


High-Performance and
Time-Predictable

Embedded Computing



RIVER PUBLISHERS SERIES IN INFORMATION
SCIENCE AND TECHNOLOGY

Series Editors

K. C. CHEN SANDEEP SHUKLA
National Taiwan University Virginia Tech
Taipei, Taiwan USA
and and
University of South Florida, USA Indian Institute of Technology Kanpur, India

Indexing: All books published in this series are submitted to the Web of Science Book Citation
Index (BkCI), to CrossRef and to Google Scholar.

The “River Publishers Series in Information Science and Technology” covers research
which ushers the 21st Century into an Internet and multimedia era. Multimedia means the
theory and application of filtering, coding, estimating, analyzing, detecting and recognizing,
synthesizing, classifying, recording, and reproducing signals by digital and/or analog devices
or techniques, while the scope of “signal” includes audio, video, speech, image, musical,
multimedia, data/content, geophysical, sonar/radar, bio/medical, sensation, etc. Networking
suggests transportation of such multimedia contents among nodes in communication and/or
computer networks, to facilitate the ultimate Internet.

Theory, technologies, protocols and standards, applications/services, practice and imple-
mentation of wired/wireless networking are all within the scope of this series. Based on
network and communication science, we further extend the scope for 21st Century life through
the knowledge in robotics, machine learning, embedded systems, cognitive science, pattern
recognition, quantum/biological/molecular computation and information processing, biology,
ecology, social science and economics, user behaviors and interface, and applications to health
and society advance.

Books published in the series include research monographs, edited volumes, handbooks
and textbooks. The books provide professionals, researchers, educators, and advanced students
in the field with an invaluable insight into the latest research and developments.

Topics covered in the series include, but are by no means restricted to the following:

• Communication/Computer Networking Technologies and Applications
• Queuing Theory
• Optimization
• Operation Research
• Stochastic Processes
• Information Theory
• Multimedia/Speech/Video Processing
• Computation and Information Processing
• Machine Intelligence
• Cognitive Science and Brian Science
• Embedded Systems
• Computer Architectures
• Reconfigurable Computing
• Cyber Security

For a list of other books in this series, visit www.riverpublishers.com



The NEC and You Perfect Together: 
A Comprehensive Study of the  

National Electrical Code 

Gregory P. Bierals
Electrical Design Institute, USA

River Publishers

High-Performance and
Time-Predictable

Embedded Computing

Editors

Luı́s Miguel Pinho

CISTER Research Centre, Polytechnic Institute of Porto, Portugal

Eduardo Quiñones
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Preface

Nowadays, the prevalence of electronic and computing systems in our lives is
so ubiquitous that it would not be far-fetched to state that we live in a cyber-
physical world dominated by computer systems. Examples include pacemak-
ers implanted within the human body to regulate and monitor heartbeats, cars
and airplanes transporting us, smart grids, and traffic management.

All these systems demand more and more computational performance to
process large amounts of data from multiple data sources, and some of them
with guaranteed processing response times; in other words, systems required
to deliver their results within pre-defined (and sometimes extremely short)
time bounds. This timing aspect is vital for systems like planes, cars, business
monitoring, e-trading, etc. Examples can be found in intelligent transportation
systems for fuel consumption reduction in cities or railways, or autonomous
driving of vehicles. All these systems require processing and actuation based
on large amounts of data coming from real-time sensor information.

As a result, the computer electronic devices which these systems depend
on are constantly required to become more and more powerful and reli-
able, while remaining affordable. In order to cope with such performance
requirements, chip designers have recently started producing chips containing
multiple processing units, the so-called multi-core processors, effectively
integrating multiple computers within a single chip, and more recently the
many-core processors, with dozens or hundreds of cores, interconnected with
complex networks on chip. This radical shift in the chip design paved the
way for parallel computing: rather than processing the data sequentially, the
cooperation of multiple processing elements within the same chip allows
systems to be executed concurrently, in parallel.

Unfortunately, the parallelization of the computing activities brought up
many challenges, because it affects the timing behavior of the systems as well
as the entire way people think and design computers: from the design of the
hardware architecture, through the operating system up to the conceptualiza-
tion of the end-user application. Therefore, although many-core processors
are promising candidates to improve the responsiveness of these systems,

xiii



xiv Preface

the interactions that the different computing elements may have within the
chip can seriously affect the performance opportunities brought by parallel
execution. Moreover, providing timing guarantees becomes harder, because
the timing behavior of the system running within a many-core processor
depends on interactions that are most of the time not known by the system
designer. This makes system analysts struggle in trying to provide timing
guarantees for such platforms. Finally, most of the optimization mechanisms
buried deep inside the chip are geared only to increase performance and
execution speed rather than providing predictable time behavior.

These challenges need to be addressed by introducing predictability in
the vertical stack from high-level programming models to operating sys-
tems, together with new offline analysis techniques. This book covers the
main techniques to enable performance and predictability of embedded
applications. The book starts with an overview of some of the current many-
core embedded platforms, and then addresses how to support predictability
and performance in different aspects of computation: a predictable parallel
programming model, the mapping and scheduling of real-time parallel com-
putation, the timing analysis of parallel code, as well as the techniques to
support predictability in parallel runtimes and operating systems.

The work reflected in this book was done in the scope of the European
project P-SOCRATES, funded under the FP7 framework program of the
European Commission. The project website (www.p-socrates.eu), provides
further detailed information on the techniques presented here. Moreover, a
reference implementation of the methodologies and tools was released as the
UpScale Software Development Kit (http://www.upscale-sdk.com).

Luı́s Miguel Pinho
Eduardo Quiñones

Marko Bertogna
Andrea Marongiu

Vincent Nélis
Paolo Gai

Juan Sancho

February 2018
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This chapter provides an overview of the book theme, motivating the need for
high-performance and time-predictable embedded computing. It describes the
challenges introduced by the need for time-predictability on the one hand,
and high-performance on the other, discussing on a high level how these
contradictory requirements can be simultaneously supported.

1.1 Introduction

High-performance computing has been for a long time the realm of a specific
community within academia and specialized industries; in particular those
targeting demanding analytics and simulations applications that require pro-
cessing massive amounts of data. In a similar way, embedded computing has
also focused mainly on specific systems with specialized and fixed function-
alities and for which timing requirements were considered as much more
important than performance requirements. However, with the ever-increasing
availability of more powerful processing platforms, alongside affordable and
scalable software solutions, both high-performance and embedded computing
are extending to other sectors and application domains.

1
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The demand for increased computational performance is currently
widespread and is even more challenging when large amounts of data need
to be processed, from multiple data sources, with guaranteed processing
response times. Although many systems focus on performance and handling
large volumes of streaming data (with throughput and latency requirements),
many application domains require real-time behavior [1–6] and challenge the
computing capability of current technologies. Some examples are:

• In cyber-physical systems, ranging from automotive and aircrafts, to
smart grids and traffic management, computing systems are embedded
in a physical environment and their behavior obeys the technical rules
dictated by this environment. Typically, they have to cope with the
timing requirements imposed by the embedding domain. In the Large
Hadron Collider (LHC) in CERN, beam collisions occur every 25 ns,
which produce up to 40 million events per second. All these events are
pipelined with the objective of distinguishing between interesting and
non-interesting events to reduce the number of events to be processed to
a few hundreds [7]. Similarly, bridges are monitored in real-time [8] with
information collected from more than 10,000 sensors processed every
8 ms, managing responses to natural disasters, maintaining bridge struc-
ture, and estimating the extent of structural fatigue. Another interesting
application is in intelligent transportation systems, where systems are
developed to allow for fuel consumption reduction of railway systems,
managing throttle positions, elaborating big amounts of data and sensor
information, such as train horsepower, weight, prevailing wind, weather,
traffic, etc. [9].

• In the banking/financial markets, computing systems process large
amounts of real-time stock information in order to detect time-dependent
patterns, automatically triggering operations in a very specific and tight
timeframe when some pre-defined patterns occur. Automated algorith-
mic trading programs now buy and sell millions of dollars of shares
time-sliced into orders separated by 1 ms. Reducing the latency by 1 ms
can be worth up to $100 million a year to a leading trading house. The
aim is to cut microseconds off the latency in which these systems can
reach to momentary variations in share prices [10].

• In industry, computing systems monitor business processes based on
the capability to understand and process real-time sensor data from
the factory-floor and throughout the whole value chain, with Radio
Frequency Identification (RFID) components in order to optimize both
the production and logistics processes [11].
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The underlying commonality of the systems described above is that they are
time-critical (whether business-critical or mission-critical, it is necessary to
fulfill specific timing requirements) and with high-performance requirements.
In other words, for such systems, the correctness of the result is dependent
on both performance and timing requirements, and meeting those is critical
to the functioning of the system. In this context, it is essential to guarantee
the timing predictability of the performed computations, meaning that argu-
ments and analyses are needed to be able to make arguments of correctness,
e.g., performing the required computations within well-specified bounds.

1.1.1 The Convergence of High-performance and Embedded
Computing Domains

Until now, trends in high-performance and embedded computing domains
have been running in opposite directions. On one side, high-performance
computing (HPC) systems are traditionally designed to make the common
case as fast as possible, without concerning themselves with the timing
behavior (in terms of execution time) of the not-so-often cases. As a result,
the techniques developed for HPC are based on complex hardware and
software structures that make any reliable timing bound almost impossi-
ble to derive. On the other side, real-time embedded systems are typically
designed to provide energy-efficient and predictable solutions, without heavy
performance requirements. Instead of fast response times, they aim at having
deterministically bounded response times, in order to guarantee that deadlines
are met. For this reason, these systems are typically based on simple hardware
architectures, using fixed-function hardware accelerators that are strongly
coupled with the application domain.

In the last years, the above design choices are being questioned by the
irruption of multi-core processors in both computing markets. The huge
computational necessities to satisfy the performance requirements of HPC
systems and the related exponential increments of power requirements (typ-
ically referred to as the power wall) exceeded the technological limits
of classic single-core architectures. For these reasons, the main hardware
manufacturers are offering an increasing number of computing platforms
integrating multiple cores within a chip, contributing to an unprecedented
phenomenon sometimes referred to as “the multi-core revolution.” Multi-core
processors provide better energy efficiency and performance-per-cost ratio,
while improving application performance by exploiting thread-level paral-
lelism (TLP). Applications are split into multiple tasks that run in parallel
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on different cores, extending to the multi-core system level an important
challenge already faced by HPC designers at multi-processor system level:
parallelization.

In the embedded systems domain, the necessity to develop more flexible
and powerful systems (e.g., from fixed-function phones to smart phones
and tablets) have pushed the embedded market in the same direction. That
is, multi-cores are increasingly considered as the solution to cope with
performance and cost requirements [12], as they allow scheduling multiple
application services on the same processor, hence maximizing the hardware
utilization while reducing cost, size, weight, and power requirements. How-
ever, real-time embedded applications with time-criticality requirements are
still executed on simple architectures that are able to guarantee a predictable
execution pattern while avoiding the appearance of timing anomalies [13].
This makes real-time embedded platforms still relying on either single-core or
simple multi-core CPUs, integrated with fix-function hardware accelerators
into the same chip: the so-called System-on-Chip (SoC).

The needs for energy-efficiency (in the HPC domain) and for flexibility
(in the embedded computing domain), coming along with Moore’s law,
greedy demand for performance, and the advancements in the semiconductor
technology, have progressively paved the way for the introduction of “many-
core” systems, i.e., multi-core chips containing a high number of cores (tens
to hundreds) in both domains. Examples of many-core architectures are
described in the next chapter.

The introduction of many-core systems has set up an interesting trend
wherein both the HPC and the real-time embedded domains converge towards
similar objectives and requirements. Many-core computing fabrics are being
integrated with general-purpose multi-core processors to provide a heteroge-
neous architectural harness that eases the integration of previously hardwired
accelerators into more flexible software solutions. In recent years, the HPC
computing domain has seen the emergence of accelerated heterogeneous
architectures, most notably multi-core processors integrated with General
Purpose Graphic Processing Units (GPGPU), because GPGPUs are a flexi-
ble and programmable accelerator for data parallel computations. Similarly,
in the real-time embedded domain, the Kalray Multi-Purpose Processor
Array (MPPA), which includes clusters of quad-core CPUs coupled with
many-core computing clusters. In both cases, the many-core fabric acts as
a programmable accelerator. More recently, the Field-Programmable Gate
Array (FPGA) has been used as a flexible accelerator fabric, complementing
the above.
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In this current trend, challenges that were previously specific to each
computing domain, start to be common to both domains (including energy-
efficiency, parallelization, compilation, and software programming) and are
magnified by the ubiquity of many-cores and heterogeneity across the whole
computing spectrum. In that context, cross-fertilization of expertise from both
computing domains is mandatory.

1.1.2 Parallelization Challenge

Needless to say that many industries with both high-performance and real-
time requirements are eager to benefit from the immense computing capa-
bilities offered by these new many-core embedded designs. However, these
industries are also highly unprepared for shifting their earlier system designs
to cope with this new technology, mainly because such a shift requires adapt-
ing the applications, operating systems, and programming models in order
to exploit the capabilities of many-core embedded computing systems. On
one hand, neither have many-core embedded processors, such as the MPPA,
been designed to be used in the HPC domain, nor have HPC techniques
been designed to apply embedded technology. On the other hand, real-time
methods to determine the timing behavior of an embedded system are not
prepared to be directly applied to the HPC domain and these platforms,
leading to a number of significant challenges.

On one side, different parallel programming models and multiprocessor
operating systems have been proposed and are increasingly being adopted in
today’s HPC computing systems. In recent years, the emergence of acceler-
ated heterogeneous architectures such as GPGPUs have introduced parallel
programming models such as OpenCL [14], the currently dominant open
standard for parallel programming of heterogeneous systems, or CUDA [15],
the dominant proprietary framework of NVIDIA. Unfortunately, they are not
easily applicable to systems with real-time requirements, since, by nature,
many-core architectures are designed to integrate as much functionality
as possible into a single chip. Hence, they inherently share out as many
resources as possible amongst the cores, which heavily impacts the ability
to providing timing guarantees.

On the other side, the embedded computing domain world has always
seen plenty of application-specific accelerators with custom architectures,
manually tuning applications to achieve predictable performance. Such
types of solutions have limited flexibility, complicating the development of
embedded systems. Commercial off-the-shelf (COTS) components based on
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many-core architectures are likely to dominate the embedded computing mar-
ket in the near future, even if complemented with custom function-specific
accelerators. As a result, migrating real-time applications to many-core exe-
cution models with predictable performance requires a complete redesign of
current software architectures. Real-time embedded application developers
will therefore either need to adapt their programming practices and operating
systems to future many-core components, or they will need to content them-
selves with stagnating execution speeds and reduced functionalities, relegated
to niche markets using obsolete hardware components.

This new trend in the manufacturing technology and the industrial need
for enhanced computing capabilities and flexible heterogeneous program-
ming solutions of accelerators for predictable parallel computations bring to
the forefront important challenges for which solutions are urgently needed.
This book outlines how to bring together next-generation many-core accel-
erators from the embedded computing domain with the programmability
of many-core accelerators from the HPC computing domain, supporting
this with real-time methodologies to provide time predictability and high-
performance.

1.2 The P-SOCRATES Project

The work described in this book was performed in the scope of the
European project P-SOCRATES (Parallel Software Framework for Time-
Critical Many-core Systems)1, funded under the FP7 framework program
of the European Commission. The project, finished in December 2016,
aimed to allow applications with high-performance and real-time require-
ments to fully exploit the huge performance opportunities brought by the
most advanced COTS many-core embedded processors, whilst ensuring pre-
dictable performance of applications (Figure 1.1). The project consortium
included Instituto Superior de Engenharia do Porto (coordinator), Portugal,
the Barcelona Supercomputing Centre, Spain, the University of Modena
and Reggio Emilia, Italy, the Swiss Federal Institute of Technology Zurich,
Switzerland, Evidence SRL, Italy, Active Technologies SRL, Italy and ATOS,
Spain.

P-SOCRATES focused on combining techniques from different domains:
the newest high-performance software techniques for exploiting task paral-
lelism, the most advanced mapping and scheduling methodologies and timing

1htttp://www.p-socrates.eu
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Figure 1.1 P-SOCRATES Global perspective.

and schedulability analysis techniques used in real-time embedded systems,
and the low-energy many-core platforms of the embedded domain. This
allowed taking important steps towards the convergence of HPC and real-
time and embedded domains (Figure 1.2), providing predictable performance
to HPC systems and increasing performance of real-time embedded systems.

Figure 1.2 P-SOCRATES combines high-performance parallel programming models, high-
end embedded many-core platforms and real-time systems technology.
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Figure 1.3 Vertical stack of application decomposition.

P-SOCRATES developed a complete and coherent software system
stack, able to bridge the gap between the application design with both
high-performance and real-time requirements, and the hardware platform,
a many-core embedded processor. The project provided a new framework
to combine real-time embedded mapping and scheduling techniques with
high-performance parallel programming models and associated tools, able
to express parallelization of applications. The programming model used was
based on the state-of-the-art OpenMP specification.

The software stack (shown in Figure 1.3) is able to extract a task-
dependency graph from the application, statically or dynamically mapping
these tasks to the threads of the operating system, which then dynamically
schedules them on the many-core platform.

1.3 Challenges Addressed in This Book

1.3.1 Compiler Analysis of Parallel Programs

In order to enable predictable parallel performance to be analyzed, it is
required that the application parallel graph is known, with control- and
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data-flow information needed for the analysis of the timing behavior of the
parallel program. The extraction of this information should be as automatic as
possible, to release the programmer from the burden of needing to understand
the exact hardware details.

Chapter 3 addresses this challenge by presenting how this information can
be obtained from the OpenMP tasking model, and how this information can
be used to derive the timing properties of an application parallelized using
this model.

1.3.2 Predictable Scheduling of Parallel Tasks on Many-core
Systems

To be able to derive guarantees on the correct timing execution of parallel
programs, it is required to provide appropriate mapping and scheduling
algorithms of parallel computation in many-core platforms, together with
deriving the associated offline analysis that enable determining if applications
will meet their deadlines.

The challenge of real-time scheduling and schedulability analysis of par-
allel code is discussed in Chapter 4, which provides the substantial advances
that the project has performed in the real-time scheduling and schedulability
analysis of parallel graphs, using different scheduling models.

1.3.3 Methodology for Measurement-based Timing Analysis

The use of multi- and many-core platforms considerably challenges
approaches for real-time timing analysis, required to determine worst-case
execution time of the application code. In fact, the analysis of code execution
time is considerably complex due to the interaction and conflicts between
the multiple cores utilizing the same hardware resources (e.g., bus, memory,
network).

Chapter 5 investigates the different available methods to perform this
timing analysis in a many-core setting. After weighing the advantages and
disadvantages of each technique, a new methodology is presented based on
runtime measurements to derive worst-case estimates.

1.3.4 Optimized OpenMP Tasking Runtime System

The methodology presented in Chapters 3 to 5 of this book relies on the par-
allel computing abstraction provided by the OpenMP tasking model, and its
conceptual similarities to the Direct Acyclic Graph (DAG) model, to achieve
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predictable task scheduling, requiring an efficient runtime support. However,
a space- and performance-efficient design of a tasking run-time environment
targeting a many-core system-on-chip is a challenging task, as embedded
parallel applications typically exhibit very fine-grained parallelisms.

For that purpose, Chapter 6 presents the design and implementation of
an OpenMP tasking run-time environment with very low time and space
overheads, which is able to support the approach of the book.

1.3.5 Real-time Operating Systems

The run-time environment of Chapter 6 requires the underlying support of
a Real-Time Operating System (RTOS) for many-core architectures. This
operating system needs to both be able to execute multi-threaded applications
in multiple cores, and also efficiently support a limited pre-emptive model,
where threads are only pre-empted at the boundaries of OpenMP tasks.

Chapter 7 presents the re-design and re-implementation of the ERIKA
Enterprise RTOS, aiming at an efficient execution on this kind of platforms.
The new version of the RTOS allows us to share a single binary kernel
image across several cores of the platform, reducing the overall memory
consumption, and includes the new limited pre-emptive model.

1.4 The UpScale SDK

An outcome of the P-SOCRATES project was a complete and coherent
software framework for applications with high-performance and real-time
requirements in COTS many-core embedded processors. This software
framework was publicly released under the brand of the UpScale SDK (Soft-
ware Development Kit)2. The UpScale SDK includes the tools to manage
the application compilation process, its timing analysis and its execution
(Figure 1.4):

• Compiler flow. This flow has a twofold objective: (i) to guide the process
to generate the binary that will execute on the many-core architecture
and (ii) to generate the application DAG used for the timing analysis
and run-time components.

• Analysis flow. This flow is in charge of deriving timing guarantees of the
parallel execution considering execution time traces of the application
running on the many-core platform and incorporated in the DAG. Timing

2http://www.upscale-sdk.com
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Figure 1.4 The UpScale SDK.

guarantees are derived by means of execution time bounds and a static
scheduler or dynamic scheduler supported with response-time analysis.

• Execution stack. These two components are in charge of orchestrating
the parallel execution of the application in a time-predictable manner,
based on the DAG.

1.5 Summary

Providing high performance while meeting predictability requirements of
real-time applications is a challenging task, which requires new techniques
and tools at most if not all levels of the design flow and execution stack. This
book presents the work which was done within the P-SOCRATES project to
address these challenges, presenting solutions for deriving control- and data-
flow graph of OpenMP parallel programs using the tasking model, algorithms
for mapping and scheduling the OpenMP tasks into many-core platforms,
and methods to perform both timing and schedulability analysis. The book
also describes solutions for the runtime execution stack for real-time parallel
computation, both at the level of the OpenMP runtime, as well as within
real-time operating systems.
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This chapter surveys state-of-the-art manycore platforms. It discusses the
historical evolution of computing platforms over the past decades and the
technical hurdles that led to the manycore revolution, then presents in details
several manycore platforms, outlining (i) the key architectural traits that
enable scalability to several tens or hundreds of processing cores and (ii) the
shared resources that are responsible for unpredictable timing.

2.1 Introduction

Starting from the early 2000s, general-purpose processor manufacturers
adopted the chip multiprocessor (CMP) design paradigm [1] to overcome
technological “walls.”

Single-core processor designs hit the power wall around 2004, when the
consolidated strategy of scaling down the gate size of integrated circuits –
reducing the supply voltage and increasing the clock frequency – became
unfeasible because of excessive power consumption and expensive packaging
and cooling solutions [2]. The CMP phisolophy replaces a single, very fast
core with multiple cores that cooperate to achieve equivalent performance,
but each operating at a lower clock frequency and thus consuming less power.

Over the past 20 years, processor performance has increased at a faster
rate than the memory performance [3], which created a gap that is commonly
referred to as the memory wall. Historically, sophisticated multi-level cache
hierarchies have been built to implement main memory access latency hiding
techniques. As CMPs use lower clock frequencies, the processor–memory

15
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gap grows at a slower rate, compared to traditional single-core systems.
Globally, the traditional latency hiding problem is turned into an increased
bandwidth demand, which is easier to address, as the DRAM bandwidth
scales much better than its access latency [4].

Single-core designs have traditionally been concerned with the develop-
ment of techniques to efficiently extract instruction-level parallelism (ILP).
However, increasing ILP performance beyond what is achieved today with
state-of-the-art techniques has become very difficult [5], which is referred to
as the ILP wall. CMPs solve the problem by shifting the focus to thread-
level parallelism (TLP), which is exposed at the parallel programming model
level, rather than designing sophisticated hardware to transparently extract
ILP from instruction streams.

Finally, the complexity wall refers to the difficulties encountered by
single-core chip manifacturers in designing and verifying increasingly
sophisticated out-of-order processors. In the CMP design paradigm, a much
simpler processor core is designed once and replicated to scale to the
multicore system core count. Design reuse and simplified core complexity
obviously significantly reduce the system design and verification.

The trend towards integrating an increasing number of cores in a single
chip has continued all over the past decade, which has progressively paved the
way for the introduction of manycore systems, i.e., CMPs containing a high
number of cores (tens to hundreds). Interestingly, the same type of “revolu-
tion” has taken place virtually in every domain, from the high-performance
computing (HPC) to the embedded systems (ES). Driven by converging needs
for high performance requirements, energy efficiency, and flexibility, the most
representative commercial platforms from both domains nowadays feature
very similar architectural traits. In particular, core clusterization is the key
design paradigm adopted in all these products. A hierarchical processor orga-
nization is always employed, where simple processing units are grouped into
small-medium sized subsystems (the clusters) and share high-performance
local interconnection and memory. Scaling to larger system sizes is enabled
by replicating clusters and interconnecting them with a scalable medium like
a network-on-chip (NoC).

In the following, we briefly present several manycore platforms, both
from the HPC and the ES domains. We discuss the Kalray MPPA-256 at last,
and in greater detail, as this is the platform for which the development of the
software techniques and the experimental evaluation presented throughout the
rest of the book have been conducted.
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2.2 Manycore Architectures

2.2.1 Xeon Phi

Xeon Phi are a series of x86 manycore processors by Intel and meant to
accelerate the highly parallel workloads of the HPC world. As such, they
are employed in supercomputers, servers, and high-end workstations. The
Xeon Phi family of products has its roots in the Larrabee microarchitecture
project – an attempt to create a manycore accelerator meant as a GPU as well
as for general-purpose computing – and has recently seen the launch of the
Knights Landing (KNL) chip on the marketplace.

Figure 2.1a shows the high-level block diagram of the KNL CPU. It
comprises 38 physical tiles, of which at most 36 are active (the remaining two
tiles are for yield recovery). The structure of a tile is shown in Figure 2.1b.
Each tile comprises two cores, two vector processing units (VPUs) per core,
and a 1-Mbyte level-2 (L2) cache that is shared between the two cores.

The core is derived from the Intel Atom (based on the Silvermont
microarchitecture [6]), but leverages a new two-wide, out-of-order core which
includes heavy modifications to incorporate features necessary for HPC
workloads [e.g., four threads per core, deeper out-of-order buffers, higher
cache bandwidth, new instructions, better reliability, larger translation look-
aside buffers (TLBs), and larger caches]. In addition, the new Advanced

Figure 2.1 Knights Landing (KNL) block diagram: (a) the CPU, (b) an example tile, and (c)
KNL with Omni-Path Fabric integrated on the CPU package.
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Vector Extensions instruction set, AVX-512, provides 512-bit-wide vector
instructions and more vector registers.

At the top level, a 2D, cache-coherent mesh NoC connects the tiles,
memory controllers, I/O controllers, and other agents on the chip. The mesh
supports the MESIF (modified, exclusive, shared, invalid, forward) protocol,
which employs a distributed tag directory to keep the L2 caches in all tiles
coherent with each other. Each tile contains a caching/home agent that holds
a portion of the distributed tag directory and also serves as a connection point
between the tile and the mesh.

Knights Landing features two types of memory: (i) multichannel DRAM
(MCDRAM) and (ii) double data rate (DDR) memory. MCDRAM is orga-
nized as eight devices – each featuring 2-Gbyte high-bandwidth banks –
integrated on-package and connected to the KNL die via a proprietary on-
package I/O. The DDR4 is organized as six channels running at up to 2,400
MHz, with three channels on each of two memory controllers.

The two types of memory are presented to users in three memory modes:
cache mode, in which MCDRAM is a cache for DDR; flat mode, in which
MCDRAM is treated like standard memory in the same address space as
DDR; and hybrid mode, in which a portion of MCDRAM is cache and the
remainder is flat. KNL supports a total of 36 lanes of PCI express (PCIe)
Gen3 for I/O, split into two x16 lanes and one x4 lane. Moreover, it integrates
the Intel Omni-Path Fabric on-package (see Figure 2.1c), which provides two
100-Gbits-per-second ports out of the package.

The typical power (thermal design power) for KNL (including MCDRAM
memory) when running a computationally intensive workload is 215 W
without the fabric and 230 W with the fabric.

2.2.2 Pezy SC

PEZY-SC (PEZY Super Computer) [7] is the second generation manycore
microprocessor developed by PEZY in 2014, and is widely used as an
accelerator for HPC workloads. Compared to the original PEZY-1, the chip
contains exactly twice as many cores and incorporates a large amount of
cache including 8 MB of L3$. Operating at 733 MHz, the processor is
said to have peak performance of 3.0 TFLOPS (single-precision) and 1.5
TFLOPS (double-precision). PEZY-SC was designed using 580 million gates
and manufactured on TSMC’s 28HPC+ (28 nm process).

In June 2015, PEZY-SC-based supercomputers took all top three spots on
the Green500 listing as the three most efficient supercomputers:
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1. Shoubu: 1,181,952 cores, 50.3 kW, 605.624 TFlop/s Linpack Rmax;
2. Suiren Blue: 262,656 cores, 40.86 kW, 247.752 TFlop/s Linpack Rmax;
3. Suiren: 328,480 cores, 48.90 kW, 271.782 TFlop/s Linpack Rmax.

PEZY-SC contains two ARM926 cores (ARMv5TEJ) along with 1024
simpler RISC cores supporting 8-way SMT for a total of 8,192 threads, as
shown in Figure 2.2. The organization of the accelerator cores in PEZY-SC
heavily uses clusterization and hierarchy. At the top level, the microprocessor
is made of four blocks called “prefectures.” Within a prefecture, 16 smaller
blocks called “cities” share 2 MB of L3$. Each city is composed of 64 KB of
shared L2$, a number of special function units and four smaller blocks called
“villages.” Inside a village there are four execution units and every two such
execution units share 2 KB of L1D$.

The chip has a peak power dissipation of 100 W with a typical power
consumption of 70 W which consists of 10 W leakage + 60 W dynamic.

2.2.3 NVIDIA Tegra X1

The NVIDIA Tegra X1 [8] is a hybrid System on Module (SoM) featured in
the NVIDIA Jetson Development boards. As a mobile processor, the Tegra
X1 is meant for the high-end ES markets, and is the first system to feature a

Figure 2.2 PEZY-SC architecture block diagram.
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Figure 2.3 NVIDIA Tegra X1 block diagram.

chip powerful enough to sustain the visual computing load for autonomous
and assisted driving applications.

As shown in Figure 2.3, the X1 CPU complex consists of a big LIT-
TLE architecture, featuring quad-core 1.9 GHz ARM Cortex-A57 processor
(48 KB I-cache + 32 kB D-cache L1 per core, 2 MB L2 cache common to all
cores), plus quad-core ARM Cortex A53 processor. A single CPU core can
utilize the maximum bandwidth available for the whole CPU complex, which
amounts to almost 4.5 GB/s for sequential read operations.

The iGPU is a second-generation Maxwell “GM20b” architecture, with
256 CUDA cores grouped in two Streaming Multi-processors (SMs) (the
“clusters”) sharing a 256 KB L2 (last-level) cache. The compute pipeline of
an NVIDIA GPU includes engines responsible for computations (Execution
Engine, EE) and engines responsible for high bandwidth memory transfers
(Copy Engine, CE). The EE and CE can access central memory with a
maximum bandwidth close to 20 GB/s, which can saturate the whole DRAM
bandwidth. Indeed, the system DRAM consists of 4 GB of LPDDR4 64 bit
SDRAM working at (maximum) 1.6 GHz, reaching a peak ideal bandwidth
of 25.6 GB/s.

Despite the high performance capabilities of the SoC (peak performance
1 TFlops single precision), the Tegra X1 features a very contained power
envelope, drawing 6–15 W.
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2.2.4 Tilera Tile

The Tile architecture has its roots in the RAW research processor developed at
MIT [9] and later commercialized by Tilera, a start-up founded by the original
research group. Chips from the second generation are expected to scale up to
100 cores based on the MIPS ISA and running at 1.5 GHz.

The Tile architecture is among the first examples of a cluster-based
many-core, featuring ad-hoc on-chip interconnect and cache architecture.
The architectural template is shown in Figure 2.4. The chip is architected
as a 2D array of tiles (the clusters), interconnected via a mesh-based NoC.
Each tile contains a single processor core, with local L1 (64 KB) and a
portion (256 KB) of the distributed L2 cache. Overall, the L2 cache segments
behave as a non-uniformly addressed cache (NUCA), using a directory-based
coherence mechanism and the concept of home tile (the tile that holds the
master copy) for cached data. The NUCA design makes cache access latency
variable according to the distance between tiles, but enables an efficient
(space- and power-wise) logical view to the programmer: a large on-chip
cache to which all cores are connected. Each tile also features an interconnect
switch that connects it to the neighboring tiles, which allows for a simplified
interconnect design (essentially, a switched network with very short wires
connecting neighboring tiles linked through the tile-local switch).

Figure 2.4 Tilera Tile architectural template.
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The NoC – called iMesh by Tilera – actually consists of five different
networks, used for various purposes:

• Application process communication (UDN),
• I/O communication (IDN),
• Memory communication (MDN),
• Cache coherency (TDN),
• Static, channelized communication (STN).

The latency of the data transfers on the network is 1–2 cycles/tile, depend-
ing on whether there’s a direction change or not at the tile. The TileDirect
technology allows data received over the external interfaces to be placed
directly into the tile-local memory, thus bypassing the external DDR memory
and reducing memory traffic.

The power budget of the Tile processors is under 60 W.

2.2.5 STMicroelectronics STHORM

STHORM is a heterogeneous, manycore-based system from STMicroelec-
tronics [10], with an operating frequency ranging up to 600 MHz.

The STHORM architecture is organized as a fabric of multi-core clus-
ters, as shown in Figure 2.5. Each cluster contains 16 STxP70 Processing

Figure 2.5 STMicroelectronics STHORM heterogeneous system.
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Figure 2.6 Block diagram of the Epiphany-V chip from Adapteva.

Elements (PEs), each of which has a 32-bit dual-issue RISC processor. PEs
communicate through a shared multi-ported, multi-bank, tightly-coupled data
memory (TCDM, a scratchpad memory). Additionally, STHORM clusters
feature an additional core called the cluster controller (CC) and meant, as the
name suggests, for the execution of control code local to the cluster operation.
Globally, four clusters plus a fabric controller (FC) core – responsible for
global coordination of the clusters – are interconnected via two asynchronous
networks-on-chip (ANoC). The first ANoC is used for accessing a multi-
banked, multiported L2 memory, shared among the four clusters. The second
ANoC is used for inter-cluster communication via L1 TCDMs (i.e., remote
clusters’ TCDMs can be accessed by every core in the system) and to access
the offchip main memory (L3 DRAM).

STHORM delivers up to 80 GOps (single-precision floating point) with
only 2W power consumption.

2.2.6 Epiphany-V

The Epiphany-V chip from Adapteva [11] is based on a 1024-core processor
in 16 nm FinFet technology. The chip contains an array of 1024 64-bit RISC
processors, 64 MB of on-chip SRAM, three 136-bit wide mesh Networks-
On-Chip, and 1,024 programmable IO pins.
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Similar to the Tilera Tile architecture, the Epiphany architecture is a
distributed shared memory architecture composed of an array of RISC pro-
cessors communicating via a low-latency, mesh-based NoC, as shown in
Figure 2.6. Each cluster (or node) in the 2D array features a single, com-
plete RISC processor capable of independently running an operating system
[according to the multiple-instruction, multiple-data (MIMD) paradigm]. The
distributed shared memory model of the Epiphany-V chip relies on a cache-
less design, in which all scratchpad memory blocks are readable and writable
by all processors in the system (similar to the STHORM chip).

The Epiphany-V chip can deliver two teraflops of performance (single-
precision floating point) in a 2W power envelope.

2.2.7 TI Keystone II

The Texas Instrument Keystone II [12], is a heterogeneous SoC featuring
a quad-core ARM Cortex-A15 and an accelerator cluster comprising eight
C66x VLIW DSPs. The chip is designed for special-purpose industrial
tasks, such as networking, automotive, and low-power server applications.
The 66AK2H12 SoC, depicted in Figure 2.7, is the top-performance Texas
Instrument Keystone II device architecture.

Each DSP in the accelerator cluster is a VLIW core, capable of fetching
up to eight instructions per cycle and running at up to 1.2 GHz. Locally,

Figure 2.7 Texas Instrument Keystone II heterogeneous system.
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a DSP is equipped with 32 KB L1 D-cache and L1 I-cache, plus 1024 KB
L2 unified cache. Altogether, the DSPs in the accelerator cluster deliver 160
single-precision GOps.

On the ARM side, there are 32 KB of L1 D-cache and 32 KB of L1
I-cache per core, plus a coherent 4 MB L2 cache.

