (·)) in Equation (5.5). Here we see that per function evaluation, GA has

worst-case complexity O(logP + |L| log |L|). This GA implementation is more complex

than our implementation of SA, where each function evaluation (iteration) has a worst-

case complexity of O(|L| log |L|). Only if the population size is small does their growth

become equivalent.

5.2.3 Channel Assignment by Differential Evolution

In Differential Evolution, individuals in the population are called agents. We generate

agents xi,G by producing link-to-channel-index mappings, which represent CAs, and we

generate a population xG by pushing agents to a population vector. Each link is a

dimension j ∈ {1, ..., |L|} of the agent vector, and the value per dimension is the channel

index of the currently assigned channel. For each dimension of each generated mutant

vector vij,G+1 ∀ j ∈ {1, ..., |L|}, a new mutant channel index value is calculated by

Equation (5.6).

vij,G+1 = xr1j,G + F · (xr2j,G − xr3j,G). (5.6)

115

Figure 5.2: Mapping of computed channel values outside of the allowed channel index
bounds to feasible channels by “wrapping around”. Positive values over the maximum
wrap back around to the start and count up from that position. Values less than the
minimum index wrap back to the maximum index and are counted down from that

position.

This calculation may cause the new computed channel to be outside the allowed channel

indices and no longer an integer value. Therefore, we must transform the calculated

channel index value into a feasible channel index by moving it back into the allowed

channel list. We do this by having the channel index values “wrap back around” if

exceeding the possible maximum channel index or if the result is below the minimum

index. The result is rounded off to the nearest integer. This process of “wrapping

around” is illustrated in Figure 5.2. For example, if there are 13 allowed channels and

the mutant in that dimension is calculated to have a value of −8.3, the resulting channel

index is d−8.3e+13 = 5 (for indexes starting at 1). If, instead, the mutant is calculated to

be at channel index 14.8 in that dimension, the corrected channel index is 15−13 = 2, as

can be seen in Figure 5.2. The process of wrapping around to move the values back into

the feasible range is repeated until the value is feasible, so multiple “wraparounds” could

be executed. This is implemented by a while-loop in the updatePosition function, as

can be seen in Appendix E.

The crossover operation we use for DE is illustrated in Figure 5.3. Here we see that the

position of xi,G is crossed with that of vi,G+1 on links 1, 4, 7 and 10 where the random

number generated (rand(j)) was less than or equal to the crossover rate CR to form the

trial vector ui,G+1. This step has asymptotic complexity of O(|L|).

Selection is implemented as per Equation (5.7), where f(·) is the fitness function.

xi,G+1 =:

ui,G+1 if f(ui,G+1) < f(xi,G)

xi,G otherwise
(5.7)

The selection operation in DE requires an extra evaluation of the fitness function for the

trial vector compared to GA or PSO. This results in a complexity of O(GP ·2|L| log |L|),
reducing to O(GP |L| log |L|) or O(|L| log |L|) per function evaluation. Even though DE

reduces to the same asymptotic complexity per function evaluation as SA (O(|L| log |L|)),

116

Figure 5.3: Crossover of channel allocations in Differential Evolution. rand(j) ≤ CR
refers to selecting a random number in the interval (0, 1) and checking whether it is less
than the crossover rate. If it is, then the value of the mutant is selected for crossover

with the target vector xi,G at that index (j) to form trial vector ui,G+1.

we must note that it will take longer because of the extra calculation of the fitness

function for every function evaluation. On the other hand, it is less complex than our

implementation of GA.

Georgioudakis and Plevris [229] mention that the parameter values in DE are very

problem-specific and the results are sensitive to the values of F and CR. Instead, we

found good performance with a range of parameter values. Good performance was

observed with the DE/rand/1/bin variation, so we do not present results for other

variations, although we also implemented and ran experiments with DE/best/1/bin,

DE/rand/2/bin, and DE/best/2/bin. Following the recommendations of Storn and

Price [95], we start with a crossover ratio of 0.9 and set F to 0.9, as was one of the

combinations of parameters in the study of Storn and Price. Parameter settings of

F = 0.4 and CR = 0.5 were also used with similarly promising results. We also tried

combinations of F = 0.8 and CR = 0.9, F = 0.9 and CR = 0.1, F = 0.5 and CR = 0.9,

F = 0.6 and CR = 0.9, and F = 0.6 and CR = 0.5. All these parameter settings showed

good results, as shown in Section 7.4. All implementation details can be seen in the code

listing of Appendix E.

117

5.2.4 Channel Assignment by Particle Swarm Optimisation

Before describing our PSO implementation in more detail, we begin by defining some

quantities and elaborating on how the method has been converted to a discrete algorithm.

In our PSO applied to the CA problem, the position of a particle, xi, is a link-to-channel-

index mapping. It is equivalent to a Channel Assignment (A), i.e., xi ≡ A, but using the

channel index instead of the channel number. Each link is a dimension of the particle’s

position, so a CA with 120 links has a 120-dimensional position representation. It is

important to use the channel index and not the channel number for velocity update

operations so that a velocity or displacement can have a consistent meaning. Moving

with a velocity of +2 units should be equivalent to going up two available channels,

regardless of the actual channel number or gaps between the allowed channels. There

are often inconsistent gaps between channel numbers, e.g., if a channel number is 116,

then the next available channel is 120, but from channel number 144, the next available

channel number could be 149. These gaps would mean that the velocity (displacement)

cannot have a consistent meaning. If we use the channel index, this inconsistency is

corrected. For the same reason, we cannot use the continuous frequency space either.

To generate a swarm, we generate a set of P particles (random positions in the solution

space) and calculate their fitness values. This initialisation has an asymptotic complexity

of O(P (|L| + |C|)) ≈ O(P |L|) since |C| � |L|, which is motivated in the same way as

for the GA and DE implementations since each instance of C++ std::random_shuffle

has linear worst-case complexity in the distance between the initial and final iterators

[218]. The original canonical PSO velocity calculation [97] is shown in Equation (5.8),

and the position update is shown in Equation (5.9).

vi(t+ 1) = ωvi(t) + c1r1(t) · (yi(t)− xi(t)) + c2r2(t) · (ŷ(t)− xi(t)) (5.8)

xi(t+ 1) = xi(t) + vi(t+ 1) (5.9)

where

t is the iteration counter;

r ∼ U(0, 1) is a (pseudo)-random number selected in the range 0 to 1, and r1 and r2 are

generated anew for every dimension, hence becoming r1 and r2;

vi(t) is the velocity of particle i at iteration t;

xi(t) is the position of particle i at iteration t;

yi is the position of the particle i found so far with the best fitness, i.e., the lowest cost.

This quantity is often called pbest in the literature for “particle best” [97];

ŷ is the position of any particle in the swarm found so far with the best fitness, i.e., the

lowest cost. This quantity is often called gbest in the literature for “global best” [97];

118

ω is a coefficient causing inertia in the movement (weighting towards the previous ve-

locity); and

c1, c2 are named cognitive and social coefficients, respectively, altering the relative weight

of the particle’s own memory and that of the swarm.

We use this equation in its discrete form for our implementation by rounding the values

to the nearest integer, as shown in Equation (5.10).

vi(t+ 1) = round [ωvi(t) + c1r1(t) · (yi(t)− xi(t)) + c2r1(t) · (ŷ(t)− xi(t))] (5.10)

When updating the position, we again make the channel indexes wrap around as de-

scribed in Section 5.2.3, so if the velocity moves the particle to a position outside the

bounds of the number of channels, it starts counting back from the beginning. For ex-

ample, if there are 13 possible channels and the particle link is currently on channel 4,

and the velocity moves the particle in that dimension −8 channels, the resulting channel

index will be 4 − 8 + 13 = 9 (for indexes starting at 1). If, instead, the velocity is 11,

the resulting channel index will be 4 + 11 − 13 = 2. The position and velocity update

stage per particle has complexity O(|L|).

Bratton and Kennedy [230] found that no swarm size between 20 and 100 proved signifi-

cantly inferior or superior to other swarm sizes. In other words, a larger swarm size does

not significantly improve the overall performance of the PSO algorithm. This finding

informed our choice of a swarm size of 20 particles. In addition, Kononova et al. [219]

show that a PSO with a population size of 20 exhibits satisfactory performance in terms

of structural bias, while population sizes of both 5 and 100 display more structural bias.

If a choice of 20 particles does not display inferior performance to a larger swarm size

and if there is no other benefit to a larger swarm, we elect to save on computation time

and choose a population size of 20. We confirmed our choice with experiments.

For the PSO velocity update parameters using the standard PSO, it has been determined

that |ω| < 1 [231] or 0 ≤ ω < 1 [232] is required to ensure convergence. We started with

the recommended values [230] for ω, c1 and c2, where ω = 0.72984 and c1 = c2 = 2.05

(so they add up to 4.1). With these values, convergence was not observed after 1000

iterations for most attempted runs, although there was one run that appeared to converge

within 1000 runs. We believe that this value of ω combined with c1 and c2 values over

2.0 results in the inertia being dominated by the social and cognitive components so

that if the initial values found are bad, there is a higher likelihood of moving around in

a bad neighbourhood. However, if the initial values are good, then the particles move

towards these good values, which is why one run happened to perform fairly well. We

then increased ω to 1.05, following the recommendation of [98] and observed a slight

119

improvement. This larger ω encourages more exploration of the search space, which is

advantageous at the beginning of a run of PSO. However, we did not observe strong

convergence because this value is not within the convergence region. Strangely, for

Variant 1, using a large value of ω = 1.5 was quite successful in causing convergence

for a 9-node experiment but not, in general, for larger networks. In their discussion

on optimal inertia weight, Shi and Eberhart propose an adaptive ω, starting at 0.9

and ending at 0.4 [98]. In general, an adaptive inertia weight follows Equation (5.11)

for finding the weight at each iteration. We found that this version performed slightly

better overall than any single value of ω that was tried.

ω(t) = ωfinal +
tmax − t
tmax

× (ωinitial − ωfinal)

= ω(tmax) +
tmax − t
tmax

× (ω(t0)− ω(tmax))
(5.11)

Wei et al. introduce an elite PSO with mutation [233]. In this method, elite and bad

particles are distinguished after some iterations. Bad particles are replaced by the same

number of elite particles. To prevent the loss of diversity caused by this replication of

particles, mutations are then applied to the new elite particles before using them to

replace the bad particles. We have developed a new form of this method, called “PSO

with bad replacement”. In our method, particles are monitored in comparison with the

rest of the swarm and are labelled “bad” if, after tbad iterations, they are bad% worse

than the global average. We have set tbad iterations to 5 and bad% to 5000%, or 50

times the swarm average, by observation of the magnitude of the bad cost values. This

is relative to the specific ranges of values we observed for this problem and ensures that

the “bad” label is only applied to particles more than two standard deviations from the

mean. In future, the Mahalanobis distance [234] could be used to find anomalies in a

more general and reliable manner. The identified “bad” particles are replaced with an

equal number of new randomly generated particles. Our method introduces diversity

and prevents “bad” particles from ruining the swarm in one simple step, unlike Wei et

al.’s method, which requires two steps. The “bad replacement” step adds a factor of

|C| to the complexity whenever a particle is replaced, but this is not significant since,

in general, |C| � |L|, and replacement occurs rarely.

Our PSO implementation can be found in the code listing of Appendix F. The asymptotic

complexity of our implementation of PSO is O(P (|L| log |L|)). This complexity is similar

to that of DE but without the extra factor of 2, which is present in DE because the fitness

of trial vectors also has to be determined in DE. PSO is lower in complexity than GA. By

comparing the number of function evaluations instead of only considering the number

of iterations, PSO and SA have similar computational complexities.

120

5.3 Results

Simulations were run on a Dell Latitude with 7.7 GiB of memory, an Intel Core i5

processor at 4 × 2.4 GHz cores; as well as a T2 large Amazon Web Services EC2

instance with 8 GiB of memory and 2 virtual CPUs, both with Ubuntu 16.04 Operating

System, and using the ns3-dev version [212] forked from the main ns3 GitHub. The

parameters used are listed in Table 5.2.

Table 5.2: Parameters used in simulations

Parameter Value

Network size 9-49 nodes

Number of interfaces per node 2

Number of intersecting channels 13

Distance between grid nodes 100 m (vertical and horizontal)

Max radius of random disc 350 m

Channel bandwidth 10 MHz

Propagation loss model Friis

Propagation delay model ConstantSpeed

Packet interval 0.01 s

Packet size 1024 bytes

Interferer waveform power 0.2 W

Interferer centre frequencies 498 MHz and 522 MHz

Interferer waveform period 0.0007 s

Interferer waveform duty cycle 1

Error rate model NistErrorRateModel

Mesh routing algorithm OLSR

For each function evaluation of the optimisation algorithms, the WMN simulation (mesh-sim)

was run for 1 s (virtual). From the WMN simulation, we gather samples to calculate

the value of Equation (5.1). In the initial experimental setup phase, we ran simulations

repeatedly with the same settings for various lengths of time, taking note of the SINR

average, to determine the duration that yields a consistent mean SINR. In this way, we

found that the 1 s interval yielded sufficient SINR samples for the average to be mean-

ingful and consistent for consistent parameters. In the mesh-sim simulation, nodes are

set up in one of two topologies: an equally spaced grid or random positions within a disc

121

according to a uniform distribution of the polar coordinates. Each node has two inter-

faces (representing the DSA band interfaces). Constant bitrate UDP traffic is generated

at the transmit node for every link in the network to saturate the links. Packets are

received on the other side if there is a common channel between the transmitting and

receiving nodes and the received signal is above the receiver sensitivity. The interfer-

ence is included in the SINR measurement using ns3’s InterferenceHelper class. This

ns3 class implementation is done so that interference is counted only if the overlapping

packet chunk is above the receiver’s sensitivity. The simulation parameters are given in

Table 5.2.

The number of possible allowed channels was set at 13. This presents a fairly high

computational load in terms of the size of the search space. If the number of overlapping

allowed channels is less than this, the number of options is smaller and fewer iterations

are required for convergence. However, the end-user experience might be negatively

impacted by longer delays. In future work, experiments should also be run with fewer

overlapping channels.

5.3.1 Simulated Annealing

In Simulated Annealing, one iteration is one function evaluation. To evaluate the per-

formance of the algorithm, we ran SA 10 times and recorded the mean and standard

error per iteration number taken over the 10 runs. Each run starts with a different

random starting solution. For each network size, we record and show the mean of the

natural logarithm (ln) of the costs (scaled value of Equation (5.1)) obtained from 10

different runs of SA at each iteration over time. This is illustrated in Figure 5.4 with

the standard error shown by the error bars, also computed across the different runs. In

other words, the plot at iteration x represents the mean of the natural logs of the costs

at iteration x of all 10 runs. The error bars represent the standard error of the log of

the cost at iteration x of the 10 runs. We have used the natural logarithm of the cost

values obtained for better visibility since the data has a large range.

By looking at Figure 5.4, we can see that, in each case, the solutions found in the dif-

ferent runs vary greatly towards the beginning of the runs (the first 100-500 iterations),

but different runs slowly converge to similar solutions with smaller variances (and stan-

dard error) as the number of iterations increases. Acceptable levels of convergence are

observed within 1000 iterations, although we see in Table 5.7 that much better results

are obtained after 2000 iterations. We also see in Figure 5.4 that the plots have a general

downward trend, but this trend is less visible because the error bars are still relatively

122

(a) 9 nodes

(b) 16 nodes

(c) 49 nodes

Figure 5.4: Mean and standard error (error bars) of the natural log (ln) of the cost
obtained from 10 runs of SA at each iteration or function evaluation over the running

time (iterations)

123

large. The convergence is the clearest for the 9-node network, ending with a small stan-

dard error following a clear downward trend. Then, for 16 nodes, the convergence is

somewhat less clear, ending with a larger standard error but still with a visible down-

ward trend. For 49 nodes, there is still a large standard error between the results of the

different runs by the end of 1000 iterations. We can deduce that SA does not scale well

since the convergence deteriorates as the network size increases.

5.3.2 Genetic Algorithm

For each run r of the GA, we find the mean cost (scaled value of Equation (5.1)) of the

individuals i in the population of size P at each iteration k and then plot the natural

logarithm of the mean over the 10 different GA runs of this mean population cost per

iteration. More concretely, we plot the mean across the 10 runs per iteration k given by

meank =
1

10

10∑
r=1

[
1

P

P∑
i=1

log(fitness(i)[k])

]
=

1

10

10∑
r=1

[meank[r]] (5.12)

and the standard error

stderrk =
stdevr [meank[r]]√

10
=

√
1
9

∑10
r=1(meank[r]−meank)2

√
10

(5.13)

where the fraction inside the square root in the numerator is 1/9 and not 1/10 because

this is assumed to be a sample standard deviation.

These results are shown for different network sizes in Figure 5.5 and Figure 5.6. The

population size is 20 for all runs, and the mutation rates are 0.5 (Figure 5.5) and 0.25

(Figure 5.6), respectively. For a population size of 20, 20 function evaluations are re-

quired per iteration. We found convergence from about 50 iterations in many instances,

although a longer run of 100 generations ensured better results. Interestingly, we no-

ticed that the convergence shape of the results improves as the network size increases,

even though the final best results deteriorate slightly with increasing network size. The

49-node network has a clear convergence shape, looking similar to an exponentially de-

creasing function, with little variance across the population and different runs, even

within the first few iterations. For the 16-node network, there is more variance in the

first 10-15 iterations. For the 9-node network, this shape is less clear still, and there

is still a significant variation in the population averages even towards the end of the

100 iterations. These differences can be seen in the size of the error bars in Figure 5.5

(a), (b) and (c) and Figure 5.6 (a), (b) and (c). Even though there is a significant

variance in the average cost values across the different runs in the 9-node network by

iteration 100, there is little variance between the best values at the end of 100 iterations,

124

as we see in Table 5.3. The best values are the cost values of the individuals in each

population with the lowest cost. The explanation for these observed trends is that, in a

larger network, there are more opportunities for rerouting traffic away from links that

experience high interference. On the other hand, in a smaller network, there are fewer

options for rerouting, so interference cannot be avoided as successfully by all individuals

(CA solutions) in the population. However, the best individual in a population – and

indeed several other individuals – is able to find CA solutions that avoid interference

successfully despite there being fewer routing opportunities, as seen in Table 5.3.

Table 5.3: Comparison of the final results of GA (scaled cost or value of Equa-
tion (5.1)) of the best individual at max iterations of 100)

Mutation 9 nodes 16 nodes 49 nodes

rate mean (±SD) mean (±SD) mean (±SD)

0.5 0.4 (±0.0) 0.4 (±0.0004) 0.4 (±0.02)

0.25 0.4 (±0.0005) 0.4 (±0.0005) 0.4 (±0.04)

In Table 5.3, we show the mean over the 10 runs of GA of the final (best) solution found,

i.e., the cost of the best individual in each population at the end of 100 iterations, along

with the standard deviation (SD). We see that for 9 nodes and a mutation rate of 0.5,

all sample runs found the same solution, so we assume this is the actual minimum for the

problem. The solutions for a 16-node network have a slightly higher standard deviation,

so we cannot be sure to have found the actual minimum within 100 iterations, even

though the solution is still good. The final best results for 49 nodes after 100 iterations

have a slightly larger standard deviation still, although this value is still considerably

better than some of the initial solutions found and much better than the worst solutions

observed. Surprisingly, there was slightly more variation in the results using a mutation

rate of 0.25. A possible explanation for this is that the lower mutation rate results in

there not being enough diversity in the populations and thus premature convergence.

5.3.3 Differential Evolution

Table 5.4: Comparison of the final results of DE (scaled cost or value of Equa-
tion (5.1)) of the best individual at max iterations of 100) with parameters F =

0.9, CR = 0.9

9 nodes 16 nodes 49 nodes

F,CR mean (±SD) mean (±SD) mean (±SD)

0.9, 0.9 0.4 (±0.0006) 0.4 (±0.0006) 0.4 (±0.0007)

125

(a) 9 nodes mutation rate = 0.5

(b) 16 nodes mutation rate = 0.5

(c) 49 nodes mutation rate = 0.5

Figure 5.5: Mean and standard error of the natural logarithm (ln) of the mean costs
of populations of 10 runs of GA over the running time (iterations) using a mutation rate
of 0.5. The mean cost per iteration is the average of the costs of 20 function evaluations

(the 20 individuals in the population).

126

(a) 9 nodes mutation rate = 0.25

(b) 16 nodes mutation rate = 0.25

(c) 49 nodes mutation rate = 0.25

Figure 5.6: Mean and standard error of the natural log (ln) of the mean population
cost of 10 runs of GA over the running time (iterations) using a mutation rate of 0.25.
The mean cost per iteration is the average of the costs of 20 function evaluations (the

20 individuals in the population).

127

(a) 9 nodes F = 0.4, CR = 0.5

(b) 9 nodes F = 0.9, CR = 0.1

(c) 9 nodes F = 0.5, CR = 0.9

Figure 5.7: Mean and standard error of the natural log (ln) of the mean costs of
populations of 10 runs of DE over the running time (iterations) for a 9-node WMN. 1

iteration=20 function evaluations.

128

(a) 9 nodes F = 0.9, CR = 0.9

(b) 16 nodes F = 0.9, CR = 0.9

(c) 49 nodes F = 0.9, CR = 0.9

Figure 5.8: Mean and standard error of the natural logarithm (ln) of the mean
population costs of 10 runs of DE. 1 iteration=20 function evaluations.

For DE, the population size was also fixed at 20 for all experiments. Initial experimen-

tation showed good results with F = 0.4, CR = 0.5; F = 0.9, CR = 0.1; F = 0.5, CR =

129

0.9; and F = 0.9, CR = 0.9 as seen in Figure 5.7 and Figure 5.8. Since there was no

significant difference in the results for these parameter values, we continue to present

only the results for F = 0.9, CR = 0.9. Table 5.4 shows the final results of DE (scaled

cost of the best individual at max iterations of 100). Figure 5.8 shows the mean of

the natural logarithm of the mean cost of the populations over 10 runs of DE at each

iteration. The error bars indicate the standard error of these log means. We captured

the results for runs of 500-1000 iterations. However, there is no significant change from

100 iterations so Figure 5.7 and Figure 5.8 show only up to 100 iterations. In fact, there

is no significant change after fewer than 50 iterations, as we can see from those figures.

DE converges very quickly and produces good results. In practice, DE could be run for

no more than 50 iterations to obtain good Channel Assignments. It could even be run

for only 20 iterations and still produce satisfactory results.

5.3.4 Particle Swarm Optimisation

Figure 5.9: Unsuccessful run of PSO with 9 nodes variant 1, with ω = 0.72984 and
c1 = c2 = 2.05. We note that with the recommended parameter values there is no clear
convergence within 500 iterations (where 1 iteration=20 function evaluations). These

parameter values perform poorly.

For PSO, we attempted various parameter combinations with the swarm size fixed at

20 individuals. Many of the attempted parameter combinations did not result in a

clear convergence pattern within 1000 iterations (20 000 function evaluations). For a

successful run, we expect to see an initial exploratory phase, where bad solutions might

be observed and the variance across the particles in a swarm and runs is large, followed

by a reduction over time of the average cost of the swarm along with a reduced variance

in the cost values across particles as the algorithm convergences towards a lower value

over time. A combination of parameters that results in runs with this pattern was

difficult to find. For example, to generate Figure 5.9, we used the recommended values

of ω = 0.72984 and c1 = c2 = 2.05 [230] and the velocity update method of variant 1.

130

Figure 5.10: Costs over long run for 3-node WMN, where 1 iteration=20 function
evaluations.

There is no convergence of the mean cost of the swarm within 500 iterations. We also

plot the values for a much longer run of 100 000 iterations on a small 3-node network

in Figure 5.10, which shows a clear convergence towards smaller values over the many

iterations of this long run. Hence, we can be certain that the lack of convergence observed

within 500 iterations is not a result of implementation errors but is because PSO using

these parameters requires a longer run to show sufficient convergence for this problem.

While it may appear as if there are no values in Figure 5.10 from 90 000 iterations on,

this is just because the values are too small compared to the large scale to be observed

clearly.

We found more promising results using an adaptive ω as per Equation (5.11). In Fig-

ure 5.11, Figure 5.12, and Figure 5.13 we show the mean per iteration of the natural

logarithm of the mean cost of each swarm over 10 runs of PSO using an adaptive ω.

The error bars indicate the standard error. In the 9-node network (please refer to

Figure 5.11), we can see some convergence within 500 iterations using variant 1 (Equa-

tion (5.8)) in Figure 5.11 (a) and using variant 5 (Equation (2.52)) in Figure 5.11 (b);

there is even convergence within as few as 100 iterations for variant 5. For variant 6

(FIPS), convergence is unclear, but there is some convergence within 500 iterations, as

seen in Figure 5.13 (c).

The behaviour for larger 16-node and 49-node networks is different, as seen in Figure 5.12

and Figure 5.13. We show up to 500 iterations for clarity of the figures, but this behaviour

continues up to 1000 iterations. We can see that there is no clear convergence pattern

within the iterations shown. However, the values around which the fluctuations occur

are small, and the fluctuations are small if one considers the scale of the y-axis. This

indicates that premature convergence has occurred in the cases illustrated in Figure 5.12

and Figure 5.13. This is a common issue experienced with PSO [235, 236]. We observe

somewhat more exploration of the search space for variant 6 than for variants 1 and 5,

131

especially in the case of 16 nodes. We can also observe that in the cases of Figure 5.13, the

first few values were lower than the final value settled on. This also indicates premature

convergence.

The runs using variants 2, 3, and 4 all failed to converge or were no better than variants

1, 5, or 6, so we did not consider these variations further nor present these results.

We observed poor results when using the recommended values of ω = 0.72984 and

c1 = c2 = 2.05 and better results using adaptive ω. However, while we did not observe

a clear pattern of convergence for the mean cost values of all particles over 10 different

runs in Figure 5.11, Figure 5.12, and Figure 5.13, the results of PSO were close to those

of GA and DE. The final result is the cost value of the best particle at the end of the run.

These values are presented in Table 5.5 and Table 5.6. It is noteworthy that good results

were observed even for the larger network, although the standard deviation of the final

values increases as the network size increases. This higher standard deviation generally

in Table 5.5 as the network size increases indicates that PSO takes longer to converge in

the larger networks. Also important to note is that there is very little difference in the

solutions obtained after 100 iterations and 500 iterations, as we can see by comparison

of Table 5.5 and Table 5.6, except for the smallest network where the standard deviation

is much lower after 500 iterations. However, such tight convergence as observed for 9

nodes in Table 5.5 is not required. This means that there is no materially significant

advantage to running the algorithm for longer than 100 iterations unless it is run for

much longer than 500 iterations.

Table 5.5: Comparison of the final results (scaled value of Equation (5.1)) of the best
particle at a maximum of 500 iterations = 10000 function evaluations) for variants 1,

5, and 6 of PSO using adaptive ω

Number of Variant 1 Variant 5 Variant 6

nodes mean (±SD) mean (±SD) mean (±SD)

9 0.4 (±0.006) 0.4 (±0.0005) 0.4 (±0.0004)

16 0.4 (±0.01) 0.4 (±0.04) 0.4 (±0.0004)

49 0.4 (±0.03) 0.4 (±0.03) 0.4 (±0.02)

Table 5.6: Comparison of final results (value of the best particle at max iterations
of 100 iterations = 2000 function evaluations) of variants 1, 5, and 6 of PSO using

adaptive ω

Number of Variant 1 Variant 5 Variant 6

nodes mean (±SD) mean (±SD) mean (±SD)

9 0.4 (±0.08) 0.4 (±0.03) 0.4 (±0.02)

16 0.4 (±0.02) 0.4 (±0.05) 0.4 (±0.01)

49 0.4 (±0.03) 0.4 (±0.03) 0.4 (±0.02)

132

(a) 9 nodes variant 1

(b) 9 nodes variant 5

(c) 9 nodes variant 6

Figure 5.11: Mean with standard error of the natural logarithm (ln) of the mean cost
of populations over 10 runs of PSO at each iteration over the running time (iterations)
for a 9-node network. Each iteration represents 20 function evaluations for a population

size of 20.

133

(a) 16 nodes variant 1

(b) 16 nodes variant 5

(c) 16 nodes variant 6

Figure 5.12: Mean with standard error of the natural logarithm (ln) of the mean
cost of populations over 10 runs of PSO at each iteration over the running time (iter-
ations) for a 16-node network. Each iteration represents 20 function evaluations for a

population size of 20.

134

(a) 49 nodes variant 1

(b) 49 nodes variant 5

(c) 49 nodes variant 6

Figure 5.13: Mean with standard error of the natural logarithm (ln) of the mean
cost of populations over 10 runs of PSO at each iteration over the running time (iter-
ations) for a 49-node network. Each iteration represents 20 function evaluations for a

population size of 20.

135

5.3.5 Comparison between all algorithms

Table 5.7: Comparison of final results obtained from SA (2000 iterations = 2000 func-
tion evaluations), and GA, DE, and PSO (100 iterations = 2000 function evaluations)

9 nodes 16 nodes 49 nodes

Algorithm mean (±SD) mean (±SD) mean (±SD)

SA 0.5 (±0.1) 0.4 (±0.05) 5.2 (±7.8)

GA 0.5 0.4 (±0.0) 0.4 (±0.0004) 0.4 (±0.02)

GA 0.25 0.4 (±0.0005) 0.4 (±0.0005) 0.4 (±0.04)

DE 0.4 (±0.0006) 0.4 (±0.0006) 0.4 (±0.0007)

PSO 1 0.4 (±0.08) 0.4 (±0.02) 0.4 (±0.03)

PSO 5 0.4 (±0.03) 0.4 (±0.05) 0.4 (±0.03)

PSO 6 0.4 (±0.02) 0.4 (±0.02) 0.4 (±0.02)

Table 5.8: Comparison of final results obtained from SA (1000 iterations = 1000
function evaluations), and GA, DE, and PSO (50 iterations = 1000 function evaluations)

9 nodes 16 nodes 49 nodes

Algorithm mean (±SD) mean (±SD) mean (±SD)

SA 2.0 (±1.8) 2.2 (±1.8) 16.2 (±12.7)

GA 0.5 0.4 (±0.0001) 0.7 (±1.0) 0.4 (±0.03)

GA 0.25 0.4 (±0.0005) 0.4 (±0.0005) 0.5 (±0.05)

DE 0.4 (±0.0006) 0.4 (±0.0006) 0.4 (±0.0007)

PSO 1 0.4 (±0.07) 0.4 (±0.02) 0.4 (±0.03)

PSO 5 0.4 (±0.03) 0.4 (±0.05) 0.4 (±0.03)

PSO 6 0.4 (±0.005) 0.4 (±0.01) 0.4 (±0.02)

Tables 5.7 and 5.8 list the mean and standard deviations of the results obtained from the

10 runs of each of the variations of the algorithms considered, after 100 and 50 iterations,

respectively for GA, DE, and PSO (equivalent to 2000 and 1000 function evaluations);

and 2000 and 1000 iterations, respectively for SA. The result for the population-based

algorithms is the cost of the best individual in the population by the specified iteration

number for that run. For SA, we list the average of the final values obtained for 10 runs

by 2000 and 1000 iterations, respectively. The 2000-iteration long run of SA is equivalent

to a 100-iteration run of the population-based algorithms with 20 individuals, and 1000

iterations of SA is equivalent to 50 iterations of the population-based algorithms. We

also show the convergence graphs of all the algorithms in Figure 5.14, which plots the

natural logarithm of the cost averaged over the different runs of the algorithm per

function evaluation.

136

(a) 9 nodes

(b) 16 nodes

(c) 49 nodes

Figure 5.14: Comparison between SA, GA, DE, and PSO of the log of the cost per
function evaluation averaged over 10 runs

137

By considering Table 5.7, Table 5.8, and Figure 5.14, we can see that DE is the clear

winner, achieving good results with a very small standard deviation within 100 itera-

tions as well as 50 iterations. There is no significant improvement between 50 and 100

iterations. As seen in Section 5.3.3, satisfactory results are achieved within as few as

20 iterations. GA also performs well. With a mutation rate of 0.5, it was able to find

exactly the same results for all runs after 100 iterations for the 9-node network. We

assume this is the actual optimal solution. After 50 iterations to 100 iterations, there

was a negligible difference in the solutions from this assumed optimal. While DE is the

superior algorithm overall for this problem from these results, it was not able to achieve

this result with no deviation, although it did settle on the same solution within a very

small standard deviation. However, the performance of GA deteriorates as the network

size increases as compared with DE, and the performance after 50 iterations is inferior

to that of DE for the medium-size and larger networks, as we can see by looking at

Table 5.8.

While PSO also produces fair results, the high likelihood of a good result within a small

number of iterations seen in DE cannot also be expected from PSO because the variance

is larger and the convergence is less clear. Out of the PSO variants, variant 6 (FIPS)

performs the best in general. While the mean final costs of the different PSO variants are

similar, FIPS has the smallest variance, meaning that there is a slightly higher chance of

obtaining this good average of 0.4. We also observe that PSO and DE are more robust to

increasing network sizes than GA, as the results are still as good for the 9-node network

as for the 49-node network. This is not the case for GA and SA. These algorithms show

a marked deterioration in performance as the number of nodes in the network increases.

In general, the performance of SA is inferior to the other algorithms. The final costs are

significantly higher than for the other algorithms, although we note that this is still a

considerable improvement from the initial random solutions. The results produced by

SA are still much better than the worst possible CA solution. SA is the least robust

to increasing network size. We see that DE can provide far superior solutions to SA,

or any of the other population-based algorithms, within the same effective number of

mesh-sim simulation runs (function evaluations). PSO and GA also perform fairly well.

We ran an additional set of experiments on a network with 49 nodes randomly placed

inside a disc, using a uniform distribution for the polar coordinates. These experiments

show the behaviour of the different algorithms for a more realistic topology. For these ex-

periments, we ran each algorithm 10 times for 2000 function evaluations (2000 iterations

of SA and 100 iterations for each of the population-based algorithms) and recorded the

best final values of each run. Only one variation of each algorithm was used. A mutation

rate of 0.5 was used for the GA, Variant 1 was used for PSO, and F = 0.9, CR = 0.9 for

DE. The results are shown in Table 5.9. Here we see that SA performed significantly

138

better for the random topology than it did for the grid topology. We still observe the

best performance from DE, followed by PSO, then GA, and finally SA. Since we have

rounded to one decimal place, it is not visible, but DE has a final mean of 0.497 and

PSO of 0.547, so DE does slightly outperform PSO. SA has the largest standard devia-

tion by the end, GA converges slightly better than SA, PSO is better still, and DE has

the lowest standard deviation among the final results of different runs. We also observe

that the final values are not significantly different from those obtained using the grid

topology. Thus, we deduce that the grid topology is an adequate model for comparing

the performance of CA optimisation algorithms.

Table 5.9: Comparison of final results obtained from SA (2000 iterations = 2000 func-
tion evaluations), and GA, PSO, and DE (100 iterations = 2000 function evaluations)

for a topology of 49 nodes randomly placed on a disc

Algorithm mean ±SD
SA 0.7 ±0.1

GA 0.5 0.6 ±0.04

DE 0.5 ±0.001

PSO 1 0.5 ±0.02

Table 5.10: Friedman test statistics

Node topology Statistic (Q) p-value

9 nodes (grid) 13.2 0.004

16 nodes (grid) 15.6 0.001

49 nodes (grid) 10.4 0.02

49 nodes (random in a disc) 16.2 0.001

Furthermore, we compared the algorithms using the Friedman test to determine whether

the differences in the results obtained from the different algorithms are statistically

significant. The results are shown in Table 5.10. For this comparison, we used the best

final cost values for the 10 runs of each algorithm after 2000 function evaluations in each

case (100 iterations for the population-based algorithms). For the 9-node network, the

test statistic is 13.2 with a p-value of 0.004. For the 16-node networks, the Q statistic

is 15.61 with a p-value of 0.0014. For the 49-node grid network, the Q test statistic is

9.8 with p = 0.02. Finally, for the 49-node random topology network, Q = 16.2 and

p = 0.001. For all the considered network sizes, the p-value is less than 0.05. The Q-

statistic is also well above the critical value of 7.68 for k = 4 (four metaheuristics being

compared), n = 10 (10 runs of each algorithm), and a significance level of α = 0.05.

Therefore, we can reject the null hypothesis that the results obtained from SA, GA,

PSO, and DE are not significantly different and conclude that there is a statistically

139

significant difference in the results obtained using the different algorithms for CA. From

these results, we can conclude that at least one algorithm is statistically significantly

worse than the others (SA) or one algorithm that is significantly better than the others,

which we know to be DE.

5.4 Discussion and limitations

The results presented in this chapter are based on the WMN simulation described in

Chapter 4. We did not study the impact of different numbers of allowed channels.

Hence, we cannot say which algorithm would perform best when the number of allowed

channels is very small, providing limited CA options. In this case, a brute force or

greedy approach might provide the best possible Channel Assignment in a reasonable

amount of time. The simulation uses only one propagation loss model, the Friis free-space

propagation loss model. This means that the advantages of one channel over another that

might be observed in non-line-of-sight scenarios are not modelled. When the frequency

range of possible allowed channels is large, some channels might be more robust to

obstructions than others and this effect has not been studied. We expect that the

relative performance of the different metaheuristic algorithms would not be significantly

changed by the introduction of this aspect in the model since the SINR would just be

lower in the channels in which obstruction has an effect and the metaheuristics will

still be attempting to find the highest SINR. However, this should be studied further to

confirm. We have not introduced a large number of external interference sources in the

simulation. From our measurements in Chapter 6, we observed that the performance of

different channels is significantly impacted by the amount of external interference. In

the simulations, we have only introduced none, one, or two interference sources. We did

not observe a significant difference in the relative results with no external interference

versus one or two interference sources. The results shown in this chapter are for two

interference sources. It would be useful to investigate further how a larger number of

interference sources might affect the results. It might also affect the computational

complexity of the metaheuristic algorithms we have implemented and used.

Another aspect of external interference is adjacent channel interference (ACI) and the

effect of the channel width as an additional dimension in the optimisation problem.

ACI is not modelled in the simulation setup, but this phenomenon could significantly

impact the choice of the optimal channel on a link where it occurs. Even if a channel

is claimed to be free by the GLSD, our measurements, which we present in Chapter 6,

show that interference is experienced from transmissions on adjacent channels and next-

to-adjacent channels. This interference deteriorates the performance in those channels.

140

It also introduces the significance of channel width as a parameter to tune since a wider

channel might experience more interference and have a higher noise floor, even if a wider

channel width is expected to result in higher throughput. The impact of this aspect

on the relative performance of the different metaheuristics should also be investigated

further in future work.

We have assumed antennas with isotropic radiation patterns in these works by applying

the Friis free space propagation loss model. More accurate models of antenna radiation

patterns would also provide more accurate results. The interference at various points

in the physical space is likely to be much lower in practice than estimated by this

simulation when using more accurate antenna models. Speaking of physical space, in

future we could determine Jain’s fairness metric for the CAs and include fairness in the

determination of what is a “good” CA. The CA might cause some links to be broken,

which can be overcome by the routing algorithm determining new routes. We assume

that the routing algorithm performs the necessary load balancing and fairness, but this

aspect might need further investigation at the CA level.

Despite the limitations of which phenomena and variables are modelled and taken into

account in the simulations, the focus of this chapter is on the relative performance of dif-

ferent metaheuristic algorithms for the CA problem in a DSA-WMN. These limitations

are common to all of these algorithms. They have been compared on a common and fair

basis. Hence, the conclusions drawn still hold. In terms of comparing the algorithms, it

is still valid that DE performs well and SA is weaker. These conclusions are not likely

to change when different variables are taken into account.

5.5 Conclusions and recommendations

This work presents a new angle to the Channel Assignment (CA) problem in Wireless

Mesh Networks (WMNs) – that of introducing Dynamic Spectrum Access (DSA). In this

chapter, we provide metaheuristic solutions to the CA problem in a WMN using DSA

that find near-optimal channel allocations in the presence of external interference sources

and avoid interference to Primary Users of the spectrum. The performance of four

algorithms, namely Simulated Annealing (SA), Genetic Algorithm (GA), Differential

Evolution (DE), and Particle Swarm Optimisation (PSO), are compared in finding near-

optimal CAs according to the objective defined.

We detail how each of the metaheuristic algorithms has been adapted and implemented

for the specific problem. The objective used is the average SINR across the network,

which we aim to maximise. We have described the parameters and variations of the

141

algorithms and how they were chosen. For SA, the linear cooling function was found to

be most effective, and the cooling constant was set such that the temperature goes to zero

by the final iteration. For the GA, the Linear Rank selection method proved to perform

better than other selection methods, and single-point crossover was used. Mutation

rates of 0.5 and 0.25 were both studied. For DE, the rand/1/bin variation was used and

parameter values of 0.9 for the difference vector factor (F) and the crossover rate (CR)

were shown to perform well. For the PSO algorithm, an adaptive inertia weight worked

better than constant values, and three different variations were compared. The Fully

Informed Particle Swarm (FIPS) variation performed well in some scenarios (particularly

the grid node layout) and the first canonical variation performed well in others (notably,

the random node layout).

We observe excellent performance by the DE and GA algorithms. We note that DE

scales to larger networks effectively, without needing to increase the run time and that

DE has low computational complexity. At the same time, GA is less robust to expanding

the network size and has a high computational complexity in comparison with the other

algorithms. While PSO does not display equally clear convergence within the number

of iterations considered, the final results are still good. From repeating the experiments,

we find that the standard deviation of the results is about an order of magnitude larger

for PSO than for DE, but it is still insignificant, e.g., 0.07 vs 0.0006. Additionally, PSO

has good computational complexity. SA does not scale well but is still able to provide

improved solutions and show convergence within the considered number of simulation

instances. SA has the advantage of low computational complexity. On the other hand,

the computational complexity of the GA was slightly higher than the other algorithms

because of the Linear Rank selection and crossover methods. The Friedman test was

used to determine the statistical significance of our results. In all layouts and network

sizes, the difference in results among the different algorithms is statistically significant

since the p-value is below 0.05 and the Q-statistic is above the critical value. The

significance is greater in the random layout, showing that the choice of the algorithm

becomes more important for more realistic node layouts and network topologies than

for the grid topology. Considering our results, in practice, we would recommend the DE

algorithm as being best suited to this problem. It can achieve superior results within as

few as 20 iterations. None of the other three tested algorithms can give this guarantee

within so few iterations.

We discuss some limitations of this work and make suggestions for extensions to the

study. Most notably, the introduction of adjacent channel interference to the simulation

model and the addition of the channel width parameter would increase the practical

value of this study. Including Jain’s fairness metric in the optimisation objective or as a

constraint is also recommended. However, we note that the results of this study still hold

142

in terms of comparing the relative performance of the four metaheuristic algorithms.

In the next chapter, we bring greater reality to this work by introducing real-world

measurements that show the effect of various phenomena on link performance. These

measurements speak to the limitations discussed in this chapter.

Chapter 6

Real-world measurements in

5 GHz Wi-Fi and TVWS bands

6.1 Introduction

1 In Chapter 4, we present the type of network under study in this thesis and the way it

has been modelled for simulation purposes. In Chapter 5, we discuss how this simulation

model was utilised for studying the performance of different metaheuristic optimisation

algorithms in finding CA solutions. We highlight a few limitations of this simulation

model. In particular, real-world effects such as obstructions, changes in channel width,

variation in propagation characteristics among different channels, and antenna direc-

tionality, amongst other effects, were not adequately modelled and accounted for. This

chapter studies these effects in more detail and quantifies the consequences of these

effects on the SINR and end-user performance measures. In this way, this chapter sup-

plements and augments the findings of Chapter 5 and provides measurements that can

be fed back into the simulation environment to improve the accuracy and applicability

of the model.

The network we study makes use of both DSA spectrum bands, such as TVWS, and

traditional unlicensed Wi-Fi bands. We have motivated this DSA-WMN design as being

geared towards expanding connectivity to rural areas and informal settlements known

as “townships” in the South African context. Historically, Internet access and last-mile

connectivity to rural areas have been provided by commercial mobile cellular operators as

well as satellite services and, to a smaller extent, fixed Wi-Fi access networks [238, 239].

1This work is partially an extension of work published in [42] and [237]. While there is an overlap in
the raw data used for this work and [42] and [237], the application and focus in this chapter is different.
All interpretation, statistics, and new content is my own.

143

144

Both the most common last-mile technologies – mobile and satellite – are very costly

for rural and township users. Phokeer et al. [5] found that users living in township

areas in South Africa at that time (2016) typically bought data bundles multiple times

a week, as needed. Such a usage pattern quickly added up to a significant fraction of the

monthly income of users. This finding was echoed in 2019 by the South African Cities

report [2].

The use of unlicensed spectrum such as Wi-Fi can help overcome some of the cost chal-

lenges of access provision. An additional benefit is that Wi-Fi equipment is readily

available. Some effort has also been made to make the Wi-Fi spectrum work in longer

distances, for example, by using high-gain antennas [240]. However, Wi-Fi is becoming

increasingly geared towards dense deployments and shorter distances, and the perfor-

mance of Wi-Fi deteriorates quickly in non-line-of-sight scenarios. The use of DSA bands

in a WMN in such areas can provide increased opportunities for making better use of

spectrum bands that are less crowded without requiring expensive licences or relying on

costly mobile or satellite services.

There are also fundamental physical benefits to using radio frequency (RF) spectrum at

a lower frequency than traditional Wi-Fi, for example, TVWS. These benefits are, most

notably, longer range and robustness to obstructions. If we consider two point-to-point

links of the same distance and equal transmit and receive antenna gains, where the one

link is on TVWS operating at 600 MHz and the other is 5600 MHz Wi-Fi, using the

Friis propagation loss model in free space, the path loss in TVWS is 19 dB less than

Wi-Fi, as shown in Equation (6.1).

∆(path loss) = 10 log10

(
Pr(TV)

Pr(WF)

)
= 10 log10

(
GtGr(

c
4π·d·fTV

)2Pt

GtGr(
c

4π·d·fWF
)2Pt

)

= 20 log10

(
fWF

fTV

)
= 20 log10

(
5600

600

)
= 19.08 dB

(6.1)

where

Pr(TV) and Pr(WF) are the received power in Watts at the TVWS and the Wi-Fi

receivers, respectively;

Gt and Gr are the transmit and receive antenna gains;

c is the speed of light;

d is the distance between transmitter and receiver;

145

Pt is the transmit power (the same for both TV and Wi-Fi transmitters); and

fTV and fWF are the operating frequencies for the TVWS and Wi-Fi links, respectively.

On the other hand, TVWS has larger Fresnel zone radii than Wi-Fi. Therefore, the

TVWS antenna must be placed at a higher elevation to avoid obstruction of the first

Fresnel zone since the radius of the first Fresnel zone is inversely proportional to the

square root of the frequency. Greater penetration through obstructions and a longer

propagation range may also increase intra-network interference. Another interference

factor in TVWS is that there might be PU interference in the allowed TVWS channels,

particularly from leakage into other channels caused by wide spectrum masks and poor

receive filtering that could degrade the performance. Channels that are said to be “free”

by the GLSD may not be entirely free of interference from PUs. This effect could be

more significant in some channels than others. In addition, antenna types and what

antenna gains are available off-the-shelf, adjacent channel interference, multi-path, and

a variety of other factors influence the choice of whether TVWS or Wi-Fi is “better” in a

particular situation. Higher antenna gains are available for Wi-Fi than TV antennas, but

higher antenna gains also result in narrow radiation beamwidths and more directionality

[241].

In this chapter, we present the results of measurements taken in various locations and

scenarios in the real world to help understand the relative benefits of Wi-Fi and TVWS

bands. This study also helps to reveal what factors are important to take into account

in a Channel Assignment (CA) algorithm that might choose between channels in the

different bands. We have chosen to use SINR as the objective on which to do CA in this

work, shown in Chapter 5. The measurements presented in this chapter show under what

circumstances the SINR accurately reflects the performance perceived by end-users and

whether SINR can effectively differentiate the performance of different channels. The

results guide the CA and sensing methods in other chapters.

The rest of this chapter is organised as follows. We describe the experimental setup and

components in Section 6.2. The actual experiments start with baseline measurements in

Section 6.3.1 where we find the behaviour of the TVWS and Wi-Fi cards in the absence

of external factors. In Section 6.3.2, we present the indoor measurements. Next, in

Section 6.3.3, we present the results for measurements taken in line-of-sight conditions,

and in Section 6.3.4, we present and analyse the results of measurements taken in a

wooded area with varying severity of obstructions. The significance and applications of

these results are discussed in Section 6.4, and we conclude in Section 6.5.

146

6.2 Equipment and experimental setup

2 The experiments were performed using two multi-radio mesh routers called White

Space Mesh Nodes (WSMNs) designed by the Council for Scientific and Industrial Re-

search (CSIR). The platform was built on a Mikrotik RB435 Routerboard running the

OpenWRT operating system (see https://openwrt.org/). The RB435 contains five

mini-Peripheral Component Interconnect (PCI) slots, three of which are occupied by

network interface cards (NICs) in the WSMN. The TVWS NIC referred to as White

space radio in Figure 6.1 is a Doodle Labs Wi-Fi card with a frequency transverter to

down-convert Wi-Fi frequencies to TV frequencies in the Ulta-High Frequency (UHF)

band. The WSMN includes a TV antenna and interface and a 5 GHz Wi-Fi interface

and antenna, both of which can be used for mesh connectivity. Mesh connectivity refers

to links between mesh point interfaces of different nodes to form the backbone of the

WMN, as opposed to access connectivity, which is the connection on the AP interface to

clients. The third miniPCI slot provided on the RB435 is used for the client connection

on an interface behaving as an AP. The Wi-Fi mesh connectivity antenna is a 5 GHz

ANT-P523 panel antenna, and the TV antenna is a Maxview MXR0053 Yagi antenna.

Omnidirectional antennas are used for the client connection. The specifications for dif-

ferent components of the WSMN are given in Table 6.1, and the components are shown

in the enclosure in Figure 6.1. The device is powered by an uninterruptible power supply

(UPS), so it is mobile, although with some difficulty.

Component Wi-Fi TVWS

Transceiver/NIC Atheros 802.11a/b/g dual-
band mini PCIe adapters and
AR9382 chipset

Doodle Labs DL509-
78 Broadband Radio
Transceiver for TV band

Antenna type 5 GHz ANT-P523 panel Maxview MXR0053 Yagi

Antenna gain 23 dBi (9 deg) 13 dBi (60 deg)

Supported fre-
quency

5150 - 5850 MHz 470-784 MHz

Cable length, type 1 m, coaxial 1.55 m, coaxial

Table 6.1: Specifications of the components used in the WSMN. The WSMN used
both a DSA band (TVWS) and a traditional 5 GHz Wi-Fi band for mesh connectivity.

In each experiment, two WSMNs were erected at a certain distance from each other.

Packets were generated and sent from the transmit node to the receive node on both

2The physical experiments in this chapter were carried out in collaboration with Richard Maliwatu
and Magdeline Lamola. The figures and interpretation of the data are my own. The characterising of
circuit components using a spectrum analyser was done with the assistance of Albert Lysko but the
interpretation and application are mine.

https://openwrt.org/

147

Figure 6.1: Parts of an early generation of WSMN inside the enclosure. The two
antennas referred to as omni Wi-Fi antenna are omnidirectional antennas used for
client access on both 2.4 GHz and 5 GHz Wi-Fi. The panel antenna is for mesh
connectivity. The TV antenna is not shown in this diagram but would be connected to

the White space radio.

the Wi-Fi and TVWS links using the iPerf and ping tools. These tools were used

to capture the throughput and the round-trip-time (RTT) performance, respectively,

for the two links under similar conditions. The signal strength and noise, as seen by

the NIC and driver and obtained using the Linux iwconfig tool, were also recorded.

The performance of Wi-Fi and TVWS were compared by stepping through different

transmit power levels and channel widths. The measurements were controlled and the

OpenWRT web browser was accessed through a laptop connected to the nodes through

the AP-client connection. To ensure that both the transmit and receive sides of each link

were on the same channel and channel width settings at the same time, the parameter

values were set on both sides by issuing uci commands through a ssh tunnel connection

established between the two ends. This link was established on a 3G mobile connection.

This parallel and independent dedicated control link was used to ensure that the control

process did not influence the measurements on 5 GHz Wi-Fi or TVWS in any way.

Throughout this chapter, it will be useful to refer to Table 6.2 for the centre frequencies

148

Wi-Fi channels TVWS channels

Channel Centre frequency Channel Centre frequency

number (MHz) number (MHz)

36 5180 1 540

38 5190 2 545

40 5200 3 550

42 5210 4 555

44 5220 5 560

46 5230 6 565

48 5340 7 570

50 5250 8 575

52 5260 9 580

54 5270 10 585

56 5280 11 590

Table 6.2: Mapping of Doodle Labs Wi-Fi and TVWS channels to centre frequency

of the TVWS channels, as they are down-converted by the TVWS NIC and the channel

numbering is not the same as standard TV channels. The Wi-Fi centre frequencies are

also shown in Table 6.2 for ease of reference.

The python script, attached in Appendix G, was used to establish the ssh tunnel and

issue all the necessary commands and extract the required data. It was used to switch

channels, change the transmit power, and alter the channel width in a controlled, evenly

spaced, and timely manner and to set up both the server and client side of iPerf and

perform the iPerf and ping tests. It was also used to obtain the signal and noise values.

A waiting time was included after every change of settings to ensure that the power level

settles adequately and for the commands to take effect. The necessity for this waiting

time is twofold. By observing the received signal on the spectrum analyser, we found

that the time taken for the full power integral to be detected at the spectrum analyser

after the transmission had started was around 6s. The setup for making this observation

is detailed in Section 6.3.1. A delay was also observed between the issuing of commands

and the change taking effect. This delay depends on the processing power of the device,

the computing resources used at the time, and whether a beacon frame might have to

be sent at that time. The channel switch delay is also hardware dependent.

149

6.3 Experiments

6.3.1 Baseline measurements

Figure 6.2: Setup for the baseline (cabled) experiments. The pigtail antenna connec-
tors of two Devices Under Test (DUTs) Network Interface Cards (NICs), one in receive
mode and one in transmit mode, are connected via cables to 30 dB attenuators on each
side of a splitter. The splitter allows a spectrum analyser to be connected to monitor

and show the signal passing from the receiver to the transmitter.

Before accounting for the effects of the environment and propagation in the air on the

performance of TVWS and 5 GHz Wi-Fi, we find the baseline performance by excluding

these effects. Baseline performance was determined by doing cabled measurements, as

shown in Figure 6.2. The link was made completely cabled by attaching an RF cable to

each Device Under Test (DUT) Network Interface Card (NIC)’s antenna “pigtail”, each

through a 30 dB attenuator. Attenuation is necessary so that the receivers of the NICs

are not pushed into saturation or non-linear regions since there is negligible propagation

loss in the cabled setup. The two sides were connected through a splitter to a spectrum

analyser for further analysis. The Rohde and Schwartz FSH6 spectrum analyser helped

measure the effects of introducing each of these circuit components, find a suitable

transmit power that caused the least distortion at the receiver inputs, and determine

the necessary corrections. While the cable, splitter, and antenna pigtails should ideally

not introduce any loss, each of these components introduced some frequency-dependent

loss, which had to be corrected. Each attenuator also introduced some error, as the

attenuation was found not to be exactly 30 dB but ranging from 33.67 dB to 31.77 dB.

In order to determine the necessary corrections and assess the impact of the circuit

components, spectrum measurements were taken on the spectrum analyser with only

the cable as load, then with the attenuator and cable only, cable with antenna pigtail,

and cable with pigtail and the network card. Figure 6.3 shows the effects of each of

these elements, which would ideally be passive and have negligible impedance. Table 6.3

summarises the extra losses brought by the circuit components and deduced from the

spectrum analysis, which need to be corrected for in the results. There is an average of

4.015 dB extra loss introduced by circuit components with an error of ±1.215 dB when

150

(a) Cable only (b) Cable with one 30 dB attenuator

(c) Cable, TVWS card and pigtail (d) Cable with pigtail

(e) Cable and connector (f) Port reflections

Figure 6.3: Characterisation of frequency response of circuit components of the base-
line measurements

including the cable. Each attenuator presents an average loss of 2.72±0.95 dB in addition

to the 30 dB attenuation it is intended to introduce. That means the total correction to

be applied to cabled measurements is (4.015+2.72)±(1.215+0.95) dB = 6.735±2.165 dB,

and for the outdoor wireless measurements (excluding the cable losses), the correction

is (6.735− 0.47)± (2.165− 0.11) dB = 6.265± 2.055 dB.

In the baseline measurements in Table 6.4, we see an expected pattern where the through-

put increases proportionally to the increase in channel width, and the round-trip-time

(RTT) decreases as the channel width increases. Results are not shown for different

151

Component Min Max Avg Error

Cable -0.58 -0.36 -0.47 -0.11

Cable + attenuator -34.25 -32.13 -33.19 -1.06

Cable + pigtail -1.56 -1.03 -1.295 -0.265

Cable + attenuator + pigtail -35.23 -32.8 -34.015 -1.215

Attenuator -33.67 -31.77 -32.72 -0.95

Table 6.3: Correction factors to be applied to measured values

Channel Wi-Fi TVWS

width Throughput RTT (ms) Throughput RTT (ms)

(MHz) (Mbps) (Mbps)

mean (±SD) mean (±SD) mean (±SD) mean (±SD)

5 6.1 (2.9) 1.3 (1.6) 4.4 (1.0) 1.5 (2.0)

10 11.8 (2.9) 1.0 (1.6) 9.8 (2.3) 1.1 (2.0)

20 22.4 (5.2) 0.8 (1.44) 20.6 (1.8) 0.8 (1.1)

Table 6.4: Baseline (cabled) measurements of TVWS vs Wi-Fi

channel numbers and transmit powers because the channel does not affect the results

significantly when environmental conditions are excluded, and the best performance

was found at a transmit power setting of 15 dBm, so this parameter was fixed at that

value. We see that the TVWS card performs slightly worse than the Wi-Fi card, as the

throughput is about 17.6% lower on average, and the RTT is about 8% higher. There

is some variance in all the results, shown by the standard deviation (SD). This can be

attributed to any of a number of factors: Firstly, there was possibly still some slight

signal distortion and non-linearity at the receiver input. The losses along the path are

≈ 64 dB. While 15 dBm−64 dB = −49 dBm is still below the expected saturation level,

it is possible that slight saturation effects already begin to show at the input power. We

observed some frequency dependency in the response of the cable, pigtail, splitter, and

attenuator components on the spectrum analyser, which might have affected the result.

However, we would expect this effect to be more significant in the larger channel widths.

The biggest variance is seen in the Wi-Fi throughput at 20 MHz channel width, but the

variance in TVWS is not as large. Secondly, there is likely leakage between the cards

and crosstalk caused by poor screening and the physical proximity of the cards. This

can cause a portion of the signal to be radiated and received wirelessly, which increases

the effective noise floor and causes variability in the received signal and the measured

throughput and RTT. Another likely cause of this variability is OS-related. For example,

152

variability in the other processes that are running concurrently with the iPerf and ping

tests could cause differences in the allocation of resources to these processes at different

times.

6.3.2 Indoor measurements

(a) Node A: front view (b) Node A: side view

Figure 6.4: Indoor measurements setup. The setup had node A at one end of the
laboratory and node B at the other. The figures only show one of the two nodes.

Measurements were taken indoors to include the effects of propagation and antennas

but somewhat reduce the interference and environmental effects that are experienced

outdoors. The two nodes were stationed 21 m apart in a laboratory environment (the

ICT4D lab at the University of Cape Town). The nodes were 1 m distance from the side

wall and 0.9 m from the wall behind each of the nodes. The lab is populated with tables,

bookshelves, screens, computers, and several other objects that would cause reflection

or absorption of the transmitted signals. For this set of results, all measurements were

taken in both directions. The throughput measurements were obtained both with node

A as the server and node B as the client, and vice versa with node B as the server

and node A as the client. The throughput measurements in Table 6.5 and Table 6.6

are the average of the throughput measurements taken in both directions and averaged

over 10 different runs of the same test. The RTT (latency) measurements were taken

by running ping in the background at the same time as the throughput measurements

were being taken. The ping process is not given priority when run in background mode.

This is probably the reason for the great differences in the RTT times. Because the

measurements were not taken in a reliable way, we do not use the RTT as a performance

measure. We would also suggest that anyone else wanting to repeat similar experiments

or use our measurement script run ping tests separately and at a different time from the

153

other tests while there is no other process in the operating system (OS) that is getting

preference of computing resources.

Signal strength and noise values were obtained for both node A and node B separately

using the Linux iwconfig tool. This tool displays the minimum, maximum, and aver-

age signal strength (in dBm) and noise power values (also in dBm) that the driver has

gathered and written to /proc/net/wireless. The specific way in which these measure-

ments are taken is driver-dependent, and the regularity with which they are updated or

averaged is also driver-dependent and not well-documented. The signal strength values

displayed by the iwconfig tool are obtained from the RSSI estimate. The accuracy of

the RSSI is limited because it is deduced from energy samples taken only during the

preamble of a received frame and not for the entire frame. RSSI was initially intended

to be used only in a relative manner [242]. In IEEE 802.11-2016 [243], it is specified

to have an accuracy of ±5 dB. The RSSI values also typically cover only a near-linear

portion of the signal strength and not the full range. Any value outside of this range

could have large inaccuracies. We must take note of this accuracy when trying to make

conclusions based on the cards’ reported RSSI values. The noise value must be taken at

a time when the interface is neither transmitting nor receiving so that it measures only

the noise and interference and not the power of the desired received signal. While our

measurement script is being run, it is thus possible that the driver and card did not have

much time to update the noise power value. The SNR values shown in Figure 6.8 are

obtained by finding the mean of all the signal strength values for the specific parameter

combination (A and B values averaged over different test instances) and subtracting the

mean of the noise power values, as per Equation (6.2).

SNR =
1

2

[
1

10

10∑
t=1

RSSIt(A) +
1

10

10∑
t=1

RSSIt(B)

]
−

1

2

[
1

10

10∑
t=1

NOISEt(A) +
1

10

10∑
t=1

NOISEt(B)

]
(6.2)

The SNR values computed in this way indicate how the measured signal and noise

values can be used to find a unified physical layer performance measure or objective on

which to perform channel parameter tuning. In Chapter 7, we suggest a way to obtain

SINR values and use these in the Channel Assignment. There is one major difference

between this SNR computed in this way and the SINR: in these SNR measurements,

interference is included in both the signal measurement and the noise measurement.

This is because both the signal and noise power measurement is obtained by energy

detection, so any power above the receive sensitivity is considered to be “signal”. We

are not able to measure the interference separately from either the noise or the signal.

Therefore, we are not able to correct for the effects of interference. However, we use this

154

SNR as an indication of how the average SINR might reflect performance and show

in what scenarios a more accurate SINR measurement method would be important. A

correction is suggested in Chapter 7 Section 7.3.2 to obtain a better estimate of the

SINR. 3

Channel Wi-Fi TVWS

width Throughput RTT (ms) Throughput RTT (ms)

(MHz) (Mbps) (Mbps)

mean (±SD) mean (±SD) mean (±SD) mean (±SD)

5 4.5 (2.6) 2.0 (0.6) 2.7 (0.9) 2.6 (0.9)

10 8.5 (5.1) 2.3 (2.6) 5.0 (2.2) 1.7 (0.4)

20 12.7 (7.0) 1.2 (0.3) 4.7 (5.0) 770.1 (1219.6)

Table 6.5: Measurements of TVWS vs Wi-Fi indoors, TVWS channel 1 (540 MHz)
and Wi-Fi channel 40 (5200 MHz), transmit power = 5 dBm

Channel Wi-Fi TVWS

width Throughput RTT (ms) Throughput RTT (ms)

(MHz) (Mbps) (Mbps)

mean (±SD) mean (±SD) mean (±SD) mean (±SD)

5 5.9 (5.6) 1.4 (0.4) 0.7 (0.5) 4.1 (1.3)

10 8.4 (4.6) 1.5 (0.8) 0.7 (0.4) 19.9 (43.9)

20 13.6 (6.1) 1.0 (0.4) 0.8 (0.6) 3.1 (1.4)

Table 6.6: Measurements of TVWS vs Wi-Fi indoors, TVWS channel 1 (540 MHz)
and Wi-Fi channel 40 (5200 MHz), transmit power = 20 dBm

From Table 6.5, Table 6.6, and Figure 6.6, we can see that the Wi-Fi measurements

display consistent results. The Wi-Fi throughput consistently increases as the channel

width increases, although the increase in channel width is no longer proportional to the

throughput increase. The trend only falters when the transmit power is low. The latency

decreases as the channel width increases, though the trend in RTT is less consistent than

the throughput trend. Similar trends can be seen for all the channels for which data were

gathered. The throughput generally increases slightly with increasing transmit power as

the SNR also generally increases with increasing transmit power (see Figure 6.6) because

the signal strength increases. However, indoors, the channel width has a stronger effect

on the throughput than the transmit power. The SNR decreases slightly as the channel

3A more accurate measure of the SINR, called the Received Signal to Noise Indicator (RSNI), was
introduced in IEEE Std 802.11-2016 [243]. At the time of performing these measurements, the RSNI
was not implemented in the chipset we used and could not be obtained. The RSNI would be a preferred
metric to sample to obtain a more accurate SINR estimate where it is available.

155

Channel Wi-Fi TVWS

width Throughput RTT (ms) Throughput RTT (ms)

(MHz) (Mbps) (Mbps)

mean (±SD) mean (±SD) mean (±SD) mean (±SD)

5 3.6 (2.0) 1.2 (0.3) 2.6 (1.1) 2.0 (0.4)

10 2.5 (2.7) 1.8 (0.1) 6.0 (2.3) 1.3 (0.4)

20 6.9 (3.2) 1.6 (1.6) 13.6 (3.6) 1.4 (0.8)

Table 6.7: Measurements of TVWS vs Wi-Fi indoors, TVWS channel 4 (555 MHz)
and Wi-Fi channel 48 (5240 MHz), transmit power = 5 dBm

Channel Wi-Fi TVWS

width Throughput RTT (ms) Throughput RTT (ms)

(MHz) (Mbps) (Mbps)

mean (±SD) mean (±SD) mean (±SD) mean (±SD)

5 2.8 (2.2) 1.3 (1.7) N/A 67.9 (73.2)

10 6.5 (2.8) 1.3 (0.4) N/A 68.7 (67.0)

20 9.6 (5.8) 1.5 (0.3) 2.5 (2.0) 3.6 (61.2)

Table 6.8: Measurements of TVWS vs Wi-Fi indoors, TVWS channel 4 (555 MHz)
and Wi-Fi channel 48 (5240 MHz), transmit power = 20 dBm

width increases because the noise increases (there is an approximately 3 dB increase in

the noise power as the channel width doubles, as expected). However, because the SNR

is high enough, the throughput is more affected by the channel width than the SNR.

In channels 44 and 48, we see a lower throughput for a transmit power of 5 dBm than

for 10 dBm and 15 dBm, as the SNR has a significant enough change. In channel 48,

we observed that when the transmit power is fixed at 20 dBm, from 5 MHz to 10 MHz

channel width, the noise increases by about 3 dB, as expected, but the noise then drops

by 5 dB when the channel width goes from 10 MHz to 20 MHz. This effect can be seen

in Figure 6.8 (b). The drop in noise power is unexpected. Yet, this was observed in

most of the test instances we ran and at both nodes. The reason for this drop is likely to

be a driver malfunction or default value used when the driver does not get a chance to

take up-to-date measurements. It must be noted that, on one node, the value recorded

for the noise power is -109 dBm, which is also the minimum of all the noise values we

observed at that node. However, for the other node in each test instance, the noise value

observed is -103 dBm, which is also the minimum noise value observed out of all the

measurements for that node. This would seem to indicate that the driver falls back to a

156

(a) Channel 36 (b) Channel 40

Figure 6.5: Transmit power vs. throughput on Wi-Fi, indoors (error bars indicate
standard deviation)

(a) Channel 44 (b) Channel 48

Figure 6.6: Transmit power vs. throughput on Wi-Fi, indoors (error bars indicate
standard deviation)

certain minimum noise value as a default dependent on the noise floor when it is unable

to find time to take new measurements. The noise floor must be different for the two

cards since the noise values differ by 6 dB. This difference is greater than the maximum

of 4 dB fluctuation we expect, which is deduced in Section 6.3.1. These results indicate

that it would be important in practice to provide the driver with sufficient time to take

up-to-date and correct noise measurements.

