125 research outputs found

    Exploiting Hardware Abstraction for Parallel Programming Framework: Platform and Multitasking

    Get PDF
    With the help of the parallelism provided by the fine-grained architecture, hardware accelerators on Field Programmable Gate Arrays (FPGAs) can significantly improve the performance of many applications. However, designers are required to have excellent hardware programming skills and unique optimization techniques to explore the potential of FPGA resources fully. Intermediate frameworks above hardware circuits are proposed to improve either performance or productivity by leveraging parallel programming models beyond the multi-core era. In this work, we propose the PolyPC (Polymorphic Parallel Computing) framework, which targets enhancing productivity without losing performance. It helps designers develop parallelized applications and implement them on FPGAs. The PolyPC framework implements a custom hardware platform, on which programs written in an OpenCL-like programming model can launch. Additionally, the PolyPC framework extends vendor-provided tools to provide a complete development environment including intermediate software framework, and automatic system builders. Designers\u27 programs can be either synthesized as hardware processing elements (PEs) or compiled to executable files running on software PEs. Benefiting from nontrivial features of re-loadable PEs, and independent group-level schedulers, the multitasking is enabled for both software and hardware PEs to improve the efficiency of utilizing hardware resources. The PolyPC framework is evaluated regarding performance, area efficiency, and multitasking. The results show a maximum 66 times speedup over a dual-core ARM processor and 1043 times speedup over a high-performance MicroBlaze with 125 times of area efficiency. It delivers a significant improvement in response time to high-priority tasks with the priority-aware scheduling. Overheads of multitasking are evaluated to analyze trade-offs. With the help of the design flow, the OpenCL application programs are converted into executables through the front-end source-to-source transformation and back-end synthesis/compilation to run on PEs, and the framework is generated from users\u27 specifications

    Managing Overheads in Asynchronous Many-Task Runtime Systems

    Get PDF
    Asynchronous Many-Task (AMT) runtime systems are based on the idea of dividing an algorithm into small units of work, known as tasks. The runtime system is then responsible for scheduling and executing these tasks in an efficient manner by taking into account the resources provided to it and the associated data dependencies between the tasks. One of the primary challenges faced by AMTs is managing such fine-grained parallelism and the overheads associated with creating, scheduling and executing tasks. This work develops methodologies for assessing and managing overheads associated with fine-grained task execution in HPX, our exemplar Asynchronous Many-Task runtime system. Known optimization techniques, viz. active message coalescing, task inlining and parallel loop iteration chunking are applied to HPX. Active message coalescing, where messages bound to the same destination are aggregated into a single message, is presented as a solution to minimize overheads associated with fine-grained communications. Methodologies and metrics for analyzing fine-grained communication overheads are developed. The metrics identified and implemented in this research aid in evaluating network efficiency by giving us an intrinsic view of the underlying network overhead that would be difficult to measure using conventional methods. Task inlining, a method that allows runtime systems to manage the overheads introduced by a large number of tasks by merging tasks together into one thread of execution, is presented as a technique for minimizing fine-grained task overheads. A runtime policy that dynamically decides whether to inline a task is developed and evaluated on different processor architectures. A methodology to derive a largely machine independent constant that allows controlling task granularity is developed. Finally, the machine independent constant derived in the context of task inlining is applied to chunking of parallel loop iterations, which confirms its applicability to reduce overheads, in the context of finding the optimal chunk size of the combined loop iterations

    Towards an OpenMP Specification for Critical Real-Time Systems

    Get PDF
    OpenMP is increasingly being considered as a convenient parallel programming model to cope with the performance requirements of critical real-time systems. Recent works demonstrate that OpenMP enables to derive guarantees on the functional and timing behavior of the system, a fundamental requirement of such systems. These works, however, focus only on the exploitation of fine grain parallelism and do not take into account the peculiarities of critical real-time systems, commonly composed of a set of concurrent functionalities. OpenMP allows exploiting the parallelism exposed within real-time tasks and among them. This paper analyzes the challenges of combining the concurrency model of real-time tasks with the parallel model of OpenMP. We demonstrate that OpenMP is suitable to develop advanced critical real-time systems by virtue of few changes on the specification, which allow the scheduling behavior desired (regarding execution priorities, preemption, migration and allocation strategies) in such systems.The research leading to these results has received funding from the Spanish Ministry of Science and Innovation, under contract TIN2015-65316-P, and from the European Union's Horizon 2020 Programme under the CLASS Project (www.classproject. eu), grant agreement No 780622.Peer ReviewedPostprint (author's final draft