The computational power of such architecture, at a power budget of up to
14 W, makes it a low-power solution for microserver-class applications. The
Keystone II processor has been used in several cloud-computing/microserver
settings [13–15].

2.2.8 Kalray MPPA-256

The Kalray MPPA-256 processor of the MPPA (Multi-Purpose Processor
Array) MANYCORE family has been developed by the company KALRAY.
It is a single-chip programmable manycore processor manufactured in 28 nm
CMOS technology that targets low-to-medium volume professional applica-
tions, where low energy per operation and time predictability are the primary
requirements [16]. It concentrates a great potential and is very promising
for high-performance parallel computing. With an operating frequency of
400 MHz and a typical power consumption of 5 W, the processor can perform
up to 700 GOPS and 230 GFLOPS. The processor integrates a total of 288
identical Very Long Instruction Word (VLIW) cores including 256 user cores
referred to as processing engines (PEs) and dedicated to the execution of the
user applications and 32 system cores referred to as Resource Manager (RM)
and dedicated to the management of the software and processing resources.
The cores are organized in 16 compute clusters and four I/O subsystems to
control all the I/O devices. In Figure 2.8, the 16 inner nodes (labeled CC)

Figure 2.8 High-level view of the Kalray MPPA-256 processor.
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correspond to the 16 compute clusters holding 17 cores each: 16 PEs and
1 RM. Then, there are four I/O subsystems located at the periphery of
the chip, each holding four RMs. Each compute cluster and I/O subsystem
owns a private address space, while communication and synchronization
between them is ensured by the data and control NoC depicted in Figure 2.8.
The MPPA-256 processor is also fitted with a variety of I/O controllers, in
particular DDR, PCI, Ethernet, Interlaken, and GPIO.

2.2.8.1 The I/O subsystem
The four I/O subsystems (also denoted as IOS) are referenced as the North,
South, East, and West IOS. They are responsible for all communications with
elements outside the MPPA-256 processor, including the host workstation if
the MPPA is used as an accelerator.

Each IOS contains four RMs in a symmetric multiprocessing configura-
tion. These four RMs are connected to a shared, 16-bank parallel memory of
512 KB, they have their own private instruction cache of 32 KB (8-way, set-
associative) and share a data cache of 128 KB (also 8-way, set-associative),
which ensures data coherency between the cores.

The four IOS are dedicated to PCIe, Ethernet, Interlaken, and other I/O
devices. Each one runs either a rich OS such as Linux or an RTOS that
supports the MPPA I/O device drivers. They integrate controllers for an 8-
lane Gen3 PCIe for a total peak throughput of 16 GB/s full duplex, Ethernet
links ranging from 10 MB/s to 40 GB/s for a total aggregate throughput of
80 GB/s, the Interlaken link providing a way to extend the NoC across MPPA-
256 chips and other I/O devices in various configurations like UARTs, I2C,
SPI, pulse width modulator (PWM), or general purpose IOs (GPIOs). More
precisely, the East and West IOS are connected to a quad 10 GB/s Ethernet
controller, while the North and South IOS are connected to an 8-lane PCIe
controller and to a DDR interface for access to up to 64 GB of external
DDR3-1600.

2.2.8.2 The Network-on-Chip (NoC)
The NoC holds a key role in the average performance of manycore archi-
tectures, especially when different clusters need to exchange messages. In
the Kalray MPPA-256 processor, the 16 compute clusters and the four I/O
subsystems are connected by two explicitly addressed NoC with bi-
directional links providing a full duplex bandwidth up to 3.2 GB/s between
two adjacent nodes:
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Figure 2.9 MPPA-256 NoC architecture.

• The data NoC (D-NoC). This NoC is optimized for bulk data transfers;
• The control NoC (C-NoC). This NoC is optimized for small messages

at low latency.

The two NoCs are identical with respect to the nodes, the 2D-wrapped-
around torus topology, shown in Figure 2.9, and the wormhole route encod-
ing. They differ at their device interfaces, by the amount of packet buffering
in routers, and by the flow regulation at the source available on the D-NoC.
NoC traffic through a router does not interfere with the memory buses of
the underlying I/O subsystem or compute cluster, unless that router is the
destination node. Besides, the D-NoC implements a quality-of-service (QoS)
mechanism, thus guaranteeing predictable latencies for all data transfers.
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2.2.8.3 The Host-to-IOS communication protocol
The special hierarchy among the cores in the MPPA-256 processor helps to
better divide the workload to be executed on the PEs. When the MPPA-256
is used as an accelerator, tasks are sent to the MPPA-256 processor from
a Host workstation. The communication with the MPPA-256 can thus be
performed in a couple of steps which can be referred to as Host-to-IOS,
IOS-to-Clusters and finally Cluster-to-Cluster communication protocols. The
MPPA-256 processor communicates with the Host workstation through I/O
subsystems. The chip is connected to the host CPU by a PCle interface and
two connectors – Buffer and MQueue – are available for making this link.
The RM core that accommodates the task upon the I/O subsystem is referred
to as Master (see Figure 2.10). The processor then executes the received task
(referred to as Master task) as detailed in Section 4.3.1 and at the end of the
execution process, it writes the output data in a 4 GB DDR3 RAM memory,
which is connected to an I/O subsystem and can be accessed by the host CPU.

2.2.8.4 Internal architecture of the compute clusters
The compute cluster (Figure 2.11) is the basic processing unit of the MPPA
architecture. Each cluster contains 17 Kalray-1 VLIW cores, including 16 PE
cores dedicated to the execution of the user applications and one RM core.
Among other responsibilities, the RM is in charge of mapping and scheduling
the threads on the PEs and managing the communications between the clus-
ters and between the clusters and the main memory. The 16 PEs and the RM

Figure 2.10 A master task runs on an RM of an I/O subsystem.
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Figure 2.11 Internal architecture of a compute cluster.

are connected to a shared memory of 2 MB. A direct memory access (DMA)
engine is responsible for transferring data between the shared memory and
the NoC or within the shared memory. The DMA engine supports multi-
dimensional data transfers and sustains a total throughput of 3.2 GB/s in full
duplex. The Debug and System Unit (DSU) supports the compute cluster
debug and diagnostics capabilities. Each DSU is connected to the outside
world by a JTAG (IEEE 1149.1) chain. The DSU also contains a system
trace IP that is used by lightly instrumented code to push up to 1.6 GB/s
of trace data to an external acquisition device. This trace data gives almost
non-intrusive insight on the behaviour of the application.

2.2.8.5 The shared memory
The shared memory (SMEM) in each compute cluster (yellow box in Figure
2.11) comprises 16-banked independent memory of 16,384 x 64-bit words
= 128 kB per bank, with a total capacity of 16 x 128 kB = 2 MB, with error
code correction (ECC) on 64-bit words. This memory space is shared between
the 17 VLIW cores in the cluster and delivers an aggregate bandwidth of
38.4 GB/s.

The 16 memory banks are arranged in two sides of eight banks, the left
side and the right side. The connections between the memory bus masters are
replicated in order to provide independent access to the two sides. There are
two ways of mapping a physical address to a specific side and bank.
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Figure 2.12 Memory accesses distributed across memory banks (interleaved).

Option 1 (Interleaving address mapping) – In the address space, bits 6–
9 of the byte address select the memory bank, so sequential addresses move
from one bank to another every 64 bytes (every 8 x 64-bit words), as depicted
in Figure 2.12. This address-mapping scheme is effective at distributing the
requests of cores across memory banks, while ensuring that each cache refill
request involves only one memory bank and benefits from a burst access
mode. Furthermore, this address scheme also allows the “simultaneous”
access (respecting the activation time) of those memory banks in which the
cache line is stored. As the side selection depends on the sixth bit of the byte
address, the bank selection by sequential addresses alternates between the left
side and the right side every 64 bytes.

Option 2 (Contiguous address mapping) – It is possible to disable the
memory address shuffling, in which case each bank has a sequential address
space covering one bank of 128 KB as depicted in Figure 2.13. The high-
order bit of the address selects the side (i.e., the right side covers addresses
from 0 to 1 MB and the left side covers addresses above 1 MB). When zero
interference between cores is needed, cores within a given pair must use a
different side.

2.3 Summary

Back in the early days of the new millennium, multicore processors allowed
computer designers to overcome several technological walls that traditional
single-core design methodologies were no longer capable of addressing. This
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Figure 2.13 Memory accesses targeting a same memory bank (contiguous).

design paradigm is to date the standard, with an ever-increasing number of
processing cores integrated on the same chip. While manycore processors
enabled over the past 15 years the seamless continuation of compute per-
formance scalability for general-purpose and scientific workloads, real-time
systems have not been able to embrace this technology so far, due to the lack
of predictability in execution time implied by hardware resource sharing. This
chapter has surveyed several state-of-the-art manycore processors, highlight-
ing the architectural features (i) that enable processor integration scalability
and (ii) those that are shared among several processor and that are mostly
responsible for the unpredictable execution.
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University of Bologna, Italy

This chapter motivates the use of the OpenMP (Open Multi-Processing)
parallel programming model to develop future critical real-time embedded
systems, and analyzes the time-predictable properties of the OpenMP tasking
model. Moreover, this chapter presents the set of compiler techniques needed
to extract the timing information of an OpenMP program in the form of an
OpenMP Direct Acyclic Graph or OpenMP-DAG.

3.1 Introduction

Parallel programming models are key to increase the productivity of parallel
software from three different angles:

1. From a programmability angle, parallel programming models provide
developers with the abstraction level required to program parallel
applications while hiding processor complexities.

2. From a portability angle, platform-independent parallel programming
models allow executing the same parallel source code in different
parallel platforms.

3. From a performance angle, different levels of abstraction allow for a
fine-tuned parallelism, i.e., users may either squeeze the capabilities of
a specific architecture using the language capabilities, or rely on runtime
mechanisms to dynamically exploit parallelism.
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Hence, parallel programming models are of paramount importance to exploit
the massive computation capabilities of state-of-the-art and future parallel
and heterogeneous processor architectures. Several approaches coexist with
such a goal, and these can be grouped as follows [1]:

• Hardware-centric models aim to replace the native platform program-
ming with higher-level, user-friendly solutions, e.g., Intel R© TBB [2] and
NVIDIA R© CUDA [3]. These models focus on tuning an application to
match a chosen platform, which makes their use neither a scalable nor a
portable solution.
• Application-centric models deal with the application parallelization

from design to implementation, e.g., OpenCL [4]. Although portable,
these models may require a full rewriting process to accomplish produc-
tivity.
• Parallelism-centric models allow users to express typical parallelism

constructs in a simple and effective way, and at various levels of
abstraction, e.g., POSIX threads [6] and OpenMP [7]. This approach
allows flexibility and expressiveness, while decoupling design from
implementation.

Considering the vast amount of parallel programming models available,
there is a noticeable need to unify programming models to exploit the
performance benefits of parallel and heterogeneous architectures [9]. In that
sense, OpenMP has proved many advantages over its competitors to enhance
productivity. The next sections introduce the main characteristics of the most
relevant programming models, and conclude with an analysis of the main
benefits of OpenMP.

3.1.1 Introduction to Parallel Programming Models

The multitude of parallel programming models currently existing makes it
difficult to choose the language that better fits the needs of each particular
case. Table 3.1 introduces the main characteristics of the most relevant
programming models in critical embedded systems. The features considered
are the following: performance (based on throughput, bandwidth, and other
metrics), portability (based on how straight-forward it is to migrate to dif-
ferent environments), heterogeneity (based on the support for cross-platform
applications), parallelism (based on the support provided for data-based
and task-based parallelism), programmability (based on how easy it is for
programmers to get the best results), and flexibility (based on the features for
parallelizing offered in the language).
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Table 3.1 Parallel programming models comparison
Pthreads OpenCL CUDA Cilk Plus TBB OpenMP

Performance X X XX XX X X
Portability X X × × × XX
Heterogeneity × X X × X XX
Parallelism data/task data/task data data/task task data/task
Programmability × × × XX X X
Flexibility X X × × X XX

3.1.1.1 POSIX threads
POSIX threads (Portable Operating System Interface for UNIX threads), usu-
ally referred to as Pthreads, is a standard C language programming interface
for UNIX systems. The language provides efficient light-weight mechanisms
for thread management and synchronization, including mutual exclusion and
barriers.

In a context where hardware vendors used to implement their own pro-
prietary versions of threads, Pthreads arose with the aim of enhancing the
portability of threaded applications that reside on shared memory platforms.
However, Pthreads results in very poor programmability, due to the low-level
threading model provided by the standard, that leaves most of the imple-
mentation details to the programmer (e.g., work-load partitioning, worker
management, communication, synchronization, and task mapping). Overall,
the task of developing applications with Pthreads is very hard.

3.1.1.2 OpenCLTM

OpenCLTM (Open Computing Language) is an open low-level application
programming interface (API) for cross-platform parallel computing that runs
on heterogeneous systems including multicore and manycore CPUs, GPUs,
DSPs, and FPGAs. There are two different actors in an OpenCL system:
the host and the devices. The language specifies a programming language
based on C99 used to control the host, and a standard interface for parallel
computing, which exploits task-based and data-based parallelism, used to
control the devices.

OpenCL can run in a large variety of devices, which makes portability
its most valuable characteristic. However, the use of vendor-specific features
may prevent this portability, and codes are not guaranteed to be optimal
due to the important differences between devices. Furthermore, the language
has an important drawback: it is significantly difficult to learn, affecting the
programmability.
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3.1.1.3 NVIDIA R© CUDA
NVIDIA R© CUDA is a parallel computing platform and API for exploiting
CUDA-enabled GPUs for general-purpose processing. The platform provides
a layer that gives direct access to the GPU’s instruction set, and is accessible
through CUDA-accelerated libraries, compiler directives (such as OpenACC
[10]), and extensions to industry-standard programming languages (such as
C and C++).

The language provides dramatic increases of performance when exploit-
ing parallelism in GPGPUs. However, its use is limited to CUDA-enabled
GPUs, which are produced only by NVIDIA R©. Furthermore, tuning applica-
tions with CUDA may be hard because it requires rewriting all the offloaded
kernels and knowing the specifics of each platform to get the best results.

3.1.1.4 Intel R© CilkTM Plus
Intel R© Cilk Plus [11] is an extension to C/C++ based on Cilk++ [12] that has
become popular because of its simplicity and high level of abstraction. The
language provides support for both data and task parallelism, and provides
a framework that optimizes load balance, implementing a work-stealing
mechanism to execute tasks [13].

The language provides a simple yet efficient platform for implementing
parallelism. Nonetheless, portability is very limited because only Intel R© and
GCC implement support for the language extensions defined by Cilk Plus.
Furthermore, the possibilities available with this language are limited to tasks
( cilk spawn, cilk sync), loops ( cilk for), and reductions (reducers).

3.1.1.5 Intel R© TBB
Intel R© TBB is an object-oriented C++ template library for implementing
task-based parallelism. The language offers constructs for parallel loops,
reductions, scans, and pipeline parallelism. The framework provided has
two key components: (1) compilers, which optimize the language templates
enabling a low-overhead form of polymorphism, and (2) runtimes, which
keep temporal locality by implementing a queue of tasks for each worker,
and balance workload across available cores by implementing a work-stealing
policy.

TBB offers a high level of abstraction in front of complicated low-level
APIs. However, adapting the code to fit the library templates can be arduous.
Furthermore, portability is limited, although the last releases support Visual
C++, Intel R© C++ compiler, and the GNU compiler collection.
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3.1.1.6 OpenMP
OpenMP, the de-facto standard parallel programming model for shared
memory architectures in the high-performance computing (HPC) domain, is
increasingly adopted also in embedded systems. The language was originally
focused on a thread-centric model to exploit massive data-parallelism and
loop intensive applications. However, the latest specifications of OpenMP
have evolved to a task-centric model that enables very sophisticated types
of fine-grained and irregular parallelism, and also include a host-centric
accelerator model that enables an efficient exploitation of heterogeneous
systems. As a matter of fact, OpenMP is supported in the SDK of many of the
state-of-the-art parallel and heterogeneous embedded processor architectures,
e.g., Kalray MPPA [14], and TI Keystone II [16].

Different evaluations demonstrate that OpenMP delivers tantamount per-
formance and efficiency compared to highly tunable models such as TBB
[17], CUDA [18] and OpenCL [19]. Moreover, OpenMP has different
advantages over low-level libraries such as Pthreads: on one hand, it offers
robustness without sacrificing performance [21] and, on the other hand,
OpenMP does not lock the software to a specific number of threads. Another
important advantage is that the code can be compiled as a single-threaded
application just disabling support for OpenMP, thus easing debugging and so
programmability.

Overall, the use of OpenMP presents three main advantages. First, an
expert community has constantly reviewed and augmented the language for
the past 20 years. Second, OpenMP is widely implemented by several chip
and compiler vendors from both high-performance and embedded computing
domains (e.g., GNU, Intel R©, ARM, Texas Instruments and IBM), increasing
portability among multiple platforms from different vendors. Third, OpenMP
provides greater expressiveness due to years of experience in its development;
the language offers several directives for parallelization and fine-grained
synchronization, along with a large number of clauses that allow it to
contextualize concurrency and heterogeneity, providing fine control of the
parallelism.

3.2 The OpenMP Parallel Programming Model

3.2.1 Introduction and Evolution of OpenMP

OpenMP represents the computing resources of a parallel processor archi-
tecture (i.e., cores) by means of high-level threads, named OpenMP threads,
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upon which programmers can assign units of code to be executed. During the
execution of the program, the OpenMP runtime assigns these threads to low-
level computing resources, i.e., the operating system (OS) threads, which are
then assigned to physical cores by the OS scheduler, following the execution
model defined by the OpenMP directives. Figure 3.1 shows a schematic view
of the stack of components involved in the execution of an OpenMP program.
OpenMP exposes some aspects of managing OpenMP threads to the user
(e.g., defining the number of OpenMP threads assigned to a parallel execution
by means of the num threads clause). The rest of components are transparent
to the user and efficiently managed by the OpenMP runtime and the OS.

Originally, up to OpenMP version 2.5 [22], OpenMP was traditionally
focused on massively data-parallel, loop-intensive applications, following the
single-program-multiple-data programming paradigm. In this model, known
as thread model, OpenMP threads are visible to the programmer, which are
controlled with work-sharing constructs that assign iterations of a loop or
code segments to OpenMP threads.

The OpenMP 3.0 specification [23] introduced the concept of tasks by
means of the task directive, which exposes a higher level of abstraction to
programmers. A task is an independent parallel unit of work, which defines
an instance of code and its data environment. This new model, known as
tasking model, provides a very convenient abstraction of parallelism as it is
the runtime (and not the programmer) the responsible for scheduling tasks to
threads.

Figure 3.1 OpenMP components stack.
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With version 4.0 of the specification [24], OpenMP evolved to consider
very sophisticated types of fine-grained, irregular and highly unstructured
parallelism, with mature support to express dependences among tasks. More-
over, it incorporated for the first time a new accelerator model including
features for offloading computation and performing data transfers between
the host and one or more accelerator devices. The latest version, OpenMP 4.5
[25], enhances the previous accelerator model by coupling it with the tasking
model.

Figure 3.2 shows a time-line of all existent releases of OpenMP, since
1997, when the OpenMP Architecture Review Board (ARB) was formed.
The next version, 5.0 [26–28], is planned for November 2018.

3.2.2 Parallel Model of OpenMP

This section provides a brief description of the OpenMP parallel program-
ming model as defined in the latest specification, version 4.5.

3.2.2.1 Execution model
An OpenMP program begins as a single thread of execution, called the initial
thread. Parallelism is achieved through the parallel construct, in which a
new team of OpenMP threads is spawned. OpenMP allows programmers to
define the amount of threads desired for a parallel region by means of the
num threads clause attached to the parallel construct. The spawned threads
are joined at the implicit barrier encountered at the end of the parallel region.
This is the so-called fork-join model. Within the parallel region, parallelism
can be distributed in two ways that provide tantamount performance [29]:

1. The thread-centric model exploits structured parallelism distributing
work by means of work-sharing constructs (e.g., for and sections
constructs). It provides a fine-grained control of the mapping between

Figure 3.2 OpenMP releases time-line.
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work and threads, as well as a coarse grain synchronization mechanism
by means of the barrier construct.

2. The task-centric model, or simply tasking model, exploits both
structured and unstructured parallelism distributing work by means
of tasking constructs (e.g., task and taskloop constructs). It pro-
vides a higher level of abstraction in which threads are mainly
controlled by the runtime, as well as fine-grained synchronization
mechanisms by means of the taskwait construct and the depend
clause that, attached to a task construct, allow the description of
a list of input and/or output dependences. A task with an in, out
or inout dependence is ready to execute when all previous tasks
with an out or inout dependence on the same storage location
complete.

Figure 3.3 shows the execution model of a parallel loop implemented with the
for directive, where all spawned threads work in parallel from the beginning
of the parallel region as long as there is work to do. Figure 3.4 shows the
model of a parallel block with unstructured tasks. In this case, the single
construct restricts the execution of the parallel region to only one thread until
a task construct is found. Then, another thread (or the same, depending on the
scheduling policy), concurrently executes the code of the task. In Figure 3.3,
the colours represent the execution of differents iterations of the same parallel
loop; in Figure 3.4, colours represent the parallel execution of the code
included within a task construct.

3.2.2.2 Acceleration model
OpenMP also provides a host-centric accelerator model in which a host
offloads data and code to the accelerator devices available in the same

Figure 3.3 Structured parallelism. Figure 3.4 Unstructured parallelism.
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processor architecture for execution by means of the target construct. When a
target directive is encountered, a new target task enclosing the target region
is generated. The target task is completed after the execution of the target
region finishes. One of the most interesting characteristics of the accelerator
model is its integration with the tasking model. Note that each accelerator
device has its own team of threads that are distinct from threads that execute
on another device, and these cannot migrate from one device to another.

In case the accelerator device is not available or even does not exist (this
may occur when the code is ported from one architecture to another) the
target region is executed in the host. The map clause associated with the
target construct specifies the data items that will be mapped to/from the target
device. Further parallelism can be exploited within the target device.

3.2.2.3 Memory model
OpenMP is based on a relaxed-consistency, shared-memory model. This
means there is a memory space shared for all threads, called memory. Addi-
tionally, each thread has a temporary view of the memory. The temporary
view is not always required to be consistent with the memory. Instead, each
private view synchronizes with the main memory by means of the flush
operation, which can be implicit (due to operations causing a memory fence)
or explicit (using the flush operation). Data cannot be directly synchronized
between two different threads temporary view.

The view of each thread has of a given variable is defined using data-
sharing clauses, which can determine the following sharing scopes:

• private: a new fresh variable is created within the scope.
• firstprivate: a new variable is created in the scope and initialized with

the value of the original variable.
• lastprivate: a new variable is created within the scope and the original

variable is updated at the end of the execution of the region (only for
tasks).
• shared: the original variable is used in the scope, thus opening the

possibility of data race conditions.

The use of data-sharing clauses is particularly powerful to avoid unnecessary
synchronizations as well as race conditions. All variables appearing within
a construct have a default data-sharing defined by the OpenMP specifica-
tion ([25] Section 2.15.1). These rules are not based on the use of the
variables, but on their storage. Thus, users are duty-bound to explicitly
scope many variables, changing the default data-sharing values, in order to
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fulfill correctness (e.g., avoiding data races) and enhance performance (e.g.,
avoiding unnecessary privatizations).

3.2.3 An OpenMP Example

Listing 3.1 illustrates an OpenMP program that uses both the tasking and
the accelerator models. The code enclosed in the parallel construct (line
4) defines a team of four OpenMP threads on the host device. The single
construct (line 6) specifies that only one thread starts executing the associated
block of code, while the rest of threads in the team remain waiting. When the
task regions are created (lines 9 and 11), each one is assigned to one thread in
the team (may be the same thread), and the corresponding output dependences
on variables x and y are stored. When the target task (lines 13:14) is created,
its dependences on x and y are checked. If the tasks producing these variables
are finished, then the target task can be scheduled. Otherwise, it must be
deferred until the tasks from which it depends have finished. When the target
task is scheduled, the code contained in the target region and the variables
in the map(to:) clause (x and y) are copied to the accelerator device. After
its execution, the res variable is copied back to the host memory as defined
by the map(from:) clause. The presence of a nowait clause in the target task
allows the execution on the host to continue after the target task is created.

Listing 3.1 OpenMP example of the tasking and the accelerator models combined
1 i n t foo ( i n t a , i n t b )
2 {
3 i n t r e s ;
4 #pragma omp p a r a l l e l num threads ( 4 ) shared ( r e s ) f i r s t p r i v a t e ( a , b )
5 {
6 #pragma omp s i n g l e shared ( r e s ) f i r s t p r i v a t e ( a , b )
7 {
8 i n t x , y ;
9 #pragma omp task shared ( x ) f i r s t p r i v a t e ( a ) depend ( out : x )

10 x = a∗a ;
11 #pragma omp task shared ( y ) f i r s t p r i v a t e ( b ) depend ( out : y )
12 y = b∗b ;
13 #pragma omp t a r g e t map ( to : x , y ) map ( from : r e s ) nowait \
14 shared ( r e s ) f i r s t p r i v a t e ( x , y ) depend ( in : x , y )
15 r e s = x + y ;
16 }
17 re turn r e s ;
18 }
19 }
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All OpenMP threads are guaranteed to be synchronized at the implicit barrier
included at the end of the parallel and single constructs (lines 16 and 19
respectively). A nowait clause could be added to the single construct to avoid
unnecessary synchronizations.

3.3 Timing Properties of the OpenMP Tasking Model

The tasking model of OpenMP not only provides a very convenient abstrac-
tion layer upon which programmers can efficiently develop parallel appli-
cations, but also has certain similarities with the sporadic direct acyclic
graph (DAG) scheduling model used to derive a (worst-case) response time
analysis of parallel applications. Chapter 4 presents in detail the response
time analyses that can be applied to the OpenMP tasking model. This section
derives the OpenMP-DAG upon which these analyses are applied.

3.3.1 Sporadic DAG Scheduling Model of Parallel Applications

Real-time embedded systems are often composed of a collection of periodic
processing stages applied on different input data streaming coming from
sensors. Such a structure makes the system amenable to timing analysis
methods [30].

The task model [31], either sporadic or periodic, is a well-known model
in scheduling theory to represent real-time systems. In this model, real-time
applications are typically represented as a set of n recurrent tasks τ =
{τ1, τ2, .., τn}, each characterized by three parameters: worst-case execution
time (WCET ), period (T ) and relative deadline (D). Tasks repeatedly emit
an infinite sequence of jobs. In case of periodic tasks, jobs arrive strictly
periodically separated by the fixed interval time T . In case of sporadic tasks,
jobs do not have a strict arrival time, but it is assumed that a new job released
at time t must finish before t + D. Moreover, a minimum interval of time T
must occur between two consecutive jobs from the same task.

With the introduction of multi-core processors, new scheduling models
have been proposed to better express the parallelism that these architectures
offer. This is the case of the sporadic DAG task model [32–36], which allows
the exploitation of parallelism within tasks. In the sporadic DAG task model
each task (called DAG-task) is represented with a directed acyclic graph
(DAG) G = (V,E), T and D. Each node υ ∈ V denotes a sequential
operation characterized by a WCET estimation. Edges represent dependences
between nodes: if e = (υ1, υ2) : e ∈ E, then the node υ1 must complete
its execution before node υ2 can start executing. In other words, the DAG
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captures scheduling constraints imposed by dependences among nodes and it
is annotated with the WCET estimation of each individual node.

Overall, the DAG represents the main formalism to capture the properties
of a real-time application. In that context, although the current specification
of OpenMP lacks any notion of real-time scheduling semantics, such as dead-
line, period, or WCET, the structure and syntax of an OpenMP program have
certain similarities with the DAG model. The task and taskwait constructs,
together with the depend clause, are very convenient for describing a DAG.
Intuitively, a task describes a node in V in the DAG model, while taskwait
constructs and depend clauses describe the edges in E. Unfortunately, such
a DAG would not convey proper information to derive a real-time schedule
that complies with the semantics of the OpenMP specification.

In order to understand where the difficulties of mapping an OpenMP
program onto an expressive task graph stem from, and how to overcome
them, the next section further delves into the details of the OpenMP execution
model.

3.3.2 Understanding the OpenMP Tasking Model

When a task construct is encountered, the execution of the new task region
can be assigned to one of the threads in the current team for immediate
or deferred execution, with the corresponding impact on the overall timing
behaviour. Different clauses allow defining how a task, its parent task and its
child tasks will behave at runtime:

• The depend clause allows describing a list of input (in), output (out), or
input-output (inout) dependences on data items. Dependences can only
be defined among sibling tasks, i.e., first-level descendants of the same
parent task.
• An if clause whose associated expression evaluates to false forces the

encountering thread to suspend the current task region. Its execution
cannot be resumed until the newly generated task, defined to be an
undeferred task, is completed.
• A final clause whose associated expression evaluates to true forces all

its child tasks to be undeferred and included tasks, meaning that the
encountering thread itself sequentially executes all the new descendants.
• By default, OpenMP tasks are tied to the thread that first starts their

execution. If such tasks are suspended, they can only be resumed by
the same thread. An untied clause forces the task not to be tied to any
thread; hence, in case it is suspended, it can later be resumed by any
thread in the current team.
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Listing 3.2 OpenMP example of task scheduling clauses
1 #pragma omp p a r a l l e l
2 {
3 #pragma omp s i n g l e nowait / / T0

4 {
5 . . . / / t p 00

6 #pragma omp task depend ( out : x ) un t i e d f i n a l ( t r u e ) / / T1

7 {
8 . . . / / t p 10

9 #pragma omp task / / T4

10 { . . . } / / t p 4

11 . . . / / t p 11

12 }
13 . . . / / t p 01

14 #pragma omp task depend ( in : x ) / / T2

15 { . . . } / / t p 2

16 . . . / / t p 02

17 #pragma omp t a s k w a i t
18 . . . / / t p 03

19 #pragma omp task / / T3

20 { . . . } / / t p 3

21 . . . / / t p 04

22 }
23 }

Listing 3.2 shows an example of an OpenMP program using dif-
ferent tasking features. The parallel construct creates a new team of
threads (since num threads clause is not provided, the number of threads
associated is implementation defined). The single construct (line 3) gen-
erates a new task region T0, and its execution is assigned to just
one thread in the team. When the thread executing T0 encounters its
child task constructs (lines 6, 14, and 19), new tasks T1, T2, and
T3 are generated. Similarly, the thread executing T1 creates task T4
(line 9).

Tasks T1 and T2 include a depend clause both defining a dependence on
the memory reference x, so T2 cannot start executing until T1 finishes. T4
is defined as an included task because its parent T1 contains a final clause
that evaluates to true, so T1 is suspended until the execution of T4 finishes.
All tasks are guaranteed to have completed at the implicit barrier at the end
of the parallel region (line 23). Moreover, task T0 will wait on the taskwait
(line 17) until tasks T1 and T2 have completed before proceeding.

OpenMP defines task scheduling points (TSPs) as points in the program
where the encountering task can be suspended, and the hosting thread can be
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rescheduled to a different task. TSPs occur upon task creation and completion
and at task synchronization points such as taskwait directives or explicit and
implicit barriers1.

Task scheduling points divide task regions into task parts executed unin-
terruptedly from start to end. Different parts of the same task region are
executed in the order in which they are encountered. In the absence of task
synchronization constructs, the order in which a thread executes parts of
different tasks is unspecified. The example shown in Figure 3.2 identifies
the parts in which each task region is divided: T0 is composed of task parts
tp00, tp01, tp02, tp03, and tp04; T1 is composed of task parts tp10, and tp11;
and T2, T3, and T4 are composed of task part tp2, tp3, and tp4, respectively.

When a task encounters a TSP, the OpenMP runtime system may either
begin the execution of a task region bound to the current team, or resume any
previously suspended task region also bound to it. The order in which these
actions are applied is not specified by the standard, but it is subject to the
following task scheduling constraints (TSCs):

TSC 1: An included task must be executed immediately after the task is
created.

TSC 2: Scheduling of new tied tasks is constrained by the set of task regions
that are currently tied to the thread, and that are not suspended in
a barrier region. If this set is empty, any new tied task may be
scheduled. Otherwise, a new tied task may be scheduled only if all
tasks in the set belong to the same task region and the new tied task
is a child task of the task region.

TSC 3: A dependent task shall not be scheduled until its task data depen-
dences are fulfilled.

TSC 4: When a task is generated by a construct containing an if clause for
which the conditional expression evaluates to false, and the previous
constraints are already met, the task is executed immediately after
generation of the task.

3.3.3 OpenMP and Timing Predictability

The execution model of OpenMP tasks differs from the DAG model in a
fundamental aspect: a node in the DAG model is a sequential operation that

1Additional TSPs are implied at different OpenMP constructs (target, taskyield,
taskgroup). See Section 2.9.5 of the OpenMP specification [25] for a complete list of task
scheduling points.
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cannot be interrupted2. Instead, an OpenMP task can legally contain multiple
TSPs at which the task can be suspended or resumed following the TSCs.

Moreover, in order to correctly capture scheduling constraints of each task
as defined by the OpenMP specification, a DAG-based real-time scheduling
model requires to know: (1) the dependences among tasks, (2) the point in
time of each TSP, and (3) the scheduling clauses associated to the task.

This section analyses the extraction of a DAG that represents the parallel
execution of an OpenMP application upon which timing analysis can be then
applied. It focuses on three key elements:

1. How to reconstruct an OpenMP task graph from the analysis of the code
that resembles the DAG-task structure based on TSPs.

2. To which elements of an OpenMP program WCET analysis must be
applied.

3. How to schedule OpenMP tasks based on DAG-task methodologies so
that TSCs are met.

3.3.3.1 Extracting the DAG of an OpenMP program
The execution of a task part resembles the execution of a node in V , i.e., it is
executed uninterrupted. To that end, OpenMP task parts, instead of tasks, can
be considered as nodes in V .

Figure 3.5 shows the DAG (named OpenMP-DAG) corresponding to the
example presented in Listing 3.2, in which task parts form the nodes in V . T0
is decomposed into task parts tp00, tp01, tp02, tp03, and tp04, with a TSP at the
end of each part caused by the task constructs T1, T2, and T3 for tp00, tp01,
and tp03, and the taskwait construct for tp02. Similarly, T1 is decomposed
into tp10 and tp11 with the TSP corresponding to the creation of task T4 at
the end of tp10.

Depending on the origin of the TSP encountered at the end of each
task part (i.e., task creation or completion, or task synchronization) three
different types of dependences are identified: (a) control-flow dependences
(dotted arrows), which force parts to be scheduled in the same order as
they are executed within the task; (b) TSP dependences (dashed arrows),
which force tasks to start/resume execution after the corresponding TSP, and
(c) full synchronizations (solid arrows), which force the sequential execution
of tasks as defined by the depend clause and task synchronization constructs.
Note that all dependence types have the same purpose, which is to express

2This assumes the execution of a single DAG program, where a node cannot be interrupted
to execute other nodes of the same graph. In a multi-DAG execution model, nodes can be
preempted by nodes from different DAG programs if allowed by the scheduling approach.
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Figure 3.5 OpenMP-DAG composed of task parts based on the code in Listing 3.2.

a scheduling precedence constraint. As a result, the OpenMP-DAG does not
require to differentiate them.

Besides the depend clause, the if and final clauses also affect the order
in which task parts are executed. In both cases the encountering task is
suspended until the newly generated task completes execution. In order to
model the undeferred and included tasks behaviour, a new edge is introduced
in E. In Figure 3.5, a new dependence between tp40 and tp11 is inserted, so
the task region T1 does not resume its execution until the included task T4
finishes.

3.3.3.2 WCET analysis is applied to tasks and task parts
In order to comply with the DAG-model, nodes in the OpenMP-DAG must
be further annotated with the WCET estimation of the corresponding task
parts. By constructing the OpenMP-DAG based on the knowledge of TSPs
(i.e., by considering as nodes in V only those code portions that are executed
uninterruptedly from start to end) the timing analysis of each node has
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a WCET which is independent of any dynamic instance of the OpenMP
program (i.e., how threads may be scheduled to tasks and parts therein). As a
result, the timing behaviour of task parts will only be affected by concurrent
accesses to shared resources [37]. It is important to remark that the WCET
estimation is applied to a task when it is composed of a single task part. This
is the case of T2, T3, and T4 from Figure 3.5.

3.3.3.3 DAG-based scheduling must not violate the TSCs
When real-time scheduling techniques are applied to guarantee the timing
behaviour of OpenMP applications, the semantics specified by the OpenMP
TSCs must not be violated.

The clauses associated to a task construct not only define precedence
constraints, as shown in Section 3.3.3.1, but they also define the way in which
tasks, and task parts therein, are scheduled according to the TSCs defined in
Section 3.3.2. This is the case of the if, final and untied clauses, as well as
the default behaviour of tied tasks. These clauses influence the order in which
tasks execute and also how task parts are scheduled to threads. Regarding the
latter, the restrictions imposed by TSCs are the following:

• TSC 1 imposes included tasks to be executed immediately by the
encountering thread. In this case, the scheduling of the OpenMP-DAG
has to consider both the task part that encounters it and the complete
included task region as a unique unit of scheduling. In Figure 3.5, the
former case would give tp4 the highest priority, and the latter case would
consider tp10 and tp4 as a unique unit of scheduling.
• TSC 2 does not allow scheduling new tied tasks if there are other sus-

pended tied tasks already assigned to the same thread, and the suspended
tasks are not descendants of the new task. Listing 3.3 shows a fragment
of code in which this situation can occur. Let’s assume that T1, which
is not a descendent of T3, is executed by thread 1. When T1 encounters

Listing 3.3 Example of an OpenMP fragment of code with tied tasks
1 . . .
2 #pragma omp task / / T1

3 {
4 #pragma omp task i f ( f a l s e ) / / T2

5 { . . . }
6 }
7 #pragma omp task / / T3

8 { . . . }
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the TSP of the creation of T2, it is suspended because of TSC 4, and it
cannot resume until T2 finishes. Let’s consider that T2 is being executed
by a different thread, e.g., thread 2. If T2 has not finished when the TSP
of the creation of T3 is reached, then T3 cannot be scheduled on thread 1
because of TSC 2, even if thread 1 is idle. As a result, tied tasks constrain
the scheduling opportunities of the OpenMP-DAG.
• TSC 3 imposes tasks to be scheduled respecting their dependences. This

information is already contained in the OpenMP-DAG.
• TSC 4 states that undeferred tasks execute immediately if TSCs 1, 2, and

3 are met. Differently, untied tasks are not subject to any TSC, allowing
parts of the same task to execute on different threads, so when a task is
suspended, the next part to be executed can be resumed on a different
thread. Therefore, one possible scheduling strategy for untied tasks that
satisfies TSC 4 is not to schedule undeferred and untied task parts until
tied and included tasks are assigned to a given thread. This guarantees
that TSCs 1 and 2 are met. This is because task parts of tied and included
tasks are bound to the thread that first started their execution, which
reduces significantly their scheduling opportunities. Instead, untied and
undeferred task parts have a higher degree of freedom as they can be
scheduled to any thread of the team. Therefore, for the OpenMP-DAG
to convey enough information to devise a TSC-compliant scheduling,
each node in V must be augmented with the type of task as well (untied,
tied, undeferred and included) as shown in Figure 3.5.

Figure 3.6 shows a possible schedule of task parts in Listing 3.2, assuming
a work-conserving scheduling. T0 is a tied task, so all its task parts are
scheduled to the same thread (thread 1). T1 is an untied task so tp10 and tp10
can execute in different threads (thread 1 and 2 in the example). Note that
tp11 does not start executing until tp4 completes due to the TSP constraint.
Moreover, the execution of tp4 starts immediately after the creation of T4 on

thread 2 tp10 tp4 tp11 tp2 tp3

thread 1 tp00 tp01 tp02 tp03 tp04

T1 TSP
creation

T4 TSP
creation

T2 TSP
creation

T4 TSP
completion

T1 TSP
completion

T2 TSP
completion

taskwait 
TSP

T3 TSP
creation

T0 and T3 TSP
completion

Figure 3.6 DAG composed of task parts.
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the same thread that encounters it (thread 2). Finally, tp2 and tp3 are sched-
uled to idle threads (thread 4 and 5, respectively) once all their dependences
are fulfilled.

3.4 Extracting the Timing Information of an OpenMP
Program

The extraction of an OpenMP-DAG representing the parallel execution of
an OpenMP program in such a way that timing analysis can be performed,
requires analyzing the OpenMP constructs included in the source code, so the
nodes and edges that form the DAG can be identified. This information can be
obtained by means of compiler analysis techniques. Concretely, there exists
two different analysis stages needed to build the OpenMP-DAG G = (V,E):

1. A parallel structure stage, in which the nodes in V , i.e., tasks parts, and
edges in E, are identified based on TSPs, TSCs, and data- and control-
flow information.

Listing 3.4 OpenMP program using the tasking model
1 #pragma omp p a r a l l e l num threads ( 8 )
2 {
3 #pragma omp s i n g l e nowait / / T0

4 {
5 f o r ( i =0 ; i <=2; i ++)
6 f o r ( i n t j =0 ; j <=2; j ++) {
7 i f ( i ==0 && j ==0) { / / I n i t i a l b l o c k
8 #pragma omp task depend ( i n o u t :m[ i ] [ j ] )
9 c o m p u t e b l o c k ( i , j ) ; / / T1

10 } e l s e i f ( i == 0) { / / B l o c k s i n upper edge
11 #pragma omp task depend ( in :m[ i ] [ j −1] , i n o u t :m[ i ] [ j ] )
12 c o m p u t e b l o c k ( i , j ) ; / / T2

13 } e l s e i f ( j == 0) { / / B l o c k s i n l e f t edge
14 #pragma omp task depend ( in :m[ i −1][ j ] , i n o u t :m[ i ] [ j ] )
15 c o m p u t e b l o c k ( i , j ) ; / / T3

16 } e l s e { / / I n t e r n a l b l o c k s
17 #pragma omp task depend ( in :m[ i −1][ j ] , in :m[ i ] [ j −1] , \\
18 in :m[ i −1][ j −1] , i n o u t :m[ i ] [ j ] )
19 c o m p u t e b l o c k ( i , j ) ; / / T4

20 }
21 }
22 }
23 }
24 }
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2. A task expansion stage, in which the tasks (and task parts) that will be
actually instantiated at runtime are identified by expanding the control
flow information extracted in the previous stage.

The next subsections further describe these stages. With the objective of
facilitating the explanation of the compiler analysis techniques, Listing 3.4
introduces an OpenMP program that will be used for illustration purposes.
The code processes the elements of a blocked 2D matrix using a wave-front
parallelization strategy [38]. The parallel construct (line 1) defines a team
of 8 threads. The single construct (line 3) specifies that only one thread will
execute the associated code. The algorithm divides the matrix in 3×3 blocks,
assigning each one to a different task. Each block [i, j] consumes the previous
adjacent blocks and itself. Hence, all tasks (lines 8, 11, 14, and 17:18) have
an inout dependence on the computed block [i, j]. T2 and T3 (lines 11 and
14) compute the upper and left edges, so additionally they consume the left
[i, j − 1] and upper [i − 1, j] blocks, respectively. Finally, T4 (lines 17:18)
computes the internal blocks, hence additionally it consumes the left [i−1, j],
upper [i, j − 1], and left-upper diagonal [i − 1, j − 1] blocks. All tasks are
guaranteed to complete at the implicit barrier at the end of the parallel region
(line 24).

3.4.1 Parallel Structure Stage

This stage identifies the TSPs surrounding tasks parts, and the corresponding
TSCs associated with each task part in order to: (1) generate a parallel control-
flow graph (PCFG) that holds all this information as well as parallel semantics
[39], and (2) analyze this graph so that the necessary information to expand a
complete DAG is obtained. With such purpose in mind the analysis performs
the following calculations:

• Generate the PCFG of the source code taking into account: (a) the
dependences introduced by any kind of TSPs (i.e., task creation, task
completion and task synchronization), as introduced in Section 3.3.3.1,
(b) the data dependences introduced by the depend clause, and (c) the if
and final clauses, hence the behaviour of undeferred and included tasks.
• On top of that, analyze the control-flow statements, i.e., selection

statements (if-else and switch) and loops that identify whether a
task is instantiated or not at runtime. To do so, three analyses are
required: induction variables [40], reaching definitions [41], and range
analysis [42]. Additionally, determine the conditions that must be
fulfilled for two instantiated tasks to depend on one another [3].
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3.4.1.1 Parallel control flow analysis
The abstract syntax tree (AST) used in the compiler to represent the source
code is used to generate the PCFG of an OpenMP program. This enriches the
classic control-flow graph (CFG) with information about parallel execution.
This process performs a conservative analysis of the synchronizations among
tasks, because the compiler may not be able to assert when two depend
clauses designate the same memory location, e.g., array accesses or pointers.
Hence, synchronization edges are augmented with predicates defining the
condition to be fulfilled for an edge to exist. In the example shown in
Listing 3.4, the dependences that matrix m originates among tasks depend
on the values of i and j.

3.4.1.2 Induction variables analysis
On top of the PCFG, the compiler evaluates the loop statements to discover
the induction variables (IVs) and their evolution over the iterations using the
common tuple representation 〈lb, ub, str〉, where lb is the lower bound, ub is
the upper bound, and str is the stride. This analysis is essential for the later
expansion of the graph, since the induction variables will determine the shape
of the iteration space for each loop statement.

3.4.1.3 Reaching definitions and range analysis
Finally, the compiler computes the values of all variables involved in the exe-
cution of any task. With such a purpose, it analyzes reaching definitions and
also extends range analysis with support for OpenMP. The former computes
the definitions reaching any point in the program. The later computes the
values of the variables at any point of the program in four steps: (1) generate
a set C of equations that constrain the values of each variable (equations are
built for each assignment and control flow statement); (2) build a constraint
graph that represents the relations among the constraints; (3) split the graph
into strongly connected components (SCCs) to avoid cycles; (4) propagate
the ranges over the SCCs in topological order. Both analyses are needed to
propagate the values of the relevant variables across the expanded code.

3.4.1.4 Putting all together: The wave-front example
The previously mentioned analyses provide the information needed to gener-
ate an initial version of the DAG, named augmented DAG (aDAG), with data
and control flow knowledge. The aDAG is defined by the tuple

aDAG = 〈N,E,C〉 (3.1)
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where:

• N = {V × TN} is the set of nodes with their corresponding type TN =
{Task, Taskwait, Barrier}.
• E = {N ×N ×P} is the set of possible synchronization edges with the

predicate P that must fulfill for the edge to exist.
• C = N × {F} is the set of control flow statements involved in the

instantiation of any task n ∈ N , where F = S × {TF }, being S the
condition to instantiate the tasks and TF = {Loop, IfElse, Switch},
the type of the structure.

Figure 3.7 shows the aDAG of the OpenMP program in Listing 3.4. The
set of nodesN includes all task constructsN = T1, T2, T3, T4 (lines 8, 11, 14,
and 17:18), all with type TN = Task. The control flow statements for each
node N , fi ∈ F are the for (lines 5 and 6) and if (lines 7, 10, 13, and 16)
statements, and include information about: (a) the IVs of each loop i, j, both
with lb = 0, ub = 2 and str = 1 (dashed-line boxes); (b) the conditions of the
selection statements enclosing each task (solid-line boxes), and (c) the ranges
of the variables in those conditions. In the figure, T3 is instantiated if i = 1
or 2 and j = 0. In the predicates p ∈ P associated to the synchronization
edges in E, the left hand side of the equality corresponds to the value of the
variable at the point in time the source task is instantiated, while the right side
corresponds to the value when the target task is instantiated. For example,
the predicate of the edge between T1 and T3 with p1((iS == iT ||iS ==
iT − 1)&&jS == jT ) evaluates to true, meaning that the edge exists when
the values of i and j in the source task T1 are iS = 0 and jS = 0, and the
values of i and j in the target task T3 are iT = 1 and jT = 0.

For simplicity, Figure 3.7 only includes the dependences that are actually
expanded in the next stage (Section 3.4.2). The actual aDAG has edges
between any possible pair of tasks because they all have inout dependences
on the element m[i][j]. Moreover, the task-parts that form the task T0 with
the corresponding task creation dependences are not included.

3.4.2 Task Expansion Stage

3.4.2.1 Control flow expansion and synchronization predicate
resolution

Based on the aDAG, this stage generates an expanded DAG (or simply DAG)
representing the complete execution of the program in two phases: (1) expand
control flow structures (i.e., decide which branches are taken for the selection
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Figure 3.7 aDAG of the OpenMP program in Listing 3.4.

statements and how many iterations are executed for the loop statements) to
determine which tasks (and so task-parts) are actually instantiated; and (2)
resolve the synchronization predicates to conclude which tasks have actual
dependences.

Control flow structures are expanded from outer to inner levels. In the
aDAG in Figure 3.7, the outer loop f1 is expanded first, and then the inner
loop f2. Finally, the if-else structures f3, f4, f5, and f6 are resolved. Each
expansion requires the evaluation of the associated expressions to determine
the values of each variable. For example, when the outer loop f1 is expanded,
each iteration is associated with the corresponding value of i.

This expansion process creates two identifiers: (1) an identifier of the
loops involved in the creation of a task (li), labeling each loop expansion
step, and (2) a unique static task construct identifier (sidt), labeling each
task construct.

The process results in a temporary DAG in which all tasks instantiated
at runtime are defined, but synchronization predicates are not solved. To
do so, the value of the variables propagated in the control flow expan-
sion is used to evaluate predicates and decide which edges actually exist.
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Likewise, loop identifiers li are used to eliminate backwards dependences,
i.e., tasks instantiated in previous iterations cannot depend on tasks instanti-
ated in later iterations.

Figure 3.8 shows the final DAG of the program in Listing 3.4. It contains
all task instances with a unique numerial identifier (explained in the next
section) and all dependences that can potentially exist at runtime. Transitive
dependences (dashed arrows) are included as well, although they can be
removed because they are redundant.

3.4.2.2 tid: A unique task instance identifier
A key property of the expanded task instances is that they must include a
unique task instance identifier tid required to match the instantiated tasks
expanded at compile-time (and included in the DAG) with those instantiated
at runtime. Equation 3.2 computes tid as follows:

tid = sidt + T ×
Lt∑
i=1

li ·M i (3.2)

where sidt is a unique task construct identifier (computed during the control
flow expansion stage), T is equal to the number of task, taskwait, and
barrier constructs in the source code, Lt is the total number of nested loops
involved in the execution of the task t, i refers to the the nesting level, li
is the loop unique identifier at nesting level i (computed during the control

Figure 3.8 The DAG of the OpenMP program in Listing 3.4.
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flow expansion stage), and M the maximum number of iterations of any
considered loop.

The use of loop properties in Equation 3.2 (i.e., Lt, li, i, and M ),
guarantees that a unique task identifier for each task instance is generated,
even if they come from the same task construct. Hence, task instances from
different loop iterations result in different tid because every nesting level li is
multiplied by the maximum number of iterations M .

Consider task T4, with identifier 79, in Figure 3.8. This task instance
corresponds to the computation of the matrix block m[2, 1]. Its identifier is
computed as follows: (1) sidT4 = 4, because T4 is the fourth task found in
sequential order while traversing the source code; (2) T = 5 because there are
four task constructs and one (implicit) barrier in the source code; (3)LT4 = 2,
the two nested loops enclosing T4; (4) M = 3, the maximum number of
iterations in any of the two considered loops; and (5) l1 = 2 and l2 = 1 are
the values of the loop identifiers at the corresponding iteration. Putting them
all together: T4id = 4 + 5(2 ∗ 31 + 1 ∗ 32) = 79.

It is important to remark that tid must be computed at both compile-time
and run-time, and so all information needed to compute Equation 3.2 must be
available in both places. Chapter 6 presents the combined compiler and run-
time mechanisms needed to reproduce all the required information (including
sidt and li identifiers) at run-time.

3.4.2.3 Missing information when deriving the DAG
In case the framework cannot derive some information (mostly when control-
flow statements and dependences contain pointers that may alias or arrays
with unresolved subscripts, or the values are not known at compile-time), it
still generates a DAG that correctly represents the execution of the program.
Next, each possible case is argued:

• When an if-else statement cannot be evaluated, all its related tasks in C
are considered for instantiation, hence included in the DAG. In this case,
the DAG will include a task instance that will never exist. Chapters 4
and 6 present the mechanisms required to take this into consideration
for response time analysis and parallel run-time execution.
• If a loop cannot be expanded because its boundaries are unknown,

parallelism across iterations is disabled by inserting a taskwait at the
end of the loop. By doing so, all tasks instantiated within an iteration
must complete before the next iteration starts.
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• Lastly, dependences whose predicate cannot be evaluated are always
kept in the DAG, making the involved tasks serialized.

The situations described above will result in a bigger DAG (when if–else
conditions cannot be evaluated) or in a performance loss (when loop bounds
or synchronization predicates cannot be determined), although a correct DAG
is guaranteed. In the worst-case scenario, where no information can be
derived at compile-time, the resultant DAG corresponds to the sequential exe-
cution of the program, i.e., all tasks are assumed to be instantiated, and their
execution is to be sequentialized. It is important to remark that embedded
applications can often provide all the required information to complete the
DAG expansion, as it is required for timing analysis [43].

3.4.3 Compiler Complexity

The complexity of the compiler is determined by the complexity of the two
stages presented in Sections 3.4.1 and 3.4.2.

The complexity of the control/data flow analysis stage is dominated by
the PCFG analysis and range analysis phases. The complexity of the former
is related to the number of split constructs present in the source code, in which
the Cyclomatic Complexity [44] metric is usually used. The latter, has been
proved to have an asymptotic linear complexity [42].

The complexity of the task expansion stage is dominated by the compu-
tation of the dependences among tasks, which is performed using a Cartesian
product: the input dependence of a task can be generated by any of the
previously created task instances. As a result, the complexity is quadratic
on the number of instantiated tasks.

3.5 Summary

This chapter provided the rationale and the model for the use of fine-grained
parallelism in general, and the OpenMP parallel programming model in
particular, to support applications that require predictable performance, to
develop future critical real-time embedded systems, and analyze the time
predictable properties of the OpenMP tasking model. Based on this model,
the chapter then described the advances in compiler techniques to extract tim-
ing information of OpenMP parallel programs, and build the OpenMP DAG
required to enable predictable scheduling (described in the next chapter) and
the needed timing analysis (in Chapter 5). This OpenMP-DAG also provides
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the building block for the execution of the OpenMP runtime (Chapter 6) and
Operating System (Chapter 7).
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[13] Saule, E., and Çatalyürek, Ü. V., “An early evaluation of the scalability
of graph algorithms on the intel mic architecture.” In Parallel and Dis-
tributed Processing Symposium Workshops and PhD Forum (IPDPSW),
2012 IEEE 26th International, pp. 1629–1639. IEEE, 2012.



60 Predictable Parallel Programming with OpenMP

[14] De Dinechin, B. D., Van Amstel, D., Poulhiés, M., and Lager, G., “Time-
critical computing on a single-chip massively parallel processor.” In
DATE, 2014.

[15] CEA STMicroelectronics. Platform 2012: A many-core programmable
accelerator for ultra-efficient embedded computing in nanometer tech-
nology. Whitepaper, 2010.

[16] Texas Instruments. SPRS866: 66AK2H12/06 Multicore DSP+ARM Key-
Stone II System-on-Chip (SoC).

[17] Kegel, P., Schellmann, M., and Gorlatch, S., “Using OpenMP vs.
Threading Building Blocks for Medical Imaging on Multi-Cores.” In
Europar. Springer, 2009.

[18] Lee, S., Min, S-J., and Eigenmann, R., OpenMP to GPGPU: A Compiler
Framework for Automatic Translation and Optimization. SIGPLAN Not.
44, 101–110, 2009.

[19] Shen, J., Fang, J., Sips, H., and Varbanescu, A. L., “Performance
gaps between OpenMP and OpenCL for multi-core CPUs.” In ICPPW,
pp. 116–125. IEEE, 2012.

[20] Krawezik, G., and Cappello, F., “Performance comparison of MPI and
three OpenMP programming styles on shared memory multiprocessors.”
In SPAA. ACM, 2003.

[21] Kuhn, B., Petersen, P., and O’Toole, E., OpenMP versus threading in
C/C++. Concurr. Pract. Exp. 12, 1165–1176, 2000.

[22] OpenMP 2.5 Application Programming Interface. http://www.openmp.
org/wp-content/uploads/spec25.pdf, 2005.

[23] OpenMP 3.0 Application Programming Interface. http://www.openmp.
org/wp-content/uploads/spec30.pdf, 2008.

[24] OpenMP 4.0 Application Programming Interface. http://www.openmp.
org/wp-content/uploads/OpenMP4.0.0.pdf, 2013.

[25] OpenMP 4.5 Application Programming Interface. http://www.openmp.
org/wp-content/uploads/openmp-4.5.pdf, 2015.

[26] OpenMP Technical Report 2 on the OMPT Interface. http://www.
openmp.org/wp-content/uploads/ompt-tr2.pdf, 2014.

[27] OpenMP Technical Report 4: Version 5.0 Preview 1. http://www.
openmp.org/wp-content/uploads/openmp-tr4.pdf, 2016.

[28] OpenMP Technical Report 5: Memory Management Support for
OpenMP 5.0. http://www.openmp.org/wp-content/uploads/openmp-
TR5-final.pdf, 2017.

[29] Podobas, A., and Karlsson, S., “Towards Unifying OpenMP Under the
Task-Parallel Paradigm.” In IWOMP, 2016.



References 61

[30] Buttazzo, G. C., Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications, volume 24. Springer Science
and Business Media, 2011.

[31] Davis, R. I., and Burns, A., A survey of hard real-time scheduling for
multiprocessor systems. ACM computing surveys (CSUR), 43, 35, 2011.

[32] Bonifaci, V., Marchetti-Spaccamela, A., Stiller, S., and Wiese, A., “Fea-
sibility analysis in the sporadic dag task model.” In Real-Time Systems
(ECRTS), 2013 25th Euromicro Conference on, pp. 225–233. IEEE,
2013.

[33] Baruah, S., Bonifaci, V., Marchetti-Spaccamela, A., Stougie, L., and
Wiese, A., “A generalized parallel task model for recurrent real-time
processes.” In Real-Time Systems Symposium (RTSS), 2012 IEEE 33rd,
pp. 63–72. IEEE, 2012.

[34] Saifullah, A., Li, J., Agrawal, K., Lu, C., and Gill, C., Multi-core real-
time scheduling for generalized parallel task models. Real-Time Sys. 49,
404–435, 2013.

[35] Baruah, S., “Improved multiprocessor global schedulability analysis of
sporadic dag task systems.” In Real-Time Systems (ECRTS), 2014 26th
Euromicro Conference on, pp. 97–105. IEEE, 2014.

[36] Li, J., Agrawal, K., Lu, C., and Gill, C., “Outstanding paper award:
Analysis of global edf for parallel tasks.” In Real-Time Systems
(ECRTS), 2013 25th Euromicro Conference on, pp. 3–13. IEEE, 2013.
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This chapter presents how the P-SOCRATES framework addresses the issue
of scheduling multiple real-time tasks (RT tasks), made of multiple and
concurrent non-preemptable task parts. In its most generic form, the schedul-
ing problem in the architectural framework is a dual problem: scheduling
task-to-threads, and scheduling thread-to-core replication.

4.1 Introduction

In our framework, we assume threads in the same OpenMP application are
statically pinned to the available cores in the platforms1. This approach has
two advantages: (i) the lower layer of the software stack, namely the runtime
and the operating system (OS) support, are much simpler to design and
implement; and (ii) we remove one dimension from the scheduling problem,
that is, we only need to solve the problem of assigning tasks (in our case,
OpenMP task parts) to threads/cores. For this reason, and limited to this
chapter, we use the words “mapping” and “scheduling” interchangeably. As
explained in Chapter 3, when a task encounters a task scheduling point (TSP),
program execution branches into the OpenMP runtime, where task-to-thread
mapping can: (1) begin the execution of a task region bound to the current
team or (2) resume any previously suspended task region bound to the current

1Still, to enable multitasking at the OS level, the OS can preempt threads from one OpenMP
application in favour of another OpenMP application.
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team, as defined by the parallel OpenMP construct. Note that, the order in
which these two actions are applied is not specified by the standard. An ideal
task scheduler will schedule tasks for execution in a way that maximizes
concurrency while accounting for load imbalance and locality to facilitate
better performance.

The following part of the chapter describes the design of a simple parti-
tioned scheduler, detailing how to enforce a limited-preemption scheduling
policy to limit the overhead related to context switches whenever higher-
priority instances arrive while the cores are busy executing lower-priority
workload. It is also called static approach.

Then, we introduce the so-called dynamic approach, where scheduling
happens with the adoption of a global queue where all tasks are inserted, and
from where they can potentially be fetched by any worker in the system. We
also show how it can be enhanced to support task migration across computing
threads and cores, in a work-conservative environment.

In the following part, we describe our overall framework for the schedu-
lability analysis, and then we specialize it for static/partitioned approach and
dynamic/global approach, respectively.

We then briefly discuss the scheduling problem in the multi-core system
that powers the four I/O clusters present in the fabric.

4.2 System Model

In the framework, an application may consist of multiple RT task instances,
each one characterized by a different period or minimum inter-arrival time,
deadline and execution requirement (see Figure 4.1). Each RT task starts
executing on the host processor and may include (OpenMP-compliant)
parallel workloads to be offloaded to the many-core accelerator. Such a
parallel workload needs then to be scheduled on the available processing
elements (PEs).

The parallel execution of each RT task is represented by a direct acyclic
graph (DAG) composed of a set of nodes representing task parts. Nodes
are connected through edges that represent precedence constraints among
different task parts of the same offload. A task part can be executed only if all
nodes that have a precedence constraint over it have already been executed.

To comply with the OpenMP semantics, an RT task is not directly
scheduled on the PEs. Instead, its parallel workload is first mapped to
several OS threads (up to the number of PEs available), and then these
OS threads are scheduled onto the available cores. Figure 4.2 summarizes
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Figure 4.1 An application is composed of multiple real-time tasks.

Figure 4.2 RT tasks are mapped to OS threads, which are scheduled on the processing
elements.

the mapping/scheduling framework. Here, only partitioned/static approach
is shown, where there is one task queue for each worker thread. In a fully
dynamic/global approach, there is only one queue for every RT task, where
all threads push and fetch work.

The number of OS threads onto which an RT task is mapped depends
on mapping decisions. If the RT task does not present a large parallelism,
it makes no sense to map it onto more than a limited number of threads.
If instead the RT task has massively parallel regions, it may be useful to
map it to a higher number of threads, up to the number of PEs in the many-
core accelerator. A correct decision should consider the trade-off between



66 Mapping, Scheduling, and Schedulability Analysis

the OS overhead implied by many threads and the speed-up obtainable with
a larger run-time parallelism. Note that creating a larger number of threads
than necessary may impose a significant burden to the OS, which needs to
maintain the context of these threads, schedule, suspend, and resume them,
with an obvious increase in the system overhead.

The architectural template targeted in the project (described in Chapter 2)
is a many-core platform where cores are grouped onto clusters. The testbed
accelerator, Kalray MPPA of the “Bostan” generation, has 256 cores grouped
into 16 clusters of 16 cores each. We consider only the threads offloaded
to the same cluster. Note that the intra-cluster scheduling problem is the
main problem to solve in our scheduling framework. The reason is that
P-SOCRATES adopts an execution model, where the context of each RT task
that may need to be accelerated is statically offloaded to the target clusters
before runtime.

For the above reasons, the main problem is therefore how to efficiently
activate and schedule the threads associated with the different RT tasks that
have been offloaded to the same cluster. The threads of each RT task will
contend to execute on the available PEs with the threads of the other RT
tasks. A smart scheduler will therefore need to decide which thread, or set of
threads, to execute at any time in each PE of the considered cluster, such that
all scheduling constraints are met. Depending on the characteristics of the
running RT tasks (priority, period, deadline, etc.) the scheduler may choose
to preempt an executing thread or set of threads, to schedule a different set of
threads belonging to a higher priority (or more urgent) RT task.

4.3 Partitioned Scheduler

In a traditional partitioned scheduler, OS threads are statically assigned to
cores, so that no thread may migrate from one core to another. The scheduling
problem then reduces to the design of a single-core scheduler. We start from
this approach and design our task-to-thread scheduler.

4.3.1 The Optimality of EDF on Preemptive Uniprocessors

The earliest deadline first (EDF) scheduling algorithm assigns scheduling
priority to jobs according to their absolute deadlines: the earlier the deadline,
the greater the priority (with ties broken arbitrarily). EDF is known to be
optimal for scheduling a collection of jobs upon a preemptive uniprocessor
platform, in the sense that if a given collection of jobs can be scheduled
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to meet all deadlines, then the EDF-generated schedule for this collection
of jobs will also meet all deadlines [1]. To show that a system is EDF-
schedulable upon a preemptive uniprocessor, it suffices to show the existence
of a schedule meeting all deadlines — the optimality of EDF ensures that it
will find such a schedule. Unfortunately, most of the commercial RTOSes do
not implement the EDF scheduling policy. The main reasons are found in the
added complexity of the scheduler, requiring timers to keep track of the thread
deadlines, and in the agnostic behavior with respect to higher-priority work-
load. This last concern is particularly important for industrial applications that
have a set of higher-priority instances whose execution cannot be delayed.
With an EDF scheduler, a lower-priority instance overrunning its expected
budget may end up causing a deadline miss of a higher priority instance that
has a later deadline. Instead, with a Fixed Priority (FP) scheduler, higher-
priority jobs are protected against lower-priority overruns, because they will
always be able to preempt a misbehaving lower-priority instance. This makes
FP scheduling more robust for mixed-criticality scenarios where RT tasks of
different criticality may contend for the same PEs. For the importance of FP
scheduling, we decided to implement a partitioned scheduler based on this
policy.

4.3.2 FP-scheduling Algorithms

In an FP-scheduling algorithm, each thread is assigned a distinct priority (as
in P-SOCRATES scheduling model) and every instance (a.k.a. job/RT task
instance) released by the thread inherits the priority of the associated thread.

The rate-monotonic (RM) scheduling algorithm [1] is an FP-scheduling
algorithm in which the priorities of the tasks are defined based on their period:
tasks with a smaller period are assigned greater priority (with ties broken
arbitrarily). It is known [1] that RM is an optimal FP-scheduling algorithm
for scheduling threads with relative deadlines equal to their minimum inter-
arrival times upon preemptive uniprocessors: if there is any FP-scheduling
algorithm that can schedule a given set of implicit-deadline threads to always
meet all deadlines of all jobs, then RM will also always meet all deadlines of
all jobs.

The deadline monotonic (DM) scheduling algorithm [2] is another
FP-scheduling algorithm in which the priority of a task is defined based on
its relative deadline parameter rather than its period: threads with smaller
relative deadlines are assigned greater priority (with ties broken arbitrarily).
Note that RM and DM are equivalent for implicit deadline systems, since
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all threads in such systems have their relative deadline parameters equal to
their periods. It has been shown in [2] that DM is an optimal FP-scheduling
algorithm for scheduling sets of constrained-deadline threads upon preemp-
tive uniprocessors: if there is any FP-scheduling algorithm that can schedule
a given constrained-deadline system to always meet all deadlines of all jobs,
then DM will also always meet all deadlines of all jobs. DM is, however,
known to not be optimal for systems where threads may have a deadline larger
than their period.

4.3.3 Limited Preemption Scheduling

Preemption is a key concept in real-time scheduling, since it allows the OS
to immediately allocate the processor to threads requiring urgent service. In
fully preemptive systems, the running thread can be interrupted at any time
by another thread with higher priority and be resumed to continue when all
higher priority threads have completed. In other systems, preemption may
be disabled for certain intervals of time during the execution of critical
operations (e.g., interrupt service routines, critical sections, etc.). In other
situations, preemption can be completely forbidden to avoid unpredictable
interference among threads and achieve a higher degree of predictability
(although higher blocking times).

The question of whether to enable or disable preemption during thread
execution has been investigated by many authors under several points of view
and it is not trivial to answer. A general disadvantage of the non-preemptive
discipline is that it introduces additional blocking time in higher-priority
threads, thereby reducing schedulability. On the other hand, preemptive
scheduling may add a significant overhead due to context switches, sig-
nificantly increasing the worst-case execution time. Both situations are
schematized in Figure 4.3. CRPD in the figure stands for Cache-Related
Preemption Delay, that is, the time overhead added to tasks’ execution time
due to cache cooling after a preemption.

There are several advantages to be considered when adopting a non-
preemptive scheduler. Arbitrary preemptions can introduce a significant
runtime overhead and may cause high fluctuations in thread-execution times,
which degrades system predictability. Specifically, at least four different types
of costs need to be considered at each preemption:

1. Scheduling cost: It is the time taken by the scheduling algorithm to
suspend the running thread, insert it into the ready queue, switch the
context, and dispatch the new incoming thread.
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Figure 4.3 Fully preemptive vs. non-preemptive scheduling: preemption overhead and
blocking delay may cause deadline misses.

2. Pipeline cost: It accounts for the time taken to flush the processor
pipeline when the thread is interrupted, and the time taken to refill the
pipeline when the thread is resumed.

3. Cache-related cost: It is the time taken to reload the cache lines evicted
by the preempting thread. The WCET increment due to cache inter-
ference can be very large with respect to the WCET measured in
non-preemptive mode.

4. Bus-related cost: It is the extra bus interference for accessing the next
memory level due to the additional cache misses caused by preemption.

In order to predictably bound these penalties without sacrificing schedula-
bility, we decided to adopt a limited preemption scheduler, which represents
a trade-off between fully preemptive and non-preemptive scheduling. Note
that this seamlessly integrates into the standard OpenMP tasking/execution
model, where tasks can be preempted only at well-defined TSPs. See also
Chapter 3.

4.3.4 Limited Preemption Schedulability Analysis

As in the fully preemptive case, the schedulability analysis of limited pre-
emptive scheduling can be done analyzing the critical instant that leads to
the worst-case response time of a given thread. However, differently from
the fully preemptive case, the critical instant is not given by the synchronous
arrival sequence, where all threads arrive at the same time, and all successive
instances are released as soon as possible. Instead, in the presence of non-
preemptive regions, the additional blocking from lower priority threads must
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be taken into account. Hence, the critical instant for a thread τi occurs when
it is released synchronously and periodically with all higher priority threads,
while the lower priority thread that is responsible of the largest blocking time
of τi is released one unit of time before τi.

However, the largest response time of a thread is not necessarily due to
the first job after a critical instant but might be due to later jobs. Therefore,
as shown in [3], the schedulability analysis needs to check all τi’s jobs within
a given period of interest that goes from the above described critical instant
until the first idle instant of τi. Let Ki be the number of such jobs.

When analyzing the schedulability of limited preemptive systems, a key
role is played by the last non-preemptive region. Let qlasti be the length of
the last non-preemptive region of thread τi. When such a value is large, the
response time of τi may decrease because the execution of many higher-
priority instances is postponed after the end of τi, thus not interfering
with τi. This allows improving the schedulability over the fully preemptive
approach.

The blocking tolerance βi of thread τi is defined as the maximum block-
ing that τi can tolerate without missing its deadline. Such a value may be
computed by the following pseudo-polynomial relation:

βi = min
k∈[1,Ki]

max
t∈Πi,k

t− kCi + qlasti −
i−1∑
j=1

⌈
t

Tj

⌉
Cj


where Πi,k is the set of release times of jobs within the period of interest. The
maximum allowed non-preemptive region of a τk is then given by:

NPRmax
k ← min

i<k
{βi}

Such a value determines the maximum spacing between two consecutive
preemption points for each thread τk.

4.4 Global Scheduler with Migration Support

4.4.1 Migration-based Scheduler

The scheduling problem for single-core systems has already been solved with
optimal priority assignments and scheduling algorithms back in the 1970s.
In particular, RM assigning priorities with decreasing task periods, and DM
assigning priorities with decreasing relative deadlines, are optimal priority
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assignments for sporadic systems with, respectively, implicit and constrained
deadlines. This means that if a sporadic or synchronous periodic task system
can be scheduled with fixed priorities on a single processor, then it can also
be scheduled using RM (for implicit deadlines) [4] or DM (for constrained
deadlines) [2]. Also, the EDF — that schedules at each time-instant the ready
job with the earliest absolute deadline — is an optimal scheduling algorithm
for scheduling arbitrary collections of jobs on a single processor [3, 4].
Therefore, if it is possible to schedule a set of jobs such that all deadlines are
met, then the same collection of jobs can be successfully scheduled by EDF
as well. These observations allowed us to optimally select the scheduling
policies for the partitioned scheduler that we will describe shortly.

When allowing tasks to migrate among different cores, such as in the
case of OpenMP untied task model (see Chapter 3 for further information),
things are much more complicated: EDF, RM, and DM are no more optimal
and can fail even at very low utilizations (arbitrarily close to one) due to
the so-called Dhall’s effect [5]. Still, these are unlucky corner cases which
do not often recur in practice. The alternative approaches that allow higher
schedulability ratios are dynamic algorithms that however lead to a higher
number of preemptions and migrations, allowing the priority of a job to
change multiple times. Examples are Pfair [6, 7], BF [8], LLREF [9], EKG
[10], E-TNPA [11], LRE-TL [12], DP-fair [13], BF2 [14, 15], and RUN
[16]. The optimality of the above algorithms holds under very restrictive
circumstances, i.e., neglecting preemption and migration overhead, and for
sequential sporadic tasks with implicit deadlines. In this case, they are able
to reach a full schedulable utilization, equal to the number of processors.
Instead, they are not optimal when tasks may have deadlines different from
periods (it has been shown in [17] that an optimal scheduler would require
clairvoyance), for more general task models including parallel regions, lim-
ited preemptions, and/or DAG-structures, as with the task models adopted in
the P-SOCRATES project.

The additional complexity inherent to the implementation, runtime over-
head, scheduling and schedulability analysis of dynamic scheduling algo-
rithms, as well as in the lack of optimality properties with relation to the
task model adopted in the project, made their applicability to the considered
setting questionable. For this reason, we decided to opt for the static priority
class of scheduling algorithms, which is far more used in a practical setting
due to some particularly desired features. Systems scheduled with static
priority algorithms are rather easy to implement and to analyze; they allow
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reducing the response time of more critical tasks by increasing their priori-
ties; they have a limited number of preemptions (and therefore migrations),
bounded by the number of jobs activations in a given interval; they allow
selectively refining the scheduling of the system by simply modifying the
priority assignment, without needing to change the core of the scheduling
algorithm (a much more critical component); they are easier to debug, sim-
plifying the understanding of system monitoring traces and making it more
intuitive to figure out why/when each task executes on which core; they are
far more composable, i.e., changing any timing parameter of a lower-priority
task does not alter the schedule of a higher-priority one, avoiding the need to
recheck and re-validate the whole system.

4.4.2 Putting All Together

In our scheduling framework, the global scheduler will therefore consist of a
fixed-priority scheduling algorithm. Each RT task is assigned a fixed priority,
which is inherited by each one of its threads (there are at most m threads
for each RT task). Threads that are ready to execute are ordered according
to their priority in a global queue (“ready queue”) from which the scheduler
selects the m highest priority ones for execution, being m the number of
available cores. These executing threads are popped from the queue and
they change their state to running. New thread activations and incoming
offloads are queued in the ready queue, based on their priorities. A blocked
queue is also maintained with all suspended or waiting threads. Whenever a
waiting thread is awakened, e.g., because the condition it was waiting for was
satisfied, it is removed from the blocked queue and re-inserted into the ready
queue according to its priority.

If the newly activated thread has a priority higher than one of the m
running tasks, a preemption may take place, depending on the adopted pre-
emption policy. With a fully preemptive scheduler, the preemption takes place
immediately, as soon as the thread is (re-)activated. With a non-preemptive
policy, the preemption is postponed until one of the running tasks finishes
its execution. For this framework, we decided to adopt a limited preemption
policy. According to this policy, threads are non-preemptively executed until
they reach one of the statically defined preemption points, where they can
be preempted if a higher priority thread is waiting to execute. This policy
allows decreasing the preemption and migration overhead of fully preemptive
policies, without imposing the excessive blocking delays experienced with
non-preemptive approaches.
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The problem with adopting a limited preemption scheduling policy is
that it is necessary to define at which points to allow a preemption for each
thread. Since requiring the programmer to manually insert suitable context-
switch locations overly increases the programming complexity, we decided
to automate the process by using meaningful information coming from the
OpenMP mapping layer. In particular, the concept of TSP will be exposed to
the scheduling layer in order to take informed decisions on when and where
to allow a preemption. We will now detail this strategy.

4.4.3 Implementation of a Limited Preemption Scheduler

Arbitrary preemptions can introduce a significant runtime overhead and high
fluctuations in thread-execution times, which degrades system predictability.
These variations are due to multiple factors, including the time taken by
the scheduling algorithm to suspend the running thread, insert it into the
ready queue, switch the context, and dispatch the new incoming thread;
the time taken to reload the cache lines evicted by the preempting thread;
and the extra bus interference for accessing the next memory level due to
the additional cache misses caused by preemption. Conversely, completely
forbidding preemptions may cause an intolerable blocking to higher priority
threads, potentially affecting their schedulability. For example, consider a
system where a low-priority activity offloaded a parallel workload executing
on all available cores. If a higher priority RT task now requests a subset of
the cores to execute more important activities, it will need to wait until the
low-priority ones are finished, eventually leading to a deadline miss. Such a
miss could have been easily avoided by allowing preemptions.

With the limited preemption scheduling model adopted in the project,
threads will execute non-preemptively until they reach a TSP. At these points,
the execution control is moved back to the OpenMP runtime to decide which
task (part) to map on that thread. Essentially, the mapper will fetch one of
the tasks (belonging to the offload associated to the considered thread) that
are ready to execute and map it to that thread. These are points that mark an
interruption in the task-execution flow, potentially leading to context switches
and/or some memory locality loss. In other words, TSPs are good candidate
to be selected for potential preemption points, since they may represent a
discontinuity in the continuous execution of a task, potentially requiring a
new task to load new data to local memory. Taking advantage of these points
seems reasonable to guarantee a reduced pollution of cache locality of an
executing task, allowing a thread context switch only when a preemption
causes less harm.
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However, it remains to be shown how the information from the OpenMP
runtime is to be propagated to the RTOS scheduling layer. Note that every
RT task that is offloaded to the accelerator is managed by an instance of
custom OpenMP runtime. This instance, among the other tasks, keeps track
of the dependencies among the nodes of the RT task (the OpenMP task
parts), and schedules for execution only those nodes whose dependencies
have been satisfied. When a thread fetches a task from the pool for execution,
it will continue uninterruptedly until it reaches a TSP. At this point, the
runtime regains control, and it may decide to invoke the OS scheduler using
a simple function call. The scheduler can then check whether there are new
offload requests pending and/or there are blocked tasks that have been awak-
ened. Potential higher-priority threads arrivals will then trigger a preemption,
saving the context of the preempted thread and scheduling the higher
priority one.

In this way, the OpenMP semantics of TSPs are propagated at RTOS
scheduling level, allowing smarter decisions on the preemption locations. The
timing analysis will also be significantly easier, since it will be sufficient to
analyze the worst-case execution requirements of each task part, knowing
that such code blocks will be executed without interruptions. The timing
characterization of each task part will factor in the worst-case delay related to
interfering instances, assuming each task part needs to (re-)load all required
data from scratch. This makes the analysis robust and tractable, without
requiring the timing analyzer to consider all possible instructions as potential
preemption points but characterizing only the worst-case timing parameters
of each individual task part. In Chapter 5, it is described how to obtain
the maximum execution time of a task part, with and without including the
additional time-penalty due to interference with other applications running
concurrently. These two timing estimates are added to the characterization
of every task part in the TDG produced by the compiler. This new TDG
annotated with timing information is called the OpenMP-TDG and serves
as input to our schedulability analysis.

Still, one may further reduce the number of potential preemption points,
by not invoking the OS scheduler at each TSP. For example, with a Breadth-
First mapping model, a task creating additional tasks will continue executing
on its thread, without leading to a (task-level) context switch. In this case, it
may be better not to invoke the OS scheduler at TSPs coinciding with task-
creation directives, since the original task may continue executing without
any discontinuity in the local context. A smarter option can be to invoke the
OS scheduler only when the runtime decides to map a different task next
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(e.g., because the current one is finished, or due to a work-first strategy, or
because of a taskwait directive). These TSPs are more likely to lead to a
cache locality loss, reducing the additional impact due to preemptions.

That said, in order to simplify the schedulability analysis and avoid long
non-preemptive regions, we decided to invoke the scheduler at each TSP.
Although it may be beneficial to reduce the number of preemption points, we
opted for the simplest solution that allows us to provide a proof of concept
of the proposed approach. In the evaluation phase, we will then identify the
impact of the preemption points to the scheduling overhead.

4.5 Overall Schedulability Analysis

We now will describe the overall schedulability analysis of systems executing
within the P-SOCRATES framework. The analysis is based on the computa-
tion of the worst-case response time of RT tasks concurrently executing on a
given cluster of cores. Two different analyses are presented, depending on the
mapping/scheduling mechanisms supported by the framework: (i) a dynamic
solution based on a global scheduler allowing a work-conserving behavior,
and (ii) a fully static solution based on a partitioned scheduler and a fixed
task-to-thread mapping.

4.5.1 Model Formalization

On our overall framework, an OpenMP program is composed of recurring
instances of a RT task (identified with a target OpenMP construct), which in
turn is composed of task parts. Without loss of generality, in this paragraph,
we consider [18] a set τ = {τ1, . . . , τn} of n sporadic conditional parallel
tasks (cp-tasks) that execute upon a platform consisting ofm identical proces-
sors. Each cp-task τk releases a potentially infinite sequence of jobs. Each job
of τk is separated from the next by at least Tk time-units and has a constrained
relative deadline Dk <= Tk. Moreover, each cp-task τk is represented as a
directed acyclic graph Gk = (Vk, Ek), where Vk = {vk,1, . . . , vk,nk} is a set
of nodes (or vertices) and Ek is a set of directed arcs (or edges), as shown
in Figure 4.4. Each node vk,j represents a sequential chunk of execution
(or “sub-task”) and is characterized by a worst-case execution time Ck,j.
Preemption and migration overhead is assumed to be integrated within the
WCET values, as given by the timing analysis. Arcs represent dependencies
between sub-tasks, that is, an edge (vk,1, vk,2) means that vk,1 must complete
before vk,2 can start executing. A node with no incoming arcs is referred to as
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Figure 4.4 A sample cp-task. Each vertex is labeled with the WCET of the corresponding
sub-task.

a source, while a node with no outgoing arcs is referred to as a sink. Without
loss of generality, each cp-task is assumed to have exactly one source vsource

k
and one sink node vsink

k . If this is not the case, a dummy source/sink node with
zero WCET can be added to the DAG, with arcs to/from all the source/sink
nodes. The subscript k in the parameters associated with the task τk is omitted
whenever the reference to the task is clear in the discussion.

In the cp-task model, nodes can be of two types:

1. Regular nodes, represented as rectangles, allow all successor nodes to
be executed in parallel;

2. Conditional nodes, coming in pairs and denoted by diamonds and cir-
cles, represent the beginning and the end of a conditional construct,
respectively, and require the execution of exactly one node among the
successors of the start node.

Please note that this is a general solution for scheduling parallel recurring
RT-Dags. In the specific domain of this project, where OpenMP is used as a
frontend to specify DAGS, it may occur that the compiler cannot fully extract
the DAG because there are conditionals that cannot be statically solved.
See Section 3.4.3.2, “Missing information of the DAG”, in Chapter 3, for
a discussion about this issue.

To properly model the possible execution flows, a further restriction is
imposed to the connections within a conditional branch. That is, a node
belonging to a branch of a conditional statement cannot be connected to nodes
outside that branch (including other branches of the same statement). This is
formally stated in the following definition.

Definition 4.1. Let (v1, v2) be a pair of conditional nodes in a DAG
Gk = (Vk, Ek). The pair (v1, v2) is a conditional pair if the following holds:



4.5 Overall Schedulability Analysis 77

1. If there are exactly q outgoing arcs from v1 to nodes s1, s2, . . . , sq, for
some q > 1, then there are exactly q incoming arcs into v2 in Ek, from
some nodes t1, t2,. . . , tq.

2. For each l ε {1, 2, . . . , q}, let Vl’El’ denote all the nodes and arcs on
paths reachable from sl that do not include node v2. By definition, sl is
the sole source node of the DAG Gl’:= (Vl’El’). It must hold that tl is
the sole sink node of Gl’.

3. It must hold that Vl’ and Vj’ have a null intersection, for all l 6= j.
Additionally, with the exception of (v1, sl) there should be no arcs in
Ek into nodes in Vl’ from nodes not in Vl’, for each l in {1, 2, . . . , q}.

A chain or path of a cp-task τk is a sequence of nodes λ= (vk,a,. . . ,vk,b) such
that (vk,j,vk,j+1) ε Ek, for all j ε [a,b]. The length of a chain of τk, denoted
by len(λ), is the sum of the WCETs of all its nodes. The longest path of a
cp-task is any source-sink path of the task that achieves the longest length.

Definition 4.2. The length of a cp-task τk, denoted by Lk, is the length of any
longest path of τk.

Note that Lk also represents the minimum worst-case execution time
of cp-task τk, that is, the time required to execute it when the number of
processing units is sufficiently large (potentially infinite) to allow the task
to always execute with maximum parallelism. A necessary condition for the
feasibility of a cp-task τk is that Lk ≤ Dk.

In the absence of conditional branches, the classical sporadic DAG task
model defines the volume of the task as the worst-case execution time needed
to complete it on a dedicated single-core platform. This quantity can be
computed as the sum of the WCETs of all the sub-tasks, that is

∑
vk,j∈Vk Ck,j .

In the presence of conditional branches, assuming that all sub-tasks are
always executed is overly pessimistic. Hence, the concept of volume of a
cp-task is generalized by introducing the notion of worst-case workload.

Definition 4.3. The worst-case workload Wk of a cp-task τk is the maximum
time needed to execute an instance of τk on a dedicated single-core platform,
where the maximum is taken among all possible choices of conditional
branches.

Section 4.5 will explain in detail how the worst-case workload of a task
can be computed efficiently.

The utilization Uk of a cp-task τk is the ratio between its worst-case
workload and its period, that is, Uk = Wk/Tk. For the task-set τ , its total
utilization U is defined as the sum of the utilizations of all tasks. A simple
necessary condition for feasibility is U ≤ m.
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Figure 4.4 illustrates a sample cp-task consisting of nine sub-tasks (nodes)
V = {v1,. . . ,v9} and 12 precedence constraints (arcs). The number inside
each node represents its WCET. Two of the nodes, v2 and v6, form a condi-
tional pair, meaning that only one sub-task between v3 and v4 will be executed
(but never both), depending on a conditional clause. The length (longest path)
of this cp-task is L = 8, and is given by the chain (v1, v2, v4, v6, v7, v9). Its
volume is 14 units, while its worst-case workload must take into account that
either v3 or v4 are executed at every task instance. Since v4 corresponds to
the branch with the largest workload, W = 11.

To further clarify the restrictions imposed to the graph structure, note that
v4 cannot be connected to v5, because this would violate the correctness of
conditional constructs and the semantics of the precedence relation. In fact, if
they were connected and v3 were executed, then v5 would wait forever, since
v4 is not executed. For the same reason, no connection is possible between
v4 and v3, as they belong to different branches of the same conditional
statement.

In the following sections, we will consider the dynamic approach consist-
ing of a best-effort mapper, coupled with a fixed priority global scheduler. RT
tasks are indexed according to their priorities, being τ1 the highest priority
one. For details on the scheduling algorithm and mapping, please refer to
P-SOCRATES project’s Deliverable D3.3.2 [19]. To understand the following
analysis, it is sufficient to observe that the adopted scheduler allows a work-
conserving behavior, never idling a core whenever there is some pending
workload to execute.

4.5.2 Critical Interference of cp-tasks

We now present a schedulability analysis for cp-tasks globally scheduled
by any work-conserving scheduler. The analysis is based on the notion of
interference. In the existing literature for globally scheduled sequential task
systems, the interference on a task τk is defined as the sum of all intervals
in which τk is ready, but cannot execute because all cores are busy executing
other tasks. We modify this definition to adapt it to the parallel nature of
cp-tasks, by introducing the concept of critical interference.

Given a set of cp-tasks τ and a work-conserving scheduler, we define the
critical chain of a task as follows.

Definition 4.4. The critical chain λ∗k of a cp-task τk is the chain of nodes of
τk that leads to its worst-case response-time Rk.
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The critical chain of cp-task τk is in principle determined by taking the
sink vertex vsink

k of the worst-case instance of τk (i.e., the job of τk that has the
largest response-time in the worst-case scenario), and recursively pre-pending
the last to complete among the predecessor nodes (whether conditional or
not), until the source vertex vk,1 has been included in the chain.

A critical node of task τk is a node that belongs to τk’s critical chain.
Since the response-time of a cp-task is given by the response-time of the sink
vertex of the task, the sink node is always a critical node. For deriving the
worst-case response-time of a task, it is then sufficient to characterize the
maximum interference suffered by its critical chain.

Definition 4.5. The critical interference Ik on task τk is defined as the
cumulative time during which some critical nodes of the worst-case instance
of τk are ready, but do not execute because all cores are busy.

Lemma 4.1. Given a set of cp-tasks τ scheduled by any work-conserving
algorithm on m identical processors, the worst-case response-time of each
task τk is

Rk = len(λ∗k) + Ik. (4.1)

Proof. Let rk be the release time of the worst-case instance of τk. In the
scheduling window [rk, rk+Rk], the critical chain will require len(λ∗k) time-
units to complete. By Definition 4.5, at any time in this window in which
τk does not suffer critical interference, some node of the critical chain is
executing. Therefore Rk − Ik = len(λ∗k).

The difficulty in using Lemma 4.1 for schedulability analysis is that the
term Ik may not be easy to compute. An established solution is to express
the total interfering workload as a function of individual contributions of the
interfering tasks, and then upper-bound such contributions with the worst-
case workload of each interfering task τk.

In the following, we explain how such interfering contributions can be
computed, and how they relate to each other to determine the total interfering
workload.

Definition 4.6. The critical interference Ii,k imposed by task τi on task τk
is defined as the cumulative workload executed by sub-tasks of τk while a
critical node of the worst-case instance of τk is ready to execute but is not
executing.

Lemma 4.2. For any work-conserving algorithm, the following relation
holds:

Ik =
1

m

∑
τi∈T

Ii,k. (4.2)
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Proof. By the work-conserving property of the scheduling algorithm, when-
ever a critical node of τk is interfered, all m cores are busy executing other
sub-tasks. The total amount of workload executed by sub-tasks interfering
with the critical chain of τk is then mIk. Hence,∑

τi∈T
Ii,k = mIk.

By reordering the terms, the lemma follows.
Note that when i = k, the critical interference Ik,k may include the

interfering contributions of non-critical subtasks of τk on itself, that is,
the self-interference of τk. By combining Equations (4.1) and (4.2), the
response-time of a task τk can be rewritten as:

Rk = len(λ∗k) +
1

m
Ik,k +

1

m

∑
τi∈T ,i6=k

Ii,k. (4.3)

In the following, we will show how to provide upper bounds on the unknown
terms of Equation (4.3) for systems adopting a global fixed-priority scheduler
with preemption support.

4.5.3 Response Time Analysis

In this section, we derive an upper-bound on the worst-case response-time
of each cp-task using Equation (4.3). To this aim we need to compute the
interfering contributions Ii,k. In the sequel, we first consider the inter-task
interference (i 6= k) and then the intra-task interference (i = k).

4.5.3.1 Inter-task interference
We divide the contribution to the workload of an interfering task τI in a
window of interest between carry-in, body, and carry-out jobs. The carry-
in job is the first instance of τi that is part of the window of interest and has
release time before and deadline within the window of interest. The carry-
out job is the last instance of τi executing in the window of interest, having
a deadline after the window of interest. All other instances of τi are named
body jobs. For sequential task-sets, an upper-bound on the workload of an
interfering task τi within a window of length L occurs when the first job of
τi starts executing as late as possible (with a starting time aligned with the
beginning of the window of interest) and later jobs are executed as soon as
possible (see Figure 4.5).



4.5 Overall Schedulability Analysis 81

Figure 4.5 Worst-case scenario to maximize the workload of an interfering task τi in the
sequential case.

For cp-task systems, it is more difficult to determine a configuration that
maximizes the carry-in and carry-out contributions. In fact:

1. Due to the precedence constraints and different degree of parallelism
of the various execution paths of a cp-task, it may happen that a larger
workload is executed within the window if the interfering task is shifted
left, i.e., by decreasing the carry-in and increasing the carry-out contri-
butions. This happens for example when the first part of the carry-in job
has little parallelism, while the carry-out part at the end of the window
contains multiple parallel sub-tasks.

2. A sustainable schedulability analysis [10] must guarantee that all tasks
meet their deadlines even when some of them execute less than the
worst-case. For example, one of the sub-tasks of an execution path of a
cp-task may execute for less than its WCET Ci,j. This may lead to larger
interfering contributions within the window of interest (e.g., a parallel
section of a carry-out job is included in the window due to an earlier
completion of a preceding sequential section).

3. The carry-in and carry-out contribution of a cp-task may correspond
to different conditional paths of the same task, with different levels of
parallelism.

To circumvent the above issues, we consider a scenario in which each interfer-
ing job of task τi executes for its worst-case workload Wi, i.e., the maximum
amount of workload that can be generated by a single instance of a cp-task.
We defer the computation of Wi to Section 4.5.3. The next lemma provides a
safe upper-bound on the workload of a task τi within a window of interest of
length L.

Lemma 4.3. An upper-bound on the workloads of an interfering task τi in a
window of

Wi(L) =

⌊
L+Ri −Wi/m

Ti

⌋
Wi

+ min(Wi,m · ((L + Ri −Wi/m) mod Ti)).

length L is given by
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Figure 4.6 Worst-case scenario to maximize the workload of an interfering cp-task τi.

Proof. Consider a situation in which all instances of i execute for their
worst-case workload Wi. The highest workload within a window of length
L for such a task configuration is produced when the carry-in and carry-out
contributions are evenly distributed among all cores, as shown in Figure 4.6.
Note that distributing the carry-in or carry-out contributions on a smaller
number of cores may not increase the workload within the window. Moreover,
other task configurations with a smaller workload for the carry-in or carry-out
instance cannot lead to a higher workload in the window of interest: although
a reduced carry-in workload may allow including a larger part of the carry-
out (as in shifting right the window of interest by Wi = m in the figure), the
carry-out part that enters the window from the right cannot be larger than the
carry-in reduction.

An upper-bound on the number of carry-in and body instances that may
execute within the window is⌊

L+Ri −Wi/m

Ti

⌋
,

each one contributing for Wi. The portion of the carry-out job included in
the window of interest is (L + Ri − Wi/m) mod Ti. Since at most m cores
may be occupied by the carryout job within that interval, and the carry-out
job cannot execute for more than Wi units, the lemma follows.

4.5.3.2 Intra-task interference
We now consider the remaining terms of Equation (4.3), which take into
account the contribution of the considered task to its overall response-time,
and we compute an upper-bound on

Zk
def
= len(λ∗k) +

1

m
Ik,k.
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Lemma 4.4. For a constrained deadline cp-task system scheduled with any
work-conserving algorithm, the following relation holds for any task τk:

Zk = len(λ∗k) +
1

m
Ik,k ≤ Lk +

1

m
(Wk − Lk). (4.4)

Proof. Since we are in a constrained deadline setting, a job will never be
interfered with by other jobs of the same task. Wk being the maximum
possible workload produced by a job of cp-task τk, the portion that may
interfere with the critical chain λk is Wk−len(λ∗k). Then, Ik,k ≤Wk−len(λ∗k).
Hence,

len(λ∗k) +
1

m
Ik,k ≤ len(λ∗k) +

1

m
(Wk − len(λ∗k)). (4.5)

Since len(λ∗k) ≤ Lk and m ≥ 1, the lemma follows.
Since Zk includes only the contribution of task τk, one may think that

the sum [len(λ∗k) + 1/m Ik,k] is equal to the worst-case response-time
of τk when it is executed in isolation on the multi-core system (i.e., the
makespan of τk).

However, this is not true. For example, consider the case of a cp-task
τk with only one if-then-else statement; assume that when the “if” part is
executed, the task executes one sub-task of length 10; otherwise, the task
executes two parallel sub-tasks of length 6 each. When τk is executed in
isolation on a two-core platform, the makespan is clearly given by the “if”
branch, i.e., 10. When instead τk can be interfered with by one job of a task
τi which executes a single sub-task of length 6, the worst-case response time
of τk occurs when the “else” branch is executed, yielding a response time
of 12. The share of the response time due to the term len(λ∗k) + 1/m Ik,k

in Equation (4.3) is 6 + (1 = 2)6 = 9, which is strictly smaller than the
makespan. Note that len(λ∗k) + 1/m Ik,k does not even represent a valid lower
bound on the makespan. This can be seen by replacing the “if” branch in the
above example with a shorter subtask of length 8, giving a makespan of 8.
For this reason, one cannot replace the term len(λ∗k) + 1/m Ik,k in Equation
(4.4) with the makespan of τk.

The right-hand side of Equation (4.4) (Lk + 1/m(Wk – Lk)) has been
therefore introduced to upper-bound the term len(λ∗k)+1/m Ik,k. Interestingly,
this quantity does also represent a valid upper-bound on the makespan of τk,
so that it can be used to bound the response time of a cp-task executing in
isolation. We omit the proof that is identical to the proofs of the given bounds,
considering only the interference due to the task itself.
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4.5.3.3 Computation of cp-task parameters
The upper-bounds on the interference given by Lemmas 4.3, 4.4, and 4.5
require the computation of two characteristic parameters for each cp-task τk:
the worst-case workload Wk and the length of the longest chain Lk. The
longest path of a cp-task can be computed in exactly the same way as the
longest path of a classical DAG task, since any conditional branch defines
a set of possible paths in the graph. For this purpose, conditional nodes can
be considered as if they were simply regular nodes. The computation can be
implemented time linearly in the size of the DAG by standard techniques, see
e.g., Bonifaci et al. [11] and references therein.

The computation of the worst-case workload of a cp-task is more
involved. We hereafter show an algorithm to compute Wk for each task
τk in time quadratic in the DAG size, whose pseudocode is shown in
Algorithm 4.1.

The algorithm first computes a topological order of the DAG2. Then,
exploiting the (reverse) topological order, a simple dynamic program can
compute for each node the accumulated workload corresponding to the
portion of the graph already examined. The algorithm must distinguish the
case when the node under analysis is the head of a conditional pair or not.

Algorithm 4.1 Worst-case Workload Computation
1: procedure WCW(G)
2: σ ← TOPOLOGICALORDER(G)

3: S(vsink)← {vsink}
4: for vi ∈ σ from sink to source do
5: if SUCC(vi) 6= ∅ then
6: if ISBEGINCOND(vi) then
7: v∗ ← argmaxv∈SUCC(vi)

C(S(v))

8: S(vi)← {vi} ∪ S(v∗)
9: else

10: S(vi)← {vi} ∪
⋃
v∈SUCC(vi)

S(v)

11: end if
12: end if
13: end for
14: return C(S(vsource))
15: end procedure

2A topological order is such that if there is an arc from u to v in the DAG, then u appears
before v in the topological order. A topological order can be easily computed in time linear in
the size of the DAG (see any basic algorithm textbook, such as [17]).
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If this is the case, then the maximum accumulated workload among the
successors is selected; otherwise, the sum of the workload contributions of
all successors is computed.

Algorithm 4.1 takes as input the graph representation of a cp-task G and
outputs its worst-case workload W. In the algorithm, for any set of nodes S,
its total WCET is denoted by C(S). First, at line 2, a topological sorting of
the vertices is computed and stored in the permutation. Then, the permutation
is scanned in reverse order, that is, from the (unique) sink to the (unique)
source of the DAG. At each iteration of the for loop at line 4, a node vi is
analyzed; a set variable S(vi) is used to store the set of nodes achieving the
worst-case workload of the subgraph including vi and all its descendants in
the DAG. Since the sink node has no successors, S(vsink) is initialized to
{vsink}at line 3. Then, the function SUCC(vi) computes the set of successors
of vi. If that set is not empty, function ISBEGINCOND(vi) is invoked to
determine whether vi is the head node of a conditional pair. If so, the node
v* achieving the largest value of C(S(v)), among v in SUCC(vi), is computed
(line 7). The set S(v*) therefore achieves the maximum cumulative worst-
case workload among the successors of vi, and is then used to create S(vi)
together with vi. Instead, whenever vi is not the head of a conditional pair, all
its successors are executed at runtime. Therefore, the workload contributions
of all its successors must be merged into S(vi) (line 10) together with vi. The
procedure returns the worst-case workload accumulated by the source vertex,
that is C(S(vsource)).

The complexity of the algorithm is quadratic in the size of the input DAG.
Indeed, there are O(|E|) set operations performed throughout the algorithm,
and some operations on a set S (namely, the ones at line 7) also require
computing C(S), which has cost O(|V|). So, the time complexity is O(|V| |E|).
To implement the set operations, set membership arrays are sufficient.

One may be tempted to simplify the procedure by avoiding the use of
set operations, keeping track only of the cumulative worst-case workload
at each node, and allowing a linear complexity in the DAG size. However,
such an approach would lead to an overly pessimistic result. Consider a
simple graph with a source node forking into multiple parallel branches
which then converge on a common sink. The cumulative worst-case workload
of each parallel path includes the contribution of the sink. If we simply
sum such contributions to derive the cumulative worst-case workload of the
source, the contribution of the sink would be counted multiple times. Set
operations are therefore needed to avoid accounting multiple times each node
contribution.
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We now present refinements of Algorithm 4.1 in special sub-cases of
interest.

4.5.4 Non-conditional DAG Tasks

The basic sporadic DAG task model does not explicitly account for con-
ditional branches. Therefore, all vertices of a cp-task contribute to the
worst-case workload, which is then equal to the volume of the DAG task:

Wk =
∑

vk,j∈Vk

Ck,j .

In this particular case, the time complexity to derive the worst-case workload
of a task (quadratic in the general case), becomes O(|V|), i.e., linear in the
number of vertices.

4.5.5 Series–Parallel Conditional DAG Tasks

Some programming languages yield series–parallel cp-tasks, that is, cp-tasks
that can be obtained from a single edge by series composition and/or parallel
composition. For example, the cp-task in Figure 4.5 is series–parallel, while
the cp-tasks in Figures 4.2 and 4.6 are not. Such a structure can be detected in
linear time [13]. In series–parallel graphs, for every head si of a conditional
or parallel branch there is a corresponding tail ti. For example, in Figure 4.5,
the tail corresponding to parallel branch head v2 is v9. Algorithm 4.1 can be
specialized to series–parallel graphs. For each vertex u, the algorithm will
simply keep track of the worst-case workload of the subgraph reachable from
u, as follows. For each head vertex si of a parallel branch, the contribution
from all successors should be added to si’s WCET, subtracting, however, the
worst-case workload of the corresponding tail ti a number of times equal to
the out-degree of si minus 1; for each head vertex si of a conditional branch,
only the maximum among the successors’ worst-case workloads is added to
si’s WCET. Finally, for all non-head vertices add the worst-case workload
of their unique successor to their WCET. The complexity of this algorithm
reduces then to O(|E|), i.e., it becomes linear in the size of the graph.

4.5.6 Schedulability Condition

Lemmas 4.3 and 4.4 and the bounds previously computed allow for proving
the following theorem.
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Theorem 4.1. Given a cp-task-set globally scheduled with global FP on m
cores, an upper-boundRubk on the response-time of a task τk can be derived by
the fixed-point iteration of the following expression, starting with Rubk = Lk:

Rubk ← Lk +
1

m
(Wk − Lk) +

 1

m

∑
∀ i6=k

XALGi

 , XFPi

where:

XFPi =

{
Wi(R

ub
k ), ∀i < k

0, otherwise
;

because the interference from lower priority tasks can be neglected assuming
a fully preemptive scheduler.

The schedulability of a cp-task system can then be simply checked using
Theorem 4.1 to compute an upper-bound on the response-time of each task.
In the FP case, the bounds are updated in decreasing priority order, starting
from the highest priority task. In this case, it is sufficient to apply Theorem 4.1
only once for each task.

4.6 Specializing Analysis for Limited Pre-emption
Global/Dynamic Approach

The response time analysis in Equation (4.3) can be easily extended [20] to
incorporate the impact of the limited pre-emption strategy on DAG-based
task-sets3. To do so, the factor that computes the inter-task interference
must be augmented to incorporate the impact of lower-priority interference.
Overall, the response time upper-bound can be computed as follows:

Rubk ← Lk +
1

m
(vol(Gk)− Lk) +

⌊
1

m
(I
lp
k + I

hp
k )

⌋
With LP, tasks are not only interfered with by higher-priority tasks, but also
by already started lower-priority tasks whose execution has not reached a pre-
emption point yet, and so cannot be suspended. In the worst-case scenario,
when a high-priority task τk is released, all the m processors have just started
executing the m largest NPRs of m different lower priority tasks. After τk
started executing, it could be blocked again by at most m − 1 lower priority

3This section only considers LP with eager approach. In [28], we develop the analysis
for Lazy approach as well. Interested readers are encouraged to refer to it for the complete
analysis.
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tasks at each pre-emption point. Therefore, for sequential task-sets, the lower
priority interference is upper-bounded considering: (1) the set of the longest
NPR of each lower-priority task and then (2) the sum of the m and m − 1
longest NPRs of this set, as computed in [21]. This no longer holds for
DAG-based task-sets, because multiple NPRs from the same task can execute
in parallel. Next, we present two methods to compute the lower-priority
interference in DAG-based task-sets.

4.6.1 Blocking Impact of the Largest NPRs (LP-max)

The easiest way of deriving the lower-priority interference is to account for
the m and m− 1 largest NPRs among all lower-priority tasks:

∆m
k =

∑ m
max
τi∈lp(k)

(
m

max
1≤j≤qi+1

Ci,j

)
∆m−1
k =

∑ m−1
max
τi∈lp(k)

(
m−1
max

1≤j≤qi+1

Ci,j

)
where

∑
maxmτi∈lp(k) and

∑
maxm−1

τi∈lp(k) denote the sum of them andm− 1

largest values among the NPRs of all tasks τi ε lp(k) respectively, while
maxm1≤j≤qi+1

and maxm+1
1≤j≤qi+1

denote the m and m − 1 largest NPRs of a
task τi. Despite its simplicity, this strategy is pessimistic because it considers
that the largest m and m − 1 NPRs can execute in parallel, regardless of the
precedence constraints defined in the DAG.

4.6.2 Blocking Impact of the Largest Parallel NPRs (LP-ILP)

The edges in the DAG determine the maximum level of parallelism a task
may exploit on m cores, which in turn determines the amount of blocking
impacting over higher-priority tasks. This information must therefore be
incorporated in the analysis to better upper-bound the lower-priority inter-
ference. To do so, we propose a new analysis method that incorporates
the precedence constraints among NPRs, as defined by the edges in the
DAG, into the LP response-time analysis. Our analysis uses the following
definitions:

Definition 4.7: The LP worst-case workload of a task executing on c cores is
the sum of the WCET of the c largest NPRs that can execute in parallel.
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Definition 4.8. The overall LP worst-case workload of a set of tasks executing
on m cores is the maximum time used for executing this set in a given
execution scenario, i.e. fixing the number of cores used for each task.

Given a task τk, our analysis derives the lower-priority interference of
lp(k) by computing new ∆m

k and ∆m+1
k factors in a three-step process:

1. Identify the LP worst-case workload of each task in lp(k) when execut-
ing on 1 to m cores;

2. Compute the overall LP worst-case workload of lp(k) for all possible
execution scenarios;

3. Select the scenario that maximizes the lower-priority interference.

In order to facilitate the explanation of the three steps, the next sections con-
sider an lp(k) composed of four DAG-tasks {τ1, τ2, τ3, τ4} (see Figure 4.7),
executed on an m = 4 core platform.

The nodes (NPRs) of τi are labeled as vi,j with their WCET (Ci,j) between
parenthesis.

4.6.2.1 LP worst-case workload of a task executing on c cores
Given a task τi, this step computes an array µi of size m, which includes the
worst-case workload of τi when NPRs are distributed over c cores, being

Figure 4.7 DAGs of lp(k) tasks; the Ci,j of each node vi,j is presented in parenthesis.
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c = {1,. . . ,m} the index inside µi. Each element µi[c] is computed as
follows:

µi[c] =
∑ parallel

max
c
{Ci,j}

where maxparallelc is the sum of the c largest NPRs of τi that can execute in
parallel, maximizing the interference when using c cores. To this aim, the sum
must consider the edges of τi’s DAG to determine which NPRs can actually
execute in parallel. Section 4.7.3 presents the algorithm that derives, for each
NPR of τi, the set of NPRs from the same task that can potentially execute in
parallel with it.