In TVWS indoor transmissions have results that are somewhat less clear, particularly in

channel 1. In Figure 6.7, there is a general increasing trend of throughput with increasing

channel width. This is more the case in channels 4, 7, and 11 (Figure 6.7 (b), (c), (d))

than in channel 1 (Figure 6.7 (a)). In TVWS channels 1 and 4, the throughput drops

sharply when the transmit power increases from 15 dBm to 20 dBm, an observation not

seen in Wi-Fi, and the throughput gradually decreases as the transmit power increases

from 5 dBm to 20 dBm in channels 7 and 11. This is because the input power at the

receiver is too high at this short distance, causing saturation and distortion. We also

157

(a) Channel 1 (b) Channel 4

(c) Channel 7 (d) Channel 11

Figure 6.7: Throughput vs. transmit power on TVWS, indoors

note that channel 1 shows a smaller improvement in the throughput as the channel width

increases. This is likely because interference is experienced in channel 1 from nearby

TV transmitters, the effects of which are still observed indoors. In terms of the effect of

channel width on SNR, we see in Figure 6.8 (c) and (d) that the noise generally increases

with increasing channel width, resulting in a gradual drop in SNR. Only in channel 7

(Figure 6.8 (d)) at a 20 dBm transmit power do we see an increase in SNR from 10 MHz

to 20 MHz.

Channel Tx Power (dBm)

width 5 10 15 20

(MHz) H-stat p-val H-stat p-val H-stat p-val H-stat p-val

5 16.0 0.001 28.9 2.3×10−6 32.7 3.7×10−7 19.1 0.0003

10 16.8 0.0008 31.8 5.8×10−7 12.2 0.0068 33.3 2.8×10−7

20 27.9 3.9×10−6 25.2 1.3×10−5 12.8 0.0051 25.9 1.0×10−5

Table 6.9: Kruskal-Wallis test results for Wi-Fi channels (36, 40, 44, and 48) vs. SNR
indoors

158

(a) Wi-Fi channels 36,40 (b) Wi-Fi channels 44, 48

(c) TVWS (d) TVWS

Figure 6.8: Channel width vs SNR on Wi-Fi and TVWS, indoors

Channel Tx Power (dBm)

width 5 10 15 20

(MHz) H-stat p-val H-stat p-val H-stat p-val H-stat p-val

5 30.5 1.1×10−6 28.2 3.2×10−6 21.7 7.6×10−5 27.9 3.9×10−6

10 30.5 1.1×10−6 32.1 4.8×10−7 31.3 7.4×10−7 33.7 2.4×10−7

20 36.6 5.6×10−8 37.9 2.9×10−8 34.7 1.4×10−7 35.6 9.0×10−8

Table 6.10: Kruskal-Wallis test results for TVWS channels (1, 4, 7, and 11) vs. SNR
indoors

The Kruskal-Wallis statistical test [244, 245] was performed to determine whether the

SNR results recorded for the different channels in Wi-Fi and TVWS, respectively, were

significantly different. The reason for this test is to determine whether the SNR can be

used to differentiate sufficiently between the performance of the different channels. This

informs whether SNR is a useful objective function for Channel Assignment (CA), which

also indicates whether SINR would be a useful performance measure for channels and

CA. The Kruskal-Wallis test is a non-parametric test to use with samples from two or

more groups (since there are four Wi-Fi and TVWS channels to compare) to determine

159

Channel Channel width Correlation p-value

36 5 0.068 0.537

36 10 0.116 0.294

36 20 -0.136 0.217

40 5 0.152 0.169

40 10 0.181 0.100

40 20 0.367 0.0009

44 5 0.216 0.050

44 10 0.449 4.534×10−5

44 20 0.489 9.023×10−6

48 5 0.207 0.067

48 10 0.164 0.145

48 20 0.192 0.088

Table 6.11: Kendall’s rank correlation test results for Wi-Fi SNR vs. throughput
indoors

Channel Channel width Correlation p-value

1 5 -0.216 0.050

1 10 0.401 0.0003

1 20 -0.397 0.00035

4 5 -0.333 0.0031

4 10 -0.578 2.807×10−7

4 20 -0.404 0.0003

7 5 -0.149 0.183

7 10 -0.293 0.0004

7 20 -0.582 1.299×10−7

11 5 -0.657 5.892×10−9

11 10 -0.623 3.103×10−8

11 20 -0.730 3.359×10−11

Table 6.12: Kendall’s rank correlation test results for TVWS SNR vs. throughput
indoors

160

if there are statistically significant differences between groups of an independent variable

(the channel number) on a continuous or ordinal dependent variable (the SNR). Unlike

the Friedman test, this statistical test can be used when the numbers of sample points per

group are not all the same. We have chosen to use the Kruskal-Wallis test because some

data points are missing in our measurements where we were unable to get a reading for

a specific repetition of the experiment at a specific channel, channel width, and transmit

power combination. The Friedman test requires that all groups have the same number

of data points.

Table 6.9 and Table 6.10 show very significant differences in the SNR results for different

channels. The Kruskal-Wallis test statistic is above 16 in most cases while the critical

value is H = 7.7 (for a significance level of 0.05), and the p-value is considerably lower

than 0.05 for every transmit power and channel width combination in both TVWS and

Wi-Fi bands. The small p-values lead us to reject the null hypothesis that the SNR

values for different channels are not significantly different. In other words, at least one

of the channels has a significantly different median SNR from the others. Typically,

the TVWS channels are more differentiated than Wi-Fi channels since the H-statistic is

higher overall. In Wi-Fi, the differences in the different channels are smaller when the

transmit power is low and the channel width is small.

Kendall’s rank correlation test [246] was done to determine the extent to which the

recorded SNR and the measured throughput are correlated. A strong correlation would

indicate that the SNR is a good predictor of the performance that end users might

experience and shows how close to the Shannon limit the link is. In Table 6.11, we notice

that the correlation is not strong in channel 36, is somewhat strong in channel 40, very

strong in channel 44, and somewhat strong in channel 48. In TVWS, shown in Table 6.12,

the correlation between SNR and throughput has a strong, mostly negative, correlation

in most of the measured channels. The weakest correlation is in channel 1, where we

also inferred that external interference was present, and the strongest correlation is in

channel 11. The negative correlation in indoor conditions at this short distance must be

owing to saturation effects and multipath.

6.3.3 Line-of-sight measurements

For this set of experiments, two nodes were erected at a distance apart, with the Wi-Fi

antenna being at the height of 1.84 m and the TV antenna at the height of 2.34 m, in an

open space (the rugby field at the University of Cape Town) where line-of-sight (LoS)

was available. In all the experiments, the antennas were vertically polarized, and our

best attempt was made to align the antennas well. However, alignment was done by sight

161

and not by laser or another more accurate alignment measure, so it is possible there were

slight alignment errors. The measurement sets per distance were each taken on the same

day, but measurements at different distances were taken on different days with slightly

different weather conditions. This experiment was performed in an urban environment

where there is a high presence of primary TV transmitters and Wi-Fi APs, but far from

the nearest Wi-Fi AP. Where possible, ten tests (or sets of measurements) were run for

each combination of parameters (transmit power, channel, and channel bandwidth), and

the mean and standard deviation of the test results were obtained. The measurements

recorded were the received signal strength and noise obtained from the driver card

and presented in the LuCI managements dashboard or obtained from the iwconfig tool

similar to the indoor measurements, and the throughput from iPerf and RTT using

ping. The SNR values are found by averaging the signal strength measurements (in

dBm) and subtracting the average noise power measurements (also in dBm) according

to Equation (6.2).

6.3.3.1 250 m distance

For this set of measurements, the two nodes were placed approximately 250 m apart

on the rugby field at the University of Cape Town in line-of-sight (LoS) conditions. All

throughput, RTT, signal strength, and noise values were obtained in either direction at

both nodes. In other words, the same experiments were repeated with node A as the

transmitter and node B as the receiver, as well as vice versa. The results are the mean of

the values obtained at both ends. We also compare measurements in different directions

in Section 6.3.3.1 and show that performance can be highly directional. The throughput

and delay measurements are shown in Table 6.13 to Table 6.16 for TV channel 1 and

Wi-Fi channel 40, for transmit powers of 5, 10, 15, and 20 dBm, respectively, and in

Table 6.17 to Table 6.20 for TV channel 4 and Wi-Fi channel 48.

Channel Wi-Fi TVWS

width Throughput RTT (ms) Throughput RTT (ms)

(MHz) (Mbps) (Mbps)

mean (±SD) mean (±SD) mean (±SD) mean (±SD)

5 N/A N/A 0.8 (0.8) 5.2 (5.4)

10 N/A N/A 0.3 (0.3) 243.9 (194.0)

20 0.4 (0.8) 17.3 (24.4) N/A N/A

Table 6.13: Measurements of TVWS vs Wi-Fi in line-of-sight conditions, 250 m
separation distance, TVWS channel 1 (540 MHz) and Wi-Fi channel 40 (5200 MHz),

transmit power = 5 dBm

162

Channel Wi-Fi TVWS

width Throughput RTT (ms) Throughput RTT (ms)

(MHz) (Mbps) (Mbps)

mean (±SD) mean (±SD) mean (±SD) mean (±SD)

5 0.5 (0.7) 38.4 (3.5) 0.6 (0.4) 6.7 (5.2)

10 0.0 (0.0) 500.3 (707.6) 0.2 (0.2) 798.5 (766.5)

20 0.5 (1.0) 5.9 (8.4) 0.1 (0.1) 5.5 (0.0)

Table 6.14: Measurements of TVWS vs Wi-Fi in line-of-sight conditions, 250 m
separation distance, TVWS channel 1 (540 MHz) and Wi-Fi channel 40 (5200 MHz),

transmit power = 10 dBm

Channel Wi-Fi TVWS

width Throughput RTT (ms) Throughput RTT (ms)

(MHz) (Mbps) (Mbps)

mean (±SD) mean (±SD) mean (±SD) mean (±SD)

5 2.6 (2.3) 2.1 (0.9) 0.9 (0.7) 2.8 (1.1)

10 2.2 (2.6) 341.1 (580.0) 0.8 (0.9) 536.7 (662.2)

20 0.7 (1.0) 14.2 (18.3) N/A 5.1 (0.0)

Table 6.15: Measurements of TVWS vs Wi-Fi in line-of-sight conditions, 250 m
separation distance, TVWS channel 1 (540 MHz) and Wi-Fi channel 40 (5200 MHz),

transmit power = 15 dBm

Channel Wi-Fi TVWS

width Throughput RTT (ms) Throughput RTT (ms)

(MHz) (Mbps) (Mbps)

mean (±SD) mean (±SD) mean (±SD) mean (±SD)

5 2.2 (2.3) 2.8 (1.6) 0.3 (0.3) 95.5 (127.0)

10 3.3 (3.1) 3.2 (1.4) 0.4 (0.3) 33.6 (32.0)

20 0.6 (1.6) 6.4 (5.0) 0.3 (0.4) 118.9 (0.0)

Table 6.16: Measurements of TVWS vs Wi-Fi in line-of-sight conditions, 250 m
separation distance, TVWS channel 1 (540 MHz) and Wi-Fi channel 40 (5200 MHz),

transmit power = 20 dBm

Table 6.13 shows that a stable connection could not be made at a transmit power of

5 dBm in channel 40, but we were able to get a more stable connection at 5 dBm

transmit power in channel 48, as seen in Table 6.17. Some of the measurements in the

different channels were taken in different weather conditions on different days and could

163

Channel Wi-Fi TVWS

width Throughput RTT (ms) Throughput RTT (ms)

(MHz) (Mbps) (Mbps)

mean (±SD) mean (±SD) mean (±SD) mean (±SD)

5 2.4 (1.5) 1.6 (2.5) 1.5 (0.8) 3.4 (1.9)

10 4.2 (1.8) 1.0 (0.8) 0.2 (0.8) 260.0 (248.7)

20 1.3 (0.9) 5.7 (1.0) N/A 5278.8 (5184.4)

Table 6.17: Measurements of TVWS vs Wi-Fi in line-of-sight conditions, 250 m
separation distance, TVWS channel 4 (555 MHz) and Wi-Fi channel 48 (5240 MHz),

transmit power = 5 dBm

Channel Wi-Fi TVWS

width Throughput RTT (ms) Throughput RTT (ms)

(MHz) (Mbps) (Mbps)

mean (±SD) mean (±SD) mean (±SD) mean (±SD)

5 2.8 (1.7) 11.8 (8.9) 1.1 (0.8) 7.0 (5.8)

10 3.5 (2.3) 3.9 (0.6) 0.3 (0.3) 1937.5 (2330.0)

20 2.8 (1.6) 2.7 (0.9) 0.04 (0.06) 4828.1 (7532.9)

Table 6.18: Measurements of TVWS vs Wi-Fi in line-of-sight conditions, 250 m
separation distance, TVWS channel 4 (555 MHz) and Wi-Fi channel 48 (5240 MHz),

transmit power = 10 dBm

Channel Wi-Fi TVWS

width Throughput RTT (ms) Throughput RTT (ms)

(MHz) (Mbps) (Mbps)

mean (±SD) mean (±SD) mean (±SD) mean (±SD)

5 3.5 (2.4) 6.4 (5.5) 1.1 (0.9) 1.8 (0.3)

10 6.0 (3.7) 4.6 (0.6) 0.5 (0.7) 390.5 (651.5)

20 5.1 (4.3) 7.8 (3.6) N/A 3057.3 (4395.7)

Table 6.19: Measurements of TVWS vs Wi-Fi in line-of-sight conditions, 250 m
separation distance, TVWS channel 4 (555 MHz) and Wi-Fi channel 48 (5240 MHz),

transmit power = 15 dBm

have been affected by slight changes in antenna alignment. Interestingly, as shown in

the tables and in Figure 6.12, the throughput generally increases as the channel width

increases from 5 MHz to 10 MHz but drops again in the 20 MHz channel. This is

more the case in channels 36 and 40 when the transmit power is lower than in channels

164

Channel Wi-Fi TVWS

width Throughput RTT (ms) Throughput RTT (ms)

(MHz) (Mbps) (Mbps)

mean (±SD) mean (±SD) mean (±SD) mean (±SD)

5 2.4 (2.1) 47.7 (1.0) 0.3 (0.4) 18.1 (10.8)

10 4.8 (3.9) 104.5 (6.3) N/A 172.5 (150.3)

20 6.4 (4.5) 36.8 (1.9) 0.1 (0.1) 3907.3

Table 6.20: Measurements of TVWS vs Wi-Fi in line-of-sight conditions, 650 m
separation distance, TVWS channel 4 (555 MHz) and Wi-Fi channel 48 (5240 MHz),

transmit power = 20 dBm

44 and 48 and when the transmit power is 20 dBm. The signal strength at the one

node increases steadily with increasing transmit power but is less reliable at the other

node. This indicates that it is important to account for the asymmetry of links and take

measurements in both directions.

(a) Wi-Fi (b) Wi-Fi

(c) TVWS (d) TVWS

Figure 6.9: Transmit power vs. received SNR on Wi-Fi and TVWS, 250 m line-of-
sight

165

(a) Wi-Fi channels 36 and 40, node A (b) Wi-Fi channels 36 and 40, node B

(c) TVWS channels 1 and 4, node A (d) TVWS channels 1 and 4, node B

Figure 6.10: Transmit power vs. received SNR on Wi-Fi and TVWS, 250 m line-of-
sight, directions compared

Figure 6.11: Channel width vs. Noise on TVWS channels 1 and 4, 250 m line-of-sight

Figure 6.10 shows the SNR as the transmit power increases, with a comparison of the

different channel widths. We notice that the increase is not linear, although the SNR

does generally increase with the transmit power. We noticed in the raw results of the

Wi-Fi channels that the signal strength at 5 MHz channel width is 4-5 dB lower than

in the wider channels. This is seen for 5-10 dBm transmit power in Figure 6.10 (a).

The signal strength is also higher in TV channel 1 than in other channels. The signal

strength measured in the wider channels is most likely to be interference rather than

166

true signal power. This is why the SNR does not increase as much, since the noise also

increases. We also note that the noise increases significantly between the 5 to 20 MHz

channels. This is shown in Figure 6.11. The noise power increases from -73 dBm in

the 5 MHz channel to -63.85 dBm in the 10 MHz channel and -43 dBm in the 20 MHz

channel in TV channel 1. Similarly large increases in noise power are seen at both nodes.

This increased noise over the expected 3 dB increase is likely also due to the interference.

Since both the noise and signal are affected by the interference, the SNR (in the way

that it has been measured here) is not as effective an indicator of performance as a true

SINR measurement would be.

The SNR generally increases with increasing transmit power, as expected, although the

trend is not linear. This is illustrated in Figure 6.9. In Wi-Fi channel 36, we see a drop

in the recorded SNR when the transmit power increases from 15 dBm to 20 dBm when

the channel width is 20 MHz, which, we saw from the raw results, was driven by a drop

in the signal strength at the one node rather than an increase in the noise. The drop in

signal strength is mostly within the 5 dB accuracy expected from RSSI measurements.

In TVWS, we see a roughly linear increase in the SNR with the transmit power, with

channel 7 at 20 MHz width about 10 dB lower than its equivalent in channel 11. This

is because the noise is higher in channel 7 than in channel 11. The noise is much higher

in channel 1 than in other channels.

The average throughput for different transmit powers is shown in Figure 6.12 for Wi-

Fi and Figure 6.13 for TVWS. We have separated the throughput values obtained in

directions A to B, and B to A in Figure 6.14 and Figure 6.15. These results show that

the links are highly directional. We find the noise is mostly higher at node B than at

node A and the signal strength is lower. This causes the throughput obtained at A

from B to be much higher than at B from A. Link directionality is caused by the level

of interference experienced at the nodes being different. The nodes’ antennas are at

different locations and are directional, so they pick up different signals from interference

sources and different noise levels. We experienced difficulty obtaining accurate signal

strength measurements at node B in channel 40, with the SNR dropping significantly in

channel 40 at a channel width of 20 MHz as the transmit power increased from 10 dBm

to 15 dBm. This can be seen in Figure 6.17. It is important that this link directionality

is taken into account in a good Channel Assignment and that enough measurements

are taken to account for temporary driver or chipset malfunctions or other temporary

effects.

We again perform the Kruskal-Wallis test to compare the channels in each band. Ta-

ble 6.21 shows a p-value below 0.05 for transmit levels of 5 dBm and 10 dBm. We also see

from Figure 6.9 that the curves for different channels are close together, and the larger

167

(a) Channel 36 (b) Channel 40

(c) Channel 44 (d) Channel 48

Figure 6.12: Transmit power vs. throughput on Wi-Fi, 250 m line-of-sight (error bars
indicate standard deviation)

Channel Tx Power (dBm)

width 5 10 15 20

(MHz) H-stat p-val H-stat p-val H-stat p-val H-stat p-val

5 7.3 0.06 6.8 0.08 8.8 0.03 5.2 0.2

10 6.7 0.08 14.9 0.002 5.2 0.2 5.5 0.1

20 13.8 0.003 7.9 0.05 3.7 0.3 7.7 0.05

Table 6.21: Kruskal-Wallis test results for Wi-Fi channels (36, 40, 44, and 48) vs.
SNR LoS 250 m

effect on the SNR is caused by the difference in channel width, which is more the case

when the transmit power is higher. On the other hand, Table 6.22 shows p-values below

0.05 and H-statistics above the critical value for wider channel widths and less significant

differences when the channel width is 5 MHz. At the wider channel widths, interference

starts to play a more significant role, and the interference is greater in some channels

than others, causing the different channels to have statistically significant differences in

medians and distributions. Fewer test instances were run for this set of measurements

168

(a) Channel 1 (b) Channel 4

(c) Channel 7 (d) Channel 11

Figure 6.13: Transmit power vs. throughput on TVWS, 250 m line-of-sight

Channel Tx Power (dBm)

width 5 10 15 20

(MHz) H-stat p-val H-stat p-val H-stat p-val H-stat p-val

5 0.4 0.9 2.1 0.5 10.1 0.02 5.2 0.2

10 9.7 0.02 8.7 0.03 12.0 0.007 12.0 0.007

20 10.8 0.01 10.4 0.02 13.4 0.004 13.1 0.004

Table 6.22: Kruskal-Wallis test results for TVWS channels (1,4,7, and 11) vs. SNR
LoS 250 m

(only 4), which influences the results of the Kruskal-Wallis test. The differences are

also less significant because the missing readings, where a stable connection could not

be maintained, are simply omitted from the calculation (as per the way the Kruskal-

Wallis test is done). This would reduce the efficacy of the test for determining whether

the channels have sufficiently different SNR distributions and cause the p-values to be

higher. We can see in Figure 6.13 that the results are widely different for channels 1, 4,

7, and 11.

169

(a) Channel 36 A to B (b) Channel 36 B to A

(c) Channel 40 A to B (d) Channel 40 B to A

Figure 6.14: Transmit power vs. throughput on Wi-Fi, 250 m line-of-sight in different
directions: node A to B and node B to A

Kendall’s rank correlation was computed to determine the extent to which there is a

monotonic relationship between the recorded SNR and the throughput in both Wi-Fi

and TVWS. Kendall’s correlation instead of Pearson’s was used because the relationship

is not expected to be linear but logarithmic because of Shannon’s theorem, and because

Kendall’s correlation metric is non-parametric, so does not require the data to fit a

normal distribution. A strong relationship between SNR and throughput is expected.

If the statistics confirm that there is a strong relationship in the measurements under

various conditions in the real world, we can conclude that the SNR computed from

signal strength and noise power is a good indication of the performance that end users

can expect. The closer to 0 the correlation coefficient is, the weaker the relationship

and the closer to -1 or 1, the stronger the relationship. We choose a significance p-

value of 0.05. If the p-value is below 0.05, we can conclude there is a strong correlation

between the variables. Table 6.23 shows that there is a strong relationship between the

SNR and the throughput, in general. The p-value is below 0.05 in 9 of 11 parameter

combinations where values could be found. No throughput could be obtained in Wi-Fi

channel 36 for a channel width of 20. In channel 40, the signal strength was generally

low, and few throughput values could be obtained, which reduces the strength of the

170

(a) Channel 1 A to B (b) Channel 1 B to A

(c) Channel 4 A to B (d) Channel 4 B to A

Figure 6.15: Transmit power vs. throughput on TVWS, 250 m line-of-sight in differ-
ent directions: node A to B and node B to A

result. In all other cases, there is a strong relationship between the two variables. In

TVWS, the relationship is weaker, as seen in Table 6.24. The p-values are below 0.05

in 6 of 12 cases. In many cases, the relationship is inverted, i.e., the higher the SNR

the lower throughput. The reason for this is that interference in TVWS is higher and

the signal strength recorded includes interference power. This skews the relationship as

interference should be included with the noise instead. However, in the way that these

measurements were taken, we were unable to separate the interference from the signal

strength. These results indicate the importance of measuring interference separately

from the signal power to be able to correct the recorded signal strength value. These

results also help to motivate the method we present in Section 7.3.2 for doing that.

6.3.3.2 650 m distance

For this set of measurements, the two nodes were placed approximately 650 m apart.

One node was designated as the transmitter and the other as the receiver for the full

duration of the test. Measurements were not taken in both directions. The throughput

171

(a) Wi-Fi channels 36,40 (b) Wi-Fi channels 44, 48

(c) TVWS (d) TVWS

Figure 6.16: Channel width vs. SNR on Wi-Fi and TVWS, 250 m line-of-sight

is the main quantity of interest in this set of measurements because we observed a higher

throughput and a more stable connection in Wi-Fi in this set of measurements. These

measurements were taken on a different day when the weather was more favourable. It is

also possible that the antenna alignment was better in this setup. As shown in Table 6.1,

the Wi-Fi antenna’s beam width is only 9 degrees. This requires careful alignment

for optimal throughput. Since alignment was done by sight, human error could have

caused degradation in the accuracy of the measurements due to antenna misalignment

in Section 6.3.3.1 and variability in measurements taken on different days. The second

node was also further from the closest building than in the 250 m measurements, which

may have introduced effects we were not able to control for adequately. The recorded

Wi-Fi signal strength was higher on average than that recorded at the shorter distance,

probably owing to these environmental issues.

In Table 6.25 - Table 6.28, we present the average throughput and RTTs measured

for increasing transmit power. In each case, throughput and RTT measurements were

averaged over the number of times the experiment was repeated for that parameter

combination. (This was 6 times). We performed measurements on Wi-Fi and TVWS

channels. The Wi-Fi and TVWS channel pairs chosen for comparison in Table 6.25 -

172

(a) Node A, Wi-Fi channels 36, 40 (b) Node B, Wi-Fi channels 36, 40

(c) Node A TVWS channels 1, 4 (d) Node B, TVWS channels 1, 4

Figure 6.17: Channel width vs SNR on Wi-Fi and TVWS, 250 m line-of-sight, direc-
tional

Table 6.32 are arbitrary. We simply chose channel pairs for comparison of Wi-Fi and

TVWS performance. From the tables, we see that no Wi-Fi results were obtained when

the transmit power was less than 15 dBm, as no stable connection could be made between

nodes A and B. On the other hand, TVWS recordings could not be taken at a transmit

power of 20 dBm. In the TVWS band, a deterioration in performance is already observed

at a transmit power of 15 dBm compared to the lower transmit powers. In the regions

where Wi-Fi can form a connection, the Wi-Fi throughput and RTT performance are

superior to TVWS.

It is clear from Figure 6.18 that channel width (denoted “Channel bw” in the figures) has

a significant impact on the throughput. In channels 36, 40, and 44, however, the channel

width does not have the expected effect on the recorded throughput. It is expected that

a wider channel width would result in higher throughput, as is the case in channel

48 (Figure 6.18 (d)) and seen in the baseline and indoor measurements. However, we

see a nonlinear response in Figure 6.18 (a), (b), and (c). We see that in the majority

of parameter combinations, a channel width of 10 MHz has better throughput than

either narrower or wider channel widths. We believe this could be because when the

173

Channel Channel width Correlation p-value

36 5 0.368 0.142

36 10 0.660 0.005

36 20 nan nan

40 5 0.597 0.009

40 10 0.431 0.065

40 20 0.200 0.410

44 5 0.438 0.009

44 10 0.517 0.003

44 20 0.735 2.459×10−5

48 5 0.541 0.002

48 10 0.499 0.004

48 20 0.654 0.0002

Table 6.23: Kendall’s rank correlation test results for Wi-Fi SNR vs. throughput LoS
250 m

Channel Channel width Correlation p-value

1 5 -0.205 0.277

1 10 0.374 0.059

1 20 0.206 0.341

4 5 -0.562 0.003

4 10 -0.390 0.043

4 20 0.100 0.639

7 5 -0.259 0.172

7 10 -0.293 0.122

7 20 -0.072 0.710

11 5 -0.472 0.012

11 10 -0.589 0.002

11 20 -0.633 0.0007

Table 6.24: Kendall’s rank correlation test results for TVWS SNR vs. throughput
LoS 250 m

channel width is small, the throughput is also lower, as expected from Shannon’s Law.

However, when the channel width is wider, the noise increases. This is as was observed in

Section 6.3.3.1 Figure 6.11. We again notice that the noise value increases as the channel

174

Channel Wi-Fi TVWS

width Throughput RTT (ms) Throughput RTT (ms)

(MHz) (Mbps) (Mbps)

mean (±SD) mean (±SD) mean (±SD) mean (±SD)

5 N/A N/A 1.2 (0.2) 6.4 (209.8)

10 N/A N/A 0.50 (0.6) 418.4 (1853.6)

20 N/A N/A 0.40 (0.1) 172.9 (1756.1)

Table 6.25: Measurements of TVWS vs Wi-Fi in line-of-sight conditions, 650 m
separation distance, TVWS channel 1 (540 MHz) and Wi-Fi channel 40 (5200 MHz),

transmit power = 5 dBm

Channel Wi-Fi TVWS

width Throughput RTT (ms) Throughput RTT (ms)

(MHz) (Mbps) (Mbps)

mean (±SD) mean (±SD) mean (±SD) mean (±SD)

5 N/A N/A 0.5 (0.3) 12.9 (380.9)

10 N/A N/A 0.1 (0.07) 428.1 (1832.3)

20 N/A N/A 0.3 (0.2) 4093.8 (4932.7)

Table 6.26: Measurements of TVWS vs Wi-Fi in line-of-sight conditions, 650 m
separation distance, TVWS channel 1 (540 MHz) and Wi-Fi channel 40 (5200 MHz),

transmit power = 10 dBm

width increases from 5 MHz to 10 MHz, but in this case, it drops again when the channel

width is 20 MHz. We also note that the signal strength drops precipitously by about

10 dB when the channel width is 20 MHz, even though the recorded signal strength for

5 MHz and 10 MHz channels is very similar. It is once again possible that a driver error

caused a systematic drop of about 10 dB for all energy detection results (both signal

strength and noise power). If we add 10 dB to the noise power value (of -108 dBm),

this value would be 3-4 dB higher than the noise power of the 10 MHz channel, which is

what would be expected. This 10 dB discrepancy is higher than the maximum expected

experimental setup error of 2 dB and the maximum 5 dB error expected in the RSSI

readings. Since the offset is present in both the noise and the RSSI, the RSSI inaccuracy

is less likely to be the explanation for this particular anomaly.

In the case of TVWS, the 5 MHz channel width performs better than the wider channel

widths in channel 1, shown in Figure 6.19 (a). The drop in throughput corresponds

with an increase in noise as the channel width increases, which is most significant in

175

Channel Wi-Fi TVWS

width Throughput RTT (ms) Throughput RTT (ms)

(MHz) (Mbps) (Mbps)

mean (±SD) mean (±SD) mean (±SD) mean (±SD)

5 2.8 (0.6) 22.9 (175.2) 0.75 (1.5) 8.9 (362.3)

10 4.2 (0.9) 15.7 (152.4) 0.3 (0.1) 27.1 (282.5)

20 1.6 (0.4) 9.1 (62.6) 0.2 (0.2) 704.5 (2184.0)

Table 6.27: Measurements of TVWS vs Wi-Fi in line-of-sight conditions, 650 m
separation distance, TVWS channel 1 (540 MHz) and Wi-Fi channel 40 (5200 MHz),

transmit power = 15 dBm

Channel Wi-Fi TVWS

width Throughput RTT (ms) Throughput RTT (ms)

(MHz) (Mbps) (Mbps)

mean (±SD) mean (±SD) mean (±SD) mean (±SD)

5 2.7 (0.4) 21.2 (187.3) N/A N/A

10 5.9 (1.0) 10.3 (72.1) N/A N/A

20 3.4 (0.7) 9.7 (82.4) N/A N/A

Table 6.28: Measurements of TVWS vs Wi-Fi in line-of-sight conditions, 650 m
separation distance, TVWS channel 1 (540 MHz) and Wi-Fi channel 40 (5200 MHz),

transmit power = 20 dBm

channel 1. This result coincides with the results of the 250 m separation distance Sec-

tion 6.3.3.1. When external interference is smaller, the channel width has the expected

result that the throughput increases as the channel width increases, but in channels

with higher interference from TV transmitters, the smaller channel width helps to re-

duce the interference and increased noise floor caused by the interference. In channel 4,

our measurements show a noise power value for the 20 MHz channel that is closer to the

10 MHz channel noise power than observed in channel 1. We also observe significantly

better throughput performance in channel 4 than in channel 1. In the TVWS channels,

when the transmit power increases, the transmitter starts to saturate the receiver and

the throughput drops.

It can be seen in Table 6.33 that the p-value is not below 0.05 in LoS conditions. In

these conditions, we must conclude that there is not a significant difference between the

SNR recorded in different channels. This is most likely because of the large differences

in the results for 15 dBm transmit power compared to 20 dBm transmit power, which is

likely owing to driver errors overshadowing the channel differences. On the other hand,

176

Channel Wi-Fi TVWS

width Throughput RTT (ms) Throughput RTT (ms)

(MHz) (Mbps) (Mbps)

mean (±SD) mean (±SD) mean (±SD) mean (±SD)

5 N/A N/A 1.3 (0.8) 5.2 (147.4)

10 N/A N/A 1.6 (0.8) 30.3 (486.3)

20 N/A N/A 1.9 (0.6) 11.7 (208.8)

Table 6.29: Measurements of TVWS vs Wi-Fi in line-of-sight conditions, 650 m
separation distance, TVWS channel 4 (555 MHz) and Wi-Fi channel 48 (5240 MHz),

transmit power = 5 dBm

Channel Wi-Fi TVWS

width Throughput RTT (ms) Throughput RTT (ms)

(MHz) (Mbps) (Mbps)

mean (±SD) mean (±SD) mean (±SD) mean (±SD)

5 N/A N/A 1.1 (0.1) 8.6 (266.7)

10 N/A N/A 1.0 (0.1) 2100.3 (2344)

20 N/A N/A 1.3 (0.7) 15.0 (346)

Table 6.30: Measurements of TVWS vs Wi-Fi in line-of-sight conditions, 650 m
separation distance, TVWS channel 4 (555 MHz) and Wi-Fi channel 48 (5240 MHz),

transmit power = 10 dBm

Table 6.34 shows that when the channel width is 20 MHz, the channel number does

have a significant impact on the SNR. This can be concluded because the p-value is

consistently below 0.05 at a 20 MHz channel width. There is a statistically significant

difference for the 5 MHz channel width and 15 dBm transmit power and a somewhat

significant difference at a 5 dBm transmit power. The significance of the channel number

when the channel is wider is consistent with the observation that more thermal noise and

interference are experienced by the link when the channel width is wider, and leakage

from TV transmitters into neighbouring bands causes interference. It is expected that

there would be more interference in some channels than others when TV transmitters

are transmitting in certain neighbouring channels more than others. SINR is thus a

useful measure to use when choosing a channel in the case where the amount of external

interference in different channels varies. This is the kind of scenario we consider in our

Channel Assignment. External interference can be experienced either (1) from primary

TV transmitters transmitting in neighbouring channels, even when our secondary net-

work is using a channel that is specified by the GLSD to be free, or (2) from other SU

177

Channel Wi-Fi TVWS

width Throughput RTT (ms) Throughput RTT (ms)

(MHz) (Mbps) (Mbps)

mean (±SD) mean (±SD) mean (±SD) mean (±SD)

5 2.3 (0.9) 13.7 (137.2) 0.6 (0.1) 8.7 (332.5)

10 5.0 (1.6) 13.7 (156.6) 0.5 (0.2) 375.4 (1934.2)

20 7.2 (1.8) 9.2 (91.2) 0.6 (0.3) 91.4 (1034.5)

Table 6.31: Measurements of TVWS vs Wi-Fi in line-of-sight conditions, 650 m
separation distance, TVWS channel 4 (555 MHz) and Wi-Fi channel 48 (5240 MHz),

transmit power = 15 dBm

Channel Wi-Fi TVWS

width Throughput RTT (ms) Throughput RTT (ms)

(MHz) (Mbps) (Mbps)

mean (±SD) mean (±SD) mean (±SD) mean (±SD)

5 2.4 (0.6) 42.5 (385.0) N/A N/A

10 3.4 (1.3) 10.2 (121.7) N/A N/A

20 6.4 (3.3) 4.6 (30.6) N/A N/A

Table 6.32: Measurements of TVWS vs Wi-Fi in line-of-sight conditions, 650 m
separation distance, TVWS channel 4 (555 MHz) and Wi-Fi channel 48 (5240 MHz),

transmit power = 20 dBm

Channel Tx Power (dBm)

width 15 20

(MHz) H-statistic p-value H-statistic p-value

5 5.897 0.117 3.461 0.326

10 5.679 0.128 2.388 0.496

20 2.817 0.421 4.937 0.176

Table 6.33: Kruskal-Wallis test results for Wi-Fi channels (36, 40, 44, and 48) vs.
SNR LoS

transmitters that could be using the same channels or leaking into our channel if using

neighbouring channels. These results also support the assertion that a specific window

for measuring interference and correcting the signal strength measurement to get SINR

are important.

178

(a) Channel 36 (b) Channel 40

(c) Channel 44 (d) Channel 48

Figure 6.18: Transmit power vs. throughput on Wi-Fi, 650 m line-of-sight (error bars
indicate standard deviation)

(a) Channel 1 (b) Channel 4

Figure 6.19: Throughput vs. transmit power on TVWS, 650 m line-of-sight

6.3.4 Measurements through vegetation

Our aim for this set of measurements was to determine the performance of Wi-Fi and

TVWS channels when the line of sight (LoS) is obstructed by foliage. Measurements

were taken in a wooded area on the UCT campus. One node remained stationary while

179

Channel Tx Power (dBm)

width 5 10 15

(MHz) H-stat p-val H-stat p-val H-stat p-val

5 3.111 0.078 12.215 0.137 4.802 0.028

10 1.059 0.304 0.554 0.457 2.187 0.139

20 5.744 0.017 5.671 0.017 5.333 0.021

Table 6.34: Kruskal-Wallis test results for TVWS channels (1 and 4) vs. SNR LoS

a second node (called the “mobile” node) was positioned such that first one, then two,

then three, etc., up to eight pine trees obstructed the line of sight. A photograph of

the stationary node in position can be found in Figure 6.20. We managed to find a

location where the trees were somewhat aligned but, unfortunately, not evenly spaced.

The distances between pairs of trees were as illustrated in Figure 6.21 (not to scale).

The mobile node was placed on the other side of each tree from the first to the last.

Throughput and RTT measurements were taken in both directions at each position, i.e.,

from the stationary node to the mobile node with the stationary node as the iPerf server

and the mobile node as the iPerf client, and from the mobile node to the stationary

node with the mobile node acting as the server. RSSI and noise values were recorded

at both ends. The results are for the mean of the results from both sides, averaged over

the five repetitions of the same experiment with the same parameter values. When a

connection could not be made or the link could not be maintained successfully for the

duration of a test, no RSSI measurements, throughput or RTT values were available. In

that case, we have recorded the throughput as N/A (not applicable) and set the SNR

to 0 dB.

Figure 6.22 shows the mean SNR recorded for an increasing number of trees obstructing

LoS, from one to eight. In TVWS channel 7, we notice a drop in the SNR when three

trees obstruct LoS, which appears to be an outlier. This low recorded SNR was driven

by a low signal strength at that position, particularly in the 10 MHz channel, and fairly

high noise (±-69 dBm). This drop could be due to human error, such as not aligning the

panel antennas correctly when placing the mobile node in that position. We also notice a

drop in throughput at three trees, most noticeable in Figure 6.23 (c). Figure 6.22 shows

that the recorded SNR in TVWS is higher than in the Wi-Fi channels, but Figure 6.23

shows that the throughput is higher in the Wi-Fi band, while the SNR is high enough.

A lower throughput in TVWS than in Wi-Fi is in line with the previous results in this

section. Further throughput results are given in Table 6.35 and Table 6.36. Wi-Fi

experiences a sharp drop in SNR and throughput at three trees obstructing LoS, as a

successful connection could not be maintained with this much obstruction. This shows

180

Figure 6.20: Setup of the stationary node for the experiments with vegetative ob-
struction

Figure 6.21: Illustration of spacing between trees for experiments with varying num-
bers of obstructing trees (not to scale)

that TVWS is significantly more robust to vegetative obstructions, as we expect. The

location with three trees obstructing the LoS is the point at which the better propagation

of TVWS starts to outweigh its poorer throughput performance compared with Wi-Fi.

These results show that there is a benefit to using both Wi-Fi and TVWS bands in a

WMN so that the advantages of each can be exploited at the locations where one band

outperforms the other. It also shows that SNR might be useful to predict throughput

performance within one band but should not be used when comparing different spectrum

181

(a) Wi-Fi channel 44, TVWS channel 1, transmit
power = 15 dBm

(b) Wi-Fi channel 44, TVWS channel 1, transmit
power = 20 dBm

(c) Wi-Fi channel 36, TVWS channel 7, transmit
power = 15 dBm

(d) Wi-Fi channel 36, TVWS channel 7, transmit
power = 20 dBm

Figure 6.22: Number of obstructing trees vs SNR on Wi-Fi and TVWS

bands. We also notice large standard deviations in the throughput relative to the mean

values, for example in Table 6.35. This indicates that throughput is skewed and not

normally distributed.

We see that in TVWS channel 7, the wider channel width does produce a higher through-

put than narrower channel widths (see Figure 6.23 (d)), whereas in channel 1 this is not

the case, as seen in Figure 6.23 (a) and (b). In channel 1, the widest channel bandwidth

has both the lowest SNR curve and the lowest throughput since this channel experiences

more interference from TV transmitters than other channels. This aligns with the results

in LoS conditions, where interference was also higher in channel 1. In Wi-Fi channel 44,

the throughput is somewhat proportional to the channel bandwidth where the number

of trees obstructing the LoS is below 3 and the transmit power is high. We see that,

regardless of the Wi-Fi channel, channel width, or transmit power, no connection can be

established when the LoS is obstructed by three or more trees. In contrast, TVWS still

performs reasonably well when obstructed by eight trees, with the performance being

more dependent on other parameters, such as the channel and channel width, than the

number of trees.

182

(a) Wi-Fi channel 44, TVWS channel 1, transmit
power = 15 dBm

(b) Wi-Fi channel 44, TVWS channel 1, transmit
power = 20 dBm

(c) Wi-Fi channel 36, TVWS channel 7, transmit
power = 15 dBm

(d) Wi-Fi channel 36, TVWS channel 7, transmit
power = 20 dBm

Figure 6.23: Number of obstructing trees vs throughput on Wi-Fi and TVWS

The transmit power versus the SNR is plotted in Figure 6.24 for one tree obstructing the

LoS. These results were recorded and plotted to further investigate and confirm whether

the unexpected trends observed in LoS conditions where SNR was seen to decrease for

increasing transmit power are repeatable. In these figures, the results are somewhat more

to be expected than were observed in LoS conditions. In Figure 6.24 (b) for channels 44

and 48, there is a steep increase from 5 dBm to 10 dBm, and then the gradient decreases

as saturation begins to be experienced at the receiver. The levelling off of the graph

implies that this is due to saturation. In Wi-Fi channels 36 and 40 (Figure 6.24 (a)),

the trend is more linear at wider channel widths and in channel 40. In channel 36, there

is a steep decrease in the SNR after a certain point (10 dB for the 5 MHz channel width

and 15 dB for the 10 MHz channel). The 10 MHz channel 36 shows a decrease similar

to what was observed in LoS conditions, a drop from about 40 dB to 25 dB. This SNR

decrease corresponds to an increase in the noise power observed as the transmit power

increases from 15 dBm to 20 dBm in channels 36 and 40 for channel widths of 5 MHz

and 10 MHz.

Figure 6.25 and Table 6.37 show aspects of the relationship between the SNR and the

183

Num Channel Wi-Fi TVWS

of width Throughput RTT (ms) Throughput RTT (ms)

Trees (MHz) (Mbps) (Mbps)

mean (±SD) mean (±SD) mean (±SD) mean (±SD)

5 4.2 (1.2) 2.8 (1.5) 2.3 (0.9) 1.8 (0.5)

1 10 3.1 (2.4) 4.3 (1.0) 3.4 (1.1) 1.7 (0.1)

20 1.1 (1.8) 1.7 (0.4) 0.7 (0.5) 432.8 (580.8)

5 N/A N/A 2.0 (4.5) 1.8 (0.9)

4 10 N/A N/A 3.8 (3.2) 2.2 (2.4)

20 N/A N/A 0.9 (2.7) 1592.5 (2035.7)

5 N/A N/A 0.7 (0.3) 42.5 (97.1)

8 10 N/A N/A 0.2 (0.2) 1690 (4010)

20 N/A N/A N/A N/A

Table 6.35: Measurements of throughput and delay in TVWS vs. Wi-Fi through
vegetation, TVWS channel 1 (540 MHz) and Wi-Fi channel 40 (5200 MHz), transmit

power = 15 dBm

recorded throughput. In Figure 6.25, we combine the results from all locations where

throughput was recorded and plot the mean SNRs derived from the RSSI and noise

recorded against the corresponding mean throughput for a specific channel width and

the different channels, after sorting the SNR values. For Wi-Fi, a successful connection

could not be achieved with more than two trees in the LoS, so the plot shows the mean

SNRs at locations 1 and 2 for a channel width of 5 MHz, at each transmit power (5,

10, 15, and 20 dBm). The trends per channel are similar for the 10 MHz channel,

with slightly more variation in channels 44 and 48. For the TVWS plot, we show the

mean SNR at locations 1 to 8 for transmit powers of 5 dBm and 10 dBm only since

the higher transmit powers result in distortion and less reliable results. In both Wi-Fi

and TVWS, there is a general upward trend in the throughput as the SNR increases,

as we would expect, up to a certain SNR, after which the throughput slowly decreases.

There is more variation in the TVWS results because the plot includes more points from

more locations. For the most part, in both Wi-Fi and TVWS, the variations are within

the range observed in the baseline measurements. Hence, these variations are to be

expected. In Wi-Fi, the turning point occurs between 30-35 dB where the throughput

fluctuates within about 1 Mbps after which the throughput drops. The precipitous drop

in the throughput in channel 36 from an SNR of 35 dB to about 43 dB might indicate a

saturation point. In TVWS, we notice that both the SNR and the resultant throughput

in channel 1 are generally lower than in the other channels, although the relationship is

184

Num Channel Wi-Fi TVWS

of width Throughput RTT (ms) Throughput RTT (ms)

Trees (MHz) (Mbps) (Mbps)

mean (±SD) mean (±SD) mean (±SD) mean (±SD)

5 4.0 (1.9) 1.9 (0.6) 0.5 (0.4) 6.6 (1.7)

1 10 7.6 (6.1) 2.8 (1.6) 0.6 (0.4) 10.6 (6.1)

20 3.8 (3.2) 3.6 (1.4) N/A N/A

5 N/A N/A 0.3 (0.3) 3.8 (2.7)

4 10 N/A N/A 0.5 (8.3) 125.2 (379.1)

20 N/A N/A 0.1 (0.5) 774.0 (1103.5)

5 N/A N/A 0.2 (0.2) 3.7 (1.9)

8 10 N/A N/A 0.3 (0.3) 227.9 (318.1)

20 N/A N/A N/A N/A

Table 6.36: Measurements of TVWS vs Wi-Fi through vegetation, TVWS channel 1
(540 MHz) and Wi-Fi channel 40 (5200 MHz), transmit power = 20 dBm

also increasing. Channel 11 typically has a higher throughput for the same SNR than

the other channels, peaking at about 46 dB SNR and a throughput of roughly 7.2 MBps

before dropping. In channels 4 and 7, the SNR at the maximum throughput is about

3 dB lower.

The curves in Figure 6.25 show that the throughput is generally well-correlated with the

SNR, although, over a certain threshold, the throughput becomes less well correlated

and decreases as the SNR increases beyond that threshold. This result is supported by

the results of Kendall’s rank correlation test, given in Table 6.37. Kendall’s correlation

test shows a strong correlation in most channel-channel-width settings, with the p-value

below 0.05 for 8 of the 14 results. The correlation is the weakest in channel 11, most

likely owing to the large drop in throughput from an SNR of 52 dB. The throughput

in Channel 7 fluctuates more in the 5 MHz channel width, so the correlation is also

weaker. We conclude that, despite environmental factors, a variety of obstructions,

measurement errors, and the large variation in the throughput of the specific wireless

NICs and the OS on which we performed measurements, as well as the difference between

the SNR we measured and the true SINR, there is still a strong relationship between

the SNR and the performance perceived by end users (quantified by the throughput).

These results confirm that SINR could be used successfully as an objective function

for Channel Assignment, even in real-world conditions with many external and internal

factors that can distort and affect the results.

185

(a) Wi-Fi (b) Wi-Fi

(c) TVWS

Figure 6.24: Transmit power vs received SNR on Wi-Fi and TVWS, vegetation

(a) Wi-Fi (b) TVWS

Figure 6.25: SNR vs throughput, Wi-Fi and TVWS

The results of the Kruskal-Wallis test for the measurements in a forested environment

are presented in Table 6.38, Table 6.39, and Table 6.40. Table 6.38 and Table 6.39 show

p-values above 0.05 and H-statistics below the critical value, except at tree 2 when the

channel width is 20 MHz. At a 20 MHz channel width, the H-statistics are above the

critical value of H = 7.815 at 8.517 and 8.357, and the p-values are p = 0.036 and

p = 0.039. The SNR recorded for the 5 MHz and 10 MHz channel widths do not have

186

Channel Channel width Correlation p-value

1 5 0.230 0.0001

1 10 0.466 4.885×10−16

1 20 0.038 0.492

4 5 0.254 0.001

4 10 0.191 0.006

4 20 0.214 0.001

7 5 0.047 0.575

7 10 0.251 0.002

7 20 0.287 0.0002

11 5 0.067 0.459

11 10 0.127 0.151

11 20 0.194 0.022

Table 6.37: Kendall’s rank correlation test results for TVWS SNR vs. throughput in
vegetative environment

Channel Tx Power (dBm)

width 15 20

(MHz) H-statistic p-value H-statistic p-value

5 3.962 0.266 4.886 0.180

10 4.154 0.245 5.244 0.155

20 4.122 0.249 3.705 0.295

Table 6.38: Kruskal-Wallis test results for Wi-Fi channels vs. SNR at tree 1

statistically significant differences from channel to channel. That is because there was

little external Wi-Fi interference at the location where the measurements were taken (a

forested area some distance from the nearest Wi-Fi AP), so the different channels do not

perform significantly differently. However, in the TVWS band (Table 6.40), we do see

significant differences in the SNR values of different channels. The H-statistic values are

above the critical value, and the p-values are consistently significantly below 0.05. The

reason for this is that, in the TVWS band, external interference from TV transmitters is

much more significant in some channels than others, and the levels of external interfer-

ence vary from channel to channel. We note that this external interference comes from

leakage into adjacent channels or next-to-adjacent channels by the primary TV trans-

mitters since we, as SUs, only used channels that were allowed for use by the GLSD.

These results confirm that SINR is a viable choice of an objective function to use in

187

Channel Tx Power (dBm)

width 15 20

(MHz) H-statistic p-value H-statistic p-value

5 6.523 0.089 2.141 0.544

10 1.719 0.633 0.922 0.820

20 8.517 0.036 8.357 0.039

Table 6.39: Kruskal-Wallis test results for Wi-Fi channels vs. SNR at tree 2

Channel Tx Power (dBm)

width 5 10 15 20

(MHz) H-stat p-val H-stat p-val H-stat p-val H-stat p-val

5 10.006 0.019 10.706 0.013 10.382 0.016 14.214 0.003

10 9.271 0.026 9.671 0.022 9.294 0.026 12.452 0.006

20 12.177 0.007 11.286 0.010 11.575 0.009 15.947 0.001

Table 6.40: Kruskal-Wallis test results for TVWS channels (1, 4, 7, 11) vs. SNR at
tree 8

Channel Assignment as the performance of different channels is well-differentiated. This

is the case when the channels are affected by external interference. When the channels

are not affected by interference, the difference between their SINRs is smaller.

Additionally, as an overall check, we performed the Kruskal-Wallis test for the TVWS

band taking into account the records taken at all positions together. This test is more

generalised and gives a more realistic indication of the way the SNR differentiates per-

formance in different channels for a whole network with links in varying conditions and

a wide range of link qualities. Table 6.41 displays these results. In all transmit power

and channel width combinations, except for the 5 MHz channel width and a low trans-

mit power, the Kruskal-Wallis test shows a statistically significant result. The p-value

is below 0.05, and the wider the channel width, the more significant the result and the

lower the p-value and the higher the H-statistic. Table 6.41 provides a good summary of

the measurements analysed in this chapter. In the DSA band, despite the limitations of

our measurement methods, which we have discussed, the SNR effectively differentiates

the performance in the different channels. The difference in the different channels is

statistically significant in the majority of cases. This holds over a wide range of link

conditions and channel widths. The wider the channel, the more significant the differ-

ences because TVWS devices experience increased interference when operating on wider

channels. Since interference is the main factor we are concerned with in finding effective

188

Channel Tx Power (dBm)

width 5 10

(MHz) H-stat p-val H-stat p-val

5 5.091 0.165 6.704 0.082

10 7.314 0.063 10.429 0.015

20 42.817 2.691×10−9 46.212 5.112×10−10

Channel Tx Power (dBm)

width 15 20

(MHz) H-stat p-val H-stat p-val

5 10.205 0.017 14.464 0.002

10 8.858 0.031 44.442 1.215×10−9

20 54.629 8.240×10−12 59.047 9.392×10−13

Table 6.41: Kruskal-Wallis test results for TVWS channels (1, 4, 7, and 11) vs. SNR
in vegetative environment

CAs, this is a desirable feature. We have proven with these results that the objective

function used in the CA methods put forward in previous chapters is also practical.

6.4 Discussion on the application of these results

This dissertation introduces and examines algorithms for Channel Assignment in a WMN

that uses both TVWS and Wi-Fi frequency bands for mesh connectivity. The appro-

priate band and channel to use are influenced by the various parameter settings and

environmental conditions. We have investigated some of these influences in this chapter.

We have shown how TVWS and Wi-Fi channels perform in terms of the physical layer

factors of noise, interference, and received signal strength, as well as the higher layer

performance measures of throughput and RTT. The presence of external primary TV

transmitters introduces interference in some of the TVWS channels, which significantly

affects their performance. The results show that the RSSI, noise, and interference are

decisive performance measures that affect the higher layer performance measures. The

effect on the higher layer performance measures is conspicuous, even if the relationship is

skewed by other influences such as misalignment of antennas, multipath, fading, weather

changes, foliage or vegetation, and measurement error. We see that these effects can

be captured substantially by a measure that involves the three important physical layer

factors, namely signal, interference, and noise.

189

In TVWS, wider channel widths contain more noise and are more prone to interference,

resulting in a lower measured SNR, even if the measured SNR does not accurately

represent the measurement of interest, SINR. On the other hand, when Wi-Fi encounters

obstructions such as vegetation, the SNR falls quickly as the connection is lost. In

general, a higher SNR results in higher throughput and lower RTT unless that SNR is

high enough that it starts to cause distortion at the receiver, as seen in Figure 6.25. The

Kruskal-Wallis test shows that different TVWS channels have statistically significant

differences in SNR, while Kendall’s correlation tests show that the measured SNR and

throughput are correlated. In Wi-Fi, the differences in the performance of different

channels are less significant. However, the SNR is well correlated with throughput in

most cases. These results support the use of SINR as a performance measure on which

the optimisation of Channel Assignment can be done since it captures salient factors

that make one channel or spectrum band preferable for a specific link to another.

Another use of these measurements is in Chapter 7. When we propose our spectrum

sensing and estimation methods in Chapter 7, the possible range of SNR that can be

encountered is required. We use the ranges observed in these measurements in Sec-

tion 7.4.2 to determine the confidence intervals that can be achieved in sensing. The

range of mean interference power values used in Section 7.4.2 (10 dB-25 dB) are values

we have observed in these measurements. The range of SNR values in which sensing

would be meaningful is within the region observed in this chapter to be “well-behaved”,

i.e., where throughput is well-correlated with the SNR. This region is in the range of

10-30 dB SNR, which we conclude is the region that is comfortably within the “SNR

walls” [247].

The measurements reported in this section thus inform much of the work in the rest of

the dissertation. They also lend real-world credibility to the more theoretical or heuristic

methods proposed.

6.5 Chapter conclusion

In this chapter, we have presented and discussed measurements taken for point-to-point

Wi-Fi and TVWS links in different real-world scenarios, using the White Space Mesh

Node (WSMN) designed and built by the Telecomms and Media group at Meraka of

the CSIR. This node is an example of a multi-band DSA-capable mesh-capable device

for which we present Channel Assignment (CA), sensing, and CA distribution methods

in this dissertation. Throughput and RTT were recorded, as well as the received signal

strength (RSS) and noise as recorded by the drivers and obtained through the iwconfig

tool. Baseline measurements showed slightly better throughput and delay performance

190

of the 5 GHz Wi-Fi card than the TVWS card. Increased throughput and decreased

RTT were observed in both bands as the channel width increased.

In the line-of-sight (LoS) measurements, it was seen that Wi-Fi has a limited range

of transmit powers in which it can form a connection, whereas TVWS works at lower

transmit powers. In TVWS, we observed a higher SNR for links at lower channel widths.

This is because the wider channel widths have higher noise levels and experience more

interference from leaking TV transmitters in adjacent channels. We also observed a

linear relationship between the transmit power and the received SNR when the transmit

power is below 10 dBm. At higher transmit powers, nonlinear effects become apparent.

We observe how different channels have different SNR values and throughput for the

same transmission parameters (transmit power and channel width). The SNR is thus a

reasonable indicator of channel performance.

We also show the influence of vegetation on the performance of a point-to-point link in

the Wi-Fi and TVWS bands. The Wi-Fi link quickly fails in the presence of more than

two trees obstructing the LoS, which is shown by the SNR and throughput dropping to

0. TVWS may have a lower throughput than Wi-Fi when a Wi-Fi link can be made, but

TVWS can still maintain a link successfully in the presence of significant obstruction

(up to eight trees). Generally, the SNR has a significant impact on the higher layer

performance measures, regardless of which parameter is the principal driving force. We

see that in the region of linearity, or the “well-behaved” SNR region, throughput is

related to SNR: as the SNR increases, so does the throughput. However, when the SNR

is too high, this relationship no longer holds.

Hence, SNR at the receiver is a useful measure of the expected performance of different

channels and other parameter settings, provided that the SNR is within the region of

the receiver front-end module where it is not saturated and nonlinear effects are not

apparent. When the recorded SNR did not behave as expected and the correlation was

weak, this could be attributed to the effects of interference. Interference power was

recorded both as noise and as signal, which somewhat skews the SNR readings. A true

SINR measurement would remedy this problem. This would suggest that SINR can be

used to indicate the performance of a channel and can be used in CA optimisation, but

a constraint would have to be placed on the maximum SINR. In a real-time functioning

WMN, the way in which measurements were taken in this chapter would not be practical.

In Chapter 7, we suggest ways in which the SINR sensing could be carried out in a

functioning DSA-WMN.

Chapter 7

Markov chain analysis of

spectrum sensing time, and SINR

estimation for CA in a WMN

7.1 Introduction

1 The Channel Assignment we suggest in this dissertation uses the SINR perceived by

members of the Wireless Mesh Network (WMN) in the objective function. Spectrum

sensing is required for the mesh nodes to obtain SINR measurement samples for all the

allowed channels over time and to derive estimates of the statistical properties of the

SINR. The mesh router nodes then share their calculated statistics with the gateway

node, which uses the results to find CAs by metaheuristic optimisation techniques.

However, the time used for sensing is time that a node is not using for data exchange.

It is therefore desirable to either minimise sensing time to increase throughput or use

the times for sensing when the mesh nodes are already idle. If the latter were possible,

data throughput would not be negatively affected. Still, the time spent sensing must be

sufficient so that the statistics obtained from the measurements are accurate enough for

the requirements of the optimisation.

Provided that the signal to be detected is within the SNR wall thresholds [247], the

accuracy of the statistics depends on the time spent sensing. Tandra and Sahai [247] have

proved that there is a region of the SNR of the detected signal where the accuracy cannot

be improved even when the number of samples or the sensing time is arbitrarily large.

1Preliminary work on SINR estimation and confidence intervals was presented at, and published
in, the Proceedings of the 20th ACM International Symposium on Mobility Management and Wireless
Access (MobiWac’22) [248]. The Markov modelling and extension to the MobiWac’22 paper has been
submitted to the IEEE Transactions on Wireless Communications.

191

192

Uncertainties in factors, such as the true noise distribution, fading, filter non-idealities,

Analogue-to-Digital Converter (ADC) precision, and mismatches between the In-phase

(I) and Quadrature (Q) signal paths result in fundamental limits on the accuracy of the

sensing activity at low SNR. We make the key assumption that our spectrum sensing (SS)

takes place within the well-behaved region within the SNR walls where the relationship

accuracy ∝ sensing time

roughly holds. The majority of the literature concentrates on minimising the sensing

time at the expense of data exchange and employs binary hypothesis testing to derive

statistics such as the probabilities of false alarms or missed detections. In contrast, we

propose the use of the idle time resulting from the MAC layer contention mechanism

indicated by the Network Allocation Vector (NAV) for SS, along with statistics based

on estimation theory. This idle time provides sensing windows. Over enough sensing

windows, each node will have gathered enough samples on each allowed channel for a

sufficiently accurate SINR estimate of all its allowed channels.

The mesh network we consider conforms to IEEE 802.11s and the MAC layer protocols

thereof, even though it operates in a DSA spectrum band such as TVWS. In other words,

it uses “down-converted Wi-Fi”, or a Wi-Fi MAC layer operating in a different frequency

band. The IEEE 802.11s MAC uses Mesh Coordination Function (MCF) for medium

access. Mesh Coordinated Channel Access (MCCA) is one of the mechanisms employed

in the MCF for medium access, while EDCA is the mandatory mechanism. Both MCCA

and EDCA are discussed in Chapter 2. We continue our analysis with EDCA only since

EDCA is the mandatory MCF MAC mechanism and is more widespread. MCCA has

not seen much adoption in practice owing to various difficulties with its implementation

[249]. Some of these difficulties include the need for expensive smart algorithms for

managing channel reservations and distributing the information and the lack of mech-

anisms and best practices for EDCA/MCCA coexistence [249]. However, EDCA has a

more complicated statistical nature than MCCA. For this reason, we require statistical

methods to analyse the various states in which nodes employing EDCA can be. In some

of these states, the nodes are idle. Specifically, nodes are idle when they count down a

NAV-reserved period, are waiting for Inter-Frame Spacing times, or are in their random

backoff. This idle time could be reclaimed for sensing without disrupting the normal

operation of the nodes and without requiring any trade-off between data transmission

and sensing time.

We suggest that mesh routers use the idle times in EDCA using RTS/CTS and the

NAV for SS. This idea may seem similar to the work of Chowdhury and Akyildiz [118],

who suggest that mesh clients use the backoff time in DCF for SS in a cognitive mesh

193

network. Our work may have some similarities to the ideas in [118] but has significant

differences, which we list below.

1. In our work, the mesh router nodes perform SS on channels that can be used for

mesh connectivity rather than mesh clients performing the sensing on channels

to be used for client access connectivity. This scenario is more challenging than

when clients are performing the sensing because the mesh routers must maintain

the backbone connectivity of the mesh network and listen for all the mesh nodes

sharing the channel with them. Clients only need to consider their connection to

the AP.

2. [118] uses DCF instead of EDCA. The differences between DCF and EDCA are

discussed in Chapter 2. Mainly, [118] does not consider the effect of QoS differen-

tiation introduced in EDCA on the time available for sensing, while we do.

3. In [118], RTS/CTS is disabled, while the use of RTS/CTS is required in our

method. Also, critically, the NAV is not considered in [118] but is integral to

our approach.

4. The parameters used in [118] are for IEEE 802.11b; we update these to IEEE 802.11ac

or, equivalently for the parameters of interest, IEEE 802.11ax.

5. We provide a detailed mathematical analysis of the expected time available for

sensing for a range of operating points using Markov analysis. In contrast, Chowd-

hury and Akyldiz [118] use a small number of fixed values simply to illustrate the

feasibility. They disregard critical variables such as propagation delay, which we

include in our analysis.

6. Crucially, the goal of sensing in [118] is to detect PUs. In contrast, we wish

to estimate the total interference and noise from all – possibly heterogeneous –

sources, using the total SINR as the final measure on which CA decisions are

made.

7. In [118], the performance of SS is quantified as the number of incorrectly detected

PU channels, while we specify the performance as a confidence interval in terms

of the sensing time and the number of sensing windows required. An implementer

can therefore choose an acceptable operating point from a range of values.

The key difference in our work is that SS is performed by mesh router nodes for coexis-

tence with heterogeneous SUs and not for PU identification by mesh clients. We perform

Markov chain analysis to determine the amount of time that can be expected to be idle

and available for sensing. The SS performed during this time is energy detection-based,

194

so it cannot differentiate between signal, noise, and interference. In Section 7.3.2, we

show how the SINR can be obtained from the measurements taken during the EDCA

idle time, as well as the channel scanning periods, which are a part of the normal oper-

ation of any IEEE 802.11 devices. Once we know how much time is available for SS due

to the MAC layer, we relate this to the accuracy of the sensing results. We introduce a

model for the measurements and the statistics derived from the measurements for esti-

mation. Subsequently, we derive a relationship between the sensing time or the number

of samples and the expected accuracy of the estimate.

In this chapter, we present the Markov chain analysis used for determining the sensing

time in Section 7.2. We then propose statistical estimation methods instead of binary

hypothesis testing for estimating the interference and noise power from the SS per-

formed during the idle times in Section 7.3. We show the numerical results for both idle

time analysis and the estimation analysis in Section 7.4, showing what accuracy can be

achieved for a given number of sensing windows or sensing duration.

The contributions in this chapter are:

1. We identify and propose that each mesh node can use the idle time inherent in the

IEEE 802.11s MAC to perform off-channel SS without causing any disruption to

network traffic.

2. We use Markov chain models to analyse the amount of time available for spectrum

sensing and show how many samples can be obtained during this time.

3. We bring together spectrum sensing and SINR estimation under a common frame-

work.

4. We propose a SS statistic that is more accurate and granular than existing methods

used in CR networks or WMNs for CA, which is appropriate for a DSA-WMN in

the presence of heterogeneous external interference.

5. We show that the proposed estimator is the minimum-variance unbiased estimator,

that it is efficient, and that it satisfies the Cramér-Rao bound.

6. We show the confidence intervals achievable in terms of the number of sampling

windows and the time available based on the Markov analysis.

7.2 Modelling idle time

This model is based on Figure 7.1 and Figure 7.2, which indicate the states in which the

system can be. Similarly to some previous works [167, 170, 177], we use a three-state

195

Figure 7.1: EDCA timing diagram showing NAV mechanism without clearing mech-
anism. When an RTS frame is sent on the channel by A, other nodes that are not the
intended recipient of the packet (C and D) set their NAV and remain idle during that
NAV period. After the completion of the NAV time, nodes C and D wait the Arbitra-
tion Inter-Frame Spacing (AIFS) and the random backoff (BO) time before attempting
to transmit. The Short Inter-Frame Space (SIFS) comes before CTS, DATA, and ACK

frames.

Figure 7.2: Markov chain for a certain AC queue at one station. Each bubble repre-
sents a two-dimensional state {i, k} for backoff stage i and backoff counter value k.

196

Markov Chain {ac(t), s(t), b(t)} to represent the EDCA backoff entity of each Access

Category (AC) in a mesh node, where ac = j is the AC, s(t) = i is the backoff stage of

a packet at the front of a queue at time t, and b(t) = k is the backoff counter counting

down time slots in a contention window. The backoff counter is chosen in the range

(1,Wj,i), where the minimum and maximum of the range for all i depend on the AC

(j) as per Table 7.1. The backoff stages define the contention window size, and every

time a collision occurs when the backoff counter has reached zero, the state moves to

the next backoff stage, up to the maximum backoff stage R. The minimum contention

window size CWmin[AC]+1 = Wj,0. The contention window size at stages i ∈ (0,mj) is

Wj,i = 2iWj,0, where the maximum contention window size is also dependent on the AC,

as per Table 7.1. The maximum backoff stage is also dependent on j, hence the use of

mj . This aspect is often not considered in the existing literature. Between backoff stages

mj and retry limit R, the contention window size stays constant at Wj,mj = 2mjWj,0.