    Decoupling contention management from scheduling

    Full text link

    Decoupling contention management from scheduling

    Get PDF
    Many parallel applications exhibit unpredictable communication between threads, leading to contention for shared objects. The choice of contention management strategy impacts strongly the performance and scalability of these applications: spinning provides maximum performance but wastes significant processor resources, while blocking-based approaches conserve processor resources but introduce high overheads on the critical path of computation. Under situations of high or changing load, the operating system complicates matters further with arbitrary scheduling decisions which often preempt lock holders, leading to long serialization delays until the preempted thread resumes execution. We observe that contention management is orthogonal to the problems of scheduling and load management and propose to decouple them so each may be solved independently and effectively. To this end, we propose a load control mechanism which manages the number of active threads in the system separately from any contention which may exist. By isolating contention management from damaging interactions with the OS scheduler, we combine the efficiency of spinning with the robustness of blocking. The proposed load control mechanism results in stable, high performance for both lightly and heavily loaded systems, requires no special privileges or modifications at the OS level, and can be implemented as a library which benefits existing code

    Thin Hypervisor-Based Security Architectures for Embedded Platforms

    Get PDF
    Virtualization has grown increasingly popular, thanks to its benefits of isolation, management, and utilization, supported by hardware advances. It is also receiving attention for its potential to support security, through hypervisor-based services and advanced protections supplied to guests. Today, virtualization is even making inroads in the embedded space, and embedded systems, with their security needs, have already started to benefit from virtualizationโ€™s security potential. In this thesis, we investigate the possibilities for thin hypervisor-based security on embedded platforms. In addition to significant background study, we present implementation of a low-footprint, thin hypervisor capable of providing security protections to a single FreeRTOS guest kernel on ARM. Backed by performance test results, our hypervisor provides security to a formerly unsecured kernel with minimal performance overhead, and represents a first step in a greater research effort into the security advantages and possibilities of embedded thin hypervisors. Our results show that thin hypervisors are both possible and beneficial even on limited embedded systems, and sets the stage for more advanced investigations, implementations, and security applications in the future

    ํ˜‘์—… ๋กœ๋ด‡์„ ์œ„ํ•œ ์„œ๋น„์Šค ๊ธฐ๋ฐ˜๊ณผ ๋ชจ๋ธ ๊ธฐ๋ฐ˜์˜ ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ ๋ฐฉ๋ฒ•๋ก 