Table 4.1 shows the array µi for each of the tasks shown in Figure 4.7 with
m = 4. For example, the worst-case workload µ4 [2] occurs when NPRs v4,3

and v4,4 execute in parallel, with an overall impact of 9 time units. τ2 has a
maximum parallelism of 2, so µ2 [3] and µ2 [4] are equal to 0.

4.6.2.2 Overall LP worst-case workload
The lower-priority interference depends on how the execution of lp(k) is
distributed across the m cores. We define em = {s1,. . . ,sp(m)} as the set of
different execution scenarios (and so interference scenarios) of lp(k) running
on m cores. p(m) is equal to the number of partitions4 of m, and can be
computed with the pentagonal number theorem from Euler’s formulation:∑

q

(−1)qp

(
m− q(3q − 1)

2

)
where the sum is over all nonzero integers q (positive and negative) [22].

Table 4.1 Worst-case workloads of tasks in Figure 4.7
µ1[c] µ2[c] µ3[c] µ4[c]

C1,6 or C1,8 = 3 C2,2 = 4 C3,1 = 6 C4,1 or C4,4 = 5

C1,6 + C1,7 = 5 C2,2 + C2,3 = 7 C3,3 + C3,4 = 7 C4,4 + C4,3 = 9

C1,6 + C1,4 +
C1,5 = 6

0 C3,3 + C3,4 + C3,2

or C3,5 = 9
C4,4 + C4,3 +
C4,5 = 12

C1,2 + C1,3 +
C1,4 + C1,5 = 5

0 C3,2 + C3,3 +
C3,4 + C3,5 = 11

0

4In number theory and combinatory, a partition of a positive integer m is a way of writing
m as a sum of positive integers. Two sums that differ only in the order of their summands are
considered the same partition.
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Table 4.2 the five possible execution scenarios assuming four cores [e4,
p(4) = 5]. The number of tasks being executed in each execution scenario sl

in em is given by its cardinality, i.e., |sl|.
Each execution scenario sl in em has an associated overall worst-case

workload, computed as:

ρk[sl] =
∑ sl

max
|sl|
{µi}

Where the right-hand side represents the sum of the |sl| largest combina-
tions of µi that fits in the scenario sl, and so maximizes the interference.
Section 4.7.3 formulates the above equation as an ILP.

Table 4.3 shows the ρk[sl] of each execution scenario and the µi[c]
considered in Table 4.1 and 4.2. For instance, the overall worst-case workload
of s3, ρk[s3] = 19 results when τ4 executes on two cores (µ4 [2] = 9), and τ2

and τ3 execute on one core each (µ2 [1] = 4 and µ3 [1] = 6).

4.6.2.3 Lower-priority interference
Finally, given the overall worst-case workload for each scenario µk[sl], the
lower-priority interference of lp(k) can be reformulated as the maximum
overall worst-case workload among all scenarios:

∆m
k = max

sl∈em
ρk[sl]

∆m−1
k = max

sl∈em−1
ρk[sl]

Table 4.2 Five possible scenarios of taskset in Figure 4.7, assuming a four core system
sp ∈ e4 |sp| Execution scenario description
s1 = {1, 1, 1, 1} 4 Each task runs in 1 core
s2 = {2, 2} 2 Each task runs in 2 cores
s3 = {2, 1, 1} 3 1 task runs in 2 cores and 2 task in 1 cores each
s4 = {3, 1} 2 1 task runs in 3 cores and 1 task in 1 core
s5 = {4} 1 1 task runs in 4 cores

Table 4.3 Computed worst-case workload for each of the scenarios in Table 4.2
sl ρk[sl]

s1 µ1[1] + µ2[1] + µ3[1] + µ4[1] = 18
s2 µ2[2] or µ3[2] + µ4[2] = 16
s3 µ4[2] + µ2[1] + µ3[1] = 19
s4 µ4[3] + µ3[1] = 18
s5 µ3[4] = 11
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where the right-hand sides provide the maximum worst-case workload among
em and em−1 scenarios.

The lower-priority interference of lp(k) is given by the maximum ρk[sl],
i.e., ∆4

k = 19. On the contrary, the pessimistic approach selects the
sum of the m largest NPRs among all lower-priority tasks, i.e., ∆4

k =
C3,1 + C4,1 + C4,4 + C2,2 = 20. The pessimism comes from the fact
that nodes v4,1 and v4,4 cannot be executed in parallel. Similarly, ∆3

k = 15,
while the pessimistic approach gives ∆3

k = 16.
Clearly, LP-ILP allows computing a tighter lower-priority interference, at

the cost of increasing the complexity of deriving it, compared to the LP-max
approach.

4.6.3 Computation of Response Time Factors of LP-ILP

We showed that the schedulability of a DAG-based task-set under LP-ILP can
be checked in pseudo-polynomial time if, beside deadline and period, we can
derive: (1) the worst-case workload generated by each lower-priority task τi
(i.e., µi), and (2) the overall worst-case workload of lower-priority tasks for
each execution scenario sl in em (i.e., ρm[sl]). The former can be computed
at compile-time for each task, and it is independent from the task-set; the
latter requires the complete task-set knowledge, and is computed at system
integration time. In this section, we present the algorithms to compute these
factors.

4.6.3.1 Worst-case workload of τ i executing on c cores: µi[c]
µi[c] is determined by the set of c NPRs of τi that can potentially execute in
parallel. As a first step, we identify for each NPR the set of potential parallel
NPRs; then, we compute the interference of parallel execution when different
numbers of cores are used.

(1) Computing the set of parallel NPRs: Given the DAG Gi = (Vi, Ei),
Algorithm 4.2 computes, for each NPR vi,j in Vi, the set of NPRs that
can execute in parallel with it.

The algorithm takes as input the DAG of task τi, the topological order of Gi,
and, for each node vi,j, the sets:

1. SIBLING(vi,j), which contains the nodes which have a common prede-
cessor with vi,j;

2. SUCC(vi,j), which contains the nodes reachable from vi,j; and
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Algorithm 4.2 Parallel NPRs of τi

Input: (1) Gi = (Vi, Ei); (2) TOPOLOGICAL-ORDER(Gi);
(3) SIBLING (vi,j), SUCC (vi,j), PRED(vi,j) ∀vi,j ∈ V i
Output: Par(vi,j), ∀vi,j ∈ V i
1: procedure PARALLEL-NPR
2: for each vi,j ∈ Vi do
3: Par(vi,j)← ∅
4: for each vi,l /∈ SIBLING (vi,j) do
5: if (vi,j , vi,l) /∈ Ei and (vi,l, vi,j) /∈ Ei then
6: Succ← SUCC (vi,l)\SUCC(vi,j)
7: Par(vi,j)← Par(vi,j) ∪ {vi,l} ∪ Succ
8: end if
9: end for
10: end for
11: for each vi,j ∈ TOPOLOGICAL-ORDER(Gi) do
12: for each vi,l ∈ PRED(vi,j) do
13: Pred← Par(vi,l)\ PRED(vi,j)
14: Par(vi,j)← Par(vi,j) ∪ Pred
15: end for
16: end for
17: end procedure

3. PRED(vi,j), which contains the nodes from which vi,j can be reached.
It outputs, for each vi,j, the set Par(vi,j), containing the nodes that can
execute in parallel with it.

The algorithm iterates twice over all nodes in Vi. The first loop (lines 2–10)
adds to Par(vi,j) (line 7) the set of sibling nodes vi,l that are not connected
to vi,j by an edge (line 5), and the nodes reachable from vi,l [SUCC(vi,l)],
discarding those connected to vi,j by an edge (line 6). The second loop (lines
11–15), which traverses Vi in topological order, adds to Par(vi,j) (line 14) the
set of nodes Par(vi,l) computed at line 7, being vi,l a node from which vi,j

can be reached [vi,l in PRED(vi,j)]. From Par(vi,l) we discard the nodes from
which vi,j can be reached (line 13).

As an example, consider node v1,3 of τ1 in Figure 4.7. The first loop
iterates over the sibling nodes v1,2, v1,4, and v1,5. None of them is con-
nected to v1,3 by an edge (lines 4 and 5); also, SUCC(v1,2) = {v1,6,v1,8},
SUCC(v1,4) = {v1,7,v1,8}, and SUCC(v1,5) = {v1,7,v1,8}. The algorithm
discards from SUCC(v1,2) nodes {v1,6,v1,8}, since they are already included
in SUCC(v1,3) (line 6). This is not the case of v1,7 in SUCC(v1,4) and
SUCC(v1,5). Hence, we obtain Par(v1,3) = {v1,2,v1,4,v1,5,v1,7}. The second
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loop does not add new nodes to Par(v1,3) because the unique node from
which v1,3 can be reached is v1,1, and Par(v1,1) is empty. When the second
loop examines node v1,7, the two sets Par(v1,4) and Par(v1,5) are considered,
since v1,4,v1,5 in PRED(v1,7). Then, nodes v1,2, v1,3, and v1,6 are included in
Par(v1,7), since none of them belongs to PRED(v1,7).

(2) Impact of parallel NPRs on c cores: For any task τi, we present an ILP
formulation to compute µi[c], i.e., the sum of the c largest NPRs in Vi

that, when executed in parallel, generate the worst-case workload.

Parameters: (1) c, i.e., the maximum number of cores used by τi; (2) vi,j in
Vi; (3) qi+1, i.e., the number of NPRs; (4) Ci,j; and (5) IsPari,j,k in {0,1},
i.e., a binary variable that takes 1 if vi,j and vi,k can execute in parallel,
0 otherwise.

Problem variables: (1) bj in {0,1}, i.e., a binary variable that takes the value
1 if vi,j is one of the selected parallel NPRs, 0 otherwise, and (2) bj,k = bj

OR bk with bj,k in {0,1}; j 6= k, i.e., an auxiliary binary variable.

Constraints:

1.
qi+1∑
j=1

bj = c, i.e., only c NPRs can be selected;

2.
qi+1∑
j=1

qk+1∑
k=j+1

bj,k IsPari,j,k = c, i.e., the selected NPRs can be executed in

parallel; and
3. bj,k ≥ bj+ bk – 1; bj,k ≤ bj; bj,k ≤ bk, i.e., auxiliary constraints used to

model the logical AND.

Objective function:
m∑
c=1

∑
∀τjεlp(k)

wciµ
c
i .

4.6.3.2 Overall LP worst-case workload of lp(k) per execution
scenario sl: ρk[sl]

Given the set lp(k) and an execution scenario sl in em, we present an ILP for-
mulation to derive ρk[sl], that is, the overall worst-case workload generated
by lp(k) under sl.

Parameters: (1) lp(k); (2) m; (3) sl; and (4) µi[c], for all τi in lp(k), for all
c = 1,. . . ,m.

Problem variable: wc
i , i.e., a binary variable that takes the value 1 on the

selected µi[c] that contributes to the worst-case workload, 0 otherwise.
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Constraints:

1.
m∑
c=1

∑
∀τjεlp(k)

wci = |sl|, i.e., the number of tasks contributing to the worst-

case workload must be equal to the size of the execution scenario;

2. For all τi in lp(k),
m∑
c=1

wci ≤ 1, i.e., each task can be considered at most

in one scenario;
3.

∑
∀τjεlp(k)

wci ≥ 1, c in sl, i.e., for each number of cores considered in sl,

there exist at least one µi[c] that is selected;

4.
m∑
c=1

∑
∀τjεlp(k)

wci c = m, the number of cores considered is m.

Objective function: max
m∑
c=1

∑
∀τjεlp(k)

wciµ
c
i .

4.6.4 Complexity

The complexity of the response time analysis is still pseudo-polynomial. We
hereafter discuss the complexity of the LP-ILP analysis.

Algorithm 4.2 requires specifying for each node in Vi the sets SIBLING,
SUCC and PRED, which can be computed in quadratic time in the number
of nodes. Similarly, the complexity of Algorithm 4.1 is quadratic in the size
of the DAG task, i.e., O(|Vk|2). The ILP formulation to compute µi[c] is
performed for each task (except for the highest-priority one), and the number
of cores ranges from 2 to m, hence the complexity cost is O(nm) O(ilpA).
It is important to remark that Algorithm 4.2 (as well as its inputs) and the
ILP that computes µi[c] are executed at compile-time for each task and are
independent of the task-set and the system where they execute.

ρk[sl] is computed for the execution scenarios em and em−1, and for each
task τk (except for the lowest-priority task τn), hence the complexity cost is:
O(n p(m)) O(ilpB) + O(n p(m−1)) O(ilpB). The cost of solving both ILP
formulations is pseudo-polynomial, if the number of constraints is fixed [23].
Our ILP formulations have fixed constraints, with a function cost of O(ilpA)
and O(ilpB) depending on |Vk| and (m n) respectively.

Therefore, the cost of computing ρk[sl] for em dominates the cost of other
operations; hence, the complexity of computing the lower priority interfer-
ence is pseudo-polynomial in the number of tasks and execution scenarios,
i.e., cores.
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4.7 Specializing Analysis for the Partitioned/Static
Approach

The use of dynamic schedulers in certain high-criticality real-time sys-
tems may be problematic. In the automotive domain, for example, the
static allocation of system components (named runnables in the AUTOSAR
nomenclature) define a valid application configuration, for which the appli-
cation is tested and validated. This configuration defines a specific data-flow,
i.e., an order in which components process data, and an end-to-end latency
between sensors and actuators, e.g., the gas pedal (sensor) and the injection
(actuator). A dynamic allocation instead generates different data-flows and
sensor-actuator latencies that may result in invalid configurations. The use
of static allocation is therefore of paramount importance for these types of
systems to guarantee the correct functionality.

In this section5, a static allocation of parallel applications is proposed
based on the OpenMP4 tasking model, in order to comply with the restrictive
predictability requirements of safety-critical domains. An optimal task-to-
thread mapping is derived based on an ILP formulation, providing the best
possible response time for a given parallel task graph.

Two different formulations are proposed to optimally deal with both the
tied and untied tasking models. Then, different heuristics are proposed for an
efficient (although sub-optimal) task-to-thread mapping, with a reduced com-
plexity. Experiments on randomly generated workloads and a real case-study
are provided to characterize the worst-case response time of the proposed
mapping strategies for each tasking model. The results show a significant
reduction in the worst-case makespan with respect to existing dynamic map-
ping methods, taking a further step towards the adoption of OpenMP in
real-time systems for an efficient exploitation of future embedded many-core
systems.

4.7.1 ILP Formulation

This section proposes an Integer Linear Programming (ILP) formulation to
solve the problem of optimally allocating OpenMP tasks to threads. The
problem is to determine the minimum time interval needed to execute a given
OpenMP application on m threads, both in the case of tied and untied tasks.
In other words, we seek to derive the optimal mapping of task (or task parts)
to threads so that the task-set makespan is minimized.

5This section was published as a conference paper at AspDAC [30].
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The system model is the same as in the previous sections, with the
following modifications needed to account for the OpenMP task semantics.
An OpenMP application is modeled as an OpenMP-DAG G composed of N
tasks τ1,. . . , τN. Each task τi is composed of ni parts Pi,1,. . . , Pi,ni. The Worst-
Case Execution Time (WCET) of part Pi,j of task τi is denoted as Ci,j. The
total number of threads where tasks can be executed on a multi-core platform
is denoted as m.

4.7.1.1 Tied tasks
The optimal allocation problem for tied tasks is modeled by starting from the
set of tasks τ1,. . . , τN and by adding a sink task τN+1 with a single task part
having null WCET (i.e., CN+1,1 = 0) and with incoming edges from the task
parts without any successors in the original OpenMP-DAG.

The starting time of τN+1 corresponds to the minimum completion time
of the considered application; hence it represents our minimization objective.

Input parameters: (1) m: number of threads available for execution;
(2) N: number of tasks in the system; (3) Ci,j: WCET of the j-th part of task τi;
(4) G = (V, E): DAG representing the structure of the OpenMP application;
(5) D: relative deadline of the OpenMP-DAG; (6) succi,j: set of immediate
successors of part Pi,j of τi; (7) reli: set of tasks having a relative relationship
with τi (either as antecedents or descendants).

Problem variables: (1) Xi,k in {0,1}: binary variable that is 1 if task τi is
executed by thread k, 0 otherwise; (2) Yi,j,k in {0,1}: binary variable that is 1
if the j-th part of task τi is executed by thread k, 0 otherwise; (3) ψi,j: integer
variable that represents the starting time of part Pi,j of task τi (i.e., its initial
offset in the optimal schedule); (4) ai,j,w,z,k, bi,w,k in {0,1}: auxiliary binary
variables.

Objective function: The objective function aims to minimize the starting
time of the dummy sink task τN+1: min ψN+1,1 and represents the minimum
makespan. A scheduling can be declared feasible if the minimum makespan
is ψN+1,1 ≤ D.

Initial Assumptions: (i) The first part of the first task must begin at time
t = 0: ψ1,1 = 0; (ii) The first task is executed by thread 1:

X1,1 = 1

X1,k = 0 ∀k ∈ {2, . . . ,m}
Y1,j,1 = 1 ∀j ∈ {1, . . . , n1}

Y1,j,m = 0 ∀j ∈ {1, . . . , n1} ,∀k ∈ {2, . . . ,m}
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Constraints

1. Each task is executed by only one thread:

m∑
k=1

Xi,k = 1 ∀i ∈ {1, . . . , N}

This constraint enforces the tied scheduling clause, i.e., for each task τi,
only one binary variable Xi,k is set to 1 among the m variables referring
to the available threads.

2. All parts of each task are allocated to the same thread:

ni ·Xi,k =

ni∑
j=1

Yi,j,k ∀i ∈ {1, . . . , N} , ∀k ∈ {1, . . . ,m}

This constraint establishes the correspondence between the Xi,k and
Yi,j,k variables.

3. All precedence requirements between task parts must be fulfilled:

∀i, ω ∈ {1, . . . , N + 1} , ∀j ∈ {1, . . . , ni} ,
∀z ∈ {1, . . . , nw} |Pω,z ∈ succi,j ,

ψi,j + Ci,j ≤ ψw,z.

For each pair of task parts, if a precedence constraint connects them, then
the latter cannot start until the former has completed execution. Notice
that this constraint also applies to the sink task τN+1.

4. The execution of different task parts must be non-overlapping:

∀i, ω ∈ {1, . . . , N} ,∀j ∈ {1, . . . , ni} ,∀z ∈ {1, . . . , nw} ,
∀k ∈ {1, . . . ,m} |(ω 6= i) ∨ (j 6= z),

(Yi,j,k = 1 ∧ Yw,z,k = 1)⇒
(ψi,j + Ci,j ≤ ψw,z ∨ ψw,z + Cw,z ≤ ψi,j)

In other terms, if two task parts are allocated to the same thread, then
either one finishes before the other begins, or vice versa. This constraint
can be written as:
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∀i, ω ∈ {1, . . . , N} , ∀j ∈ {1, . . . , ni} ,∀z ∈ {1, . . . , nw} ,
∀k ∈ {1, . . . ,m} |(ω 6= i) ∨ (j 6= z),

ψi,j + Ci,j ≤ ψw,z +M(2 + aa,j,w,z,k − Yi,j,k − Yw,z,k)
ψw,z + Cw,z ≤ ψi,j +M(3− aa,j,w,z,k − Yi,j,k − Yw,z,k)

where M is an arbitrarily large constant. Indeed, if ai,j,w,z,k = 1, then
the first inequality is always inactive, while the second one is active only
if Yi,j,k = 1 and Yw,z,k = 1. Similarly, if ai,j,w,z,k = 0, then the first
inequality is active only if Yi,j,k = 1 and Yw,z,k = 1, while the second
one is always inactive.

5. The Task Scheduling Constraint 2 (TSC 2) as described in Chapter 3
must be satisfied:

∀i,ω ∈ {1, . . . , N} , i 6= w, Tw /∈ reli, ∀k ∈ {1, . . . ,m} ,
(Xi,k = 1 ∧Xw,z = 1)⇒

(ψi,ni + Ci,ni ≤ ψw,1) ∨ (ψw,nw + Cw,nw ≤ ψi,1).

This constraint imposes that one task cannot be allocated to a thread where
another task that is neither a descendant nor an antecedent of the considered
task is suspended. This is equivalent to saying that if two tasks not related
by any descendance relationship are allocated to the same thread, then one of
them must have finished before the other one begins. Therefore, the last task
part of either task plus its WCET must be smaller than or equal to the starting
time of the first task part of the other one. As for constraint (iv), it can be
rewritten as:

∀i,ω ∈ {1, . . . , N} , i 6= w, Tw /∈ reli, ∀k ∈ {1, . . . ,m} ,
ψi,ni + Ci,ni ≤ ψw,1 +M(2 + bi,w,k −Xi,k −Xw,k)

ψw,nw + Cw,nw ≤ ψi,1 +M(3− bi,w,k −Xi,k −Xw,k).

Note that all constraints [except constraint (iii)] need not be applied to τN+1.

4.7.1.2 Untied tasks
The ILP formulation proposed for tied tasks can be applied for untied tasks
with the following modifications. The initial assumption (ii) is replaced as
follows: Y1,1,1 = 1.
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Since different parts of the same task are allowed to be executed by
different threads, constraints (i) and (ii) are replaced by:

m∑
k=1

Yi,j,k = 1∀i ∈ {1, . . . , N},∀j ∈ {1, . . . , ni}

and the variables Xi,k are no longer needed. Finally, constraint (v) does not
apply for untied tasks and thus the auxiliary variables bi,w,k are not needed.

4.7.1.3 Complexity
The problem of determining the optimal allocation strategy of an OpenMP-
DAG composed of untied tasks has a direct correspondence with the
makespan minimization problem of a set of precedence-constrained jobs (task
parts in our case) on identical processors (threads in a team in our case). This
problem, also known as job-shop scheduling, has been proven to be strongly
NP-hard by a result of Lenstra and Rinnooy Kan [18]. The complexity of the
problem for the tied tasks cannot be smaller than in the untied case. Indeed,
when each task has a single task part, the problem for tied tasks reduces to
that for untied tasks.

In the presented ILP formulations for both the tied and untied tasks, the
number of variables and the number of constraints grow asO(N2p2m), where
p = maxi=1,...,N ni.

Given the problem complexity and poor scalability of the ILP formula-
tion, the next section proposes an efficient heuristic for providing sub-optimal
solutions within a reasonable amount of time.

4.7.2 Heuristic Approaches

In the context of production scheduling, several heuristic strategies have
been proposed to solve the makespan minimization problem of precedence
constrained jobs on parallel machines [20, 24]. More specifically, different
priority rules have been proposed in the literature to sort a collection of
jobs subject to arbitrary precedence constraints on parallel machines. Such
ordering rules allow selecting the next job to be executed in the set of ready
jobs.

The ordering rules that have been shown to perform well in the context of
parallel machine scheduling are [20, 24]:

1. Longest Processing Time (LPT): The job with the longest WCET is
selected;
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2. Shortest Processing Time (SPT): The job with the shortest WCET is
selected;

3. Largest Number of Successors in the Next Level (LNSNL): The job
with the largest number of immediate successors is selected;

4. Largest Number of Successors (LNS): The job with the largest number
of successors overall is selected;

5. Largest Remaining Workload (LRW): The job with the largest work-
load to be executed by its successors is selected.

We build upon such results to make them applicable to the considered
problem. At any time instant, the set of ready jobs of a given instance of an
OpenMP-DAG corresponds to the set of task parts that have not completed
execution and whose precedence constraints are fulfilled.

This section presents an algorithm for allocating tied and untied task
parts on the different threads following one of the above-mentioned ordering
criteria, such that the partial ordering between task parts is respected.

4.7.2.1 Tied tasks
Algorithm 4.3 instantiates the procedure for the case of tied tasks, for which
existing heuristic strategies cannot be directly applied. The algorithm takes
the structure G of an OpenMP-DAG and the number of available threads
m as inputs, and it outputs a heuristic allocation of tied OpenMP tasks
to threads.

The idea behind the algorithm is to allocate ready task parts to the first
available thread, following a pre-determined criterion to choose among ready
tasks, while enforcing the specific semantics of the OpenMP tasking model.
First, a list R of ready task parts is initialized with P1,1, and an array L of
size m with null initial values is used to store the last idle time on each thread
(lines 2–3). The while loop at lines 4–25 iterates until all task parts have
been allocated, i.e., until the size of list A, which contains the allocated jobs,
reaches the total number of parts in the task-set. At each iteration, a new
task part is allocated to one of the threads. Specifically, at line 5, the index
k of the earliest available thread is determined by function FirstIdleThread.
Then, the procedure NextReadyJob returns the ready task part Pi,j selected
according to one of the ordering rules described above. The allocation of the
selected task part must always respect TSC 2. Hence, any time the first part of
a new task is selected, the function must check its descendance relationships
with the tasks currently suspended on thread k, stored in the list Sk. If Pi,j

is the first part of τi (line 7), then it is allocated on core k; otherwise, it is
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Algorithm 4.3 Heuristic allocation of an OpenMP application comprising tied tasks
1: procedure HEURTIED(G,m)
2: A← ∅;R← P1,1

3: L← ARRAY (m, 0) : S ← ARRAY(m, ∅)
4: while SIZE(A)! =

∑N
i=1ni do

5: k ← FIRSTIDLETHREAD(L)
6: Pi,j ← NEXTREADYJOB(k,R, Sk, G)
7: if j == 1 then
8: θi ← k
9: if j! = ni then
10: Sk ← APPEND(i, Sk)
11: end if
12: else if j == ni then
13: Sk ← REMOVE (i, Sk)
14: end if
15: ψi,j = max(Lθi , ψi,j);Lθi ,← Lθi + Ci,j
16: A← APPEND (Pi,j , A);R← REMOVE (Pi,j , R)
17: for P k,z|(Pi,j , Pk,z) ∈ E do
18: if ψk,z < ψi,j + Ci,j then
19: ψk,z ← ψi,j + Ci,j ;Fk,z = Fk,z + 1
20: if F k,z == SIZE(INEDGESk,z) then
21: R← APPEND (Pk,z, R)
22: end if
23: end if
24: end for
25: end while
26: return maxmi=1Li
27: end procedure

allocated on thread θi, according to the tied scheduling clause. Also, if that
task part is not the final one (line 9), τi is appended to the list of tasks currently
suspended on thread k. Otherwise, if Pi,j is the final part of τi (line 12), τi can
be removed from the list of tasks currently suspended on thread k. In both
cases, the starting time of Pi,j is updated, as well as the last idle time on
thread k (line 15). In addition, Pi,j is added to the list of allocated jobs and
removed from the list of ready jobs (line 16). Once Pi,j has been allocated,
other jobs may become ready. All the successors of Pi,j are scanned and an
internal counter (Fk,z) is incremented for each vertex (for loop at lines 17–
24). Once the counter reaches the number of its immediate predecessors, the
task part may be appended to the list of ready vertices (line 21). Finally, the
makespan corresponding to the generated allocation is returned. At the end of
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the algorithm, ψi,j stores the starting time of any part Pi,j in the final schedule,
and θ stores the mapping of tasks to threads.

The algorithm runs in polynomial time in the size of the task-set;

specifically, the time complexity is O

((∑N
i=1 ni

)2
)

.

4.7.2.2 Untied tasks
Algorithm 4.3 can be applied also in the case of untied tasks with some
simplifications. In particular, the function NextReadyJob does not need to
check the validity of TSC 2. Hence, the array S is not required, and all the
operations on S at lines 7–14 do not need to be performed. On the other
hand, the algorithm must keep track of the thread associated to each task part
(instead of each task).

4.7.3 Integrating Interference from Additional RT Tasks

We now generalize the static setting by considering a set of n OpenMP appli-
cations modeled as a collection of OpenMP DAGs Γ = {G1,. . . ,Gn}. Each
DAG is released sporadically (or periodically) and has a relative deadline Di,
which is constrained to be smaller than or equal to its corresponding period
(or inter-arrival time) Ti.

We assume that parts of each tasks are statically partitioned to the m
available threads. At any time instant, the scheduler selects among the ready
task parts the one that should be executed by a given thread according
to partitioned fixed-priority preemptive scheduling. In addition, we assume
that OpenMP applications are statically prioritized, i.e., each DAG Gi is
associated with a unique (fixed) priority that is used by the scheduler to select
which task parts should be executed at any time instant by any of the threads.

In order to compute an upper-bound on the response time Ri of a given
OpenMP-DAGGi, we proceed by computing an upper-bound on the response
time of each task part in the OpenMP-DAG, following a predefined order
dictated by any topological sorting of the DAG. At each step, the response
time of the considered vertex is computed considering all its immediate
predecessors, one at a time. A safe upper-bound on the response time of the
vertex under analysis will be selected as the maximum of such values. The
maximum response time among vertices without successors will be selected
as upper-bound to the response time of the DAG-task Gi.
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Figure 4.8 Tasks example.

4.7.4 Critical Instant

We hereafter prove that the synchronous periodic arrival pattern does not
represent the worst-case release sequence for the OpenMP-DAG task model
assumed. Consider a task-set composed of two OpenMP-DAG tasks G1 and
G2, whose structure and parameters are illustrated in Figure 4.8. The figure
also reports the static allocation of task parts to threads: parts P1,1, P1,2, P1,4,

and P2,1 are allocated to thread m1, while part P1,3 is allocated to thread m2.
We can immediately see that R1 = 7, as G1 is the highest priority RT

task in the system. In order to compute the response time of G2, we focus on
thread m1 and first consider the synchronous periodic arrival pattern for G1,
which produces the schedule in Figure 4.9a and yields a response time of 21
time units for G2. However, if we consider the release pattern in Figure 4.9b,
where the release of G1 has an offset of two time units, we observe that the
response time of G2 becomes equal to 23.

This example shows that it is very difficult to exactly quantify the inter-
ference a task may suffer from higher-priority tasks in the worst-case. This is
mainly due to the precedence constraints between parts of the same tasks, and
to the fact that any vertex is allowed to execute on its corresponding thread
only when all its predecessors (possibly allocated to different threads) have
completed their execution. In order to overcome these problems, we derive
a safe upper-bound on the response time of a given task by considering the
densest possible packing of jobs generated by a legal schedule in any time
interval. Specifically, we consider a pessimistic scenario (see Figure 4.9c):

• the first instance of a higher-priority task is released as late as possible;
• subsequent instances are released as soon as possible;
• higher-priority jobs are considered as if precedence constraints were

removed (their WCET is “compacted”).
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Figure 4.9 Different release patterns for the example of Figure 4.8. (a) represents the
most optimistic case, while (c) the most pessimistic, i.e., yelding to the highest WCET.
(b) represents an intermediate case.

4.7.5 Response-time Upper Bound

Algorithm 4.4 computes an upper-bound on the response time of an OpenMP-
DAG by considering the above-described pessimistic scenario leading to the
densest possible packing of higher-priority task parts:

The function SELFINTERFERENCE calculates the self-interference suf-
fered by task part Pk,i as the sum of the WCETs of all parts Pk,j belonging to
the same task and such that:

1. they are allocated to the same thread as Pk,i;
2. there is no path starting at Pk,i that can reach Pk,j ;
3. there is no path starting at Pk,j that can reach Pk,i.

With the above algorithm in place, different heuristics can be proposed to find
a feasible allocation of task parts to threads/cores. Among the ones we tried,
we found that the best schedulability performances are obtained with a Best
Fit approach that works as follows:

• It assigns RT tasks in non-increasing priority order, i.e., starting from
the highest priority task and moving towards lower priority ones.
• For each task it defines a topological order for all task parts.
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Algorithm 4.4 Upper-bound on the response time of an OpenMP-DAG by considering
the densest possible packing of higher-priority task parts

1: procedure DENSESTPACKINGALG(Gk)
2: σ→ TOPOLOGICALORDER(Gk)
3: for Pk,i ∈ σ from source to sink do
4: Rmax = maxj∈PRED(k,i)Rk,j
5: S = SELFlNTERFERENCE(k, i)
6: R← Ck,i + S
7: Rprev ← 0
8: while R 6= Rprev do
9: Rprev ← R
10: R← Ck,i + S
11: for Ph,j such that h < k and θh,j == θk,i do

12: R← R+
⌈
Rprev+Rh,j−Ch,j

Th

⌉
Ch,j

13: end for
14: end while
15: If Rmax +R > Dk then
16: sched← 0
17: break
18: else
19: sched← 1
20: Rk,i ← Rmax +R
21: end if
22: end for
23: return {sched,Rk,sink}
24: end procedure

• Following the topological order, each task part is assigned to the core
that minimizes its partial response time, i.e., the response time of the RT
task until the considered task part.
• If any of the considered task parts has a partial response time that

exceeds its relative deadline, the algorithm fails, declaring the RT
task-set not schedulable.

The partial response time of each task part can be easily computed using
Algorithm 4.4, executing the operations within the for loop at line 3. Once
the selection is made for a task part, there is no need to recheck the
schedulability of the parts already assigned belonging to higher priority
tasks, since this last assignment does not interfere with them. However, it
is necessary to reconsider the task parts belonging to the same RT task that
may experience an increase in the interference. The only task parts that may
be affected by the last task part assigned are those that have no precedence
constraints with it. For these ones, we re-compute their partial response-time
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after the new assignment. Since there is no backtracking in this case, the
complexity of the heuristic remains reasonable, at the penalty of some added
pessimism.

4.8 Scheduling for I/O Cores

This paragraph briefly describes the scheduler adopted at host level, i.e., in
the I/O cores.

According to system requirements, the OS running on the host proces-
sor must be Linux. Moreover, the Linux kernel must be patched with the
PREEMPT_RT patch6. This is an on-going project supported by the OSADL
association7 to add real-time performance to the Linux kernel by reducing the
maximum latency experienced by an application, mainly through preemptible
spinlocks and in-thread interrupt management (See also essential work in
[25–38]). The patch makes the system more predictable and deterministic;
however, it often increases the average latency. Currently, the patch only par-
tially works on the reference platform due to missing support for SMP in the
Linux kernel; full support will be added during the next months. Concerning
the scheduling policy, the OS must provide a fixed-priority preemptive FIFO-
scheduling algorithm. Therefore, the basic scheduling algorithm will be the
SCHED_FIFO policy specified by the POSIX standard. The optional require-
ment R5.21 suggests to have a Linux kernel higher than 3.14 for investigating
potential benefits given by the dynamic-priority SCHED_DEADLINE Linux
scheduler. This possibility will be explored at a later stage of the project.
Access to shared resources in the host cores is handled through the Priority
Inheritance (PI) policy provided by the Linux kernel.

4.9 Summary

In this chapter, we described the design choices related to the implementation
of a partitioned scheduler for allocating the computing resources to the
different threads in the system. In particular, we detailed the thread model
adopted in the project, and the local scheduler adopted at core level, based on
fixed thread priorities.

6PREEMPT_RT Linux patch, https://rt.wiki.kernel.org
7OSADL, Open Source Automation Development Lab, http://www.osadl.org/
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Such a scheduler has then been enhanced with the enforcement of a
limited pre-emption scheduling policy that corresponds to the execution
model supported by the OpenMP tasking model, as well as allowing increas-
ing the predictability of the analysis, without sacrificing the schedulability.
According to the limited pre-emption scheduling model, each thread can be
pre-empted only at particular pre-emption points. The framework provides
a method to compute the length of the largest non-preemptive region that
can be tolerated by each thread (at each different priority). Then, threads
execute along non preemptive regions. In a generic model such as the one
introduced in this chapter, this means inserting the minimum possible number
of preemption points such that the schedulability of higher priority thread is
not affected. Of course, specifying this model so that it adheres to OpenMP
semantics means that the identification of these preemption points exploits
information inherited from the OpenMP task semantics, i.e., OpenMP TSPs
will be used as potential candidates.

We then described the implementation of an enhanced global scheduler
with migration support. Such a scheduler is integrated with the OpenMP
dynamic mapping policy to allow for a work-conserving resource allocation
of computing resources. The scheduler adopts a cluster-wide ready queue
where threads are ordered according to their priorities. Preemptions are
allowed only at task-part boundaries when a TSP is reached. TSPs are also
natural polling points to deal with new incoming offloads without requiring
interrupts.