Transmission of the packet at the front of the AC queue is attempted when the backoff

counter for that AC queue reaches 0, irrespective of the backoff stage. After that, the

packet may encounter internal or external collisions. The backoff counter decrements if

Table 7.1: Contention window boundaries per Access Category

AC j CWmin CWmax

AC BK 3 aCWmin aCWmax

AC BE 2 aCWmin aCWmax

AC VI 1 (aCWmin+ 1)/2− 1 aCWmin

AC VO 0 (aCWmin+ 1)/4− 1 (aCWmin+ 1)/2− 1

an AIFS[AC] period has passed during which the medium was considered to be idle. The

medium is considered busy if either PHY carrier sensing or virtual carrier sensing via

the NAV indicates as much [67]. We assume after the NAV and AIFS period, the timer

will continue to countdown the random backoff (BO) time without the nodes performing

physical carrier sensing until the end of the countdown period and not pause. The node

will only perform carrier sensing just prior to attempting to transmit again of 4 µs, which

is negligible in comparison to the total backoff time but sufficient for carrier sensing,

according to IEEE 802.11 [208]. Thus, we set the probability that a backoff instance

senses the channel busy and pauses its countdown pb = 0.

Each AC queue inside a node exists independently of the others. Only once the backoff

counter for a queue has reached 0 and it attempts to transmit, can it be affected by the

other queues. At this time, collisions can occur internally between packets of different

AC queues in a single node. For a node to transmit a packet onto the channel, the

197

packet had to have reached the front of the queue and overcome internal collisions with

packets of other queues. Once on the channel, it can also experience external collisions

with other frames on the channel of any AC.

The probability pj is the conditional collision probability, which is the probability that

a transmitted frame of priority j collides with another frame of any priority. A key

assumption made is that this probability is constant and independent of the number of

re-transmissions. We consider saturation conditions, where every queue of every node

always has data to send. This is the worst-case scenario for SS since there is no idle time

for a node, apart from the backoff NAV windows, and its AC queues are never empty.

Other assumptions made are

• A finite and known number of nodes contending for the channel.

• Channel errors are not included in the analysis. These do not materially affect the

time available for sensing, since retransmissions caused by errors is simply another

transmission from the perspective of SS.

• A synchronised and slotted system.

• A finite retry limit that can be different per AC.

The backoff procedure can be initiated by one of the following:

• a node needs to transmit a frame for a specific AC, but the medium is considered

busy through either physical carrier sense or the NAV, and the backoff timer for

that AC is currently at 0: this corresponds to case 2 in Equation (7.1);

• the final transmission by the TXOP holder for that AC was successful and the

NAV time has expired: this corresponds to case 3 in Equation (7.1);

• there has been a failure of a frame transmission of a TXOP: case 4 and 5 in

Equation (7.1), causing the CW to be updated up to the limit CWmax (Wj,m); or

• a collision occurs internally in a station when two or more EDCA queues in the

same station are granted a TXOP at the same time.

The transition probabilities are given in Equation (7.1), where W0 per AC is given by

CWmin in Table 7.1, and aCWmin = 15 and aCWmax = 1023.

The stationary distribution of the Markov chain is given by

bj,i,k = lim
t−→∞P{ac(t) = j, s(t) = i, b(t) = k}.

198

P{j, i, k | j, i, k + 1} = 1− pb k ∈ (0,Wj,i − 2), i ∈ (0,mj), j ∈ (0, 3)

P{j, i, k | j, i, k} = pb k ∈ (0,Wj,i − 1), i ∈ (0,mj), j ∈ (0, 3)

P{j1, 0, k | j0, i, 0} = (1− pj1)/Wj1,0 k ∈ (0,Wj1,0 − 1), i ∈ (0,mj − 1), j1, j0 ∈ (0, 3)

P{j, i, k | j, i− 1, 0} = pj/Wj,i k ∈ (0,Wj,i − 1), i ∈ (1,mj), j ∈ (0, 3)

P{j,mj , k | j,mj , 0} = pj/Wj,mj k ∈ (0,Wj,mj − 1), i ∈ (mj , R), j ∈ (0, 3)

(7.1)

Then, in steady state, the following hold at every station in a collision neighbourhood:

bj,i,0 = bj,i−1,0 · pj =⇒ bj,i,0 = pij · bj,0,0 ∀ 0 < i ≤ R− 1 (7.2)

since counting down for a specific packet happens only within the same AC j.

By balance conditions at state R:

bj,R,0(1− pj) = bj,R−1,0 · pj

bj,R,0(1− pj) = pR−1
j · bj,0,0 · pj

∴ bj,R,0 =
pRj

1− pj
bj,0,0

(7.3)

By looking at the outgoing pj/Wj,i’s in Figure 7.2 to get from any bj,i,k to any bj,i,0:

bj,i,k =
Wj,i − k
Wj,i

· bj,i,0 ∀ i ∈ (0, R) (7.4)

We also know the contention window

Wj,i = min[Wj,0 · 2i;Wj,max = 2mj ·Wj,0]

By the rules of probability, since each queue operates independently, we also know for

each j
R∑
i=0

Wj,i−1∑
k=0

bj,i,k = 1 (7.5)

199

Solving for bj,0,0 using all the above, we obtain Equation (7.6).

1 =
R∑
i=0

bj,i,0(
Wj,i + 1

2
)

=

mj−1∑
i=0

bj,i,0(
Wj,02i + 1

2
) +

R−1∑
i=mj

bj,i,0(
Wj,02mj + 1

2
)

=

mj−1∑
i=0

bj,0,0 · pij(
Wj,02i + 1

2
) + bj,0,0

R−1∑
i=mj

pij(
Wj,02mj + 1

2
) + bj,0,0(

Wj,02mj + 1

2
)
pRj

1− pj

=
bj,0,0

2

[
Wj,0

1− (2pj)
mj

1− 2pj
+

1− pmj

j

1− pj
+

(Wj,02mj + 1)p
mj

j

1− pj

]
(7.6)

∴ bj,0,0 =
2(1− 2pj)(1− pj)

Wj,0(1− (2pj)mj)(1− pj) + (1− 2pj)[(1− p
mj

j) + (1 +Wj,02mj)p
mj

j]

Let τj be the probability that a particular AC queue j in a station attempts to transmit

in a random time slot, which happens when k has counted down to 0. This is given by

τj =

R−1∑
i=0

bj,i,0 =

R−1∑
i=0

pij · bj,0,0

= bj,0,0

[
1− pRj
1− pj

] (7.7)

We omit the Rth retry because the packet is dropped if there is a collision on the last

retry.

The probability of transmission by a particular station τ can happen when k reaches 0

regardless of the backoff stage or AC. Hence:

τ =
3∑
j=0

R∑
i=0

bj,i,0

=

3∑
j=0

1− pRj
1− pj

· bj,0,0

(7.8)

where each Wj,0 is given by the CWmin+ 1 values in Table 7.1.

To further analyse pj and τj , we note that collisions can occur between queues of dif-

ferent priorities inside a particular node, or among different nodes for frames already

transmitted. Consider the queues inside one node. A frame can only collide with other

200

frames of the same or higher AC. The probabilities of internal “virtual” collisions πj are:

π0 = 0

π1 = τ0

π2 = 1− (1− τ0)(1− τ1)

π3 = 1− (1− τ0)(1− τ1)(1− τ2)

(7.9)

The actual probabilities of transmission per AC j after considering internal collisions

for a station can be defined as

t0 = τ0 = P (j = 0, i = i, k = 0)

t1 = τ1(1− π1) = τ1(1− τ0)

t2 = τ2(1− π2) = τ2(1− τ0)(1− τ1)

t3 = τ3(1− π3) = τ3(1− τ0)(1− τ1)(1− τ2)

(7.10)

Summing all of this gives an expression for t, the total transmission probability of a

node:

t =
3∑
j=0

tj (7.11)

Additionally, each transmitted frame of category j sees an external collision either with

its own AC or any other. Hence:

pj = 1− (1− tj)nj−1Πac6=j(1− tac)nac (7.12)

We now have enough information to solve Equation (7.6) to Equation (7.12) using nu-

merical methods such as Powell’s hybrid method, provided in scipy’s fsolve function

[250].

Whenever a transmission happens, an AIFS must follow, so the time that transmission

effectively takes depends on the AC since the AIFS depends on the AC of the packet

through

AIFS[AC] = SIFS +AIFSN [AC]× σ (7.13)

where σ is the slot duration and

AIFSN [j] =

2 j = 0, AC V O

2 j = 1, AC V I

3 j = 2, AC BE

7 j = 3, AC BK

(7.14)

201

Let us consider three nodes: node A is the node analysed for sensing time. A second

node, B, wishes to transmit to the third node, C. Node A will be idle during NAV, IFS,

and random backoff only (since it is in saturation conditions and its transmit queues are

never empty). We assume the NAV is used for the reservation of the channel. Node A

is thus idle when another node (say, B) has reserved the channel and transmits a data

packet to node C and when node A is counting down its random backoff delay. Node

B’s transmission can either be successful (no collision) or unsuccessful (collision occurs

that does not involve node A). A successful transmission occurs when node C receives

the packet and returns an ACK frame. Node A sets its NAV once it sees node B’s RTS

packet on the channel and decodes the duration field.

We wish to find the expected value of the duration of a sensing window. The sensing

window of a specific node (e.g., A) can occur in different ways: either a transmission

from a node other than A is successful, or a transmission from a node other than A

collides with a packet sent from a node other than A or B. The packet that is trans-

mitted can be of any of the four ACs. We also have to take into account that the node

under consideration, which performs spectrum sensing during its idle time, must still

receive the RTS packet before the NAV can be set. Hence, this time must be subtracted

from the available sensing time. The expected value of the sensing time is given by

Equation (7.15).

E[Tsensing] = E[TNAV]− 2 · Tchannel−switch

=

3∑
j=0

[TNAV,s(j) · Ps\A(j)]+

3∑
j=0

[TNAV,c(j) · Pc\A(j)]− 2 · Tchannel−switch

(7.15)

where

TNAV,s(j) is the NAV time in the case of successful transmission of a packet in AC j,

TNAV,c(j) is the NAV time in the case of collision during the transmission of a packet in

AC j,

Ps\A(j) is the probability of successful transmission of a packet in AC j by any node

other than A,

Pc\A(j) is the probability of a collision occurring during the transmission of a packet in

AC j by any node other than A, and

Tchannel−switch is the channel switch time, assumed to be fixed and hardware dependent.

Some preliminaries are required to solve Equation (7.15).

202

Each node transmits with probability t, therefore the probability of transmission by any

node is

Ptr = 1− (1− t)n (7.16)

Considering, for now, an individual node A, the probability of node A being in backoff

is the probability that at least one node other than A is transmitting, conditioned on

the probability that A is not transmitting. That is

Ptr\A = Pidle(A) =
1− (1− t)n−1

1− t
(7.17)

The probability of a successful transmission by any node other than A is the probability

that any one of the n − 1 nodes other than A transmits a packet and no other node

transmits a packet in any AC, i.e.,

Ps\A = (n− 1)t(1− t)n−2(1− t) (7.18)

The probability of a successful transmission by any node other than A of a packet in

AC j is the probability that any of the n− 1 nodes other than A transmits a packet in

AC j while no other node transmits any packet in any AC, i.e.,

Ps\A(j) = (n− 1)tj(1− t)n−1 (7.19)

The probability of a successful transmission by any node, or the successful transmission

probability for the system given that at least one transmission occurs is given by

Ps =
nt(1− t)n−1

1− (1− t)n
(7.20)

The probability of a collision of a packet of a specific AC j transmitted by any node

other than A is the probability that one node transmits a packet in AC j while at least

one other node transmits a packet in any AC and node A is not transmitting, therefore

Pc\A(j) = (n− 1)tj(1− t)[1− (1− t)n−2] (7.21)

The duration for a successful transmission is:

Ts(j) = TRTS+TCTS+3·SIFS+TMAC+TPHY +TDATA+TACK+AIFS[j]+4·δ (7.22)

where δ is the propagation delay, while we will use the average of TDATA in Equa-

tion (7.15) and for each frame type x the time Tx = length of x in bits ÷ bitrate of

203

x, which we denote λx. The duration that the NAV is set to in the case of successful

transmission is

TNAV,s(j) = 3 · SIFS + 3 · δ + TCTS + TMAC + TPHY + TDATA + TACK +AIFS[j]

= Ts(j)− TRTS − δ
(7.23)

The duration of an unsuccessful transmission or a collision for EDCA is given by (7.24).

Tc(j) = TRTS + TCTS + 2 · SIFS +AIFS[j] + 2 · σ + δ (7.24)

If the NAV can be reset, the NAV in case of collision is reset to:

TNAV,c(j) = Tc(j)− TRTS − δ (7.25)

We have all the information needed to compute Tsensing, as shown in Equation (7.26),

E[Tsensing] = [TNAV,s][Ps\A] + [TNAV,c][Pc\A]− 2 · Tchannel−switch

=

3∑
j=0

[TNAV,s(j) · Ps\A(j)] +

3∑
j=0

[TNAV,c(j) · Pc\A(j)]− 2 · Tchannel−switch

=
3∑
j=0

{3 · SIFS + 3 · δ + TCTS + TMAC + TPHY + E[TDATA] + TACK+

AIFS[j]}{(n− 1)tj(1− t)n−1}+

3∑
j=0

{TCTS + 2 · SIFS +AIFS[j] + 2 · σ}

{(n− 1)tj(1− t)[1− (1− t)n−2]} − 2 · Tchannel−switch

=
3∑
j=0

{3SIFS + 3δ + LCTS/λcontrol + LMAC/λdata + LPHY /λdata+

E[Ldata]/E[λdata] + LACK/λcontrol +AIFS[j]}{(n− 1)tj(1− t)n−1}+
3∑
j=0

{LCTS/λcontrol + 2SIFS +AIFS[j] + 2σ}

{(n− 1)tj(1− t)[1− (1− t)n−2]} − 2Tchannel−switch

(7.26)

where we use λx to denote the bitrate and Lx as the length in bits of x.

The number of samples per window J , given the sample rate r, is

J = Tsensing × r (7.27)

204

The network scenario we have described shows each node as having two mesh interfaces,

one of which can be in receiving mode monitoring the original channel while the other

is busy performing sensing on a different channel. The interface monitoring the original

channel can observe when a collision occurs and the NAV must be updated. However,

it is possible that the second interface is instead in transmission mode at the time and

that there is no way for the sensing node to become aware of a collision of the currently

transmitted packet and thus reset its NAV. In this case TNAV,c = TNAV,s and

E[Tsensing] = E[TNAV]− 2 · Tchannel−switch

=
3∑
j=0

[TNAV,s(j) · Ps\A(j)]+

3∑
j=0

[TNAV,s(j) · Pc\A(j)]− 2 · Tchannel−switch

(7.28)

In Figure 7.3 (a), we have used our analysis with the parameter values in Bianchi’s work

[91] to find and plot the throughput along with idle time from our analysis methods for

the ACs separately, as a sanity check on our method. We confirm that the throughput

curves in Figure 7.3 (a) are similar to those of Bianchi’s. When analysing each AC

separately, our results reduce to the same results as Bianchi’s. In Figure 7.3 (b) and (c),

we show the idle time for different packet sizes and bitrates when considering the ACs

separately. We also present the idle fraction when varying τ and computing the idle

fraction as Equation (7.26) out of the total time Equation (7.22) in Figure 7.4. These

figures have a similar shape to the delay curves in [91], which is a confirmation that our

analysis is correct. In Section 7.4.1.1, we present the final results of our analysis.

We have statistically analysed the expected time available to each node to perform

sensing on one channel for a single sensing opportunity or sampling window. Next,

we describe how statistics are derived from the samples gathered during such sensing

windows to perform SINR estimation.

7.3 Proposed SINR estimation

7.3.1 Interference and Noise Power Estimation

The general receiver architecture considered in this work is shown in Figure 7.5. During

the sensing interval, the interface could be placed in spectral scan mode, such as provided

by Atheros drivers for IEEE 802.11 chipsets [251]. In this spectral scanning mode, raw

in-phase (I) and quadrature (Q) component Fast Fourier Transform (FFT) data are

205

(a) packet size = 8184 bits, 1 Mbps, 50 µs slot time Bianchi

(b) packet size = 8000 bits, 11 Mbps, 9 µs slot time

(c) packet size = 64000 bits, 50 Mbps, 9 µs slot time

Figure 7.3: Idle fraction vs. number of nodes

206

(a) packet size = 8184 bits

(b) packet size = 8000 bits

(c) packet size = 64000 bits

Figure 7.4: Idle fraction vs. τ (n = number of nodes)

207

Figure 7.5: Representation of receiver architecture with power computation. (LNA
= low noise amplifier, BPF = band pass filter, VCO = voltage controlled oscillator,
LPF = low pass filter, ADC = analogue-to-digital converter, DFT = discrete Fourier

transform)

gathered. The I/Q samples can be used to obtain the interference and noise power. In

this phase of measurement, any received signal above the energy detection threshold

(λED) is considered interference or noise. This is because it is not expected that any

other node that is part of the network and within the transmission range of the sensing

node would be operating in the sensed channel at that time. If any other node in the

same network is operating within the interference range but cannot be decoded, it is

also causing interference to the sensing node. The (desired) signal power (S in SINR) is

determined in the next phase. This formulation allows the sensing activity to take into

account the cumulative effect of different interference sources that may individually be

lower than the threshold, including adjacent channel interference or interference caused

by PU transmissions leaking into other channels, as well as other SU interference and

internal interference from hidden nodes.

Any r(t) > λED is the sum of signals received at sample time t from all M current

interference sources and noise. That is,

r(t) = rI(t) + jrQ(t) =
M∑
i=1

hi

√
Pixi(t) + w(t) (7.29)

where rI(t) and rQ(t) are the in-phase and quadrature components of the received

signal at time t, respectively, hi is the complex channel impulse response for the chan-

nel between interference source i and the receiver, Pi is the scalar power envelope of

the transmitted signal, xi(t) is the complex transmitted interfering signal, w(t) is the

complex additive Gaussian received noise signal, and there are M interference sources.

We assume that the number of interference sources, M , is fixed over the period of mea-

surement, although the actual number does not need to be known. Our focus is on the

208

TVWS spectrum, where the wireless channel remains coherent for long periods of time

since there is very little mobility of devices, and antennas are generally situated several

metres above ground level so that the movement of vehicles, people, and other tempo-

rary obstructions have limited impact on signal propagation. The large wavelength also

results in less effect from vegetation, as confirmed by our measurements in Chapter 6.

Our network is stationary, PUs are stationary, and interfering devices can be expected

to be stationary or change state on a slow time scale [89, 252]; specifically, slower than

the length of the sensing period. Therefore, the assumption of fixed M is reasonable

over the time scale of a sensing window. We do not need to know the value of M . It is

fixed for the sensing period so we do not need to take into account the change of state of

interfering devices during that period. Hence, the choice of probability density function

that can be applied to our measurement is simplified.

We find the magnitude of the power received per sample by

|r(t)|2 = r2
I (t) + r2

Q(t). (7.30)

Let J be the average number of samples that can be obtained per sensing window. As

we have shown in Section 7.2, the obtainable value J is determined by the MAC layer.

For the purposes of the estimation in this section, clarity of the presentation, and since

we are concerned with expected performance, a constant J is considered. This refers

to the expected value of the number of samples and does not imply that is a constant

value. Measurements are taken over a number, W , of sensing windows.

We need to choose an estimator of the mean of the received signal power based on the

set of measurements taken over [{j = 1, 2, ...J}, {k = 1, 2, ..,W}] ≡ {i = 1, 2, ..., N} (we

will use these representations interchangeably). Let us call the true mean of the received

signal power θ∗. It is a real constant unknown value that we wish to estimate. We have

observations of the random variable, the received signal power

X1,1, X1,2, ..., X1,J , X2,1, X2,2, ..., X2,J , ...XW,J = {|r(k, j)|2}.

We assume that all observations Xk,j are independent identically distributed. The com-

ponents rI and rQ are often considered individually Gaussian distributed, resulting in

the power |r(t)|2 being an exponential random variable [34]. This means that each ob-

servation Xk,j is exponentially distributed with the mean θ. The probability density

function of an observation Xi given the mean θ is the prior distribution

fXi|Θ(xi|θ) =
1

θ
e−(xi/θ) (7.31)

209

The prior distribution of the vector of N observations is

fX1,2,...,N |Θ(x1,2,...,N |θ) =
N∏
i=1

1

θ
e−(xi/θ). (7.32)

We find the maximum a posteriori (MAP) estimate of the parameter θ, which we prove

is the same as the maximum likelihood estimate (MLE) in this case.

By Bayes’ rule, the posterior distribution can be found as

fΘ|X1,2,...,N
(θ|x1,2,...,N) =

fX1,2,...,N |Θ(x1,2,...,N |θ)fθ(θ)
fX1,2,...,N

(x1,2,...,N)
(7.33)

We wish to find the maximum of the posterior fΘ|X1,2,...,N
(θ|x1,2,...,N) in terms of θ, so

the denominator term is unnecessary. Additionally, we know that the true mean θ∗ is,

in fact, a constant. Our estimation problem is now

max
θ
fX1,2,...,N |Θ(x1,2,...,N |θ)

= max
θ

 W∏
k=1

J∏
j=1

1

θ
e−(xk,j/θ)

 , (7.34)

which is the maximum likelihood estimate. The maximum of Equation (7.34) occurs at

the maximum of the natural logarithm, and where the derivative is 0, that is,

d

dθ

 W∑
k=1

J∑
j=1

(ln
1

θ
−
xk,j
θ

)

 = 0

d

dθ

JW ln
1

θ
−

W∑
k=1

J∑
j=1

xk,j
θ

 = 0

−JW 1

θ
+

W∑
k=1

J∑
j=1

xk,j
θ2

= 0

∴ θ̂ =
1

J ×W

W∑
k=1

J∑
j=1

xk,j

(7.35)

Thus, the MLE θ̂ is simply the algebraic average over the number of samples per window

and the number of sampling windows. We can write mean signal and noise power as

P (r) = θ̂ =
1

W

W∑
k=1

1

J

J∑
j=1

|r(j, k)|2 (7.36)

The mean square error (MSE) of the estimate θ̂ is bounded by the Cramér-Rao bound

210

[253]. To find the bound, we must calculate the Fisher information F (θ), which is the

expected value of the observed information.

F (θ) = −E
[
∂2 ln f(x, θ)

∂θ2

]

= −E

JW
θ2
−

W∑
k=1

J∑
j=1

2xk,j
θ3

= −JW

θ2
+

2JWθ

θ3

=
JW

θ2

(7.37)

By the Cramér-Rao bound, the MSE is at least 1
F (θ) . So we have

MSE ≥ θ2

JW
(7.38)

An unbiased estimator can be found that attains the bound if and only if the first

derivative of the log of the distribution can be written as:

∂ ln f(x, θ)

∂θ
= F (θ)(g(x)− θ) (7.39)

for an estimator g(x) = θ̂ [253]. This condition is satisfied since the left-hand side (LHS)

of Equation (7.39) can be expanded as:

d

dθ

JW ln
1

θ
−

W∑
k=1

J∑
j=1

xk,j
θ

 =
−JW
θ

+

W∑
k=1

J∑
j=1

xk,j
θ2

=
JWθ̂

θ2
− JW

θ

=
JW

θ2
(θ̂ − θ)

= F (θ)(θ̂ − θ)

(7.40)

which is F (θ)(g(x)−θ), the right-hand side (RHS) of Equation (7.39). Hence, LHS=RHS

and we can conclude that the estimator θ̂ is the minimum-variance unbiased estimator

that satisfies the Cramér-Rao bound. We also have an efficient estimate since the MSE

is, in fact, equal to the Cramér-Rao bound. Here, we have a relationship between the

error (MSE) and the number of sampling windows W for a given number of samples

per sensing window, J .

211

Another way to characterise the performance of our estimation is to determine the

probability that the error is within a certain bound α, i.e.,

P(|θ̂ − θ∗|) ≤ α. (7.41)

We wish to find a confidence interval for our estimate of the mean. We note that the

random variable Xi is an exponential random variable, so the sum of the N = JW

random variables is a Gamma distribution with parameters (N, 1/θ) or a scaled Chi-

squared distribution with 2N degrees of freedom, as 2
θ

∑N
i=1Xi ∼ χ2

2N [254]. Hence, we

can construct a confidence interval for the mean θ∗ in terms of the estimated mean θ̂ as

follows [254–256],

P

(
2
∑N

i=1Xi

χ2
2N (1− α/2)

≤ θ∗ ≤
2
∑N

i=1Xi

χ2
2N (α/2)

)
= 1− α

P

(
2θ̂N

χ2
2N (1− α/2)

≤ θ∗ ≤ 2θ̂N

χ2
2N (α/2)

)
= 1− α

P

(
2θ̂JW

χ2
2JW (1− α/2)

≤ θ∗ ≤ 2θ̂JW

χ2
2JW (α/2)

)
= 1− α

(7.42)

where (1− α)100% is the desired confidence level.

We define the width of the confidence interval as the distance

2θ̂N

χ2
2N (α/2)

− 2θ̂N

χ2
2N (1− α/2)

. (7.43)

Thus, we can find what number of samples would be needed for the desired confidence

interval width and confidence level. We illustrate this relationship in Section 7.4.

Another possible way to construct a confidence interval would be to use the asymptotic

Wald confidence interval (CI) [257] in terms of the Fisher information JW
θ2

, i.e.,

θ̂ ± z

√
θ̂2

JW

where z is the z-score of the standard normal distribution corresponding to the given

confidence level. The width of the Wald CI is

2 · z

√
θ̂2

JW
(7.44)

The complexity of this estimation method is O(JW) per sensor since each node performs

a sum over J and W to get θ̂. Overall for the network, the complexity is O(V JW) for V

212

nodes. The complexity of computing the Wald CI is the same as calculating θ̂ multiplied

by a constant. Thus, the total complexity of the estimation is O(V JW). The complexity

of the Chi-square CI is based on the lookup used to find the value of the distribution, so

it is not definitive but it is more complex than the Wald method. We show in Section 7.4

that the Wald CI is so close to the Chi-square CI that it is sufficient to use it. The Wald

CI is less computationally complex than the Chi-square method, which is preferable on

the somewhat constrained mesh nodes.

7.3.2 Wi-Fi Signal Power estimation

The previous phase of measurements found the average interference+noise power per

channel during the described new small sensing windows provided by the backoff inter-

vals. To find the SINR, we also need the desired signal power. The signal strength

will be measured from beacon and probe response frames captured during the Wi-Fi

card’s normal channel scanning intervals. Channel scanning is typically 100 time units

or 102.4 ms long, repeated every second if traffic is light, or every minute if the traffic is

heavy [258]. These intervals are long enough for the Wi-Fi card to receive and decode

management frames on all the allowed channels from other Wi-Fi devices, including the

other members of the same Mesh Basic Service Set (MBSS).

The nodes that participate in the mesh network (the MBSS) know the MAC addresses of

all other nodes that are part of the MBSS. Any additional or unknown MAC addresses,

whose beacon and probe response frames are captured, are interfering Wi-Fi devices

(unless they can authenticate and join the network). When the frames arrive at the

Wi-Fi card, the driver calculates the RSSI and creates radiotap headers, which the

upper layers will see as associated with the received frame. The RSSI is included in this

radiotap header, usually in units of dBm. In this way, the node performing the channel

scan receives an RSSI measurement value from other members of the MBSS, identified

by MAC address. That is, each mesh node has a measure of the signal power from each

possible desired transmitter. To find the total desired signal power per channel, the

RSSIdBm measurements received from the MBSS members in each channel must first

be converted to Watts to get RSSIW and then summed. We denote the total desired

signal power in Watts as RSSIT , calculated according to Equation (7.45), assuming that

there are R participating mesh nodes in the considered channel.

RSSIT =
R∑
r=1

10(RSSIdBm(r)−30)/10 =
R∑
r=1

RSSIW (r) (7.45)

The RSSI includes all signals above the energy detection threshold and, therefore, in-

cludes the interference and noise, I +N . Each node must thus subtract the measured

213

interference and noise from the RSSI to get RSSIT (corrected). The SINR is then

SINR =
RSSIT (corrected)

I +N
=
RSSIT − (I +N)

I +N
(7.46)

The total SINR, SINRT can then be found as

SINRT =
RSSIT (corrected)∑R

r=1 I +N(r)
(7.47)

7.4 Numerical results and discussion

Table 7.2: Simulation parameters

Parameter Value

propagation delay (δ) 3.336 µs

aCWmin 15

aCWmax 1023

slot time 9 µs

SIFS 16 µs

data size 1000 - 65000 bytes

AIFS 34-79 µs

RTS length 20 bytes

CTS length 14 bytes

ACK length 14 bytes

MAC header length 28 bytes

PHY header length 24 bytes

sample rate 32 ksps - 1 Msps

The parameters used for simulation are defined in Table 7.2. The majority of these

parameters are taken from the IEEE 802.11ac specification [259]. The slot times, spacing,

and header lengths are the same in IEEE 802.11ax. The packet sizes, data rates, and

propagation delay are typical for a long-range WMN. The data size values used in this

section are the total of the data payload size of a TXOP granted to a node, which

could be an Aggregate MAC Service Data Unit (A-MSDU) or a (larger) Aggregate

MAC Protocol Data Unit (A-MPDU). This includes the case where a TXOP is given

to a node to transmit multiple MSDUs or MPDUs in one TXOP and only one (block)

ACK is required for the aggregate transmission. Aggregate transmissions are common in

WLAN, including IEEE 802.11s networks [33] and it is common for the total A-MPDU

to be as large as 65 kilobytes [260]. Lee and Hwang find that the minimum delay can

214

be achieved by 32 aggregated MPDUs of 1498 bytes each (a total of 47936 bytes) [260].

In ns-3, the default maximum A-MPDU size is 65535 bytes [211]. Thus, the “data size”

values we consider are reasonable. A data size of 1000 bytes is included in the case

where only one MPDU is transmitted per IEEE 802.11 frame.

7.4.1 Sensing time, based on Markov model

7.4.1.1 Number of samples per window obtainable for increasing number

of competing nodes

We show the results of the Markov chain analytical model set out in Section 7.2 for the

expected duration of one sensing window and the number of samples that can be obtained

for the sensed channel per sensing window. The code used to obtain these results can be

found in Appendix H. We find the number of samples that can be obtained in a DSA-

WMN using IEEE 802.11s MAC from the expected time available to perform spectrum

sensing, according to Equation (7.27) and Equation (7.26). The achievable number of

samples is plotted for an increasing number of nodes contending for the channel. We

plot the results for different average data sizes, sampling rates, and data rates. When

the channel switch time exceeds the available time, sensing becomes infeasible, and the

obtainable number of samples per window goes to zero.

When there is only one node, there is no sensing opportunity as the node is always

transmitting, based on the assumption of saturation conditions. (In non-saturation con-

ditions, the node will have idle time when there is no data to transmit, which can be used

for sensing.) As the number of nodes increases, the amount of time each node spends in

backoff increases since more nodes contend for the channel and transmit packets. This

increase in sensing time continues up to the first turning point. Thereafter, the proba-

bility of collisions increases and the probability of successful transmissions decreases as

the number of nodes increases. This lowers the expected time available for sensing as

the collision time is much shorter than the time for a successful transmission, resulting

in a fall in the graph. As the number of nodes contending for the channel increases

further beyond a second lower turning point, the probability of collision dominates the

probability of success and more collisions occur, causing the expected sensing time to

increase again as more backoff opportunities occur. This increase is generally slower

than the first increasing section because the time taken by an unsuccessful transmission

is lower than the time of a successful transmission, as per Equation (7.24) and Equa-

tion (7.22). In this region, network operation is infeasible as the data throughput is

close to 0. Considering Figure 7.6 and Figure 7.7, we note that for a small data size of

1000 bytes, the second increasing section, which starts at around 10 nodes, is steeper

215

(a) sample rate = 32 ksps

(b) sample rate = 250 ksps

(c) sample rate = 1 Msps

Figure 7.6: Number of samples per sampling window when sampling during EDCA
backoff idle times for data rate of 11 Mbps, and average packet size of 1000 bytes

216

(a) sample rate = 32 ksps

(b) sample rate = 250 ksps

(c) sample rate = 1 Msps

Figure 7.7: Number of samples per sampling window when sampling during EDCA
backoff idle times for data rate of 11 Mbps, and average packet size of 8000 bytes

217

(a) sample rate = 32 ksps

(b) sample rate = 250 ksps

(c) sample rate = 1 Msps

Figure 7.8: Number of samples per sampling window when sampling during EDCA
backoff idle times for data rate of 11 Mbps, and average packet size of 32000 bytes

218

(a) sample rate = 32 ksps

(b) sample rate = 250 ksps

(c) sample rate = 1 Msps

Figure 7.9: Number of samples per sampling window when sampling during EDCA
backoff idle times for data rate of 11 Mbps, and average packet size of 65000 bytes

219

(a) sample rate = 32 ksps

(b) sample rate = 250 ksps

(c) sample rate = 1 Msps

Figure 7.10: Number of samples per sampling window when sampling during EDCA
backoff idle times for data rate of 20 Mbps, and average packet size of 1000 bytes

220

(a) sample rate = 32 ksps

(b) sample rate = 250 ksps

(c) sample rate = 1 Msps

Figure 7.11: Number of samples per sampling window when sampling during EDCA
backoff idle times for data rate of 20 Mbps, and average packet size of 8000 bytes

221

(a) sample rate = 32 ksps

(b) sample rate = 250 ksps

(c) sample rate = 1 Msps

Figure 7.12: Number of samples per sampling window when sampling during EDCA
backoff idle times for data rate of 20 Mbps, and average packet size of 32000 bytes

222

(a) sample rate = 32 ksps

(b) sample rate = 250 ksps

(c) sample rate = 1 Msps

Figure 7.13: Number of samples per sampling window when sampling during EDCA
backoff idle times for data rate of 20 Mbps, and average packet size of 65 kilobytes

223

than when the data size is larger, but still not as steep as the first increasing section

from 0 to 3 nodes. We see the number of samples obtainable is higher for larger mean

data sizes.

For the first set of results in Figure 7.6, we set the average data rate to 11 Mbps and the

mean packet size to 1 kilobyte (kB). In Figure 7.7 to Figure 7.9, we show results for an

average data rate of 11 Mbps and packet sizes of 8 kB, 32 kB, and 65 kB, respectively.

Figure 7.10 - Figure 7.13 show the results for an average data rate of 20 Mbps. We note

that as the sample rate increases, the shape of the graphs remains the same and the

maximum number of nodes for which sampling is feasible stays the same, but the number

of samples that can be obtained increases. For example, comparing Figure 7.7 (a), (b)

and (c) for the packet size fixed at 8000 bytes, we note that in all of (a), (b) and (c), the

maximum number of nodes for which sensing is feasible is about 20 for a channel switch

time of 200 µs, about 14 for Tchannel−switch = 250 µs, 12 for Tchannel−switch = 300 µs,

and remains feasible for any channel switch time less than or equal to 150 µs. Hence,

the cutoff point of feasibility remains the same. That is because the maximum feasible

number of nodes is dependent on the sensing time and channel switch delay, which

depends only on the number of nodes contending for the channel (for fixed data rate

and data frame size) and not on the sample rate. However, the number of samples

increases proportionally to the increase in the sample rate. At 32 ksps, the maximum

number of samples achievable per window is 48, which increases to approximately 370

at a sample rate of 250 ksps and approximately 1500 at 1 Msps.

When the average data size increases, the maximum feasible number of nodes and the

number of samples increase. This happens because the time available for sensing in-

creases. For example, we see in Figure 7.8 (c) and Figure 7.9 (c), the maximum number

of samples achievable for a data size of 32000 bytes and a sample rate of 1 Msps is just

under 6000 while it is close to 12000 (double) when the data size doubles. The size of the

data frame affects only the sensing time, not the probability of collision in this model,

because of the use of the NAV so that collisions only occur during RTS transmissions.

For a higher data rate, the number of samples possible for the same number of nodes

decreases, so the feasible number of nodes decreases. For example, the maximum feasible

number of nodes at a data rate of 11 Mbps for an average packet size of 8000 bytes,

1 Msps and 250 µs channel switch time is 15, as can be observed in Figure 7.7 (c). The

maximum number of nodes for feasible sensing drops to 9 when the data rate increases

to 20 Mbps, as shown in Figure 7.11 (c), and the maximum number of samples drops

from about 1500 to 780. We note that sampling is infeasible at a channel switch time

above 200 µs when the data payload size is 1 kB, becomes infeasible for any number of

nodes at a channel switch time of 200 µs and a data rate of 20 Mbps when the packet

224

size is 1000 bytes but remains feasible at a data rate of 20 Mbps when the average data

size increases to 8000 bytes up to 9 nodes. We also note that, as the data payload

size increases, the channel switch delay becomes less important as the time of the data

transmission dominates. This is clear when comparing how close the curves are together

in Figure 7.13, how they are slightly further apart in Figure 7.12, and there are big

distances in Figure 7.10.

(a) data rate = 11 Mbps (b) data rate = 20 Mbps

Figure 7.14: Expected sensing time available per window for mean packet size of 8000
bytes

For ease of comparison with the prior work on sensing time, we have included Figure 7.14.

This figure shows the actual expected time available per window for sensing, assuming

a mean packet size of 8000 bytes. Here we can see that, at the highest data rate and the

longest channel switch time, the sensing time is 100 µs for 6 nodes. At a data rate of

11 Mbps (a), the sensing time is over 1 ms at any channel switch time under 150 µs for

5 nodes. We note that IEEE 802.22-2019 specifies a minimum sensing duration of 5 ms,

with 20 ms being common [68] and the previous version had a range of 1 ms-160 ms

[261]. In contrast, Chowdhury and Akyildiz [118] use a sensing time of 20 µs, while

Alshamrani et al. [262] suggest a sensing duration of 2.7 ms. We see that we could

achieve an acceptable total sensing time in 20 sensing windows using IEEE 802.22-2019

as the standard and three sensing windows following the suggestion of [262]. For a fixed

probability of false alarm of 0.02 using the method of [263], the authors suggest 60 ms

sensing time, which can be achieved in 60 sensing windows. Moorthy and Pillai [264]

suggest that the sensing duration remains less than 1 ms and is optimal at 0.5 ms for

maximum energy efficiency and find that the probability of false alarm can be kept below

0.1 for this sensing duration. We can achieve this in one sensing window.

225

7.4.1.2 Feasibility of sampling based on the number of competing nodes

We now present a further investigation of the regions in which sampling is feasible based

on the number of competing nodes. In this section, we also consider the impact of the

separation distance between nodes. We assume a grid network topology. The node

separation values indicated are the horizontal and vertical distances between neighbour

nodes. We consider each hop in a multi-hop link between a source and destination as a

separate transmission of the same data. The distance is the distance for one hop. The

shorter distance of 150 m is only applicable to the higher frequency spectrum, such as

2.4 GHz or 5 GHz but longer distances of 1 km and above are more applicable in the

case of the lower frequency spectrum, specifically TVWS spectrum (below 700 MHz).

The code implementing this analysis is also found in Appendix H.

In Section 7.4.1.1, we showed how many samples can be obtained in various conditions

in terms of the number of nodes participating in EDCA channel contention. In this

section, we find the roots of Equation (7.48) for the number of nodes so that Tsensing is

at least long enough to obtain 1 sample, i.e. we solve

Tsensing ≥ 1/r

Tsensing − 1/r ≥ 0
(7.48)

where Tsensing is given by Equation (7.26), for the number of nodes n, and r is the

sample rate. We have again used the scipy python package’s fsolve function [250].

From the figures in Section 7.4.1.1, we can see that the number of samples has a region

during which it increases to a maximum (the first turning point) as the number of

nodes increases, then falls to a minimum (the second turning point) as the number

of competing nodes increases further, and then another region where the number of

samples increases again as the number of nodes increases. This means that two roots

could exist: the first decreasing region of Equation (7.48) could fall below 0 and then

the second increasing region could go beyond 0 again. In the present investigation of

feasibility, we are only interested in the first root of Equation (7.48), or the first time

where the number of samples crosses 1. In the second increasing region, the number

of samples may rise above 1 again but we still consider this region infeasible since the

number of collisions experienced by the competing nodes in this region will make the

user experience untenable. While sampling may be technically feasible in these regions,

the network will not be performing well, and operating in this region is not practically

feasible when considering the packet delivery ratio and user experience.

In Table 7.3 - Table 7.6, ∞ implies that sampling is feasible for any number of nodes.

These are the most favourable conditions for sampling and occur when the NAV times

226

Table 7.3: The maximum feasible number of nodes for sampling for node separation
of 150 m

δ = 0.5 µs Data rate = 11 Mbps Data rate = 20 Mbps

Data size (kilobytes) Data size (kilobytes)

Tchannel−switch(µs) 1 4 8 16 32 65 1 4 8 16 32 65

50 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
100 ∞ ∞ ∞ ∞ ∞ ∞ N/A ∞ ∞ ∞ ∞ ∞
150 N/A ∞ ∞ ∞ ∞ ∞ N/A 9 ∞ ∞ ∞ ∞
200 N/A 11 19 29 ∞ ∞ N/A 5 11 20 ∞ ∞
250 N/A 8 14 22 31 40 N/A 3 8 15 23 33

300 N/A 6 11 18 26 33 N/A N/A 6 12 19 27

Table 7.4: The maximum feasible number of nodes for sampling for node separation
of 500 m

δ = 1.668 µs Data rate = 11 Mbps Data rate = 20 Mbps

Data size (kilobytes) Data size (kilobytes)

Tchannel−switch(µs) 1 4 8 16 32 65 1 4 8 16 32 65

50 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
100 ∞ ∞ ∞ ∞ ∞ ∞ N/A ∞ ∞ ∞ ∞ ∞
150 N/A ∞ ∞ ∞ ∞ ∞ N/A 10 ∞ ∞ ∞ ∞
200 N/A 11 19 28 ∞ ∞ N/A 5 12 21 ∞ ∞
250 N/A 8 14 22 32 40 N/A 3 8 15 23 34

300 N/A 6 12 18 26 34 N/A N/A 6 12 19 27

are long, which occurs when the data size is large and the channel switch delay is short.

The “N/A” entries are conditions for which sampling is infeasible. Infeasible conditions

occur when a long channel switch delay coincides with a small data size. More conditions

are infeasible at higher data rates and shorter node separation distances. We see that

as the data size increases, the maximum number of nodes contending for the channel for

feasible sampling increases. As the channel switch delay increases, the feasible number

of nodes decreases. The further the node separation distance, the higher the feasible

number of competing nodes because the propagation delay provides more sensing time.

At higher data rates the maximum feasible number of nodes is lower. Sampling is feasible

under reasonable conditions. It is only when the channel switch delay is at the higher

end (greater than 150 µs) while the mean data payload size is 1 kB or smaller that

sampling becomes infeasible at a data rate of 11 Mbps. When the data rate is 20 Mbps,

sampling is also infeasible for a mean data payload size of 4 kB when the channel switch

227

Table 7.5: The maximum feasible number of nodes for sampling for node separation
of 1 km

δ = 3.336 µs Data rate = 11 Mbps Data rate = 20 Mbps

Data size (kilobytes) Data size (kilobytes)

Tchannel−switch(µs) 1 4 8 16 32 65 1 4 8 16 32 65

50 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
100 ∞ ∞ ∞ ∞ ∞ ∞ N/A ∞ ∞ ∞ ∞ ∞
150 4 ∞ ∞ ∞ ∞ ∞ N/A 10 ∞ ∞ ∞ ∞
200 N/A 11 20 26 ∞ ∞ N/A 5 12 22 ∞ ∞
250 N/A 8 14 22 33 45 N/A 3 8 15 23 27

300 N/A 6 12 18 26 ∞ N/A N/A 6 12 19 27

Table 7.6: The maximum feasible number of nodes for sampling for node separation
of 5 km

δ = 16.68 µs Data rate = 11 Mbps Data rate = 20 Mbps

Data size (kilobytes) Data size (kilobytes)

Tchannel−switch(µs) 1 4 8 16 32 65 1 4 8 16 32 65

50 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
100 ∞ ∞ ∞ ∞ ∞ ∞ N/A ∞ ∞ ∞ ∞ ∞
150 5 ∞ ∞ ∞ ∞ ∞ N/A ∞ ∞ ∞ ∞ ∞
200 N/A 13 ∞ ∞ ∞ ∞ N/A 6 14 ∞ ∞ ∞
250 N/A 8 16 28 ∞ ∞ N/A 3 9 17 30 ∞
300 N/A 6 12 20 29 39 N/A N/A 7 13 21 31

delay is 300 µs and a packet size of 1 kB at 100 µs channel switch time.

The relationship between the communication range and the interference range of nodes

can be written as RI = RC(1 + ∆) [39]. We can make a rough assumption that ∆ is

at most one so that the interference range is at most twice the communication range.

This model is often used in the literature, e.g., [39, 121, 127]. Then, any attempted

transmission within this range would be considered as contending for the same channel.

If we consider a grid of four nodes, placed at the given separation distance, and assume

that the interference distance is twice the transmission distance, we can consider that

nodes up to twice the separation distance of the original four nodes may all be contending

for the channel. Following this logic, we can make a rough estimate that the maximum

number of nodes expected to participate in channel contention at once is 16. Some

conditions under which sampling is then feasible, considering the results in Table 7.3 -

Table 7.6, are:

228

• Whenever the channel switch delay is less than or equal to 100 µs, except where

the data payload is less than 1000 bytes and the data size is greater than or equal

to 20 Mbps.

• Whenever the propagation distance is 5 km (which is common in the TVWS spec-

trum), and the channel switch delay is 150 µs except where the data payload is

less than 1000 bytes.

• When the channel switch delay is 200 µs and the data payload is at least 8 kB at

a data rate of 11 Mbps or 16 kB at a data rate of 20 Mbps.

• At a data rate of 11 Mbps, for any data size of 16 kB and above.

• At any data size from 32 kB for any reasonable data rate, node separation distance

and channel switch delay.

7.4.2 Confidence intervals of the estimates

The results we have presented in Section 7.4.1.1 enable one to find the number of samples

that can be taken during the waiting time of nodes in this scenario at certain operating

points and the feasible conditions are analysed in Section 7.4.1.2. The next set of

results enables one to obtain the number of sampling windows (for a given number of

samples per window) at specific operating points that would be required to achieve a

certain confidence interval or sensing accuracy, using the model in Section 7.3. Together,

these results help us to see how long it would take to obtain the required samples for

performing channel assignment to a desired level of accuracy, quantified by the width of

the confidence interval. We can also see how the number of samples and sensing time

required for a desired level of accuracy compares to those in the previous literature that

use binary hypothesis methods.

Figure 7.15 - Figure 7.17 and Figures 7.18 - 7.20 show the confidence interval (CI) width

as the number of sampling windows increases for a sensing window of 20, 200, 500, and

1000 samples per window, using Equation (7.43) and Equation (7.44), respectively. We

can see that the CI width decreases exponentially with the increase in the number of

samples. In each case, the CI curve is highest for the highest mean total interference

power or the highest number of interference sources. In the case of a small sampling

window of 20 samples (in Figure 7.15, the confidence interval width only drops below

1 at around 100 sampling windows for 15 dBm of interference. The confidence interval

of 1 corresponds to 1/θ× 100% effective error. When the sampling window increases to

accommodate 200 samples per window, only around 10 windows are required for a CI

229

(a) α = 0.1 (b) α = 0.05

Figure 7.15: Width of the confidence interval of average interference power vs. num-
ber of sampling windows for 20 samples per window, Chi-square method. The curves

are for the indicated means θ̂.

(a) α = 0.1 (b) α = 0.05

Figure 7.16: Width of the confidence interval of average interference power vs. num-
ber of sampling windows for 200 samples per window, Chi-square method. The curves

are for the indicated means θ̂.

(a) α = 0.1 (b) α = 0.05

Figure 7.17: Width of the confidence interval of average interference power vs. num-
ber of sampling windows for 1000 samples per window, Chi-square method. The curves

are for the indicated means θ̂.

230

(a) α = 0.1 (b) α = 0.05

Figure 7.18: Width of the confidence interval of average interference power vs. num-
ber of sampling windows for 20 samples per window, Wald method. The curves are for

the indicated means θ̂.

(a) α = 0.1 (b) α = 0.05

Figure 7.19: Width of the confidence interval of average interference power vs. num-
ber of sampling windows for 200 samples per window, Wald method. The curves are

for the indicated means θ̂.

(a) α = 0.1 (b) α = 0.05

Figure 7.20: Width of the confidence interval of average interference power vs. num-
ber of sampling windows for 1000 samples per window, Wald method. The curves are

for the indicated means θ̂.

231

of 0.1. When the sampling window allows up to 1000 samples to be taken, 10 or even

fewer than 10 sampling windows can be sufficient.

We also note that the results look identical for the Wald method (Figure 7.18 - Fig-

ure 7.20), which uses the normal distribution approximation, and the chi-square method

(Figure 7.15 - Figure 7.17), which uses the exponential distribution. This is clear from

Figure 7.21.

(a) α = 0.05 (b) α = 0.1

Figure 7.21: Width of the confidence interval using the Wald method vs. Chi-square
method for 500 samples per window. The curves are for the indicated means θ̂.

(a) α = 0.05 (b) α = 0.1

Figure 7.22: Width of the confidence interval per average interference power for
α = 0.05 at 20 samples per window. The curves are for the indicated number of

sampling windows.

We can also show the dependence of the confidence interval width on the number of

interfering devices. We do this by varying the mean interference power (θ̂) for differ-

ent numbers of samples, and finding the width of the confidence interval from Equa-

tion (7.43). The average sensed interference is proportional to the number of interferers,

as the interference power is additive as more interference sources are added. We illustrate

the dependence in Figure 7.22 and Figure 7.23. Figure 7.22 shows the relationship for

a small number of samples per window (20), and Figure 7.23 illustrates a large number

232

(a) α = 0.05 (b) α = 0.1

Figure 7.23: Width of the confidence interval per average interference power for
α = 0.05 at 500 samples per window. The curves are for the indicated number of

sampling windows.

of samples per window (500). We can see that for a fixed number of samples, the error

increases as the number of interfering devices and the total interference power increase.

However, the increase is far steeper for a small number of sampling windows than for a

larger number of sampling windows. The larger the number of samples that can be ob-

tained, the more immune the sensing activity is to higher levels of interference in terms

of error. When the number of samples per window is large, the confidence intervals are

smaller, but the rates of increase are the same for a given number of sampling windows,

as we see by comparing Figure 7.22 and Figure 7.23. The margins of error are reduced

as the number of samples per window increases. To achieve the lowest error despite a

large average interference power, more sampling windows and more samples per window

are required. For a given number of interfering devices and a given average interference

power, for a network with a given amount of traffic and thus a known average number

of samples per window, these figures enable one to determine whether the confidence

interval is acceptable within the specified confidence level for α = 0.1 or α = 0.05, de-

pending on the application. One can also determine what number of sampling windows

would be required to achieve a specified confidence interval if the average interference

power is known.

Finally, in Figure 7.24, we show the relative error over time (as a percentage) found by

%error = |CI|/θ × 100%,

where |CI| is the width of the CI. This enables us to compare the total time required

for sensing using our estimation method in comparison to the time suggested previously

in the literature for testing the binary hypothesis. We see that we need 10 ms as a

reasonable period to achieve less than 10% error at a confidence level of both 0.95 and

233

(a) α = 0.05 (b) α = 0.1

Figure 7.24: Relative error vs. time

0.9 for a sample rate of at least 250 ksps. If we are only sampling at 32 ksps, we would

need on the order of 100 ms of sampling to get below 10% error. This corresponds

well with the recommendation of between 5 ms and 40 ms in IEEE 802.22 [68]. In

contrast, the suggestion of [118] of 20 µs is far below what is necessary. Alshamrani’s

proposition of 2.7 ms [262] and Moorthy and Pillai’s recommendation of 0.5 ms - 1 ms

[264] are somewhat low for an acceptable level of accuracy for estimation. We consider a

relative error below 10% to be acceptable. The findings of [263] to use 60 ms of sensing

corresponds well with our findings. Assuming 1 ms long sensing windows, we can achieve

an acceptable accuracy in between 10 and 100 sensing windows.

7.5 Conclusion and recommendations

This chapter presents a method for performing off-channel SINR sampling during the

NAV reserved time of each cognitive node participating in an 802.11s-based Wireless

Mesh Network (WMN) in a DSA band. The SINR samples are collected to estimate the

mean SINR perceived per node on all the node’s allowed channels. The mean SINR per

node per channel can then be employed to determine the expected SINR for different

Channel Assignments (CAs), which is used, in turn, in the CA optimisation method

discussed in Chapter 5. We have built on the Markov chain analysis methods that are

applied in prior literature for characterising performance measures such as delay and

throughput. Instead, we use Markov chain analysis to find the expected time duration

of the NAV reserved (idle) time and thus the expected time available for sensing in a

sensing window, depending on the number of nodes contending for the operating channel,

the maximum contention window sizes per priority class, and the maximum number of

retries. The analysis method is well-established but we have employed it in a new way.

234

We have also contributed to the analysis by taking into account the dependence of the

maximum contention window size on the priority class.

In contrast to previous spectrum sensing work, we do not need to avoid causing interfer-

ence to PUs (or other users) using spectrum sensing (since we use GLSDs for that) so

binary hypothesis testing methods are not appropriate to the problem. Instead, we wish

to find Channel Assignments that cause our network to have the best SINR. Hence,

we employ estimation instead of hypothesis testing. We proved how the interference

and noise can be modelled as an exponential random variable and that each sample is

an observation of an exponentially distributed variable with an unknown mean param-

eter. It was shown that the maximum a priori and maximum likelihood estimates of

the mean are the same and that the best estimation of the mean parameter is equal

to the algebraic average over the number of samples per window and the number of

sampling windows. We have proved that the estimation is tight and efficient, equal to

the Cramér-Rao bound, and the estimator is the minimum variance unbiased estimator.

We also show how confidence intervals can be constructed for the estimator using two

different methods. It was then shown how the channel scanning for beacon frames that

is common in IEEE 802.11 devices can be used to find the expected RSSI of the desired

signal and how our NAV sensing windows and channel scanning times can be combined

to estimate the SINR.

We have shown that sampling is feasible for a wide range of operating points and can

provide the sensing time suggested in the literature. An optimal and efficient maximum

likelihood estimator for the mean received interference and noise power has been used,

assuming that each observation is exponentially distributed. Relationships between the

achievable confidence interval width and the number of sensing windows were shown

for two different types of confidence intervals. The confidence intervals are (1) an accu-

rate interval based on the exponentially distributed observation assumption and (2) the

asymptotic Wald confidence interval. It was shown that these two types of confidence

intervals produce visually indistinguishable curves. We have found that a sensing win-

dow of 1 ms duration is achievable for a channel switch time of 150 µs and 5 contending

nodes, and 220 samples can be obtained during this time for a sample rate of 250 ksps,

while over 4000 samples can be obtained when the mean packet size is 32000 bytes and

the sample rate is 1 Msps. A relative error of less than 10% can be achieved in 10-100 ms,

or 10 to 100 sampling windows at 1 ms window duration. The results for the sensing

duration required roughly correspond to some of the previous literature and fall within

the range specified in IEEE 802.22. We have also shown how the number of interference

sources affects the confidence interval of the sensing activity.

235

The numerical results in Section 7.4.2 show what confidence intervals can be achieved

based on the number of sampling windows, sample rate, and expected window size com-

puted in Section 7.4.1.1. We show that the required sensing duration for less than 10%

error correlates with some previous recommendations using binary hypothesis testing

instead of estimation and that acceptable sensing performance can be achieved in 10 to

100 sampling windows of 1 ms each per channel. If there are 13 channels to sample, the

required sampling can be accomplished in a total of 130 ms to 1.3 s maximum. The sam-

pling is achieved without any disruption to data transmission or the normal operation

of the network and without affecting the user experience. The methods and recommen-

dations in this chapter are practical and sensible for the scenario of a DSA-WMN using

IEEE 802.11s in the presence of heterogeneous interference.

Chapter 8

Reporting of sensing statistics

and CA distribution algorithm

8.1 Introduction

This work has, thus far, accomplished several goals. It has considered optimisation

techniques that can be adopted by a gateway or fusion node to optimise the Channel

Assignment and parameters of a DSA-WMN. It has investigated the feasibility of using

the average SINR as a performance measurement on which to perform optimisation,

investigated when the spectrum sensing to obtain these measurements can be carried

out, and considered how this performance measure can be estimated and its accuracy

quantified. Once these measurements have been obtained and the statistics estimated

from those measurements, the results must be communicated to the gateway node for

performing parameter tuning and/or Channel Assignment (CA) optimisation algorithms.

The resultant CA must then be distributed to the nodes in the network. The complete

life-cycle of parameter optimisation would be the measurement, estimation, reporting,

computing, and distribution of the new parameters. This is illustrated in Figure 8.1. In

this chapter, we aim to fill in the gaps in steps 3 (reporting) and step 5 (distribution of

results).

In Section 8.2, we discuss existing signal quality and spectrum and resource management

measurement types in IEEE 802.11 and IEEE 802.15. Next, we suggest alterations to

the existing measurement reporting structures in IEEE 802.11 to enable the reporting

of the spectrum sensing results to the gateway node in Section 8.3. We also propose

new protocols by which the new optimised Channel Assignment can be distributed to

the WMN nodes in Section 8.4.

236

237

Figure 8.1: Complete sensing and CA lifecycle

8.2 Spectrum Resource Management and Measurement

Spectrum Resource Measurement (SRM) capabilities are included in both IEEE 802.15.4

[1] and IEEE 802.11 [66]. These capabilities enable the devices making use of them to

evaluate the radio link performance, select the best radio resources, and make efficient

238

Figure 8.2: Example of signal quality related IEs in IEEE 802.15.4 [1]

use of spectrum resources. In IEEE 802.15.4, devices obtain the link characteristics by

measuring locally. This information is reported to the Personal Area Network (PAN)

coordinator, which also distributes information to the devices. The structure of signal

quality-related Information Elements (IEs) in IEEE 802.15.4 is shown in Figure 8.2.

Some of the SRM metrics defined in IEEE 802.15.4s are the Received Channel Power

Indicator (RCPI), Received Signal to Noise Indicator (RSNI), Received Signal Strength

Indicator (RSSI), and the Noise Histogram. These metrics are also defined as part of

IEEE 802.11k Radio Resource Measurement (RRM) reports. The RCPI is a measure of

the received RF power in the selected channel for a received frame, measured over the

entire duration of the frame and is accurate to ±5 dB with a 95% confidence interval.

In contrast, RSSI is only measured during the preamble.

The Average Noise Power Indicator (ANPI) is a measure of the average noise plus

interference power on the measured channel for the measurement duration and can be

computed from the Idle Power Indicator (IPI). The RSNI is an indication of the signal-

to-noise-plus-interference ratio of a received frame. The IPI is an indication of the total

interference and noise power measured in the channel at the receiving antenna connector

while the station is idle. It is a part of the Noise Histogram measurement report field in

IEEE 802.11k. The IPI is measured in the specified channel when the NAV is equal to

0 and the station is not transmitting or receiving; that is when the virtual carrier sense

indicates the channel is idle. An IPI density is then computed from the measured IPI.

These IPI values can be used to compute the ANPI and from there, the RSNI for any

received frame. Our proposed spectrum sensing windows from Chapter 7 can be used to

measure the IPI. The Average RCPI can be used to indicate the received channel power

of frames from neighbour nodes, to indicate the power of the wanted signal, while the

RSNI measurement can be used to indicate the SINR of a recently measured frame.

239

8.3 Proposed alterations to IEEE 802.11 to report mea-

surements

Figure 8.3: Suggested addition to the measurement type definitions for measurement
reports in IEEE 802.11. RPI = Receive power indicator, LCI = Location configuration

information.

The IEEE 802.11k amendment to IEEE 802.11 introduces mechanisms for radio resource

management that are relevant to the present work. While this standard was not designed

for WMNs and its intention was for clients to discover the best Access Point (AP),

elements are still of interest to radio resource management in the DSA-WMN.

240

Figure 8.4: Suggested report frame field format for Out-of-channel SINR report mea-
surement type

The IEEE 802.11k extension introduces various measurement reporting types for use

in Spectrum Management or Radio Resource Management. The amendment defines

various request and reporting mechanisms and frame formats for the measurements.

The use case for IEEE 802.11k is single-hop Wi-Fi stations gathering information about

the radio environment before hand-off to identify better APs or cells for roaming and

hand-off. It is not intended for use in multi-hop WMNs. However, the frame formats

and information element structures could be extended for our use case. We propose

extensions to IEEE 802.11k for reporting the measurement statistics obtained from the

spectrum sensing (SS) intervals to the gateway node.

As we mentioned, the RSNI is an indication of the signal-to-noise-plus-interference ra-

tio of a received IEEE 802.11 frame. While we also wish to report SINR values, the

measurements we report are not for a specific received frame. The Average Noise Power

Indicator (ANPI) value may appear to be what is needed for our I+N estimation dis-

cussed in Section 7.3.1. However, the mentioned noise and interference measurements

are specified for the operating channel of a station and not for out-of-channel measure-

ments. We may use the format of the ANPI, but would need a new measurement type

and IE to report the SINR estimate for all the sensed channels on which the station is

not operating, averaged over several sensing windows, and the confidence interval width

of the estimate.

Therefore, we propose a new measurement type: the Out-of-channel SINR report mea-

surement report, which forms part of a new DSA measurement category. Associated

with this measurement type is a new measurement called the avgSINR, which is the

mean SINR estimate detailed in Section 7.3, along with the confidence interval, which

we call SINRCI. The measurement will be accompanied in the report by the channel

number corresponding to the measurement, the mesh node ID, and the location of the

mesh node, using the Location Configuration Information Report. This measurement

will be reported as an autonomous report, meaning that it can be triggered without

a request from another station. These measurements will be reported in a new Mea-

surement Report frame type, which we call Channel Assignment Statistics. The new

Measurement Report frame type also allows the use of other measurements instead of

avgSINR and SINRCI, if required. We illustrate the measurement report field format

241

for the new measurement report type in Figure 8.3 and the details of the field format

in Figure 8.4. The attribute “dot11RRMNonoperatingChannelMeasurementEnabled”,

which is already defined in IEEE 802.11k, must also be set to True for the measurements

made on channels other than the operating channel.

In addition to active and passive scanning, IEEE 802.15.4 defines a third type of scan

called the Energy Detect Scan [265]. In this type of scan, the MAC layer measures

the energy on each of the channels requested. This scan does not require waiting for

or receiving any frames, such as Beacon or Probe Response frames that are required

in active or passive scans. This is the kind of scan that should be used for the DSA

spectrum sensing activity.

8.4 Distribution of the Channel Assignment

8.4.1 Initial CA

A process for the initial network formation in a Wireless Mesh Network using TVWS,

which is compliant with a GLSD and regulation is presented by Maliwatu [266]. In this

method, one node is the first to gain access to the Internet and, therefore, to the GLSD.

This first node queries the GLSD and selects a channel on which to broadcast Beacon

frames, which other nodes can detect and use to join the network. The node does not

have complete network information and does not know what channels are allowed at the

location of the first-hop nodes. There is one flaw with this method of [266]: Upon receipt

of the Beacon frame, the one-hop neighbouring nodes tune to the channel specified in

the Beacon frame or the channel on which they detected the Beacon frame and use this

channel to make the request. However, this channel may not be available at the location

of the first-hop node, or there may be excessive interference on the channel so it cannot

be used. We suggest a change where the initial node makes a query for a region (instead

of a point) that would include the first-hop node’s transmission range.

The Protocol to Access White Spaces (PAWS) [267] enables the location to be specified

either by a single point, which is parameterised using an ellipse or by a region described

by a polygon. The ellipse could be used to describe a larger circular region around a

central node to include both its range and its one-hop neighbours’ ranges. An example

of this region that encompasses both the central node’s and the one-hop neighbour

nodes’ transmission ranges is illustrated in Figure 8.5. We now describe our suggested

procedure for the initial CA to the DSA-WMN. The first node to have access to the

GLSD is the gateway node. This node initiates the operation of the network.

242

Figure 8.5: Range of first GLSD query by GW node acting as a Master WSD. The
range must be twice the range of the individual node to include the maximum distance

to the next possible hop.

We provide two possible solutions to the initial channel assignment. The first is a more

complex complete solution. The second is a lower-complexity solution.

8.4.1.1 Option 1: Complete solution

1. The gateway (GW) node queries the GLSD and obtains a list of allowed channels

for itself and for a radius around itself. That radius includes the distance within

which frames from the GW can be received on BPSK by other nodes (the trans-

mission range) plus those nodes’ transmission range. If we assume omnidirectional

antennas and that both the GW node and other nodes transmit at the same power

level and have the same receive sensitivity, this radius is 2× its transmission radius

(2r in Figure 8.5). If there is no channel availability in this large area, the GW

instead queries the GLSD only for its own transmission area to see if there is an

available channel for the smaller area.

2. The GW node performs spectrum sensing on all the channels in the allowed channel

list received from the GLSD and picks a channel from that list. The chosen channel

must be allowed, available in the largest area, and have the lowest ANPI, e.g.,

channel 3. (the ANPI is used at this stage because the node is not receiving traffic

yet so it cannot find an RSNI or SINR).

243

3. The GW node advertises its BSSID, the allowed channel list, and the boundaries

of the allowed channel list area by broadcasting Beacon frames with the Dynamic

Frequency Selection (DFS) information element on the selected channel (channel

3). The GW node should also broadcast the channel map DFS element with the

allowed DSA channels on the Wi-Fi interface, in case first-hop nodes cannot receive

it on the DSA interface.

4. Meanwhile, other mesh nodes are passively scanning all channels in their reg-

ulatory domain tables for a Beacon frame from another node in that network.

Beacon frames from external devices are ignored. The network name can easily be

indicated in the Mesh ID Information Element or the manufacturer-defined “AP

Name” Information Element of the Beacon frame. The nodes are simultaneously

scanning on the Wi-Fi interface. Since this is passive scanning only, the nodes

can tune to all possible channels in the DSA band in receive mode, even if those

channels may not be allowed for use at that location and time.

5. If one of the nodes in passive scanning mode, e.g., node (2) senses the Beacon

frame on the specific channel (channel 3), it knows that that channel is allowed

at its location. Node (2) tunes to that channel and sends a request to join the

BSSID on that channel (channel 3). At this stage, only the GW node is advertising

Beacons, so the first-hop nodes cannot receive Beacon frames from any other nodes

in the network. If it does not receive any Beacon frame containing the allowed

channel list on the DSA interface, the node must scan on the Wi-Fi band for a

Beacon. The Wi-Fi connection may be constrained. In that case, the GW might

instead broadcast reduced Beacon frames that do not contain the allowed channel

list. These smaller Beacon frames might have a higher likelihood of being correctly

received by the first-hop nodes. If those first-hop nodes cannot detect a Beacon

frame with a DFS element on the DSA interface, they can join the network on the

Wi-Fi interface and request the DSA channel information over the Wi-Fi interface.

6. Node (2) and all first-hop nodes perform spectrum scanning on all the allowed

channels. If the avgSINR on the selected channel (3) is acceptable, node (2) will

remain operating on this channel. If the avgSINR is not acceptable, node (2)

sends an SRM report to the GW node with its scan results on the lowest possible

Modulation and Coding Scheme (MCS) as well as a request to switch to a new

channel. If the current channel is acceptable but not optimal, it does not need to

switch at this stage because other nodes in the area might also be receiving Beacon

frames on channel 3 and attempting to join the network on that channel.

7. Meanwhile, another node, e.g., node (3) also receives the GW node’s Beacon frames

and requests to join the network. Node (3) performs spectrum scanning to see if

244

channel 3 is acceptable. If the channel is acceptable but not optimal, the node

joins the network using channel 3 and sends its spectrum scan results to the GW

on the lowest MCS.

8. The GW evaluates the SRMs from first-hop nodes. If a switch is required, the GW

will advertise this to the first-hop nodes and wait for them to confirm the choice.

Once all first-hop nodes have joined the network, they start sending out Beacon

frames advertising the network on channel 3, on the one DSA interface.

9. Nodes (2) and (3) then each become a master WSD and request GLSD results for

their own transmit radius from the GW node, which is the original master WSD.