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€,2020. 2. ํ•˜์ˆœํšŒ.๊ฐ€๊นŒ์šด ๋ฏธ๋ž˜์—๋Š” ๋‹ค์–‘ํ•œ ๋กœ๋ด‡์ด ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ํ•˜๋‚˜์˜ ์ž„๋ฌด๋ฅผ ํ˜‘๋ ฅํ•˜์—ฌ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ชจ์Šต์€ ํ”ํžˆ ๋ณผ ์ˆ˜ ์žˆ๊ฒŒ ๋  ๊ฒƒ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ๋กœ ์ด๋Ÿฌํ•œ ๋ชจ์Šต์ด ์‹คํ˜„๋˜๊ธฐ์—๋Š” ๋‘ ๊ฐ€์ง€์˜ ์–ด๋ ค์›€์ด ์žˆ๋‹ค. ๋จผ์ € ๋กœ๋ด‡์„ ์šด์šฉํ•˜๊ธฐ ์œ„ํ•œ ์†Œํ”„ํŠธ์›จ์–ด๋ฅผ ๋ช…์„ธํ•˜๋Š” ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์€ ๋Œ€๋ถ€๋ถ„ ๊ฐœ๋ฐœ์ž๊ฐ€ ๋กœ๋ด‡์˜ ํ•˜๋“œ์›จ์–ด์™€ ์†Œํ”„ํŠธ์›จ์–ด์— ๋Œ€ํ•œ ์ง€์‹์„ ์•Œ๊ณ  ์žˆ๋Š” ๊ฒƒ์„ ๊ฐ€์ •ํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋ž˜์„œ ๋กœ๋ด‡์ด๋‚˜ ์ปดํ“จํ„ฐ์— ๋Œ€ํ•œ ์ง€์‹์ด ์—†๋Š” ์‚ฌ์šฉ์ž๋“ค์ด ์—ฌ๋Ÿฌ ๋Œ€์˜ ๋กœ๋ด‡์ด ํ˜‘๋ ฅํ•˜๋Š” ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์ž‘์„ฑํ•˜๊ธฐ๋Š” ์‰ฝ์ง€ ์•Š๋‹ค. ๋˜ํ•œ, ๋กœ๋ด‡์˜ ์†Œํ”„ํŠธ์›จ์–ด๋ฅผ ๊ฐœ๋ฐœํ•  ๋•Œ ๋กœ๋ด‡์˜ ํ•˜๋“œ์›จ์–ด์˜ ํŠน์„ฑ๊ณผ ๊ด€๋ จ์ด ๊นŠ์–ด์„œ, ๋‹ค์–‘ํ•œ ๋กœ๋ด‡์˜ ์†Œํ”„ํŠธ์›จ์–ด๋ฅผ ๊ฐœ๋ฐœํ•˜๋Š” ๊ฒƒ๋„ ๊ฐ„๋‹จํ•˜์ง€ ์•Š๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ƒ์œ„ ์ˆ˜์ค€์˜ ๋ฏธ์…˜ ๋ช…์„ธ์™€ ๋กœ๋ด‡์˜ ํ–‰์œ„ ํ”„๋กœ๊ทธ๋ž˜๋ฐ์œผ๋กœ ๋‚˜๋ˆ„์–ด ์ƒˆ๋กœ์šด ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๋˜ํ•œ, ๋ณธ ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ํฌ๊ธฐ๊ฐ€ ์ž‘์€ ๋กœ๋ด‡๋ถ€ํ„ฐ ๊ณ„์‚ฐ ๋Šฅ๋ ฅ์ด ์ถฉ๋ถ„ํ•œ ๋กœ๋ด‡๋“ค์ด ์„œ๋กœ ๊ตฐ์ง‘์„ ์ด๋ฃจ์–ด ๋ฏธ์…˜์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ์ง€์›ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋กœ๋ด‡์˜ ํ•˜๋“œ์›จ์–ด๋‚˜ ์†Œํ”„ํŠธ์›จ์–ด์— ๋Œ€ํ•œ ์ง€์‹์ด ๋ถ€์กฑํ•œ ์‚ฌ์šฉ์ž๋„ ๋กœ๋ด‡์˜ ๋™์ž‘์„ ์ƒ์œ„ ์ˆ˜์ค€์—์„œ ๋ช…์„ธํ•  ์ˆ˜ ์žˆ๋Š” ์Šคํฌ๋ฆฝํŠธ ์–ธ์–ด๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ์–ธ์–ด๋Š” ๊ธฐ์กด์˜ ์Šคํฌ๋ฆฝํŠธ ์–ธ์–ด์—์„œ๋Š” ์ง€์›ํ•˜์ง€ ์•Š๋Š” ๋„ค ๊ฐ€์ง€์˜ ๊ธฐ๋Šฅ์ธ ํŒ€์˜ ๊ตฌ์„ฑ, ๊ฐ ํŒ€์˜ ์„œ๋น„์Šค ๊ธฐ๋ฐ˜ ํ”„๋กœ๊ทธ๋ž˜๋ฐ, ๋™์ ์œผ๋กœ ๋ชจ๋“œ ๋ณ€๊ฒฝ, ๋‹ค์ค‘ ์ž‘์—…(๋ฉ€ํ‹ฐ ํƒœ์Šคํ‚น)์„ ์ง€์›ํ•œ๋‹ค. ์šฐ์„  ๋กœ๋ด‡์€ ํŒ€์œผ๋กœ ๊ทธ๋ฃน ์ง€์„ ์ˆ˜ ์žˆ๊ณ , ๋กœ๋ด‡์ด ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋Šฅ์„ ์„œ๋น„์Šค ๋‹จ์œ„๋กœ ์ถ”์ƒํ™”ํ•˜์—ฌ ์ƒˆ๋กœ์šด ๋ณตํ•ฉ ์„œ๋น„์Šค๋ฅผ ๋ช…์„ธํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ๋กœ๋ด‡์˜ ๋ฉ€ํ‹ฐ ํƒœ์Šคํ‚น์„ ์œ„ํ•ด 'ํ”Œ๋žœ' ์ด๋ผ๋Š” ๊ฐœ๋…์„ ๋„์ž…ํ•˜์˜€๊ณ , ๋ณตํ•ฉ ์„œ๋น„์Šค ๋‚ด์—์„œ ์ด๋ฒคํŠธ๋ฅผ ๋ฐœ์ƒ์‹œ์ผœ์„œ ๋™์ ์œผ๋กœ ๋ชจ๋“œ๊ฐ€ ๋ณ€ํ™˜ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค. ๋‚˜์•„๊ฐ€ ์—ฌ๋Ÿฌ ๋กœ๋ด‡์˜ ํ˜‘๋ ฅ์ด ๋”์šฑ ๊ฒฌ๊ณ ํ•˜๊ณ , ์œ ์—ฐํ•˜๊ณ , ํ™•์žฅ์„ฑ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด, ๊ตฐ์ง‘ ๋กœ๋ด‡์„ ์šด์šฉํ•  ๋•Œ ๋กœ๋ด‡์ด ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๋„์ค‘์— ๋ฌธ์ œ๊ฐ€ ์ƒ๊ธธ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ƒํ™ฉ์— ๋”ฐ๋ผ ๋กœ๋ด‡์„ ๋™์ ์œผ๋กœ ๋‹ค๋ฅธ ํ–‰์œ„๋ฅผ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ๊ฐ€์ •ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋™์ ์œผ๋กœ๋„ ํŒ€์„ ๊ตฌ์„ฑํ•  ์ˆ˜ ์žˆ๊ณ , ์—ฌ๋Ÿฌ ๋Œ€์˜ ๋กœ๋ด‡์ด ํ•˜๋‚˜์˜ ์„œ๋น„์Šค๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ทธ๋ฃน ์„œ๋น„์Šค๋ฅผ ์ง€์›ํ•˜๊ณ , ์ผ๋Œ€ ๋‹ค ํ†ต์‹ ๊ณผ ๊ฐ™์€ ์ƒˆ๋กœ์šด ๊ธฐ๋Šฅ์„ ์Šคํฌ๋ฆฝํŠธ ์–ธ์–ด์— ๋ฐ˜์˜ํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ ํ™•์žฅ๋œ ์ƒ์œ„ ์ˆ˜์ค€์˜ ์Šคํฌ๋ฆฝํŠธ ์–ธ์–ด๋Š” ๋น„์ „๋ฌธ๊ฐ€๋„ ๋‹ค์–‘ํ•œ ์œ ํ˜•์˜ ํ˜‘๋ ฅ ์ž„๋ฌด๋ฅผ ์‰ฝ๊ฒŒ ๋ช…์„ธํ•  ์ˆ˜ ์žˆ๋‹ค. ๋กœ๋ด‡์˜ ํ–‰์œ„๋ฅผ ํ”„๋กœ๊ทธ๋ž˜๋ฐํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ ํ”„๋ ˆ์ž„์›Œํฌ๊ฐ€ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ ์žฌ์‚ฌ์šฉ์„ฑ๊ณผ ํ™•์žฅ์„ฑ์„ ์ค‘์ ์œผ๋กœ ๋‘” ์—ฐ๊ตฌ๋“ค์ด ์ตœ๊ทผ ๋งŽ์ด ์‚ฌ์šฉ๋˜๊ณ  ์žˆ์ง€๋งŒ, ๋Œ€๋ถ€๋ถ„์˜ ์ด๋“ค ์—ฐ๊ตฌ๋Š” ๋ฆฌ๋ˆ…์Šค ์šด์˜์ฒด์ œ์™€ ๊ฐ™์ด ๋งŽ์€ ํ•˜๋“œ์›จ์–ด ์ž์›์„ ํ•„์š”๋กœ ํ•˜๋Š” ์šด์˜์ฒด์ œ๋ฅผ ๊ฐ€์ •ํ•˜๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ, ํ”„๋กœ๊ทธ๋žจ์˜ ๋ถ„์„ ๋ฐ ์„ฑ๋Šฅ ์˜ˆ์ธก ๋“ฑ์„ ๊ณ ๋ คํ•˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์—, ์ž์› ์ œ์•ฝ์ด ์‹ฌํ•œ ํฌ๊ธฐ๊ฐ€ ์ž‘์€ ๋กœ๋ด‡์˜ ์†Œํ”„ํŠธ์›จ์–ด๋ฅผ ๊ฐœ๋ฐœํ•˜๊ธฐ์—๋Š” ์–ด๋ ต๋‹ค. ๊ทธ๋ž˜์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ž„๋ฒ ๋””๋“œ ์†Œํ”„ํŠธ์›จ์–ด๋ฅผ ์„ค๊ณ„ํ•  ๋•Œ ์“ฐ์ด๋Š” ์ •ํ˜•์ ์ธ ๋ชจ๋ธ์„ ์ด์šฉํ•œ๋‹ค. ์ด ๋ชจ๋ธ์€ ์ •์  ๋ถ„์„๊ณผ ์„ฑ๋Šฅ ์˜ˆ์ธก์ด ๊ฐ€๋Šฅํ•˜์ง€๋งŒ, ๋กœ๋ด‡์˜ ํ–‰์œ„๋ฅผ ํ‘œํ˜„ํ•˜๊ธฐ์—๋Š” ์ œ์•ฝ์ด ์žˆ๋‹ค. ๊ทธ๋ž˜์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ ์™ธ๋ถ€์˜ ์ด๋ฒคํŠธ์— ์˜ํ•ด ์ˆ˜ํ–‰ ์ค‘๊ฐ„์— ํ–‰์œ„๋ฅผ ๋ณ€๊ฒฝํ•˜๋Š” ๋กœ๋ด‡์„ ์œ„ํ•ด ์œ ํ•œ ์ƒํƒœ ๋จธ์‹  ๋ชจ๋ธ๊ณผ ๋ฐ์ดํ„ฐ ํ”Œ๋กœ์šฐ ๋ชจ๋ธ์ด ๊ฒฐํ•ฉํ•˜์—ฌ ๋™์  ํ–‰์œ„๋ฅผ ๋ช…์„ธํ•  ์ˆ˜ ์žˆ๋Š” ํ™•์žฅ๋œ ๋ชจ๋ธ์„ ์ ์šฉํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋”ฅ๋Ÿฌ๋‹๊ณผ ๊ฐ™์ด ๊ณ„์‚ฐ๋Ÿ‰์„ ๋งŽ์ด ํ•„์š”๋กœ ํ•˜๋Š” ์‘์šฉ์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด, ๋ฃจํ”„ ๊ตฌ์กฐ๋ฅผ ๋ช…์‹œ์ ์œผ๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋ธ์„ ์ œ์•ˆํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ์—ฌ๋Ÿฌ ๋กœ๋ด‡์˜ ํ˜‘์—… ์šด์šฉ์„ ์œ„ํ•ด ๋กœ๋ด‡ ์‚ฌ์ด์— ๊ณต์œ ๋˜๋Š” ์ •๋ณด๋ฅผ ๋‚˜ํƒ€๋‚ด๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•œ๋‹ค. ๋จผ์ € ์ค‘์•™์—์„œ ๊ณต์œ  ์ •๋ณด๋ฅผ ๊ด€๋ฆฌํ•˜๊ธฐ ์œ„ํ•ด ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ํƒœ์Šคํฌ๋ผ๋Š” ํŠน๋ณ„ํ•œ ํƒœ์Šคํฌ๋ฅผ ํ†ตํ•ด ๊ณต์œ  ์ •๋ณด๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๋˜ํ•œ, ๋กœ๋ด‡์ด ์ž์‹ ์˜ ์ •๋ณด๋ฅผ ๊ฐ€๊นŒ์šด ๋กœ๋ด‡๋“ค๊ณผ ๊ณต์œ ํ•˜๊ธฐ ์œ„ํ•ด ๋ฉ€ํ‹ฐ์บ์ŠคํŒ…์„ ์œ„ํ•œ ์ƒˆ๋กœ์šด ํฌํŠธ๋ฅผ ์ถ”๊ฐ€ํ•œ๋‹ค. ์ด๋ ‡๊ฒŒ ํ™•์žฅ๋œ ์ •ํ˜•์ ์ธ ๋ชจ๋ธ์€ ์‹ค์ œ ๋กœ๋ด‡ ์ฝ”๋“œ๋กœ ์ž๋™ ์ƒ์„ฑ๋˜์–ด, ์†Œํ”„ํŠธ์›จ์–ด ์„ค๊ณ„ ์ƒ์‚ฐ์„ฑ ๋ฐ ๊ฐœ๋ฐœ ํšจ์œจ์„ฑ์— ์ด์ ์„ ๊ฐ€์ง„๋‹ค. ๋น„์ „๋ฌธ๊ฐ€๊ฐ€ ๋ช…์„ธํ•œ ์Šคํฌ๋ฆฝํŠธ ์–ธ์–ด๋Š” ์ •ํ˜•์ ์ธ ํƒœ์Šคํฌ ๋ชจ๋ธ๋กœ ๋ณ€ํ™˜ํ•˜๊ธฐ ์œ„ํ•ด ์ค‘๊ฐ„ ๋‹จ๊ณ„์ธ ์ „๋žต ๋‹จ๊ณ„๋ฅผ ์ถ”๊ฐ€ํ•˜์˜€๋‹ค. ์ œ์•ˆํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์˜ ํƒ€๋‹น์„ฑ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด, ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ์—ฌ๋Ÿฌ ๋Œ€์˜ ์‹ค์ œ ๋กœ๋ด‡์„ ์ด์šฉํ•œ ํ˜‘์—…ํ•˜๋Š” ์‹œ๋‚˜๋ฆฌ์˜ค์— ๋Œ€ํ•ด ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค.In the near future, it will be common that a variety of robots are cooperating to perform a mission in various fields. There are two software challenges when deploying collaborative robots: how to specify a cooperative mission and how to program each robot to accomplish its mission. In this paper, we propose a novel software development framework that separates mission specification and robot behavior programming, which is called service-oriented and model-based (SeMo) framework. Also, it can support distributed robot systems, swarm robots, and their hybrid. For mission specification, a novel scripting language is proposed with the expression capability. It involves team composition and service-oriented behavior specification of each team, allowing dynamic mode change of operation and multi-tasking. Robots are grouped into teams, and the behavior of each team is defined with a composite service. The internal behavior of a composite service is defined by a sequence of services that the robots will perform. The notion of plan is applied to express multi-tasking. And the robot may have various operating modes, so mode change is triggered by events generated in a composite service. Moreover, to improve the robustness, scalability, and flexibility of robot collaboration, the high-level mission scripting language is extended with new features such as team hierarchy, group service, one-to-many communication. We assume that any robot fails during the execution of scenarios, and the grouping of robots can be made at run-time dynamically. Therefore, the extended mission specification enables a casual user to specify various