The task model adopted, namely the cp-task model, generalizes the classic
sporadic DAG task model by integrating conditional branches. The topologi-
cal structure of a cp-task graph has been formally characterized by specifying
which connections are allowed between conditional and non-conditional
nodes. Then, a schedulability analysis has been derived to compute a safe
upper-bound on the response-time of each task in pseudo-polynomial time.
Besides its reduced complexity, the proposed analysis has the advantage
of requiring only two parameters to characterize the complex structure of
the conditional graph of each task: the worst-case workload and the length
of the longest path. Algorithms have also been proposed to derive these
parameters from the DAG structure in polynomial time. Simulation exper-
iments carried out with randomly generated cp-task workloads and real
test-cases clearly showed that the proposed approach is able to improve over
previously proposed solutions for tightening the schedulability analysis of
sporadic DAG task systems. The first formulation of the analysis considered
a full-preemption model (see [18]). Then, it has been extended to limited
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preemptive scheduling [24], and, finally, it has been specialized also for
non-conditional DAGs [20, 29].

In this chapter, two methods have been proposed to compute the lower-
priority interference: (1) a pessimistic but easy-to-compute method, named
LP-max, which upper bounds the interference by selecting the NPRs with
the longest worst-case execution time; and (2) a tighter but computationally-
intensive method, named LP-ILP, which also takes into account precedence
constraints among DAGs nodes in the analysis. Our results demonstrate
that LP-ILP increases the accuracy of the schedulability test with respect
to LP-max when considering DAG-based task-sets with different levels of
parallelism.

The chapter then proposed an ILP formulation to derive an optimal static
allocation compliant with the OpenMP4 tied and untied tasking model. With
the objective of reducing the complexity of the ILP solver, five heuristics
have been proposed for an efficient (although sub-optimal) allocation. Results
obtained on both randomly generated task-sets and the 3DPP application
(from the avionics domain) show a significant reduction in the worst-case
makespan with respect to an existing schedulability upper-bound for untied
tasks. Moreover, the proposed heuristics perform very well, closely matching
the optimal solutions for small task-set, and outperforming the best feasible
solution found by our ILP (after running the solver for a certain amount of
time) for large task-sets and the 3DPP.
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This chapter focuses on the analysis of the timing behavior of software
applications that expose real-time (RT) requirements. The state-of-the-art
methodologies to timing analysis of software programs are generally split
into four categories, referred to as static, measurement-based, hybrid, and
probabilistic analysis techniques. First, we present an overview of each of
these methodologies and discuss their advantages and disadvantages. Next,
we explain the choices made by our proposed methodology in Section 5.2
and present the details of the solution in Section 5.3. Finally, we conclude the
chapter in Section 5.4 with a summary.

5.1 Introduction

Most of the timing analysis tools focus only on determining an upper-bound
on the Worst-Case Execution Time (WCET) of a program or function code
that runs in isolation and without interruption. In other words, these tools
do not consider all the interferences that the execution of the analyzed code
may suffer when it runs concurrently with other tasks or programs on the
same hardware platform. They typically ignore all execution interferences
due to the contention for shared software resources (e.g., data shared between
several tasks) and shared hardware resources (e.g., shared interconnection
network)1 [1]. Interferences from the operating system (OS) which frequently
re-schedules and interrupts the programs are also ignored by WCET ana-
lyzers. All these interactions between the analyzed task, the OS, and all the

1Note that the OTAWA timing analysis tool is able to analyze parallel code with
synchronization primitives [1].
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other tasks running in the system are assessed separately and sometimes they
are incorporated into a higher-level schedulability analysis. For the timing
requirements to be fulfilled, it is neither acceptable nor realistic to ignore
these sources of contention and interference at the schedulability-analysis
level.

WCET analysis can be performed in a number of ways using different
tools, but the main methodologies employed can be classified into four
categories:

1. Static analysis techniques
2. Measurement-based analysis techniques
3. Hybrid analysis techniques
4. Measurement-based probabilistic analysis techniques

Note that the first three methodologies are usually acknowledged as equally
important and efficient as they target different types of applications. In
addition, they are not comparable in the sense that one technique has not
been proven to dominate the others. The fourth technique is more recent and
thus fewer results are available.

Measurement-based techniques are suitable for software that is less time-
critical and for which the average-case behavior (or a rough WCET estimate)
is more meaningful or relevant than an accurate estimate like, for example,
in systems where the worst-case scenario is extremely unlikely to occur. For
highly time-critical software, where every possible execution scenario must
be covered and analyzed, the WCET estimate must be as reliable as possible
and static or hybrid methods are therefore more appropriate. Measurement-
based probabilistic analysis techniques are also designed for safety-critical
systems to derive safe estimated execution time bounds, but they are not yet
sufficiently mature to report on their efficiency and applicability. Indeed, a
consensus is still to be reached in the research community on this matter.

For the execution time of a single sequential program run in isolation,
Figure 5.1 shows how different timing estimates relate to the WCET and best-
case execution time (BCET). The example program has a variable execution
time that depends on (1) its input parameters and (2) its interactions with the
system resources. The darker curve shows the actual probability distribution
of its execution time; its minimum and maximum are the BCET and WCET
respectively. The lower grey curve shows the set of execution times that
have been observed and measured during simulations, which is a subset
of all executions; its minimum and maximum are the minimal measured
time and maximal measured time, respectively. For both static analysis tools
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Figure 5.1 Example distribution of execution time (picture taken from [2]).

and measurements-based tools, in most cases the program state space and
the hardware complexity are too large to exhaustively explore all possible
execution scenarios of the program. This means that the measured times are
likely to be optimistic and the estimated times are likely to be pessimistic –
i.e., the measured times will in many cases overestimate the actual BCET
and underestimate the actual WCET, while the approximated estimated times
will in many cases underestimate the actual BCET and overestimate the actual
WCET.

The next four subsections introduce each of the four timing-analysis
methodologies and discuss their potential advantages and disadvantages.

5.1.1 Static WCET Analysis Techniques

Static WCET analysis is usually performed in three conceptual and possibly
overlapping phases.

1. A flow analysis phase in which information about the possible program
execution paths is derived. This step builds a control flow-graph from
the given program with the aim of identifying the worst path (in terms
of execution time).

2. A low-level analysis phase during which information about the execu-
tion time of atomic parts of the code (e.g., instructions, basic blocks, or
larger code sections) is obtained from a model of the target architecture.

3. A final calculation phase in which the derived flow and timing informa-
tion are combined into a resulting WCET estimate.

Flow analysis mostly focuses on loop bound analyses, hence upper-bounds
on the number of iterations in each looping structure must be known to
derive WCET estimates. Similarly, recursion depth must also be bounded.
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Automatic methods to find these bounds have been proposed by the research
community but for many available tools, some annotations on the maximum
number of iterations in a loop must be provided manually in the code of
the tasks by the application developer. Another purpose of flow analysis is
to identify infeasible execution paths, which are paths that are executable
according to the control-flow graph but are not feasible when considering
the semantics of the program and the possible input data values. Discarding
unfeasible paths at an early stage of the analysis considerably reduces the
search space when trying to identify the longest path.

Low-level analysis methods typically use models of all the hardware
components and their arbitration policies, including CPU caches, cache
replacement policies, write policies, instruction pipeline, memory bus and
their arbitration policies, etc. These models are typically expressed in the
form of complex mathematical abstractions for which a worst-case operation
can be estimated.

Pros: There are a few advantages of using static analysis techniques that rely
on mathematical models.

• It eliminates the need for having the actual hardware available, which
removes the cost of acquiring and setting up the target platform.

• It enables safe WCET upper-bounds to be derived without running the
program on the target platform while still considering the influence of
the state changes in the underlying hardware [3]. State changes include,
e.g., a cache line being evicted, a pipeline being totally flushed out, etc.

Cons: On the downside, we shall note the following drawbacks.

• These approaches rely heavily on having an accurate model of the
timing behavior of all the target hardware components and manage-
ment policies, including modeling features like pipelines and caches
that substantially affect the execution time of the task being executed.
Although the embedded market used to be traditionally dominated by
simple and predictable processors (which used to be moderately “easy”
to model and allowed for deriving safe and tight bounds), with the
increased computational needs of modern embedded systems, designers
have moved to more complex processors which are now mainly designed
for performance and not for predictability. For this new generation of
processors, designing an accurate hardware model is very challenging,
as all the intricacies contributing to the variation in the task execution
times (e.g., caches, pipelines, out-of-order execution, branch prediction,
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automatic hardware prefetching, etc.) should be captured by the model to
provide safe and sufficiently tight bounds. Because it is hardly feasible to
accurately model all these acceleration mechanisms and their operation,
static methods typically forbid their use and are struggling to adapt to
modern hardware architectures.

• Besides the difficulty of modeling all these performance-enhancement
hardware features, it must also be noted that generally, chip manufactur-
ers do not publish the details of their internal workings, which further
complicates/makes impossible the design of an accurate model.

• Although static approaches have the advantage of providing safe WCET
bounds, they can be very pessimistic at times. This is because generally,
each hardware resource is modeled separately, and all the worst-case
estimates are then composed together to form the final WCET bound.
However, at runtime, it is often impossible for all these individual worst-
case scenarios to happen at the same time.

• The hardware model must be thoroughly verified to ensure that it indeed
reflects the target hardware; failing to capture inherent performance
enhancing features may result in overestimations of the execution times,
whereas capturing all system states in a complex machine may lead
to unacceptably long analysis times. Building and verifying the timing
model for each processor variant is expensive, time consuming, and
error prone. Custom variants and different versions of processors often
have subtly different timing behaviors, rendering timing models either
incorrect or unavailable.

It is very important to stress at this point that static analysis techniques
have been designed primarily to analyze simple software codes meant to
run on simple and predictable hardware architectures. These targeted codes
are typically implemented by using high-level programming languages and
by obeying strict and specific coding rules to reduce the likelihood of
programmer error.

The modeling framework adopted by static analysis lends itself to formal
proofs which help in establishing whether the obtained results are safe. Today,
there are several static WCET tools that are commercially available, including
aiT [4] and Bound-T [5]. Note that Bound-T is no longer actively developed
due to both commercial and technical reasons. We redirect the interested
reader to their website (http://www.bound-t.com/) for further details on this
matter. There also exist several research prototypes, including Chronos [6],
developed at National University of Singapore, Heptane [7], developed at
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the French National Institute for Research in Computer Science and Control
(INRIA) IRISA in France, SWEET [8], developed at Mälardalen Real-Time
Research Center (MRTC) in Sweden, and OTAWA [9] from IRIT in France.

5.1.2 Measurement-based WCET Analysis Techniques

The traditional and most common method in the industry to determine pro-
gram timing is by measurements. The basic principle of this method follows
the mantra that “the processor is the best hardware model.” The program is
executed many times on the actual hardware, with different inputs and in
isolation, and the execution time is measured for each run by instrumenting
the source code at different points [10]. Each measurement run exercises only
one execution path throughout the program, and thus for the same set of input
values, several thousands of program runs must be carried out to capture
variations in execution time due to the fluctuation in system states. For those
measurement-based approaches, the main challenge is essentially to identify
the set of input arguments of the application that leads to its WCET.

Pros:

• Measurements are often immediately at the disposal of the programmer,
and are useful mainly when the average case-timing behavior or an
approximate WCET value is of interest.

• Most types of measurements have the advantage of being performed
on the actual hardware, which avoids the need to construct a hardware
model and hence reduces the overall cost of deriving the estimates.

Cons:

• Measurements require that hardware is available, which might not be the
case for systems for which the hardware is developed in parallel with the
software.

• It may be problematic to set up an environment which acts like the final
system.

• The integrity of the actual code to be deployed in the target hardware is
somehow depleted by the addition of the intrusive instrumentation code
to measure the time, i.e., the measurements themselves add to the execu-
tion time of the analyzed program. This problem can be reduced, e.g., by
using hardware measurement tools with no or very small intrusiveness,
or by simply letting the added measurement code (and thus the extra
execution time) remain in the final program. When doing measurements,
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possible disturbances, e.g., interrupts, also have to be identified and
compensated for.

• For most programs, the number of possible execution paths is too large
to do exhaustive testing and therefore, measurements are carried out
only for a subset of the possible input values, e.g., by giving potential
“nasty” inputs which are likely to provoke the WCET, based on some
manual inspection of the code. Unfortunately, the measured times will
in many cases underestimate the WCET, especially when complex soft-
ware and/or hardware are being analyzed. To compensate for this, it is
common to add a safety margin to the worst-case measured timing, in
the hope that the actual WCET lies below the resulting WCET estimate.
The main issue is whether the extra safety margin provably provides a
safe bound, since it is based on some informed estimates. A very high
margin will result in resource over-dimensioning, leading to very low
utilization while a small margin could lead to an unsafe system.

5.1.3 Hybrid WCET Techniques

Hybrid approaches, as the name implies, present the advantages of both static
and measurement-based analysis techniques. Firstly, they borrow the flow-
analysis phase from static methods to construct a control flow-graph of the
given program and identify a set of feasible and potentially worst execution
paths (in terms of execution time). Next, unlike static methods that use mathe-
matical models of the hardware components, hybrid tools borrow their second
phase from measurement-based techniques and determine the execution time
of those paths by executing the application on the target hardware platform
or by cycle-accurate simulators. To do so, the source code of the application
is instrumented with expressions (instrumentation points) that indicate that
a specific section of code has been executed. These instrumentation points
are typically placed along the paths identified in the first phase as leading to
a WCET. The application is then executed on the target hardware platform
or on the simulator to collect execution traces. These traces are a sequence
of time-stamped values that show which parts of the application has been
executed. Finally, hybrid tools produce performance metrics for each part of
the executed code and, by using the performance data and knowledge of the
code structure, they estimate the WCET of the program.

Pros:

• Hybrid approaches do not rely on complex abstract models of the
hardware architecture.
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• They generally provide safe WCET estimates (i.e., higher than the actual
WCET) and those are very often tighter than the estimates returned by
static approaches (i.e., closer to the actual WCET).

Cons:

• The uncertainty of covering the worst-case behavior by the measurement
remains since it cannot be guaranteed that the maximum interference and
the worst-case execution scenario has been experienced when collecting
the traces during the second phase.

• It is required to instrument the application source code, which poses
the same issue of intrusiveness as in measurement-based approaches.
Example tools include Rapitime [11] and MTime [12].

5.1.4 Measurement-based Probabilistic Techniques

With the current hardware designs, the execution time of a given application
depends on the states of the hardware components, and those states depend
in turn on what has been executed previously. A classic example of such
a tight relationship between the application and the underlying hardware
architecture is the execution time discrepancy that can be observed when a
program executes on a processor equipped with a cache subsystem. During
the first execution of the program, every request to fetch instructions and data
results in a cache miss and must be loaded from the main memory. At the
second execution, this information is already in the cache and need not be
reloaded from the memory, which results in an execution time considerably
shorter than during the first run. Because of this dependence to past events, the
set of measured execution times of the same program cannot be seen as a set
of IID (independent and identically distributed) random variables and most
statistical tools cannot be applied to analyze the collected execution traces.

The objective of measurement-based probabilistic techniques is to break
this dependence on past events, so that one can sample the execution behavior
of an application and then derive from the sample probabilistic estimates (of
any parameter) that apply to its overall behavior, under all circumstances
and in all situations. To achieve this goal, researchers are nowadays working
on modifying the hardware components and their arbitration policies to
make them behave in a stochastic manner, without losing too much of their
performance. For example, by replacing the traditional Least Recently Used
(LRU) or Pseudo-LRU (PLRU) cache-replacement policy for a policy that
randomly chooses the cache line to be evicted (and assuming that every cache



5.2 Our Choice of Methodology for WCET Estimation 121

line has the same probability of getting evicted), the time overhead due to
cache penalties and cache line evictions can be analyzed as an IID random
variable with a known distribution. If every source of interference exhibits a
randomized behavior with a known distribution, then the execution time itself
can be analyzed statically.

The current trend in probabilistic approaches is to apply results from the
extreme value theory (EVT) framework to the WCET estimation problem
[12, 13]. In a nutshell, these EVT-based solutions first sample the execution
time of an application by running it over multiple sets of input arguments
on a randomized architecture that is designed to confer a stochastic behavior
on the application runtime. Then, these EVT-based solutions organize the
sample into multiple groups/intervals, analyze the distribution of the local
maxima within these intervals and then estimate how far the execution time
may deviate from the average of that “distribution of the extremes.”

Although considerably new, measurement-based probabilistic techniques
have been the object of tremendous research efforts in the last few years,
most of the breakthroughs in that discipline have been made in the scope of
the European projects PROARTIS [14] and PROXIMA [15].

Pros:

• Provide safe and potentially tighter WCET estimates than static and
hybrid techniques.

• Provide information not only on the WCET of a program but on the
complete spectrum of the distribution of its execution time.

Cons:

• Require modifying the hardware to ensure that the components exhibit
a stochastic behavior.

• As the IID requirement is hardly verified in currently available platforms
(especially COTS platforms), the applicability of measurement-based
probabilistic techniques is limited.

5.2 Our Choice of Methodology for WCET Estimation

As seen in the previous section, there exist several methodologies to estimate
the WCET of an application, each with its own advantages and disadvantages.
Those methodologies fall into the following main categories, namely static,
measurement-based, and hybrid. Here we would like to briefly re-iterate on
why among those four methodologies we decided to use a measurement-
based approach.
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There is currently an evident clash of opinions in the research community
about which methodology prevails over the others. During the last two years
we had the opportunity to debate with partisans of each of these approaches.
It is important to stress that we do not mean to take a side in this book, simply
because we recognize that each approach comes with its own set of strengths
and weaknesses. Our methodology simply uses the one whose downsides
impede as little as possible our objectives. The following subsections summa-
rize our opinion on the matter and present the observations that have driven
our choice towards using a measurement-based technique.

5.2.1 Why Not Use Static Approaches?

In this section, we present some of the reasons why we did not choose static
approaches to timing analysis, but rather opted for a measurement-based
approach. Before going into the details, it is worth mentioning that recent
COTS manycore platforms present complex and sophisticated architectures
such that it is very challenging at design time, if not impossible, to come up
with an accurate model for all the behavioral implications associated with the
possible operational decisions that the system can take at runtime. This claim
holds true even for the most experienced systems designers.

By using hardware platforms such as the Kalray MPPA-256, or
any other platform designed to provide high performance, we argue
that it is practically infeasible to derive WCET estimates by using
static timing analysis techniques.

In theory, it is always possible to extract safe and reliable timing models
and define mathematical abstractions to study the behavior of a deterministic
system. However, we argue that it is practically challenging to define and use
static mathematical models of the considered platforms, mainly because of:

The inherent system complexity: Typical COTS hardware components
are extremely complex. Currently the market of embedded and electronic
components is unarguably driven by the ever-increasing need for higher
performance. The only way to constantly enhance the performance is to
optimize the produced chips and boards by adding all sorts of optimization
features. Optimization is achieved by allowing the system to take and revise
its operational decisions on-the-fly, at runtime, based on the current workload
of the system or any informational data collected about the running appli-
cation and its environment. Since those decisions are taken at runtime, it is
impossible to predict the exact behavior of the system at the analysis time.
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The only option for static tools is to assume that the system will most of the
time be in a worst-case situation, in which the optimization features will have
very little or no effect. This makes static models pessimistic and the produced
timing estimates may not reflect accurately the actual timing behavior of the
system.

The human resources required: An increased system complexity leads to a
longer time-to-model. Developing a draft model of a platform may take up to
several years to reach the desired level of accuracy and be validated. Besides
this fact, our software stack and methodology aim at being platform agnostic
and therefore be applicable to a large set of hardware platforms. To this end,
they should provide a generic abstraction between the application logic and
the system interfaces so that the development costs and efforts are always
reasonable and limited. This is an objective for which the inherent portability
of measurement-based solutions appears to be more appropriate.

Portability: The “rigidity” of static approaches: Using static timing anal-
ysis techniques goes against our goal of developing a flexible and generic
framework which can be “easily” ported to different platforms from various
vendors. This has been a key driver in the development of our timing anal-
ysis methods, in order to increase the exploitation opportunities in multiple
application domains.

The non-availability of the specification details: To devise accurate models,
all the information about the target platform must be available and accurate.
This is not the case in practice. Chip manufacturer generally keep most
information secret, unfortunately.

The complexity of the execution environment: Static timing analysis tools
are designed primarily to focus on applications executed sequentially in
safety-critical embedded systems. Those systems generally provide a very
time-predictable and “inflexible” runtime environment in which every map-
ping and scheduling decision is statically taken at design-time and is then
final. Unlike those systems, the software stack considered in this book offers a
much more complex and dynamic runtime environment composed of multiple
conceptual layers: the code of the RT tasks is executed in parallel by being
fractioned into OpenMP tasks, those tasks are mapped to clusters, then to
threads inside the clusters, and then these threads are scheduled statically or
dynamically on the cores. The dynamicity of the processor resource usage
ensures a decent application throughput (by maximizing the utilization of
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the available computing resources) but it naturally impacts adversely on its
time-predictability.

Traditional hybrid approaches are also not applicable as the com-
plexity of the software stack makes the static control-flow analysis
step impossible.

Since the RT tasks execute in parallel, and even using static mapping
approaches, the total order of execution of task-parts is only determined at
runtime, it is thus infeasible to investigate all possible scenarios at design-
time to identify the worst-case execution flow/path. It is important to re-iterate
that traditional timing analysis techniques have been designed primarily to
analyze “simple” software codes executed on “simple” and predictable hard-
ware architectures, typically implemented by using low-level programming
languages and by obeying strict and specific coding rules to reduce program-
mer’s errors. The framework presented in this book clearly targets much more
complex software applications that exhibit a high degree of flexibility and
dynamicity in their execution.

5.2.2 Why Use Measurement-based Techniques?

In measurement-based approaches, WCET estimations are derived
from values that have been observed during the experimentation.
What about the values that have not been observed? How can we
account for them and be sure that the WCET estimates are reliable?

Critics of measurement-based approaches for estimating the WCET of an
application make a simple yet very valid point. The actual WCET is unknown
and is very likely not to be experienced during testing. Even worse, it is not
even possible to know whether the worst case has been observed or not.
In short, this means that there is no guarantee that such an approach can
forecast the exact value of the WCET. All measurement-based techniques
implicitly infer a WCET from values for which the “distance” from the
actual worst-case is unknown. A direct consequence is that, although those
techniques make predictions based on sophisticated and elaborate computa-
tions, formally speaking, they can never guarantee that their predictions are
100% “safe”. This may be problematic for applications requiring hard RT
guarantees, typically in safety-critical systems for instance.

However, one can note that in many application domains, certifiable
guarantees based on unquestionable and provable arguments are not required.
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For instance, many applications need only “reliable” estimations, in the
sense that one must be able to rely on those values and measure the risk
of them being wrong (through confidence levels provided by the analysis, for
example).

Estimations of the trustworthiness of the produced values (i.e., the con-
fidence in those values) can be expressed through probabilities derived by
statistical tools. Specifically, in our approach, the traces of execution times
collected at runtime are fed into a statistical framework, called DiagXtrm, in
which they are subjected to a set of tests to verify basic statistic hypothe-
ses, such as stationarity, independence, extremal independence, execution
patterns/modes, etc. Depending on the results of those tests, it is determined
whether the EVT can be applied to those traces. If the tests are successful,
the EVT is used to “extrapolate” the recorded execution times and accurately
identify the higher values that have not been observed during testing, but for
which the likelihood of occurrence is not statistically impossible. Besides
this, our framework also provides techniques to assess how “trustworthy”
those EVT estimations really are. This last step is of fundamental importance
to evaluate the quality of the estimations and find out whether confidence can
be placed into the analysis.

Despite all the interesting features provided by the application of EVT
to the WCET determination problem, it has been widely criticized in the
research community. The main argument against it is that the process of
creating the traces (i.e., the execution of an application’s code by a given
hardware platform) is known to be a process which is neither independent nor
identically distributed, which is a prerequisite to the application of the EVT
to a data sample. We believe that this argument, although correct because the
process is de facto not inherently IID, does not allow to conclude on the non-
applicability of the EVT. In our view, being an IID process is not necessary,
provided that the said process behaves as if it were. This is why the EVT has
been applied in so many application domains where it is today recognized to
provide helpful and satisfactory results. EVT is used for instance to predict
the probability distribution of the amount of large insurance losses, day-to-
day market risk, and large wildfires. Needless to say, none of these processes
are truly IID.

Whether this is right or not is disputable and we do not intend to close the
discussion in this chapter. However, we believe that the doubt this casts on
the applicability of the EVT makes this framework worth being investigated
further and hopefully will unveil its true potential. In case we are wrong, we
will hopefully discover why it is not applicable and close the debate that has
been going on already for several years.
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In measurement-based approaches, the integrity of the actual code
to be deployed in the target hardware is somehow depleted by the
addition of the intrusive instrumentation code to measure the time;
in other words, the measurements themselves add an overhead to
the execution time of the analyzed program.

This problem can be reduced, e.g., by using hardware measurement tools with
no or very small intrusiveness, or by simply letting the added measurement
code (and thus the extra execution time) remain in the final program. When
doing this, possible disturbances like interrupts also have to be identified and
compensated for. The intrusiveness of the instrumentation code is discussed
in Section 5.3.5 and we provide efficient solutions to deal with it.

Nearly all the embedded platforms, like the MPPA-256 platform consid-
ered in our experimentations, provide a lightweight and non-intrusive trace
system that enables the collection of execution traces in predefined time
bounds. By using this trace system, we are able to collect meaningful traces
of execution without generating too many disturbances in the regular timing
behavior of the analyzed application. Based on all the experiments conducted
on the Kalray board, we concluded that the time necessary to record a time
stamp is 52 clock cycles. By placing “trace-points” (points in the program
where the current time is recorded) at well-defined places, we can thus easily
subtract the overhead associated with measuring the time itself.

Wrapping things up:

The best candidates for the worst-case timing analysis of the type of work-
loads considered in this book are the measurement-based approaches. Thus,
our proposed methodology relies on timing-related data collected by running
the application on the target hardware. This way, we avoid both the burden of
modeling the various hardware components (which takes considerable effort
and time), as in static timing analysis tools; and the pitfalls and pessimism
associated with the over-approximations resulting from the confidentiality,
and thus the non-availability, of specific information related to the internal
configuration of the components. In addition, the fact that our approach is
not tied to specific hardware infrastructures and application designs allows it
to benefit from a higher flexibility and portability than static timing analysis
methods, and it considerably reduces the time-to-model and time-to-result.
In the next sections, we will discuss the specifics of our method and how
we propose to overcome or at least mitigate the negative aspects inherent to
measurement-based techniques.
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5.3 Description of Our Timing Analysis Methodology

5.3.1 Intrinsic vs. Extrinsic Execution Times

The execution time of any piece of code, e.g., a basic block, a software
function, or an OpenMP task-part, can be seen as composed of two main
terms: the intrinsic execution time spent executing the instructions of the
code, and the stalling time, i.e., the time spent waiting for a shared software
or hardware resource to become available. To understand how timing analysis
is performed in this book, it is fundamental to understand the difference
between these two components. If the analyzed software function does not
have a functional random behavior (i.e., the outcome of evaluating a condition
is never the result of an operation involving randomly generated numbers),
then any input dataset always produces one output (and this output remains
the same no matter how many times the function is executed on the same
input). Further, for a given input dataset, the execution path taken throughout
the function’s code will always be the same. That is, under this assumption
of not involving randomness in the control flow of the analyzed function,
running it over a given set of input data over and over again always results in
executing the exact same sequence of instructions and eventually, it always
produces the same output.

For a given input dataset, we call the “intrinsic execution time” of a func-
tion the time that it takes to produce its output, assuming that all software and
hardware services provided by the execution environment and shared among
different cores are always available, and thus the core running that function
never stalls waiting for one of these resources to become available. That is,
the intrinsic execution time of a function is its execution time when it runs in
isolation, i.e., with no interference whatsoever with the rest of the system on
the shared resources. On a perfectly predictable hardware architecture where
every instruction takes a constant number of cycles to execute, running the
same function in isolation over the same set of input arguments should always
results in the exact same execution time. Although this may sound like a
very strong assumption, we will see that on a platform such as the Kalray
MPPA-256 this property is satisfied. By running a preliminary set of tests
with the same program an arbitrary number of times over the same inputs, we
experienced a variation of its execution time of typically less than 0.1% of
the maximum observed.

For a given input dataset, we call the “extrinsic execution time” of a
function the time that it takes to produce its output, assuming a maximum
interference on all the shared resources. That is, the extrinsic execution time
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of a function is its execution time assuming that all the software and hardware
services provided by the execution environment and shared among the cores
are constantly saturated by concurrent requests from other system compo-
nents. Contrary to the intrinsic execution time, on mainstream multicore
architectures the extrinsic execution time is subject to huge variabilities due
to the high number of processor resources shared amongst software functions.

5.3.2 The Concept of Safety Margins

When testing an application and measuring its execution time, it is very likely,
if not certain, that the (usually very rare) situation where the application
takes its maximum execution time does not occur. This is due to either of
the following reasons:

1. The testing process failed to identify the set of input arguments that takes
the longest execution path throughout the program’s code, i.e., the path
that leads to the WCET.

2. The testing process found the execution path(s) leading to the WCET
but did not generate the maximal possible interference while exercising
those paths. This means that the actual WCET is not observed only
because the interference patterns generated during testing did not put
the application into the worst execution conditions.

Regarding the first case, for most programs, the number of possible execution
paths (in comparison to the high number of possible inputs) is too large to
make exhaustive testing possible and/or realistic. Therefore, measurements
are carried out only for a subset of input values. Typically, the testing process
starts with the identification of a set of potentially “nasty” inputs that are
likely to make the program take the longest execution path throughout its
code and provoke its WCET. This step is typically supervised and based on
some manual inspection of the code. Note that powerful tools exist such as
the Rapita Verification Suite (RVS) that incorporates a code-coverage tool
(RapiCover [16]) to test all parts of a given code and guarantee its full
coverage during testing. We believe that such tools may be employed to help
system designers identify the “worst” input datasets.

The problem of defining the worst input dataset(s) is thus not new, and
to some extent it is independent of the underlying hardware architecture. Of
course, the execution time of a given path depends on the execution time of
each instruction in that path, and therefore is dependent on the architecture,
but the method to search the space of all possible inputs and identify those that
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lead to the longest execution path is platform-agnostic. Since the problem was
already there on single-core architectures, with mature solutions for it, we do
not focus, in this book, on improving this part of the process.

Regarding the second point, it is always assumed that the worst-case
interference is not observed during testing and therefore the maximum exe-
cution time recorded is an under-approximation of the actual WCET. To
compensate for this, it is common to add a safety margin to the measured
WCET, in the hope that the actual WCET lies below the resulting augmented
estimation. The main question that remains open is whether the extra safety
margin provably provides a safe bound, since it is based on some informed
estimates. In principle, a very high margin yields an upper-bound on the
execution time that is likely to be safe (i.e., greater than the actual WCET), but
results in an over-dimensioned system with a low utilization of its resources,
whereas a small margin may lead to an under-estimation of the actual system
(worst-case) needs.

Traditionally, the magnitude of the safety margin applied to the maxi-
mum measured execution time is based on an estimation of the maximum
interference (from the system or from other applications) that has not been
observed during the testing phase but that the analyzed application could
potentially incur at runtime. For single-core systems, this estimation of the
worst-case interference is usually built on past experience. For example, in the
IEC 61508 standard [17] related to functional safety of electrical/electronic/
programmable electronic safety-related systems, to ensure that the working
capacity of the system is sufficient to meet the specified requirements, it is
mentioned that:

“For simple systems an analytic solution may be sufficient, while
for more complex systems some form of simulation may be more
appropriate to obtain accurate results. Before detailed modeling,
a simpler ‘resource budget’ check can be used which sums the
resources requirements of all the processes. If the requirements
exceed designed system capacity, the design is infeasible. Even
if the design passes this check, performance modeling may show
that excessive delays and response times occur due to resource
starvation. To avoid this situation, engineers often design systems
to use some fraction (for example 50%) of the total resources so
that the probability of resource starvation is reduced.”

As explained above, it is a common practice to simply add a margin of 50%
(or any other percentage depending on the user’s preferences and his level
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of confidence in those margins) to the maximum execution time observed.
Unfortunately, on multicore and manycore architectures, experts are not yet
able to safely estimate reliable margins, as there is no prior experience to be
relied upon. Hence, we must build a new body of knowledge and investigate
novel approaches to produce reliable timing estimates and margins, and we
must motivate these estimations and justify why we believe they are reliable.
Our move towards this ambitious goal is described in short in the following
subsection.

5.3.3 Our Proposed Timing Methodology at a Glance

In this book, we devised methods to extract both the intrinsic and extrinsic
execution times. The overall timing analysis methodology consists of four
steps:

Step 1: Extraction of the maximum intrinsic execution time

To measure the maximum intrinsic execution time (MIET), we run the
analyzed task sequentially on one core and we configure the execution envi-
ronment in such a way that no other tasks can interfere with its execution.
That is, everything is done to nullify the interference with other applications
or with the system itself. This way we put the analyzed task in “ideal”
execution conditions in which, in the absence of interference, the time taken
to execute its code can be assumed to be due solely to the execution of its
instructions (without any stalling time). In these conditions, the task to be
analyzed is run multiple times, non-preemptively, over a finite set of input
data. These input data have been pre-selected and identified as particularly
“nasty”, i.e., very likely to make the task take its longest execution path
throughout its code and provoke its WCET. We do not elaborate on how to
select those inputs.

Step 2: Extraction of the maximum extrinsic execution time

The maximum extrinsic execution time (MEET), on the contrary, is obtained
by measuring the time taken to execute the analyzed task in conditions of
“extreme” interference. That is, everything is done to maximize the inter-
ference with other applications and with the system itself. Measuring the
execution time of the analyzed task in those “worst” conditions and over the
“worst” input datasets give an estimation of the maximum execution time that
the task may experience in the presence of other tasks running concurrently.
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Step 3: Extract the execution time after deployment

The MIET and MEET can be considered as lower and upper bounds on the
actual WCET of the analyzed task, since they estimate the WCET in con-
ditions of no and extreme interference, respectively. These two estimations
are useful to the system designers to understand the impact that tasks may
have on each other’s timing behavior. For instance, it may be desirable to
derive a static mapping of the task-parts to the cores in which the task-parts
(the portions of code for which the executions are timed or measured) that
are highly sensitive to interference (i.e., the difference between their MEET
and MIET is large) are mapped to specific cores in a way that they cannot
interfere with each other at runtime.

After taking mapping and scheduling decisions based on the values of the
MIET and MEET, these decisions are implemented and the whole system is
run in its final configuration. Measures are taken again, this time to estimate
the execution time of the tasks in its “final” execution environment, i.e.,
the environment corresponding to the “after-deployment”. Timed traces are
recorded like in the previous step and are passed to step 4.

Step 4: Estimate a worst-case execution time

The traces collected in Step 3 reflect the actual execution time of every task-
part, and from those their individual WCET can be derived or estimated. The
simplest way to proceed is to retain the maximum execution time observed
as the actual WCET. For safety purpose, an arbitrary extra “safety margin”
can be added to that WCET estimation to make it even safer. The magnitude
of the margin depends on how much “safer” the system designers want to be,
but we would recommend using a margin that does not exceed the MEETs of
the tasks (because the MEETs represent the WCET of the tasks in execution
conditions that are unlikely to happen at runtime).

However, instead of arbitrarily choosing a margin, we advocate the use of
statistical methods to analyze the traces and make a more “educated” choice
driven by mathematical assumptions and computations rather than just a “gut
feeling”. In this book, we use DiagXtrm, a complete framework to analyze
timed traces and derive pWCET estimates.

In the next subsections, we describe every step of our methodology.

5.3.4 Overview of the Application Structure

Before we go to the details, let us briefly recall the type of workloads that we
are handling in this book and recap what exactly needs to be measured.
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In the considered system model, the application comprises all the soft-
ware parts of the systems that operate at the user-level and that have been
explicitly defined by the user. The application is the software implementa-
tion (i.e., the code) of the functionality that the system must deliver to the
end-user. It is organized as a collection of RT tasks.

An RT task is a recurrent activity that is a part of the overall system func-
tionality to be delivered to the end-user. Every RT task is implemented and
rendered parallelizable using OpenMP 4.5, which supports very sophisticated
types of dynamic, fine-grained, and irregular parallelisms.