They perform SS, and each picks a channel on the second interface based on that

list and their SS results. They then broadcast Beacon frames on their chosen

channel on the second interface. For example, node (2) could tune to channel 5

and broadcast Beacon frames on interface 2, and node (3) could Beacon on channel

4.

10. A second-hop node, for example, node (4) detects the Beacon frame of node (2) on

channel 5 and requests to join the network on channel 5. The second-hop nodes

perform SS and assess their currently allocated channels. The second-hop nodes

then become master WSDs to the third-hop nodes and query the GLSD through

the first-hop nodes, who query through the GW node. If second-hop nodes receive

Beacon frames from more than one first-hop node, it selects the Beacon frame with

the highest RSNI.

11. This process continues without any of the already joined nodes changing channels,

where each node finds allowed channels not only for itself but for its whole transmit

radius around it until all nodes have joined the network. We note that WMNs

become unstable and slow as more hops are added. We expect no more than 5

hops to be feasible in terms of delay. This constraint also limits the time it takes

for nodes to converge on a CA and become stable.

12. The current Channel Assignment stays as is for about 12 hours until all nodes that

can join have joined the network. We now have established the required links that

must be maintained in the network for future computation.

13. There is now a path from every node to the GW node. All nodes send their

RRM report with SS results to the GW node, which will find the optimal Channel

Assignment and work out the expected improvement over the current CA. The

expected improvement must be traded off against the downtime from channel

switching and the potential risk of losing nodes.

245

14. Should it be required, the GW node will advertise a channel switch request with

the relevant channel mapping to which the mesh nodes should switch.

8.4.1.2 Option 2: Low-complexity solution

In this option, we reduce the computational and additional data load on the network

resulting from recording and communicating the avgSINR and SINRCI. In this option,

each node only keeps a list of “bad” channels. These are channels found to be highly

occupied or having a low SINR (below a certain threshold) and must be avoided. This

“bad channel list” is what is communicated to the GW node. The GW then selects a

CA from the list of allowed channels minus the bad channels. This “bad channel list”

also requires the implementation of a new information element. We define this suggested

new IE in Figure 8.6.

Figure 8.6: Suggested “Bad channel” IE

1. The GW node gets the list of allowed channels for itself and a radius equal to twice

its transmission range around it.

2. The GW node performs spectrum sensing within those allowed channels on both

its interfaces and picks a channel from that list for each interface that is allowed

and available in the biggest area, e.g., channel 3. The GW node finds its own list

of “bad channels” that should be avoided based on the SS results.

3. The GW node advertises its BSSID and allowed channel list (without the bad

channels) by broadcasting Beacon frames with this info on its chosen channel.

4. The next node out, e.g., node (2) performs passive scanning on all channels, looking

for a Beacon frame. When a Beacon frame from the GW node is identified on the

specific channel, node (2) tunes to that channel and sends a request to join the

BSSID on that channel.

5. Node (2) performs its SS to identify bad channels. Either node (2) sends the GW

node its scan results for the GW node to choose the optimal channel, or the node

finds it itself.

246

6. If the channel advertised by the GW node is in the bad channel list, it needs to

tune to the bad channel and request on the lowest possible MCS to switch to

another channel.

7. Node (2) shares its bad channel list with the GW. This list will use considerably

fewer bits to encode and cause less overhead over the network over a full map of

all channels and their avgSINR and SINRCI, which is used in option 1.

8. Meanwhile, the GW is gathering responses from all first-hop nodes. If the GW

approves switching the channel based on its own gathered results from other nodes,

it needs to send a notification to the other nodes to switch their channel.

9. If the GW node rejects the request to switch the channel from one of the first-hop

nodes, it may respond with another channel suggestion, or simply a notification

to switch to the next channel in the list. The response can be one of ACCEPT,

NEXT, or REJECT. This method of responding only with one of these three

options, rather than the actual channel number reduces the overhead associated

with this message.

8.4.2 The actual channel switch

8.4.2.1 Channel switch procedure

Once the GW has received all the SRM information from the mesh nodes, computed a

new CA, and determined that the expected improvement is great enough to warrant the

cost of switching channels, the following procedure should be followed for distributing

and executing the actual channel switch in the network.

1. The GW node advertises the potential new CA to all its connected first-hop nodes.

Those first-hop connected nodes advertise to all their connected nodes (the second-

hop nodes) and so on.

2. Once a node has received the CA, it must send an ACK if that assignment is

possible according to its own channel knowledge and to confirm that it has received

the CA correctly. The ACK should include a Secure Hashing Algorithm (SHA)

hash of the allocation to prove it was correctly received.

3. By this time, the GW has a full picture of the network and knows the MAC

addresses of all the mesh nodes. If there is any ACK not received from a mesh

node or an ACK that indicates an incorrectly received CA, the GW node must

resend the CA to the specific nodes that did not ACK correctly. The Wi-Fi

247

interface can be used to advertise the channel switch to nodes that do not respond

correctly to the channel switch announcement.

4. Once the GW node has determined that all nodes have acknowledged the channel

switch, it sends a CHANNEL SWITCH OK confirmation to all nodes.

5. All nodes perform the channel switch and, once completed, send confirmation to

their parent node, which sends it on to the GW through the previously established

routes.

6. Each parent node has a routing table with all the nodes it was connected to.

If it does not receive a CONFIRM from one of its next-hop nodes, the CHAN-

NEL SWITCH OK announcement must be resent. If the next-hope node still

does not respond, the parent node should temporarily switch back to the origi-

nal channel to query the lost node on the original channel. The channel switch

announcement shall be resent on the old channel to attempt to regain the lost

node.

7. If, after this, the node still cannot be recovered by its immediate parent node, a

probe must be sent on the Wi-Fi channel querying the state of the DSA interface.

8. If nodes cannot perform the channel switch after all these attempts but can be

reached on their original channel or the Wi-Fi channel, the network’s channel

switch must be reversed. The node must then send updated spectrum sensing

results to the GW node through its intermediate parent nodes so the CA can be

recalculated and a new CA distributed.

We have specified that the mesh nodes need to advertise the list of allowed channels

from the GLSD in Beacon frames. The existing IEEE 802.11 Independent Basic Service

Set (IBSS) or Mesh Basic Service Set (MBSS) Dynamic Frequency Selection (DFS)

element in Beacon frames contains a Channel Map field, as shown in Figure 8.7. DFS

functionality allows Wi-Fi nodes to use channels usually reserved for radar. This DFS

element can be repurposed for use in DSA channels. The available DSA channels can

be advertised using this element. The allowed channel list and the value of each channel

map are location specific. Hence, a location element must also be present.

8.4.2.2 Delay analysis for CA

In this section, we analyse the delay time of distributing a CA through a network, for

nodes to switch their channel, and return the acknowledgement after the channel switch.

We start by considering an even grid topology, where the distance between nodes in the

248

Figure 8.7: IBSS or MBSS DFS element contained in IEEE 802.11 Beacon frames
with channel map

(a) 16 nodes maximum degree (b) 49 nodes maximum degree

Figure 8.8: Maximum number of connections in a grid topology

horizontal and vertical directions is d. Let us assume that the maximum transmission

range of a node is
√
d2 + d2, the diagonal distance between two nodes. Then, by inspec-

tion of Figure 8.8, the maximum degree ∆ of any node in a grid network is 8. This is

regardless of the number of nodes in the network, as we see from Figure 8.8 (a) and (b).

It is only possible to make another set of connections to the further set of neighbour

nodes, shown by the dashed line in Figure 8.8 (b) if the transmit power is increased. If

the transmission parameters of the nodes remain unchanged, this connection can only

be made by adding a hop from another node to the further node. For example, in Fig-

ure 8.8 (b) the connection from node 24 to node 39 can be made by sending the packet

from node 24 to 32, which then retransmits the packet to node 39.

Each node can only make as many connections simultaneously as it has radios. All other

possible connections have to wait for a radio interface to become available. For example,

so far in this dissertation, we have considered nodes to have two different radios that

can form mesh connections. Then, the time that each of the connected nodes needs to

wait to access the channel is proportional to

max{∆}/R

249

where ∆ is the degree of the vertex in the graph representation and R is the number

of radio interfaces per node. The access delay can be found using the Markov Chain

analysis presented in Chapter 7 Section 7.2 up to Equation (7.12), where the number of

nodes n that are competing for access to the channel to communicate with one of the

radio interfaces, is given by n = max{∆}/R = 8/2 = 4.

The expected value of the delay is given by Equation (8.1).

E[Tdelay] =
3∑
j=0

[Ts(j) · Ps(j)] +
3∑
j=0

[Tc(j) · Pc(j)] (8.1)

We have defined Ts(j) in Equation (7.22), Ps in Equation (7.20), and Tc(j) in Equa-

tion (7.24). We now define Pc(j) and Ps(j). Pc(j), defined in Equation (8.2), is given by

the probability that any of the n nodes is transmitting a priority j frame and at least

one other node is transmitting a frame of any priority. Ps(j) Equation (8.3) is given by

the probability that any of the n nodes transmits a frame in priority j and none of the

other n− 1 nodes transmit a frame of any priority.

Pc(j) = ntj [1− (1− t)n−1] (8.2)

Ps(j) = ntj(1− t)n−1 (8.3)

The expected delay time for a single hop is now given by Equation (8.4).

E[Tdelay] = [Ts][Ps] + [Tc][Pc]

=

3∑
j=0

[Ts(j) · Ps(j)] +

3∑
j=0

[Tc(j) · Pc(j)]

=

3∑
j=0

{TRTS + 3 · SIFS + 4 · δ + TCTS + TMAC + TPHY + E[TDATA] + TACK

+AIFS[j]}{ntj(1− t)n−1}+

3∑
j=0

{TRTS + TCTS + 2 · SIFS +AIFS[j]

+ 2 · σ + δ}{ntj [1− (1− t)n−1]}
(8.4)

For a 1 km distance between nodes, the propagation delay is 3.336 µs, making the

expected one-hop delay calculated according to Equation (8.4) = 550.6 µs. For the

diagonal connections, the distance is approximately 1414 m. Hence, the propagation

delay is approximately 4.72 µs, and the expected one-hop access delay is 555.3 µs. The

250

average is 552.96 µs. To this channel access delay we add the channel switch time,

which, as a worst-case, we set to 300 µs per node. This delay calculated according to

Equation (8.4) using the Markov chain methods is only the channel access delay. Any

extra delay that may be introduced by the operating system of each node or communi-

cation between the user space, operating system, driver, and network card is excluded.

Hence, it might slightly underestimate the actual delay.

For this reason, we also consider the one-hop link delay times obtained from measure-

ments in Chapter 6 Section 6.3.3.1. The average of the recorded round-trip times is

224 ms or 112 ms one-way. The worst-case (longest) round-trip time is 4 s or 2 s one-

way. The measurements were taken for a point-to-point link, omitting the multiple

access delay. Hence the total time that each node waits for other nodes to access the

same channel and for its own transmission can be approximated as

Access delay = max{∆}/R× Tdelay(single link).

Again, the channel switch delay is added to this value.

(a) 16 nodes maximum degree (b) 49 nodes maximum degree

Figure 8.9: Maximum number of hops in a grid topology

By inspecting the grid topologies in Figure 8.9, we can define the maximum number of

hops as

2(
√
N − 1)

(the Manhattan distance [268, 269]), where N is the total number of nodes in the

network. Now, we can approximate the maximum end-to-end network delay as

End-to-end network delay = 2(
√
N − 1)×max{∆}/R× E[Tdelay]. (8.5)

251

For the Channel Assignment procedure outlined in Section 8.4.2.1, a channel switch mes-

sage must traverse once from the gateway to the nodes (where we are most concerned

with the longest path) and then an acknowledgement must traverse back from the fur-

thest node to the gateway node. There is the possibility of one more retry of sending

the channel switch and waiting for the acknowledgement. This means the worst-case

total network channel switch delay is approximately 4 times the maximum end-to-end

network delay, or

Total delay = 8(
√
N − 1)×max{∆}/R× (E[Tdelay] + Tchannel−switch). (8.6)

Figure 8.10: Convergence time of channel assignment for delay time given by Markov
chain analysis and average and worst-case measurements

The growth of the total time for the network to distribute, acknowledge, confirm, and

switch to the new channel is shown in Figure 8.10 for the Markov chain analytical model,

the average delay observed in the measurements in Chapter 6, and the maximum delay

observed in measurements, for a grid network. This plot is based on Equation (8.6). The

scripts used to find the analytical single-hop delay and total channel assignment delay are

attached in Appendix I. We see that for the worst-case one-hop delay of 2 s, the network

converges on the new Channel Assignment in under 10 minutes for a 100-node network

(576 s). The actual time for which the network is inoperable is less than this value.

If interference changes on a slow time scale, as we expect in the TVWS spectrum, SS

results can be sent infrequently. As we have mentioned in this dissertation, we envision

channel reassignments to be rare and can be done as irregularly as once or twice a day.

This is acceptable in the case of TVWS where interference is slowly varying. A loss

of connectivity for 10 minutes in a day, once a day, results in an availability of 99.31%

252

using [270]

Availability % =
MTBF

MTBF +MTTR

where MTBF is mean time between failures and MTTR is mean time to recover. If we

assume that the availability for the rest of the 24 hours is 99.99% and the network is

unavailable for 10 minutes, this results in a total availability of 99.29%.

This 10-minute period must be planned carefully to be at a time when the network usage

is lowest so as to cause the least inconvenience to users, such as 2 am or 3 am. Using

the average one-hop measured delay of 112 ms, which is still higher than one would

expect in practice, the total delay caused by distributing, acknowledging, confirming

and performing the channel switch for the whole network of 100 nodes is only 32.3 s.

This results in total availability of 99.963% or, if we again assume 99.99% availability

during the rest of the day, this results in 99.953% availability overall. The applications

of this kind of network include file sharing, accessing search engines, streaming videos,

chat services, and performing mobile updates (as seen in [5]). While mobile phone

gaming is also performed, this is rarely multi-player. Hence, none of the applications is

extremely time-critical and if the users are informed of this downtime before entering

into agreements to use it, it should be acceptable as usage can be planned around that

time. Still, this disruption should be scheduled to be during the network’s quietest

period. The total downtime for the same 100-node grid network using the Markov chain

analysis method is ≈ 0.061412... s, resulting in a 99.99993% availability.

This analysis is an estimate based on a grid topology. Other researchers have analysed

tree-based topologies with a uniform random distribution of nodes [271]. Waharte and

Boutaba [271] find that the grid topology has longer delay times on average and in the

worst case than the random topology. Thus, we conclude that our analysis represents a

conservative estimate and the worst case for a network and that a more realistic random

topology would have better delay times than our analysis has shown.

8.5 Some notes on implementation and limitations

In practice, once the required sensing per channel has been performed and the estimation

is done per node, each node communicates its results to the processing node (usually

the gateway node). The gateway node then uses the estimated SINR to find an optimal

or near-optimal Channel Assignment. The Channel Assignment optimisation step is

performed using the method detailed in Chapter 5. The Channel Assignment then

needs to be distributed to the nodes. The communication from the gateway node to the

distributed mesh nodes must be done using a messaging mechanism designed for WMNs.

253

An example is shared-state, a package provided as part of the LibreMesh repository

[272]. The nodes must switch their channels in a way that causes the least disruption

to network traffic. Thereafter, once all links have been restored, network operation can

resume. IEEE 802.11s specifies a channel-switch mechanism by which channel-switch

messages can be propagated within a mesh BSS before the switch is performed. The

method suggested by Roy et al. [114] uses the IEEE 802.11s channel switch mechanism

but tailors it to the case of a multi-channel multi-radio mesh network. This channel

switch mechanism decreases the delay associated with switching channels by removing

the waiting period in the IEEE 802.11s channel switch mechanism and instead requiring

acknowledgement.

In order to implement our proposed spectrum sensing timing, changes would need to be

made to the kernel driver code of the network card. The channel scan time is generally

a fixed value called the dwell time, but it would need to be changed to be a variable that

changes in response to the NAV. Reading from the NAV and updating the channel scan

dwell time might incur a small additional delay, reducing the time available for sensing.

This time would need to be determined experimentally to determine how serious the

impact would be.

8.6 Conclusion

In this chapter, we began to address some of the other practical issues around channel

assignment that were not yet solved in this work. We have shown what spectrum resource

management capabilities are available in the IEEE 802.15.4 and IEEE 802.11 protocols,

what can be reused, and what needs to be added. Signal quality-related IEs enable

IEEE 802.15.4-enabled devices to measure link characteristics locally and share them

with a network coordinator. The RSNI metric in both IEEE 802.15.4 and IEEE 802.11k

RRM is pertinent to our suggestion to use the average SINR in the CA objective function.

In the original specification, these measurements are taken on the operating channel for

a specific received frame and not on other DSA channels. The signal quality IEs include

an IE with the channel number of the measurement, which we suggest reusing. We show

that other measurement types are needed to report the overall SINR estimates instead

of simply per-frame individual measurements.

To this end, we have proposed the new Out-of-channel report measurement type that

forms part of a new DSA measurement used in the SRM of IEEE 802.11. We have

discussed how ANPI and RSNI can be adapted and used in the objective function to

find an optimal CA. We have shown how two new measurement types, avgSINR and

SINRCI, can be added to the measurement report to support the effort of reporting

254

the estimates made from the SS results to the GW for all allowed DSA channels, thus

improving the CA in the network.

We have specified procedures by which the network can be formed initially and given

its first CA and provided two options for CA distribution. One of these CA procedures

uses the complete Out-of-channel report and the other, which has a lower overhead and

computational load, only uses a bad channel list. A new information element has been

suggested for reporting this bad channel list. We have also presented procedures for dis-

tributing a CA throughout the network, executing the channel changes, and confirming

the channel changes. Our delay analysis shows that the network converges on its new CA

in under 10 minutes for a large network of 100 nodes. If scheduled when the network is

at its quietest, this will not cause unacceptable inconvenience to the end-users as it hap-

pens as infrequently as once a day. On the contrary, the end-user experience is improved

once the new CA is in use. We also suggest the use of Roy et al.’s adjustment [114] to

the IEEE 802.11s channel switch mechanism for propagating channel-switch messages

throughput the multi-radio multi-channel (MRMC) MBSS. To ground the ideas better

in reality, we also describe the changes that would need to be made at a chipset driver

level to realise our suggested spectrum sensing mechanisms.

These procedures and protocol changes are put forward as possibilities and suggestions

for how all the other ideas in this thesis can be brought together and executed in practice.

The SS results can be reported in this way, and the near-optimal CA can be distributed

using these procedures for a complete, improved channel parameter tuning framework

for an MRMC WMN. A detailed study of the costs, benefits, and performance of these

procedures is suggested as future work.

Chapter 9

Conclusion

In this dissertation, we set out to answer four research questions:

1. Which optimisation techniques (e.g., evolutionary, Monte Carlo, Linear Program-

ming or other) are best suited to finding optimal or near-optimal transmission

parameter settings in cognitive mesh networks, and what are the performance

trade-offs in terms of computational efficiency, running time, and solution quality?

2. Which measurements are suitable to indicate the expected performance of different

DSA channels?

3. How can such measurements be obtained?

4. How can such measurements be reported, and how can the resultant parameter

settings be distributed to mesh nodes?

The research questions address factors that influence the performance and user expe-

rience of a Wireless Mesh Network that uses Dynamic Spectrum Access channels for

forming the links between mesh nodes. This network is envisaged to be located in

rural or peri-urban areas to bring connectivity to unconnected, under-served, or unreli-

ably served users in a more cost-effective way. Improving Internet access or community

network infrastructure have various social and economic benefits. The need for good

connectivity is most clearly demonstrated by the fact that South Africans spend an av-

erage of 5% of their monthly income on data [7]. The smaller the income, the larger the

percentage of that income that goes to connectivity. The type of access most common in

rural areas and informal settlements is prepaid mobile data, bought in smaller bundles,

which, when added up, is significantly costly. Additionally, a large percentage of peo-

ple who live in informal settlements (peri-urban areas) in South Africa are unemployed

[273]. Phokeer [5] found that the median average income for a family of five in 2016

255

256

was approximately ZAR 1600 (USD 110), with each user spending ZAR 100-ZAR 200

on data costs. The South African cities report found that in Cape Town, where our

community network operates, 45.9% of people lived on less than ZAR 1227 per month

in 2019 [2]. A spend of R 200 per month per user on data is 16.3% of their monthly

income. This percentage is more than eight times the 2% of the average monthly income

that The Alliance for Affordable Internet quotes as the maximum for Internet access to

be considered meaningful and affordable.

If these users were to have more meaningful and affordable Internet access, they could

experience various socio-economic benefits. Education, banking, employment opportu-

nities, participation in government, and sharing content among peers are some of these

advantages. Community networks are also conducive to developing local communities

and fostering social cohesion and inclusion in community matters. For example, the

DSA mesh network iNethi [274] has made low-cost Internet available at only ZAR 10

per GB to a Rastafarian community in Ocean View settlement outside of Cape Town

[275]. One use case of the community network was the selling of pastries to members

of the community. This example highlights both the employment opportunities and

community cohesion benefits already enjoyed from this work.

For these benefits to be felt, various technical challenges related to implementing and

optimising the performance of a multi-radio multi-channel DSA-WMN must be solved.

The tuning of parameters is a key challenge, which we tackle in this dissertation. In

particular, the tuning of channel parameters, mostly the Channel Assignment (CA), is

addressed. An assignment of channels to links in the network must be found that meets

certain criteria. Firstly, Primary Users (PUs) of the DSA spectrum must be protected

from interference, and the network must comply with the regulatory requirements of

secondary opportunistic users of the licensed spectrum. PU protection is achieved in our

CA by all secondary nodes using a Geolocation Spectrum Database (GLSD) to obtain

the channels and other operating parameters allowed at their location. Secondly, there

may be other heterogeneous Secondary Users of the spectrum causing interference to

our network, which cannot be cooperated with or controlled. Also, PUs themselves may

cause interference with our opportunistic network through leaked emissions into channels

cleared for use by the GLSD or harmonics in those channels. Both of these sources of

interference vary by location and channel and can only be identified by spectrum sensing

or analysis at the location of each node. Thirdly, the secondary network must be formed

and tuned to meet the conflicting requirements of good connectivity but minimal internal

interference. Fourthly, channels must be assigned such that only as many channels are

assigned to a node as it has radio interfaces and so that as few as possible nodes contend

for the same channel. The research questions have each been formulated so that these

criteria for optimal Channel Assignment for a DSA-WMN can be met.

257

We have formulated the problem in Chapter 4 to address all these criteria in the following

way. Finding an assignment of channels to links such that both internal and external

interference is minimised and connectivity is maximised can be achieved by finding a

channel mapping that minimises the inverse of the average SINR over the whole network.

The constraints were formulated so that the number of assigned channels is no more than

the number of radios interfaces at every node and the assigned channels are a subset

of the allowed channels at every node. Constraints also included link budgets having

to allow the received signal for a link to be above the decoding threshold. This CA

problem has been proven to be NP-hard, and we have also shown that the problem is

not convex in Chapter 1 Section 1.3 by sketching the objective function for a scaled down

three-node three-link version of the problem. Hence, we have decided that metaheuristic

optimisation methods are appropriate to find a near-optimal CA.

9.1 Answers to the research questions

The first research question asks which metaheuristic optimisation technique is most

suitable in our scenario and provides the best trade-offs in computational complexity,

running time, and solution quality. To answer this question, we created a simulation

environment that models the problem scenario and can be used to test the optimisation

algorithms. This simulation environment is described in Chapter 4 Section 4.4, and

the code is attached in Appendix A. The simulation was built using Network Simulator

3 (ns3) in C++. We created a mesh-sim module with a configurable number of mesh

nodes, which can be arranged in a grid or a random topology, with a configurable number

of radio interfaces. The mesh nodes run the IEEE 802.11s MAC, and each radio interface

of each node can be assigned a different channel. We have implemented new PHY types

for IEEE 802.11 to be able to operate in the TVWS band. The simulation also includes

external interference sources in the television spectrum band. A single complete run of

the mesh-sim Run() function represents a spectrum sensing activity in a DSA-WMN

for a specific CA. In one run, a set of SINR samples is produced for traffic flow through

the network with external interference for that CA, and the output is the mean of all

these samples. One such mean SINR output represents a single solution in the solution

search space of Channel Assignments. The mesh-sim Run() function takes in a CA as

an argument, and each of the metaheuristic optimisation algorithms needs a starting CA

on which to iterate. We have proposed an algorithm that finds such an initial feasible

CA. This algorithm also grows as O(|L|).

The complexity of the main Run() function of the mesh-sim module is O(|L| log |L|),
where |L| is the number of links. The running time in practice proved to be exponential

258

in the number of nodes. There are some limitations to the simulation and what can be

modelled using this framework. However, we show that the most important phenomena

are modelled, and the simulation environment is sufficient for evaluating and comparing

the performance of metaheuristic optimisation algorithms for Channel Assignment in

a DSA-WMN. Most importantly, external interference that is concentrated in specific

channels and has a greater effect on the links that are closer to the interference source

than those located further away is modelled. The IEEE 802.11s MAC is modelled, and

the propagation loss models are frequency dependent and can be tweaked to include

other relevant phenomena, such as shadow-fading. Some of the limitations are that

obstructions have not been represented in the current version of the simulation, and

adjacent channel interference or cross-channel interference is not modelled.

Another prerequisite to answering the first research question was to adapt each of the

chosen metaheuristic algorithms to solve this specific CA problem. For Simulated An-

nealing (SA), the objective function is termed the “energy”, and the algorithm is de-

signed to minimise the energy. So, for SA, the objective function was adapted to be the

average over the nodes of the inverse of SINR. The acceptance or rejection of a candi-

date solution depends on the energy, a temperature parameter, and a constant originally

defined as Boltzmann’s constant. We tuned the temperature ranges and the value of this

constant so that the probability of acceptance of a candidate solution that does not im-

prove on the previous solution balances a longer convergence time and more exploration

of the search space with a shorter convergence time and more exploitation of a local

portion of the search space, which could result in converging on a local minimum. A

linear multiplicative temperature cooling function was found to be most effective com-

bined with a relatively small starting temperature. Neighbour generation is done by

shuffling the order of the links, shuffling the allowed channel list, and then performing

the feasible CA algorithm to obtain a new CA. This neighbour generation procedure has

a complexity of O(|L|), so the overall asymptotic complexity of SA is O(|L| log |L|).

For the Genetic Algorithm (GA), the new solution (genome) generation procedure used

is similar to that used with SA. It is repeated to obtain each individual in the population.

A population size of 20 was found to provide a good balance of diversity without excessive

computational load. The Linear Rank selection method was found to produce superior

results to the Roulette Wheel selection method. The single-point crossover method was

used with mutation rates of 0.5 and 0.25. The GA implementation is more complex than

the other implementations, with each function evaluation growing asO(logP+|L| log |L|)
and O(P (logP + |L| log |L|)) per generation (iteration). In Differential Evolution (DE),

mutation relies on a calculation that is a sum of one randomly chosen population member

and a weighted difference of two others. This mutant is mixed with another target

vector. We introduce an adjustment to the algorithm that ensures that the computed

259

channel values are transformed into feasible channel values by rounding off and shifting

the values back into the allowed range. We found that several crossover and weighting

factors were effective in producing good results. DE has an asymptotic complexity of

O(P (|L| log |L|)), although it requires an extra evaluation of the fitness function. The

Particle Swarm Optimisation (PSO) technique was also converted to a discrete form.

In PSO, the position of a particle in each dimension represents the channel assigned

to a link, with each link representing a dimension. We implemented the displacement

to operate on the channel index instead of the actual channel value for consistency.

Adaptive inertia was found to produce better results than any constant inertia value.

We also introduce a new method called bad replacement to replace particles with fitness

values consistently much worse than the global average for a certain number of iterations

(e.g., 10). The step improves solution quality and diversity at once. The worst-case

complexity of our PSO implementation is also O(P (|L| log |L|)).

Comparing the performance of the different metaheuristic algorithms in producing CAs,

we find that the DE algorithm consistently produces better solutions than the other

algorithms with lower energy and smaller standard deviations and can achieve those

results after very few iterations. DE achieved the minimum result of 0.4 (unitless) within

as few as 20 iterations, with a tiny standard deviation across the runs of ±(0.0006 to

0.0007) for all grid network sizes. The GA, with a mutation rate of 0.25, performs

almost as well as DE, but the performance deteriorates slightly as the number of nodes

in the network grows. The mean result of the GA runs is also 0.4, but the standard

deviation for the 49-node grid network is higher at ±0.04. Hence, we conclude that DE

scales better than GA. An honourable mention also goes to PSO, which performs well.

In particular, the sixth PSO variation, Fully Informed Particle Swarm (FIPS), achieves

the minimum of 0.4 with a standard deviation of ±0.0005 for the 9-node grid network.

The first variation of PSO outperforms FIPS for the random topology, achieving the

same solution as DE with a standard deviation of ±0.02 compared with DE’s standard

deviation of ±0.001 for random 49-node networks. SA’s results improve significantly

on random CA solutions, but the algorithm does not scale well or compare favourably

with the population-based algorithms. The Friedman statistical test shows that the

difference in the performance of the different algorithms is statistically significant. The

differentiation among the algorithms’ solutions is larger for random network topologies

than for the grid networks. This means that, for more realistic topologies, the choice of

the metaheuristic optimisation algorithm is more important than for a grid topology.

These algorithms depend on the SINR and, thus, on various propagation effects. Since

we have said that certain interference and signal propagation effects are best identified by

measurement, the metrics that indicate the expected performance of different CAs should

be based on measurements. The second research question asks which measurements can

260

provide a good indication of the performance users of the network can expect. This

question is addressed throughout the dissertation, in Chapter 2 Section 2.3, Section 2.4

and Section 2.5. Chapter 4 Section 4.3, Chapter 7, and, most thoroughly, in Chapter 6.

As discussed in Chapter 2, we know that, in theory, the capacity and thus the throughput

experienced by end-users are closely related to the SINR according to the Shannon-

Hartley theorem. In Chapter 4, we show that the average SINR experienced across all

the nodes in the network encompasses the dual requirements of maximised connectivity

and minimised interference in a WMN. Our measurements in Chapter 6 show that

SINR is an accurate predictor of performance in the real world, not only in theory,

despite numerous other influences that affect the throughput and delay experienced in

user space. The relationship is proven using Kendall’s rank correlation test on our

measurements.

We have shown that proper Channel Assignment should maximise the total SINR (or,

equivalently, the average SINR across the network) to ensure that connectivity is good

throughout the network while minimising interference. “Good” connectivity means that

the link margins are met, with the signal being well above the noise floor and noise

uncertainty on as many links in the network as possible to support diverse routing op-

tions. The total SINR incorporates the effects of radio propagation, antenna radiation

patterns, noise and interference differences across channels, and various channel widths.

To test the hypothesis that SINR measurements can predict performance differences

across channels, we conducted measurements in the real world in indoor, line-of-sight,

and forested areas. We obtained the signal strength, noise power, throughput, and

round-trip times for a single link on both 5 GHz Wi-Fi and down-converted Wi-Fi oper-

ating in TVWS channels. The interference could not be measured in isolation because

energy detection was used. Instead, the interference is included in both the signal power

measurement and the noise power measurement, thus decreasing the utility of our mea-

surements in accurately indicating the performance of different Channel Assignments.

This limit was imposed by the chipset and drivers at our disposal and the measurements

they take and expose. We have proposed a correction in Chapter 7 to remedy this issue

if it exists. Modern IEEE 802.11 chipsets measure the Received Signal to Noise Indica-

tor or RSNI, which is a measure of the SINR, so do not need the proposed correction.

The SNR measurements shown in Chapter 6 are thus different from the SINR we put

forward as the CA objective. However, the quantities are related, and deductions could

still be made from these measurements about SINR as a performance measure.

Indoor measurements in the Wi-Fi band showed that the transmit power has little

effect on the throughput at short distances and that the throughput increases with

the channel width, but the delay does not consistently decrease. In the TVWS band,

the connection at high transmit power values is not stable. Either the throughput

261

is low, or a connection cannot be maintained at all, owing to radio saturation. The

Kruskal-Wallis test shows a statistically significant difference in the average SNR over

the channels in both the TVWS and Wi-Fi bands. Outdoor measurements show a

statistically significant difference in the mean SNR for different Wi-Fi channels, which

is slightly less significant when the transmit power is high. The channel width has a

larger influence on the SNR at a high transmit power level than at a low transmit power

since the received signal is sufficient but the noise increases as the channels widen. We

also saw a statistically significant difference in the SNR results of the different TVWS

channels, with less of a difference in the 5 MHz channels than in wider channels. This

is likely owing to the effects of adjacent channel interference, which are greater in wider

channels that experience more leaked interference power. The SNR and throughput are

strongly correlated in the Wi-Fi channels, with the highest correlation seen in channel 44

and the lowest in channel 36. In the TVWS band, the correlation is strongest on channel

11 and weakest on channel 7, which has the highest interference, and the correlation is

often negative.

The negative correlation is likely because a higher measured signal power includes in-

terference. Higher interference affects both the signal and noise, affecting the SNR in

a non-linear way but causing a drop in throughput. These line-of-sight measurements

emphasize the importance of measuring interference accurately and separating it from

the signal power. In the Wi-Fi channels, the throughput increases as the transmit power

increases. However, in TVWS, there is a drop in throughput at the highest measured

transmit power of 20 dBm, most likely because of saturation effects at a short distance.

Measurements in a forested environment with an increasing number of trees obstructing

the path between the two nodes show how the TVWS band is significantly more robust

to obstructions than the Wi-Fi band. In Wi-Fi, both the SNR and the throughput drop

when the number of trees obstructing the line of sight is more than two. In contrast, the

TVWS link is able to maintain packet transmission with up to eight trees in the path.

Overall, the measurements show that the SINR is a useful measurement to predict the

performance of different channels if the interference is properly accounted for and a suffi-

cient number of samples is taken to smooth out driver problems and outliers. Higher-end

drivers with better filtering and measurement at the receiver front-end would provide

more accurate results. It would be preferable that IEEE 802.11-2016 is supported so

that the Received Signal to Noise Indicator (RSNI) can be recorded and used instead of

simply the quotient of RSSI and noise.

The third research question asks how the measurements found to be suitable in ques-

tion 2 can be obtained. This question is addressed in Chapter 7. In this chapter, we

introduce the idea of using the idle time imposed by the backoff and NAV periods in the

Enhanced Distributed Channel Access (EDCA) mechanism of IEEE 802.11 to switch

262

to a non-operating channel and perform the spectrum measurements required to obtain

SINR estimates. This timing of sensing ensures that the network operation is not inter-

rupted by spectrum sensing, so there is no detrimental effect on the end-user experience.

We use Markov chain analysis to find the expected idle time and, therefore, the dura-

tion of a sensing window. We derive a maximum a posteriori (MAP) estimator for the

total interference and noise power. This estimator uses the samples obtained during the

sensing windows, which we analyse using Markov chain methods. The MAP estimator

is shown to be equivalent to the maximum likelihood estimator, unbiased, and having

the minimum possible variance. The Cramér-Rao bound is met by the estimator. The

width of the estimated mean SINR’s confidence interval quantifies the performance of

the estimation activity. The confidence interval is related to a scaled Chi-squared distri-

bution. To reduce the complexity, this confidence interval can also be approximated by

the Wald confidence interval, which is based on the assumption of a normal distribution

of samples.

We then present a method for finding the SINR in cases where the IEEE 802.11-2016

RSNI Information Element (IE) is not available, and it must be calculated from the RSSI

and the interference-plus-noise power. We find that the sensing duration required for an

acceptable sensing error is similar to previous results in the literature, which were based

on binary hypothesis tests, but ours have tighter bounds between the time and required

accuracy. We find the maximum number of nodes participating in EDCA on one channel

that allows for feasible sensing for IEEE 802.11ac or IEEE 802.11ax MAC settings in

different operating conditions (e.g., data rates, average packet sizes, and propagation

delays). Sensing is infeasible if the channel switch time is very high (over 200 µs) or if

packets are small.

The fourth question asks how the measurements can be reported to the gateway node by

the mesh nodes, the resultant CA distributed throughout the network, and the indicated

changes made. This question is the subject of Chapter 8. We propose an addition to

the IEEE 802.11 standard for a new Out-of-channel Report DSA measurement. We also

suggest two measurements, the avgSINR and SINRCI, which can be added to the Spec-

trum Resource Measurement (SRM) types. Procedures for network formation, initial

Channel Assignment, and distributing and executing channel changes in the network are

also offered. We find that, even for the worst-case delay based on our measurements, the

entire Channel Assignment change across a 100-node large grid WMN can complete in

under 10 minutes and in 6.5 minutes for a 49-node grid network. The convergence time

grows as O(
√
V) where V is the number of nodes in the network. Using our CA proce-

dures, high network availability (over 99.5%) can be achieved. The CA time should be

scheduled when the network is least busy so that users experience little inconvenience.

263

Altogether, the answers to these four research questions form a solution to how the

operating parameters of a hybrid Wi-Fi–Dynamic Spectrum Access Wireless Mesh Net-

work can be tuned to improve its performance. We show how spectrum sensing can

be conducted by mesh nodes to obtain measurements from which SINR estimates can

be calculated for different CAs. These estimates can then be reported to a gateway

fusion node using the new avgSINR and SINRCI SRMs we suggest. The gateway node

(or nodes) calculates (or calculate) a near-optimal CA using the metaheuristics we have

analysed. In particular, the DE algorithm can be employed to obtain high-quality CA

solutions. The computed CA can be distributed to the mesh nodes using the procedures

we suggest in Chapter 8, and the nodes can then execute the changes with minimal

disruption to the network operation and minimal inconvenience to end-users. The result

would be improved network performance in terms of increased throughput and decreased

delay caused by improved overall SINR. All this improves the performance of a WMN

that uses DSA spectrum to lower costs, facilitating the extension of Internet connectivity

to rural and peri-urban areas or the formation of community networks.

9.2 Original contributions

The significant original contribution of this work lies in combining three concepts –

WMNs, GLSD-based DSA, and spectrum sensing – and providing a complete unified

framework for optimising the Channel Assignment in this unique scenario. While Chan-

nel Assignment in a Wireless Mesh Network has been addressed in the literature before,

the combination of these three concepts has not enjoyed much attention. In particular,

Channel Assignment in a WMN that uses GLSD-based DSA, where nodes in the net-

work may have different allowed channels and channels have varying performance across

the network’s footprint, had not sufficiently been answered in the prior literature. We

have taken into account the additional requirement that all nodes in the network must

comply with the allowed operating parameters specified by the GLSD at their locations.

Our work is the first to provide a complete solution covering all the required steps:

spectrum sensing (SS), decision-making based on the SS results, communication to the

fusion node, optimal CA computation, and distribution of the optimised CA.

We introduce spectrum sensing that quantifies the confidence interval of an estimated

statistic instead of spectrum sensing used merely to classify the environment as either

having a PU present or absent and then quantifying the error of the decision in terms

of the false alarm and detection probabilities. In our work, spectrum sensing is used

to obtain samples and estimate the mean SINR across the network, and channels are

chosen based on this measurement. This work is the first to use spectrum sensing in this

264

way, i.e., to perform SINR estimation instead of simply determining whether a PU or

interfering SU is present or absent, for finding a CA. The average SINR metric takes into

account how the propagation characteristics across different channels differ, especially

when obstructions are present, and quantifies both internal and external interference.

Our extensive measurement campaign has shown how SINR can capture these effects

and is a good predictor of the performance of different CAs. Previous work that has

done SNR or SINR estimation does not consider the scenario of using it for CA in a

WMN that can experience external and internal interference [195, 196]. Other work only

identifies Wi-Fi interference and not other types of interference [204].

We have presented near-optimal CA solutions using soft computing metaheuristic algo-

rithms for a WMN that can use any DSA band or an unlicensed band. The metaheuris-

tics iterate on an initial feasible CA, found by an algorithm we have introduced in this

work. We perform an extensive comparison of Simulated Annealing, Genetic Algorithm,

Differential Evolution, and Particle Swarm Optimisation in addressing the CA problem

in our DSA-WMN. To do this comparison, we have created a module in ns3 that models

a multi-radio multi-channel WMN that uses the DSA spectrum. TVWS was chosen

as a specific DSA band use case and was implemented in the simulation. This code is

a new contribution to ns3 that can aid further research in this area. Some aspects of

multi-radio multi-channel WMN simulations in ns3 were done by others several years

ago when many features we use were not yet available in ns3. Our implementation uses

newer modules that enable the simulation of interference among heterogeneous sources

to simulate external interference more effectively. We also introduce changes to ns3 that

enable the use of TVWS channels by Wi-Fi devices, i.e., down-converted Wi-Fi. We

analyse the computational complexity of our implementation.

Previous heuristic approaches to CA include a greedy algorithm with a complexity of

O(V 4C) or O(L2C) [127]. In that work, external SU interference is not taken into

account. Another greedy heuristic has a complexity of O(L2) [126]. In that work, only

one radio interface is used for carrying network traffic and forming mesh connections

and simulations only go up to 36 nodes. Our basic CA solution improves on the prior

work, having a lower worst-case complexity of only O(|L| log |L|). The most complex

of the solutions we have provided and analysed is the GA, which has a complexity of

O(GP (logP + |L| log |L|)) and growth of O(logP + |L| log |L|) per function evaluation.

This is more complex than our other solutions but is still an improvement on Chaudhry’s

[126] O(L2), the previous best solution in terms of complexity. Some prior works also

use PSO for related problems. None of these works considers different allowed channels

at different nodes, or channels having different characteristics at different locations, such

as caused by external interference or obstructions. These are the DSA aspects that are

265

novel in our work. Previous works also generally quantify interference per link in binary

terms – either present or absent. Where SINR is used, it is only a constraint.

The use of Markov chain analysis to study the expected NAV time in an IEEE 802.11s

WMN is another new contribution of our work. We execute this analysis to find the

amount of time that can be made available per node for spectrum sensing in different

channels, following our suggestion to employ this time for spectrum sensing. While

Markov chain methods for EDCA analysis have been studied before, using it for this

particular purpose has not. We introduce spectrum sensing that does not disrupt the

network functioning, which is different from most existing work. Prior solutions required

trade-offs between sensing time and transmission/reception time. Ours does not.

9.3 Limitations and suggestions for future work

One of the main limitations of this work is that the metaheuristic optimisation mainly

considers the tuning of the channel parameter of nodes and does not also consider the

tuning of channel bandwidth or transmit power. We have shown that the channel band-

width does affect the SINR measured in a channel. It would be important to extend

this work to analyse metaheuristics with the search space augmented to include different

channel bandwidths. The effect of changing channel width should also be included in the

simulation in future. Currently, ns3 does not model adjacent channel interference. This

is a good candidate for future work. There are many more metaheuristic optimisation

algorithms, which should also be investigated for CA in future work. Different propaga-

tion models, routing algorithms, and antenna radiation patterns were not studied. For

the purposes of this study, we believe that the variables accounted for were sufficient

to compare the performance of the different metaheuristic algorithms. Time did not

allow for a more thorough analysis of the effect of more variables. This is a limitation

of this research, which should be included in future studies. While we have based “per-

formance” on the cumulative (or average) SINR in the network, future work should also

consider fairness metrics. In this work, we assume that the routing algorithm addresses

the fairness aspect and ensures all communication routes and links are balanced but

fairness should also be investigated at the level of CA.

The measurement campaign could be extended in future to include different wireless

chipsets and drivers. In particular, using drivers that support the RSNI IE would be

valuable to measure SINR and interference more accurately. These measurements should

be paired with a separate spectrum analysis using a specialised spectrum analyser. The

spectrum analysis should be used to determine the accuracy of the spectrum sensing that

can be done using commercial off-the-shelf wireless NICs and determine the effect this

266

could have on the eventual CA based on the spectrum sensing results. Measurements

could also be performed on both higher-end expensive chipsets with custom drivers

and compared with less expensive chipsets and open-source drivers. We suspect the

chipset/driver combination used in our measurements introduced some error owing to

limitations of the hardware, firmware, and drivers. It would be enlightening to use more

accurate means to align the antennas in exactly the same way when measurements are

being repeated, to eliminate this variable that could affect the results. We were unable

to control for different weather conditions for the outdoor measurements. This may have

affected our measurements. Repeating the same measurements over a range of different

weather conditions would help to smooth out these effects.

On the formulation of the SINR estimation problem, we have based our estimation on

the assumption of Gaussian-distributed I and Q components of the received signal power,

resulting in an exponential power distribution. The accuracy of the estimation method

could be improved by taking into account the true – or more precise – distribution of both

IEEE 802.11af sources and TV sources, such as DVB-T2 transmitters, which might emit

leakage power into the TVWS channel that is sensed and for which estimation is done.

This more accurate model can take into account the modulation and coding scheme

of the different sources and better capture the time-varying aspects of the interfering

signals.

An assumption made in our formulation of the CA problem is that the links requiring

assignment are known upfront. These would be obtained from the routing algorithm.

However, more research into how exactly this list of links would be obtained from the

routing algorithm, and how the CA interacts with the routing algorithm, would provide

a more comprehensive solution. We have also not given consideration to the energy

costs of the solution or optimising the energy expenditure. While almost half of the

households in South Africa in informal settlements have access to electricity [273], im-

portant centres such as schools, libraries, and hospitals are more likely to have electricity

than homes. However, there may not always be electricity available at the main centres

where we expect nodes to be placed, owing to load shedding or unplanned outages. The

integration of solar or other independent power sources into the solution would be a

valuable addition.

9.4 Final words

In closing, our research fills gaps in the existing literature and makes significant contri-

butions to the field. While there are opportunities for extension and future work, the

contributions that we have made have furthered and advanced CA methods in WMNs

267

that use DSA with GLSDs and experience external interference. We have also con-

tributed to spectrum sensing in this scenario. Our solutions can help to provide more

reliable, less expensive, and more meaningful connectivity in rural and peri-urban areas.

Especially in South Africa, this work has the potential to benefit many people living in

rural areas and informal settlements on the outskirts of cities. This work can be used

to extend Internet access to a wider area, improve reliability, lower costs, form localised

community networks with better throughput, provide access to free locally-hosted ser-

vices, and, in turn, strengthen social cohesion. This solution can be relevant to many

countries in the global South. Our refinements to the parameter selection of a DSA-

WMN can increase its efficiency and reliability and enhance the end-user experience.

This work improves the performance of low-cost DSA-WMNs that use both Wi-Fi and

TVWS links, subsequently providing more opportunities for community network opera-

tors to connect the unconnected cost-effectively or meaningfully connect those without

affordable access. This work is a step towards greater social, economic, and political in-

clusion of a large and important class of South African (and the global South’s) society.

Appendix A

mesh-sim Network Simulator 3

module

1 /* -*- Mode:C++; c-file -style :"gnu"; indent -tabs -mode:nil; -*- */

2 #ifndef MESH_SIM_H

3 #define MESH_SIM_H

4

5 #include <sstream >

6 #include <fstream >

7 #include <vector >

8 #include <functional >

9 #include <algorithm >

10 #include <cstdlib >

11 #include <ctime >

12 #include <numeric >

13 #include <string >

14 #include <sstream >

15 #include <fstream >

16

17 #include "ns3/animation -interface.h"

18 #include "ns3/core -module.h"

19 #include "ns3/trace -helper.h"

20 #include "ns3/internet -module.h"

21 #include "ns3/network -module.h"

22 #include "ns3/applications -module.h"

23 #include "ns3/mesh -module.h"

24 #include "ns3/mobility -module.h"

25 #include "ns3/mesh -helper.h"

26 #include "ns3/yans -wifi -helper.h"

27 #include "ns3/wifi -module.h"

28 #include "ns3/wifi -phy.h"

29 #include "ns3/spectrum -wifi -helper.h"

30 #include "ns3/spectrum -helper.h"

268

269

31 #include "ns3/multi -model -spectrum -channel.h"

32 #include "ns3/propagation -loss -model.h"

33 #include "ns3/cost231 -propagation -loss -model.h"

34 #include "ns3/waveform -generator.h"

35 #include "ns3/waveform -generator -helper.h"

36 #include "ns3/non -communicating -net -device.h"

37 #include "ns3/olsr -helper.h"

38 #include "ns3/ipv4 -global -routing -helper.h"

39 #include "ns3/snr -tag.h"

40 #include "ns3/trace -helper.h"

41 #include "ns3/global.h"

42

43 // Global variables for use in callbacks.

44 double g_signalDbmAvg;

45 double g_noiseDbmAvg;

46 uint32_t g_samples;

47

48 void MonitorSniffRx (ns3::Ptr <const ns3::Packet > packet ,

49 uint16_t channelFreqMhz ,

50 ns3:: WifiTxVector txVector ,

51 ns3:: MpduInfo aMpdu ,

52 ns3:: SignalNoiseDbm signalNoise)

53

54 {

55 g_samples ++;

56 g_signalDbmAvg += ((signalNoise.signal - g_signalDbmAvg) / g_samples);

57 g_noiseDbmAvg += ((signalNoise.noise - g_noiseDbmAvg) / g_samples);

58 }

59

60 namespace ns3 {

61

62 template < typename T >

63 std::vector <std::pair <T,T> > make_unique_pairs(const std::vector <T>& set)

64 {

65 std::vector < std::pair <T,T> > result;

66 std::vector < std:: reference_wrapper < const T > > seq(set.begin(), set.

end());

67

68 std:: random_shuffle(std:: begin(seq), std::end(seq));

69

70 for (size_t i=0; i<seq.size() -1; i++) {

71 result.emplace_back(set[i], seq[i]);

72 }

73

74 return result;

75 }

76

77 // std:: unordered_map <int , double > channelGainMap = {

270

78 // {1, 10}, {2, 8}, {3, 6}, {4, 4}, {5, 2}

79 // };

80

81 Ptr <SpectrumModel > SpectrumModel546MHz;

82

83 class static_SpectrumModel546MHz_initializer

84 {

85 public:

86 static_SpectrumModel546MHz_initializer ()

87 {

88 BandInfo bandInfo;

89 bandInfo.fc = 546e6;

90 bandInfo.fl = 546e6 - 4e6;

91 bandInfo.fh = 546e6 + 4e6;

92 Bands bands;

93 bands.push_back (bandInfo);

94

95 SpectrumModel546MHz = Create <SpectrumModel > (bands);

96 }

97 } static_SpectrumModel546MHz_initializer_inst;

98

99

100

101 Ptr <SpectrumModel > SpectrumModel562MHz;

102

103 class static_SpectrumModel562MHz_initializer

104 {

105 public:

106 static_SpectrumModel562MHz_initializer ()

107 {

108 BandInfo bandInfo;

109 bandInfo.fc = 562e6;

110 bandInfo.fl = 562e6 - 5e6;

111 bandInfo.fh = 562e6 + 5e6;

112 Bands bands;

113 bands.push_back (bandInfo);

114

115 SpectrumModel562MHz = Create <SpectrumModel > (bands);

116 }

117 } static_SpectrumModel562MHz_initializer_inst;

118

119

120 class MeshSim

121 {

122 public:

123 /// Init test

124 MeshSim (std::vector <int > channels , uint numNodes);

125 /**

271

126 * Configure test from command line arguments

127 *

128 * \param argc command line argument count

129 * \param argv command line arguments

130 */

131 void Configure (int argc , char ** argv);

132 /**

133 * Run test

134 * \returns the test status

135 */

136 double Run (std::map <int , int >& linkChannelMap , std::vector <std::pair <

int , int >>& links);

137 /// Get current channel number and set to new channel

138 void GetSetChannelNumber (uint16_t newChannelNumber , uint8_t serverNode

, uint8_t clientNode);

139 private:

140 // std:: string filename;

141 // Ptr <OutputStreamWrapper > stream;

142 std:: unordered_map <int , double > channelThroughputMap;

143 std::vector <int > _channels;

144 double m_numNodes;

145 int m_xSize; ///< X size

146 int m_ySize; ///< Y size

147 double m_step; ///< step

148 bool m_randomTopology; ///< True/False for using a random disc

topology

149 double m_randomStart; ///< random start

150 double m_totalTime; ///< total time

151 double m_packetInterval; ///< packet interval

152 uint16_t m_packetSize; ///< packet size

153 uint32_t m_nIfaces; ///< number interfaces

154 bool m_chan; ///< channel

155 bool m_pcap; ///< PCAP

156 bool m_ascii; ///< ASCII

157 double rss;

158 double waveformPower;

159 double throughput;

160 uint64_t totalPacketsThrough;

161 std:: string m_stack; ///< stack

162 std:: string m_root; ///< root

163 double packetsInInterval =0;

164 double currentTotalPackets =0;

165 std:: string _sinrAvgFilename;

166 /// List of network nodes

167 NodeContainer nodes;

168 /// List of all mesh point devices

169 NodeContainer interfNode;

170 /// Interfering node

272

171 NetDeviceContainer meshDevices;

172 /// Addresses of interfaces:

173 Ipv4InterfaceContainer interfaces;

174 /// MeshHelper. Report is not static methods

175 MeshHelper mesh;

176 /// Channel number

177 uint16_t channelNumber;

178 ///The Yans wifi channel

179 YansWifiChannelHelper wifiChannel;

180 SpectrumWifiPhyHelper spectrumPhy;

181 ///Spectrum channel helper

182 Ptr <MultiModelSpectrumChannel > spectrumChannel;

183 Ptr <MultiModelSpectrumChannel > spectrumChannel2;

184 ///ApplicationContainer for throughput measurement

185 ApplicationContainer serverApps;

186 ApplicationContainer clientApps;

187 /// Helper for waveform generator

188 WaveformGeneratorHelper waveformGeneratorHelper;

189 /// container for waveform generator devices

190 NetDeviceContainer waveformGeneratorDevices;

191

192 /// Create nodes and setup their mobility

193 void CreateNodes ();

194 /// Install internet m_stack on nodes

195 void InstallInternetStack ();

196 /// Install applications

197 void InstallServerApplication ();

198 void InstallClientApplication (int serverNode , int clientNode);

199 /// Configure waveform generator for interfering node

200 void ConfigureWaveform ();

201 /// Calculate throughput

202 double CalculateThroughput (int channelNum , int node , std::

unordered_map <int , double > &throughputMap);

203 /// Print mesh devices diagnostics

204 void Report ();

205 };

206

207 }

208

209 #endif /* MESH_SIM_H */

1 /* -*- Mode:C++; c-file -style :"gnu"; indent -tabs -mode:nil; -*- */

2

3 #include "mesh -sim.h"

4 #include "ns3/netanim -module.h"

5 #include <unistd.h>

6 #include <math.h>

7

273

8 namespace ns3 {

9

10 MeshSim :: MeshSim (std::vector <int > channels , uint numNodes)

11 {

12 std:: unordered_map <int , double > channelThroughputMap = {};

13 _channels = channels;

14 std::vector <int >:: iterator it;

15 for (it = _channels.begin(); it != _channels.end(); ++it) {

16 channelThroughputMap [*it] = 0;

17 }

18 m_numNodes = double (numNodes);

19 m_xSize = m_ySize = sqrt (numNodes);

20 m_step = 500.0;

21 m_randomTopology = true;

22 m_randomStart = 0.1;

23 m_totalTime = 5.0;

24 m_packetInterval = 0.001;

25 m_packetSize = 1024;

26 m_nIfaces = 2;

27 m_chan = true;

28 m_pcap = false;

29 m_ascii = true;

30 rss = -50;

31 waveformPower = 0.2;

32 throughput = 0;

33 totalPacketsThrough = 0;

34 m_stack = "ns3:: Dot11sStack";

35 m_root = "ff:ff:ff:ff:ff:ff";

36 }

37

38 void

39 MeshSim :: CreateNodes ()

40 {

41 nodes.Create (m_numNodes);

42 interfNode.Create (2);

43 spectrumPhy = SpectrumWifiPhyHelper :: Default ();

44 spectrumChannel = CreateObject <MultiModelSpectrumChannel > ();

45 Ptr <FriisPropagationLossModel > lossModel = CreateObject <

FriisPropagationLossModel > ();

46 lossModel ->SetFrequency (0.546 e9); // channel 30

47 spectrumChannel ->AddPropagationLossModel (lossModel);

48

49 Ptr <ConstantSpeedPropagationDelayModel > delayModel =

50 CreateObject <ConstantSpeedPropagationDelayModel > ();

51 spectrumChannel ->SetPropagationDelayModel (delayModel);

52

53 // spectrumChannel2 = CreateObject <MultiModelSpectrumChannel > ();

274

54 Ptr <FriisPropagationLossModel > lossModel2 = CreateObject <

FriisPropagationLossModel > ();

55 lossModel2 ->SetFrequency (5.62e9); // channel 32

56 spectrumChannel ->AddPropagationLossModel (lossModel2);

57 // spectrumChannel2 ->AddPropagationLossModel (lossModel);

58 // spectrumChannel2 ->SetPropagationDelayModel (delayModel);

59 spectrumPhy.SetChannel (spectrumChannel);

60 spectrumPhy.SetErrorRateModel ("ns3:: NistErrorRateModel");

61 spectrumPhy.Set ("Frequency", UintegerValue (562));

62 spectrumPhy.Set ("ChannelWidth", UintegerValue (8));

63 spectrumPhy.Set ("TxPowerStart", DoubleValue (10));

64 spectrumPhy.Set ("TxPowerEnd", DoubleValue (10));

65 /*

66 * Create mesh helper and set stack installer to it

67 * Stack installer creates all needed protocols and install them to

68 * mesh point device

69 */

70 mesh = MeshHelper :: Default ();

71 mesh.SetStackInstaller (m_stack);

72 mesh.SetStandard (WIFI_PHY_STANDARD_80211ac);

73 mesh.SetSpreadInterfaceChannels (MeshHelper :: SPREAD_CHANNELS);

74 mesh.SetMacType ("RandomStart", TimeValue (Seconds (m_randomStart)));

75 // Set number of interfaces - default is single -interface mesh point

76 mesh.SetNumberOfInterfaces (m_nIfaces);

77 std::cout << "number of interfaces = " << m_nIfaces << std::endl;

78 // Install protocols and return container if MeshPointDevices

79 meshDevices = mesh.Install (spectrumPhy , nodes);

80

81 MobilityHelper mobility;

82 /* either randomly placed by poisson process , or in a a grid */

83 if (m_randomTopology)

84 {

85 mobility.SetPositionAllocator ("ns3:: RandomDiscPositionAllocator",

"X", StringValue ("350.0"),

86 "Y", StringValue ("350.0"), "Rho",

87 StringValue ("ns3::

UniformRandomVariable[Min=0|Max =350]"));

88 }

89 else

90 {

91 if (m_numNodes != 3)

92 {

93 std::cout << "number of nodes is not 3\n";

94 mobility.SetPositionAllocator (

95 "ns3:: GridPositionAllocator", "MinX", DoubleValue (0.0), "

MinY", DoubleValue (0.0) ,

96 "DeltaX", DoubleValue (m_step), "DeltaY", DoubleValue (

m_step), "GridWidth",

275

97 UintegerValue (m_xSize), "LayoutType", StringValue ("

RowFirst"));

98 }

99 else

100 {

101 std::cout << "there are 3 nodes\n";

102 Ptr <ListPositionAllocator > posAlloc = CreateObject <

ListPositionAllocator > ();

103 posAlloc ->Add (Vector (0.0, 0.0, 0.0));

104 posAlloc ->Add (Vector (0.0, m_step , 0.0));

105 posAlloc ->Add (Vector (m_step , m_step , 0.0));

106 mobility.SetPositionAllocator (posAlloc);

107 }

108 }

109 mobility.SetMobilityModel ("ns3:: ConstantPositionMobilityModel");

110 mobility.Install (nodes);

111

112 MobilityHelper interfMobility;

113 Ptr <ListPositionAllocator > interfPosAlloc = CreateObject <

ListPositionAllocator > ();

114 interfPosAlloc ->Add (Vector (m_step , m_step , 0.0));

115 interfPosAlloc ->Add (Vector (2 * m_step , 2 * m_step , 0.0));

116 interfMobility.SetPositionAllocator (interfPosAlloc);

117 interfMobility.SetMobilityModel ("ns3:: ConstantPositionMobilityModel");

118 interfMobility.Install (interfNode);

119 }

120 void

121 MeshSim :: InstallInternetStack ()

122 {

123 OlsrHelper olsr;

124 InternetStackHelper internetStack;

125 internetStack.SetRoutingHelper (olsr);

126

127 Ipv4GlobalRoutingHelper :: PopulateRoutingTables ();

128

129 internetStack.Install (nodes);

130 Ipv4AddressHelper address;

131 address.SetBase ("10.1.1.0", "255.255.255.0");

132 interfaces = address.Assign (meshDevices);

133 }

134 void

135 MeshSim :: InstallServerApplication ()

136 {

137 UdpServerHelper echoServer (9);

138 serverApps = echoServer.Install (nodes);

139

140 // NS_LOG_UNCOND (" number of server apps in container = " << int(

serverApps.GetN()));

276

141

142 serverApps.Start (Seconds (0.0));

143 serverApps.Stop (Seconds (m_totalTime));

144 }

145 void

146 MeshSim :: InstallClientApplication (int serverNode , int clientNode)

147 {

148 UdpClientHelper echoClient (interfaces.GetAddress (serverNode), 9);

149 echoClient.SetAttribute ("MaxPackets",

150 UintegerValue ((uint32_t) (m_totalTime * (1 /

m_packetInterval))));

151 echoClient.SetAttribute ("Interval", TimeValue (Seconds (

m_packetInterval)));

152 echoClient.SetAttribute ("PacketSize", UintegerValue (m_packetSize));

153 clientApps.Add (echoClient.Install (nodes.Get (clientNode)));

154

155 clientApps.Start (Seconds (0.0));

156 clientApps.Stop (Seconds (m_totalTime));

157 // std::cout << "client application installed for server " << int(

serverNode) << std::endl;

158 }

159 void

160 MeshSim :: ConfigureWaveform ()

161 {

162 Ptr <SpectrumValue > wgPsd = Create <SpectrumValue > (SpectrumModel546MHz);

163 *wgPsd = waveformPower / 8e6;

164 waveformGeneratorHelper.SetChannel (spectrumChannel);

165 waveformGeneratorHelper.SetTxPowerSpectralDensity (wgPsd);

166 waveformGeneratorHelper.SetPhyAttribute ("Period", TimeValue (Seconds

(0.0007)));

167 waveformGeneratorHelper.SetPhyAttribute ("DutyCycle", DoubleValue (1));

168 waveformGeneratorDevices = waveformGeneratorHelper.Install (interfNode.

Get(0));

169

170 Ptr <SpectrumValue > wgPsd2 = Create <SpectrumValue > (SpectrumModel562MHz)

;

171 *wgPsd2 = waveformPower / 8e6;

172 waveformGeneratorHelper.SetChannel (spectrumChannel);

173 waveformGeneratorHelper.SetTxPowerSpectralDensity (wgPsd2);

174 waveformGeneratorHelper.SetPhyAttribute ("Period", TimeValue (Seconds

(0.0007)));

175 waveformGeneratorHelper.SetPhyAttribute ("DutyCycle", DoubleValue (1));

176 waveformGeneratorDevices = waveformGeneratorHelper.Install (interfNode.