types of cooperative missions easily. For robot behavior programming, an extended dataflow model is used for task-level behavior specification that does not depend on the robot hardware platform. To specify the dynamic behavior of the robot, we apply an extended task model that supports a hybrid specification of dataflow and finite state machine models. Furthermore, we propose a novel extension to allow the explicit specification of loop structures. This extension helps the compute-intensive application, which contains a lot of loop structures, to specify explicitly and analyze at compile time. Two types of information sharing, global information sharing and local knowledge sharing, are supported for robot collaboration in the dataflow graph. For global information, we use the library task, which supports shared resource management and server-client interaction. On the other hand, to share information locally with near robots, we add another type of port for multicasting and use the knowledge sharing technique. The actual robot code per robot is automatically generated from the associated task graph, which minimizes the human efforts in low-level robot programming and improves the software design productivity significantly. By abstracting the tasks or algorithms as services and adding the strategy description layer in the design flow, the mission specification is refined into task-graph specification automatically. The viability of the proposed methodology is verified with preliminary experiments with three cooperative mission scenarios with heterogeneous robot platforms and robot simulator.Chapter 1. Introduction 1 1.1 Motivation 1 1.2 Contribution 7 1.3 Dissertation Organization 9 Chapter 2. Background and Existing Research 11 2.1 Terminologies 11 2.2 Robot Software Development Frameworks 25 2.3 Parallel Embedded Software Development Framework 31 Chapter 3. Overview of the SeMo Framework 41 3.1 Motivational Examples 45 Chapter 4. Robot Behavior Programming 47 4.1 Related works 48 4.2 Model-based Task Graph Specification for Individual Robots 56 4.3 Model-based Task Graph Specification for Cooperating Robots 70 4.4 Automatic Code Generation 74 4.5 Experiments 78 Chapter 5. High-level Mission Specification 81 5.1 Service-oriented Mission Specification 82 5.2 Strategy Description 93 5.3 Automatic Task Graph Generation 96 5.4 Related works 99 5.5 Experiments 104 Chapter 6. Conclusion 114 6.1 Future Research 116 Bibliography 118 Appendices 133 ์š”์•ฝ 158Docto