An RT task is characterized by a software procedure that must carry out
a specific operation such as processing data, computing a specific value,
sampling a sensor, etc. It is also characterized by a few (user-defined or
computed) parameters related to its timing behavior such as its WCET, its
period, and its deadline. Every RT task comprises a collection of task regions
whose inter-dependencies are captured and modeled by a directed acyclic
graph, or DAG.

A task region is defined at runtime by the syntactic boundaries of an
OpenMP task construct. For example:

#pragma omp task
{

// The brackets identify the boundaries of the task region
}

Hence, hereafter we refer to task regions as OpenMP tasks. The OpenMP
tasking and acceleration models are described in detail in Chapter 3.

An OpenMP task-part (or simply, a task-part) is a non-preemptible por-
tion of an OpenMP task. Specifically, consecutive task scheduling points
(TSP) such as the beginning/end of a task construct, the synchronization
directives, etc., identify the boundaries of an OpenMP task-part. In the plain
OpenMP task scheduler, a running OpenMP task can be suspended at each
TSP (not between any two TSPs), and the thread previously running that
OpenMP task can be re-scheduled to a different OpenMP task (subject to
the task scheduling constraints).

The DAG of task regions can therefore be further expanded to form
a typically bigger DAG of task-parts. This new graph of task-parts is
called the extended task dependency graph (eTDG) of the RT task.
Figure 5.2 shows the eTDG of an example application. Our objective is to
annotate every node, i.e., task-part, of the eTDG with an estimation of its
WCET and then perform a schedulability analysis of the entire graph to verify
that all the end-to-end timing requirements were met.
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Figure 5.2 Extended task dependency graph (eTDG) of an example application.

5.3.5 Automatic Insertion and Removal of the Trace-points

In this subsection, we discuss how to respectively insert (Subsection 5.3.5.1)
and remove (Subsection 5.3.5.2) trace-points in a given program in an
automatic manner.

5.3.5.1 How to insert the trace-points
To measure the execution time of a task-part, we insert a trace-point at its
entry and exit points. A trace-point is a call to a system function that records
the current timestamp. Therefore, the system will record the time of entering
the task-part (i.e., when its execution starts) and the time at which it exits
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it; the difference between the two straightforwardly gives the time spent
executing the task-part.

Inserting the trace-points into the tasks’ code can easily be done by the
compiler itself, when creating the executable file. Moreover, upon compiling
the code and creating the TDG, the compiler can assign a unique Identifier
(ID) to every task-part. Overall, this ID can be used to define a trace-point
for the task-part associated with an execution time. For example, using the
trace system from the Kalray SDK, we ask the compiler to add the following
trace-points at the beginning and end of every task-part as illustrated in the
code snippet below:

#pragma omp task
{
// The brackets identify the boundaries of the task region

mppa_tracepoint ( psocrates , taskpartID__in ) ;
/* code of the task-part */
mppa_tracepoint ( psocrates , taskpartID__out ) ;

}

These trace-points indicate to the Kalray MPPA runtime environment
that a time-stamp must be recorded each time the execution meets one
of these points (together with the ID of the corresponding task-part). The
first argument (here, “psocrates”) is the name of the “trace-point provider”.
The user defines it to help him organize all its trace-points into groups.
Informally, it can be thought of as a folder name. The second argument is
the name of the trace-point. For every task-part we insert a trace-point called
“taskpartID__in” at the beginning of the task-part and another trace-point
called “taskpartID__out” at the end. We do so because the objective of our
next tool is to find every matching pair “∗__in/∗__out” of trace-points and
compute the difference of timestamps (which naturally corresponds to the
execution time of the task-part).

Once all the trace-points are correctly placed into the source code, the
compiler must create a separate header file “tracepoints.h” in which all the
trace-points are declared and then include that file in all source files in which
trace-points are used (#include “tracepoints.h”).

#ifndef _TRACEPOINTS_H_
#define _TRACEPOINTS_H_
#include "mppa_trace.h"

MPPA_DECLARE_TRACEPOINT(psocrates, taskpartID__in,())
MPPA_DECLARE_TRACEPOINT(psocrates, taskpartID__out, ())

... // more trace-points

#endif
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5.3.5.2 How to remove the trace-points
After the analysis step, when the system is ready to be deployed, it is
preferable to remove all the trace-points in order not to leave some “dead
code.” A code is said to be dead either if it is never executed, or when its
execution does not serve any purpose, like for example taking time-stamps
and not recording them into a file (which would happen if those trace-points
were to be left in the source code when compiling the application to be
deployed). However, removing trace-points is not a benign operation.

To illustrate the problem that may arise from removing the trace-points,
let us consider the following code.

int run_index;
for ( run_index = 0 ; run_index < NB_RUNS ; run_index++ ) {

mppa_tracepoint(psocrates, main__in);
user_main();
mppa_tracepoint(psocrates, main__out);

}

The user_main() function is a call to the main function of the bench-
mark program “statemate.c” provided by (15). If we disable all compiler
optimizations during the compilation phase (this is important and will play
a role later) and run this code 100 times on a single core of a compute
cluster of the Kalray MPPA-256, we observe that the execution time oscillates
consistently between 88492 and 88497 cycles (see Figure 5.3, left-hand side).

Now, let us add to that code a variable x to which we assign an arbitrarily
chosen integer (here, 1587) as shown below:

int x = 1587;
int run_index;
for ( run_index = 0 ; run_index < NB_RUNS ; run_index++ ) {

mppa_tracepoint(psocrates, main__in);
user_main();
mppa_tracepoint(psocrates, main__out);

}

Figure 5.3 Impact of an unused variable on the execution time of an example application.
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It is important to stress that the variable x is never used in the program.
Since all compiler optimizations are disabled, the variable is not removed
from the code by the compiler and is present in the assembly code that it
produces. As seen in the Figure 5.3 (right-hand side), the execution time now
oscillates consistently between 88, 639 and 88, 636 cycles. This means that
the addition of an unused variable to a part of the code which is not even
under analysis adds around 140 cycles to the execution time of the measured
portion of the code.

This increase in the execution time stems from the fact that after the addi-
tion of the line “int x = 1587” to the source code, all subsequent instructions
got offset in the system memory by two times the length of an instruction,
i.e., the line “int x = 1587” translates to two assembly instructions: one for
allocating memory to the variable x and another one for moving the constant
“1587” into it. Therefore, the portion of the code being timed has a different
“memory layout” as it is mapped to the system memory two “instruction-
lengths” further. This in turn impacts on the way the instructions of that part
of the code are mapped at runtime to the instruction cache lines and ultimately
it results in a perceptive difference in the execution time.

A consequence of this phenomenon is that removing the trace-points
after the analysis phase may have for effect to substantially, or at least
noticeably, alter the timing behavior of the application and all its task-parts.
We came up with two potential solutions to this problem. The simpler one is
to leave the trace-points in the code when compiling it for the final release
of the application. Although it is a suitable work-around to the memory-shift
problem described above, most designers are not in favor of having a dead
portion of code, as explained above.

Our second solution is to measure the length, in number of assem-
bly instructions, of the code being executed each time the function
mppa_tracepoint(... ) is called and replace every such call with an equiv-
alent number of NOPs (No Operation assembly instruction). This way neither
the semantic of the code nor the memory layout are altered when removing
the trace-points. We believe this solution to be both feasible and suitable for
use in industrial applications.

5.3.6 Extract the Intrinsic Execution Time: The Isolation Mode

In order to extract the MIET of a task-part, we must start its execution and
make sure that it is isolated from the rest of the system. That is, we must nul-
lify all external interference by turning off every other component that could
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potentially interfere with (and hence delay) the execution of the analyzed
task-part. This is achieved by assigning every task-part of the analyzed real-
time task to the same thread, and thus to the same core of the same cluster,
and then making sure that all the other cores are kept idle. In other words,
under this configuration, the RT task is executed sequentially in a single core.
However, the intention of this phase is to analyze the execution time of each
task-part in isolation, i.e., without suffering interferences, and not the overall
RT task execution time. We call this configuration the isolation mode; the
real-time task is then said to run in isolation.

To setup and enforce this isolation mode, we have implemented a
platform-specific API. The current version has been written for the Kalray
MPPA-256. The API provides a set of easy-to-use functions to configure the
execution environment, as well as a set of global parameters and functions
that are used to make sure that:

1. all the openMP tasks are assigned to a single thread,
2. the IO cores and the cluster cores are in sync so that the environment is

“sanitized” before and after the execution of every openMP task (nothing
runs in the background that could interfere with the execution of the
analyzed task), and

3. additional functions allow the user to perform specific operations, either
before the runtime, such as deciding the memory-mapping and cache-
management policy, or during the runtime, such as invalidating the
instruction or data caches before executing each task-part.

The main objective of the API is to create a controlled environment in which
every task-part is run over a specific set of inputs and is isolated from the rest
of the system so that it incurs minimum interference during its execution.

5.3.7 Extract the Extrinsic Execution Time: The Contention
Mode

To extract the MEET of a task-part, we start the task and interfere as much
as possible with its execution at runtime. The objective of the contention
mode is to create the “worst” execution conditions for the task-parts so
that their execution is constantly suspended due to interference with other
tasks. In this step, for each task-part, we record the maximum execution time
observed under those conditions. This gives us an estimation of the maximum
execution time of each task-part when it suffers interference from other tasks
on the shared resources.
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This contention mode is similar to the isolation mode in that all the task-
parts of the analyzed real-time task are assigned to the same thread, and thus
to the same core within a same cluster, effectively executing the RT task
sequentially. However, contrary to the isolation mode that shuts down all the
other cores of the cluster (thereby nullifying all possible interference within
that cluster), we deploy onto all these other cores small programs called IG,
which stands for Interference Generator. Those programs are essentially tiny
pieces of code that have the sole purpose of saturating all the resources (e.g.,
interconnection, memory banks) that are shared with the task-parts under
analysis. Recall that the objective of the contention mode is to create the
worst execution conditions for the execution of the task-parts, conditions in
which their execution is slowed down as much as possible due to contention
for shared resources.

Implementing the IG that generates the worst possible interference that
a task-part could ever suffer is a very challenging, if not impossible, task.
This is because the exact behavior of the task-part to be interfered with (i.e.,
its utilization pattern of every shared resources and the exact time-instants
of accessing it) should be known, as well as all the detailed specifications
of the platform. Besides, even if that information was known, the execution
scenario causing the maximum interference may be impossible to reproduce.
Rather than concentrating our efforts on creating such a “worst IG”, we have
opted for the implementation of an IG that is “bad enough” and used it as a
proof of concept to demonstrate how large the time-overhead incurred by the
task-parts due to the interference can be.

Our implementation of the IG consists of a single function IG_main that is
executed by a thread dispatched to every core on which the task-parts are not
assigned (recall that the application under analysis is executed sequentially
in a single core). That is, every core that is not running the task-parts runs a
thread that executes IG_main. Essentially, IG_main executes three functions,
namely:

1. IG_init_inteference_process ()
2. IG_generate_interference ()
3. IG_exit_inteference_process ()

The first one is called upon deploying the IG, at the beginning of IG_main,
before the task-parts start to execute and be timed. The second one is the
main function. It creates interference on the shared resources. The call to that
function is encapsulated in a loop that terminates only when the IG_main is
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int* my_array;
inline void IG_init_interference_process()
__attribute__((always_inline));
inline void IG_generate_interference()
__attribute__((always_inline));
inline void IG_exit_interference_process()
__attribute__((always_inline));

explicitly told to stop. Finally, the third function is called when all the task-
parts have been timed and the analysis process is about to end.

Let us now briefly describe our implementation of the IG on the Kalray
MPPA-256. This implementation is provided in a single file, which starts with
the declaration of an array of integer called my_array and declares the three
main functions as described above. The __attribute__((always_inline))
instruction is used to enforce and oblige the compiler to use inlining for
these three methods. The inlining technique is used to waste as little time
as possible jumping from one address to another in the code, as jumping does
not create interference.

Below is a code snippet of the first function “IG_init_interference_
process().”
inline void IG_init_interference_process() {

int array_size = 1024;
// Create an array of Integers. One integer is 4 bytes
my_array = malloc(array_size * sizeof(int));
// Fill the array with numbers.
int cpt = 0;
for (cpt = 0 ; cpt < array_size ; cpt++) {

my_array[cpt] = cpt;
}

}

This function simply allocates memory to my_array (1024 integers) and
fills that memory space with arbitrary values. Note that on the Kalray MPPA-
256, a thousand integers occupy roughly half of the private data cache of a
VLIW2 core in a compute cluster.

The third function, “IG_exit_inteference_process()”, is the simplest as it
only frees the memory space held by my_array as shown below.
inline void IG_exit_interference_process() {

Free(my_array);
}

The second function, “IG_generate_interference (),” is the main one and
a snippet of its code is presented below.

2Very Long Instruction Word.
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inline void IG_generate_interference() {
__builtin_k1_dinval();
__builtin_k1_iinval();

register int *p = my_array;
volatile register int var_read;
var_read = __builtin_k1_lwu(p[0]);
var_read = __builtin_k1_lwu(p[8]);
var_read = __builtin_k1_lwu(p[16]);
var_read = __builtin_k1_lwu(p[24]);
var_read = __builtin_k1_lwu(p[32]);
var_read = __builtin_k1_lwu(p[40]);
var_read = __builtin_k1_lwu(p[48]);
var_read = __builtin_k1_lwu(p[56]);
var_read = __builtin_k1_lwu(p[64]);
var_read = __builtin_k1_lwu(p[72]);
var_read = __builtin_k1_lwu(p[80]);
(...)
var_read = __builtin_k1_lwu(p[1007]);
var_read = __builtin_k1_lwu(p[1015]);
var_read = __builtin_k1_lwu(p[1023]);

}

The function starts by invalidating the content of the data and instruc-
tion caches. Then, it reads every element of “my_array”, starting from the
element K = 0 and moving on iteratively from element K to element ((K+8)
mod 1024), until K reaches 1023. This way, every element of the array is read
exactly once and every two consecutive readings access data that are located
exactly 8 * 4 = 32 bytes apart in the memory (the size of an integer is standard
on the Kalray, i.e., 4 bytes). This is done on purpose knowing that the private
data cache line of every VLIW core in the compute clusters of the Kalray
MPPA-256 is 32 bytes long. Consequently, every reading causes a cache miss
and the value must then be fetched from the 2 MB in-cluster shared memory,
hence it creates traffic on the shared memory communication channels and
potentially interferes with the task-part being analyzed.

By running the task-parts concurrently with these IGs, every request sent
by a task-part to read or write a data in the shared memory is very likely
to interfere with a read request from one of the IGs. We have conducted
experiments on the Kalray MPPA-256 using several use-case applications
to evaluate the magnitude of the increase in the execution time due to this
interference. Depending on the configuration of the board and the memory
footprint of the task-parts and their communication pattern with the memory,
the difference between the maximum execution time observed in isolation
mode and in contention mode is substantial as the execution time of a
task-part may be increased by a factor of 9.
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5.3.8 Extract the Execution Time in Real Situation:
The Deployment Mode

After determining the intrinsic and extrinsic execution times (i.e., the MIET
and the MEET), we communicate them to the mapping and scheduling
analysis tools through the annotation of the TDG of the real-time task. Once
all necessary mapping and scheduling decisions are taken, the application
is run again, but this time in its final production environment. This means
that the platform configuration and mapping and scheduling decisions are
no longer imposed and defined so as to create specific execution conditions.
Then, we collect runtime-timed traces of the task-parts in their final environ-
ment, without any supervision or any attempt to explicitly favor or curb the
execution of the application.

5.3.9 Derive WCET Estimates

As already discussed, the traces collected in the previous step reflect the
actual execution time of every task-part when they run in their final envi-
ronment, under different execution conditions. The objective of this final step
is to derive WCET estimates from those traces. The simplest solution is to
retain the maximum execution time observed during the deployment mode as
the actual WCET and, for safety purposes, add an arbitrary “safety margin”
to that maximum to make it “safer”. The magnitude of the margin depends on
how much “safer” the system designers want to be, but we would recommend
using a margin that does not exceed the MEET. However, instead of arbitrarily
choosing a margin, we advocate the use of statistical methods to analyze the
traces and make a better thought out choice.

The objective of Measurement-Based Probabilistic Timing Analysis
(MBPTA) approaches is to characterize the variability in the execution time
of a program through probability distributions and in particular, they aim
at deriving probabilistic WCET estimates, a.k.a. pWCET. A pWCET is a
probability distribution of the WCET of a program. That is, through MBPTA,
the WCET is no longer expressed as a single value but as a range of values,
each assigned to a given probability of occurrence with the obvious relation:
the higher the value assumed to be the WCET, the lower its probability of
occurrence. Based on this framework system designers are in a position to
somewhat decide on the reliability of the final WCET estimation, simply by
ignoring all values for which the probability of observing an execution time
greater than those exceeds a pre-decided threshold. The EVT is a popular
theoretical tool used by most MBPTA approaches. The EVT aims at modeling
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and estimating better the tail of a statistical distribution, which is de facto
what the MBPTA is trying to achieve when focusing on the pWCET.

Researchers at the French Aerospace Lab (ONERA), in France, recently
proposed a remarkable framework and tool to analyze timed traces and derive
pWCET estimates. The framework is called DiagXtrm [18] and defines a
methodology composed of three main steps:

1. Analyze the traces
2. Derive pWCET estimates using the EVT
3. Assess the quality of the estimations.

Together with the theory and the definition of the methodology, they devel-
oped a tool to diagnose execution time traces and derive safe pWCET
estimates using the EVT. However, the EVT can be applied to a given trace
only if some hypotheses are verified. Testing those hypotheses is the focus of
the first step (“Analysis of the traces”) above.

In a nutshell, for safely applying the EVT and getting reliable pWCET
estimates, one has to check a few hypotheses including for instance station-
arity, short-range dependence, and extreme independence. The stationarity
of a trace reveals whether measurements belong to the same probabilistic
law without knowing it. The independence (short-ranged or between the
extremes) analysis aims at determining whether there are obvious correlations
within the measurements. Systemic effects in a modern hardware platform are
so complex and numerous that it is quite impossible to infer the probability of
happening of an execution time knowing the value of the preceding ones, i.e.,
the execution time of an application cannot be inferred from the execution
times of its previous executions. System non-determinism, coming from
the considered system’s degree of abstraction, knowledge, and randomness
observed in a timed trace motivate the independence of the measurements that
has to be studied at “different scales” (i.e., short-range independences and
independences of the extremes). DiagXtrm implements the most advanced
tests to verify the stationarity hypothesis and measure the degree of correla-
tion between patterns of different lengths within a trace. Thus, it studies both
short-range and distant dependencies between the measurements.

If all the hypotheses are verified, then the EVT is applied to produce
pWCET estimates. These estimates are the result of sophisticated compu-
tations based on parameters that must be carefully set. The user is in charge
of setting those parameters as he wants, and thus has a great influence on the
pWCET estimation process. Note however that the DiagXtrm tool provides
helpful functions to guide the choice of many of those input parameters.
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Finally, the tool features a set of tests to evaluate the quality of the produced
estimates, together with other tests to assess the confidence that all the
hypotheses were verified. We believe that this last phase is fundamental and
is a first step towards building confidence and assessing the reliability of the
pWCET estimates.

5.4 Summary

The analysis of the timing behavior of software applications that expose real-
time requirements and dedicated to execute on the recent COTS manycore
platforms such as the Kalray MPPA-256 raises a number of important issues.
Because a reliable and tight WCET estimation for each task running on
such a platform is a crucial input at the schedulability analysis level, we
showed that it is neither acceptable nor realistic to ignore all the interactions
between each analyzed task, the OS, and all the other tasks running in the
system. Then, depending of the type of workload that is considered, we also
showed that the choice of the methodology to be adopted must be conducted
with care. In this chapter, after presenting an overview of all the possible
methodologies, and after discussing their advantages and disadvantages, we
opted for a measurement-based approach. We explained and motivated this
choice and finally presented the details of our solution. Here, we showed that
both the intrinsic (MIET) and extrinsic (MEET) execution times of each task
are pivotal values to be extracted in order to guide the designer in deriving a
reliable and tight WCET.

References

[1] OTAWA. Available at: http://www.irit.fr/recherches/ARCHI/MARCH/
OTAWA/doku.php?id=doc:computing_a_wcet.

[2] Ermedahl, A., Engblom, J., “Execution Time Analysis for Embed-
ded Real-Time Systems,” eds. Joseph, Y-T., Leung, S. H., Son, I. L.,
Chapman and Hall/CRC – Taylor and Francis Group, 2007.

[3] Lokuciejewski, P., Marwedel, P., Worst-Case Execution Time Aware
Compilation Techniques for Real-Time Systems – Summary and Future
Work (Springer: Netherlands), pp. 229–234, 2011.

[4] AbsInt GmbH. Available at: http://www.absint.com/ait/analysis.htm.
[5] Tidorum Ltd. Available at: http://www.bound-t.com/.
[6] NUS. Available at: http://www.comp.nus.edu.sg/∼rpembed/chronos/.



144 Timing Analysis Methodology

[7] IRISA. Available at: http://www.irisa.fr/alf/index.php?option=com_
content&view=article&id=29&Itemid=&lang=fr.

[8] MRTC. Available at: http://www.mrtc.mdh.se/projects/wcet/sweet/Doc
Book/out/webhelp/index_frames.html.

[9] Kirner, R., Puschner, P., Wenzel, I., “Measurement-based worst-case
execution time analysis using automatic test-data generation.” 4th
Euromicro International Workshop on WCET Analysis, pp. 67–70, 2004.

[10] Rapita Systems Ltd. Available at: http://www.rapitasystems.com/
products/rapitime/how-does-rapitime-work.

[11] Carnevali, L., Melani, A., Santinelli, L., Lipari, G., “Probabilistic Dead-
line Miss Analysis of Real-Time Systems Using Regenerative Transient
Analysis.” In Proceedings of the 22nd International Conference on
Real-Time Networks and Systems, Versaille, pp. 299–308, 2014.

[12] Santinelli, L., Morio, J., Dufour, G., Jacquemart, D., “On the Sustain-
ability of the Extreme Value Theory for WCET Estimation.” 14th Inter-
national Workshop on Worst-Case Execution Time Analysis, Versailles,
pp. 21–30, 2014.

[13] Proartis: Probabilistically Analysable Real-Time Systems. Available at:
http://www.proartis-project.eu/.

[14] Probabilistic real-time control of mixed-criticality multicore and many-
core systems (PROXIMA). Available at: http://www.proxima-project.eu/.

[15] Rapita Systems Ltd. Available at: https://www.rapitasystems.com/
products/rapicover.

[16] The International Electrotechnical Commission. Functional Safety of
Electrical/Electronic/Programmable Electronic Safety-Related Systems
– Part 7, 2nd Edition, Requirement C.5.20 (Performance Modeling),
Geneva, p. 99, 2010. IEC 61508.

[17] Gustafsson, J., Betts, A., Ermedahl, A., Lisper, B., “The Mälardalen
WCET benchmarks – past, present and future.” In Proceedings of the
10th International Workshop on Worst-Case Execution Time Analysis
(WCET’2010) Brussels, Belgium, pp. 137–147, 2010.

[18] Onera. Onera – DiagXTrm, Available at: https://forge.onera.fr/projects/
diagxtrm2.

[19] MTime, Vienna real-time systems group, Available at: http://www.vmar
s.tuwientuwien.ac.at.



6
OpenMP Runtime

Andrea Marongiu1,2, Giuseppe Tagliavini2 and Eduardo Quiñones3

1Swiss Federal Institute of Technology in Zürich (ETHZ), Switzerland
2University of Bologna, Italy
3Barcelona Supercomputing Center, Spain

This chapter introduces the design of the OpenMP runtime and its key
components, the offloading library and the tasking runtime library. Start-
ing from the execution model introduced in the previous chapters, we first
abstractly describe the main interactions among the main actors involved in
program execution. Then we focus on the optimized design of the offload-
ing library and the tasking runtime library, followed by their performance
characterization.

6.1 Introduction

The model assumed in the previous chapters considers the existence of
multiple applications, starting execution on the host processor, and each
one is composed of multiple real-time (RT) tasks which can be sent to the
accelerator with the aim to speed up their execution. This paradigm, com-
monly referred to as offloading, has been widely adopted in many computing
domains from embedded systems to HPC [1, 2]. In the context of the Kalray
architecture (described in Chapter 2), IO cores take on the host role while the
clusters are used as accelerators. Accordingly, an OpenMP-based software
stack with offloading support must leverage both host and acceleration roles.
On the host side, an OpenMP directive (#pragma omp target) is used to
specify a region of code which can be offloaded. Inside a cluster, a pool
of threads is dedicated for the execution of the offloaded workload and the
RTOS (introduced in Chapter 7) is in charge of scheduling the execution of
the threads on the available cores.

145
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The complete software stack to handle the described execution model
is composed of an offloading library and a tasking runtime library. The
offloading library executes on the host and is in charge of initiating offload
sequences to the accelerator. On the accelerator side, the request manager
(RM) is the component in charge to collect offload requests and create pools
of threads (hereafter called jobs as in the OS terminology) to execute them.
Depending on runtime design and hardware specific features, the RM can be
implemented as an RT task (a software component) or may be mapped to a
dedicated core (a hardware component). The tasking runtime library provides
an optimized support for task parallelism on the accelerator and runs on top
of the RTOS. It is further divided into a low-level library (or LL-RTE) [3],
where all the tightly coupled interactions with the RTOS are implemented,
plus a high-level library, where all the management of the tasking constructs
resides.

6.2 Offloading Library Design

Figure 6.1 summarizes the timing diagram (time flows from top to bottom
on the vertical axis) and the interactions between the software blocks pro-
viding the offload support. At the higher level of abstraction, the host sends
request to the RM, which orchestrates the execution of the workload on the
processing elements (PEs).

The host support is implemented as a user-level library that interfaces
OpenMP offloads (expressed at the application level with a target directive)
to the computing clusters. The key features of this library can be summarized
as follows:

• Low-cost offload: As initializing the communication channels between
the host and the offload manager and loading into the cluster shared
memory the binary file containing the OpenMP library (high-level
library + LL-RTE) are costly operations, the host offload library imple-
ments it as a one-time operation that happens at system startup (the
GOMP_init method). Every time the host program encounters a target
directive, this is translated into a call to the GOMP_target function,
which sends a control packet to the offload manager of the target cluster
and then triggers the copy of input data. This handshake procedure is
streamlined to guarantee minimum overhead.

• Asynchronous offload: The offload procedure is asynchronous. After
sending the offload request to the cluster, GOMP_target immediately
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Figure 6.1 Timing diagram of an offloading procedure.

returns to the caller (with the exception of the multi-offload
case described below). The result of the offload computation
can be retrieved by calling a blocking synchronization primitive
(GOMP_target_wait).

• Multi-cluster support: An application can perform offloads on differ-
ent clusters, from 1 up to 16. The initialization is required for each
cluster that is used by the current application. The cluster is specified
by the programmer using the OpenMP syntax (i.e., the device clause of
a target directive).

• Multi-offload support: An application can perform multiple offloads on
the same cluster. At the same time, multiple offloads can coexist on the
same cluster at different priority levels1. The priority level is specified
by the programmer using the OpenMP syntax (i.e., the priority clause),
and it is propagated to the runtime using a parameter of GOMP_target.

The function calls to the offloading runtime are not invoked directly by
the developer, as the OpenMP syntax is used to identify the code and data to
be offloaded. The compiler transforms the offloading OpenMP directives as

1Focusing on the MPPA-256 platform, currently two levels are supported on RTEMS hosts
and four on Linux hosts
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defined in its accelerator model (i.e., target and declare target directives) to
the corresponding offloading runtime calls, as described in Chapter 3.

In our design, the RM is implemented as a persistent RTOS task to be
executed on the accelerator side (i.e., by one of the cluster cores). The RTOS
leverages the notion of a task scheduling point (TSP) to check the availability
of a new offload request and perform the requested actions. At each such
scheduling point, the RTOS can (re)start the execution of the RM itself (if
a new offload has arrived in the meantime and needs to be enqueued to the
ready job list) or another job in the queue, depending on the synchronization
policy adopted. TSPs are naturally identified as synchronization points in
an OpenMP program (see Chapter 3 for more details). The OS provides
synchronization primitives (described in Chapter 7) which can be used to
block one (or more) thread(s) within a job on a certain wait condition, and
the OpenMP runtime invokes these primitives to enforce synchronization.

To reduce the runtime overheads, the metadata for all the supported RTOS
jobs on a cluster (one per priority level) are created and initialized upon the
first call to the RM. The activated jobs execute the GOMP_main function
of the runtime library to initialize the offload support on the cluster side.

6.3 Tasking Runtime

The OpenMP tasking model has been introduced in Chapter 3. Task-based
parallelism offers a powerful conceptual framework to exploit irregular par-
allelism in target applications, and several works have demonstrated the
effectiveness of tasking [4–7]. However, the sophisticated semantics of the
OpenMP tasking execution model are translated into a complex control
code that has to be executed in addition to the application code itself. This
ultimately results in significant time overheads, if the application tasks are not
large enough to hide such overheads. Thus, a performance-efficient design of
a tasking runtime environment (RTE) targeting low-end embedded manycore
accelerators is a challenging task, as embedded parallel applications typically
exhibit very fine-grained parallelism [6, 8], and are thus very sensitive to
time overheads. Moreover, memory overheads are also very relevant in this
context, as embedded architectures feature very limited amounts of fast, on-
chip memory. Allocating runtime support metadata in such memories reduces
time overheads, as the control code executes faster, but reduces the space
available for program data. As the metadata for a tasking runtime might
consume a significant amount of memory, it is necessary to find a good
tradeoff between the implied space and time overheads.
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The applicability of the tasking approach to embedded applications and
embedded manycore accelerators is often limited to coarse-grained parallel
tasks, capable of tolerating the high overheads typically implied in a task-
ing runtime. State-of-the-art tasking runtimes for embedded manycores [6]
succeed in achieving low overheads and enabling high speedups for very
fine-grained tasks, but only for simple flat parallel patterns (i.e., where all
the tasks are created from the same parent task). The main reason for this
limitation lies in a key design choice: only tied tasks are supported by most
RTEs, whereas untied tasks are not supported. If a tied task is suspended (due
to synchronization, creation of another task, etc.), only the thread that initially
owned it is allowed to resume its execution. This clearly significantly limits
the available parallelism when more sophisticated (and realistic) parallel exe-
cution patterns are considered, like nested tasking (for instance, in programs
that use recursion).

Scheduling policies: Another limitation that follows from supporting only
tied tasks is the restricted set of scheduling policies available. Breadth-
first scheduling (BFS) and work-first scheduling (WFS) are the two most
widely used policies for distributing tasks among available threads. Upon
encountering a task creation point: (i) BFS will push the new task in a queue
and continue execution of the parent task and (ii) WFS will suspend the parent
task and start execution of the new task. BFS tends to be more demanding
in terms of memory, as it creates all tasks before starting their execution
(and thus all tasks coexist simultaneously). This is an undesirable property in
general and in particular for resource-constrained embedded systems, which
would make WFS a better candidate. WFS also has the nice property of
following the execution path of the original sequential program, which tends
to result in better data locality [5]. However, when tied tasks are used, BFS is
the only choice in practice, as WFS leads to a complete serialization of task
executions when nested parallelism is adopted. Moreover, it has been shown
that the use of untied tasks significantly reduces the worst case response time
analysis [9].

Task queue: The most widespread design solution to support the OpenMP
tasking execution model is to rely on a centralized task queue. This minimizes
memory footprint for runtime support metadata, which is a must in the
context of embedded platforms. The basic building block of the proposed
design focuses on lightweight support for push and pop operations on such a
centralized queue (upon task creation and extraction, respectively), relying on
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fine-grained locking mechanisms. TSPs are implemented using lightweight
events, which avoids the massive contention implied by active polling (idle
threads on the TSP are put into sleep mode). When a task is created (i.e.,
pushed in the queue), the creator thread sends a signal which wakes up a sin-
gle thread (selected using round-robin). After completing the task execution,
the thread returns into sleeping mode. The described queue is implemented
with a doubly linked list. This data structure allows to push and pop tasks
from the queue and also remove a task in any position of the queue. This is
key for low overhead, as tasks are not constrained to execute in-order (except
when dependencies are specified), so their completion and removal from the
queue is independent of their position. Note that a simple linked list does not
allow this operation.

Untied tasks: The described support is sufficient to show excellent perfor-
mance in the presence of simple flat parallel patterns, where all the tasks
are created from within a single level (i.e., a single parent task), but lacks
the capability of supporting more sophisticated forms of parallelism, like
nested parallel patterns found in programs that use recursion, and for which
the tasking model was originally proposed. Consequently, untied tasks are
not supported by using this basic implementation. Due to the limitations of
tied tasks described previously, the scheduling policy relies on BFS, and
WFS is not supported. In the following, we describe how we extend this
baseline implementation to fully support nested parallel patterns and untied
tasks, while keeping the implementation lightweight and not too memory-
hungry. These both are the key requirements for any implementation suitable
for embedded manycore accelerators. Our main goal is to achieve a compa-
rable efficiency in terms of task granularity (the finer the better) for which
near-ideal speedups are achieved.

Figure 6.2 shows how task suspension works in most implementations
supporting tied tasks (WFS is assumed). The thread on which the code shown
in the figure is executing has an associated stack (depicted on the left). When
a task directive is encountered, the thread jumps to a runtime function that
manages the creation of a new task from the enclosed code region. Because
WFS is considered, the thread encountering the new task executes the code
encapsulated within the task region, and the parent task is suspended (as it is
a tied task and so cannot migrate to a different thread). A new stack frame
is activated for this task, like in every regular function call. The same thing
happens at every nested task directive. When a task is completed, the stack
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int i;
…

#pragma omp task
{

float a;
int b;
#pragma omp task
{

int c;
int d;
do_work(c, d)

}
...
do_work(a, b)    

} 
…

c
d

thread
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b

i
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Figure 6.2 Task suspension in the baseline implementation (considering tied tasks and
WFS).

pointer is reset to the top of the previous active frame. Since the semantics of
tied task scheduling ensure that suspension/resumption can happen only on
the same thread, no explicit bookkeeping to save/restore the context of a task
is required.

The key extension required to support untied tasks is the capability of
allowing to resume a suspended task on a different thread than the one that
started and suspended it. To achieve this goal, we rely on lightweight co-
routines [10]. Co-routines rely on cooperative tasks that publicly expose their
code and memory state (register file, stack), so that different threads can take
control of the execution after restoring the memory state. Every time that a
thread suspends or resumes a suspended cooperative task, a context switch is
performed. We place the required metadata to support task contexts (TCs) in
the shared multi-bank memory and we use inline assembly to minimize the
cost of the routines to save and restore the architectural state.

Figure 6.3 shows how task suspension works in our approach for untied
tasks (WFS is assumed). Initially, the thread on which the code shown in the
figure is executing uses its own private stack (in gray). When the outermost
task region (T0) is encountered, the context of the current task is saved in the
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int i;
…

#pragma omp task \\
{ untied

float a;
int b;
#pragma omp task \\
{ untied

int c;
int d;
do_work(c, d)

}
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do_work(a, b)    

} 
…
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Figure 6.3 Untied task suspension with task contexts and per-task stacks.

TC (including the current SP, that is, the task pointer register), then the thread
is rescheduled to execute the new task T0. The SP of the thread is updated
to the stack of T0 (in blue) and the new task is started. When the creation
point of the innermost task T1 is reached, an identical procedure is followed.
The context of T0 is saved in its TC, which is pushed back in the queue, then
thread 0 is pointed to the stack of T1 (in red). Now the suspended T0 can
be pulled out of and restarted by thread 1. On top of this basic mechanism,
a number of other design choices were made to minimize the cost of our
runtime support, which we describe in the following.

Task hierarchy: Supporting nested tasks requires to keep in the runtime a
data structure (a tree) that represents the hierarchy of multiple task regions.
A parent task has a link to its children and vice versa, to facilitate exchange
of information about execution status. For example, a parent task needs
to be informed about the execution completion of its children to support
the semantics of the taskwait directive. When a parent task completes its
execution, its children become orphans and should not care to inform the
parent. The fastest solution to handle parent task termination in terms of
bookkeeping would be not to delete the descriptor, but just to maintain the
task in a zombie status until all children have completed. This operation
would require a simple update to the descriptor, which can be executed in
a very short time. However, this solution brings to a memory occupation that
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is not acceptable for our constrained platform. Thus, we opt for a costlier
removal of the descriptor from the tree. As a consequence, all child tasks must
receive an update from the parent to avoid dangling pointers to a deallocated
descriptor.