Get(1));

177

178 NS_LOG_UNCOND("configuring waveform\n");

179 }

180 void

277

181 MeshSim :: GetSetChannelNumber (uint16_t newChannelNumber , uint8_t

serverNode , uint8_t clientNode)

182 {

183 // Get specific server node

184 Ptr <NetDevice > dev = meshDevices.Get (serverNode);

185 Ptr <MeshPointDevice > mp = DynamicCast <MeshPointDevice > (dev);

186 NS_ASSERT (mp != 0);

187 // loop over all interfaces

188 std::vector <Ptr <NetDevice >> meshInterfaces = mp ->GetInterfaces ();

189

190 Ptr <NetDevice > interface = meshInterfaces [0];

191

192 Ptr <WifiNetDevice > ifdevice = DynamicCast <WifiNetDevice > (interface);

193 // ifdevice ->GetPhy ()->GetRxAntenna;

194 Ptr <MeshWifiInterfaceMac > ifmac = DynamicCast <MeshWifiInterfaceMac > (

ifdevice ->GetMac ());

195 NS_ASSERT (ifmac != 0);

196 ifmac ->SwitchFrequencyChannel (newChannelNumber);

197 // NS_LOG_UNCOND ("New channel: " << ifmac ->GetFrequencyChannel ());

198

199 dev = meshDevices.Get (clientNode);

200 mp = DynamicCast <MeshPointDevice > (dev);

201 NS_ASSERT (mp != 0);

202 // loop over all interfaces

203 meshInterfaces = mp->GetInterfaces ();

204

205 interface = meshInterfaces [1];

206 ifdevice = DynamicCast <WifiNetDevice > (interface);

207 ifmac = DynamicCast <MeshWifiInterfaceMac > (ifdevice ->GetMac ());

208 NS_ASSERT (ifmac != 0);

209 ifmac ->SwitchFrequencyChannel (newChannelNumber);

210 }

211 double

212 MeshSim :: CalculateThroughput (int channelNum , int node ,

213 std:: unordered_map <int , double > &

throughputMap)

214 {

215 currentTotalPackets = 0;

216 int totalPacketsPerNode = DynamicCast <UdpServer > (serverApps.Get (node)

)->GetReceived ();

217 currentTotalPackets += totalPacketsPerNode;

218 NS_LOG_UNCOND("currentTotalPackets for node " << int(node) << " = " <<

totalPacketsPerNode);

219

220 packetsInInterval = currentTotalPackets;

221 NS_LOG_UNCOND("packets in the interval " << packetsInInterval);

222 throughput = packetsInInterval * m_packetSize * 8 / (m_totalTime *

1000000.0); //Mbit/s

278

223 NS_LOG_UNCOND ("\n throughput: " << throughput << "\n");

224 channelThroughputMap[channelNum] = throughput;

225

226 // Config :: ConnectWithoutContext ("/ NodeList /" + std:: to_string(node) +

"/ DeviceList /*/ Phy/MonitorSnifferRx", MakeCallback (& MonitorSniffRx))

;

227

228 return throughput;

229 }

230 double

231 MeshSim ::Run (std::map <int , int > &linkChannelMap , std::vector <std::pair <

int , int >> &links)

232 {

233 g_signalDbmAvg = 0;

234 g_noiseDbmAvg = 0;

235 g_samples = 0;

236 // sinr_samples = 0;

237 // sinr_interference_helper = 0.0;

238 // noise_interference = 0.0;

239 // noise_interference_samples = 0;

240

241 PacketMetadata :: Enable ();

242 CreateNodes ();

243 ConfigureWaveform ();

244 InstallInternetStack ();

245 InstallServerApplication ();

246

247 int serverNode;

248 int clientNode;

249 uint8_t channel = 21;

250

251 Simulator :: Schedule (Seconds (0), &WaveformGenerator ::Start ,

252 waveformGeneratorDevices.Get (0) ->GetObject <NonCommunicatingNetDevice

>() ->GetPhy ()->GetObject <WaveformGenerator >());

253 Simulator :: Schedule (Seconds (0), &WaveformGenerator ::Start ,

254 waveformGeneratorDevices.Get (1) ->GetObject <NonCommunicatingNetDevice

>() ->GetPhy ()->GetObject <WaveformGenerator >());

255

256 std::vector <std::pair <int , int >>:: iterator linkIter;

257 int linkIndex = 0;

258 for (linkIter = links.begin (); linkIter != links.end (); ++ linkIter)

259 {

260 std::cout << linkIter ->first << "=> " << linkIter ->second << ’\n’;

261 channel = linkChannelMap[linkIndex];

262 std::cout << "channel = " << std:: to_string (channel) << std::endl;

263 if (linkIter ->first != linkIter ->second)

264 {

265 serverNode = linkIter ->first;

279

266 clientNode = linkIter ->second;

267 GetSetChannelNumber (channel , serverNode , clientNode);

268 InstallClientApplication (serverNode , clientNode);

269 CalculateThroughput (channel , serverNode , channelThroughputMap)

;

270 }

271 linkIndex ++;

272 }

273

274 Simulator ::Stop (Seconds (m_totalTime));

275

276 Config :: ConnectWithoutContext ("/NodeList /*/ DeviceList /*/ Phy/

MonitorSnifferRx",

277 MakeCallback (& MonitorSniffRx));

278

279 Simulator ::Run ();

280 double g_signalNoiseDbm = g_signalDbmAvg - g_noiseDbmAvg;

281 double snr = sinr_interference_helper;

282 std::cout << "g_signalNoiseDbm from callback: " << g_signalNoiseDbm <<

std::endl;

283

284 NS_LOG_UNCOND("channel , throughput \n");

285 double current_max = 0.0;

286 unsigned int max_channel = 0;

287

288 std::vector <int >:: iterator it;

289 for (it = _channels.begin(); it != _channels.end(); ++it) {

290 NS_LOG_UNCOND (*it << " , " << channelThroughputMap [*it]);

291 if (channelThroughputMap [*it] > current_max) {

292 current_max = channelThroughputMap [*it];

293 max_channel = *it;

294 }

295 }

296 Simulator :: Destroy ();

297 return snr;

298 }

299

300 //

301 } // namespace ns3

Appendix B

Initial Channel Assignment

algorithm implementation

1 /* -*- Mode:C++; c-file -style :"gnu"; indent -tabs -mode:nil; -*- */

2

3 #include "ns3/mesh -sim.h"

4

5 using namespace ns3;

6

7

8 std::map <int , int > mapLinkChannel(uint numNodes , uint numInterfaces , std

::vector <std::pair <int ,int >> links , std::vector <int > channels) {

9 std::map <int , int > solution;

10 int channelIndex = 0;

11 uint numLinks = links.size();

12 int channel;

13 std::cout << "number of links: = " << numLinks << "\n";

14 std::map <int ,int > numChannelsAssigned;

15 std::map < int , std::vector <int > > channelsAssigned;

16 for (uint n=0; n<numNodes; n++) {

17 numChannelsAssigned[n] = 0;

18 }

19

20 int maxChannel = channels.size() -1;

21

22 for (uint n=0; n<numLinks; n++) {

23 std::cout << "n=" << n << "\n";

24 // std::cout << "number of channels assigned to node " << links[n].

first << " is " << channelsAssigned[links[n]. first].size() << "\n";

25 // std::cout << "number of channels assigned to node " << links[n].

second << " is " << channelsAssigned[links[n]. second].size() << "\n";

26 if ((channelsAssigned[links[n].first].size() < numInterfaces) &&

(channelsAssigned[links[n]. second].size() < numInterfaces)) {

280

281

27 channel = channels[channelIndex];

28 std:: cout << "selected channel is " << channel << "\n";

29 channelsAssigned[links[n]. first]. push_back ({ channel });

30 channelsAssigned[links[n]. second]. push_back ({ channel });

31 // std::cout << "number of channels assigned to node " <<

links[n]. first << " is " << channelsAssigned[links[n]. first].size() <<

"\n";

32 // std::cout << "number of channels assigned to node " <<

links[n]. second << " is " << channelsAssigned[links[n]. second].size()

<< "\n";

33 // solution.insert ({ n, channel });

34 }

35 else if ((channelsAssigned[links[n].first].size() ==

numInterfaces) && (channelsAssigned[links[n]. second].size() <

numInterfaces)) {

36 std::vector <int > new_vec;

37 std::sort(channelsAssigned[links[n]. first]. begin(),

channelsAssigned[links[n]. first].end());

38 std::sort(channelsAssigned[links[n]. second]. begin(),

channelsAssigned[links[n]. second].end());

39 std:: set_intersection(channelsAssigned[links[n]. first]. begin

(), channelsAssigned[links[n].first].end(),

40 channelsAssigned[links[n]. second]. begin

(), channelsAssigned[links[n]. second].end(),

41 std:: back_inserter(new_vec));

42 if (new_vec.size()!=0){

43 channel = new_vec [0];

44 }

45 else{

46 channel = channelsAssigned[links[n]. first][rand()%2];

47 channelsAssigned[links[n]. second]. push_back(channel);

48 }

49 // std:: cout << "selected channel is " << channel << "\n";

50 // std::cout << "number of channels assigned to node " <<

links[n]. first << " is " << channelsAssigned[links[n]. first].size() <<

"\n";

51 // std::cout << "number of channels assigned to node " <<

links[n]. second << " is " << channelsAssigned[links[n]. second].size()

<< "\n";

52 // solution.insert ({ n, channel });

53 }

54 else if ((channelsAssigned[links[n].first].size() < numInterfaces

) && (channelsAssigned[links[n]. second].size() == numInterfaces)) {

55 std::vector <int > new_vec;

56 std::sort(channelsAssigned[links[n]. first]. begin(),

channelsAssigned[links[n]. first].end());

57 std::sort(channelsAssigned[links[n]. second]. begin(),

channelsAssigned[links[n]. second].end());

282

58 std:: set_intersection(channelsAssigned[links[n]. first]. begin

(), channelsAssigned[links[n].first].end(),

59 channelsAssigned[links[n]. second]. begin

(), channelsAssigned[links[n]. second].end(),

60 std:: back_inserter(new_vec));

61 if (new_vec.size()!=0){

62 channel = new_vec [0];

63 }

64 else{

65 channel = channelsAssigned[links[n]. second][rand()%2];

66 channelsAssigned[links[n]. first]. push_back(channel);

67 }

68 // std:: cout << "selected channel is " << channel << "\n";

69 // std::cout << "number of channels assigned to node " <<

links[n]. first << " is " << channelsAssigned[links[n]. first].size() <<

"\n";

70 // std::cout << "number of channels assigned to node " <<

links[n]. second << " is " << channelsAssigned[links[n]. second].size()

<< "\n";

71 // solution.insert ({ n, channel });

72 }

73 else {

74 // std::cerr << "Both interfaces of both nodes already

assigned channels\n";

75 std::vector <int > new_vec;

76 std::sort(channelsAssigned[links[n]. first]. begin(),

channelsAssigned[links[n]. first].end());

77 std::sort(channelsAssigned[links[n]. second]. begin(),

channelsAssigned[links[n]. second].end());

78 std:: set_intersection(channelsAssigned[links[n]. first]. begin

(), channelsAssigned[links[n].first].end(),

79 channelsAssigned[links[n]. second]. begin

(), channelsAssigned[links[n]. second].end(),

80 std:: back_inserter(new_vec));

81 if (new_vec.size()!=0){

82 channel = new_vec [0];

83 // std:: cout << "selected channel is " << channel << "\n";

84 // solution.insert ({ n, channel });

85 }

86 else {

87 std::cerr << "There is no channel in common for nodes " <<

links[n]. first << " and " << links[n]. second << "\n";

88 continue;

89 }

90 }

91 solution.insert ({ n, channel });

92

93 if (channelIndex < maxChannel) {

283

94 channelIndex ++;

95 }

96 else {

97 channelIndex =0;

98 }

99 }

100 std::cout << "channels assigned: ";

101 for (uint counter =0; counter < numNodes; counter ++) {

102 std::cout << "node: " << counter << ", channels: " <<

channelsAssigned[counter][0] << ", " << channelsAssigned[counter][1]

<< "\n";

103 }

104 return solution;

105 }

106

107 std::map <int , int > generateNewSolution(int numLinks , int numChannels , std

::map <int , int > solutionMap) {

108 // choose one link , assign a new channel to it

109 int link = rand() % numLinks;

110 int newChannel = rand() % numChannels;

111 solutionMap[link] = newChannel;

112 return solutionMap;

113 }

114

115 template < typename T >

116 std::vector <std::pair <T,T> > make_all_pairs(const std::vector <T>& set)

117 {

118 std::vector < std::pair <T,T> > result;

119 std::vector < std:: reference_wrapper < const T > > seq(set.begin(), set.

end());

120

121 for (size_t i=0; i<seq.size(); i++) {

122 for (uint k=i+1; k<seq.size(); k++) {

123 result.emplace_back(i, k);

124 }

125 }

126

127 return result;

128 }

129

130

131 int

132 main (int argc , char *argv [])

133 {

134 bool verbose = true;

135

136 CommandLine cmd (__FILE__);

137 cmd.AddValue ("verbose", "Tell application to log if true", verbose);

284

138 cmd.Parse (argc ,argv);

139

140 std::map <int , int > linkChannelMap;

141

142 // srand(time(NULL));

143

144 uint16_t m_xSize = 2;

145 uint16_t m_ySize = 2;

146 uint16_t numNodes = m_xSize * m_ySize;

147

148 // std::vector <int > channels = {36, 38, 40, 42, 44, 46, 48, 50, 52, 54,

56};

149 std::vector <int > channels = {21, 22, 23, 24, 25, 26, 27, 28, 29, 30,

31, 32, 33};

150 // std::iota(channels.begin (), channels.end(), 1);

151

152 // std:: random_shuffle(std::begin(channels), std::end(channels));

153

154 std::vector <int > nodeNums (numNodes);

155 std::iota(nodeNums.begin(), nodeNums.end(), 0);

156

157 std::vector <std::pair <int , int >> links = make_all_pairs(nodeNums);

158 // std:: random_shuffle(std::begin(links), std::end(links));

159

160 std::cout << "links

: \n";

161 std::vector <std::pair <int , int >>:: iterator iter;

162 for(iter=links.begin(); iter!= links.end(); ++iter){

163 std::cout << iter ->first << " => " << iter ->second << ’\n’;

164 }

165

166 linkChannelMap = mapLinkChannel(numNodes , 2, links , channels);

167

168 MeshSim t(channels , numNodes);

169 double snr = t.Run (linkChannelMap , links);

170 std::cout << "snr = " << snr << std::endl;

171

172 return 0;

173

174 }

Appendix C

Class definition and

implementation of Simulated

Annealing for CA

1 /* -*- Mode:C++; c-file -style :"gnu"; indent -tabs -mode:nil; -*- */

2 #ifndef SIMULATED_ANNEALING_H

3 #define SIMULATED_ANNEALING_H

4

5 #include <iostream > // needed for basic IO

6 #include <cmath > // needed for chance calculation

7 #include <assert.h> // will use assert to check certain values

8 #include <vector >

9 #include <random >

10 #include <chrono >

11 #include <map >

12 #include <string >

13 #include <fstream >

14 #include <algorithm >

15

16 #include "ns3/output -stream -wrapper.h"

17 #include "ns3/trace -helper.h"

18

19 namespace ns3 {

20

21 class SimulatedAnnealing

22 {

23 public:

24 SimulatedAnnealing(uint maxIterations , double Ti , std::vector <std::

pair <int , int >> links , uint numNodes , uint numInterfaces , std::vector <

int > channels , std::map <int , int > startSolution , uint32_t Seed , std::

string filename);

285

286

25 void generateNewSolution ();

26 void setCurrentTemp ();

27 void Acceptance ();

28 void calcSolutionEnergy ();

29 double getTemp ();

30 void Initialize ();

31 void Run();

32 double _initTemp;

33 unsigned int solnIter;

34 //std::vector <std::vector <int > > _solnVec;

35 std:: default_random_engine generator;

36 std::map <int , int >* getCurrentSolution ();

37 std::vector <double > getEnergyVec ();

38 std::vector <double > getSolnEnergyVec ();

39 void initializeEnergyVec ();

40 unsigned int _algIter;

41 int currentBest =0;

42 double avgdE;

43 // std:: default_random_engine gen;

44 // std:: uniform_int_distribution <int > dis {};

45

46 private:

47 uint _maxIterations;

48 int _numLinks;

49 int _numChannels;

50 uint _numNodes;

51 uint _numInterfaces;

52 std::vector <int > _channels;

53 std::vector <std::pair <int , int >> _links;

54 std::map <int , int > _currentSolutionMap;

55 std:: string _sinrAvgFilename;

56 // std:: ofstream _solutionFile;

57 std::set <int > _currentAssignedChannels;

58 std::vector < double > _solnEnergyVec;

59 std::vector <std::map <int , int >> _solnVec;

60 std::vector <double > _energyVec;

61 std::vector <double >:: iterator _energyVecPtr;

62 std:: ofstream _solutionFile;

63 double _currentTemp;

64 double _currentEnergy;

65 double _newEnergy;

66 int32_t _seed;

67 std:: default_random_engine gen;

68 std:: uniform_int_distribution <int > dis;

69 };

70

71 }

72

287

73 #endif /* SIMULATED_ANNEALING_H */

1 /* -*- Mode:C++; c-file -style :"gnu"; indent -tabs -mode:nil; -*- */

2

3 #include "simulated -annealing.h"

4 #include "ns3/mesh -sim.h"

5 #include "ns3/global.h"

6 #include <cmath >

7 #include <regex >

8 using std::log;

9 using std:: ifstream;

10

11 namespace ns3 {

12

13 const double kBoltzmann =1.3806504e-23;

14

15 std::map <int , int > mapLinkChannel(uint numNodes , uint numInterfaces , std

::vector <std::pair <int ,int >> links , std::vector <int > channels) {

16 std::map <int , int > solution;

17 int channelIndex = 0;

18 uint numLinks = links.size();

19 int channel;

20 std::cout << "number of links: = " << numLinks << "\n";

21 std::map <int ,int > numChannelsAssigned;

22 std::map < int , std::vector <int > > channelsAssigned;

23 for (uint n=0; n<numNodes; n++) {

24 numChannelsAssigned[n] = 0;

25 }

26

27 int maxChannel = channels.size() -1;

28

29 for (uint n=0; n<numLinks; n++) {

30 std::cout << "n=" << n << "\n";

31 // std::cout << "number of channels assigned to node " << links[n].

first << " is " << channelsAssigned[links[n]. first].size() << "\n";

32 // std::cout << "number of channels assigned to node " << links[n].

second << " is " << channelsAssigned[links[n]. second].size() << "\n";

33 if ((channelsAssigned[links[n].first].size() < numInterfaces) &&

(channelsAssigned[links[n]. second].size() < numInterfaces)) {

34 channel = channels[channelIndex];

35 // std:: cout << "selected channel is " << channel << "\n";

36 channelsAssigned[links[n]. first]. push_back ({ channel });

37 channelsAssigned[links[n]. second]. push_back ({ channel });

38 // std::cout << "number of channels assigned to node " <<

links[n]. first << " is " << channelsAssigned[links[n]. first].size() <<

"\n";

288

39 // std::cout << "number of channels assigned to node " <<

links[n]. second << " is " << channelsAssigned[links[n]. second].size()

<< "\n";

40 // solution.insert ({ n, channel });

41 }

42 else if ((channelsAssigned[links[n].first].size() ==

numInterfaces) && (channelsAssigned[links[n]. second].size() <

numInterfaces)) {

43 std::vector <int > new_vec;

44 std::sort(channelsAssigned[links[n]. first]. begin(),

channelsAssigned[links[n]. first].end());

45 std::sort(channelsAssigned[links[n]. second]. begin(),

channelsAssigned[links[n]. second].end());

46 std:: set_intersection(channelsAssigned[links[n]. first]. begin

(), channelsAssigned[links[n].first].end(),

47 channelsAssigned[links[n]. second]. begin

(), channelsAssigned[links[n]. second].end(),

48 std:: back_inserter(new_vec));

49 if (new_vec.size()!=0){

50 channel = new_vec [0];

51 }

52 else{

53 channel = channelsAssigned[links[n]. first][rand()%2];

54 channelsAssigned[links[n]. second]. push_back(channel);

55 }

56 // std:: cout << "selected channel is " << channel << "\n";

57 // std::cout << "number of channels assigned to node " <<

links[n]. first << " is " << channelsAssigned[links[n]. first].size() <<

"\n";

58 // std::cout << "number of channels assigned to node " <<

links[n]. second << " is " << channelsAssigned[links[n]. second].size()

<< "\n";

59 // solution.insert ({ n, channel });

60 }

61 else if ((channelsAssigned[links[n].first].size() < numInterfaces

) && (channelsAssigned[links[n]. second].size() == numInterfaces)) {

62 std::vector <int > new_vec;

63 std::sort(channelsAssigned[links[n]. first]. begin(),

channelsAssigned[links[n]. first].end());

64 std::sort(channelsAssigned[links[n]. second]. begin(),

channelsAssigned[links[n]. second].end());

65 std:: set_intersection(channelsAssigned[links[n]. first]. begin

(), channelsAssigned[links[n].first].end(),

66 channelsAssigned[links[n]. second]. begin

(), channelsAssigned[links[n]. second].end(),

67 std:: back_inserter(new_vec));

68 if (new_vec.size()!=0){

69 channel = new_vec [0];

289

70 }

71 else{

72 channel = channelsAssigned[links[n]. second][rand()%2];

73 channelsAssigned[links[n]. first]. push_back(channel);

74 }

75 // std:: cout << "selected channel is " << channel << "\n";

76 // std::cout << "number of channels assigned to node " <<

links[n]. first << " is " << channelsAssigned[links[n]. first].size() <<

"\n";

77 // std::cout << "number of channels assigned to node " <<

links[n]. second << " is " << channelsAssigned[links[n]. second].size()

<< "\n";

78 // solution.insert ({ n, channel });

79 }

80 else {

81 // std::cerr << "Both interfaces of both nodes already

assigned channels\n";

82 std::vector <int > new_vec;

83 std::sort(channelsAssigned[links[n]. first]. begin(),

channelsAssigned[links[n]. first].end());

84 std::sort(channelsAssigned[links[n]. second]. begin(),

channelsAssigned[links[n]. second].end());

85 std:: set_intersection(channelsAssigned[links[n]. first]. begin

(), channelsAssigned[links[n].first].end(),

86 channelsAssigned[links[n]. second]. begin

(), channelsAssigned[links[n]. second].end(),

87 std:: back_inserter(new_vec));

88 if (new_vec.size()!=0){

89 channel = new_vec [0];

90 // std:: cout << "selected channel is " << channel << "\n";

91 // solution.insert ({ n, channel });

92 }

93 else {

94 std::cerr << "There is no channel in common for nodes " <<

links[n]. first << " and " << links[n]. second << "\n";

95 continue;

96 }

97

98 }

99 solution.insert ({ n, channel });

100

101 if (channelIndex < maxChannel) {

102 channelIndex ++;

103 }

104 else {

105 channelIndex =0;

106 }

107 }

290

108 std::cout << "channels assigned: ";

109 for (uint counter =0; counter < numNodes; counter ++) {

110 std::cout << "node: " << counter << ", channels: " <<

channelsAssigned[counter][0] << ", " << channelsAssigned[counter][1]

<< "\n";

111 }

112 return solution;

113 }

114

115 SimulatedAnnealing :: SimulatedAnnealing(uint maxIterations , double Ti , std

::vector <std::pair <int , int >> links , uint numNodes , uint numInterfaces

, std::vector <int > channels , std::map <int , int > startSolution ,

uint32_t Seed , std:: string filename)

116 {

117 _maxIterations = maxIterations;

118 _initTemp = Ti;

119 _links = links;

120 _currentTemp =_initTemp;

121 _numLinks = _links.size();

122 _channels = channels;

123 _numChannels = _channels.size();

124 _numNodes = numNodes;

125 _numInterfaces = numInterfaces;

126 _currentSolutionMap = startSolution;

127 _energyVec = {};

128 _solnVec.push_back(_currentSolutionMap);

129 _sinrAvgFilename = filename;

130 // _solutionFile.open ("/ home/natasha/repos/ns -3-dev -git/

acceptSolns_log_cooling_Ti_800.txt", std::ios::out | std::ios::app);

131 // if (! _solutionFile) {

132 // std::cerr << "can’t open output file" << std::endl;

133 // }

134 std::map <int ,int >:: iterator it;

135 for (it=_currentSolutionMap.begin(); it!= _currentSolutionMap.end();

++it) {

136 _currentAssignedChannels.insert(it ->second);

137 }

138

139 std:: string soln_filename = "acceptedSolutions_SA_linear_cooling_0 .02

temp" + std:: to_string(int(_initTemp)) + "_" + std:: to_string(

maxIterations) + "" + std:: to_string(_numNodes) + "

_nodes_2_interferers_all_links_random_topology_5.txt";

140 _solutionFile.open(soln_filename.c_str(), std::ios::out | std::ios::

app);

141 if (! _solutionFile) {

142 std::cerr << "can’t open output file" << std::endl;

143 }

144

291

145 _algIter = 0;

146 currentBest = 0;

147 _seed = Seed;

148 gen.seed(_seed);

149 std:: uniform_int_distribution <int > dis{1,RAND_MAX };

150

151 // unsigned seed = std:: chrono :: system_clock ::now().time_since_epoch ()

.count();

152 // std:: default_random_engine gen;

153 std::cout << "Constructed SA instance\n";

154 }

155

156 void SimulatedAnnealing :: setCurrentTemp ()

157 {

158 /* ********** linear cooling **************** */

159 double newTemp = _initTemp - 0.02*(_algIter);

160 /* ** */

161

162

163 // double newTemp = _initTemp /(1+ log(_algIter +1));

164 // double newTemp = _initTemp *(pow(0.8, _algIter));

165

166 _currentTemp = newTemp;

167 std::cout << "\ncurrent temp = " << _currentTemp << "\n";

168 }

169

170 double SimulatedAnnealing :: getTemp ()

171 {

172 return _currentTemp;

173 }

174

175 void SimulatedAnnealing :: generateNewSolution () {

176 // choose one link , assign a new channel to it

177 // int link = rand() % _numLinks;

178 // int newChannel = _channels[rand() % _numChannels];

179 // _currentSolutionMap[link] = newChannel;

180 // _solnVec.push_back(_currentSolutionMap);

181 // std::cout << "generated new solution: \n";

182 // std::map <int , int >:: iterator mapit;

183 // for (mapit=_currentSolutionMap.begin (); mapit != _currentSolutionMap

.end(); ++ mapit) {

184 // std::cout << mapit ->first << " => " << mapit ->second << std::

endl;

185 // }

186

187 /* for using all links */

188 std:: random_shuffle(std:: begin(_links), std::end(_links));

292

189 _currentSolutionMap = mapLinkChannel(_numNodes , _numInterfaces ,

_links , _channels);

190 }

191

192 void SimulatedAnnealing :: Acceptance ()

193 {

194 bool acceptpoint;

195 double dE =_energyVec.at(_energyVec.size() -1) - _energyVec.at(

_energyVec.size() -2);

196 std::cout << "dE = " << dE << "\n";

197 double n=0.0;

198 double h=0.0;

199

200 if (dE < 0)

201 {

202 acceptpoint = true;

203 }

204 else

205 {

206 n=dis(gen)/((double)RAND_MAX +1);

207 // h = 1/(1+ exp(dE/(kBoltzmann*_currentTemp)));

208 h = exp(-1*dE/_currentTemp);

209 std::cout << "random value = " << n << " , h = " << h << "\n";

210 if (h > n)

211 acceptpoint = true;

212 else

213 acceptpoint = false;

214 }

215 NS_LOG_UNCOND("point accepted is " << acceptpoint);

216 if ((acceptpoint ==false)&&(_energyVec.size() >2))

217 {

218 _energyVec.pop_back ();

219

220 }

221 // std::cout << "solutionFile << " << _energyVec.back() << "\n";

222 // _solutionFile << _energyVec.back() << "\n";

223 }

224

225 void SimulatedAnnealing :: calcSolutionEnergy ()

226 {

227 //run simulation , getting SNR value sample , get average SNR , write to

file , read it here

228 MeshSim mesh(_channels , _numNodes);

229 double snrAvg = mesh.Run(_currentSolutionMap , _links);

230 std::cout << "Run mesh simulation to completion" << "\n";

231

232 double cost = 10000000000/ snrAvg;

233 std::cout << "Result: " << cost << "\n";

293

234 _energyVec.push_back(cost);

235 std::cout << "Pushed back weight " << cost << "\n";

236 }

237

238 std::vector <double > SimulatedAnnealing :: getEnergyVec ()

239 {

240 return _energyVec;

241 }

242

243 std::map <int , int >* SimulatedAnnealing :: getCurrentSolution ()

244 {

245 return &_currentSolutionMap;

246 }

247

248 void SimulatedAnnealing :: Initialize ()

249 {

250 NS_LOG_UNCOND("Initializing");

251 calcSolutionEnergy ();

252 // _solutionFile << _energyVec.back() << "\n";

253 // std::cout << "solutionFile << " << _energyVec.back() << "\n";

254 _algIter ++;

255 }

256

257 void SimulatedAnnealing ::Run()

258 {

259 double energy;

260 while (_algIter < _maxIterations) {

261 setCurrentTemp ();

262 generateNewSolution ();

263 calcSolutionEnergy ();

264 Acceptance ();

265 energy = _energyVec.back();

266 _solutionFile << energy << "\n";

267 _algIter ++;

268 }

269 std::cout << "got to end of SA::Run\n";

270 _solutionFile.close();

271 }

272

273

274 } // namespace ns3

Appendix D

Class definition and

implementation of Genetic

Algorithm for CA

1 /* -*- Mode:C++; c-file -style :"gnu"; indent -tabs -mode:nil; -*- */

2 #ifndef GENETIC_ALGORITHM_H

3 #define GENETIC_ALGORITHM_H

4

5 #include <algorithm >

6 #include <vector >

7 #include <random >

8 #include <chrono >

9 #include <map >

10 #include <string >

11 #include <fstream >

12

13 #include "ns3/output -stream -wrapper.h"

14 #include "ns3/trace -helper.h"

15 #include "ns3/global.h"

16

17 namespace ns3 {

18

19 class GeneticAlgorithm

20 {

21 public:

22 GeneticAlgorithm(std::vector <std::pair <int , int >> links , uint

numNodes , uint numInterfaces , uint popSize , uint numGenerations , std::

vector <int > channels , double mutation , uint32_t Seed);

23 std::map <int , int > generateGenome ();

24 void generatePopulation ();

25 std::vector <std::map <int ,int >> getPopulation ();

294

295

26 void calcFitness ();

27 std::pair <int ,int > getSelectionPair(std::

piecewise_constant_distribution <>& dist);

28 std::pair <int ,int > getSelectionLinearRank(std::vector <std::pair <uint ,

double >> rankingVec , std:: default_random_engine& gen);

29 std::pair <std::map <int , int >, std::map <int , int >> doCrossover(std::

map <int , int >& genomeA , std::map <int , int >& genomeB);

30 std::map <int , int > doMutation(std::map <int , int >& genome);

31 void runEvolution ();

32 std:: default_random_engine generator;

33 uint solnIter;

34 double currentBestFitness;

35 double populationAverageFitness;

36 double populationBestFitness;

37 std:: string bestFitnessesFilename;

38 std:: string averageFitnessesFilename;

39 std:: ofstream bestFitnessesFile;

40 std:: ofstream averageFitnessesFile;

41 std::vector <double > weights;

42 // ~GeneticAlgorithm ();

43

44 private:

45 uint _numLinks;

46 uint _numChannels;

47 uint _numNodes;

48 uint _numInterfaces;

49 std::vector <int > _channels;

50 std::vector <std::pair <int ,int >> _links;

51 std::map <int ,int > _genome;

52 std::map <int ,int > _currentBestGenome;

53 double _mutationRate;

54 uint _genomeSize;

55 uint _populationSize;

56 uint _numGenerations;

57 std::vector <std::map <int ,int >> _population;

58 std::vector <std::vector <double >> _energyVec;

59 std::vector <double > _innerVec;

60 std:: string _sinrAvgFilename;

61 uint32_t _seed;

62 std:: default_random_engine gen;

63 std:: uniform_int_distribution <int > uniform_dis;

64 std:: uniform_int_distribution <int > channel_dis;

65 uint _algIter;

66 std::vector <int > _distIntervals;

67 };

68

69 }

70

296

71 #endif /* GENETIC_ALGORITHM_H */

1 /* -*- Mode:C++; c-file -style :"gnu"; indent -tabs -mode:nil; -*- */

2

3 #include "genetic -algorithm.h"

4 #include "ns3/mesh -sim.h"

5 #include <sys/stat.h>

6 #include <unistd.h>

7 #include <stdio.h>

8

9 using std:: ifstream;

10

11 namespace ns3 {

12

13 std::map <int , int >

14 mapLinkChannel (uint numNodes , uint numInterfaces , std::vector <std::pair <

int , int >> links ,

15 std::vector <int > channels)

16 {

17 std::map <int , int > solution;

18 int channelIndex = 0;

19 uint numLinks = links.size ();

20 int channel;

21 std::cout << "number of links: = " << numLinks << "\n";

22 std::map <int , int > numChannelsAssigned;

23 std::map <int , std::vector <int >> channelsAssigned;

24 for (uint n = 0; n < numNodes; n++)

25 {

26 numChannelsAssigned[n] = 0;

27 }

28

29 int maxChannel = channels.size () - 1;

30

31 for (uint n = 0; n < numLinks; n++)

32 {

33 std::cout << "n=" << n << "\n";

34 // std::cout << "number of channels assigned to node " << links[n

].first << " is " << channelsAssigned[links[n].first].size() << "\n";

35 // std::cout << "number of channels assigned to node " << links[n

]. second << " is " << channelsAssigned[links[n]. second].size() << "\n

";

36 if ((channelsAssigned[links[n].first].size () < numInterfaces) &&

37 (channelsAssigned[links[n]. second].size () < numInterfaces))

38 {

39 channel = channels[channelIndex];

40 // std:: cout << "selected channel is " << channel << "\n";

41 channelsAssigned[links[n]. first]. push_back ({ channel });

42 channelsAssigned[links[n]. second]. push_back ({ channel });

297

43 // std::cout << "number of channels assigned to node " << links

[n]. first << " is " << channelsAssigned[links[n]. first].size() << "\n

";

44 // std::cout << "number of channels assigned to node " << links

[n]. second << " is " << channelsAssigned[links[n]. second].size() << "\

n";

45 // solution.insert ({ n, channel });

46 }

47 else if ((channelsAssigned[links[n].first].size () == numInterfaces

) &&

48 (channelsAssigned[links[n]. second].size () < numInterfaces

))

49 {

50 std::vector <int > new_vec;

51 std::sort (channelsAssigned[links[n]. first]. begin (),

52 channelsAssigned[links[n]. first].end ());

53 std::sort (channelsAssigned[links[n]. second]. begin (),

54 channelsAssigned[links[n]. second].end ());

55 std:: set_intersection (

56 channelsAssigned[links[n]. first]. begin (), channelsAssigned

[links[n]. first].end (),

57 channelsAssigned[links[n]. second]. begin (),

channelsAssigned[links[n]. second].end (),

58 std:: back_inserter (new_vec));

59 if (new_vec.size () != 0)

60 {

61 channel = new_vec [0];

62 }

63 else

64 {

65 channel = channelsAssigned[links[n]. first][rand () % 2];

66 channelsAssigned[links[n]. second]. push_back (channel);

67 }

68 // std:: cout << "selected channel is " << channel << "\n";

69 // std::cout << "number of channels assigned to node " << links

[n]. first << " is " << channelsAssigned[links[n]. first].size() << "\n

";

70 // std::cout << "number of channels assigned to node " << links

[n]. second << " is " << channelsAssigned[links[n]. second].size() << "\

n";

71 // solution.insert ({ n, channel });

72 }

73 else if ((channelsAssigned[links[n].first].size () < numInterfaces)

&&

74 (channelsAssigned[links[n]. second].size () ==

numInterfaces))

75 {

76 std::vector <int > new_vec;

298

77 std::sort (channelsAssigned[links[n]. first]. begin (),

78 channelsAssigned[links[n]. first].end ());

79 std::sort (channelsAssigned[links[n]. second]. begin (),

80 channelsAssigned[links[n]. second].end ());

81 std:: set_intersection (

82 channelsAssigned[links[n]. first]. begin (), channelsAssigned

[links[n]. first].end (),

83 channelsAssigned[links[n]. second]. begin (),

channelsAssigned[links[n]. second].end (),

84 std:: back_inserter (new_vec));

85 if (new_vec.size () != 0)

86 {

87 channel = new_vec [0];

88 }

89 else

90 {

91 channel = channelsAssigned[links[n]. second][rand () % 2];

92 channelsAssigned[links[n]. first]. push_back (channel);

93 }

94 // std:: cout << "selected channel is " << channel << "\n";

95 // std::cout << "number of channels assigned to node " << links

[n]. first << " is " << channelsAssigned[links[n]. first].size() << "\n

";

96 // std::cout << "number of channels assigned to node " << links

[n]. second << " is " << channelsAssigned[links[n]. second].size() << "\

n";

97 // solution.insert ({ n, channel });

98 }

99 else

100 {

101 // std::cerr << "Both interfaces of both nodes already assigned

channels\n";

102 std::vector <int > new_vec;

103 std::sort (channelsAssigned[links[n]. first]. begin (),

104 channelsAssigned[links[n]. first].end ());

105 std::sort (channelsAssigned[links[n]. second]. begin (),

106 channelsAssigned[links[n]. second].end ());

107 std:: set_intersection (

108 channelsAssigned[links[n]. first]. begin (), channelsAssigned

[links[n]. first].end (),

109 channelsAssigned[links[n]. second]. begin (),

channelsAssigned[links[n]. second].end (),

110 std:: back_inserter (new_vec));

111 if (new_vec.size () != 0)

112 {

113 channel = new_vec [0];

114 // std:: cout << "selected channel is " << channel << "\n

";

299

115 // solution.insert ({ n, channel });

116 }

117 else

118 {

119 std::cerr << "There is no channel in common for nodes " <<

links[n]. first << " and "

120 << links[n]. second << "\n";

121 continue;

122 }

123 }

124 solution.insert ({n, channel });

125

126 if (channelIndex < maxChannel)

127 {

128 channelIndex ++;

129 }

130 else

131 {

132 channelIndex = 0;

133 }

134 }

135 std::cout << "channels assigned: ";

136 for (uint counter = 0; counter < numNodes; counter ++)

137 {

138 std::cout << "node: " << counter << ", channels: " <<

channelsAssigned[counter][0] << ", "

139 << channelsAssigned[counter][1] << "\n";

140 }

141 return solution;

142 }

143

144 // std::map <int , int > mapLinkChannel(int numLinks , std::vector <int >

channels) {

145 // std::map <int , int > solution;

146 // int channelIndex = 0;

147 // int maxChannel = channels.size() -1;

148

149 // for (int n=0; n<numLinks; n++) {

150 // solution.insert ({ n, channels[channelIndex] });

151 // if (channelIndex < maxChannel) {

152 // channelIndex ++;

153 // }

154 // else {

155 // channelIndex =0;

156 // }

157 // }

158 // return solution;

159 // }

300

160

161 double

162 calcStdError (std::vector <double > values , double mean)

163 {

164 double stdDev = 0.0;

165

166 for (uint i = 0; i < values.size (); i++)

167 {

168 stdDev += pow (values[i] - mean , 2);

169 }

170

171 stdDev = sqrt (stdDev / values.size ());

172 double stdErr = stdDev / sqrt (values.size ());

173 return stdErr;

174 }

175

176 // Driver function to sort the vector elements

177 // by second element of pairs

178 bool

179 sortBySecond (const std::pair <int , double > &a, const std::pair <int ,

double > &b)

180 {

181 return (a.second < b.second);

182 }

183

184 GeneticAlgorithm :: GeneticAlgorithm (std::vector <std::pair <int , int >>

links , uint numNodes ,

185 uint numInterfaces , uint popSize ,

uint numGenerations ,

186 std::vector <int > channels , double

mutation , uint32_t Seed)

187 {

188 _links = links;

189 _numLinks = links.size ();

190 _genomeSize = _numLinks;

191 _channels = channels;

192 _numChannels = _channels.size ();

193 _numNodes = numNodes;

194 _numInterfaces = numInterfaces;

195 _populationSize = popSize;

196 _numGenerations = numGenerations;

197 _mutationRate = mutation;

198 currentBestFitness = INFINITY;

199 populationAverageFitness = 0;

200 populationBestFitness = INFINITY;

201 _algIter = 0;

202 _seed = Seed;

203 gen.seed (_seed);

301

204 // std:: uniform_int_distribution <int > uniform_dis (1, _genomeSize -1);

205 // std:: uniform_int_distribution <int > channel_dis (0, _numChannels);

206 _distIntervals.resize (_populationSize + 1);

207 std::iota (_distIntervals.begin (), _distIntervals.end (), 0);

208 bestFitnessesFilename =

209 "best_fitness_values_interference_helper_GA_" + std:: to_string (

numNodes) +

210 "_nodes_popSize_" + std:: to_string (_populationSize) + "_numGen_" +

211 std:: to_string (_numGenerations) + "_mutation_" + std:: to_string (

_mutationRate) +

212 "_2_interferers_linear_rank_all_links.txt";

213 bestFitnessesFile.open (bestFitnessesFilename.c_str (), std::ios::out |

std::ios::app);

214 if (! bestFitnessesFile)

215 {

216 std::cerr << "can’t open best fitness file" << std::endl;

217 }

218

219 averageFitnessesFilename =

220 "avg_fitness_values_interference_helper_GA_" + std:: to_string (

numNodes) + "_nodes_popSize_" +

221 std:: to_string (_populationSize) + "_numGen_" + std:: to_string (

_numGenerations) +

222 "_mutation_" + std:: to_string (_mutationRate) + "

_2_interferers_linear_rank_all_links.txt";

223 averageFitnessesFile.open (averageFitnessesFilename.c_str (), std::ios

::out | std::ios::app);

224 if (! averageFitnessesFile)

225 {

226 std::cerr << "can’t open average fitness file" << std::endl;

227 }

228 }

229

230 std::map <int , int >

231 GeneticAlgorithm :: generateGenome ()

232 {

233 std:: random_shuffle (std:: begin (_links), std::end (_links));

234 std:: random_shuffle (std:: begin (_channels), std::end (_channels));

235 // return mapLinkChannel(_numNodes , _numInterfaces , _links , _channels);

236 return mapLinkChannel (_numNodes , _numInterfaces , _links , _channels);

237 }

238

239 void

240 GeneticAlgorithm :: generatePopulation ()

241 {

242 // for (uint i=0; i<_populationSize; i++) {

243 // _population.push_back(generateGenome ());

244 // }

302

245

246 std::map <int , int >:: iterator it;

247 for (uint i = 0; i < _populationSize; i++)

248 {

249 std::map <int , int > genome = generateGenome ();

250 std::cout << "\ngenome: \n";

251 for (it = genome.begin (); it != genome.end (); it++)

252 {

253 std::cout << it ->first << " - " << it ->second << std::endl;

254 }

255 _population.push_back (genome);

256 }

257 }

258

259 std::vector <std::map <int , int >>

260 GeneticAlgorithm :: getPopulation ()

261 {

262 return _population;

263 }

264

265 void

266 GeneticAlgorithm :: calcFitness ()

267 {

268 //run simulation , getting SNR value sample , get average SNR , write to

file , read it here

269 MeshSim mesh (_channels , _numNodes);

270 std::cout << "mesh sim is running ...\n";

271 double snr = mesh.Run (_genome , _links);

272 weights.push_back (snr);

273

274 // std::cout << "Result: " << 10000000000/ snr << "\n";

275 // std::cout << "Pushed back weight " << snr << "\n";

276 // _innerVec.push_back (10000000000/ snr);

277 // if (10000000000/ snr != _innerVec.back()) {

278 // std::cerr << "Error! Incorrect value\n";

279 // }

280 std::cout << "Pushed back weight " << snr << "\n";

281 std::cout << "Result: " << 100 / snr << "\n";

282 _innerVec.push_back (100 / snr);

283 if (100 / snr != _innerVec.back ())

284 {

285 std::cerr << "Error! Incorrect value\n";

286 }

287 std::cout << "\nPushed " << _innerVec.back () << " to _energyVec at

iteration " << _algIter

288 << "\n";

289 }

290

303

291 std::pair <int , int >

292 GeneticAlgorithm :: getSelectionPair (std:: piecewise_constant_distribution

<> &dist)

293 {

294 // Roulette wheel selection

295 uint parent1 = static_cast <unsigned > (dist (gen));

296 uint parent2 = static_cast <unsigned > (dist (gen));

297 return std:: make_pair (parent1 , parent2);

298 }

299

300 std::pair <int , int >

301 GeneticAlgorithm :: getSelectionLinearRank (std::vector <std::pair <uint ,

double >> rankingVec ,

302 std:: default_random_engine &gen

)

303 {

304 //Rank selection

305 std::vector <int > ranks;

306 std::vector <std::pair <int , int >> indexRanks;

307

308 for (uint j = 0; j < rankingVec.size (); j++)

309 {

310 // std::cout << rankingVec[j].first << ": " << rankingVec[j]. second

<< std::endl;

311 indexRanks.push_back (std:: make_pair (j, rankingVec[j]. first));

312 std::cout << "indexRanks at " << j << " = " << rankingVec[j]. first

<< std::endl;

313 }

314

315 std::vector <int > _distIntervals;

316 _distIntervals.resize (rankingVec.size () + 1);

317 std::iota (_distIntervals.begin (), _distIntervals.end (), 0);

318 ranks.resize (rankingVec.size ());

319 std::iota (ranks.begin (), ranks.end (), 0);

320

321 std:: piecewise_constant_distribution <> dist (std:: begin (_distIntervals

),

322 std::end (_distIntervals),

std:: begin (ranks));

323 uint parent1 = indexRanks[static_cast <int > (dist (gen))]. second;

324 uint parent2 = indexRanks[static_cast <int > (dist (gen))]. second;

325 return std:: make_pair (parent1 , parent2);

326 }

327

328 std::pair <std::map <int , int >, std::map <int , int >>

329 GeneticAlgorithm :: doCrossover (std::map <int , int > &genomeA , std::map <int ,

int > &genomeB)

330 {

304

331 //int crossoverPoint = uniform_dis(gen);

332 int crossoverPoint = rand () % (_numNodes - 2) + 1;

333 std::cout << "crossover index = " << crossoverPoint << std::endl;

334 auto rangeA_end = genomeA.find (crossoverPoint);

335 auto rangeB_start = genomeB.find (crossoverPoint);

336 std::map <int , int > newGenome1;

337 newGenome1.insert (rangeB_start , genomeB.end ());

338 newGenome1.insert (genomeA.find (0), rangeA_end);

339 std::cout << "generated newGenome1\n";

340 std::map <int , int >:: iterator it;

341 for (it = newGenome1.begin (); it != newGenome1.end (); it++)

342 {

343 std::cout << it ->first << " => " << it ->second << std::endl;

344 }

345

346 std::map <int , int > newGenome2;

347 newGenome2.insert (rangeA_end , genomeA.end ());

348 newGenome2.insert (genomeB.find (0), rangeB_start);

349 std::cout << "generated newGenome2\n";

350 for (it = newGenome2.begin (); it != newGenome2.end (); it++)

351 {

352 std::cout << it ->first << " => " << it ->second << std::endl;

353 }

354

355 std::pair <std::map <int , int >, std::map <int , int >> genome_pair =

356 std:: make_pair (newGenome1 , newGenome2);

357 std::cout << "made pair\n";

358 return genome_pair;

359 }

360

361 std::map <int , int >

362 GeneticAlgorithm :: doMutation (std::map <int , int > &genome)

363 {

364 if (double (rand () % RAND_MAX) < _mutationRate)

365 {

366 std::cout << "generating random index ...\n";

367 int index = rand () % _numLinks;

368 std::cout << "index to mutate: " << index << std::endl;

369 int channel = _channels[rand () % _numChannels];

370 std::cout << "channel to mutate: " << channel << std::endl;

371 genome[index] = channel;

372 std::cout << "mutation done\n";

373 }

374 else

375 {

376 std::cout << "no mutation done\n";

377 }

378 return genome;

305

379 }

380

381 void

382 GeneticAlgorithm :: runEvolution ()

383 {

384 std::vector <std::map <int , int >> nextGeneration;

385 std::map <int , int > offspringA;

386 std::map <int , int > offspringB;

387 std::pair <std::map <int , int >, std::map <int , int >> offspring;

388 double currentFitness;

389

390 generatePopulation ();

391 NS_ASSERT (_population.size () == _populationSize);

392

393 for (uint generation = 0; generation < _numGenerations; generation ++)

394 {

395 _innerVec.clear ();

396 populationAverageFitness = 0.0;

397 populationBestFitness = INFINITY;

398 nextGeneration.clear ();

399 weights.clear ();

400

401 for (uint i = 0; i < _populationSize; i++)

402 {

403 // NS_ASSERT(_population.size() == _populationSize);

404 _genome = _population.at (i);

405 calcFitness ();

406 std::cout << "size of innerVec is " << _innerVec.size () << std

::endl;

407

408 /*** new running average method ***/

409 currentFitness = _innerVec.back ();

410 populationAverageFitness =

411 populationAverageFitness + (currentFitness -

populationAverageFitness) / (i + 1);

412 if (currentFitness < currentBestFitness)

413 {

414 currentBestFitness = currentFitness;

415 _currentBestGenome = _genome;

416 }

417 if (currentFitness < populationBestFitness)

418 {

419 populationBestFitness = currentFitness;

420 }

421 std::cout << "current average fitness value: " <<

populationAverageFitness << std::endl;

422 std::cout << "population best fitness value: " <<

populationBestFitness << std::endl;

306

423 std::cout << "current best fitness value: " <<

currentBestFitness << std::endl;

424 }

425

426 bestFitnessesFile << populationBestFitness << std::endl;

427 averageFitnessesFile << populationAverageFitness << ", "

428 << calcStdError (_innerVec ,

populationAverageFitness) << std::endl;

429 std::cout << "population average fitness: " <<

populationAverageFitness << std::endl;

430 _energyVec.push_back (_innerVec);

431 // for (uint w = 0; w<_energyVec.back().size(); w++) {

432 // weights.push_back (1/(_energyVec.back().at(w)));

433 // }

434

435 // Roulette wheel selection

436 // std:: piecewise_constant_distribution <> dist(std::begin(

_distIntervals),

437 // std::end(_distIntervals),

438 // std::begin(weights));

439

440 std::cout << "ranking vector before sorting :\n";

441 std::vector <std::pair <uint , double >> rankingVec;

442 for (uint i = 0; i < _populationSize; i++)

443 {

444 rankingVec.push_back (std:: make_pair (i, weights.at (i)));

445 std::cout << i << ": " << weights.at (i) << std::endl;

446 }

447

448 std::vector <double > sortedWeights;

449 sort (rankingVec.begin (), rankingVec.end (), sortBySecond);

450 std::cout << "ranking vector after sorting :\n";

451 for (uint j = 0; j < rankingVec.size (); j++)

452 {

453 std::cout << rankingVec[j]. first << ": " << rankingVec[j].

second << std::endl;

454 sortedWeights.push_back (rankingVec[j]. second);

455 }

456

457 for (uint j = 0; j < _populationSize / 2; j++)

458 {

459 /*** roulette wheel ***/

460 // std::pair <int ,int > parents = getSelectionPair(dist);

461

462 /*** linear rank selection ***/

463 std::pair <int , int > parents = getSelectionLinearRank (

rankingVec , gen);

464

307

465 int parentIndex1 = parents.first;

466 int parentIndex2 = parents.second;

467 std::cout << "first parent: " << parentIndex1 << " has energy "

468 << _energyVec.back ().at (parentIndex1) << "\n";

469 std::map <int , int >:: iterator it;

470 for (it = _population[parentIndex1]. begin (); it != _population

[parentIndex1].end ();

471 it++)

472 {

473 std::cout << it ->first << " => " << it ->second << std::endl

;

474 }

475

476 std::cout << "\nsecond parent: " << parentIndex2 << " has

energy "

477 << _energyVec.back ().at (parentIndex2) << "\n";

478 for (it = _population[parentIndex2]. begin (); it != _population

[parentIndex2].end ();

479 it++)

480 {

481 std::cout << it ->first << " => " << it ->second << std::endl

;

482 }

483 // nextGeneration.push_back(_population[parentIndex1]);

484 // nextGeneration.push_back(_population[parentIndex2]);

485 offspring = doCrossover (_population[parentIndex1], _population

[parentIndex2]);

486 offspringA = doMutation (offspring.first);

487 offspringB = doMutation (offspring.second);

488 std::cout << "size of mutated offspring A = " << offspringA.

size () << std::endl;

489 std::cout << "size of mutated offspring B = " << offspringB.

size () << std::endl;

490 // offspringA = offspring.first;

491 // offspringB = offspring.second;

492 nextGeneration.push_back (offspringA);

493 // std::cout << "pushed back offspringA\n";

494 nextGeneration.push_back (offspringB);

495 // std::cout << "pushed back offspringB\n";

496 }

497

498 _population = nextGeneration;

499 std::cout << "size of population of next generation = " <<

_population.size () << std::endl;

500 _algIter ++;

501 // for (uint i=0; i<_populationSize; i++) {

502 // _genome = _population.at(i);

503 // calcFitness ();

308

504 // }

505 // if (remove(interference_filename.c_str ()) != 0)

506 // perror("Error deleting file");

507 // else

508 // puts("Interference file successfully deleted");

509 }

510 std::cout << "final best fitness = " << currentBestFitness << std::endl

;

511 bestFitnessesFile.close ();

512 averageFitnessesFile.close ();

513 }

514

515 // GeneticAlgorithm ::~ GeneticAlgorithm (){

516 // bestFitnessesFile.close ();

517 // }

518

519 } // namespace ns3

Appendix E

Class definition and

implementation of Differential

Evolution for CA

1 /* -*- Mode:C++; c-file -style :"gnu"; indent -tabs -mode:nil; -*- */

2 #ifndef DIFFERENTIAL_EVOLUTION_H

3 #define DIFFERENTIAL_EVOLUTION_H

4

5 #include <vector >

6 #include <random >

7 #include <map >

8 #include <string >

9

10 #include "ns3/global.h"

11 #include "ns3/random -variable -stream.h"

12

13 namespace ns3 {

14

15 class DifferentialEvolution

16 {

17 public:

18 DifferentialEvolution(std::vector <std::pair <int , int >> links , uint

numNodes , uint numInterfaces , std::vector <int > channels , uint popSize ,

uint maxIterations , double F, double CR, uint16_t variant , uint32_t

Seed);

19 std::vector <int > generateAgent ();

20 void generatePopulation ();

21 double calcFitness(std::vector <int > position);

22 void Run();

23 void updatePosition(uint agentIndex);

24 void selection(uint agentIndex , std::vector <int > mutant);

309

310

25 double dimension;

26 std:: string bestFitnessesFilename;

27 std:: ofstream bestFitnessesFile;

28 std:: string avgFitnessesFilename;

29 std:: ofstream avgFitnessesFile;

30

31 private:

32 uint _numLinks;

33 uint _numChannels;

34 uint _numNodes;

35 uint _numInterfaces;

36 std::vector <int > _channels;

37 std::vector <int > _channelIndexes;

38 std::vector <std::pair <int ,int >> _links;

39 uint _popSize;

40 uint _maxIterations;

41 uint32_t _seed;

42 uint _algIter;

43 uint _deVariant;

44 double _diffWeight_F;

45 double _crossoverProb_CR;

46 double _currentBestFitness;

47 std::vector <std::vector <int >> _currentBestPositionIndividual;

48 std::vector <double > _currentBestCostIndividual;

49 std::vector <int > _currentPosition;

50 std::vector <int > _currentBestPosition;

51 std::vector <int > _mutant;

52 std::vector <double > _popFitnesses;

53 std::vector <std::vector <int >> _currentPopulation;

54 };

55

56 }

57

58 #endif /* DIFFERENTIAL_EVOLUTION_H */

1 /* -*- Mode:C++; c-file -style :"gnu"; indent -tabs -mode:nil; -*- */

2

3 #include "differential -evolution.h"

4 #include "ns3/mesh -sim.h"

5

6 namespace ns3 {

7

8 double calcStdError(std::vector <double > values , double mean) {

9 double stdDev = 0.0;

10

11 for (uint i=0; i < values.size(); i++) {

12 stdDev += pow(values[i] - mean , 2);

13 }

311

14

15 stdDev = sqrt(stdDev/values.size());

16 double stdErr = stdDev / sqrt(values.size());

17 return stdErr;

18 }

19

20 std::map <int , int > mapLinkChannel(uint numNodes , uint numInterfaces , std

::vector <std::pair <int ,int >> links , std::vector <int > channels) {

21 std::map <int , int > solution;

22 int channelIndex = 0;

23 uint numLinks = links.size();

24 int channel;

25 std::cout << "number of links: = " << numLinks << "\n";

26 std::map <int ,int > numChannelsAssigned;

27 std::map < int , std::vector <int > > channelsAssigned;

28 for (uint n=0; n<numNodes; n++) {

29 numChannelsAssigned[n] = 0;

30 }

31

32 int maxChannel = channels.size() -1;

33

34 for (uint n=0; n<numLinks; n++) {

35 std::cout << "n=" << n << "\n";

36 // std::cout << "number of channels assigned to node " << links[n].

first << " is " << channelsAssigned[links[n]. first].size() << "\n";

37 // std::cout << "number of channels assigned to node " << links[n].

second << " is " << channelsAssigned[links[n]. second].size() << "\n";

38 if ((channelsAssigned[links[n].first].size() < numInterfaces) &&

(channelsAssigned[links[n]. second].size() < numInterfaces)) {

39 channel = channels[channelIndex];

40 // std:: cout << "selected channel is " << channel << "\n";

41 channelsAssigned[links[n]. first]. push_back ({ channel });

42 channelsAssigned[links[n]. second]. push_back ({ channel });

43 // std::cout << "number of channels assigned to node " <<

links[n]. first << " is " << channelsAssigned[links[n]. first].size() <<

"\n";

44 // std::cout << "number of channels assigned to node " <<

links[n]. second << " is " << channelsAssigned[links[n]. second].size()

<< "\n";

45 // solution.insert ({ n, channel });

46 }

47 else if ((channelsAssigned[links[n].first].size() ==

numInterfaces) && (channelsAssigned[links[n]. second].size() <

numInterfaces)) {

48 std::vector <int > new_vec;

49 std::sort(channelsAssigned[links[n]. first]. begin(),

channelsAssigned[links[n]. first].end());

312

50 std::sort(channelsAssigned[links[n]. second]. begin(),

channelsAssigned[links[n]. second].end());

51 std:: set_intersection(channelsAssigned[links[n]. first]. begin

(), channelsAssigned[links[n].first].end(),

52 channelsAssigned[links[n]. second]. begin

(), channelsAssigned[links[n]. second].end(),

53 std:: back_inserter(new_vec));

54 if (new_vec.size()!=0){

55 channel = new_vec [0];

56 }

57 else{

58 channel = channelsAssigned[links[n]. first][rand()%2];

59 channelsAssigned[links[n]. second]. push_back(channel);

60 }

61 // std:: cout << "selected channel is " << channel << "\n";

62 // std::cout << "number of channels assigned to node " <<

links[n]. first << " is " << channelsAssigned[links[n]. first].size() <<

"\n";

63 // std::cout << "number of channels assigned to node " <<

links[n]. second << " is " << channelsAssigned[links[n]. second].size()

<< "\n";

64 // solution.insert ({ n, channel });

65 }

66 else if ((channelsAssigned[links[n].first].size() < numInterfaces

) && (channelsAssigned[links[n]. second].size() == numInterfaces)) {

67 std::vector <int > new_vec;

68 std::sort(channelsAssigned[links[n]. first]. begin(),

channelsAssigned[links[n]. first].end());

69 std::sort(channelsAssigned[links[n]. second]. begin(),

channelsAssigned[links[n]. second].end());

70 std:: set_intersection(channelsAssigned[links[n]. first]. begin

(), channelsAssigned[links[n].first].end(),

71 channelsAssigned[links[n]. second]. begin

(), channelsAssigned[links[n]. second].end(),

72 std:: back_inserter(new_vec));

73 if (new_vec.size()!=0){

74 channel = new_vec [0];

75 }

76 else{

77 channel = channelsAssigned[links[n]. second][rand()%2];

78 channelsAssigned[links[n]. first]. push_back(channel);

79 }

80 // std:: cout << "selected channel is " << channel << "\n";

81 // std::cout << "number of channels assigned to node " <<

links[n]. first << " is " << channelsAssigned[links[n]. first].size() <<

"\n";

313

82 // std::cout << "number of channels assigned to node " <<

links[n]. second << " is " << channelsAssigned[links[n]. second].size()

<< "\n";

83 // solution.insert ({ n, channel });

84 }

85 else {

86 // std::cerr << "Both interfaces of both nodes already

assigned channels\n";

87 std::vector <int > new_vec;

88 std::sort(channelsAssigned[links[n]. first]. begin(),

channelsAssigned[links[n]. first].end());

89 std::sort(channelsAssigned[links[n]. second]. begin(),

channelsAssigned[links[n]. second].end());

90 std:: set_intersection(channelsAssigned[links[n]. first]. begin

(), channelsAssigned[links[n].first].end(),

91 channelsAssigned[links[n]. second]. begin

(), channelsAssigned[links[n]. second].end(),

92 std:: back_inserter(new_vec));

93 if (new_vec.size()!=0){

94 channel = new_vec [0];

95 // std:: cout << "selected channel is " << channel << "\n";

96 // solution.insert ({ n, channel });

97 }

98 else {

99 std::cerr << "There is no channel in common for nodes " <<

links[n]. first << " and " << links[n]. second << "\n";

100 continue;

101 }

102

103 }

104 solution.insert ({ n, channel });

105

106 if (channelIndex < maxChannel) {

107 channelIndex ++;

108 }

109 else {

110 channelIndex =0;

111 }

112 }

113 std::cout << "channels assigned: ";

114 for (uint counter =0; counter < numNodes; counter ++) {

115 std::cout << "node: " << counter << ", channels: " <<

channelsAssigned[counter][0] << ", " << channelsAssigned[counter][1]

<< "\n";

116 }

117 return solution;

118 }

119

314

120 DifferentialEvolution :: DifferentialEvolution(std::vector <std::pair <int ,

int >> links , uint numNodes , uint numInterfaces , std::vector <int >

channels , uint popSize , uint maxIterations , double F, double CR,

uint16_t variant , uint32_t Seed)

121 {

122 _links = links;

123 _numLinks = _links.size();

124 _numNodes = numNodes;

125 _numInterfaces = numInterfaces;

126 _numChannels = channels.size();

127 _popSize = popSize;

128 _diffWeight_F = F;

129 _crossoverProb_CR = CR;

130 _seed = Seed;

131 _algIter = 0;

132 _deVariant = variant;

133 dimension = _numLinks;

134 _channels = channels;

135 _maxIterations = maxIterations;

136 _deVariant = variant;

137

138 _channelIndexes.resize(_numChannels);

139 std::iota(_channelIndexes.begin(), _channelIndexes.end(), 0);

140 std::cout << "channel indexes: \n";

141 std::vector <int >:: iterator vit;

142 for (vit = _channelIndexes.begin(); vit != _channelIndexes.end(); vit

++) {

143 std::cout << "channel index = " << *vit << std::endl;

144 }

145

146 for (uint n=0; n<_popSize; n++) {

147 _currentBestCostIndividual.push_back(INFINITY);

148 }

149

150 _currentBestFitness = INFINITY;

151 _mutant.resize(_numLinks , 0);

152

153 bestFitnessesFilename = "best_fitness_values_DE_" + std:: to_string(

_numNodes) + "_nodes_popSize_" + std:: to_string(_popSize) + "_" + std

:: to_string(_maxIterations) + "_iterations_" + std:: to_string(

_numChannels) + "_channels_F_" + std:: to_string(_diffWeight_F) + "_Cr_

" + std:: to_string(_crossoverProb_CR) + "_2_interferers_1.txt";

154 avgFitnessesFilename = "avg_fitness_values_DE_" + std:: to_string(

_numNodes) + "_nodes_popSize_" + std:: to_string(_popSize) + "_" + std

:: to_string(_maxIterations) + "_iterations_" + std:: to_string(

_numChannels) + "_channels_F_" + std:: to_string(_diffWeight_F) + "_Cr_

" + std:: to_string(_crossoverProb_CR) + "_2_interferers_1.txt";

155

315

156 bestFitnessesFile.open(bestFitnessesFilename.c_str (), std::ios::out |

std::ios::app);

157 if (! bestFitnessesFile) {

158 std::cerr << "can’t open best fitness file" << std::endl;

159 }

160

161 avgFitnessesFile.open(avgFitnessesFilename.c_str(), std::ios::out |

std::ios::app);

162 if (! avgFitnessesFile) {

163 std::cerr << "can’t open best fitness file" << std::endl;

164 }

165 }

166

167 std::vector <int > DifferentialEvolution :: generateAgent () {

168 std::cout << "generating agent\n";

169 // std:: random_shuffle(std::begin(_links), std::end(_links));

170 // std:: random_shuffle(std::begin(_channels), std::end(_channels));

171 std:: random_shuffle(std:: begin(_channelIndexes), std::end(

_channelIndexes));

172

173 std::map <int ,int > linkChannelMap = mapLinkChannel(_numNodes ,

_numInterfaces , _links , _channelIndexes);

174 std::map <int ,int >:: iterator map_iter;

175 std::vector <int > agent(_numLinks , 0);

176 for (map_iter = linkChannelMap.begin(); map_iter != linkChannelMap.

end(); map_iter ++) {

177 std::cout << "link: " << map_iter ->first << ", channel: " <<

map_iter ->second << std::endl;

178 agent[map_iter ->first] = map_iter ->second;

179 }

180 return agent;

181 }

182

183 void DifferentialEvolution :: generatePopulation () {

184 std::cout << "generating population\n";

185 std::vector <int > agent;

186 std::vector <int >:: iterator it;

187

188 for (uint i=0; i < _popSize; i++) {

189 agent = generateAgent ();

190 _currentPopulation.push_back(agent);

191 _currentBestPositionIndividual.push_back(agent);

192

193 std::cout << "\agent: \n";

194 for(it=agent.begin(); it!= agent.end(); it++) {

195 std::cout << it -agent.begin() << " - " << *it << std::endl;

196 }

197 }

316

198 }

199

200 double DifferentialEvolution :: calcFitness(std::vector <int > position) {

201 //run simulation , getting SNR value sample , get average SNR , write to

file , read it here

202 MeshSim mesh(_channels , _numNodes);

203 std::map <int ,int > linkChannelMap;

204 std:: cout << "position size = " << position.size() << std::endl;

205 std:: cout << "_channels size = " << _channels.size() << std::endl;

206 std::cout << "solution: \n";

207 for (uint it = 0; it < _numLinks; it++) {

208 // if (_channels[_channelIndexes[it]] == 0) {

209 // std::cerr << "channel at index " << _channelIndexes[it] <<

"at position " << it << " is " << _channels[_channelIndexes[it]] << "

!\n";

210 // _channels[_channelIndexes[it]] = 36;

211 // }

212 std::cout << "link: " << it << ", channel: " << _channels[

_channelIndexes[position[it]]] << std::endl;

213 linkChannelMap.insert ({ it, _channels[_channelIndexes[position[it

]]]});

214 }

215 std::cout << "running mesh -sim ...\n";

216 double snr = mesh.Run(linkChannelMap , _links);

217 double cost = 10000000000/ snr;

218

219 _popFitnesses.push_back(cost);

220 std::cout << "Result: " << cost << "\n";

221 return cost;

222 }

223

224 void DifferentialEvolution :: updatePosition(uint agentIndex) {

225 std::vector <std::vector <int >> mutants(_popSize);

226 uint j, r1 , r2 , r3, r4, r5 = 0;

227 switch (_deVariant) {

228 case 1:

229 default:

230 {

231 /* DE/rand /1/ bin*/

232 /* *********** original canonical version *********** */

233 // generate random chromosome

234 r1 = rand() % _popSize;

235 r2 = rand() % _popSize;

236 while (r1 == agentIndex) {

237 r1 = rand() % _popSize;

238 }

239 while ((r1 == r2) || (r2 == agentIndex)) {

240 r2 = rand() % _popSize;

317

241 }

242 r3 = rand() % _popSize;

243 while ((r3 == agentIndex) || (r3 == r1) || (r3 == r2)) {

244 r3 = rand() % _popSize;

245 }

246

247 j = rand() % _numLinks;

248 // mutation

249 // for (uint i = 0; i < _popSize; ++i) {

250 for (uint dim =0; dim < _numLinks; dim ++) {

251 if ((double(rand()%RAND_MAX) <= _crossoverProb_CR)

|| (dim==j)) {

252 mutants[agentIndex]. push_back(int(round(

_currentPopulation[r1][dim] + _diffWeight_F *(_currentPopulation[r2][

dim] - _currentPopulation[r3][dim]))));

253 while (mutants[agentIndex][dim] > (int(

_numChannels) -1)) {

254 mutants[agentIndex][dim] = mutants[agentIndex

][dim] - _numChannels;

255 }

256 while (mutants[agentIndex][dim] < 0) {

257 mutants[agentIndex][dim] = mutants[agentIndex

][dim] + _numChannels;

258 }

259 if ((mutants[agentIndex][dim] < 0) || (mutants[

agentIndex][dim] > int(_numChannels) -1)) {

260 std::cerr << "Channel index " << mutants[

agentIndex][dim] << " is out of bounds !\n";

261 }

262 }

263 else {

264 mutants[agentIndex]. push_back(_currentPopulation[

agentIndex][dim]);

265 }

266 std::cout << "current position at link " << dim << "

after is " << mutants[agentIndex][dim] << std::endl;

267 }

268 }

269 break;

270

271 case 2:

272 {

273 /* DE/best /1/ bin*/

274 /* *********** original canonical version *********** */

275 // generate random chromosome

276 r1 = rand() % _popSize;

277 r2 = rand() % _popSize;

278 while (r1 == agentIndex) {

318

279 r1 = rand() % _popSize;

280 }

281 while ((r1 == r2) || (r2 == agentIndex)) {

282 r2 = rand() % _popSize;

283 }

284 r3 = rand() % _popSize;

285 while ((r3 == agentIndex) || (r3 == r1) || (r3 == r2)) {

286 r3 = rand() % _popSize;

287 }

288

289 j = rand() % _numLinks;

290 // mutation

291 // for (uint i = 0; i < _popSize; ++i) {

292 for (uint dim =0; dim < _numLinks; dim ++) {

293 if ((double(rand()%RAND_MAX) <= _crossoverProb_CR)

|| (dim==j)) {

294 mutants[agentIndex]. push_back(int(round(

_currentBestPosition[dim] + _diffWeight_F *(_currentPopulation[r2][dim]

- _currentPopulation[r3][dim]))));

295 while (mutants[agentIndex][dim] > (int(

_numChannels) -1)) {

296 mutants[agentIndex][dim] = mutants[agentIndex

][dim] - _numChannels;

297 }

298 while (mutants[agentIndex][dim] < 0) {

299 mutants[agentIndex][dim] = mutants[agentIndex

][dim] + _numChannels;

300 }

301 if ((mutants[agentIndex][dim] < 0) || (mutants[

agentIndex][dim] > int(_numChannels) -1)) {

302 std::cerr << "Channel index " << mutants[

agentIndex][dim] << " is out of bounds !\n";

303 }

304 }

305 else {

306 mutants[agentIndex]. push_back(_currentPopulation[

agentIndex][dim]);

307 }

308 std::cout << "current position at link " << dim << "

after is " << mutants[agentIndex][dim] << std::endl;

309 }

310 }

311 break;

312

313 case 3:

314 {

315 /* DE/rand /2/ bin*/

316 /* *********** original canonical version *********** */

319

317 // generate random chromosome

318 r1 = rand() % _popSize;

319 r2 = rand() % _popSize;

320 while (r1 == agentIndex) {

321 r1 = rand() % _popSize;

322 }

323 while ((r1 == r2) || (r2 == agentIndex)) {

324 r2 = rand() % _popSize;

325 }

326 r3 = rand() % _popSize;

327 while ((r3 == agentIndex) || (r3 == r1) || (r3 == r2)) {

328 r3 = rand() % _popSize;

329 }

330 r4 = rand() % _popSize;

331 while ((r4 == agentIndex) || (r4 == r1) || (r4 == r2) ||

(r4 == r3)) {

332 r4 = rand() % _popSize;

333 }

334 r5 = rand() % _popSize;

335 while ((r5 == agentIndex) || (r5 == r1) || (r5 == r2) ||

(r5 == r3) || (r5 == r4)) {

336 r5 = rand() % _popSize;

337 }

338

339 j = rand() % _numLinks;