    High Performance Embedded Computing

    Get PDF
    Nowadays, the prevalence of computing systems in our lives is so ubiquitous that we live in a cyber-physical world dominated by computer systems, from pacemakers to cars and airplanes. These systems demand for more computational performance to process large amounts of data from multiple data sources with guaranteed processing times. Actuating outside of the required timing bounds may cause the failure of the system, being vital for systems like planes, cars, business monitoring, e-trading, etc. High-Performance and Time-Predictable Embedded Computing presents recent advances in software architecture and tools to support such complex systems, enabling the design of embedded computing devices which are able to deliver high-performance whilst guaranteeing the application required timing bounds. Technical topics discussed in the book include: Parallel embedded platforms Programming models Mapping and scheduling of parallel computations Timing and schedulability analysis Runtimes and operating systemsThe work reflected in this book was done in the scope of the European project P SOCRATES, funded under the FP7 framework program of the European Commission. High-performance and time-predictable embedded computing is ideal for personnel in computer/communication/embedded industries as well as academic staff and master/research students in computer science, embedded systems, cyber-physical systems and internet-of-things

    High-Performance and Time-Predictable Embedded Computing

    Get PDF
    Nowadays, the prevalence of computing systems in our lives is so ubiquitous that we live in a cyber-physical world dominated by computer systems, from pacemakers to cars and airplanes. These systems demand for more computational performance to process large amounts of data from multiple data sources with guaranteed processing times. Actuating outside of the required timing bounds may cause the failure of the system, being vital for systems like planes, cars, business monitoring, e-trading, etc. High-Performance and Time-Predictable Embedded Computing presents recent advances in software architecture and tools to support such complex systems, enabling the design of embedded computing devices which are able to deliver high-performance whilst guaranteeing the application required timing bounds. Technical topics discussed in the book include: Parallel embedded platforms Programming models Mapping and scheduling of parallel computations Timing and schedulability analysis Runtimes and operating systems The work reflected in this book was done in the scope of the European project P SOCRATES, funded under the FP7 framework program of the European Commission. High-performance and time-predictable embedded computing is ideal for personnel in computer/communication/embedded industries as well as academic staff and master/research students in computer science, embedded systems, cyber-physical systems and internet-of-things.info:eu-repo/semantics/publishedVersio
    • โ€ฆ
    corecore