340 // mutation

341 // for (uint i = 0; i < _popSize; ++i) {

342 for (uint dim =0; dim < _numLinks; dim ++) {

343 if ((double(rand()%RAND_MAX) <= _crossoverProb_CR)

|| (dim==j)) {

344 mutants[agentIndex]. push_back(int(round(

_currentPopulation[r1][dim] + _diffWeight_F *(_currentPopulation[r2][

dim] - _currentPopulation[r3][dim]) + _diffWeight_F *(

_currentPopulation[r4][dim] - _currentPopulation[r5][dim]))));

345 while (mutants[agentIndex][dim] > (int(

_numChannels) -1)) {

346 mutants[agentIndex][dim] = mutants[agentIndex

][dim] - _numChannels;

347 }

348 while (mutants[agentIndex][dim] < 0) {

349 mutants[agentIndex][dim] = mutants[agentIndex

][dim] + _numChannels;

350 }

351 if ((mutants[agentIndex][dim] < 0) || (mutants[

agentIndex][dim] > int(_numChannels) -1)) {

352 std::cerr << "Channel index " << mutants[

agentIndex][dim] << " is out of bounds !\n";

353 }

320

354 }

355 else {

356 mutants[agentIndex]. push_back(_currentPopulation[

agentIndex][dim]);

357 }

358 std::cout << "current position at link " << dim << "

after is " << mutants[agentIndex][dim] << std::endl;

359 }

360 }

361 break;

362

363 case 4:

364 {

365 /* DE/best /2/ bin*/

366 /* *********** original canonical version *********** */

367 // generate random chromosome

368 r1 = rand() % _popSize;

369 r2 = rand() % _popSize;

370 while (r1 == agentIndex) {

371 r1 = rand() % _popSize;

372 }

373 while ((r1 == r2) || (r2 == agentIndex)) {

374 r2 = rand() % _popSize;

375 }

376 r3 = rand() % _popSize;

377 while ((r3 == agentIndex) || (r3 == r1) || (r3 == r2)) {

378 r3 = rand() % _popSize;

379 }

380 r4 = rand() % _popSize;

381 while ((r4 == agentIndex) || (r4 == r1) || (r4 == r2) ||

(r4 == r3)) {

382 r4 = rand() % _popSize;

383 }

384

385 j = rand() % _numLinks;

386 // mutation

387 // for (uint i = 0; i < _popSize; ++i) {

388 for (uint dim =0; dim < _numLinks; dim ++) {

389 if ((double(rand()%RAND_MAX) <= _crossoverProb_CR)

|| (dim==j)) {

390 mutants[agentIndex]. push_back(int(round(

_currentBestPosition[dim] + _diffWeight_F *(_currentPopulation[r1][dim]

- _currentPopulation[r2][dim]) + _diffWeight_F *(_currentPopulation[r3

][dim] - _currentPopulation[r4][dim]))));

391 while (mutants[agentIndex][dim] > (int(

_numChannels) -1)) {

392 mutants[agentIndex][dim] = mutants[agentIndex

][dim] - _numChannels;

321

393 }

394 while (mutants[agentIndex][dim] < 0) {

395 mutants[agentIndex][dim] = mutants[agentIndex

][dim] + _numChannels;

396 }

397 if ((mutants[agentIndex][dim] < 0) || (mutants[

agentIndex][dim] > int(_numChannels) -1)) {

398 std::cerr << "Channel index " << mutants[

agentIndex][dim] << " is out of bounds !\n";

399 }

400 }

401 else {

402 mutants[agentIndex]. push_back(_currentPopulation[

agentIndex][dim]);

403 }

404 std::cout << "current position at link " << dim << "

after is " << mutants[agentIndex][dim] << std::endl;

405 }

406 }

407 break;

408

409 _mutant = mutants[agentIndex];

410 }

411 }

412

413 void DifferentialEvolution :: selection(uint agentIndex , std::vector <int >

mutant) {

414 double mutant_fitness = calcFitness(mutant);

415 if (mutant_fitness < _popFitnesses[agentIndex]) {

416 _currentPopulation[agentIndex] = mutant;

417 _popFitnesses[agentIndex] = mutant_fitness;

418 }

419 }

420

421 void DifferentialEvolution ::Run() {

422 generatePopulation ();

423 double _avgCostSwarm = 0;

424 for (uint iter =0; iter < _maxIterations; iter ++) {

425 _popFitnesses.clear();

426 _avgCostSwarm = 0;

427 _currentBestFitness = INFINITY;

428

429 for (uint pos =0; pos < _currentPopulation.size(); pos ++) {

430

431 double cost = calcFitness(_currentPopulation[pos]);

432 _avgCostSwarm = _avgCostSwarm + (cost - _avgCostSwarm)/(pos

+1);

433 if (cost < _currentBestCostIndividual[pos]) {

322

434 _currentBestCostIndividual[pos] = cost;

435 _currentBestPositionIndividual[pos] = _currentPopulation[

pos];

436 }

437 std::cout << "current best cost of individual " << pos << " =

" << _currentBestCostIndividual[pos] << std::endl;

438

439 if (cost < _currentBestFitness) {

440 _currentBestFitness = cost;

441 _currentBestPosition = _currentPopulation[pos];

442 }

443 std::cout << "current best cost of population = " <<

_currentBestFitness << std::endl;

444 updatePosition(pos);

445 selection(pos , _mutant);

446 }

447 bestFitnessesFile << _currentBestFitness << std::endl;

448 avgFitnessesFile << _avgCostSwarm << ", " << calcStdError(

_popFitnesses , _avgCostSwarm) << std::endl;

449 std::cout << "best cost of population at iteration " << iter << "

= " << _currentBestFitness << std::endl;

450 std::cout << "average cost of population at iteration " << iter

<< " = " << _avgCostSwarm << std::endl;

451 }

452 std::cout << std::endl;

453 }

454

455

456 } // namespace ns3

Appendix F

Class definition and

implementation of Particle

Swarm Optimisation for CA

1 /* -*- Mode:C++; c-file -style :"gnu"; indent -tabs -mode:nil; -*- */

2 #ifndef PARTICLE_SWARM_H

3 #define PARTICLE_SWARM_H

4

5 #include <vector >

6 #include <random >

7 #include <map >

8 #include <string >

9

10 #include "ns3/global.h"

11 #include "ns3/random -variable -stream.h"

12

13 namespace ns3 {

14

15

16 class ParticleSwarm

17 {

18 public:

19 ParticleSwarm(std::vector <std::pair <int , int >> links , uint numNodes ,

uint numInterfaces , std::vector <int > channels , uint numParticles , uint

maxIterations , uint32_t Seed , int psoVariant , double eta1 , double

omega);

20 // std::map <int ,int > generateParticle ();

21 std::vector <int > generateParticle ();

22 void generateSwarm ();

23 double calcCostFunction ();

24 void updatePosition(uint particleIndex);

323

324

25 void updateVelocity(uint particleIndex);

26 void updateOmega ();

27 void Run();

28 void ParticleLoop(int particleIndex);

29 std:: ofstream bestPositionsFile;

30 std:: string bestPositionsFilename;

31 std:: ofstream avgPositionsFile;

32 std:: string avgPositionsFilename;

33 std:: ofstream avgBestPositionsFile;

34 std:: string avgBestPositionsFilename;

35 std:: ofstream overallBestPositionsFile;

36 std:: string overallBestPositionsFilename;

37 std::vector <int > badCostCounter;

38 double cost;

39 double _overallBestCostGroup;

40

41 private:

42 uint _numLinks;

43 uint _numChannels;

44 uint _numNodes;

45 uint _numInterfaces;

46 std::vector <int > _channels;

47 std::vector <int > _channelIndexes;

48 std::vector <std::pair <int ,int >> _links;

49 // std::vector <std::map <int ,int >> _bestPositionIndividual;

50 std::vector <std::vector <int >> _bestIndividualPositions;

51 // std::map <int ,int > _bestPositionGroup;

52 std::vector <int > _bestPositionSwarm;

53 // std::map <int ,int > _currentPosition;

54 std::vector <int > _currentPosition;

55 // std::vector <std::map <int ,int >> _currentPositions;

56 std::vector <std::vector <int >> _currentPositionsSwarm;

57 std::vector <double > _currentBestCostIndividual;

58 // std::map <int ,int >:: iterator position_it;

59 // std::map <int ,int >:: iterator bestPositionIndividual_it;

60 double _avgCostSwarm;

61 double _currentBestCostGroup;

62 uint _numParticles;

63 uint _maxIterations;

64 uint32_t _seed;

65 uint _algIter;

66 double _omega;

67 double _omega_initial;

68 double _omega_final;

69 double _eta1;

70 double _eta2;

71 double _maxVelocity;

72 std::vector <double > _minV;

325

73 std::vector <double > _maxV;

74 std::vector <std::vector <double >> _particleVelocities;

75 int _psoVariant;

76 std::vector <double > _swarmFitnesses;

77 bool _adaptive;

78 double _avgBestCostsSwarm;

79

80 // std::vector <double > position;

81 // std::vector <double > bestIndividualPosition;

82 };

83

84 }

85

86 #endif /* PARTICLE_SWARM_H */

1 /* -*- Mode:C++; c-file -style :"gnu"; indent -tabs -mode:nil; -*- */

2

3 #include "particle -swarm.h"

4 #include "ns3/mesh -sim.h"

5 #include <thread >

6

7

8 double calcStdError(std::vector <double > values , double mean) {

9 double stdDev = 0.0;

10

11 for (int i=0; i < int(values.size()); i++) {

12 stdDev += pow(values[i] - mean , 2);

13 }

14

15 stdDev = sqrt(stdDev/values.size());

16 double stdErr = stdDev / sqrt(values.size());

17 return stdErr;

18 }

19

20 namespace ns3 {

21

22 std::map <int , int > mapLinkChannel(uint numNodes , uint numInterfaces , std

::vector <std::pair <int ,int >> links , std::vector <int > channels) {

23 std::map <int , int > solution;

24 int channelIndex = 0;

25 uint numLinks = links.size();

26 int channel;

27 std::cout << "number of links: = " << numLinks << "\n";

28 std::map <int ,int > numChannelsAssigned;

29 std::map < int , std::vector <int > > channelsAssigned;

30 for (int n=0; n<int(numNodes); n++) {

31 numChannelsAssigned[n] = 0;

32 }

326

33

34 int maxChannel = channels.size() -1;

35

36 for (int n=0; n<int(numLinks); n++) {

37 std::cout << "n=" << n << "\n";

38 // std::cout << "number of channels assigned to node " << links[n].

first << " is " << channelsAssigned[links[n]. first].size() << "\n";

39 // std::cout << "number of channels assigned to node " << links[n].

second << " is " << channelsAssigned[links[n]. second].size() << "\n";

40 if ((channelsAssigned[links[n].first].size() < numInterfaces) &&

(channelsAssigned[links[n]. second].size() < numInterfaces)) {

41 channel = channels[channelIndex];

42 // std:: cout << "selected channel is " << channel << "\n";

43 channelsAssigned[links[n]. first]. push_back ({ channel });

44 channelsAssigned[links[n]. second]. push_back ({ channel });

45 // std::cout << "number of channels assigned to node " <<

links[n]. first << " is " << channelsAssigned[links[n]. first].size() <<

"\n";

46 // std::cout << "number of channels assigned to node " <<

links[n]. second << " is " << channelsAssigned[links[n]. second].size()

<< "\n";

47 // solution.insert ({ n, channel });

48 }

49 else if ((channelsAssigned[links[n].first].size() ==

numInterfaces) && (channelsAssigned[links[n]. second].size() <

numInterfaces)) {

50 std::vector <int > new_vec;

51 std::sort(channelsAssigned[links[n]. first]. begin(),

channelsAssigned[links[n]. first].end());

52 std::sort(channelsAssigned[links[n]. second]. begin(),

channelsAssigned[links[n]. second].end());

53 std:: set_intersection(channelsAssigned[links[n]. first]. begin

(), channelsAssigned[links[n].first].end(),

54 channelsAssigned[links[n]. second]. begin

(), channelsAssigned[links[n]. second].end(),

55 std:: back_inserter(new_vec));

56 if (new_vec.size()!=0){

57 channel = new_vec [0];

58 }

59 else{

60 channel = channelsAssigned[links[n]. first][rand()%2];

61 channelsAssigned[links[n]. second]. push_back(channel);

62 }

63 // std:: cout << "selected channel is " << channel << "\n";

64 // std::cout << "number of channels assigned to node " <<

links[n]. first << " is " << channelsAssigned[links[n]. first].size() <<

"\n";

327

65 // std::cout << "number of channels assigned to node " <<

links[n]. second << " is " << channelsAssigned[links[n]. second].size()

<< "\n";

66 // solution.insert ({ n, channel });

67 }

68 else if ((channelsAssigned[links[n].first].size() < numInterfaces

) && (channelsAssigned[links[n]. second].size() == numInterfaces)) {

69 std::vector <int > new_vec;

70 std::sort(channelsAssigned[links[n]. first]. begin(),

channelsAssigned[links[n]. first].end());

71 std::sort(channelsAssigned[links[n]. second]. begin(),

channelsAssigned[links[n]. second].end());

72 std:: set_intersection(channelsAssigned[links[n]. first]. begin

(), channelsAssigned[links[n].first].end(),

73 channelsAssigned[links[n]. second]. begin

(), channelsAssigned[links[n]. second].end(),

74 std:: back_inserter(new_vec));

75 if (new_vec.size()!=0){

76 channel = new_vec [0];

77 }

78 else{

79 channel = channelsAssigned[links[n]. second][rand()%2];

80 channelsAssigned[links[n]. first]. push_back(channel);

81 }

82 // std:: cout << "selected channel is " << channel << "\n";

83 // std::cout << "number of channels assigned to node " <<

links[n]. first << " is " << channelsAssigned[links[n]. first].size() <<

"\n";

84 // std::cout << "number of channels assigned to node " <<

links[n]. second << " is " << channelsAssigned[links[n]. second].size()

<< "\n";

85 // solution.insert ({ n, channel });

86 }

87 else {

88 // std::cerr << "Both interfaces of both nodes already

assigned channels\n";

89 std::vector <int > new_vec;

90 std::sort(channelsAssigned[links[n]. first]. begin(),

channelsAssigned[links[n]. first].end());

91 std::sort(channelsAssigned[links[n]. second]. begin(),

channelsAssigned[links[n]. second].end());

92 std:: set_intersection(channelsAssigned[links[n]. first]. begin

(), channelsAssigned[links[n].first].end(),

93 channelsAssigned[links[n]. second]. begin

(), channelsAssigned[links[n]. second].end(),

94 std:: back_inserter(new_vec));

95 if (new_vec.size()!=0){

96 channel = new_vec [0];

328

97 // std:: cout << "selected channel is " << channel << "\n";

98 // solution.insert ({ n, channel });

99 }

100 else {

101 std::cerr << "There is no channel in common for nodes " <<

links[n]. first << " and " << links[n]. second << "\n";

102 continue;

103 }

104

105 }

106 solution.insert ({ n, channel });

107

108 if (channelIndex < maxChannel) {

109 channelIndex ++;

110 }

111 else {

112 channelIndex =0;

113 }

114 }

115 std::cout << "channels assigned: ";

116 for (int counter =0; counter < int(numNodes); counter ++) {

117 std::cout << "node: " << counter << ", channels: " <<

channelsAssigned[counter][0] << ", " << channelsAssigned[counter][1]

<< "\n";

118 }

119 return solution;

120 }

121

122 // std::map <int , int > mapLinkChannel(int numLinks , std::vector <int >&

channelIndexes) {

123 // std::map <int , int > solution;

124 // int cii = 0;

125 // int maxChannel = channelIndexes.size() -1;

126 // std::cout << "initialized variables in mapLinkChannel\n";

127

128 // for (int n=0; n<numLinks; n++) {

129 // std::cout << "n = "<< n << std::endl;

130 // // solution.insert ({ n, channels[channelIndex] });

131 // std::cout << "channelIndex chosen is " << channelIndexes[cii]

<< std::endl;

132 // solution.insert ({ n, channelIndexes[cii] });

133 // std::cout << "solution at " << n << " has channel index " <<

channelIndexes[cii] << std::endl;

134 // if (cii < maxChannel) {

135 // cii ++;

136 // }

137 // else {

138 // cii =0;

329

139 // }

140 // }

141 // return solution;

142 // }

143

144 ParticleSwarm :: ParticleSwarm(std::vector <std::pair <int , int >> links , uint

numNodes , uint numInterfaces , std::vector <int > channels , uint

numParticles , uint maxIterations , uint32_t Seed , int psoVariant =1,

double eta1 =2.05, double omega =0.72984)

145 {

146 _links = links;

147 _numLinks = links.size();

148 _channels = channels;

149 _numChannels = _channels.size();

150 _numNodes = numNodes;

151 _numInterfaces = numInterfaces;

152 _numParticles = numParticles;

153 _maxIterations = maxIterations;

154 _currentBestCostGroup = INFINITY;

155 _avgCostSwarm = 0;

156 _algIter = 0;

157 _psoVariant = psoVariant;

158 std::cout << "PSO Variant " << _psoVariant << " selected\n";

159 _seed = Seed;

160 _algIter = 0;

161 _eta1 = eta1;

162 // _eta2 = 4.1 - _eta1;

163 _eta2 = 4.1 - _eta1;

164

165 _omega = omega;

166 _adaptive = false;

167 if (_omega == 0) {

168 _adaptive = true;

169 }

170 _omega_final = 0.4;

171 _omega_initial = 0.9;

172

173 _channelIndexes.resize(_numChannels);

174 std::iota(_channelIndexes.begin(), _channelIndexes.end(), 0);

175 std::cout << "channel indexes: \n";

176 std::vector <int >:: iterator vit;

177 for (vit = _channelIndexes.begin(); vit != _channelIndexes.end(); vit

++) {

178 std::cout << "channel index = " << *vit << " ; channel = " <<

_channels [*vit] << std::endl;

179 }

180

181 for (int l=0; l < int(_numLinks); l++) {

330

182 _currentPosition.push_back (14);

183 }

184

185 _particleVelocities.resize(_numParticles);

186 for (int i=0; i < int(_numParticles); i++) {

187 for (int l=0; l < int(_numLinks); l++) {

188 _particleVelocities[i]. push_back (0);

189 }

190 }

191 std::cout << "initialized _particleVelocities\n";

192

193 for (int n=0; n < int(_numParticles); n++) {

194 _currentBestCostIndividual.push_back(INFINITY);

195 }

196 std::cout << "initialized _currentBestCostIndividual\n";

197

198 bestPositionsFilename = "

best_Positions_PSO_interference_helper_round_pos_variant_" + std::

to_string(_psoVariant) + "_eta1_" + std:: to_string(_eta1) + "_omega_"

+ std:: to_string(_omega) + "_" + std:: to_string(numNodes) + "

_nodes_swarm_size_" + std:: to_string(_numParticles) + "_maxIter_" +

std:: to_string(_maxIterations) + "

_with_bad_replacement_5_2_interferers_all_links_1.txt";

199 avgPositionsFilename = "

avg_Positions_PSO_interference_helper_round_pos_variant_" + std::

to_string(_psoVariant) + "_eta1_" + std:: to_string(_eta1) + "_omega_"

+ std:: to_string(_omega) + "_" + std:: to_string(numNodes) + "

_nodes_swarm_size_" + std:: to_string(_numParticles) + "_maxIter_" +

std:: to_string(_maxIterations) + "

_with_bad_replacement_5_2_interferers_all_links_1.txt";

200

201 // bestPositionsFilename = "

best_Positions_PSO_interference_helper_round_pos_variant_" + std::

to_string(_psoVariant) + "_eta1_" + std:: to_string(_eta1) + "

_adaptive_omega_" + std:: to_string(numNodes) + "_nodes_swarm_size_" +

std:: to_string(_numParticles) + "_maxIter_" + std:: to_string(

_maxIterations) + "_with_bad_replacement_5_2_interferers_all_links_2.

txt";

202 bestPositionsFile.open(bestPositionsFilename.c_str (), std::ios::out |

std::ios::app);

203 if (! bestPositionsFile) {

204 std::cerr << "can’t open best fitness file" << std::endl;

205 }

206

331

207 // avgPositionsFilename = "

avg_Positions_PSO_interference_helper_round_pos_variant_" + std::

to_string(_psoVariant) + "_eta1_" + std:: to_string(_eta1) + "

_adaptive_omega_" + std:: to_string(numNodes) + "_nodes_swarm_size_" +

std:: to_string(_numParticles) + "_maxIter_" + std:: to_string(

_maxIterations) + "_with_bad_replacement_5_2_interferers_all_links_2.

txt";

208 avgPositionsFile.open(avgPositionsFilename.c_str(), std::ios::out |

std::ios::app);

209 if (! avgPositionsFile) {

210 std::cerr << "can’t open average fitness file" << std::endl;

211 }

212

213 // avgBestPositionsFilename = "

avg_best_Positions_dBm_round_pos_PSO_variant_" + std:: to_string(

_psoVariant) + "_eta1_" + std:: to_string(_eta1) + "_omega_" + std::

to_string(_omega) + "_" + std:: to_string(numNodes) + "

_nodes_swarm_size_" + std:: to_string(_numParticles) + "_maxIter_" +

std:: to_string(_maxIterations) + "

_with_bad_replacement_2_interferers_all_links.txt";

214 // avgBestPositionsFile.open(avgBestPositionsFilename.c_str (), std::

ios::out | std::ios::app);

215 // if (! avgBestPositionsFile) {

216 // std::cerr << "can’t open average of best fitnesses file" <<

std::endl;

217 // }

218

219 // overallBestPositionsFilename = "

overall_best_Positions_dBm_round_pos_PSO_variant_" + std:: to_string(

_psoVariant) + "_eta1_" + std:: to_string(_eta1) + "_omega_" + std::

to_string(_omega) + "_" + std:: to_string(numNodes) + "

_nodes_swarm_size_" + std:: to_string(_numParticles) + "_maxIter_" +

std:: to_string(_maxIterations) + "

_with_bad_replacement_2_interferers_all_links.txt";

220 // overallBestPositionsFile.open(overallBestPositionsFilename.c_str ()

, std::ios::out | std::ios::app);

221 // if (! overallBestPositionsFile) {

222 // std::cerr << "can’t open overall best fitness file" << std::

endl;

223 // }

224 }

225

226 std::vector <int > ParticleSwarm :: generateParticle ()

227 {

228 std::cout << "generating particle\n";

229 // std:: random_shuffle(std::begin(_links), std::end(_links));

230 // std:: random_shuffle(std::begin(_channels), std::end(_channels));

332

231 std:: random_shuffle(std:: begin(_channelIndexes), std::end(

_channelIndexes));

232

233 // return mapLinkChannel(_links.size(), _channelIndexes);

234 std::map <int ,int > linkChannelMap = mapLinkChannel(_numNodes ,

_numInterfaces , _links , _channelIndexes);

235 std::map <int ,int >:: iterator map_iter;

236 std::vector <int > particle(_numLinks , 0);

237 for (map_iter = linkChannelMap.begin(); map_iter != linkChannelMap.

end(); map_iter ++) {

238 std::cout << "link: " << map_iter ->first << "channel: " <<

map_iter ->second << std::endl;

239 particle[map_iter ->first] = map_iter ->second;

240 }

241 return particle;

242 }

243

244 void ParticleSwarm :: generateSwarm ()

245 {

246 std::cout << "generating swarm\n";

247 std::vector <int > particle;

248 std::vector <int >:: iterator it;

249

250 for (int i=0; i < int(_numParticles); i++) {

251 particle = generateParticle ();

252 _currentPositionsSwarm.push_back(particle);

253 _bestIndividualPositions.push_back(particle);

254

255 std::cout << "\nparticle: \n";

256 int link = 0;

257 for(it=particle.begin(); it!= particle.end(); it++) {

258 std::cout << link << " - " << *it << std::endl;

259 link ++;

260 }

261 }

262 }

263

264 double ParticleSwarm :: calcCostFunction ()

265 {

266 //run simulation , getting SNR value sample , get average SNR , write to

file , read it here

267 MeshSim mesh(_channels , _numNodes);

268 std::cout << "mesh sim is running ...\n";

269 std::map <int ,int > linkChannelMap;

270 std::map <int ,int >:: iterator map_it;

271 std::vector <int >:: iterator it;

272 for (it = _currentPosition.begin(); it != _currentPosition.end(); it

++) {

333

273 if (*it == 14) {

274 std::cerr << "channel at index " << _channelIndexes [*it] << "

at position " << it-_currentPosition.begin () << " is " << _channels[

_channelIndexes [*it]] << " !\n";

275 *it = rand()%_numChannels;

276 std::cout << "new random channel index chosen = " << *it <<

std::endl;

277 }

278 }

279

280 std::cout << "Building linkChannelMap\n";

281 for (int link =0; link < int(_numLinks); link ++) {

282 linkChannelMap.insert ({ link , _channels[_channelIndexes[

_currentPosition[link]]]});

283 std::cout << link << "->" << _channels[_channelIndexes[

_currentPosition[link]]] << std::endl;

284 }

285

286 double cost;

287 double snr = mesh.Run(linkChannelMap , _links);

288 // if (snr == 0.0) {

289 // cost = RAND_MAX;

290 // }

291 // else {

292 // cost = 100/ snr;

293 // }

294 // cost = 100/ snr;

295 cost = 10000000000/ snr;

296 if (cost == INFINITY) {

297 cost = RAND_MAX;

298 }

299

300 _swarmFitnesses.push_back(cost);

301 std::cout << "Result: " << cost << "\n";

302 return cost;

303 }

304

305 void ParticleSwarm :: updatePosition(uint particleIndex)

306 {

307 /***** bare bones PS method using normal distribution per dimensions (

link number)*****/

308 /*

*/

309 // for (uint j=0; j<_numLinks; j++) {

310 // double mean = 0.5*(_bestPositionGroup[j] +

_bestPositionIndividual[particleIndex][j]);

334

311 // double stddev = _bestPositionGroup[j] -

_bestPositionIndividual[particleIndex][j];

312 // // int channelIndex;

313

314 // Ptr <NormalRandomVariable > x = CreateObject <

NormalRandomVariable > ();

315 // x->SetAttribute ("Mean", DoubleValue (mean));

316 // x->SetAttribute (" Variance", DoubleValue (pow(stddev , 2)));

317 // // bound by allowed channel indexes (include 0) for this

rather than the frequency limits of the whole band

318 // x->SetAttribute ("Bound", DoubleValue (_numChannels /2));

319

320 // // double rnd = x->GetValue ();

321 // // std::cout << "random normal value is: " << rnd << std::endl

;

322 // // // round down value

323 // // if (rnd < 0) {

324 // // channelIndex = ceil(rnd);

325 // // }

326 // // else {

327 // // channelIndex = floor(rnd);

328 // // }

329

330 // // if (channelIndex > (int(_numChannels) -1)) {

331 // // channelIndex = channelIndex - _numChannels;

332 // // }

333 // // else if (channelIndex < 0) {

334 // // channelIndex = channelIndex + _numChannels;

335 // // }

336

337 // // if ((channelIndex < 0) || (channelIndex > int(_numChannels)

-1)) {

338 // // std::cerr << "Channel index " << channelIndex << " is

out of bounds !\n";

339 // // }

340

341 // uint channelIndex = x->GetInteger ();

342 // std::cout << "random normal value is: " << channelIndex << std

::endl;

343

344 // if (channelIndex > (_numChannels -1)) {

345 // channelIndex = channelIndex - _numChannels;

346 // }

347 // else if (channelIndex < 0) {

348 // channelIndex = channelIndex + _numChannels;

349 // }

350

351 // if ((channelIndex < 0) || (channelIndex > _numChannels -1)) {

335

352 // std::cerr << "Channel index " << channelIndex << " is out

of bounds !\n";

353 // }

354

355 // // channelIndex = rand() % _channels.size();

356

357 // std::cout << "channel chosen for link " << j << " is " <<

_channels[channelIndex] << std::endl;

358 // _currentPosition[j] = _channels[channelIndex];

359 // }

360

361 /***** canonical PSO method updating particle position according to

velocity *****/

362 /*

*/

363 updateVelocity(particleIndex);

364 for (uint j=0; j<_numLinks; j++) {

365 // std::cout << "current position at link " << j << " before is "

<< _currentPositions[particleIndex][j] << std::endl;

366 // _currentPosition[j] = _currentPosition[j] +

_particleVelocities[particleIndex][j];

367

368 _currentPositionsSwarm[particleIndex][j] = int(round(

_currentPosition[j] + _particleVelocities[particleIndex][j]));

369

370 while (_currentPositionsSwarm[particleIndex][j] > (int(

_numChannels) -1)) {

371 _currentPositionsSwarm[particleIndex][j] =

_currentPositionsSwarm[particleIndex][j] - _numChannels;

372 }

373 while (_currentPositionsSwarm[particleIndex][j] < 0) {

374 _currentPositionsSwarm[particleIndex][j] =

_currentPositionsSwarm[particleIndex][j] + _numChannels;

375 }

376

377 if ((_currentPositionsSwarm[particleIndex][j] < 0) || (

_currentPositionsSwarm[particleIndex][j] > int(_numChannels) -1)) {

378 std::cerr << "Channel index " << _currentPositionsSwarm[

particleIndex][j] << " is out of bounds !\n";

379 }

380 std::cout << "current position at link " << j << " after is " <<

_currentPositionsSwarm[particleIndex][j] << std::endl;

381 }

382

383 // std::map <int ,int >:: iterator j;

384 // for (j=_currentPositions[particleIndex].begin (); j !=

_currentPositions[particleIndex].end(); ++j) {

336

385 // // std::cout << "current position at link " << j << " before

is " << _currentPositions[particleIndex][j] << std::endl;

386 // // _currentPosition[j] = _currentPosition[j] +

_particleVelocities[particleIndex][j];

387

388 // j->second = std:: advance(j->second , _particleVelocities[

particleIndex][j]);

389

390 // while (_currentPositions[particleIndex][j] > (int(_numChannels

) -1)) {

391 // _currentPositions[particleIndex][j] = _currentPositions[

particleIndex][j] - _numChannels;

392 // }

393 // while (_currentPositions[particleIndex][j] < 0) {

394 // _currentPositions[particleIndex][j] = _currentPositions[

particleIndex][j] + _numChannels;

395 // }

396

397 // if ((_currentPositions[particleIndex][j] < 0) || (

_currentPositions[particleIndex][j] > int(_numChannels) -1)) {

398 // std::cerr << "Channel index " << _currentPositions[

particleIndex][j] << " is out of bounds !\n";

399 // }

400 // std::cout << "current position at link " << j << " after is "

<< _currentPositions[particleIndex][j] << std::endl;

401 // }

402 }

403

404 void ParticleSwarm :: updateVelocity(uint particleIndex)

405 {

406 double r1 = 0;

407 double r2 = 0;

408

409 switch (_psoVariant) {

410 case 1:

411 default:

412 /*PSO 1*/

413 /***** canonical PSO method with omega inertia weight -

Original algorithm (2007) *****/

414 /*

*/

415 // for (uint d=0; d<_numLinks; d++) {

416 // r1 = (double) rand()/RAND_MAX;

417 // r2 = (double) rand()/RAND_MAX;

337

418 // double raw_velocity = _omega * _particleVelocities[

particleIndex][d] + _eta1 * r1 * (_bestPositionIndividual[

particleIndex][d] - _currentPositions[particleIndex][d]) + _eta2 * r2

* (_bestPositionGroup[d] - _currentPositions[particleIndex][d]);

419 // // std::cout << "raw_velocity = " << raw_velocity <<

std::endl;

420 // _particleVelocities[particleIndex][d] = int(round(

raw_velocity));

421 // // std::cout << "end velocity = " <<

_particleVelocities[particleIndex][d] << std::endl;

422 // }

423 for (int d=0; d<int(_numLinks); d++) {

424 r1 = (double) rand()/RAND_MAX;

425 r2 = (double) rand()/RAND_MAX;

426 double raw_velocity;

427 // std::cout << "_particleVelocities[particleIndex][d] =

" << _particleVelocities[particleIndex][d] << std::endl;

428 // std::cout << "_bestIndividualPositions[particleIndex][

d] = " << _bestIndividualPositions[particleIndex][d] << std::endl;

429 // std::cout << "_currentPosition[d] = " <<

_currentPosition[d] << std::endl;

430 // std::cout << "_bestPositionSwarm[d]" <<

_bestPositionSwarm[d] << std::endl;

431

432 if (_bestIndividualPositions[particleIndex][d] &&

_currentPosition[d]) {

433 raw_velocity = _omega * _particleVelocities[

particleIndex][d] + _eta1 * r1 * (_bestIndividualPositions[

particleIndex][d] - _currentPosition[d]) + _eta2 * r2 * (

_bestPositionSwarm[d] - _currentPosition[d]);

434 // std::cout << "raw_velocity = " << raw_velocity <<

std::endl;

435 // _particleVelocities[particleIndex][d] = int(round(

raw_velocity));

436 _particleVelocities[particleIndex][d] = raw_velocity;

437 }

438 else {

439 raw_velocity = 0.0;

440 }

441 // std::cout << "end velocity = " << _particleVelocities[

particleIndex][d] << std::endl;

442 }

443 break;

444

445 case 2:

446 /*PSO 2*/

447 /***** canonical PSO method with omega inertia weight - only 1

random variable for social and cognitive components *****/

338

448 /*

*/

449 for (uint d=0; d<_numLinks; d++) {

450 r1 = (double) rand()/RAND_MAX;

451 double raw_velocity = _omega * _particleVelocities[

particleIndex][d] + _eta1 * r1 * (_bestIndividualPositions[

particleIndex][d] - _currentPosition[d]) + _eta2 * r1 * (

_bestPositionSwarm[d] - _currentPosition[d]);

452 // std::cout << "raw_velocity = " << raw_velocity << std

::endl;

453 _particleVelocities[particleIndex][d] = int(round(

raw_velocity));

454

455 // std::cout << "end velocity = " << _particleVelocities[

particleIndex][d] << std::endl;

456 }

457 break;

458

459 case 3:

460 /*PSO 3*/

461 /***** PSO variant - same random numbers for all dimensions

*****/

462 /*

*/

463 r1 = (double) rand()/RAND_MAX;

464 r2 = (double) rand()/RAND_MAX;

465 for (uint d=0; d<_numLinks; d++) {

466 double raw_velocity = _omega * _particleVelocities[

particleIndex][d] + _eta1 * r1 * (_bestIndividualPositions[

particleIndex][d] - _currentPosition[d]) + _eta2 * r2 * (

_bestPositionSwarm[d] - _currentPosition[d]);

467 // std::cout << "raw_velocity = " << raw_velocity << std

::endl;

468 _particleVelocities[particleIndex][d] = int(round(

raw_velocity));

469 // std::cout << "end velocity = " << _particleVelocities[

particleIndex][d] << std::endl;

470 }

471 break;

472

473 case 4:

474 /*PSO 4*/

475 /***** PSO variant - same random numbers for all components

and dimensions *****/

339

476 /*

*/

477 r1 = (double) rand()/RAND_MAX;

478 for (uint d=0; d<_numLinks; d++) {

479 double raw_velocity = _omega * _particleVelocities[

particleIndex][d] + _eta1 * r1 * (_bestIndividualPositions[

particleIndex][d] - _currentPosition[d]) + _eta2 * r1 * (

_bestPositionSwarm[d] - _currentPosition[d]);

480 // std::cout << "raw_velocity = " << raw_velocity << std

::endl;

481 _particleVelocities[particleIndex][d] = int(round(

raw_velocity));

482 // std::cout << "end velocity = " << _particleVelocities[

particleIndex][d] << std::endl;

483 }

484 break;

485

486 case 5:

487 /*PSO 5*/

488 /***** PSO variant with constriction coefficient according to

Clerk *****/

489 /*

*/

490 r1 = (double) rand()/RAND_MAX;

491 for (uint d=0; d<_numLinks; d++) {

492 double raw_velocity = _omega * (_particleVelocities[

particleIndex][d] + _eta1 * r1 * (_bestIndividualPositions[

particleIndex][d] - _currentPosition[d]) + _eta2 * r1 * (

_bestPositionSwarm[d] - _currentPosition[d]));

493 // std::cout << "raw_velocity = " << raw_velocity << std

::endl;

494 _particleVelocities[particleIndex][d] = int(round(

raw_velocity));

495 // std::cout << "end velocity = " << _particleVelocities[

particleIndex][d] << std::endl;

496 }

497 break;

498

499 case 6:

500 /*PSO 6*/

501 /***** Fully Informed Particle Swarm *****/

502 /*

*/

503 double sum_forces = 0;

504 double a = _eta1 + _eta2;

340

505 r1 = (double) rand()/RAND_MAX;

506 for (uint d=0; d<_numLinks; d++) {

507 sum_forces += r1 * a * (_bestPositionSwarm[d] -

_currentPositionsSwarm[particleIndex][d]);

508 // std::cout << "raw_velocity = " << raw_velocity << std

::endl;

509 double raw_velocity = _omega * (_particleVelocities[

particleIndex][d] + sum_forces) / static_cast <double >(_numParticles);

510 _particleVelocities[particleIndex][d] = int(round(

raw_velocity));

511 // std::cout << "end velocity = " << _particleVelocities[

particleIndex][d] << std::endl;

512 }

513 break;

514 }

515 }

516

517 void ParticleSwarm :: updateOmega ()

518 {

519 _omega = _omega_final + (_maxIterations - _algIter)/_maxIterations *(

_omega_initial -_omega_final);

520 }

521

522

523 void ParticleSwarm :: ParticleLoop(int i) {

524 cost = 0;

525 // /*my addition to replace bad particles -- 10 is arbitrary and can

change */

526 if (badCostCounter[i] > 5) {

527 _currentPositionsSwarm[i] = generateParticle ();

528 badCostCounter[i] = 0;

529 }

530 //

/**/

531

532 _currentPosition = _currentPositionsSwarm[i];

533 cost = calcCostFunction ();

534 std::cout << "COST = " << cost << std::endl;

535 _avgCostSwarm = _avgCostSwarm + (cost - _avgCostSwarm)/(i+1);

536 std::cout << "AVG = " << _avgCostSwarm << std::endl;

537

538 if (cost < _currentBestCostIndividual[i]) {

539 _currentBestCostIndividual[i] = cost;

540 _bestIndividualPositions[i] = _currentPosition;

541 }

542

543 if (cost < _currentBestCostGroup) {

341

544 _currentBestCostGroup = cost;

545 _bestPositionSwarm = _currentPosition;

546 }

547

548 if (cost < _overallBestCostGroup) {

549 _overallBestCostGroup = cost;

550 }

551

552 std::cout << "current best cost for individual " << i << " is " <<

_currentBestCostIndividual[i] << std::endl;

553 _avgBestCostsSwarm = _avgBestCostsSwarm + (_currentBestCostIndividual

[i] - _avgBestCostsSwarm)/(i+1);

554

555 // // /*my addition to replace bad particles -- factor 50 is

arbitrary and can change */

556 if (cost > 50* _currentBestCostIndividual[i]) {

557 badCostCounter[i]++;

558 }

559 // //

/**/

560 updatePosition(i);

561 if (_adaptive == true) {

562 updateOmega ();

563 }

564 }

565

566 void ParticleSwarm ::Run()

567 {

568 std::cout << "running PSA optimization ...\n";

569 generateSwarm ();

570 cost = 0;

571 double _overallBestCostGroup = INFINITY;

572 badCostCounter.resize(_numParticles);

573

574 /***main loop***/

575 while (_algIter < _maxIterations) {

576 _avgCostSwarm = 0.0;

577 _avgBestCostsSwarm = 0.0;

578

579 /* *********** new ************* */

580 _currentBestCostGroup = INFINITY;

581 /* *************************** */

582

583 _swarmFitnesses.clear ();

584 std::vector <std::thread > threads;

585

586 for (int i=0; i < int(_numParticles); i++) {

342

587 // /*my addition to replace bad particles -- 10 is arbitrary

and can change */

588 if (badCostCounter[i] > 5) {

589 _currentPositionsSwarm[i] = generateParticle ();

590 badCostCounter[i] = 0;

591 }

592 //

/**/

593

594 _currentPosition = _currentPositionsSwarm[i];

595 cost = calcCostFunction ();

596 std::cout << "COST = " << cost << std::endl;

597 _avgCostSwarm = _avgCostSwarm + (cost - _avgCostSwarm)/(i+1)

;

598 std::cout << "AVG = " << _avgCostSwarm << std::endl;

599

600 if (cost < _currentBestCostIndividual[i]) {

601 _currentBestCostIndividual[i] = cost;

602 _bestIndividualPositions[i] = _currentPosition;

603 }

604

605 if (cost < _currentBestCostGroup) {

606 _currentBestCostGroup = cost;

607 _bestPositionSwarm = _currentPosition;

608 }

609

610 if (cost < _overallBestCostGroup) {

611 _overallBestCostGroup = cost;

612 }

613

614 std::cout << "current best cost for individual " << i << " is

" << _currentBestCostIndividual[i] << std::endl;

615 _avgBestCostsSwarm = _avgBestCostsSwarm + (

_currentBestCostIndividual[i] - _avgBestCostsSwarm)/(i+1);

616

617 // // /*my addition to replace bad particles -- factor 50 is

arbitrary and can change */

618 if (cost > 50* _currentBestCostIndividual[i]) {

619 badCostCounter[i]++;

620 }

621 // //

/**/

622 updatePosition(i);

623 if (_adaptive == true) {

624 updateOmega ();

625 }

343

626 }

627

628 _algIter ++ ;

629 bestPositionsFile << _currentBestCostGroup << std::endl;

630 // overallBestPositionsFile << _overallBestCostGroup << std::endl

;

631 avgPositionsFile << _avgCostSwarm << ", " << calcStdError(

_swarmFitnesses , _avgCostSwarm) << std::endl;

632 // avgBestPositionsFile << _avgBestCostsSwarm << ", " <<

calcStdError(_currentBestCostIndividual , _avgBestCostsSwarm) << std::

endl;

633

634 std::cout << "current group best cost = " <<

_currentBestCostGroup << " at iteration " << _algIter << std::endl;

635 std::cout << "overall group best cost = " <<

_overallBestCostGroup << " at iteration " << _algIter << std::endl;

636 std::cout << "current average cost = " << _avgCostSwarm << " at

iteration " << _algIter << std::endl;

637 // std::cout << "current average best cost = " <<

_avgBestCostsSwarm << " at iteration " << _algIter << std::endl;

638 }

639 bestPositionsFile.close ();

640 avgPositionsFile.close();

641 }

642

643

644 } // namespace ns3

Appendix G

Measurement script

G.1 Measurement tool

1 # Authors: Natasha Zlobinsky , Richard Maliwatu

2 # version: 0.5

3 # First released: 26 January , 2016

4 # Last revised: 8 December , 2017

5 #

6 # DESCRIPTION: this script measures the throughput , signal strength , and

packet error

7 # for a given combination of channel , channel width , and tx -power values

8 #

9 # TROUBLESHOOTING: The script uses ssh to set parameters on the remote

host.

10 # So before running script ensure that there is connectivity between the

two nodes ,

11 # check that the channel and channel width are the same on both ends ,

12 # start iperf server manually: iperf -s

13 # we refer to the host running iperf server as the remote host.

14

15 # Time required to run the script to completion is approximately 67

minutes

16 # for four channels , three channelwidth values and four txpower values ,

and iperf timeout set to 150 seconds , ping packet count of 20

17 #

18 #

19 # REVISION NOTES:

20 # 0.6:

21 # added provision to use 3g modems to establish a control link

22 # 0.5:

23 # instead of geting signal strength and noise at a given instance , we get

multiple samples using a bash script while iperf is running

344

345

24 #

25 # 0.4:

26 # (i) we use iperf with the -r option to get throughput in both

directions

27 # (ii) we also get the signal strength and noise for both local and

remote node?

28 # (iv) To deal with the problem of measurement process breaking because a

link broke , when measuring performance of

29 # WiFi , we use the TVWS link to connect to the node and changes WiFi

link settings , and vice versa when measuring

30 # performance of TVWS. This idea can easily be extended to use as an

example , LTE link for control purposes.

31 # In previous versions , we used a single link for everything , which

proved problematic whenever

32 # the link broke.

33 # (v) For signal strength and noise , read <what?> file directly instead

of reading iwconfig output?

34 #

35 # 0.3

36 # we added ping command to get packet loss and round trip time (RTT)

37 #

38 # 0.2:

39 # Instead of sleeping in between commnds , this version runs command on

remote host and then run command on local host

40 # Then go back to remote host. The idea is that the time between

switching from remote node to local host and back to remote host

41 # is adequate for the script to run without triggering kernel panic.

Furthermore , this version uses pexpect to include ssh password in the

script

42 #

43 #

44 # INSTRUCTIONS:

45 # 1) Make sure there is connectivity between the nodes

46 # 2) Edit lines 128 -130 for parameter combinations of interest.

47 # For the script to run to completion smoothly , keep channelList at

two channels atmost

48 # 3) pull up terminal on laptop and ssh into "local" node

49 # 4) from "local" node terminal , ssh into "remote" node

50 # 5) Pull up another terminal instance on laptop and ssh into local node.

51 # *At this stage you have two terminals from which to control the two

nodes from.

52 # 6) start iperf server on remote host as follows:

53 # (i) iperf -s -f m

54 # (ii) CTRL + Z

55

56 # (iii) bg

57 # (iv) exit

58 # To terminate the process use: kiall -s kill iperf

346

59 #

60 # step (ii) pauses iperf server; step (iii) puts the paused process in

the background and resumes it.

61 # Step 6 (i-iv) is aimed at keeping the iperf server running even after

ssh session is terminated.

62 # Alternatively , iperf can be launced to run in the background as follows

: iperf -s -D

63 # 7) Run the script on the local host as follows:

64

65 # python tool_v5.py -i <interface(local)> -s <iperf server ip > -c <

controlLink > -r <Interface(remote)> -p <ssh password > -o <outfile >

66

67 # OUR CASE SPECIFIC NOTES:

68 # 1) Run script from node labelled "Ocean View" or "masi" because it

already has python 2.7 installed. Then use other node as "remote" node

.

69 #

70 #

71 # TODO LIST

72 # 1) save output to file on each iteration in case script terminates

ubruptly

73 # 2) handle case when signal samples file contains "unknown dBm" text

74 #

75 # 2) consider using iperf for packet loss , delay stats? (this is

currently only feasible when iperf is run in "udp throughput" mode)

76 # 3)

77 # 4) try ’-d’ iperf options for simultaneous bi -directional throughput.

NOTE: This requires a multithreaded version of iperf

78 # 5) include udp throughput?

79

80 import pexpect

81 import subprocess

82 import sys

83 import re

84 import csv

85 import getopt

86 import time

87 import signal

88 import math

89

90 #get the runtime arguments , display usage instructions

91 #in future use argparse module for elegant command line argument handling

instead of sys.argv

92

93 def usage():

94 print ’USAGE SYNTax: ’+ sys.argv [0]+’ -i <interface > -s <iperfServer

IP > -c <controlLink > -r <remoteInterface > -p <sshPassword > -o <outfile

>’

347

95

96 argv = sys.argv [1:]

97 if len(sys.argv) < 12: #spaces between options are counted too

98 print"MISSING SOME ARGUMENTS!"

99 usage()

100 sys.exit (2)

101 elif len(sys.argv) >13:

102 print "TOO MANY ARGUMENTS SUPPLIED!"

103 usage()

104 sys.exit (2)

105

106 interface = ’’ #wireless interface to run measurments on

107 iperfServer =’’ #iperf server IP address

108 remoteInterface = ’’#wireless interface on remote host

109 filename = ’’ #file to save to

110 controlLink = ’’ #ip address of remote node to use for control purposes

111

112 try:

113 options , args = getopt.getopt(argv , "h:i:s:c:r:p:o:", ["help","

interface=", "iperfServer=", "controlLink=", "remoteInterface=", "

sshPassword=", "outfile="])

114 except getopt.GetoptError:

115 print "INVALID ARGUMENTS SUPPLIED!"

116 usage()

117 sys.exit (2)

118 for opt , arg in options:

119 if opt in ("-h", "--help"):

120 usage()

121 sys.exit (2)

122 elif opt in ("-i", "--interface"):

123 interface = arg

124 elif opt in ("-s", "--iperfServer"):

125 iperfServer = arg

126 elif opt in ("-c", "--controlLink"):

127 controlLink = arg

128 elif opt in ("-r", "--remoteInterface"):

129 remoteInterface = arg

130 elif opt in ("-p", "--sshPassword"):

131 sshPassword = arg

132 elif opt in ("-o", "--outfile"):

133 filename = arg

134 else:

135 print "INVALID USAGE!"

136 usage()

137 sys.exit (2)

138

139

348

140 # The interface indices listed below are specific to our current radio

configuration

141 # Useful when setting things using uci command e.g. uci set wireless.

@wifi -device [2]. channel =40

142 if interface == "wlan2":

143 ifINDEX = "2"

144 elif interface == "wlan3":

145 ifINDEX = "3"

146 if remoteInterface == "wlan2":

147 remote_ifINDEX = "2"

148 elif remoteInterface == "wlan3":

149 remote_ifINDEX = "3"

150

151 #list of channel , channel widths , and txpower values to work with

152 #channelList = [’36’, ’40’, ’44’, ’48’] #use values as strings "" for

easy concatenation with cmd

153

154 #

155 # Pre -populate WiFi and TVWS channels to work with

156 # The assumption is that the nodes are configured identically

157 # i.e. wlan2 and wlan3 are the WiFi and TVWS interfaces respectively on

both nodes

158 #

159 if ifINDEX == "2":

160 channelList = [’36’,’40’, ’44’, ’48’] #5GHz WiFi channels

161 #channelList = [’36’,’40’]

162 #channelList = [’44’, ’48’]

163 #channelList = [’48’]

164 elif ifINDEX == "3":

165 channelList = [’1’,’4’, ’7’, ’11’] #TVWS channels

166 #channelList = [’1’,’4’]

167 #channelList = [’7’,’11’]

168 #channelList = [’1’]

169

170 channelWidthList = [’20’, ’10’, ’5’]

171 #channelWidthList = [’5’]

172 txPowerList = ["20", "15", "10", "5"]

173 #txPowerList = ["20" , "15", "10", "5"]

174 #txPowerList = ["15"]

175

176 pingPacketCount = "20" #number of packets to ping with

177 iperfTimeout = 150 #seconds be iperf gives up on trying to compute

throughput

178 signal_sample_interval = ’1’

349

179 signal_sample_duration = ’ 20 ’ #notice the space before and after value.

We choose 20 because iperf runs for 20 seconds (best case scenario)

180 autossh_forward_port = ’ -p 20000 ’ #port used to enable 3g control link

between A and B via ssh port forwarding

181 scp_forward_port = ’ -P 20000 ’ #scp uses capital P

182 #**

183 # Files

184 #***

185 temp_file_signal_noise = ’temp_signal -noise_samples.log’ # file to

temporarily keep signal strenght and noise values

186 temp_file_signal_noise_remote = "temp_signal_samples_remote.log" #when we

scp file , we name it this

187

188 #

**

189 # commands to execute on local node:

190 #

191 cmd_set_txPower = "uci set wireless.@wifi -device["+ ifINDEX +"]. txpower="

192 cmd_set_channel = "uci set wireless.@wifi -device["+ ifINDEX +"]. channel="

193 cmd_set_chanbw = "uci set wireless.@wifi -device["+ ifINDEX +"]. chanbw=" #

At the moment the nodes are set up such that: wlan3 = TVWS; wlan2 = 5

GHz wifi panel

194 cmd_uci_commit = "uci commit wireless" #this is all we need to commit ,

right?

195 cmd_reload_network_config = "/etc/init.d/network reload" #reload config

file or restart network service: etc/init.d/network restart

196 cmd_get_iw = "iwconfig "+ interface

197 cmd_get_ifconfig = "ifconfig "+ interface

198 cmd_get_iw = "iwinfo "+ interface +" info"

199 cmd_get_delay_and_packet_loss = "ping "+iperfServer +" -c "+

pingPacketCount #number of ping packets

200

201 # Ending command with "&" puts it in the background , which allowas us to

run it in the background while iperf computes throughput

202 # We use a basch script named "testsignal" and the usage: testsignal [

Interval (s)] [Total time(s)] [interface] [outfile]

203 # The Daeman runtime is INTERVAL x TIME seconds; NUMBER OF SAMPLES = TIME

204 cmd_get_signal_samples = "./ testsignal "+ signal_sample_interval +

signal_sample_duration + interface + " "+ temp_file_signal_noise + "

&" #run in the background

205 # Make sure the bash script "./ testsignal" does not write terminal

through STDOUT or STDERR i.e. comment out any "echo" statements

206 # If the bash script writes to stdout or stdrrm the script will not run

properly in the background

207

350

208 #

209 # SOME NOTES about iperf options:

210 # (i) -f --format specifies format to bring bandwidth number in (https ://

iperf.fr/iperf -doc.php)

211 # ’k’ = Kbits/sec , ’K’ = KBytes/sec , ’m’ = Mbits/sec , ’M’ = MBytes/sec

212 # (ii) -r measures throughput bi -directionally. By default iperf only

measures throughput from client to server.

213 # with the -r option , throughput is measured sequantially i.e. A->B and

then A<-B.

214 # (iii) The -d option would’ve been ideal because the throughputs A->B

and then A<-B are measured simultaneously.

215 # Howver , the -d option is supported in the single threaded iperf version

, which is what we have currently.

216 #

**

217 #cmd_get_throughput = "iperf -V -c "+ iperfServer +" -f m " #use this

flavour with -V to support ipv6 for iperf server addresss. This hangs

when used with -r option.

218 cmd_get_throughput = "iperf -c "+iperfServer +" -f m -r"

219

220

221

222

223 #

224 # Commands to execute on remote node:

225 #

226

227

228

229 ssh_password = sshPassword #ssh password for remote node , we got password

as runtime argument

230 ssh_newkey = ’Are you sure you want to continue connecting ’

231

232 #***

233 # When using 3g modem for control then at runtime pass "127.0.0.1" as

control link ip address

234 # The ssh and scp syntax are slightly different when going over tunneled

link

235 #***

236

351

237 if controlLink == "127.0.0.1": #this means controlink established using 3

g modems

238 cmd_set_channel_remote = ’ssh root@’+ controlLink +

autossh_forward_port +’uci set wireless.@wifi -device[’+ remote_ifINDEX

+’]. channel=’ #notice the single quotes (’) instead of double (")

239 cmd_set_txPower_remote = ’ssh root@’+ controlLink +

autossh_forward_port +’uci set wireless.@wifi -device[’+ remote_ifINDEX

+’]. txpower=’

240 #get signal strength and noise at remote node

241 cmd_get_iw_remote = ’ssh root@ ’+ controlLink + autossh_forward_port +

’iwinfo ’+ remoteInterface +’ info’ #currently not being used , no

longer needed because we’re using ./ testsignal

242 # At the moment the nodes are set up such that: wlan3 = TVWS; wlan2 =

5 GHz wifi panel

243 cmd_set_chanbw_remote = ’ssh root@ ’+ controlLink +

autossh_forward_port +’uci set wireless.@wifi -device[’+ remote_ifINDEX

+’]. chanbw=’ #use this if measuring WiFi link

244 cmd_get_signal_samples_remote = ’ssh root@’+ controlLink +

autossh_forward_port +’./ testsignal ’+ signal_sample_interval +

signal_sample_duration+ remoteInterface +’ ’+ temp_file_signal_noise +

’ &’ #run in the background

245 #cmd_delete_remote_temp_file = ’ssh root@ ’+ controlLink + ’ rm ’+

temp_file_signal_noise + ’ &’

246 cmd_delete_remote_temp_file = ’ssh root@ ’+ controlLink +

autossh_forward_port +’rm temp_signal -noise_samples.log’

247

248 else: # else WiFi or TVWS is being used for control purposes

249 cmd_set_channel_remote = ’ssh root@’+ controlLink +’ uci set wireless

.@wifi -device[’+ remote_ifINDEX +’]. channel=’ #notice the single

quotes (’) instead of double (")

250 cmd_set_txPower_remote = ’ssh root@’+ controlLink +’ uci set wireless

.@wifi -device[’+ remote_ifINDEX +’]. txpower=’

251 #get signal strength and noise at remote node

252 cmd_get_iw_remote = ’ssh root@ ’+controlLink +’ iwinfo ’+

remoteInterface +’ info’ #currently not being used , no longer needed

because we’re using ./ testsignal

253 # At the moment the nodes are set up such that: wlan3 = TVWS; wlan2 =

5 GHz wifi panel

254 cmd_set_chanbw_remote = ’ssh root@ ’+controlLink +’ uci set wireless.

@wifi -device[’+ remote_ifINDEX +’]. chanbw=’ #use this if measuring

WiFi link

255 cmd_get_signal_samples_remote = ’ssh root@’+ controlLink + ’ ./

testsignal ’+ signal_sample_interval + signal_sample_duration+

remoteInterface +’ ’+ temp_file_signal_noise +’ &’ #run in the

background

256 #cmd_delete_remote_temp_file = ’ssh root@ ’+ controlLink + ’ rm ’+

temp_file_signal_noise + ’ &’

352

257 cmd_delete_remote_temp_file = ’ssh root@ ’+ controlLink + ’ rm

temp_signal -noise_samples.log’

258

259

260

261 #**

262 # Timeout () class is aimed at limiting the amount of time iperf spends

263 # trying to compute throughout. This is particularly an issue when the

264 # the link is bad. The -t option that is supposed to be used to specify

265 # iperf duration does is buggy. The current iperf implementation

266 # returns the output only after the entire block is sent.

267 #**

268 # I got the trick from https :// pythonadventures.wordpress.com /2012/12/08/

raise -a-timeout -exception -after -x-seconds/

269 class Timeout ():

270 """ Timeout class using ALARM signal."""

271 class Timeout(Exception):

272 pass

273

274 def __init__(self , sec):

275 self.sec = sec

276

277 def __enter__(self):

278 signal.signal(signal.SIGALRM , self.raise_timeout)

279 signal.alarm(self.sec)

280

281 def __exit__(self , *args):

282 signal.alarm (0) # disable alarm

283

284 def raise_timeout(self , *args):

285 raise Timeout.Timeout ()

286

287 #End Timeout ()

288

289 #***

290 # standard_deviation computes the standard deviation of a list of values

291 # We’ve particularly used it to compute the standard deviation of multple

signal and noise values

292 # Credit should go to Josh (https :// codeselfstudy.com/blogs/how -to -

calculate -standard -deviation -in-python)

293 #**

294 def standard_deviation(lst , population=True):

295 """ Calculates the standard deviation for a list of numbers."""

296 num_items = len(lst)

297 mean = sum(lst) / float(num_items) #convert one value to float ,

otherwise it’s integer division

298 differences = [x - mean for x in lst]

299 sq_differences = [d ** 2 for d in differences]

353

300 ssd = sum(sq_differences)

301

302 # Note: it would be better to return a value and then print it

outside

303 # the function , but this is just a quick way to print out the values

along

304 # the way.

305 if population is True:

306 #print(’This is POPULATION standard deviation.’)

307 variance = ssd / num_items

308 else:

309 #print(’This is SAMPLE standard deviation.’)

310 variance = ssd / (num_items - 1)

311 sd = math.sqrt(variance)

312 # You could ‘return sd ‘ here.

313

314 #print(’The mean of {} is {}.’. format(lst , mean))

315 #print(’The differences are {}.’. format(differences))

316 #print(’The sum of squared differences is {}.’. format(ssd))

317 #print(’The variance is {}.’. format(variance))

318 #print(’The standard deviation is {}.’. format(sd))

319 #print(’--------------------------’)

320 return sd

321 #***End standard_deviation

322

323 with open(filename , "w") as outfile:

324 #csvWriter = csv.writer(outfile , delimiter = ’,’, quoting = csv.

QUOTE_MINIMAL)

325 csvWriter = csv.writer(outfile , delimiter = ’,’, lineterminator = ’\n

’)

326

327 readings = [] #create "table" or structure to add stuff to

328

329 #label the columns

330 header = ["Channel no.","Channel -width (MHz)","TxPower (dBm)", "A->B

Throughput (Mbits/sec)", "A<-B Throughput (Mbits/sec)", "BitRate (

MBits/s)", "(A) Min SignalStrength (dBm)", "(A) Mean SignalStrength (

dBm)", "(A) Max SignalStrength (dBm)", "(A) STDEV signal", "(A) Min

Noise (dBm)", "(A) Mean Noise (dBm)", "(A) Max Noise (dBm)","(A)

STDEV noise", "(B) Min SignalStrength (dBm)", "(B) Mean SignalStrength

(dBm)", "(B) Max SignalStrength (dBm)", "(B) STDEV signal", "(B) Min

Noise (dBm)", "(B) Mean Noise (dBm)", "(B) Max Noise (dBm)","(B)

STDEV noise", "TxPackets", "TxErrors", "RxPackets", "RxErrors", "

packet loss (%)", "RTT_min (ms)", "RTT_avg (ms)", "RTT_max (ms)"]

331 csvWriter.writerow(header)

332 C = 0 #the conventional ’i’ is being used for other things so ,

improvising with ’C’

333 for eachChannel in channelList:

354

334

335 #set the channel

336 channel = channelList[C]

337 C = C + 1

338

339 #set the channel on remote host and apply settings

340 print "setting the channel on remote machine ["+ iperfServer +"]:

"+ cmd_set_channel + channel

341

342 p=pexpect.spawn(cmd_set_channel_remote + channel + ’&& uci commit

wireless; wifi &’) #the & at end of command forces exist after

issuing command

343

344 i=p.expect ([ssh_newkey ,’password:’,pexpect.EOF])

345 if i==0:

346 p.sendline(’yes’) # say yes to the question "areyou sure you

want to continue connecting ?"

347 i=p.expect ([ssh_newkey ,’password:’,pexpect.EOF])

348 if i==1:

349 p.sendline(ssh_password) #enter ssh password

350 p.expect(pexpect.EOF)

351 elif i==2:

352 pass # either connection is successful or failed for some

reason

353 print p.before # print out the result

354

355 #time.sleep (5)

356

357 #set the channel on localhost

358 print "Setting the channel on localhost: "+ cmd_set_channel +

channel

359 cmd = subprocess.Popen(cmd_set_channel + channel + ’&& uci commit

wireless; wifi’, shell = True , stdout = subprocess.PIPE , stderr =

subprocess.STDOUT)

360 #time.sleep (60)

361 print cmd.stdout.read() #display errors if any , otherwise output

=<empty

362 time.sleep (15)

363

364

365 #set channel bandwith

366 k = 0

367 for eachChannelWidth in channelWidthList:

368 chanbw = channelWidthList[k]

369 k = k + 1

370

371 #set channel width on remote host

355

372 print "Setting the channel width on remote machine: "+

cmd_set_chanbw_remote + chanbw

373 #Run the commond "uci commit wireless" &&...

374 p=pexpect.spawn(cmd_set_chanbw_remote + chanbw +’ && uci

commit wireless && /etc/init.d/network reload &’)

375 #p=pexpect.spawn(’ssh root@10 .1.5.50 uci set wireless.@wifi -

device [2]. chanbw =20 && uci commit wireless && /etc/init.d/network

reload && exit ’)

376

377 i=p.expect ([ssh_newkey ,’password:’,pexpect.EOF])

378 if i==0:

379 p.sendline(’yes’) # say yes to the question "areyou sure

you want to continue connecting ?"

380 i=p.expect ([ssh_newkey ,’password:’,pexpect.EOF])

381 if i==1:

382 p.sendline(ssh_password) #enter ssh password

383 p.expect(pexpect.EOF)

384 elif i==2:

385 pass # either connection is successful or failed for some

reason

386 print p.before # print out the result

387

388 #set channel width on localhost

389 print "Setting the channel width on localhost: "+

cmd_set_chanbw + chanbw

390 cmd = subprocess.Popen(cmd_set_chanbw + chanbw , shell = True ,

stdout = subprocess.PIPE , stderr = subprocess.STDOUT)

391 #time.sleep (60)

392 print cmd.stdout.read() #display errors if any , otherwise

output=<empty

393 cmd = subprocess.Popen(cmd_uci_commit , shell = True , stdout =

subprocess.PIPE , stderr = subprocess.STDOUT)

394 #time.sleep (60)

395 print cmd.stdout.read() #display errors if any , otherwise

output=<empty

396 time.sleep (5)

397

398 j = 0

399 for eachTxPower in txPowerList:

400

401 #set tx power

402 txPower = txPowerList[j]

403 j = j + 1

404 print "setting the Tx -power on remote node: "+

cmd_set_txPower_remote + txPower

405 #Run the commond "uci commit wireless" &&...

406 p=pexpect.spawn(cmd_set_txPower_remote + txPower +’ &&

uci commit wireless && /etc/init.d/network reload &’)

356

407 i=p.expect ([ssh_newkey ,’password:’,pexpect.EOF])

408 if i==0:

409 p.sendline(’yes’) # say yes to the question "areyou

sure you want to continue connecting ?"

410 i=p.expect ([ssh_newkey ,’password:’,pexpect.EOF])

411 if i==1:

412 p.sendline(ssh_password) #enter ssh password

413 p.expect(pexpect.EOF)

414 elif i==2:

415 pass # either connection is successful or failed for

some reason

416 print p.before # print out the result

417

418 print "Setting the Tx -power on local node: "+

cmd_set_txPower + txPower

419 cmd = subprocess.Popen(cmd_set_txPower + txPower +" && "+

cmd_uci_commit , shell = True , stdout = subprocess.PIPE , stderr =

subprocess.STDOUT)

420 #time.sleep (60)

421 print cmd.stdout.read() #display errors if any , otherwise

output=<empty >

422

423 #reload network config

424 print "Applying network settings on local node: "+

cmd_reload_network_config

425 cmd = subprocess.Popen(cmd_reload_network_config , shell =

True , stdout = subprocess.PIPE , stderr = subprocess.STDOUT)

426 time.sleep (5)

427 print cmd.stdout.read() #display errors if any , otherwise

output=<empty >

428

429 #note txpower and channel in use

430 #run the iwconfig command to get bitRate , signal strength

, noise

431

432 print "Executing "+cmd_get_iw

433 cmd = subprocess.Popen(cmd_get_iw , shell = True , stdout =

subprocess.PIPE , stderr = subprocess.STDOUT)

434

435 output = cmd.stdout.read()

436 #see https :// docs.python.org/2/ howto/regex.html

437 #uncomment lines below on Ubuntu

438 #bitRate = re.findall(r’Bit Rate =(\d*.\d*)’, output)

439 #signalStrength = re.findall(r’Signal level =(\D\d*)’,

output)

440 #noise = re.findall(r’Noise (\d*)’, output) #refine this

for ubuntu

441 #on openwrt:

357

442

443 # V5 no longer records signal and noise this way

444 bitRate = re.findall(r’Bit Rate: (\d*.\d*)’, output)

445 signalStrength = re.findall(r’Signal: (\D\d*)’, output)

446 noise = re.findall(r’Noise: (\D\d*)’, output)

447

448 #if no value found , write not any ("N/A") in the

appropriate column

449 if not bitRate:

450 bitRate = ["n/a"]

451 if not signalStrength:

452 signalStrength = ["n/a"]

453 if not noise:

454 noise = ["n/a"]

455

456 print output #display iwconfig output , non real -time:(

457

458 #***********************************

459 # Attemping to get signal and noise on remote node

460 # This was before we developed scheme to get multiple

sample and compute min/mean/max/stdev

461 #***

462 ’’’

463 print "Attempting to get signal strength and noise of

remote node .."

464 # uci commit is not necessary , but’s it’s the only way I’

ve been able to hook the remote output

465 p=pexpect.spawn(cmd_get_iw_remote + ’&& uci commit

wireless; wifi &’) #the & at end of command forces exist after issuing

command

466

467 i=p.expect ([ssh_newkey ,’password:’,pexpect.EOF])

468 if i==0:

469 p.sendline(’yes ’) # say yes to the question "areyou

sure you want to continue connecting ?"

470 i=p.expect ([ssh_newkey ,’password:’,pexpect.EOF])

471 if i==1:

472 p.sendline(ssh_password) #enter ssh password

473 p.expect(pexpect.EOF)

474 elif i==2:

475 pass # either connection is successful or failed for

some reason

476 print p.before # print out the result

477 signalStrengthB = re.findall(r’Signal: (\D\d*)’, p.before

)

478 noiseB = re.findall(r’Noise: (\D\d*)’, p.before)

479

480 if not signalStrengthB:

358

481 signalStrengthB =["n/a"]

482 if not noiseB:

483 noiseB = ["n/a"]

484 ’’’

485 #End attempt to get signal and noise of remote node

486

487 #run ifconfig to get a sense of packet error rate

488 print "Executing "+ cmd_get_ifconfig

489 cmd = subprocess.Popen(cmd_get_ifconfig , shell = True ,

stdout = subprocess.PIPE , stderr = subprocess.STDOUT)

490

491 output = cmd.stdout.read()

492

493 rxPackets = re.findall(r’RX packets :(\d*)’, output)

494 rxErrors= re.findall(r’RX packets :\d* errors :(\d*)’,

output)

495 txPackets = re.findall(r’TX packets :(\d*)’, output)

496 txErrors = re.findall(r’TX packets :\d* errors :(\d*)’,

output)

497

498 #if no value found , write not any ("N/A") in the

appropriate column

499 if not rxPackets:

500 rxPackets = ["n/a"]

501 if not rxErrors:

502 rxErrors = ["n/a"]

503 if not txPackets:

504 txPackets = ["n/a"]

505 if not rxErrors:

506 txErrors = ["n/a"]

507

508 print output #display ifconfig output

509 #time.sleep (15)

510

511 #

512 # Just before launching iperf , get multiple samples of

signal and noise values for the local node

513 # This subprocess runs in the background and the idea is

to take the samples while iperf computes the throughput

514 print "Attempting to start signal strength and noise

sampling at remote node: "+ cmd_get_signal_samples_remote

515 # uci commit is not necessary , but’s it’s the only way I’

ve been able to hook the remote output

516 #p=pexpect.spawn(cmd_get_iw_remote + ’&& uci commit

wireless; wifi &’) #the & at end of command forces exist after issuing

command

359

517 p=pexpect.spawn(cmd_get_signal_samples_remote) #leave

process running in the background and exit

518 i=p.expect ([ssh_newkey ,’password:’,pexpect.EOF])

519 if i==0:

520 p.sendline(’yes’) # say yes to the question "areyou

sure you want to continue connecting ?"

521 i=p.expect ([ssh_newkey ,’password:’,pexpect.EOF])

522 if i==1:

523 p.sendline(ssh_password) #enter ssh password

524 p.expect(pexpect.EOF)

525 elif i==2:

526 pass # either connection is successful or failed for

some reason #

527

528 #print p.before

529 #Fire up testsignal daemon at localhost

530 cmd_D = subprocess.Popen(cmd_get_signal_samples , shell =

True , stdout = subprocess.PIPE , stderr = subprocess.STDOUT)

531 print "Started testsignal subprocess on localhost: ",

cmd_get_signal_samples , "..."

532

533 try:

534 with Timeout(iperfTimeout): #iperf will timeout

after this amount of time if not complete by then

535 #run iperf command to get throughput

536 #print "[channel ="+ channel +"]"+"[chnnelWidth ="+

chanbw +"]" + "[txpower ="+ txPower +"]"

537 print "\n Current settings: channel="+channel+",

"+"chnnelWidth="+chanbw+", " + "txpower="+txPower

538 print "Running iperf: "+ cmd_get_throughput

539 cmd = subprocess.Popen(cmd_get_throughput , shell

= True , stdout = subprocess.PIPE , stderr = subprocess.STDOUT)

540 output = cmd.stdout.read()

541

542 except Timeout.Timeout:

543 print "iperf timeout out after ", iperfTimeout , "

seconds"

544

545 #"findall" will find all matches and return them as a

list

546 # throughput [0] implies first match , which is A to B

547 # throughput [1] implies second match , which is B to A

548 throughput = re.findall(r’MBytes (\d*.\d*)’, output)

549 #try getting value just before "Mbits/sec" instead of

after "MBytes" we’ve locked output format to Mbits/sec

550 #

**

360

551 # This part needs some work , when geting throughput in

both directions.

552 # currents the script bombs out if there’s only

throughput in one direction and not the other

553 #

554 #if no value found , write not any ("N/A") in the

Throughput column

555 if not throughput:

556 throughput= ["n/a", "n/a"] #no throughput recorded

from A to B

557 elif len(throughput)== 1:

558 throughput.append ("n/a") #no throughput recored from

B to A.

559 #This needs to be worked on because it could be that

the one element in the list is actually B to A

560 #As it is , it’s only acurate if A to B is recorded

and B to A is not recorded

561 print output #display iperf output , non real -time:(

562

563 #

564 # Get multiple signal and noise samples

565 # By this time iperf completes ,testsignal should also be

done

566 #

**

567 # transfer file created by testsignal from remote node to

local node

568

569 print "Fetching signal and noise samples from remote node

..."

570 if controlLink == "127.0.0.1":

571 p=pexpect.spawn(’scp’+ scp_forward_port + ’root@’+

controlLink+’:’+temp_file_signal_noise + ’ ’+

temp_file_signal_noise_remote)

572 else:

573 p=pexpect.spawn(’scp root@’+controlLink+’:’+

temp_file_signal_noise + ’ ’+temp_file_signal_noise_remote)

574 i=p.expect ([ssh_newkey ,’password:’,pexpect.EOF])

575 if i==0:

576 p.sendline(’yes’) # say yes to the question "areyou

sure you want to continue connecting ?"

577 i=p.expect ([ssh_newkey ,’password:’,pexpect.EOF])

578 if i==1:

579 p.sendline(ssh_password) #enter ssh password

580 p.expect(pexpect.EOF)

361

581 elif i==2:

582 pass # either connection is successful or failed for

some reason

583

584 #print p.before

585

586 print "Signal and noise samples from remote node:"

587 signal_samples_remote = []

588 noise_samples_remote = []

589 try:

590 with open(temp_file_signal_noise_remote) as rf:

591 for line in rf:

592 data_remote = line.split () #split on the

space

593 if not data_remote: #this prevents "list

index out of range" error , which is cause by reading past eof

594 #added this code in a rush 16 Nov 2017

595 min_signal_remote = "n/a"

596 mean_signal_remote = "n/a"

597 max_signal_remote = "n/a"

598 stdev_signal_remote = "n/a"

599 min_noise_remote = "n/a"

600 mean_noise_remote = "n/a"

601 max_noise_remote = "n/a"

602 stdev_noise_remote = "n/a"

603 break

604 else:

605 try: #prevent script from bombing out if

file contains "unknown dBm" text instead of numbers

606 signal_samples_remote.append(int(

data_remote [0]))

607 noise_samples_remote.append(int(

data_remote [1]))

608 except ValueError:

609 continue

610 print data_remote [0] , ’ ’, data_remote

[1]

611 except EnvironmentError:

612 print ’Problem fetching signal and noise samples from

remote host’

613 if not signal_samples_remote:

614 min_signal_remote = "n/a"

615 mean_signal_remote = "n/a"

616 max_signal_remote = "n/a"

617 stdev_signal_remote = "n/a"

618 else:

619 min_signal_remote = min(signal_samples_remote)

362

620 mean_signal_remote = float(sum(signal_samples_remote)

)/float(len(signal_samples_remote))

621 max_signal_remote = max(signal_samples_remote)

622 if len(signal_samples_remote) == 1: #prevent divisio

by zero in standrd_deviation ()

623 stdev_signal_remote = "n/a"

624 else:

625 stdev_signal_remote = standard_deviation(

signal_samples_remote , population=False) #sample standard deviation

instead of population standard deviation

626 if not noise_samples_remote:

627 min_noise_remote = "n/a"

628 mean_noise_remote = "n/a"

629 max_noise_remote = "n/a"

630 stdev_noise_remote = "n/a"

631 else:

632 min_noise_remote = min(noise_samples_remote)

633 mean_noise_remote = float(sum(noise_samples_remote))/

float(len(noise_samples_remote))

634 max_noise_remote = max(noise_samples_remote)

635 if len(noise_samples_remote)==1:

636 stdev_noise_remote = "n/a" ##prevent divisio by

zero in standrd_deviation ()

637 else:

638 stdev_noise_remote = standard_deviation(

noise_samples_remote , population=False) #sample standard deviation

639 print "\n _____ Node B _____"

640 print "\t Min signal: ", min_signal_remote

641 print "\t Mean signal: ", mean_signal_remote

642 print "\t Max signal: ", max_signal_remote

643 print "\t STDEV signal: ", stdev_signal_remote

644 print "\t Min noise: ", min_noise_remote

645 print "\t Mean noise: ", mean_noise_remote

646 print "\t Max noise: ", max_noise_remote

647 print "\t STDEV noise: ", stdev_noise_remote

648

649 print "\n Signal and noise samples at local node:"

650 signal_samples = []

651 noise_samples = []

652

653 with open (temp_file_signal_noise) as f: #read the

contents of file created by cmd_D , assuming everything went ok.

654 for line in f:

655 data = line.split() #split on the space

656 if not data: #this prevents "list index out of

range" error , which is cause by reading past eof

657 #Added this code in a rush 16 NOV 2017

658 min_signal = "n/a"

363

659 mean_signal = "n/a"

660 max_signal = "n/a"

661 stdev_signal = "n/a"

662 min_noise = "n/a"

663 mean_noise = "n/a"

664 max_noise = "n/a"

665 stdev_noise = "n/a"

666 break

667 else:

668 try: #prevent script from bombing out if file

contains "unknown dBm" text instead of numbers

669 signal_samples.append(int(data [0]))

670 noise_samples.append(int(data [1]))

671 except ValueError:

672 continue

673 print data[0], ’ ’, data [1]

674 if not signal_samples:

675 min_signal = "n/a"

676 mean_signal = "n/a"

677 max_signal = "n/a"

678 stdev_signal = "n/a"

679 else:

680 min_signal = min(signal_samples)

681 mean_signal = float(sum(signal_samples))/float(len(

signal_samples))

682 max_signal = max(signal_samples)

683 if len(signal_samples)==1:

684 stdev_signal = "n/a"

685 else:

686 stdev_signal = standard_deviation(signal_samples ,

population=False) #sample standard deviation instead of population

standard deviation

687 if not noise_samples:

688 min_noise = "n/a"

689 mean_noise = "n/a"

690 max_noise = "n/a"

691 stdev_noise = "n/a"

692 else:

693 min_noise = min(noise_samples)

694 mean_noise = float(sum(noise_samples))/float(len(

noise_samples))

695 max_noise = max(noise_samples)

696 if len(noise_samples)==1:

697 stdev_noise = "n/a"

698 else:

699 stdev_noise = standard_deviation(noise_samples ,

population=False) #sample standard deviation

700 print "\n_____ Node A _____"

364

701 print "\t Min signal: ", min_signal

702 print "\t Mean signal: ", mean_signal

703 print "\t Max signal: ", max_signal

704 print "\t STDEV signal: ", stdev_signal

705 print "\t Min noise: ", min_noise

706 print "\t Mean noise: ", mean_noise

707 print "\t Max noise: ", max_noise

708 print "\t STDEV noise: ", stdev_noise

709

710 #***end multiple signal strength values

711

712 print "\n Current settings: channel="+channel+", "+"

chnnelWidth="+chanbw+", " + "txpower="+txPower

713 print "Running ping: "+cmd_get_delay_and_packet_loss

714 cmd = subprocess.Popen(cmd_get_delay_and_packet_loss ,

shell = True , stdout = subprocess.PIPE , stderr = subprocess.STDOUT)

715 output = cmd.stdout.read()

716 ##**

717 #Get packet loss , rtt min/avg/max

718 #**

719

720 #get packet loss , which is value after the word ’received

,’ in the ping output

721 packet_loss = re.findall(r’received , (\d*)’, output)

722 #get the min RRT , which is the value right after the

expression "min/avg/max = "

723 rtt_min = re.findall(r’min/avg/max = (\d*.\d*)’, output)

724 if not rtt_min:

725 rtt_min = ["n/a"]

726 #get the avg RRT , which is the value right after the

expression "min/avg/max = xx.xx/"

727 rtt_avg = re.findall(r’min/avg/max = \d*.\d*/(\d*.\d*)’,

output)

728 if not rtt_avg:

729 rtt_avg = ["n/a"]

730 #get the max RRT , which is the value right after the

expression "min/avg/max = xx.xx/xx.xx/"

731 rtt_max = re.findall(r’min/avg/max = \d*.\d*/\d*.\d*/(\d

.\d)’, output)

732 if not rtt_max:

733 rtt_max = ["n/a"]

734 print output #display ping output

735

736

737 #append values to readings

738 # throughput , bitrate , signalStrength RxErros are

lists. Therefore , use [0] to get value and leave out brackets when

writing

365

739 # to csv file. There’s only one element in the list so ,

[0] is adequate , except for throughput where we have two

740 # ’findall ’ finds all matches and returns them as a list.

741 # throughput [0] = throughput of A to B, throughput [1] =

throughput of B to A

742 readings = [channel , chanbw , txPower , throughput [0],

throughput [1], bitRate [0], min_signal , mean_signal , max_signal ,

stdev_signal , min_noise , mean_noise , max_noise , stdev_noise ,

min_signal_remote , mean_signal_remote , max_signal_remote ,

stdev_signal_remote , min_noise_remote , mean_noise_remote ,

max_noise_remote , stdev_noise_remote , txPackets [0], txErrors [0],

rxPackets [0], rxErrors [0], packet_loss [0], rtt_min [0], rtt_avg [0],

rtt_max [0]]#concatenate list and str elements

743 csvWriter.writerow(readings) #write row to file

744 print "Output written to "+filename+"\n"

745 #**

746 # Perform some housekeeping:

747 # delete the temp files with signal and noise samples.

748 # In case something goes wrong with ./ testsignal , we don’

t to pull old values from the files.

749 # There , we delete the files and create them afresh on

each iteration

750 # **

751 print "_________Cleaning up_________"

752 print "\t Node A: Deleting "+

temp_file_signal_noise_remote #this is the file scp’d from remote host

753 cmd = subprocess.Popen(’rm ’+

temp_file_signal_noise_remote , shell = True , stdout = subprocess.PIPE ,

stderr = subprocess.STDOUT)

754 print cmd.stdout.read() #display errors if any , otherwise

output=<empty

755 print "\t Node A: Deleting "+ temp_file_signal_noise #

this is the fie created by ./ testsignal on the local node

756 cmd = subprocess.Popen(’rm ’+temp_file_signal_noise ,

shell = True , stdout = subprocess.PIPE , stderr = subprocess.STDOUT)

757 print cmd.stdout.read() #display errors if any , otherwise

output=<empty

758

759 print "\t Node B: Deleting "+ temp_file_signal_noise #

delete the file created by ./ testsignal on remote node

760 p2=pexpect.spawn(cmd_delete_remote_temp_file)

761 i=p2.expect ([ssh_newkey ,’password:’,pexpect.EOF])

762 if i==0:

763 p2.sendline(’yes’) # say yes to the question "areyou

sure you want to continue connecting ?"

764 i=p2.expect ([ssh_newkey ,’password:’,pexpect.EOF])

765 if i==1:

766 p2.sendline(ssh_password) #enter ssh password

366

767 p2.expect(pexpect.EOF)

768 elif i==2:

769 pass # either connection is successful or failed for

some reason

770 print p2.before

771

772 outfile.close()

773 print "done"

774

775 #<delete temporal file created for signal samples >?

G.2 testsignal bash script

1 #!/bin/sh

2

3 if ["$#" -ne 4]; then

4 echo "Usage: testsignal [Interval (s)] [Total time(s)] [interface] [

file name]"

5 exit

6 fi

7

8

9 interval=$1

10 time=$2

11 iface=$3

12 fname=$4

13

14 # commented out because if you write to stdou or stdrr ,

15 # running it as background process on remote host is tricky

16

17 #echo $interval

18 #echo $iface

19

20 for i in ‘seq 1 $time ‘;

21 do

22 iwinfo $iface info | grep Signal | awk -F " " ’{print $2 ,$5}’ >> $fname

23 sleep $interval

24 done

Appendix H

Markov chain analysis

H.1 Sensing time and number of samples

1 from cProfile import label

2 from ctypes import sizeof

3 import numpy as np

4 from scipy.optimize import broyden1 , fsolve

5 import matplotlib.pyplot as plt

6 from matplotlib.ticker import MultipleLocator

7

8

9 W0 = 15

10 R=10

11 AIFSN = [2,2,3,7]

12 ACmins = [(W0+1)/4-1, (W0+1)/2-1, W0, W0]

13 ACmaxs = [8, 16, 1024, 1024]

14 m_j = [3, 8, 10, 10]

15

16 def f(variables , n):

17 equations = np.empty ((12))

18 p0 , t0 , n0 , p1 , t1 , n1 , p2 , t2 , n2 , p3 , t3 , n3 = variables

19

20 # highest priority - only collides with other high priority stations

21 # equations [0] = ((1-p0)**(m+1)) / (1-p0) * (2*(1 -2*p0)*(1-p0)) / (

ACmins[AC]*(1 -(2*p0)**m*(1-p0)+(1 -2*p0)*(1+ ACmins[AC]*(2* p0)**m))) -

t0

22 equations [0] = 2*(1-p0**R)*(1-2*p0)/(ACmins [0]*(1 -(2*p0)**m_j [0])*(1-

p0) + (1-2*p0)*((1-p0**m_j [0]) +(1+ ACmins [0]*2** m_j [0])*p0**m_j [0])) -

t0

23 equations [1] = 2*(1-p1**R)*(1-2*p1)/(ACmins [1]*(1 -(2*p1)**m_j [1])*(1-

p1) + (1-2*p1)*((1-p1**m_j [1]) +(1+ ACmins [1]*2** m_j [1])*p1**m_j [1]))

*(1-t0) - t1

367

368

24 equations [2] = 2*(1-p2**R)*(1-2*p2)/(ACmins [2]*(1 -(2*p2)**m_j [2])*(1-

p2) + (1-2*p2)*((1-p2**m_j [2]) +(1+ ACmins [2]*2** m_j [2])*p2**m_j [2]))

*(1-t0-t1) - t2

25 equations [3] = 2*(1-p3**R)*(1-2*p3)/(ACmins [3]*(1 -(2*p3)**m_j [3])*(1-

p3) + (1-2*p3)*((1-p3**m_j [3]) +(1+ ACmins [3]*2** m_j [3])*p3**m_j [3]))

*(1-t0-t1-t2) - t3

26

27 equations [4] = 1 - ((1-t0)**(n0 -1) * (1-t1)**n1 * (1-t2)**n2 * (1-t3)

**n3) - p0

28 equations [5] = 1 - ((1-t1)**(n1 -1) * (1-t0)**n0 * (1-t2)**n2 * (1-t3)

**n3) - p1

29 equations [6] = 1 - ((1-t2)**(n2 -1) * (1-t1)**n1 * (1-t0)**n0 * (1-t3)

**n3) - p2

30 equations [7] = 1 - ((1-t3)**(n3 -1) * (1-t1)**n1 * (1-t2)**n2 * (1-t0)

**n0) - p3

31

32 equations [8] = n*t0 - n0

33 equations [9] = n*t1 - n1

34 equations [10] = n*t2 - n2

35 equations [11] = n*t3 - n3

36

37 return equations

38

39

40 def main():

41

42 RTS = 20*8

43 CTS = 14*8

44 SIFS = 16 # us

45 # DIFS = 34

46 ACK = 14*8

47 slot = 9 # us

48 MAC = 28*8

49 PHY = 24*8

50 d = 1.668 #us

51 # packet_size = [1000*8 , 4000*8 , 8000*8 , 16000*8 , 32000*8 , 65000*8] #

bits

52 packet_size = [1000*8 , 32000*8 , 65000*8] # bits

53

54 control_bitrate = 6 #Mbps

55 datarate = 11 # Mbps

56 Rsampling = [32000 , 250000 , 1000000] # samples per second

57 # channel_switch = [50, 100, 150, 200, 250, 300]

58 channel_switch = [250, 300]

59 r = Rsampling [2]

60

61 colors = [’c’, ’g’, ’b’, ’r’]

62 linestyles = ["solid", "dotted", "dashed"]

369

63 markers = ["1", "2", "3"]

64

65 for packsize in packet_size:

66 for r in Rsampling:

67 for cst in channel_switch:

68 AIFS = np.zeros (4)

69 for ac in range (0,3):

70 AIFS[ac] = AIFSN[ac]*slot+SIFS

71

72 Tc = RTS/control_bitrate + 2*SIFS + AIFS + CTS/

control_bitrate + 2*slot + d

73 Ts = RTS/control_bitrate + 3*SIFS + 4*d + CTS/

control_bitrate + MAC/datarate + PHY/datarate + packsize/datarate +

ACK/control_bitrate + AIFS

74 TNAVc = SIFS + AIFS + CTS/control_bitrate + d

75 TNAVs = 3*SIFS + 3*d + CTS/control_bitrate + MAC/datarate

+ PHY/datarate + packsize/datarate + ACK/control_bitrate + AIFS

76

77 # throughput = []

78 # idle_fractions = []

79 T_sens = []

80 Samples = []

81 T_sens_A = []

82 p0_array = []

83 p1_array = []

84 p2_array = []

85 p3_array = []

86 t0_array = []

87 t1_array = []

88 t2_array = []

89 t3_array = []

90 t_array = []

91

92 nodes = np.linspace (1,52, num =50)

93 for n in nodes:

94 solution = fsolve(f, (0.05 , 0.05, n/4, 0.05, 0.05, n

/4, 0.05, 0.05, n/4, 0.05, 0.05, n/4), args=n)

95 p0 , t0 , n0 , p1 , t1 , n1 , p2 , t2 , n2 , p3 , t3 , n3 =

solution

96 # print(p0 , t0 , n0 , p1 , t1 , n1 , p2 , t2 , n2 , p3 , t3 ,

n3)

97 p0_array.append(p0)

98 p1_array.append(p1)

99 p2_array.append(p2)

100 p3_array.append(p3)

101

102 t0_array.append(t0)

103 t1_array.append(t1)

370

104 t2_array.append(t2)

105 t3_array.append(t3)

106

107 t_array = [t0 ,t1 ,t2 ,t3]

108 t= t0+t1+t2+t3

109 Ps0 = (n*t0*(1-t)**(n-1))/(1-(1-t0)**n)

110 Ps1 = (n*t1*(1-t)**(n-1))/(1-(1-t1)**n)

111 Ps2 = (n*t2*(1-t)**(n-1))/(1-(1-t2)**n)

112 Ps3 = (n*t3*(1-t)**(n-1))/(1-(1-t3)**n)

113

114 Ps0_A = ((n-1)*t0*(1-t)**(n-2))*(1-t)

115 Ps1_A = ((n-1)*t1*(1-t)**(n-2))*(1-t)

116 Ps2_A = ((n-1)*t2*(1-t)**(n-2))*(1-t)

117 Ps3_A = ((n-1)*t3*(1-t)**(n-2))*(1-t)

118

119 Pc0_A = (n-1)*t0*(1-t)*(1-(1-t)**(n-2))

120 Pc1_A = (n-1)*t1*(1-t)*(1-(1-t)**(n-2))

121 Pc2_A = (n-1)*t2*(1-t)*(1-(1-t)**(n-2))

122 Pc3_A = (n-1)*t3*(1-t)*(1-(1-t)**(n-2))

123

124 # Tss = (t0*Ts[0] + t1*Ts[1] + t2*Ts[2] + t3*Ts[3])

125 # Tcc = (t0*Tc[0] + t1*Tc[1] + t2*Tc[2] + t3*Tc[3])

126 # Tss = (Ps0*Ts[0] + Ps1*Ts[1] + Ps2*Ts[2] + Ps3*Ts

[3])

127 # Tcc = ((1-Ps0)*Ts[0] + (1-Ps1)*Ts[1] + (1-Ps2)*Ts

[2] + (1-Ps3)*Ts[3])

128

129 Ptr = 1-(1-t)**n

130 Ptr_A = (1-(1-t)**(n-1))

131

132 Ptr0 = (1-(1-t0)**(n-1))

133 Ptr1 = (1-(1-t1)**(n-1))

134 Ptr2 = (1-(1-t2)**(n-1))

135 Ptr3 = (1-(1-t3)**(n-1))

136

137 Ptr0_A = (1-(1-t0)**(n-1))/(1-t)

138 Ptr1_A = (1-(1-t1)**(n-1))/(1-t)

139 Ptr2_A = (1-(1-t2)**(n-1))/(1-t)

140 Ptr3_A = (1-(1-t3)**(n-1))/(1-t)

141

142 # Ptr_A = (1-(1-t)**(n-1))/(1-t)

143 # Ps_A = (n-1)*t*(1-t)**(n-2)/(1-(1-t)**(n-1))

144 # Ps_A = (n-1)*t*(1-t)**(n-2)/((1-(1-t)**(n-1))/(1-t)

)

145 # Pc_A = (1-Ps_A)*Ptr_A

146 Ps = (n*t*(1-t)**(n-1))/(1-(1-t)**n)

147 Pc = Ptr*(1-Ps)

148

371

149 Tsensing = (TNAVs [0]* Ps0_A + TNAVs [1]* Ps1_A + TNAVs

[2]* Ps2_A + TNAVs [3]* Ps3_A + TNAVc [0]* Pc0_A + TNAVc [1]* Pc1_A + TNAVc

[2]* Pc2_A + TNAVc [3]* Pc3_A) - (2* cst)

150

151 Ts_A = TNAVs [0]* Ps0_A + TNAVs [1]* Ps1_A + TNAVs [2]*

Ps2_A + TNAVs [3]* Ps3_A + TNAVs [0]* Pc0_A + TNAVs [1]* Pc1_A + TNAVs [2]*

Pc2_A + TNAVs [3]* Pc3_A - 2*cst

152

153 if Tsensing <0:

154 Tsensing = 0

155 if Ts_A <0:

156 Ts_A = 0

157 # S = packet_size*Ps*Ptr/(Ts -Tc+(slot*(1-Ptr)/Ptr+Tc)

/Ps)

158 S = packsize /(Ts -Tc+(slot*(1-Ptr)/Ptr+Tc)/Ps)

159 # idle_fraction = Tsensing /(Ps*Ptr*Ts + (1-Ptr)*slot

+ Pc*Tc)

160 # print("idle fraction = ", idle_fraction)

161

162 samps = Tsensing*r/(10**6)

163

164 # idle_fractions.append(idle_fraction)

165 T_sens.append(Tsensing)

166 Samples.append(samps)

167 T_sens_A.append(Ts_A)

168

169 # throughput.append(S)

170 # plt.plot(nodes , idle_fractions)

171 # plt.rcParams [" figure.figsize "] = (5.7, 4.8)

172 # plt.plot(nodes , Samples , label=cst)

173 plt.plot(nodes , Samples , label="packsize ={} bytes , cst ={}

\u00B5s".format(int(packsize /8), cst), linestyle=linestyles[Rsampling

.index(r)], marker=markers[Rsampling.index(r)])

174 # plt.plot(nodes , T_sens_A , label=cst)

175 # plt.plot(nodes , throughput , ’--’, label=’throughput AC

={}’. format(ac), color=colors[ac])

176

177 plt.xlabel("Number of nodes", fontsize =13)

178 plt.xticks(fontsize =11)

179 plt.yticks(fontsize =11)

180 plt.ylabel("Number of samples per window", fontsize =13)

181 # plt.ylabel (" Sensing time (\ u00B5s)", fontsize =14)

182 plt.grid()

183 plt.legend(loc=’best’, title=’channel switch time (\

u00B5s)’)

184 plt.tight_layout ()

372

185 # plt.savefig(’EDCA_Markov_num_samples_datarate_ {}

_sample_rate ={} _packet_size ={}. png ’.format(datarate , r, packsize),

bbox_inches=’tight ’)

186 # plt.savefig(’EDCA_Markov_t_sensing_datarate_ {}

_total_packet_size ={}. png ’.format(datarate , packsize))

187 plt.show()

188 plt.clf()

189

190

191 if __name__ == "__main__":

192 main()

H.2 Feasible number of nodes

1 from cProfile import label

2 from ctypes import sizeof

3 import numpy as np

4 import math

5 from scipy.optimize import broyden1 , fsolve

6 import matplotlib.pyplot as plt

7 from matplotlib.ticker import MultipleLocator

8

9 # import warnings

10 # warnings.filterwarnings(’ignore ’, ’The iteration is not making good

progress ’)

11

12

13 W0 = 15

14 R=10

15 AIFSN = [2,2,3,7]

16 ACmins = [(W0+1)/4-1, (W0+1)/2-1, W0, W0]

17 ACmaxs = [8, 16, 1024, 1024]

18 m_j = [3, 8, 10, 10]

19

20 def f(variables , r, cst , TNAVs , TNAVc):

21 equations = np.empty ((13))

22 p0 , t0 , n0 , p1 , t1 , n1 , p2 , t2 , n2 , p3 , t3 , n3 , n = variables

23

24 # highest priority - only collides with other high priority stations

25 equations [0] = 2*(1-p0**R)*(1-2*p0)/(ACmins [0]*(1 -(2*p0)**m_j [0])*(1-

p0) + (1-2*p0)*((1-p0**m_j [0]) +(1+ ACmins [0]*2** m_j [0])*p0**m_j [0])) -

t0

26 equations [1] = 2*(1-p1**R)*(1-2*p1)/(ACmins [1]*(1 -(2*p1)**m_j [1])*(1-

p1) + (1-2*p1)*((1-p1**m_j [1]) +(1+ ACmins [1]*2** m_j [1])*p1**m_j [1]))

*(1-t0) - t1

373

27 equations [2] = 2*(1-p2**R)*(1-2*p2)/(ACmins [2]*(1 -(2*p2)**m_j [2])*(1-

p2) + (1-2*p2)*((1-p2**m_j [2]) +(1+ ACmins [2]*2** m_j [2])*p2**m_j [2]))

*(1-t0-t1) - t2

28 equations [3] = 2*(1-p3**R)*(1-2*p3)/(ACmins [3]*(1 -(2*p3)**m_j [3])*(1-

p3) + (1-2*p3)*((1-p3**m_j [3]) +(1+ ACmins [3]*2** m_j [3])*p3**m_j [3]))

*(1-t0-t1-t2) - t3

29

30 equations [4] = 1 - ((1-t0)**(n0 -1) * (1-t1)**n1 * (1-t2)**n2 * (1-t3)

**n3) - p0

31 equations [5] = 1 - ((1-t1)**(n1 -1) * (1-t0)**n0 * (1-t2)**n2 * (1-t3)

**n3) - p1

32 equations [6] = 1 - ((1-t2)**(n2 -1) * (1-t1)**n1 * (1-t0)**n0 * (1-t3)

**n3) - p2

33 equations [7] = 1 - ((1-t3)**(n3 -1) * (1-t1)**n1 * (1-t2)**n2 * (1-t0)

**n0) - p3

34

35 equations [8] = n*t0 - n0

36 equations [9] = n*t1 - n1

37 equations [10] = n*t2 - n2

38 equations [11] = n*t3 - n3

39

40 t= t0+t1+t2+t3

41

42 Ps0_A = ((n-1)*t0*(1-t)**(n-2))*(1-t)

43 Ps1_A = ((n-1)*t1*(1-t)**(n-2))*(1-t)

44 Ps2_A = ((n-1)*t2*(1-t)**(n-2))*(1-t)

45 Ps3_A = ((n-1)*t3*(1-t)**(n-2))*(1-t)

46

47 Pc0_A = (n-1)*t0*(1-t)*(1-(1-t)**(n-2))

48 Pc1_A = (n-1)*t1*(1-t)*(1-(1-t)**(n-2))

49 Pc2_A = (n-1)*t2*(1-t)*(1-(1-t)**(n-2))

50 Pc3_A = (n-1)*t3*(1-t)*(1-(1-t)**(n-2))

51

52 Ptr = 1-(1-t)**n

53 Ps = (n*t*(1-t)**(n-1))/(1-(1-t)**n)

54

55 Tsensing = (TNAVs [0]* Ps0_A + TNAVs [1]* Ps1_A + TNAVs [2]* Ps2_A + TNAVs

[3]* Ps3_A + TNAVc [0]* Pc0_A + TNAVc [1]* Pc1_A + TNAVc [2]* Pc2_A + TNAVc

[3]* Pc3_A) - (2* cst)

56 equations [12] = Tsensing*r/(10**6) - 1

57

58

59 return equations

60

61

62 def main():

63

64 RTS = 20*8

374

65 CTS = 14*8

66 SIFS = 16 # us

67 # DIFS = 34

68 ACK = 14*8

69 slot = 9 # us

70 MAC = 28*8

71 PHY = 24*8

72 d = 1.668 #us

73 # packet_size = [1000*8 , 4000*8 , 8000*8 , 16000*8 , 32000*8 , 65000*8] #

bits

74 packet_size = [32000*8 , 65000*8] # bits

75

76 control_bitrate = 6 #Mbps

77 datarate = 11 # Mbps

78 Rsampling = [32000 , 250000 , 1000000] # samples per second

79 # channel_switch = [50, 100, 150, 200, 250, 300]

80 channel_switch = [200, 250, 300]

81

82 colors = [’c’, ’g’, ’b’, ’r’]

83 linestyles = ["solid", "dotted", "dashed"]

84 markers = ["1", "2", "3"]

85

86 r = 1000000 #sps

87 for cst in channel_switch:

88 for packsize in packet_size:

89 AIFS = np.zeros (4)

90 for ac in range (0,3):

91 AIFS[ac] = AIFSN[ac]*slot+SIFS

92 Tc = RTS/control_bitrate + 2*SIFS + AIFS + CTS/

control_bitrate + 2*slot + d

93 Ts = RTS/control_bitrate + 3*SIFS + 4*d + CTS/control_bitrate

+ MAC/datarate + PHY/datarate + packsize/datarate + ACK/

control_bitrate + AIFS

94 TNAVc = SIFS + AIFS + CTS/control_bitrate + d

95 TNAVs = 3*SIFS + 3*d + CTS/control_bitrate + MAC/datarate +

PHY/datarate + packsize/datarate + ACK/control_bitrate + AIFS

96

97 solution = fsolve(f, (0.05 , 0.05, 3, 0.05, 0.05, 2, 0.05,

0.05, 1, 0.05, 0.05, 1, 7), args=(r, cst , TNAVs , TNAVc))

98 p0, t0, n0, p1 , t1 , n1 , p2 , t2 , n2 , p3 , t3 , n3 , n = solution

99

100 print("cst= {}, packsize ={}, n={}".format(cst , int(packsize

/8), n))

101

102

103 if __name__ == "__main__":

104 main()

Appendix I

CA distribution and switching

delay

I.1 Single-hop access delay analysis

1 from cProfile import label

2 from ctypes import sizeof

3 from re import T

4 import numpy as np

5 import math

6 import pydtmc

7 from scipy.optimize import broyden1 , fsolve

8 import matplotlib.pyplot as plt

9 from matplotlib.ticker import MultipleLocator

10

11 # import warnings

12 # warnings.filterwarnings(’ignore ’, ’The iteration is not making good

progress ’)

13

14

15 W0 = 15

16 R=10

17 AIFSN = [2,2,3,7]

18 ACmins = [(W0+1)/4-1, (W0+1)/2-1, W0, W0]

19 ACmaxs = [8, 16, 1024, 1024]

20 m_j = [3, 8, 10, 10]

21

22 def f(variables , n):

23 equations = np.empty ((12))

24 p0 , t0 , n0 , p1 , t1 , n1 , p2 , t2 , n2 , p3 , t3 , n3 = variables

25

26 # highest priority - only collides with other high priority stations

375

376

27 # equations [0] = ((1-p0)**(m+1)) / (1-p0) * (2*(1 -2*p0)*(1-p0)) / (

ACmins[AC]*(1 -(2*p0)**m*(1-p0)+(1 -2*p0)*(1+ ACmins[AC]*(2* p0)**m))) -

t0

28 equations [0] = 2*(1-p0**R)*(1-2*p0)/(ACmins [0]*(1 -(2*p0)**m_j [0])*(1-

p0) + (1-2*p0)*((1-p0**m_j [0]) +(1+ ACmins [0]*2** m_j [0])*p0**m_j [0])) -

t0

29 equations [1] = 2*(1-p1**R)*(1-2*p1)/(ACmins [1]*(1 -(2*p1)**m_j [1])*(1-

p1) + (1-2*p1)*((1-p1**m_j [1]) +(1+ ACmins [1]*2** m_j [1])*p1**m_j [1]))

*(1-t0) - t1

30 equations [2] = 2*(1-p2**R)*(1-2*p2)/(ACmins [2]*(1 -(2*p2)**m_j [2])*(1-

p2) + (1-2*p2)*((1-p2**m_j [2]) +(1+ ACmins [2]*2** m_j [2])*p2**m_j [2]))

*(1-t0-t1) - t2

31 equations [3] = 2*(1-p3**R)*(1-2*p3)/(ACmins [3]*(1 -(2*p3)**m_j [3])*(1-

p3) + (1-2*p3)*((1-p3**m_j [3]) +(1+ ACmins [3]*2** m_j [3])*p3**m_j [3]))

*(1-t0-t1-t2) - t3

32

33 equations [4] = 1 - ((1-t0)**(n0 -1) * (1-t1)**n1 * (1-t2)**n2 * (1-t3)

**n3) - p0

34 equations [5] = 1 - ((1-t1)**(n1 -1) * (1-t0)**n0 * (1-t2)**n2 * (1-t3)

**n3) - p1

35 equations [6] = 1 - ((1-t2)**(n2 -1) * (1-t1)**n1 * (1-t0)**n0 * (1-t3)

**n3) - p2

36 equations [7] = 1 - ((1-t3)**(n3 -1) * (1-t1)**n1 * (1-t2)**n2 * (1-t0)

**n0) - p3

37

38 equations [8] = n*t0 - n0

39 equations [9] = n*t1 - n1

40 equations [10] = n*t2 - n2

41 equations [11] = n*t3 - n3

42

43 return equations

44

45

46 def main():

47

48 RTS = 20*8

49 CTS = 14*8

50 SIFS = 16 # us

51 # DIFS = 34

52 ACK = 14*8

53 slot = 9 # us

54 MAC = 28*8

55 PHY = 24*8

56 # d = 3.336 # us , 1km distance

57 d = 4.72 # us , 1km distance

58 # packet_size = [1000*8 , 4000*8 , 8000*8 , 16000*8 , 32000*8 , 65000*8] #

bits

59 packet_size = [1000*8 , 32000*8 , 65000*8] # bits

377

60 packsize = 1000*8 # bits , avg for the network , because that is what

you wait for , not what the packet size is that you want to send

61

62 control_bitrate = 6 #Mbps

63 datarate = 11 # Mbps

64 # channel_switch = [50, 100, 150, 200, 250, 300]

65 channel_switch = [250, 300]

66

67 colors = [’c’, ’g’, ’b’, ’r’]

68 linestyles = ["solid", "dotted", "dashed"]

69 markers = ["1", "2", "3"]

70

71 AIFS = np.zeros (4)

72 for ac in range (0,3):

73 AIFS[ac] = AIFSN[ac]*slot+SIFS

74

75 Tc = RTS/control_bitrate + 2*SIFS + AIFS + CTS/control_bitrate + 2*

slot + d

76 Ts = RTS/control_bitrate + 3*SIFS + 4*d + CTS/control_bitrate + MAC/

datarate + PHY/datarate + packsize/datarate + ACK/control_bitrate +

AIFS

77

78 # throughput = []

79 delay = []

80 T_sens = []

81 Samples = []

82 T_sens_A = []

83 p0_array = []

84 p1_array = []

85 p2_array = []

86 p3_array = []

87 t0_array = []

88 t1_array = []

89 t2_array = []

90 t3_array = []

91 t_array = []

92

93 n = 4

94 solution = fsolve(f, (0.05 , 0.05, n/4, 0.05, 0.05, n/4, 0.05, 0.05, n

/4, 0.05, 0.05, n/4), args=n)

95 p0 , t0 , n0 , p1 , t1 , n1 , p2 , t2 , n2 , p3 , t3 , n3 = solution

96 # print(p0 , t0 , n0 , p1 , t1 , n1 , p2 , t2 , n2 , p3 , t3 , n3)

97 p0_array.append(p0)

98 p1_array.append(p1)

99 p2_array.append(p2)

100 p3_array.append(p3)

101

102 t0_array.append(t0)

378

103 t1_array.append(t1)

104 t2_array.append(t2)

105 t3_array.append(t3)

106

107 t_array = [t0 ,t1 ,t2 ,t3]

108 t= t0+t1+t2+t3

109 Ps0 = (n*t0*(1-t)**(n-1))/(1-(1-t0)**n)

110 Ps1 = (n*t1*(1-t)**(n-1))/(1-(1-t1)**n)

111 Ps2 = (n*t2*(1-t)**(n-1))/(1-(1-t2)**n)

112 Ps3 = (n*t3*(1-t)**(n-1))/(1-(1-t3)**n)

113

114 Ptr = 1-(1-t)**n

115 Ptr_A = (1-(1-t)**(n-1))

116

117 Ptr0 = (1-(1-t0)**(n-1))

118 Ptr1 = (1-(1-t1)**(n-1))

119 Ptr2 = (1-(1-t2)**(n-1))

120 Ptr3 = (1-(1-t3)**(n-1))

121

122 Ps = (n*t*(1-t)**(n-1))/(1-(1-t)**n)

123 Pc = Ptr*(1-Ps)

124

125 Tdelay = (Ts[0]* Ps0*Ptr0 + Ts[1]* Ps1*Ptr1 + Ts[2]* Ps2*Ptr2 + Ts[3]*

Ps3*Ptr3 + Tc[0]*Pc + Tc[1]*Pc + Tc[2]*Pc + Tc[3]*Pc)

126

127 print("access delay = {}us".format(Tdelay))

128 print("total delay = {}us".format(Tdelay + channel_switch [1]))

129

130 delay.append(Tdelay)

131

132

133 if __name__ == "__main__":

134 main()

I.2 Delay plot

1 from pickletools import markobject

2 import numpy as np

3 import matplotlib.pyplot as plt

4 import math

5

6 nodes = [9,16,25,36,49, 64, 81, 100]

7 times_analysis = []

8 times_avg = []

9 times_worst = []

379

10 one_hop_delay_analysis = 0.852962/1000 # s (includes 300us channel switch

time)

11 one_hop_delay_avg = 0.224 # s

12 one_hop_delay_worst = 4 # s

13

14 for n in nodes:

15 times_analysis.append ((math.sqrt(n) -1)*8*4* one_hop_delay_analysis)

16 times_avg.append ((math.sqrt(n) -1)*4*4* one_hop_delay_avg)

17 times_worst.append ((math.sqrt(n) -1)*4*4* one_hop_delay_worst)

18

19 print(’for 100 nodes the min delay is {}’.format(times_analysis [-1]))

20 plt.plot(nodes , times_analysis , linestyle=’--’, marker=’x’, label=’

analysis ’)

21 plt.plot(nodes , times_avg , linestyle=’-’, marker=’+’, label=’average

measurements ’)

22 plt.plot(nodes , times_worst , linestyle=’:’, marker=’o’, label=’worst case

measurements ’)

23 plt.yticks(fontsize =12)

24 plt.xticks(fontsize =12)

25 plt.ylabel("Convergence time (s)", fontsize =14)

26 plt.xlabel("Number of nodes", fontsize =14)

27 plt.legend(loc=’best’)

28 plt.tight_layout ()

29 plt.savefig(’ca_convergence_times.png’)

Bibliography

[1] IEEE Computer Society. LAN/MAN Standards Committee. IEEE Standard

for Low-Rate Wireless Networks Amendment 6 : Enabling Spectrum Resource

Measurement Capability IEEE Standard for Low-Rate Wireless Networks Amend-

ment 6 : Enabling Spectrum Resource Measurement Capability. 2018. ISBN

9781504447942. URL https://bibliotecavirtual.uis.edu.co/login?url=

http://search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=

edseee.8398601&lang=es&site=eds-live.

[2] South African Cities Network. State of South African Cities Report 2021. Johan-

nesburg, 2022. ISBN 9780620982771.

[3] ICASA. The state of the ICT sector in South Africa. Independent Communications

Authority of South Africa, (March):111, 2021. URL https://www.icasa.org.za/

uploads/files/State-of-ICT-Sector-Report-March-2018.pdf?TSPD_.

[4] A Bridgwood. General Household Survey. Technical Report P0318, Department

of Statistics South Africa, 2021. URL http://www.ncbi.nlm.nih.gov/pubmed/

11469378.

[5] Amreesh Phokeer, Melissa Densmore, David Johnson, and Nick Feamster. A First

Look at Mobile Internet Use in Township communities in South Africa. ACM DEV

2016, Nairobi, Kenya, 18-21 Nov 2016, 2016. doi: 10.1145/3001913.3001926.

[6] Senka Hadzic, Amreesh Phokeer, and David Johnson. Townshipnet: A lo-

calized hybrid TVWS-WiFi and cloud services network. International Sympo-

sium on Technology and Society, Proceedings, 2016-Decem:86–91, 2016. doi:

10.1109/ISTAS.2016.7764276.

[7] Sonia Jorge and Teddy Woodhouse. What is meaning-

ful internet access? Conceptualising a holistic ICT4D

policy framework, 2022. URL https://a4ai.org/news/

what-is-meaningful-internet-access-conceptualising-a-holistic-ict4d-policy-framework.

[8] ICASA. Regulations on the use of television white space, 2018.

380

https://bibliotecavirtual.uis.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=edseee.8398601&lang=es&site=eds-live
https://bibliotecavirtual.uis.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=edseee.8398601&lang=es&site=eds-live
https://bibliotecavirtual.uis.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=edseee.8398601&lang=es&site=eds-live
https://www.icasa.org.za/uploads/files/State-of-ICT-Sector-Report-March-2018.pdf?TSPD_
https://www.icasa.org.za/uploads/files/State-of-ICT-Sector-Report-March-2018.pdf?TSPD_
http://www.ncbi.nlm.nih.gov/pubmed/11469378
http://www.ncbi.nlm.nih.gov/pubmed/11469378
https://a4ai.org/news/what-is-meaningful-internet-access-conceptualising-a-holistic-ict4d-policy-framework
https://a4ai.org/news/what-is-meaningful-internet-access-conceptualising-a-holistic-ict4d-policy-framework

Bibliography 381

[9] Tina Pelkey. FCC Adopts New Rules for the 6 GHz Band, Unleashing 1200 MHz

of Spectrum for Unlicensed Use, 4 2020. URL https://www.fcc.gov/document/

fcc-opens-6-ghz-band-wi-fi-and-other-unlicensed-uses.

[10] CBRS, SAS and Spectrum Sharing: The Complete Guide. URL https://

blinqnetworks.com/cbrs-sas-spectrum-sharing-guide/.

[11] You Han, Eylem Ekici, Haris Kremo, and Onur Altintas. A survey of MAC issues

for TV white space access. Ad Hoc Networks, 27:195–218, 2015. ISSN 15708705.

doi: 10.1016/j.adhoc.2014.11.009. URL http://dx.doi.org/10.1016/j.adhoc.

2014.11.009.

[12] Tuncer Baykas et al. Developing a standard for TV white space coexistence:

Technical challenges and solution approaches. IEEE Wireless Communications,

19(1):10–22, 2012. ISSN 15361284. doi: 10.1109/MWC.2012.6155872.

[13] Federal Communications Commission. Amendment of Part 15 of the Commission’s

Rules for Unlicensed Operations in the Television Bands, Repurposed 600 MHz

Band, 600 MHz Guard Bands and Duplex Gap, and Channel 37, 2015.

[14] Chittabrata Ghosh, Sumit Roy, and Dave Cavalcanti. Coexistence challenges for

heterogeneous cognitive wireless networks in TV white spaces. IEEE Wireless

Communications, 18(4):22–31, 2011. ISSN 15361284. doi: 10.1109/MWC.2011.

5999761.

[15] Abdelmohsen Ali and Walaa Hamouda. Advances on Spectrum Sensing for Cog-

nitive Radio Networks: Theory and Applications. IEEE Communications Surveys

and Tutorials, 19(2):1277–1304, 2017. ISSN 1553877X. doi: 10.1109/COMST.

2016.2631080.

[16] Kedar Kulkarni and Adrish Banerjee. Multi-channel sensing and resource alloca-

tion in energy constrained cognitive radio networks. Physical Communication, 23:

12–19, 2017.

[17] Miguel Lopez-Benitez et al. Estimation of Primary Channel Activity Statistics in

Cognitive Radio Based on Periodic Spectrum Sensing Observations. IEEE Trans.

on Wireless Comm., 18(2):983–996, 2019.

[18] Walid Saad, Mehdi Bennis, and Mingzhe Chen. A Vision of 6G Wireless Systems:

Applications, Trends, Technologies, and Open Research Problems. IEEE Network,

34(3):134–142, 2020. ISSN 1558156X. doi: 10.1109/MNET.001.1900287.

[19] Federal Communications Commission. Unlicensed Use of the 6 GHz Band, Report

and Order and Further Notice of Proposed Rulemaking, 2020.

https://www.fcc.gov/document/fcc-opens-6-ghz-band-wi-fi-and-other-unlicensed-uses
https://www.fcc.gov/document/fcc-opens-6-ghz-band-wi-fi-and-other-unlicensed-uses
https://blinqnetworks.com/cbrs-sas-spectrum-sharing-guide/
https://blinqnetworks.com/cbrs-sas-spectrum-sharing-guide/
http://dx.doi.org/10.1016/j.adhoc.2014.11.009
http://dx.doi.org/10.1016/j.adhoc.2014.11.009

Bibliography 382

[20] M.R. Garey and D.S. Johnson. Computers and intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman and company, New York, 1979. ISBN

0716710447.

[21] SDR Forum Cognitive Radio Working Group. Cognitive Radio Definitions and

Nomenclature. Approved Document SDRF-06-P-0009-V1.0.0, (September):1–34,

2008.

[22] John Stine, Darcy Swain-walsh, and Matthew Sherman. IEEE 1900.5 Enabled

Whitespace Database Architecture Evolution. In IEEE International Symposium

on Dynamic Spectrum Access Networks (DYSPAN), volume 7013, pages 103–112,

2014. ISBN 9781479926619.

[23] Margaret Rouse. Wireless Mesh Network (WMN), 2009. URL http://

searchnetworking.techtarget.com/definition/wireless-mesh-network.

[24] Ante Prodan and Vinod Mirchandani. Channel Assignment Techniques for 802.11-

Based Multiradio Wireless Mesh Networks. pages 119–146. 2009. doi: 10.1007/

978-1-84800-909-7{\ }5.

[25] M. R. Garey and D. S. Johnson. The Complexity of Near-Optimal Graph Coloring.

Journal of the ACM (JACM), 23(1):43–49, 1976. ISSN 1557735X. doi: 10.1145/

321921.321926.

[26] Richard M Karp. Reducibility among Combinatorial Problems. In Bohlinger J.D.

Miller R.E., Thatcher J.W., editor, Complexity of Computer Computations., pages

85–103. Springer, Boston, MA, 1972.

[27] William K Hale. Frequency assignment: Theory and applications. In Proceedings

of the IEEE, volume 68, pages 1497–1514, 1980. doi: 10.1109/PROC.1980.11899.

[28] Gang Wu et al. Implementation of dynamic channel switching on IEEE 802.11-

based wireless mesh networks. In ACM Int. Conf. Proc. Series, 2008.

[29] Alireza Moghaddam and Uyen Trang Nguyen. Evaluation of channel switching

overhead for multicast communications in wireless mesh networks. 2016 IEEE

7th Annual Ubiquitous Computing, Electronics and Mobile Communication Con-

ference, UEMCON 2016, 2016. doi: 10.1109/UEMCON.2016.7777921.

[30] Xiaoheng Deng, Jie Luo, Lifang He, Qiang Liu, Xu Li, and Lin Cai. Cooperative

channel allocation and scheduling in multi-interface wireless mesh networks. Peer-

to-Peer Networking and Applications, 12(1):1–12, 2019. ISSN 19366450. doi: 10.

1007/s12083-017-0619-8.

http://searchnetworking.techtarget.com/definition/wireless-mesh-network
http://searchnetworking.techtarget.com/definition/wireless-mesh-network

Bibliography 383

[31] NXP. 2.4/5 GHz Dual-band 1x1 Wi-Fi 5 (802.11ac) and Bluetooth 5.2 Solution.

88W8987 SDS Product short data sheet, 3(September):1–89, 2021.

[32] Ian F. Akyildiz and Xudong Wang. A survey on wireless mesh networks. IEEE

Communications Magazine, 43(9):23–30, 2005. ISSN 01636804. doi: 10.1109/

MCOM.2005.1509968.

[33] S. Sampaio, P. Souto, and F. Vasques. A review of scalability and topological

stability issues in IEEE 802.11s wireless mesh networks deployments. International

Journal of Communication Systems, 29:671–693, 2016. ISSN 10745351. doi: 10.

1002/dac.

[34] Andrea Goldsmith. Wireless Communications. Cambridge University Press, New

York, USA, first edition, 2005. ISBN 9780521837163.

[35] V.S. Abhayawardhana, I.J. Wassell, D. Crosby, M.P. Sellars, and M.G. Brown.

Comparison of Empirical Propagation Path Loss Models for Fixed Wireless Access

Systems. 2005 IEEE 61st Vehicular Technology Conference, 1(c):73–77, 2005.

ISSN 15502252. doi: 10.1109/VETECS.2005.1543252. URL http://ieeexplore.

ieee.org/xpls/abs_all.jsp?arnumber=1543252.

[36] John S. Seybold. Introduction to RF Propagation. John Wiley & Sons, Inc., New

Jersey, 2005. ISBN 9781846280214. doi: 10.1016/B978-0-240-81203-8.00002-7.

[37] Ruisi He, Zhangdui Zhong, Bo Ai, Jianwen Ding, and Ke Guan. Analysis of the re-

lation between Fresnel zone and path loss exponent based on two-ray model. IEEE

Antennas and Wireless Propagation Letters, 11:208–211, 2012. ISSN 15361225.

doi: 10.1109/LAWP.2012.2187270.

[38] Mohammed S H Al Salameh. Vegetation Attenuation Combined with Propagation

Models versus Path Loss Measurements in Forest Areas. Environmental Science,

pages 120–124, 2014.

[39] Aravind Iyer, Catherine Rosenberg, and Aditya Karnik. What is the right model

for wireless channel interference? IEEE Transactions on Wireless Communica-

tions, 8(5):2662–2671, 2009. ISSN 15361276. doi: 10.1109/TWC.2009.080720.

[40] T. Charles Clancy. Formalizing the interference temperature model. Wireless

Communications and Mobile Computing, 7(9):1077–1086, 2007. ISSN 15308669.

doi: 10.1002/wcm.482.

[41] Richard Maliwatu, Albert A. Lysko, and David L. Johnson. Exploring RSSI

Dependency on Height in UHF for throughput optimisation. In ICACCE 2016,

page 5, 2016. ISBN 9781509025763. URL http://icacce.in.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1543252
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1543252
http://icacce.in

Bibliography 384

[42] David Johnson, Natasha Zlobinsky, Albert Lysko, Magdeline Lamola, Senka

Hadzic, Richard Maliwatu, and Melissa Densmore. Head to Head Battle of TV

White Space and WiFi for Connecting Developing Regions. In AFRICOMM

2016. Lecture Notes of the Institute for Computer Sciences, Social Informatics and

Telecommunications Engineering, volume 208, pages 186–195, Ouagadougou, 2018.

Springer, Cham. ISBN 9783319667416. doi: 10.1007/978-3-319-66742-3{\ }18.

[43] Siyu Lin, Zhangdui Zhong, Lin Cai, and Yuanqian Luo. Finite State Markov Mod-

elling for High Speed Railway Wireless Communication Channel. In Globecom 2012

- Wireless Networking Symposium, pages 5421–5426, 2012. ISBN 9781467309219.

[44] Yong Ding and Li Xiao. Channel allocation in multi-channel wireless mesh net-

works. Computer Communications, 34(7):803–815, 2011. ISSN 01403664. doi:

10.1016/j.comcom.2010.10.011. URL http://dx.doi.org/10.1016/j.comcom.

2010.10.011.

[45] Sofia Pediaditaki, Phillip Arrieta, and Mahesh K. Marina. A learning-based ap-

proach for distributed multi-radio channel allocation in wireless mesh networks.

2009 17th IEEE International Conference on Network Protocols, pages 31–41,

2009. doi: 10.1109/ICNP.2009.5339701. URL http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?arnumber=5339701.

[46] Onur Arpacioglu and Zygmunt J Haas. On the Capacity of Wireless Sensor Net-

works With Omnidirectional Antennas. Revista da Sociedade Brasileira de Tele-

comunicações, 19(3):81–93, 2004.

[47] Xiaohua Xu and Min Song. Stable wireless link scheduling subject to physical

interference with power control. In Proceedings - International Conference on

Computer Communications and Networks, ICCCN, 2014. ISBN 9781479935727.

doi: 10.1109/ICCCN.2014.6911746.

[48] Mulugeta Atlabachew, Jordi Casademont, and Yalemzewd Negash. Multiple an-

tenna (MA) for cognitive radio based wireless mesh networks (CRWMNs): Spec-

trum sensing (SS), volume 244. Springer International Publishing, 2018. ISBN

9783319951522. doi: 10.1007/978-3-319-95153-9{\ }17. URL http://dx.doi.

org/10.1007/978-3-319-95153-9_17.

[49] Piyush Gupta and P. R. Kumar. The capacity of wireless networks. IEEE

Transactions on Information Theory, 46(2):388–404, 2000. ISSN 00189448. doi:

10.1109/18.825799.

[50] Mansoor Alicherry, Randeep Bhatia, and Li (Erran) Li. Joint channel assignment

and routing for throughput optimization in multi-radio wireless mesh networks.

http://dx.doi.org/10.1016/j.comcom.2010.10.011
http://dx.doi.org/10.1016/j.comcom.2010.10.011
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5339701
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5339701
http://dx.doi.org/10.1007/978-3-319-95153-9_17
http://dx.doi.org/10.1007/978-3-319-95153-9_17

Bibliography 385

Proceedings of the 11th annual international conference on Mobile computing and

networking - MobiCom ’05, page 58, 2005. ISSN 07338716. doi: 10.1145/1080829.

1080836. URL http://portal.acm.org/citation.cfm?doid=1080829.1080836.

[51] Yaqin Zhou, Xiang Yang Li, Min Liu, Zhongcheng Li, and Xiaohua Xu. Link

scheduling for throughput maximization in multihop wireless networks under phys-

ical interference. Wireless Networks, 23(8):1–16, 2017. ISSN 15728196. doi:

10.1007/s11276-016-1276-1.

[52] Maryam Riaz Rai, Seiamak Vahid, and Klaus Moessner. SINR based topology con-

trol for multihop wireless networks with fault tolerance. In 2015 IEEE 81st Vehic-

ular Technology Conference, volume 2015, pages 1–6, 2015. ISBN 9781479980888.

doi: 10.1109/VTCSpring.2015.7146089.

[53] Behnam Bahrak and Jung-min Jerry Park. Coexistence Decision Making for Spec-

trum Sharing Among Heterogeneous Wireless Systems. IEEE Transactions on

Wireless Communications, 13(3):1298–1307, 2014.

[54] Veljko Pejovic, David L Johnson, Mariya Zheleva, Elizabeth M Belding, and Albert

Lysko. VillageLink : Wide-Area Wireless Coverage. In 6th International Confer-

ence on Communications Systems and Networks (COMSNETS 2014), pages 7–10,

Bangalore, 2014.

[55] Anthony Ephremides. Stability Properties of Constrained Queueing Systems and

Scheduling Policies for Maximum Throughput in Multihop Radio Networks. IEEE

Transactions on Automatic Control, 37(12):1936–1948, 1992. ISSN 15582523. doi:

10.1109/9.182479.

[56] Dingde Jiang, Yuanting Wang, Chunping Yao, and Yang Han. An effective dy-

namic spectrum access algorithm for multi-hop cognitive wireless networks. Com-

puter Networks, 84:1–16, 2015. ISSN 13891286. doi: 10.1016/j.comnet.2015.04.003.

URL http://dx.doi.org/10.1016/j.comnet.2015.04.003.

[57] Claude E. Shannon. A Mathematical Theory of Communication. Bell System Tech-

nical Journal, 27(3):379–423, 1948. ISSN 15387305. doi: 10.1002/j.1538-7305.1948.

tb01338.x. URL http://portal.acm.org/citation.cfm?doid=584091.584093.

[58] IEEE Computer Society. IEEE Standard for Information technology— Telecom-

munications and information exchange between systems — Local and metropolitan

area networks — Specific requirements — Part 19: TV White Space Coexistence

Methods, 2014.

http://portal.acm.org/citation.cfm?doid=1080829.1080836
http://dx.doi.org/10.1016/j.comnet.2015.04.003
http://portal.acm.org/citation.cfm?doid=584091.584093

Bibliography 386

[59] Lars Berlemann, Stefan Mangold, Guido R. Hiertz, and Bernhard H. Walke. Policy

defined spectrum sharing and medium access for cognitive radios. Journal of

Communications, 1(1):1–12, 2006. ISSN 17962021. doi: 10.4304/jcm.1.1.1-12.

[60] Goutam Ghosh, Prasun Das, and Subhajit Chatterjee. A Cognitive Radio And

Dynamic Spectrum Access – A Study. International Journal of Next-Generation

Networks, 6(1):43–60, 2014. ISSN 09757252. doi: 10.5121/ijngn.2014.6104. URL

http://www.airccse.org/journal/ijngn/papers/6114ijngn04.pdf.

[61] Mani Shekhar Gupta and Krishan Kumar. Progression on spectrum sensing for

cognitive radio networks: A survey, classification, challenges and future research

issues. Journal of Network and Computer Applications, 143(April):47–76, 2019.

ISSN 10958592. doi: 10.1016/j.jnca.2019.06.005. URL https://doi.org/10.

1016/j.jnca.2019.06.005.

[62] Abbass Nasser et al. Spectrum sensing for cognitive radio: Recent advances and

future challenge. Sensors, 21(7):1–29, 2021. ISSN 14248220.

[63] Maziar Nekovee. A survey of cognitive radio access to TV white spaces. Inter-

national Journal of Digital Multimedia Broadcasting, 2010, 2010. ISSN 16877578.

doi: 10.1155/2010/236568.

[64] Tektronix Inc. Wi-Fi : Overview of the 802.11 Physical Layer and Transmit-

ter Measurements. 2013. URL http://www.cnrood.com/public/docs/WiFi_

Physical_Layer_and_Transm_Meas.pdf.

[65] IEEE Computer Society. IEEE Standard for Information technology– Lo-

cal and metropolitan area networks– Specific requirements– Part 11: Wireless

LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications

Amendment 5: Television White Spaces Operation. New York, USA, 2013.

ISBN 9780738187488. doi: 10.1109/IEEESTD.2009.5307322. URL http://

ieeexplore.ieee.org/servlet/opac?punumber=2408.

[66] IEEE Computer Society. IEEE Standard for Information technology— Telecom-

munications and information exchange between systems— Local and metropoli-

tan area networks— Specific requirements Part 11: Wireless LAN Medium Access

Control (MAC) and Physical Layer (PHY) Specifications Am, volume 2008. 2010.

ISBN 9780738163246.

[67] IEEE Computer Society. IEEE Std 802.11s™-2011 IEEE Standard for Information

Technology— Telecommunications and information exchange between systems—

Local and metropolitan area networks— Specific requirements Part 11: Wireless

http://www.airccse.org/journal/ijngn/papers/6114ijngn04.pdf
https://doi.org/10.1016/j.jnca.2019.06.005
https://doi.org/10.1016/j.jnca.2019.06.005
http://www.cnrood.com/public/docs/WiFi_Physical_Layer_and_Transm_Meas.pdf
http://www.cnrood.com/public/docs/WiFi_Physical_Layer_and_Transm_Meas.pdf
http://ieeexplore.ieee.org/servlet/opac?punumber=2408
http://ieeexplore.ieee.org/servlet/opac?punumber=2408

Bibliography 387

LAN Medium Access Control (MAC) and Physical Layer , volume 2011. IEEE

Standards Association, New York, USA, 2011. ISBN 9780738187488.

[68] IEEE Computer Society. IEEE Standard for Information Technology— Telecom-

munications and information exchange between systems Wireless Regional Area

Networks (WRAN) — Specific requirements Part 22: Cognitive Wireless RAN

Medium Access Control (MAC) and Physical Layer (PHY) Speci. IEEE Stan-

dards Association, 2019. ISBN 9781504461481.

[69] IEEE Communications Society. IEEE Standard for Architectural Building Blocks

Enabling Network-Device Distributed Decision Making for Optimized Radio Re-

source Usage in Heterogeneous Wireless Access Networks, 2009.

[70] ECMA International. Standard ECMA-392 MAC and PHY for Operation in TV

White Space, 2012.

[71] ETSI. White Space Devices (WSD); Wireless Access Systems operating in the

470 MHz to 790 MHz TV broadcast band; Harmonised Standard covering the

essential requirements of article 3.2 of Directive 2014/53/EU, 2018.

[72] Ahmed S.B. Kozal, Madjid Merabti, and Faycal Bouhafs. An improved energy

detection scheme for cognitive radio networks in low SNR region. Proceedings

- IEEE Symposium on Computers and Communications, pages 000684–000689,

2012. ISSN 15301346. doi: 10.1109/ISCC.2012.6249377.

[73] Saman Atapattu, Chintha Tellambura, Hai Jiang, and Nandana Rajatheva. Uni-

fied Analysis of Low-SNR Energy Detection and Threshold Selection. IEEE Trans-

actions on Vehicular Technology, 64(11):5006–5019, 2015. ISSN 00189545. doi:

10.1109/TVT.2014.2381648.

[74] A. Masrub et al. Cooperative sensing for dynamic spectrum access in Cogni-

tive Wireless Mesh Networks. In IEEE Int. Symp. on Broadb. Multim. Syst.

and Broadcasting (BMSB), pages 1–5. IEEE, 2013. ISBN 9781467360470. doi:

10.1109/BMSB.2013.6621758.

[75] Waleed Ejaz, Najam Ul Hasan, and Hyung Seok Kim. Distributed cooperative

spectrum sensing in cognitive radio for ad hoc networks. Computer Communica-

tionsComm., 36(12):1341–1349, 2013.

[76] Praneeth P. Jain, Pradeep R. Pawar, Prajwal Patil, and Devasis Pradhan. Nar-

rowband Spectrum Sensing in Cognitive Radio Detection Methodologies. Interna-

tional Journal of Computer Sciences and Engineering, 7(11):105–113, 2019. doi:

10.26438/ijcse/v7i11.105113.

Bibliography 388

[77] Kenan kockaya and Ibrahim Develi. Spectrum sensing in cognitive radio networks:

threshold optimization and analysis. Eurasip Journal on Wireless Communications

and Networking, 2020(1), 2020. ISSN 16871499. doi: 10.1186/s13638-020-01870-7.

[78] C. I. Muhammed Althaf and S. Chris Prema. Covariance and eigenvalue based

spectrum sensing using USRP in real environment. 2018 10th International Con-

ference on Communication Systems and Networks, COMSNETS 2018, 2018-Janua

(4):414–417, 2018. doi: 10.1109/COMSNETS.2018.8328231.

[79] Youness Arjoune and Naima Kaabouch. A comprehensive survey on spectrum

sensing in cognitive radio networks: Recent advances, new challenges, and future

research directions. Sensors (Switzerland), 19(1), 2019. ISSN 14248220. doi:

10.3390/s19010126.

[80] Pallaviram Sure. On the performance of Grassmann-covariance-matrix-based

spectrum sensing for cognitive radio. Sadhana - Academy Proceedings in En-

gineering Sciences, 46(4):3670–3682, 2021. ISSN 09737677. doi: 10.1007/

s12046-021-01719-9.

[81] Faizan Qamar, Maraj Uddin, Ahmed Siddiqui, M H D Nour Hindia, and Rosilah

Hassan. Issues, Challenges, and Research Trends in Spectrum Management : A

Comprehensive Overview and New Vision for Designing 6G Networks. Electronics,

2020.

[82] Benjamin Imanilov. Low-Complexity High-Accuracy 5G and LTE Multichan-

nel Spectrum Analysis Aided by Unsupervised Machine Learning. 11th Annual

IEEE Information Technology, Electronics and Mobile Communication Confer-

ence, IEMCON 2020, pages 31–40, 2020. doi: 10.1109/IEMCON51383.2020.

9284843.

[83] Yingqi Lu, Pai Zhu, Donglin Wang, and Michel Fattouche. Machine learning

techniques with probability vector for cooperative spectrum sensing in cognitive

radio networks. IEEE Wireless Communications and Networking Conference,

WCNC, 2016-Septe(11):2209–2221, 2016. ISSN 15253511. doi: 10.1109/WCNC.

2016.7564840.

[84] G. P. Aswathy and K. Gopakumar. Sub-Nyquist wideband spectrum sensing tech-

niques for cognitive radio: A review and proposed techniques. AEU - International

Journal of Electronics and Communications, 104:44–57, 2019. ISSN 16180399. doi:

10.1016/j.aeue.2019.03.004. URL https://doi.org/10.1016/j.aeue.2019.03.

004.

https://doi.org/10.1016/j.aeue.2019.03.004
https://doi.org/10.1016/j.aeue.2019.03.004

Bibliography 389

[85] P. Ramakrishnan, P. T. Sivagurunathan, and N. Sathishkumar. A comprehensive

survey on effective spectrum sensing in 5g wireless networks through cognitive

radio networks. Journal of Physics: Conference Series, 1717(1), 2021. ISSN

17426596. doi: 10.1088/1742-6596/1717/1/012070.

[86] Adriana B. Flores, Ryan E. Guerra, Edward W. Knightly, Peter Ecclesine, and

Santosh Pandey. IEEE 802.11af: A standard for TV white space spectrum sharing.

IEEE Communications Magazine, 51(10):92–100, 2013. ISSN 01636804. doi: 10.

1109/MCOM.2013.6619571.

[87] José C. Ribeiro, Jorge Ribeiro, Jonathan Rodriguez, Rogério Diońısio, Hugo Es-

teves, Pedro Duarte, and Paulo Marques. Testbed for combination of local sensing

with geolocation database in real environments. IEEE Wireless Communications,

19(4):59–66, 2012. ISSN 15361284. doi: 10.1109/MWC.2012.6272424.

[88] Kennedy K. Ronoh, George Kamucha, Thomas Olwal, and Tonny Omwansa. A

Survey of Resource Allocation in TV White Space Networks. Journal of Com-

munications, 14(12):1180–1190, 2019. ISSN 17962021. doi: 10.12720/jcm.14.12.

1180-1190.

[89] Ryszard Struzak and Dariusz Wiecek. TV White Spaces: A Pragmatic Approach.

ICTP-The Abdus Salam International Centre for Theoretical Physics T/ICT4D

Lab, Trieste, first edition, 2013. ISBN 978-9295003-50-7.

[90] Junrong Yan et al. Performance comparison of IEEE 802.11s EDCA based on

different NAV settings. ICCT, pages 755–758, 2010. doi: 10.1109/ICCT.2010.

5688621.

[91] Giuseppe Bianchi. Performance Analysis of the IEEE 802.11 Distributed Coordi-

nation Function. Analysis, 18(3):535–547, 2000.

[92] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by Simulated Anneal-

ing. Science, New Series, 220(4598):671–680, 1983.

[93] Yaghout Nourani and Bjarne Andresen. A comparison of simulated annealing

cooling strategies. Journal of Physics A: Mathematical and General, 31(41):8373–

8385, 1998. ISSN 03054470. doi: 10.1088/0305-4470/31/41/011.

[94] John Geweke and Hisashi Tanizaki. Bayesian estimation of state-space mod-

els using the Metropolis Hastings algorithm within Gibbs sampling. Com-

putational statistics and data analysis, 37(2):151–170, 2001. ISSN 01679473.

doi: 10.1016/S0167-9473(01)00009-3. URL http://www.sciencedirect.com/

science/article/pii/S0167947301000093.

http://www.sciencedirect.com/science/article/pii/S0167947301000093
http://www.sciencedirect.com/science/article/pii/S0167947301000093

Bibliography 390

[95] Rainer Storn and Kenneth Price. Differential Evolution – A Simple and Efficient

Heuristic for Global Optimization over Continuous Spaces. Journal of Global Op-

timization, 11:341–359, 1997. ISSN 08153191. doi: 10.1071/AP09004.

[96] Lichtblau. Differential Evolution in Discrete Optimization. International Journal

of Swarm Intelligence and Evolutionary Computation, 1:1–10, 2012.

[97] James Kennedy and Russell C. Eberhart. Particle Swarm Optimization. Studies in

Computational Intelligence, 927:1942–1948, 1995. ISSN 18609503. doi: 10.1007/

978-3-030-61111-8{\ }2.

[98] Yuhui Shi and Russell Eberhart. Modified particle swarm optimizer. In Proceedings

of the IEEE Conference on Evolutionary Computation, ICEC, number February

2015, pages 69–73, Singapore, 1998. ISBN 0780348699. doi: 10.1109/icec.1998.

699146.

[99] Yong Ling Zheng, Long Hua Ma, Li Yan Zhang, and Ji Xin Qian. On the conver-

gence analysis and parameter selection in particle swarm optimization. Interna-

tional Conference on Machine Learning and Cybernetics, 3(November):1802–1807,

2003. doi: 10.1109/icmlc.2003.1259789.

[100] J. Kennedy. Bare bones particle swarms. 2003 IEEE Swarm Intelligence Sympo-

sium, SIS 2003 - Proceedings, pages 80–87, 2003. doi: 10.1109/SIS.2003.1202251.

[101] James Kennedy and Russell C. Eberhart. Discrete binary version of the particle

swarm algorithm. Proceedings of the IEEE International Conference on Systems,

Man and Cybernetics, 5:4104–4108, 1997. ISSN 08843627. doi: 10.1109/icsmc.

1997.637339.

[102] Davide Anghinolfi and Massimo Paolucci. A new discrete particle swarm optimiza-

tion approach for the single-machine total weighted tardiness scheduling problem

with sequence-dependent setup times. European Journal of Operational Research,

193:73–85, 2009. ISSN 03772217. doi: 10.1016/j.ejor.2007.10.044.

[103] Xuyuan Li, Hualong Xu, and Zhaogang Cheng. One improved discrete particle

swarm optimization based on quantum evolution concept. Proceedings - Interna-

tional Conference on Intelligent Computation Technology and Automation, ICI-

CTA 2008, 1:96–100, 2008. doi: 10.1109/ICICTA.2008.371.

[104] Xianpeng Wang and Lixin Tang. A discrete particle swarm optimization al-

gorithm with self-adaptive diversity control for the permutation flowshop prob-

lem with blocking. Applied Soft Computing Journal, 12(2):652–662, 2012. ISSN

15684946. doi: 10.1016/j.asoc.2011.09.021. URL http://dx.doi.org/10.1016/

j.asoc.2011.09.021.

http://dx.doi.org/10.1016/j.asoc.2011.09.021
http://dx.doi.org/10.1016/j.asoc.2011.09.021

Bibliography 391

[105] Dmitrii Dugaev and Eduard Siemens. A Wireless Mesh Network NS-3 Simula-

tion Model: Implementation and Performance Comparison With a Real Test-Bed.

Proc. of the 2nd International Conference on Applied Innovations in IT, (ICAIIT),

(March):1–5, 2014. doi: 10.13142/kt10002.01.

[106] Maryam Amiri-Nezhad et al. Simulation of multi-radio multi-channel 802.11-based

mesh networks in ns-3. Eurasip Journal on Wireless Communications and Net-

working, 2014(1), 2014. ISSN 16871499. doi: 10.1186/1687-1499-2014-118.

[107] Soohyun Cho. SINR-Based MCS Level Adaptation in CSMA/CA Wireless Net-

works to Embrace IoT Devices. Symmetry, 9(10):236, 2017. ISSN 2073-8994. doi:

10.3390/sym9100236.

[108] Jason B. Ernst, Stefan C. Kremer, and Joel J.P.C. Rodrigues. A Wi-Fi simulation

model which supports channel scanning across multiple non-overlapping channels

in ns3. Proceedings - International Conference on Advanced Information Network-

ing and Applications, AINA, (November 2015):268–275, 2014. ISSN 1550445X.

doi: 10.1109/AINA.2014.36.

[109] Carlos M. D Viegas, Francisco Vasques, Paulo Portugal, and Ricardo Moraes.

Real-time communication in IEEE 802.11s mesh networks: simulation assessment

considering the interference of non-real-time traffic sources. Eurasip Journal on

Wireless Communications and Networking, 2014(1):1–15, 2014. ISSN 16871499.

doi: 10.1186/1687-1499-2014-219.

[110] Jiang Weiwei, Cui Hongyan, and Chen Jianya. Spectrum-aware cluster-based

routing protocol for multiple-hop cognitive wireless network. Proceedings of 2009

IEEE International Conference on Communications Technology and Applications,

IEEE ICCTA2009, pages 288–294, 2009. doi: 10.1109/ICCOMTA.2009.5349193.

[111] Xiaodong Xian, Weiren Shi, and He Huang. Comparison of OMNET++ and

other simulator for WSN simulation. 2008 3rd IEEE Conference on Industrial

Electronics and Applications, ICIEA 2008, pages 1439–1443, 2008. doi: 10.1109/

ICIEA.2008.4582757.

[112] Bahador Amiri and Hamid R. Sadjadpour. A new approach for WLAN channel

selection based on outage capacity. Proceedings - IEEE Military Communications

Conference MILCOM, (April):1657–1662, 2013. doi: 10.1109/MILCOM.2013.281.

Bibliography 392

[113] Muhammad Zeeshan, Asad Ali, Anjum Naveed, Alex X. Liu, Ann Wang, and Has-

saan Khaliq Qureshi. Modeling packet loss probability and busy time in multi-

hop wireless networks. Eurasip Journal on Wireless Communications and Net-

working, 2016(1), 2016. ISSN 16871499. doi: 10.1186/s13638-016-0664-7. URL

http://dx.doi.org/10.1186/s13638-016-0664-7.

[114] Claude Roy, Zbigniew Dziong, and Jean Charles Gregoire. Fast multichannel

switching for IEEE 802.11s multiradio wireless mesh networks. In 2011 IEEE

GLOBECOM Workshops, GC Wkshps 2011, pages 303–308. IEEE, 2011. ISBN

9781467300407. doi: 10.1109/GLOCOMW.2011.6162458.

[115] Ejaz Ahmed, Muhammad Shiraz, and Abdullah Gani. Spectrum-aware distributed

channel assignment for cognitive radio wireless mesh networks. Malaysian Journal

of Computer Science, 26(3):232–250, 2013. ISSN 01279084.

[116] John Wensowitch, Mahmoud Badi, Dinesh Rajan, and Joseph Camp. Building

and Simulating Multi-Dimensional Drone Topologies. MSWiM 2020 - Proceedings

of the 23rd International ACM Conference on Modeling, Analysis and Simulation

of Wireless and Mobile Systems, (November):37–46, 2020. doi: 10.1145/3416010.

3423235.

[117] Eman Alzahrani and Fatma Bouabdallah. Qmmac: Quorum-based multichannel

mac protocol for wireless sensor networks. Sensors, 21(11), 2021. ISSN 14248220.

doi: 10.3390/s21113789.

[118] Kaushik Chowdhury and Ian Akyildiz. Cognitive Wireless Mesh Networks with

Dynamic Spectrum Access. IEEE Journal on Selected Areas in Communications,

26(1):168–181, 2008.

[119] Ratnesh Kumbhkar, Muhammad Nazmul Islam, Narayan B Mandayam, and Ivan

Seskar. Rate Optimal design of a Wireless Backhaul Network using TV White

Space. In 2015 7th International Conference on Communication Systems and

Networks (COMSNETS), Bangalore, 2015. ISBN 9781424489534.

[120] K Raju, S Anitha Rao, and P Anjaiah. Design and analysis of routing protocol

for cognitive radio ad hoc networks in heterogeneous environment. Journal of

Engineering Sciences, 11(03):1073–1085, 2020.

[121] Yong Ding, Yi Huang, Guokai Zeng, and Li Xiao. Using partially overlapping

channels to improve throughput in wireless mesh networks. IEEE Transactions on

Mobile Computing, 11(11):1720–1733, 2012. ISSN 15361233. doi: 10.1109/TMC.

2011.215.

http://dx.doi.org/10.1186/s13638-016-0664-7

Bibliography 393

[122] V. Sarasvathi, N. C.S.N. Iyengar, and Snehanshu Saha. An efficient interfer-

ence aware partially overlapping channel assignment and routing in wireless mesh

networks. International Journal of Communication Networks and Information

Security, 6(1):52–61, 2014. ISSN 2073607X.

[123] Jihong Wang and Wenxiao Shi. Partially overlapped channels- and flow-based end-

to-end channel assignment for multi-radio multi-channel wireless mesh networks.

China Communications, 13(4):1–13, 2016. ISSN 16735447. doi: 10.1109/CC.2016.

7464117.

[124] Zhijin Qin, Lin Wei, Yue Gao, and Clive G. Parini. Compressive spectrum sensing

augmented by geo-location database. 2015 IEEE Wireless Communications and

Networking Conference Workshops, WCNCW 2015, pages 170–175, 2015. doi:

10.1109/WCNCW.2015.7122549.

[125] João Nogueira and Susana Sargento. Channel Selection Relying on Probabilis-

tic Adjacent Channel Interference Analysis and Pattern Recognition. Wireless

Personal Communications, 86(3):1333–1357, 2016.

[126] Aizaz U. Chaudhry, Roshdy H.M. Hafez, and John W. Chinneck. On the impact

of interference models on channel assignment in multi-radio multi-channel wireless

mesh networks. Ad Hoc Networks, 27:68–80, 2015.

[127] Wei Li, Xiuzhen Cheng, Tao Jing, Yong Cui, Kai Xing, and Wendong Wang.

Spectrum assignment and sharing for delay minimization in multi-hop multi-flow

CRNs. IEEE Journal on Selected Areas in Communications, 31(11):2483–2493,

2013. ISSN 07338716. doi: 10.1109/JSAC.2013.131103.

[128] Aizaz U. Chaudhry, Roshdy H.M. Hafez, and John W. Chinneck. Realistic

interference-free channel assignment for dynamic wireless mesh networks using

beamforming. Ad Hoc Networks, 51:21–35, 2016. ISSN 15708705. doi: 10.1016/j.

adhoc.2016.08.001. URL http://dx.doi.org/10.1016/j.adhoc.2016.08.001.

[129] Aizaz U. Chaudhry, John W. Chinneck, and Roshdy H.M. Hafez. Fast heuristics

for the frequency channel assignment problem in multi-hop wireless networks. Eu-

ropean Journal of Operational Research, 251(3):771–782, 2016. ISSN 03772217.

doi: 10.1016/j.ejor.2015.12.016.

[130] Sheenam Middha and Raman Chadha. Performance Enhancement in Data Trans-

mission Over Wireless Network. In 2022 Second International Conference on Com-

puter Science, Engineering and Applications (ICCSEA), pages 16–20. IEEE, 2022.

ISBN 9781665458344. doi: 10.1109/ICCSEA54677.2022.9936211.

http://dx.doi.org/10.1016/j.adhoc.2016.08.001

Bibliography 394

[131] Srikrishna Sridhar, Jun Guo, and Sanjay Jha. Channel Assignment in Multi-

Radio Wireless Mesh Networks : A Graph-Theoretic Approach. In 2009 First

International Communication Systems and Networks and Workshops, pages 1–10,

Bangalore, 2009.

[132] Chunsheng Xin, Liangping Ma, and Chien Chung Shen. A distributed adaptive

channel assignment algorithm for dynamic spectrum access mesh networks. In 3rd

International Conference on Communications and Networking in China, China-

Com 2008, pages 1178–1182, Hangzhou, China, 2008. ISBN 9781424423736. doi:

10.1109/CHINACOM.2008.4685236.

[133] Mohammed Siraj and Saleh Alshebeili. Performance Enhancement in Multi hop

Cognitive Radio Wireless Mesh Networks. International Journal of Innovative

Computing, Information and Control, 9(10), 2013.

[134] Ying Yu Chen and Chien Chen. Simulated annealing for interface-constrained

channel assignment in wireless mesh networks. Ad Hoc Networks, 29:32–44, 2015.

ISSN 15708705. doi: 10.1016/j.adhoc.2015.01.019. URL http://dx.doi.org/10.

1016/j.adhoc.2015.01.019.

[135] Amitangshu Pal and Asis Nasipuri. JRCA: A joint routing and channel assign-

ment scheme for wireless mesh networks. In Conference Proceedings of the IEEE

International Performance, Computing, and Communications Conference, pages

1–8. IEEE, 2011. ISBN 9781467300100. doi: 10.1109/PCCC.2011.6108059.

[136] Yong Ding, Yi Huang, Guokai Zeng, and Li Xiao. Channel assignment with par-

tially overlapping channels in wireless mesh networks. In Proceedings of the 4th

Annual International Conference on Wireless Internet, pages 1–9, Maui, 2008.

ISBN 9789639799363. doi: 10.4108/ICST.WICON2008.4907.

[137] Fuad A. Ghaleb, Bander Ali Saleh Al-Rimy, Wadii Boulila, Faisal Saeed, Maz-

nah Kamat, Mohd Foad Rohani, and Shukor Abd Razak. Fairness-Oriented

Semichaotic Genetic Algorithm-Based Channel Assignment Technique for Node

Starvation Problem in Wireless Mesh Networks. Computational Intelligence and

Neuroscience, 2021, 2021. ISSN 16875273. doi: 10.1155/2021/2977954.

[138] Nandini Balusu, Suresh Pabboju, and G. Narsimha. An Intelligent Channel As-

signment Approach for Minimum Interference in Wireless Mesh Networks Using

Learning Automata and Genetic Algorithms. Wireless Personal Communications,

106(3):1293–1307, 2019. ISSN 1572834X. doi: 10.1007/s11277-019-06214-3. URL

https://doi.org/10.1007/s11277-019-06214-3.

http://dx.doi.org/10.1016/j.adhoc.2015.01.019
http://dx.doi.org/10.1016/j.adhoc.2015.01.019
https://doi.org/10.1007/s11277-019-06214-3

Bibliography 395

[139] Hui Cheng and Shengxiang Yang. Joint QoS multicast routing and channel assign-

ment in multiradio multichannel wireless mesh networks using intelligent compu-

tational methods. Applied Soft Computing Journal, 11(2):1953–1964, 2011. ISSN

15684946. doi: 10.1016/j.asoc.2010.06.011. URL http://dx.doi.org/10.1016/

j.asoc.2010.06.011.

[140] Anand Prabhu Subramanian, Rupa Krishnan, Samir R Das, and Himanshu Gupta.

Minimum Interference Channel Assignment in Multi-Radio Wireless Mesh Net-

works. In 2007 4th Annual IEEE Communications Society Conference on Sensor,

Mesh and Ad Hoc Communications and Networks, volume 1, pages 481–490, 2007.

[141] Kil-woong Jang. Meta-heuristic algorithms for channel scheduling problem in

wireless sensor networks. International Journal of Communications Systems,

(25):427–446, 2012. doi: 10.1002/dac. URL wileyonlinelibrary.com.

[142] Thomas I. Tegou, Antonios Tsiflikiotis, Dimitrios D. Vergados, Katherine

Siakavara, Spiros Nikolaidis, Sotirios K. Goudos, Panagiotis Sarigiannidis, and

Mohammad Obaidat. Spectrum allocation in cognitive radio networks using

chaotic biogeography-based optimisation. IET Networks, 7(5):328–335, 2018. ISSN

20474962. doi: 10.1049/iet-net.2017.0264.

[143] Xiaofang Zhuang, Hongju Cheng, Naixue Xiong, and Larence T. Yang. Chan-

nel assignment in multi-radio wireless networks based on PSO algorithm. In

2010 5th International Conference on Future Information Technology, FutureTech

2010 - Proceedings, Busan, 2010. IEEE. ISBN 9781424469505. doi: 10.1109/

FUTURETECH.2010.5482773.

[144] Sanchita Ghosh, Amit Konar, and Atulya Nagar. Dynamic channel assignment

problem in mobile networks using particle swarm optimization. Proceedings -

EMS 2008, European Modelling Symposium, 2nd UKSim European Symposium on

Computer Modelling and Simulation, pages 64–69, 2008. doi: 10.1109/EMS.2008.

63.

[145] Hisham M. Abdelsalam, Haitham S. Hamza, Abdoulraham M. Al-Shaar, and Ab-

delbaset S. Hamza. On the use of particle swarm optimization techniques for chan-

nel assignments in cognitive radio networks. In Multidisciplinary Computational

Intelligence Techniques: Applications in Business, Engineering, and Medicine,

number July, pages 202–214. Information Science Reference (an imprint of IGI

Global), Hershey, 2012. ISBN 9781466618305. doi: 10.4018/978-1-4666-1830-5.

ch012.

[146] Hongju Cheng, Naixue Xiong, Athanasios V. Vasilakos, Laurence Tianruo Yang,

Guolong Chen, and Xiaofang Zhuang. Nodes organization for channel assignment

http://dx.doi.org/10.1016/j.asoc.2010.06.011
http://dx.doi.org/10.1016/j.asoc.2010.06.011
wileyonlinelibrary.com

Bibliography 396

with topology preservation in multi-radio wireless mesh networks. Ad Hoc Net-

works, 10(5):760–773, 2012. ISSN 15708705. doi: 10.1016/j.adhoc.2011.02.004.

URL http://dx.doi.org/10.1016/j.adhoc.2011.02.004.

[147] Mithun Chakraborty, Rini Chowdhury, Joydeep Basu, R. Janarthanan, and Amit

Konar. A particle swarm optimization-based approach towards the solution of

the dynamic channel assignment problem in mobile cellular networks. In IEEE

Region 10 Annual International Conference, Proceedings/TENCON, 2008. ISBN

1424424089. doi: 10.1109/TENCON.2008.4766381.

[148] Shinji Sakamoto, Kosuke Ozera, Admir Barolli, Makoto Ikeda, Leonard Barolli,

and Makoto Takizawa. Implementation of an intelligent hybrid simulation sys-

tems for WMNs based on particle swarm optimization and simulated annealing:

performance evaluation for different replacement methods. Soft Computing, 23

(9):3029–3035, 2019. ISSN 14337479. doi: 10.1007/s00500-017-2948-1. URL

https://doi.org/10.1007/s00500-017-2948-1.

[149] Marisa Da Silva Maximiano, Miguel A. Vega-Rodŕıguez, Juan A. Gómez-Pulido,

and Juan M. Sánchez-Pérez. Solving the frequency assignment problem with dif-

ferential evolution. 2007 15th International Conference on Software, Telecom-

munications and Computer Networks, SoftCOM 2007, pages 119–123, 2007. doi:

10.1109/SOFTCOM.2007.4446075.

[150] Juan A. Gomez-Pulido Jan M. Sanchez-Perez Marisa da Silva Maximiano, Miguel

A. Vega-Rodriquez. A Hybrid Differential Evolution Algorithm to Solve a Real-

World Frequency Assignment Problem. In Proceedings of the International Mul-

ticonference on Computer Science and Information Technology, pages 201–205,

2008. ISBN 9781119130536.

[151] Shahzad Latif, Suhail Akraam, and Muhammad Aamer Saleem. Channel assign-

ment using differential evolution algorithm in cognitive radio networks. Inter-

national Journal of Advanced and Applied Sciences, 4(8):160–166, 2017. ISSN

2313626X. doi: 10.21833/ijaas.2017.08.023.

[152] Kiran Kumar Anumandla, Bharadwaj Akella, Samrat L. Sabat, and Siba K.

Udgata. Spectrum allocation in cognitive radio networks using multi-objective

differential evolution algorithm. In 2nd International Conference on Signal Pro-

cessing and Integrated Networks, SPIN 2015, pages 264–269. IEEE, 2015. ISBN

9781479959914. doi: 10.1109/SPIN.2015.7095314.

[153] S Vijaya, R Raja, and V Loganayagi. Channel Allocation and Routing For

Throughput Optimization in Wireless Mesh Networks. International Journal of In-

novative Research in Science, Engineering and Technology, 3(1):1297–1300, 2014.

http://dx.doi.org/10.1016/j.adhoc.2011.02.004
https://doi.org/10.1007/s00500-017-2948-1

Bibliography 397

[154] Mohammad Shojafar, Zahra Pooranian, Mahdi Shojafar, and Ajith Abraham.

LLLA: New Efficient Channel Assignment Method in Wireless Mesh Networks.

In Advances in Intelligent Systems and Computing, volume 237, pages 143–152,

2014. ISBN 9783319017808. doi: 10.1007/978-3-319-01781-5{\ }14.

[155] Ziaeddin Beheshtifard and Mohammad Reza Meybodi. An adaptive channel as-

signment in wireless mesh network: The learning automata approach. Comput-

ers and Electrical Engineering, 72:79–91, 2018. ISSN 00457906. doi: 10.1016/j.

compeleceng.2018.09.004.

[156] Yi Qin, Jiaxiao Zheng, Xinbing Wang, Hanwen Luo, Hui Yu, Xiaohua Tian, and

Xiaoying Gan. Opportunistic scheduling and channel allocation in MC-MR cogni-

tive radio networks. IEEE Transactions on Vehicular Technology, 63(7):3351–3368,

2014. ISSN 00189545. doi: 10.1109/TVT.2014.2299550.

[157] Krishna N. Ramachandran, Elizabeth M. Belding, Kevin C. Almeroth, and

Milind M. Buddhikot. Interference-aware channel assignment in multi-radio

wireless mesh networks. Proceedings - IEEE INFOCOM, (April), 2006. ISSN

0743166X. doi: 10.1109/INFOCOM.2006.177.

[158] Anand Prabhu Subramanian, Himanshu Gupta, and Samir R. Das. Minimum

interference channel assignment in multi-radio wireless mesh networks. In SECON,

pages 481–490, 2007. ISBN 1424412684.

[159] Ao Wang, Luyong Zhang, Dianjun Chen, and Jinhua Chen. Deep Reinforcement

Learning for Dynamic Multichannel Access in Multi-Cognitive Radio Networks.

Journal of Physics: Conference Series, 1550(3):1–11, 2020. ISSN 17426596. doi:

10.1088/1742-6596/1550/3/032135.

[160] Susanna Mosleh, Yao Ma, Jacob D. Rezac, and Jason B. Coder. Dynamic Spec-

trum Access with Reinforcement Learning for Unlicensed Access in 5G and beyond.

IEEE Vehicular Technology Conference, 2020-May(Ml), 2020. ISSN 15502252. doi:

10.1109/VTC2020-Spring48590.2020.9129381.

[161] Andrey Garnaev, Shweta Sagari, and Wade Trappe. Fair channel sharing by Wi-Fi

and LTE-U networks with equal priority. In International Conference on Cognitive

Radio Oriented Wireless Networks (CROWNCOM 2016), number April. Springer,

2016.

[162] Hengwei Lv, Pandong Li, Qinmengying Yan, and Haijian Zhang. Energy-efficient

multi-cell resource allocation in cognitive radio-enabled 5G systems. Eurasip

Journal on Advances in Signal Processing, 2019(1), 2019. ISSN 16876180. doi:

10.1186/s13634-018-0599-8.

Bibliography 398

[163] Nadisanka Rupasinghe and Ismail Gülvenç. Reinforcement learning for licensed-

assisted access of LTE in the unlicensed spectrum. 2015 IEEE Wireless Commu-

nications and Networking Conference, WCNC 2015, (June 2015):1279–1284, 2015.

doi: 10.1109/WCNC.2015.7127653.

[164] Cristina Cano and Gergely Neu. Wireless Optimisation via Convex Bandits: Un-

licensed LTE/WiFi Coexistence. In NetAI’18: Proceedings of the 2018 Workshop

on Network Meets AI & ML, 2018. ISBN 9781450359115. doi: 10.1145/3229543.

3229551. URL http://arxiv.org/abs/1802.04327.

[165] Haijun Zhang, Xiaoli Chu, Weisi Guo, and Siyi Wang. Coexistence of Wi-Fi and

heterogeneous small cell networks sharing unlicensed spectrum. IEEE Commu-

nications Magazine, 53(3):158–164, 2015. ISSN 01636804. doi: 10.1109/MCOM.

2015.7060498.

[166] Atoosa Dalili Shoaei, Student Member, and Mahsa Derakhshani. Efficient LTE /

Wi-Fi Coexistence in Unlicensed Spectrum Using Virtual Network Entity : Opti-

mization and Performance Analysis. IEEE Transactions on Communications, 66

(6):2617–2629, 2018. doi: 10.1109/TCOMM.2018.2801789.

[167] Ahmed Abu-Khadrah et al. Using Markov chain model to evaluate the performance

of EDCA protocol under saturation and non-saturation conditions. Int. Rev. on

Comp. and Software, 10(3):315–323, 2015. ISSN 18286011. doi: 10.15866/irecos.

v10i3.5700.

[168] Ahed Alshanyour and Anjali Agarwal. Three-dimensional markov chain model

for performance analysis of the IEEE 802.11 distributed coordination function. In

GLOBECOM, number December 2013, 2009. ISBN 9781424441488. doi: 10.1109/

GLOCOM.2009.5425980.

[169] Albert Banchs and Luca Vollero. A delay model for IEEE 802.11e EDCA. IEEE

Communications Letters, 9(6):508–510, 2005. ISSN 10897798. doi: 10.1109/

LCOMM.2005.1437353.

[170] Xiaoheng Deng, Tingting He, Lifang He, Jinsong Gui, and Qionglin Peng. Perfor-

mance Analysis for IEEE 802.11s Wireless Mesh Network in Smart Grid. Wire-

less Personal Communications, 96(1):1537–1555, 2017. ISSN 1572834X. doi:

10.1007/s11277-017-4255-7.

[171] Jose R. Gallardo, Dimitrios Makrakis, and Hussein T. Mouftah. Mathematical

analysis of EDCA’s performance on the control channel of an IEEE 802.11p wave

vehicular network. Eurasip Journal on Wireless Communications and Networking,

2010, 2010. ISSN 16871472. doi: 10.1155/2010/489527.

http://arxiv.org/abs/1802.04327

Bibliography 399

[172] Byung Joon Oh and Chang Wen Chen. Analysis of retry limit for supporting VoIP

in IEEE 802.11E EDCA WLANs. ICCCN, (September 2007):464–469, 2007. ISSN

10952055. doi: 10.1109/ICCCN.2007.4317862.

[173] T. Razafindralambo and F. Valois. Performance evaluation of backoff algorithms

in 802.11 ad-hoc networks. PE-WASUN 2006: Proceedings of the Third ACM

International Workshop on Performance Evaluation of Wireless Ad Hoc, Sensor,

and Ubiquitous Networks, pages 82–89, 2006. doi: 10.1145/1163610.1163624.

[174] Juki Wirawan Tantra, Ilenia Tinnirello, and Giuseppe Bianchi. Analysis of the

IEEE 802.11e EDCA under statistical traffic. IEEE International Conference on

Communications, 2(May 2014):546–551, 2006. ISSN 05361486. doi: 10.1109/ICC.

2006.254852.

[175] Hua Zhu and Imrich Chlamtac. Performance analysis for IEEE 802.11e EDCF

service differentiation. IEEE Trans. on Wireless Comm., 4(4):1779–1788, 2005.

ISSN 15361276. doi: 10.1109/TWC.2005.847113.

[176] Yang Xiao. Performance Analysis of Priority Schemes for IEEE 802.11 and IEEE

802.11e Wireless LANs. IEEE Trans. on Wireless Comm., 4(4):1506–1515, 2005.

[177] Inanc Inan, Feyza Keceli, and Ender Ayanoglu. Saturation throughput analysis of

the 802.11e enhanced distributed channel access function. In IEEE International

Conference on Communications, pages 409–414. IEEE, 2007. ISBN 1424403537.

doi: 10.1109/ICC.2007.74.

[178] Xiaoheng Deng, Lifang He, and Jinsong Gui. Modeling and Analysis MAC Layer

Performance for IEEE 802.11s Wireless Mesh Network in Smart Grid. In 2015

International Conference on Identification, Information, and Knowledge in the

Internet of Things, pages 280–283. IEEE, 2015. ISBN 9781467386371. doi: 10.

1109/IIKI.2015.67.

[179] Bingxuan Zhao and Shigeru Shimamoto. Optimal cooperative spectrum sens-

ing with non-coherent inter-channel interference cancellation for cognitive wireless

mesh networks. IEEE Transactions on Consumer Electronics, 57(3):1049–1056,

2011. ISSN 10952055. doi: 10.1109/ICCCN.2011.6005879.

[180] Tengyi Zhang, Yuan Wu, et al. Optimal scheduling of cooperative spectrum sensing

in cognitive radio networks. IEEE Systems Journal, 4(4):535–549, 2010.

[181] You Xu et al. Joint sensing period and transmission time optimization for energy-

constrained cognitive radios. Eurasip Journal on Wireless Comm. and Net., 2010:

0–4, 2010. ISSN 16871472. doi: 10.1155/2010/818964.

Bibliography 400

[182] Xiaoshuang Xing, Tao Jing, Hongjuan Li, Yan Huo, Xiuzhen Cheng, and Taieb

Znati. Optimal spectrum sensing interval in cognitive radio networks. IEEE

Transactions on Parallel and Distributed Systems, 25(9):2408–2417, 2014. ISSN

10459219. doi: 10.1109/TPDS.2013.155.

[183] Shaojie Zhang, others, Abdelhakim Senhaji Hafid, Haitao Zhao, and Shan Wang.

Cross-Layer Rethink on Sensing-Throughput Tradeoff for Multi-Channel Cognitive

Radio Networks. IEEE Transactions on Wireless Communications, 15(10):6883–

6897, 2016. ISSN 15361276. doi: 10.1109/TWC.2016.2592959.

[184] Hang Cao and Shouyi Yang. Sensing-Throughput Tradeoff in Cognitive Radio

Network Based on High Activity of Primary User. In 2017 International Con-

ference on Computing Intelligence and Information System Sensing-Throughput,

pages 121–125, 2018.

[185] Prakash Chauhan, Sanjib Deka, Bijoy Chatterjee, and Nityananda Sarma. Utility

driven cooperative spectrum sensing scheduling for heterogeneous multi-channel

cognitive radio networks. Telecommunication Systems, 78(1):25–37, 2021.

[186] Biljana Bojovic et al. Evaluating unlicensed LTE technologies: Laa vs LTE-u.

IEEE Access, 7:89714–89751, 2019.

[187] Maryam Amiri Nezhad et al. A semi-dynamic, game based and interference aware

channel assignment for multi-radio multi-channel wireless mesh networks. Inter-

national Journal of Ad Hoc and Ubiquitous Computing, 14(3):200–213, 2013.

[188] Felix Juraschek, Mesut Günes, and Bastian Blywis. Measurement-based interfer-

ence modeling using channel occupancy in wireless mesh networks. In WoWMoM

2012 - Digital Proceedings, 2012.

[189] Joseph Tlouyamma and Mthulisi Velempini. Channel Selection Algorithm Opti-

mized for Improved Performance in Cognitive Radio Networks. Wireless Personal

Communications, 119(4):3161–3178, 2021. ISSN 1572834X.

[190] Chongjoon You, Jaeyoung Lee, Jinyoung Kim, and Jun Heo. Efficient cooperative

spectrum sensing for Wi-Fi on TV spectrum. Digest of Technical Papers - IEEE

International Conference on Consumer Electronics (ICCE), (1):903–904, 2011.

[191] Chunyi Song, Ming Zhou, et al. A cooperative spectrum sensing method for

sensing under noise uncertainty and interference. In International Conference on

Advanced Technologies for Communications, volume 2015-Febru, pages 204–207.

IEEE, 2015. ISBN 9781479969555.

Bibliography 401

[192] Meng Hou et al. HEIR: Heterogeneous interference recognition for wireless sen-

sor networks. In WoWMoM 2014, 2014. ISBN 9781479947867. doi: 10.1109/

WoWMoM.2014.6918961.

[193] Ashish Bagwari and Geetam Singh Tomar. Performance study between two-stage

detectors and estimated SNR based detector in cognitive radio networks. Pro-

ceedings - 2014 6th International Conference on Computational Intelligence and

Communication Networks, CICN 2014, pages 425–428, 2014. doi: 10.1109/CICN.

2014.100.

[194] Mariya Zheleva, Petko Bogdanov, Timothy Larock, and Paul Schmitt. AirVIEW:

Unsupervised transmitter detection for next generation spectrum sensing. INFO-

COM 2018 - IEEE Conference on Computer Communications Workshops, pages

1–2, 2018. doi: 10.1109/INFCOMW.2018.8407003.

[195] Alexandra Gallyas-Sanhueza and Christoph Studer. Blind SNR Estimation and

Nonparametric Channel Denoising in Multi-Antenna mmWave Systems. In IEEE

International Conference on Communications, 2021. ISBN 9781728171227.

[196] Kai Yang, Zhitao Huang, Xiang Wang, and Fenghua Wang. An SNR estimation

technique based on deep learning. Electronics (Switzerland), 8(10), 2019. ISSN

20799292.

[197] Lehlohonolo Edwin Sekokotoana, Fambirai Takawira, and Olutayo Oyeyemi Oy-

erinde. Least Mean Squares Channel Estimation for Downlink Non-Orthogonal

Multiple Access. IEEE AFRICON Conference, 2019-Septe, 2019. ISSN 21530033.

doi: 10.1109/AFRICON46755.2019.9133868.

[198] Josep Colom Ikuno, Stefan Pendl, Michal Simko, and Markus Rupp. Accurate

SINR estimation model for system level simulation of LTE networks. In IEEE In-

ternational Conference on Communications, pages 1471–1475. IEEE, 2012. ISBN

9781457720529. doi: 10.1109/ICC.2012.6364098.

[199] Ruzat Ullah, Safdar Nawaz Khan Marwat, Arbab Masood Ahmad, Salman Ahmed,

Abdul Hafeez, Tariq Kamal, and Muhammad Tufail. A machine learning approach

for 5G SINR prediction. Electronics, 9(10):1–19, 2020. ISSN 20799292. doi:

10.3390/electronics9101660.

[200] Mohsen Riahi Manesh, Naima Kaabouch, Hector Reyes, and Wen Chen Hu. A

Bayesian approach to estimate and model SINR in wireless networks. International

Journal of Communication Systems, 30(9):1–11, 2017. ISSN 10991131. doi: 10.

1002/dac.3187.

Bibliography 402

[201] Vyacheslav Begishev, Roman Kovalchukov, Andrey Samuylov, Aleksandr Ome-

tov, Dmitri Moltchanov, Yuliya Gaidamaka, and Sergey Andreev. An analyti-

cal approach to SINR estimation in adjacent rectangular cells. Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 9247(14):446–458, 2015. ISSN 16113349. doi:

10.1007/978-3-319-23126-6{\ }39.

[202] Yasin Yilmaz, Ziyu Guo, and Xiaodong Wang. Sequential joint spectrum sensing

and channel estimation for dynamic spectrum access. IEEE Journal on Selected

Areas in Communications, 32(11):2000–2012, 2014. ISSN 07338716.

[203] G. Ferreira, P. Solis Barreto, M. F. Caetano, E. Alchieri, J. Vartiainen, H. Karvo-

nen, M. Matinmikko-Blue, and J. Seki. A tool for developing collaborative sensing

and cognitive MAC layer solutions for 5G in rural areas. Proceedings of the In-

ternational Symposium on Wireless Communication Systems, 2019-Augus:58–62,

2019. ISSN 21540225. doi: 10.1109/ISWCS.2019.8877232.

[204] Vishal Sevani and Bhaskaran Raman. SIR based interference modeling for wireless

mesh networks: A detailed measurement study. In COMSNETS 2012. IEEE, 2012.

ISBN 9781467302982.

[205] Michael Fitch et al. Wireless service provision in TV white space with cogni-

tive radio technology: A telecom operator’s perspective and experience. IEEE

Communications Magazine, 49(3):64–73, 2011. ISSN 01636804.

[206] Stewart Schley. TV White Space gets a piece of the auction, 2016. URL https:

//www.unh.edu/broadband/tv-white-space-gets-piece-auction.

[207] Gang Wang and Yanyuan Qin. MAC protocols for wireless mesh networks with

multi-beam antennas: A survey. Lecture Notes in Networks and Systems, 69

(February):117–142, 2020. ISSN 23673389. doi: 10.1007/978-3-030-12388-8{\ }9.

[208] IEEE Computer Society. IEEE Std. 802.11n-2009. 2009. ISBN 9780738160467.

[209] Natasha Zlobinsky, David L Johnson, Amit K Mishra, and Albert A Lysko. Sim-

ulation and Improved Channel Assignment by Simulated Annealing of a Wire-

less Mesh Network using Dynamic Spectrum Access; Simulation and Improved

Channel Assignment by Simulated Annealing of a Wireless Mesh Network using

Dynamic Spectrum Access. In Proceedings of the 19th ACM International Sympo-

sium on Mobility Management and Wireless Access, page 157–166, Alicante, 2021.

Aliante, Spain. ACM. ISBN 9781450390798. doi: 10.1145/3479241.3486696. URL

https://doi.org/10.1145/3479241.3486696.

https://www.unh.edu/broadband/tv-white-space-gets-piece-auction
https://www.unh.edu/broadband/tv-white-space-gets-piece-auction
https://doi.org/10.1145/3479241.3486696

Bibliography 403

[210] Paul Fuxjaeger and Stefan Ruehrup. Validation of the NS-3 Interference Model

for IEEE802.11 Networks. Proceedings - 2015 8th IFIP Wireless and Mo-

bile Networking Conference, WMNC 2015, (October 2015):216–222, 2016. doi:

10.1109/WMNC.2015.40.

[211] NS3 project. The ns-3 Wi-Fi Module Documentation. 2016. URL https://www.

nsnam.org/workshops/wns3-2010/dot11s.pdf.

[212] natzlob/ns-3-dev-git, 2021. URL https://github.com/natzlob/ns-3-dev-git.

[213] Ns-3. ns3::RandomDiscPositionAllocator Class Reference, 2021. URL

https://www.nsnam.org/docs/release/3.35/doxygen/classns3_1_1_

random_disc_position_allocator.html#details.

[214] Ns-3. Events and Simulator, 2021. URL https://www.nsnam.org/docs/manual/

html/events.html.

[215] Natasha Zlobinsky, David Johnson, Amit Kumar Mishra, and Albert A. Lysko.

Metaheuristic Optimisation for Radio Interface-Constrained Channel Assignment

in a Hybrid Wi-Fi–Dynamic Spectrum Access Wireless Mesh Network. In Lecture

Notes of the Institute for Computer Sciences, Social Informatics and Telecommu-

nications Engineering book series (LNICST), volume 427, pages 56–76, 2021.

[216] Natasha Zlobinsky, David L Johnson, Amit K. Mishra, and Albert A. Lysko.

Comparison of Metaheuristic Algorithms for Interface-Constrained Channel As-

signment in a Hybrid Dynamic Spectrum Access – Wi-Fi Infrastructure WMN.

IEEE Access, 10:26654–26680, 2022. doi: 10.1109/ACCESS.2022.3155642.

[217] W. K. Wong and Chew Ing Ming. A Review on Metaheuristic Algorithms: Recent

Trends, Benchmarking and Applications. In 2019 7th International Conference

on Smart Computing and Communications, ICSCC 2019, pages 1–5. IEEE, 2019.

ISBN 9781728115573. doi: 10.1109/ICSCC.2019.8843624.

[218] cplusplus.com, 2021. URL http://www.cplusplus.com/reference/algorithm/

random_shuffle/.

[219] Anna V Kononova, David W Corne, Philippe De Wilde, Vsevolod Shneer, and

Fabio Caraffini. Structural bias in population-based algorithms. Information Sci-

ences, 298:468–490, 2015. doi: 10.1016/j.ins.2014.11.035. URL http://dx.doi.

org/10.1016/j.ins.2014.11.035.

[220] cplusplus.com, 2021. URL http://www.cplusplus.com/reference/algorithm/

sort/.

https://www.nsnam.org/workshops/wns3-2010/dot11s.pdf
https://www.nsnam.org/workshops/wns3-2010/dot11s.pdf
https://github.com/natzlob/ns-3-dev-git
https://www.nsnam.org/docs/release/3.35/doxygen/classns3_1_1_random_disc_position_allocator.html#details
https://www.nsnam.org/docs/release/3.35/doxygen/classns3_1_1_random_disc_position_allocator.html#details
https://www.nsnam.org/docs/manual/html/events.html
https://www.nsnam.org/docs/manual/html/events.html
http://www.cplusplus.com/reference/algorithm/random_shuffle/
http://www.cplusplus.com/reference/algorithm/random_shuffle/
http://dx.doi.org/10.1016/j.ins.2014.11.035
http://dx.doi.org/10.1016/j.ins.2014.11.035
http://www.cplusplus.com/reference/algorithm/sort/
http://www.cplusplus.com/reference/algorithm/sort/

Bibliography 404

[221] cplusplus.com, 2021. URL https://www.cplusplus.com/reference/

algorithm/find/.

[222] cplusplus.com, 2021. URL https://www.cplusplus.com/reference/map/map/

insert/.

[223] Seyedali Mirjalili. Genetic algorithm. In Evolutionary Algorithms and Neural Net-

works. Studies in Computational Intelligence, volume 780, pages 43–55. Springer,

Cham, 2019. ISBN 9783319930251. doi: 10.1007/978-3-662-43631-8{\ }3.

[224] Kalyanmoy Deb and Samir Agrawal. Understanding Interactions Among Genetic

Algorithm Parameters. Foundations of Genetic Algorithms, 5:265–286, 1999.

[225] D.E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learn-

ing. Addison-Wesley, Reading MA, 1989.

[226] Randy L Haupt. Optimum population size and mutation rate for a simple real

genetic algorithm that optimizes array factors. In IEEE Antennas and Propagation

Society International Symposium. Transmitting Waves of Progress to the Next

Millennium. 2000 Digest., pages 1034–1037. IEEE, 2000. ISBN 0780363698.

[227] T Bäck. Optimal mutation rates in genetic search. Proceedings of the 5th Inter-

national Conference on Genetic Algorithms, 28:2–8, 1993.

[228] Ahmad Hassanat, Khalid Almohammadi, Esra’a Alkafaween, Eman Abunawas,

Awni Hammouri, and V. B.Surya Prasath. Choosing mutation and crossover

ratios for genetic algorithms-a review with a new dynamic approach. Information

(Switzerland), 10(12), 2019. ISSN 20782489. doi: 10.3390/info10120390.

[229] Manolis Georgioudakis and Vagelis Plevris. A Comparative Study of Differential

Evolution Variants in Constrained Structural Optimization. Frontiers in Built

Environment — www.frontiersin.org, 1:102, 2020. doi: 10.3389/fbuil.2020.00102.

URL www.frontiersin.org.

[230] Daniel Bratton and James Kennedy. Defining a standard for particle swarm opti-

mization. Proceedings of the 2007 IEEE Swarm Intelligence Symposium, SIS 2007,

(Sis):120–127, 2007. doi: 10.1109/SIS.2007.368035.

[231] Ioan Cristian Trelea. The particle swarm optimization algorithm: Convergence

analysis and parameter selection. Information Processing Letters, 85(6):317–325,

2003. ISSN 00200190. doi: 10.1016/S0020-0190(02)00447-7.

[232] M. Jiang, Y. P. Luo, and S. Y. Yang. Stochastic convergence analysis and param-

eter selection of the standard particle swarm optimization algorithm. Information

https://www.cplusplus.com/reference/algorithm/find/
https://www.cplusplus.com/reference/algorithm/find/
https://www.cplusplus.com/reference/map/map/insert/
https://www.cplusplus.com/reference/map/map/insert/
www.frontiersin.org

Bibliography 405

Processing Letters, 102(1):8–16, 2007. ISSN 00200190. doi: 10.1016/j.ipl.2006.10.

005.

[233] Wei Jiao, Guangbin Liu, and Dong Liu. Elite Particle Swarm Optimization with

Mutation. 2008 Asia Simulation Conference - 7th International Conference on

System Simulation and Scientific Computing, ICSC 2008, (3):800–803, 2008. doi:

10.1109/ASC-ICSC.2008.4675471.

[234] Hristo Hristov. The Mahalanobis Distance, 2022. URL https://www.baeldung.

com/cs/mahalanobis-distance.

[235] Riccardo Poli, James Kennedy, and Tim Blackwell. Particle swarm optimization:

An overview. Swarm Intelligence, 1(1):33–57, 2007. ISSN 1935-3820. doi: 10.

1007/s11721-007-0002-0.

[236] Gang Xu and Guosong Yu. On convergence analysis of particle swarm optimization

algorithm. Journal of Computational and Applied Mathematics, 333:65–73, 2018.

ISSN 03770427. doi: 10.1016/j.cam.2017.10.026. URL https://doi.org/10.

1016/j.cam.2017.10.026.

[237] Richard Maliwatu, Natasha Zlobinsky, Magdeline Lamola, Augustine Takyi,

David L. Johnson, and Melissa Densmore. Experimental analysis of 5 GHz

WiFi and UHF-TVWS hybrid wireless mesh network back-haul links. Lecture

Notes of the Institute for Computer Sciences, Social-Informatics and Telecom-

munications Engineering, LNICST, 261(i):3–14, 2019. ISSN 18678211. doi:

10.1007/978-3-030-05490-8{\ }1.

[238] Mathias Kretschmer, Christian Niephaus, Thorsten Horstmann, and Karl Jonas.

Providing mobile phone access in rural areas via heterogeneous meshed wireless

back-haul networks. In IEEE International Conference on Communications, num-

ber June, 2011. ISBN 9781612849553. doi: 10.1109/iccw.2011.5963571.

[239] Khairuddin Ab-Hamid, Chong Eng Tan, and Sei Ping Lau. Self-sustainable energy

efficient long range WiFi network for rural communities. In 2011 IEEE GLOBE-

COM Workshops, GC Wkshps 2011, number RuralComm, pages 1050–1055, 2011.

ISBN 9781467300407. doi: 10.1109/GLOCOMW.2011.6162337.

[240] Lakshminarayan Subramanian, Sonesh Surana, Rabin Patra, and Sergiu Nede-

vschi. Rethinking Wireless for the Developing World. Hotnets, 5, 2010. URL

http://www.read.cs.ucla.edu/hotnets5/program.pdf#page=61.

[241] Bianca Thorburn. WiFi Antennas: A 2022 Guide. Bolton Technical South

Africa, 3 2022. URL https://www.boltontechnical.co.za/blogs/news/

wifi-antennas-a-2022-guide.

https://www.baeldung.com/cs/mahalanobis-distance
https://www.baeldung.com/cs/mahalanobis-distance
https://doi.org/10.1016/j.cam.2017.10.026
https://doi.org/10.1016/j.cam.2017.10.026
http://www.read.cs.ucla.edu/hotnets5/program.pdf#page=61
https://www.boltontechnical.co.za/blogs/news/wifi-antennas-a-2022-guide
https://www.boltontechnical.co.za/blogs/news/wifi-antennas-a-2022-guide

Bibliography 406

[242] IEEE Standard for Information technology—Telecommunications and in-

formation exchange between systems—Local and metropolitan area net-

works— Specific requirements Part 11: Wireless LAN medium access

control (MAC) and physical layer (PHY) specifications. LAN/MAN

Standards Committee of the IEEE Computer Society, 1999, 2003. URL

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:

Part+11:+Wireless+LAN+Medium+Access+Control+(MAC)+and+Physical+

Layer+(PHY)+Specifications#0.

[243] IEEE Computer Society. Part 11: Wireless Lan Medium Access Control (MAC)

and Physical Layer (PHY) Specifications. IEEE Std 802.11-2016, 2016(December),

2016.

[244] Laerd Statistics. Kruskal-Wallis H Test using SPSS Statistics,

2018. URL https://statistics.laerd.com/spss-tutorials/

kruskal-wallis-h-test-using-spss-statistics.php.

[245] scipy.stats.kruskal, 2022. URL https://docs.scipy.org/doc/scipy/

reference/generated/scipy.stats.kruskal.html.

[246] W.S. Kendall, F. Liang, and J.S. Wang. Markov Chain Monte Carlo Innovations

and Applications. In Lecture Note Series Institute for Mathematical Sciences, Uni-

versity of Singapore, Vol.7. World Scientific Publiushing Co. Pte. Ltd., Singapore,

2005. ISBN 9812564276.

[247] Rahul Tandra and Anant Sahai. SNR walls for signal detection. IEEE Journal on

Selected Topics in Signal Processing, 2(1):4–17, 2008. ISSN 19324553.

[248] Natasha Zlobinsky, Amit Kumar Mishra, and Fambirai Takawira. Spectrum Sens-

ing and SINR Estimation in an IEEE 802.11s Dynamic Spectrum Access Wire-

less Mesh Network. Proceedings of the 20th ACM International Symposium on

Mobility Management and Wireless Access (MobiWac ’22), 1:55–63, 2022. doi:

10.1145/3551660.3560918. URL https://doi.org/10.1145/3551660.3560918.

[249] Evgeny Khorov, Artem Krasilov, Alexander Krotov, and Andrey Lyakhov. Will

MCCA revive wireless multihop networks? Computer Communications, 104:159–

174, 2017. ISSN 1873703X. doi: 10.1016/j.comcom.2016.10.004. URL http:

//dx.doi.org/10.1016/j.comcom.2016.10.004.

[250] scipy.optimize.fsolve. URL https://docs.scipy.org/doc/scipy/reference/

generated/scipy.optimize.fsolve.html.

[251] Adrian Chad. Spectral Scan Support, 2021. URL https://wiki.freebsd.org/

dev/ath_hal(4)/SpectralScan.

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Part+11:+Wireless+LAN+Medium+Access+Control+(MAC)+and+Physical+Layer+(PHY)+Specifications#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Part+11:+Wireless+LAN+Medium+Access+Control+(MAC)+and+Physical+Layer+(PHY)+Specifications#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Part+11:+Wireless+LAN+Medium+Access+Control+(MAC)+and+Physical+Layer+(PHY)+Specifications#0
https://statistics.laerd.com/spss-tutorials/kruskal-wallis-h-test-using-spss-statistics.php
https://statistics.laerd.com/spss-tutorials/kruskal-wallis-h-test-using-spss-statistics.php
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kruskal.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kruskal.html
https://doi.org/10.1145/3551660.3560918
http://dx.doi.org/10.1016/j.comcom.2016.10.004
http://dx.doi.org/10.1016/j.comcom.2016.10.004
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fsolve.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fsolve.html
https://wiki.freebsd.org/dev/ath_hal(4)/SpectralScan
https://wiki.freebsd.org/dev/ath_hal(4)/SpectralScan

Bibliography 407

[252] Amit Kumar Mishra and David Johnson. White Space Communication: Advances,

Developments and Engineering Challenges. Springer International Publishing, first

edition, 2015.

[253] Steven M. Kay. Fundamentals of Statistical Signal Processing: Estimation Theory,

volume 37. Prentice-Hall PTR, New Jersey, 1995. ISBN 0133457117.

[254] Sheldon M. Ross. Introduction to Probability and Statistics for Engineers and Sci-

entists, Fourth Edition. Elsevier Academic Press, Burlington, MA, fourth edition,

2009.

[255] Massimiliano Bonamente and Statistics. Statistics and Analysis of Scientific Data,

volume 34. Springer Science+Business MediA, second edition, 2021.

[256] Shu-Fei Wu. Interval Estimation for the Two-Parameter Exponential Distribution

under Progressive Type II Censoring on the Bayesian Approach. Symmetry, 14

(4):808, 2022.

[257] Jolynn Pek, Augustine C. M. Wong, and Octavia C. Y. Wong. Confidence Intervals

for the Mean of Non-Normal Distribution: Transform or Not to Transform. Open

Journal of Statistics, 07(03):405–421, 2017.

[258] Tom Carpenter. 802.11 Beacon Intervals – The Real Story, 2014. URL https:

//www.cwnp.com/cwnp-wifi-blog/80211-beacon-intervals/.

[259] IEEE Computer Society. IEEE Std 802.11™-2007, volume 2007. 2007. ISBN

0738156558.

[260] Won Hyoung Lee and Ho Young Hwang. A-MPDU aggregation with optimal

number of MPDUs for delay requirements in IEEE 802.11ac. PLoS ONE, 14(3):

1–17, 2019. ISSN 19326203. doi: 10.1371/journal.pone.0213888.

[261] IEEE Computer Society. IEEE Std 802.22a™-2014 IEEE Standard for Informa-

tion Technology— Telecommunications and information exchange between systems

Wireless Regional Area Networks (WRAN)— Specific requirements Part 22: Cog-

nitive Wireless RAN Medium Access Control (MAC) and Phys, volume 2014. IEEE

Standards Association, New York, USA, 2014. ISBN 9780738167237.

[262] Ammar Alshamrani, Xuemin Shen, and Liang Liang Xie. A cooperative MAC

with efficient spectrum sensing algorithm for distributed Opportunistic Spectrum

Networks. Journal of Communications, 4(10):728–740, 2009. ISSN 17962021. doi:

10.4304/jcm.4.10.728-740.

https://www.cwnp.com/cwnp-wifi-blog/80211-beacon-intervals/
https://www.cwnp.com/cwnp-wifi-blog/80211-beacon-intervals/

Bibliography 408

[263] S. Senthilmurugan and T. G. Venkatesh. Optimal Channel Sensing Strategy for

Cognitive Radio Networks With Heavy-Tailed Idle Times. IEEE Transactions on

Cognitive Communications and Networking, 3(1):26–36, 2017. ISSN 23327731.

[264] Yamuna K. Moorthy and Sakuntala S. Pillai. Novel design of sensing and transmis-

sion duration in cognitive radios for energy efficiency. WiSPNET 2017, 2018-Janua:

112–116, 2018. doi: 10.1109/WiSPNET.2017.8299730.

[265] NXP UK Semiconductors. IEEE 802.15.4 Stack User Guide v2.6. 2016. URL

https://www.nxp.com/docs/en/user-guide/JN-UG-3024.pdf.

[266] Richard Maliwatu. A new connectivity strategy for Wireless Mesh Networks using

Dynamic Spectrum Access. PhD thesis, University of Cape Town, 2020.

[267] V Chen, S Das, L Zhu, J Malyar, and P McCann. Protocol to Access White-Space

(PAWS) Databases. Internet Engineering Task Force (IETF), RFC 7545, pages

1–90, 2015. ISSN 2070-1721. URL https://tools.ietf.org/pdf/rfc7545.pdf.

[268] Raghavendra V Kulkarni, Senior Member, Anna Förster, Ganesh Kumar Venayag-

amoorthy, and Senior Member. Computational Intelligence in Wireless Sensor

Networks : A Survey. IEEE Communications Surveys & Tutorials, 13(1):68–96,

2011.

[269] Wlodzimierz Ogryczak, Hanan Luss, Dritan Nace, and Micha l Pióro. Fair Opti-

mization and Networks: Models, Algorithms, and Applications. Journal of Applied

Mathematics, 2014:1–3, 2014. ISSN 1110-757X. doi: 10.1155/2014/340913. URL

http://www.hindawi.com/journals/jam/2014/340913/.

[270] Cisco Systems. Network Availability: How Much Do You Need? How Do You Get

It? Technical report, Cisco Systems, Inc., San Jose, CA, 2002.

[271] S Waharte and R Boutaba. Tree-based Wireless Mesh Network Architecture :

Topology Analysis. In MeshNets, pages 1–11, Waterloo, 2005.

[272] Gioacchino Mazzurco. Shared-state, 2022. URL https://github.com/

libremesh/lime-packages/tree/master/packages/shared-state.

[273] Socio-Economic Rights Institute of South Africa (SERI). Informal Settlements

and Human Rights in South Africa: Submission to the United Nations Spe-

cial Rapporteur on adequate housing as a component of the right to an ad-

equate standard of living. Technical Report May 2018, 2018. URL https:

//www.blacksash.org.za/.

[274] iNethi, 2021. URL www.inethi.org.za/.

https://www.nxp.com/docs/en/user-guide/JN-UG-3024.pdf
https://tools.ietf.org/pdf/rfc7545.pdf
http://www.hindawi.com/journals/jam/2014/340913/
https://github.com/libremesh/lime-packages/tree/master/packages/shared-state
https://github.com/libremesh/lime-packages/tree/master/packages/shared-state
https://www.blacksash.org.za/.
https://www.blacksash.org.za/.
www.inethi.org.za/

Bibliography 409

[275] INethi Team. Rastafarian community enjoying wind powered Internet through

iNethi. iNethi blog, 5 2020. URL https://www.inethi.org.za/2020/05/21/

ocean-view-rastafarian-community-connected/.

https://www.inethi.org.za/2020/05/21/ocean-view-rastafarian-community-connected/
https://www.inethi.org.za/2020/05/21/ocean-view-rastafarian-community-connected/

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Publications
	List of Figures
	List of Tables
	Abbreviations
	Physical Constants
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Network model
	1.3 Problem statement
	1.4 Research questions
	1.5 Summary and guide to the dissertation
	1.6 Conclusion

	2 Review of relevant theory
	2.1 Introduction
	2.2 Some definitions
	2.2.1 Cognitive Radio
	2.2.2 Dynamic Spectrum Access
	2.2.3 Wireless Mesh Network
	2.2.4 Television White Space

	2.3 The Channel Assignment problem
	2.4 Models
	2.4.1 Physical models
	2.4.1.1 Propagation and path loss
	2.4.1.2 Interference
	2.4.1.3 Antennas

	2.4.2 Protocol model
	2.4.3 Graph model
	2.4.4 Traffic model
	2.4.5 Game Theoretic models

	2.5 Metrics
	2.5.1 Shannon capacity
	2.5.2 Jain's fairness index

	2.6 Dynamic Spectrum Access
	2.7 Regulation, standards, and existing protocols
	2.7.1 TVWS regulation
	2.7.2 Common aspects of IEEE 802.11
	2.7.3 IEEE 802.11af amendment 5
	2.7.4 IEEE 802.11k
	2.7.5 IEEE 802.11s
	2.7.6 IEEE 802.15.4
	2.7.7 IEEE 802.16 for Wireless Metropolitan Area Networks
	2.7.8 IEEE 802.22
	2.7.9 IEEE 802.19.1
	2.7.10 IEEE 1900.4a
	2.7.11 Standard ECMA-392
	2.7.12 ETSI EN 301 598
	2.7.13 Other
	2.7.14 Protocol to Access White-Space (PAWS) Databases

	2.8 Spectrum sensing
	2.8.1 Basic narrowband methods
	2.8.1.1 Energy Detection
	2.8.1.2 Cyclostationary Feature Detection
	2.8.1.3 Coherent/waveform-based techniques
	2.8.1.4 Matched filter techniques
	2.8.1.5 Covariance-based detection
	2.8.1.6 Machine learning

	2.8.2 Wideband methods
	2.8.2.1 Sub-Nyquist methods
	2.8.2.2 Nyquist-based

	2.9 Geolocation Spectrum Databases
	2.10 MAC layer models
	2.10.1 EDCA and the IEEE 802.11s MAC layer
	2.10.2 DCF and EDCA Markov Chain analysis

	2.11 Metaheuristic techniques for optimisation
	2.11.1 Simulated Annealing
	2.11.2 Genetic Algorithm
	2.11.3 Differential Evolution
	2.11.3.1 Mutation
	2.11.3.2 Crossover
	2.11.3.3 Selection
	2.11.3.4 Variants

	2.11.4 Particle Swarm Optimisation
	2.11.4.1 Overview
	2.11.4.2 Naming and Variants

	2.12 Conclusion

	3 Prior work
	3.1 Introduction
	3.2 Simulations
	3.3 Cognitive Radio Ad Hoc Networks and WMNs using DSA
	3.4 Channel Assignment in Wireless Mesh Networks and coexistence strategies
	3.4.1 Interference considerations and modelling
	3.4.2 Centralised CAs
	3.4.2.1 Greedy heuristic approaches
	3.4.2.2 Metaheuristic optimisation approaches

	3.4.3 Distributed CAs
	3.4.4 Summary

	3.5 Markov chain analysis of EDCA for WMNs
	3.6 Spectrum Sensing
	3.6.1 Timing or scheduling of spectrum sensing
	3.6.2 Spectrum sensing and estimation
	3.6.3 Current channel scanning mechanisms

	3.7 Conclusion

	4 Models, methods, and simulation environment
	4.1 Introduction
	4.2 Assumptions
	4.3 Mathematical model
	4.4 Simulation Environment
	4.4.1 MeshSim module
	4.4.2 TVWS channels
	4.4.3 Complexity and run-time
	4.4.4 Limitations

	4.5 General feasible Channel Assignment algorithm
	4.6 Conclusion

	5 Implementation and comparison between Simulated Annealing, Genetic Algorithm, Differential Evolution, and Particle Swarm Optimisation for Channel Assignment optimisation
	5.1 Introduction
	5.2 Implementation details of CA by algorithm
	5.2.1 Channel Assignment by Simulated Annealing
	5.2.2 Channel Assignment by Genetic Algorithm
	5.2.3 Channel Assignment by Differential Evolution
	5.2.4 Channel Assignment by Particle Swarm Optimisation

	5.3 Results
	5.3.1 Simulated Annealing
	5.3.2 Genetic Algorithm
	5.3.3 Differential Evolution
	5.3.4 Particle Swarm Optimisation
	5.3.5 Comparison between all algorithms

	5.4 Discussion and limitations
	5.5 Conclusions and recommendations

	6 Real-world measurements in 5 GHz Wi-Fi and TVWS bands
	6.1 Introduction
	6.2 Equipment and experimental setup
	6.3 Experiments
	6.3.1 Baseline measurements
	6.3.2 Indoor measurements
	6.3.3 Line-of-sight measurements
	6.3.3.1 250 m distance
	6.3.3.2 650 m distance

	6.3.4 Measurements through vegetation

	6.4 Discussion on the application of these results
	6.5 Chapter conclusion

	7 Markov chain analysis of spectrum sensing time, and SINR estimation for CA in a WMN
	7.1 Introduction
	7.2 Modelling idle time
	7.3 Proposed SINR estimation
	7.3.1 Interference and Noise Power Estimation
	7.3.2 Wi-Fi Signal Power estimation

	7.4 Numerical results and discussion
	7.4.1 Sensing time, based on Markov model
	7.4.1.1 Number of samples per window obtainable for increasing number of competing nodes
	7.4.1.2 Feasibility of sampling based on the number of competing nodes

	7.4.2 Confidence intervals of the estimates

	7.5 Conclusion and recommendations

	8 Reporting of sensing statistics and CA distribution algorithm
	8.1 Introduction
	8.2 Spectrum Resource Management and Measurement
	8.3 Proposed alterations to IEEE 802.11 to report measurements
	8.4 Distribution of the Channel Assignment
	8.4.1 Initial CA
	8.4.1.1 Option 1: Complete solution
	8.4.1.2 Option 2: Low-complexity solution

	8.4.2 The actual channel switch
	8.4.2.1 Channel switch procedure
	8.4.2.2 Delay analysis for CA

	8.5 Some notes on implementation and limitations
	8.6 Conclusion

	9 Conclusion
	9.1 Answers to the research questions
	9.2 Original contributions
	9.3 Limitations and suggestions for future work
	9.4 Final words

	A mesh-sim Network Simulator 3 module
	B Initial Channel Assignment algorithm implementation
	C Class definition and implementation of Simulated Annealing for CA
	D Class definition and implementation of Genetic Algorithm for CA
	E Class definition and implementation of Differential Evolution for CA
	F Class definition and implementation of Particle Swarm Optimisation for CA
	G Measurement script
	G.1 Measurement tool
	G.2 testsignal bash script

	H Markov chain analysis
	H.1 Sensing time and number of samples
	H.2 Feasible number of nodes

	I CA distribution and switching delay
	I.1 Single-hop access delay analysis
	I.2 Delay plot

	Bibliography