Taskwait construct: Task-level synchronization is widely used in recursive-
based parallel patters. Here typically a fixed number of tasks are created at
every recursion level, and their execution is synchronized with a taskwait
directive. When a parent task encounters a taskwait, it should wait until
all the children (first-level descendants) have completed, but typically for
performance the thread hosting the parent task is allowed to switch to execut-
ing one of the children tasks. In the baseline implementation, this feature is
supported by just traversing the list of children tasks in the tree data structure
and inspecting their status to verify that it is set to WAITING. We changed
this mechanism to rely on two queues per task, to directly reference children
in the WAITING and RUNNING states, respectively. Upon creation, a task
is inserted in the WAITING queue. Every time that a task starts to execute,
the runtime moves this task from the WAITING queue to the RUNNING
queue, and vice versa in case of suspension. Decoupling waiting and running
tasks require a costlier bookkeeping upon task insertion and extraction, but
allow faster support for taskwait as it is no longer required to search the tree
for WAITING tasks. While the benefit brought by this implementation is not
evident in the presence of flat parallel patterns, as the taskwait is virtually
useless in this case, in recursive parallel patterns, it is extensively used and
this design choice pays off.

Task dependencies: In the presence of recursive parallel patterns, it is impor-
tant to distinguish between suspended tasks that could be resumed at any time
and tasks that are suspended due to a scheduling constraint that needs to be
unblocked. A typical example is, again, tasks suspended upon a taskwait
or due to a data dependence. As already mentioned, recursive parallelism
extensively relies on such a form of synchronization, thus hosting this type
of suspended tasks in the same queue that also hosts ready-to-execute tasks
used to lead to a situation where we would repeatedly pop from there a task
just to realize that the scheduling constraint was still unsatisfied. We would
then have to push back the task in the queue and retry. Checking the status of
the task before extracting it does not entirely solve the problem, as it requires
time-consuming search operations. To deal with this problem, we changed
the implementation to avoid re-inserting in the queue suspended tasks with
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unresolved dependencies. Such tasks are kept floating instead, and it is up
to the task that will eventually resolve the dependence to push them back
into the queue. This modification requires some additional checks to deal
with the above-mentioned case, but greatly improves the performance of
recursive parallel programs.

Allocation of runtime metadata: To minimize the overhead for dynamic
resource allocation (memory, locks, task descriptors, etc.), we have exten-
sively used pools of pre-allocated resources. This is significantly faster than
malloc-like primitives and does not require lock-protected operations, as we
adopt thread-private resources. The downside is memory occupation. Since
the targeted architecture relies on a shared cluster memory with a limited size,
we have to wisely use the available space. A reasonable design solution would
be to dedicate roughly 5–10% of this memory to hosting tasking support data
structures. The original task descriptor has a size of 174 bytes, while the
extensions that we introduced require another 98 bytes for the contexts, plus
the stacks. Private thread stacks are configured to be 1 KB (a common choice
for embedded systems), while task stacks are by default 1/4 of that size.
Clearly, all those values are parameters in our design, and can be changed
depending on specific application requirements.

Despite the increment of runtime memory requirements, the use of pre-
allocated resources enables to exploit finer grained parallelism, which is
paramount in current and future embedded systems. Next, we describe solu-
tions to reduce memory pressure and runtime overhead.

Cutoff mechanisms: With 10% of the cluster’s shared memory allocated
to task descriptors, the runtime can host simultaneously 750 pre-allocated
tied tasks or 400 untied tasks. If the queue of available task descriptors is
depleted during the program execution, a mechanism (known in the literature
as cutoff [11]) is triggered. When this condition is met, the creation of new
task descriptors must be suspended to avoid that runtime resources saturate
when the task production rate is greater than the execution rate. Our runtime
supports two different cutoff variants: yield and work-first. In the first case,
the producer task is stopped and pushed at the end of the READY queue, with
the aim to re-schedule the core to executing pending tasks instead of gener-
ating new ones. Using the second variant, the producer task starts working in
work-first mode by executing the new tasks in-place via a standard function
call: in this case, task descriptors are not required, as the synchronization is
enforced by serializing tasks on the same thread.
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Cutoff mechanisms are introduced to avoid an unbounded consumption of
runtime resources, but recursive applications can cause additional problems.
Using untied tasks, task stacks typically end up to be over-sized to fit the
worst case (i.e., the maximum recursion level reached in the cutoff state) to
the detriment of runtime memory footprint. To avoid this case, we introduced
a specific optimization for untied tasks using work-first cutoff, which forces
the producer task to swap its current stack with a special one that is the only
one dimensioned for worst case recursive execution.

Support for scheduling policies: The OpenMP runtime provides spe-
cific features to support the scheduling policies that have been defined in
Chapter 4. Two alternative implementations are selectable for task queues:
global and private queues. The global implementation defines a single task
queue for the application, and it is used to support global scheduling. The
local implementation instantiates an independent queue per thread, and it is
used to support partitioned scheduling, in which tasks are statically allocated
to threads at design time.

Adopting a limited preemption scheduler, each TSP in the runtime is
considered as a potential preemption point. This is implemented by calling
a function designed and implemented for tight integration with the RTOS.
The exact behavior depends on the current scheduling policy (global or
partitioned) selected for the application, which is totally transparent to the
runtime.

6.3.1 Task Dependency Management

The OpenMP tasking model includes a very mature support for highly
unstructured task parallelism with features to express data dependencies (on
specific data elements) between tasks. To do so, OpenMP introduces the
depend clause, which imposes an ordering relation between sibling tasks
(tasks that are child tasks of the same task region). OpenMP defines three
types of dependencies: in, out, and inout. A task with an in clause cannot
start until the set of tasks with an out or an inout clause on the same data
elements complete. This feature is in fact very relevant for embedded sys-
tems, often running real-time applications modeled as direct acyclic graphs
(DAGs)2 (see Chapter 4 for further information).

2The terms TDG and DAG are equivalent; the former is typically used when referring to
runtime methodologies; the latter is used when referring to real-time analysis.
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Current implementations of the OpenMP tasking model targeting the
high-performance domain (e.g., libgomp, nanos++) track data dependencies
among tasks by building a task dependency graph (TDG) at runtime. When
a new task is created, its in and out dependencies are matched against those
of the existing tasks. To do so, each task region maintains a hash table that
stores the memory address of each data element contained within the out
and inout clauses, and the list of tasks associated to it. The hash table is
further augmented with links to those tasks depending on it, i.e., including
the same data element within the in and inout clauses. In this way, when the
task completes, the runtime can quickly identify its successors, which may be
ready to execute.

Building the TDG at runtime requires storing the hash tables in memory
until a taskwait directive is encountered. Since dependencies can be defined
only between sibling tasks, when such directives are encountered, all tasks
in their binding region are guaranteed to finish. Moreover, removing the
information of a single task at completion would result too costly, because
dependent tasks are tracked in multiple linked lists in the hash table. As a
result, the memory consumption may significantly increase as the number of
instantiated tasks increases.

Such a memory consumption is clearly not a problem in high-
performance systems, in which large amounts of memory are available.
However, this is not in general the case for parallel embedded architectures.
The MPPA processor features only 2 MB of on-chip private memory per
cluster. Therefore, it is paramount to devise data structures that reduce to
the bare minimum the memory requirements needed to implement the TDG.

To this aim, we maintain the complete OpenMP-DAG generated by the
compiler as presented in Chapter 3. Although this idea may seem counter-
intuitive, the data structures needed to store a statically generated TDG
are much lighter than those necessary to dynamically build the TDG. This
strategy results in a huge reduction of the memory used at runtime.

TDG Data Structure: A Sparse Matrix – A sparse matrix is an optimal
solution to store the TDG with minimal footprint. Figure 6.4b shows the
sparse matrix implementation of the DAG presented in Figure 6.4a. There,
each entry contains a unique task instance identifier tid, and stores in separate
arrays the tid and the number of tasks it depends on (labeled Inputs and #in
respectively in the figure), and the tid and the number of tasks depending on
it (labeled outputs and #out respectively in the figure). Moreover, the sparse
matrix is sorted using the tid, so a dichotomic search can be applied.
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Figure 6.4 On the left (a), the DAG of an OpenMP program. On the right (b), the sparse
matrix data structure implementing DAG shown on the left.

tid, computed with Equation 6.1 (also presented in Chapter 3), is a key
mechanism used to identify the tasks actually instantiated at runtime with
those included in the DAG. Therefore, the same value of tid must be generated
at compile time (so each node in the DAG has a unique identifier) and at
runtime (so tasks can identify its input and output data dependencies).

tid = sidt + T ×
Lt∑
i=1

li ·M i (6.1)

where sidt is a unique task construct identifier, T is equal to the number
of task, taskwait, and barrier constructs in the source code, Lt is the total
number of nested loops involved in the execution of the task t, i refers to the
the nesting level, li is the loop unique identifier at nesting level i, and M is
maximum number of iterations of any considered loop.

All the information required to compute Equation 6.1 must therefore be
available at compile time. sidt is inserted by the compiler as a new parameter
in the function call of the tasking runtime in charge of creating a new OpenMP
task (named GOMP_task). In order to obtain the same li at compile-time
and at runtime, the compiler introduces a loop stack per loop statement, and
push and pop operations before the loop begins and after it ends, respectively.
At every loop iteration, the top of the stack is increased by 1. The overhead
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associated to the stack is very little because it is inserted only in those loops
where tasks are created and the overhead due to the task creation dominates.
The rest of parameters, i.e., T, Lt, and M are encapsulated in the TDG data
structure.

Consider task T4, with identifier 79, in Figure 6.4a. This task instance
corresponds to the computation of the matrix block m[2, 1]. Its identifier is
computed as follows: (1) sidT4 = 4, because T4 is the fourth task found in
sequential order while traversing the source code; (2) T = 5 because there are
four task constructs and one (implicit) barrier in the source code; (3) LT4 = 2,
the two nested loops enclosing T4; (4) M = 3, the maximum number of
iterations in any of the two considered loops; and (5) l1 = 2 and l2 = 1 are
the values of the loop identifiers at the corresponding iteration. Putting all
together: T4id = 4 + 5(2 ∗ 31 + 1 ∗ 32) = 79.

Finally, with the objective of monitoring the execution state of task
instances, each entry in the sparse matrix has an associated counter (not
shown in the figure) describing its state. The counter is:

• −1 if the task has not been instantiated (created) or it has finished;
• 0 if the task is ready to run; and
• > 0 if the task is waiting its input tasks to finish. The value indicates the

number of tasks created and not completed it still depends on.

The runtime task scheduler works as follows:

• When a new task is created, the runtime checks the state of its input
tasks. If all their counters are −1, the task is ready to execute; otherwise,
the state of the counter of the new task is initialized with the number of
input tasks with a state ≥ 0.

• When a task finishes, it decrements by 1 the counters of all its output
tasks whose counter is > 0.

It is important to remark that, when the TDG contains tasks whose related
if-else statement condition has not been determined at compile time and it
evaluates to false at runtime, the value of the counter is the same as the tasks
would have already finished, i.e., −1 (see Chapter 3 for further information ).

6.4 Experimental Results

In the following, we present results aimed at characterizing the overheads of
the proposed OpenMP runtime design and demonstrating the reduced impact
on the overall application performance, compared to different solutions.
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6.4.1 Offloading Library

Synchronization on the Kalray MPPA architecture has a significant impact on
the offloading cost. The preliminary implementation of the BLOCK_OS pol-
icy, which has the most complex semantics among all, required 75,500 cycles
to initialize the runtime metadata. It is possible to halve the initialization cost
by (i) replacing dynamic memory allocation of runtime data structures with
a static memory mapping and (ii) distributing between the available cores the
initialization of data structures.

As a further optimization, we implemented a lightweight runtime check
of the presence of a pending offload request to prevent the RTOS from
executing the RM when no new offload requests to process are present. This
further reduced the initialization cost to 33,250 cycles. Figure 6.5 reports
the offload cost on the cluster side for different synchronization policies. We
report minimum and maximum observed execution cycles (blue and orange
bars, respectively). The leftmost groups of bars represent the original Kalray
software infrastructure, while the three rightmost groups of bars represent
the three policies of our software infrastructure. The results for Kalray show
a very large variance between minimum and maximum observed offload
cost. Anyhow, since the analysis tools rely on worst case execution time,

Figure 6.5 Costs of offload initialization.
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to all practical purposes, we must consider the maximum time, which is
around 82,000 cycles. All the three synchronization policies that we provide
exhibit a very small variance, and their cost is in all cases much smaller
than the worst case for the original Kalray SDK (roughly in line with the
best case).

This notwithstanding, the observed costs for our runtime software are still
relevant. Compared to state-of-the-art solution, we identified the main reason
of this inefficiency in the management of non-coherent caches. A flush-and-
invalidate operation on the data caches is performed at every synchronization
point (the unlock primitive). This makes each access to runtime data struc-
tures very expensive in terms of execution cycles. Replacing data caches
with L1 scratchpad memories and using these memories to store runtime data
structures allow reducing the offload cost by 20x.

6.4.2 Tasking Runtime

As already pointed out, supporting the tasking execution model is usually
subject to large overheads. While such overheads can be tolerated by large
applications exploiting coarse-grained tasks, this is usually not the case for
embedded applications, which rely on fine-grained workloads. To study this
effect, our plots show speedup (parallel execution on 16 cluster cores versus
sequential execution on a single cluster core) on the y-axis, comparing the
original Kalray runtime to our runtime support for tied and untied tasks.
For all the experiments except the one in Section 6.4.2.5, we use a set of
microbenchmarks in which tasks only consist of ALU operations (e.g., add
on local registers) and no load/store operations, which allows exploring the
maximum achievable speedups. The number of ALU operations within the
tasks can be controlled via a parameter, which allows studying the achievable
speedup for various task granularities, which we report on the x-axis of
each plot (task granularity is expressed as duration in clock cycles, roughly
equivalent to the number of ALU operations that each task contains).

We consider three variants for the synthetic benchmark: LINEAR,
RECURSIVE, and MIXED. These are representative of different task cre-
ation patterns found in real applications, and will be described in the
following subsections.

6.4.2.1 Applications with a linear generation pattern
The LINEAR benchmark consists of N = 512 identical tasks, each with a
workload of W ALU instructions. The main task creates all the remaining
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N. . . 1 tasks from a simple loop (one task created per loop iteration) and then
performs a taskwait to ensure that all tasks have completed their execution.

f o r ( i =0 ; i <N; i ++)
{

#pragma omp t a s k / / A t a s k c o n s i s t i n g
s y n t h (W) ; / / o f W ALU i n s t r u c t i o n s

}
#pragma omp t a s k w a i t

Figure 6.6 shows the results for the LINEAR benchmark. Focusing on the
results for the original Kalray SDK (“noCO KALRAY” line), ideal speedups
can be achieved only for tasks larger than 100 KCycles. For smaller tasks, the
maximum achievable speedup is 3×. In this fine-grain task area, our tasks
can consistently achieve a four times higher speedup. Since in the LINEAR
microbenchmarks, there is no task nesting, there is no significant difference
between tied (PSOC T) and untied (PSOC U) tasks. We thus explore a new
configuration where tasks are recursively created to appreciate the difference.

Figure 6.6 Speedup of the LINEAR benchmark (no cutoff).
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6.4.2.2 Applications with a recursive generation pattern
Figure 6.7 shows the efficiency of our runtime for the recursive parallel pat-
tern, considering tied and untied tasks. The RECURSIVE microbenchmark
builds a binary tree of depth N = 9 (512 tasks) recursively. This is similar
to a classical Fibonacci algorithm, where each of the two recursive calls is
enclosed in a task directive. A taskwait directive is placed after the creation
of the two tasks.

#pragma omp t a s k / / The f i r s t t a s k ( r o o t )
r e c ( 0 , 5 1 1 ) ;

i n t r e c ( i n t l e v e l , i n t m a x l e v e l )
{

i f ( l e v != m a x l e v e l )
{

#pragma omp t a s k / / F i s t c h i l d t a s k
r e c ( l e v e l +1 , m a x l e v e l ) ;
#pragma omp t a s k / / Second c h i l d t a s k
r e c ( l e v e l +1 , m a x l e v e l ) ;

}

s y n t h (W) ; / / W ALU i n s t r u c t i o n s

#pragma omp t a s k w a i t
}

The first result that we observe is that only untied tasks can achieve the
maximum speedup. Tied tasks have a maximum speedup of 8. This effect
is due to the behavior of taskwait in the presence of tied tasks. If a tied
task is stuck on a taskwait and there are no children tasks in the WAITING
state (e.g., few tasks generated at each recursion level, like in the binary
tree), that task is bound to wait until the children have finished. Using a
binary tree, this leads to exactly half of the threads getting stuck, which
explains the maximum speedup observed in this configuration. This problem
is circumvented by untied tasks, which can reschedule the threads hosting the
stuck tasks to other ready tasks. Similar considerations to what we discussed
in the previous section hold for the comparison between Kalray tasks and
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Figure 6.7 Speedup of the RECURSIVE benchmark (no cutoff).

our tied tasks (Kalray supports only tied tasks, so a comparison to our untied
tasks is not directly feasible).

In general, it is possible to see that RECURSIVE implies a much higher
overhead than LINEAR. This is justified by a significantly increased con-
tention for shared data structures (queues, trees, etc.), as in this pattern
multiple threads are concurrently creating tasks. Even if we have struggled
to make the lock-protected operations to operate on shared data struc-
tures as short as possible, their serialization over multiple requestors is
evident. As a result, it takes an order of magnitude coarser tasks (around
100 K) than in the LINEAR case to achieve nearly ideal speedups. This
is a typical situation where cutoff policies can help in significantly reduc-
ing the runtime overheads. We explore the adoption of cutoff policies in
Section 6.4.2.4.

6.4.2.3 Applications with mixed patterns
The advantage of using untied tasks is particularly evident for applications
presenting a mixed structure which includes both LINEAR and RECURSIVE
task creation patterns. The MIXED microbenchmark depicted in Figure 6.8
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Figure 6.8 Structure of the MIXED microbenchmark.

is aimed at studying the behavior of such applications. A root task generates
seven tasks in a LINEAR manner, each one spawning a single child with a
long execution time and then performing a taskwait, plus another two tasks
from within RECURSIVE binary trees of depth 5.

Figure 6.9 shows the results for this benchmark. Using tied tasks, 14
threads are allocated to execute the linear part of the application, seven
of which are blocked by the taskwait directive. The ideal speedup of the
application is 2, which our tied tasks reach for granularities of around 10
Kcycles.

Using untied tasks, only seven threads are allocated to the LINEAR part,
which brings the ideal speedup to 9×. The maximum speedup achieved
by our untied tasks is 8, due to a limitation of the tracing (performance

Figure 6.9 Speedup of the MIXED benchmark.
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monitoring) of the Kalray platform. The root task of the hierarchy is the
one performing time measurement and we were forced to declare this as a
tied task to gather coherent clock values (allowing this task to migrate to
other cores results in incoherent measurement). This limits the maximum
achievable speedup to 8×, which our untied tasks achieve for granularities
above 10 Kcycles.

Overall, untied tasks enable four times faster execution than tied tasks
for application featuring mixed task creation patterns. Note that this result
holds for any runtime implementation. Our solution makes this result visible
for smaller tasks compared to other OpenMP tasking implementations. The
Kalray implementation never enables any speedup in the considered range of
task granularities (up to one million cycles) for this experiment.

6.4.2.4 Impact of cutoff on LINEAR and RECURSIVE
applications

We repeated the experiments with LINEAR and RECURSIVE microbench-
marks considering a higher number of tasks (2,048). This configuration
saturates the runtime data structures and activates cutoff mode. Figures 6.10
and 6.11 show the results for this experiment.

Figure 6.10 Speedup of the LINEAR benchmark (with cutoff).
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Figure 6.11 Speedup of the RECURSIVE benchmark (with cutoff).

Focusing on the LINEAR pattern, the adoption of cutoff greatly mitigates
overhead effects, and we can achieve nearly ideal speedups for an order of
magnitude smaller tasks compared to Kalray tasks. It also has to be noted that
cutoff mode is not properly supported for LINEAR patterns in the original
Kalray runtime. Enabling cutoff mode in this configuration simply seems to
disable parallelism completely. Focusing on the RECURSIVE pattern, the use
of cutoff policies proves extremely beneficial, with nearly ideal speedups for
very fine-grained tasks (in the order of thousand cycles).

6.4.2.5 Real applications
To assess the performance of our tasking runtime on real applications, we
execute the benchmarks from the Barcelona OpenMP Task Suite (BOTS)
[12], which includes a wide set of real-life applications parallelized with
OpenMP tasks.

Figure 6.12 shows the speedup of applications for different configura-
tions, comparing the Kalray SDK (KALRAY) with different configurations
of our runtime, using tied tasks (PSOC tied), untied tasks (PSOC untied), and
untied tasks with cutoff (PSOC untied CO2).

On average, programs executing on top of our runtime show a speedup of
12×, compared to only 8× for the original Kalray SDK. The benefits of cutoff
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Figure 6.12 Speedups for the BOTS benchmarks.

here are minimal, since the bottleneck is limited parallelism in the appli-
cation rather than runtime overhead. The marginal improvements enabled
by cutoff, where present, are usually due to better memory usage (tasks in
cutoff use less memory for the runtime, which is used for application data
instead).

6.4.3 Evaluation of the Task Dependency Mechanism

This section evaluates the use of a sparse matrix to implement the TDG upon
which the task dependency mechanism is built as presented in Section 6.3.1.

Concretely, we implement our task dependency mechanism on top of the
GNU libgomp library included in GCC version 4.7.2, which supports tasks
but not dependencies, and compare it with the libgomp library included in
GCC 4.9.2, which implements a dependency checker based on a hash table
structure.

The reason to implement our mechanism on a library not supporting
dependencies is that both implementations differ only in the dependency
checker, and so being easier to incorporate a new one, rather than replacing it.
Moreover, to ensure that results are not affected by the version of the library,
we executed the applications considered in this section without dependence
clauses. Despite the incorrect result, the numbers revealed that both libraries
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have the exact same memory usage and performance, demonstrating that
the memory increment is exclusively caused by using different dependency
checkers.

Moreover, we consider two applications, one from the HPC domain,
i.e., a cholesky factorization [13] used for efficient linear equation solvers
and Monte Carlo simulations, and one from the embedded domain, i.e., an
application resembling the 3D path planning [14] (r3DPP) used for airborne
collision avoidance.

For comparison purposes, the applications have been parallelized with
task dependencies, i.e., using the depend clause, and without dependencies,
i.e., using only task and taskwait directives.

6.4.3.1 Performance speedup and memory usage
Figures 6.13 and 6.14 show the performance speedup and the runtime mem-
ory usage (in KB) of the Cholesky and r3DPP, when varying the number
of instantiated tasks, ranging from 1 to 5984 and 4096, respectively, and
considering the three libgomp runtimes implementing a dependency checker
based on a hash table, on a sparse matrix, and one with not dependency
checker (labeled omp4, omp 3.1, and lightweight omp4, respectively).

The performance has been computed with the average of 100 executions.
Similarly, Figures 6.14a,b show the heap memory usage (in KB) of the
three OpenMP runtimes when executing Cholesky and r3DPP respectively
and varying the number of instantiated tasks as well. The memory usage
has been extracted using Valgrind Massif [15] tool, which allows profiling
the heap memory consumed by the runtime in which the TDG structure is
maintained.

(a) Cholesky (b) r3DPP

Figure 6.13 Performance speedup of the Cholesky (a) and r3DPP (b) running with
lightweight omp4, omp4, and omp 3.1, and varying the number of tasks.
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(a) Cholesky (b) r3DPP

Figure 6.14 Memory usage (in KB) of the Cholesky (a) r3DPP (b) running with lightweight
omp4, omp4, and omp 3.1, and varying the number of tasks.

For these experiments, we consider an Intel Xeon CPU E5-2670 proces-
sors, featuring eight cores each, with 20 MB L3. The reason is that it incor-
porates the libgomp library included in GCC 4.9.2 supporting dependency
checker based on a hash table.

We observe that both performance and memory usage depend on the
number of instantiated tasks: the higher the number of instances, the better
the performance, as the chances of parallelism increase. When the number of
tasks is too high, however, the overhead introduced by the runtime and the
small workload of each task slows down the performance.

As shown in Figure 6.13, our lightweight omp4 obtains the same per-
formance speedups as the omp4 implementation for the two applications,
and outperforms omp 3.1. However, when observing the memory usage in
Figure 6.14, it rapidly increases for omp4, requiring much more memory than
the runtime based on the sparse matrix, i.e., the lightweight omp4.

It is also interesting to observe the parallelization opportunities brought
by the depend clause, which makes the performance of Cholesky (Figure
6.13a) to increase significantly compared to not using them, with a speedup
increment from 4x to 12x when instantiating 5,984 tasks. At this point, omp4
consumes 2.5 MB while our lightweight omp4 requires less than 1.3 MB. The
memory consumed by omp3.1 is less than 100 KB (Figure 6.14a). In fact, the
omp3.1 memory consumption is similar for all the applications because no
structure for dependencies management is needed.

For the r3DPP, the depend clause achieves a performance speedup of 5.2x
and 5.8x with omp4 and lightweight omp4, respectively, when instantiating
1,024 tasks (Figure 6.13b). At this point, omp4 consumes 400 KB in front of
the 200 KB consumed by lightweight omp4 (Figure 6.14b). Not considering
dependencies, i.e., omp31, achieves a maximum performance of 4.5x when
256 tasks are instantiated (Figure 6.13b). When the number of task instances
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Table 6.1 Memory usage of the sparse matrix (in KB), varying the number of tasks
instantiated

Cholesky
Tasks 4 20 120 816 5984

KB 0.11 0.59 3.80 27.09 204.19

r3DPP
Tasks 16 64 256 1024 4096

KB 00.47 1.94 7.88 31.75 127.5

increases to 4096, all runtimes suffer a significant performance degradation
because the number of instantiated tasks is too high compared to the workload
computed by each task.

Table 6.1 shows the size of the sparse matrix data structure implementing
the esTDG of each application when varying the number of instantiated tasks
(the memory consumption reported in Figures 6.14a,b already includes it).

6.4.3.2 The task dependency mechanism on the MPPA
To evaluate the benefit of the task dependency mechanism on a memory
constrained manycore architecture, we evaluated it on the MPPA processor.
Figure 6.15 shows the performance speedup of Cholesky (a) and r3DPP
(b) executed in one MPPA cluster, considering the lightweight omp4 and
omp31 runtimes and varying the number of tasks. Note that omp4 runtime
experiments are not provided because MPPA does not support it. Memory
consumption is the same as the one shown in Figure. 6.14 r3DPP increases
the performance speedup from 9x to 12x when using our lightweight omp4
rather than omp3.1 and only consuming 200 KB. Cholesky presents a
significant speedup increment when instantiating 816 tasks, i.e., from 2.5x
to 9x, consuming only 220 KB.

(a) Cholesky (b) r3DPP

Figure 6.15 Performance speedup of the Cholesky (a) and r3DPP (b) running on the MPPA
with lightweight omp4, omp4, and omp 3.1, and varying the number of tasks.
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6.5 Summary

This chapter has illustrated the design of the OpenMP runtime for a het-
erogeneous platform including a host processor and an embedded manycore
accelerator. The complete software stack is composed of an offloading library
and a tasking runtime library, which have been described in detail. The
OpenMP runtime provides specific features to support the scheduling policies
that have been defined in Chapter 4, and it also implements the TDG required
to support the task dependency mechanism as presented in Section 6.3.1. The
chapter has discussed how to enable maximum exploitation of the available
hardware parallelism via the untied task model, highlighting the key design
choices to achieve low overhead. Experimental results show that this enables
up to four times faster execution than tied tasks, which improves on average
by 60% over the native Kalray SDK.
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In this chapter, we will provide a description of existing open-source
operating systems (OSs) which have been analyzed with the objective of
providing a porting for the reference architecture described in Chapter 2.
Among the various possibilities, the ERIKA Enterprise RTOS (Real-Time
Operating System) and Linux with preemption patches have been selected. A
description of the porting effort on the reference architecture has also been
provided.

7.1 Introduction

In the past, OSs for high-performance computing (HPC) were based on
custom-tailored solutions to fully exploit all performance opportunities of
supercomputers. Nowadays, instead, HPC systems are being moved away
from in-house OSs to more generic OS solutions like Linux. Such a trend
can be observed in the TOP500 list [1] that includes the 500 most powerful
supercomputers in the world, in which Linux dominates the competition.
In fact, in around 20 years, Linux has been capable of conquering all the
TOP500 list from scratch (for the first time in November 2017).

Each manufacturer, however, still implements specific changes to the
Linux OS to better exploit specific computer hardware features. This is
especially true in the case of computing nodes in which lightweight kernels
are used to speed up the computation.

173
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Figure 7.1 Number of Linux-based supercomputers in the TOP500 list.

Linux is a full-featured OS, originally designed to be used in server or
desktop environments. Since then, Linux has evolved and grown to be used
in almost all computer areas – among others, embedded systems and parallel
clusters. Linux currently supports almost every hardware processor, including
x86, x86-64, ARM, PowerPC, MIPS, SuperH, IBM S/390, Motorola 68000,
SPARC, etc. The programmability and the portability of code across different
systems are ensured by the well-known “Portable Operating System Inter-
face” (POSIX) API. This is an IEEE standard defining the basic environment
and set of functions offered by the OS to the application programs.

Hence, the main reason for this success and popularity in the HPC sector
is its excellent performance and its extreme scalability, due to very carefully
designed data structures like Linux Read-Copy Update (RCU) [2]. This
scalability, together with the high modularity, enables excellent performance
on both a powerful parallel cluster made by thousands of cores and a small
embedded microcontroller, as will be shown in the next sections.

Therefore, when designing the support for our predictable parallel pro-
gramming framework, we started selecting Linux as the basic block for
executing the target parallel applications. On the other hand, Linux alone is
not sufficient for implementing the needed runtime support on our reference
architecture: a solution needed to be found for the compute cores, where a
tiny RTOS is needed in order to provide an efficient scheduling platform to
support the parallel runtime described in Chapter 6.

This chapter in particular describes in detail how the scheduling tech-
niques designed in Chapter 4 have been implemented on the reference
architecture. The chapter includes notes about the selection of the tiny RTOS
for the compute cores, with a description of the RTOS, as well as the solutions
implemented to support Linux on the I/O cores with real-time performance.
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This chapter is structured as follows. Section 7.2 describes the state of the
art of the real-time support for the Linux OS and as well for small RTOSes.
Section 7.3 describes the requirements that influenced the choice of the
RTOS, which is described in detail in Section 7.4. Section 7.5 provides some
insights about the OS support for the host processor and for the many-core
processor. Finally, Section 7.6 summarizes the chapter.

7.2 State of The Art

7.2.1 Real-time Support in Linux

As noted in the Section “Introduction,” in the last years, there has been
a considerable interest in using Linux for both HPC and real-time control
systems, from academic institutions, independent developers, and industries.
There are several reasons for this rising interest.

First of all, Linux is an Open Source project, meaning that the source code
of the OS is freely available to everybody, and can be customized according
to user needs, provided that the modified version is still licensed under the
GNU General Public License (GPL) [3]. This license allows anybody to
redistribute, and even sell, a product as long as the recipient is able to exercise
the same rights (access to the source-code included). This way, a user (for
example, a company) is not tied to the OS provider anymore, and is free
to modify the OS at will. The Open Source license helped the growth of a
large community of researchers and developers who added new features to
the kernel and ported Linux to new architectures. Nowadays, there is a huge
number of programs, libraries, and tools available as Open Source code that
can be used to build a customized version of the OS.

Moreover, Linux has the simple and elegant design of the UNIX OSs,
which guarantees meeting the typical reliability and security requirements of
real-time systems.

Finally, the huge community of engineers and developers working on
Linux makes finding expert programmers very easy.

Unfortunately, the standard mainline kernel (as provided by Linus
Torvalds) is not adequate to be used as RTOS. Linux has been designed to
be a general-purpose operating system (GPOS), and thus not much attention
has been given to the problem of reducing the latency of critical operations.
Instead, the main design goal of the Linux kernel has been (and still remains)
to optimize the average throughput (i.e., the amount of “useful work” done by
the system in the unit of time). For this reason, a Linux program may suffer a
high latency in response to critical events. To overcome these problems, many
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approaches have been proposed in the last years to modify Linux in order to
make it more “real-time.” These approaches can be grouped in the following
classes [4]:

1. Hard real-time scheduling through a Hardware Abstraction Layer
(HAL);

2. Latency reduction through better preemption mechanisms and interrupt
handling;

3. Proper real-time scheduling policies.

The following subsections describe each approach in detail.

7.2.1.1 Hard real-time support
This approach consists in creating a layer of virtual hardware between the
standard Linux kernel and the real hardware. This layer is called Real-Time
Hardware Abstraction Layer (RTHAL). It abstracts the hardware timers and
interrupts and adds a separate subsystem to run the real-time tasks. The Linux
kernel and all the normal Linux processes are then managed by the abstraction
layer as the lowest priority tasks — i.e., the Linux kernel only executes when
there are no real-time tasks to run.

The first project implementing this approach was RTLinux [5]. The
project started at Finite State Machine Labs (FSMLabs) in 1995. Then, it
was released in two different versions: an Open Source version (under GPL
license) and a more featured commercial version. An operation of patenting
issued in US in 1999, however, generated a massive transition of developers
towards the parallel project RTAI. Then, the commercial version was bought
by WindRiver. Nowadays, both versions are not maintained anymore [5].

RTAI [6] (which stands for “Real-Time Application Interface”) is a
project started as a variant of RTLinux in 1997 at Dipartimento di Ingegneria
Aerospaziale of Politecnico di Milano (DIAPM), Italy. The project is under
LGPL license, and it was supported by a large community of developers,
based on the Open Source model. Although the project initially started from
the original RTLinux code, it has been completely rewritten over time. In
particular, the RTAI community has developed the Adaptive Domain Envi-
ronment for Operating Systems (ADEOS) nanokernel as an alternative for
RTAI’s core, to get rid of the old kernel patch and exploit a more structured
and flexible way to add a real-time environment to Linux [4]. The project
mainly targets the x86 architecture and is currently maintained (even if less
popular than it used to be in the past).

Xenomai [7] was born in 2001 as an evolution of Fusion, a project
to run RTAI tasks in the user space. With Xenomai, a real-time task can
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execute in user space or in kernel space. Normally, it starts in kernel space
(i.e., “primary domain”), where it has real time performance. When the real-
time task invokes a function belonging to the Linux standard API or libraries,
it is automatically migrated to the user-level (i.e., “secondary domain”), under
the control of the Linux scheduler. In this secondary domain, it keeps a
high priority, being scheduled with the SCHED FIFO or SCHED RR Linux
policies. However, it can experience some delay and latency, due to the fact
that it is scheduled by Linux. After the function call has been completed, the
task can go back to the primary mode by explicitly calling a function. In this
way, at the cost of some limited unpredictability, the real-time programmer
can use the full power of Linux also for real-time applications.

Among the various projects implementing the hardware abstraction
approach, Xenomai is the one which supports the highest number of embed-
ded architectures. It supports ARM, Blackfin, NiosII, PPC and, of course,
x86. Xenomai also offers a set of skins implementing the various APIs of
popular RTOS such as Windriver VxWorks [8], as well as the POSIX API [9].
In version 3 of Xenomai, the project aims at working on top of both a
native Linux kernel and a kernel with PREEMPT RT [10], by providing a
set of user-space libraries enabling seamless porting of applications among
the various OS versions.

It is important to highlight the advantages of the approach of hard-
ware abstraction. First of all, the latency reduction is really effective [4].
This allows the implementation of very fast control loops for applications
like vibrational control. Moreover, it is possible to use a full-featured OS
like Linux for both the real-time and the non-real-time activities (e.g.,
HMI, logging, monitoring, communications, etc.). Finally, the possibility
of developing and then executing the code on the same hardware platform,
considerably simplifies the complexity of the development environment.

Typical drawbacks of this approach – which depend on the particular
implementation – are:

• Real-time tasks must be implemented using specific APIs, and they
cannot access typical Linux services without losing their real-time
guarantees.

• The implementation is very hardware-dependent, and may not be
available for a specific architecture.

• The real-time tasks are typically executed as modules dynamically
loaded into the kernel. Thus, there is no memory protection and a buggy
real-time task may crash the whole system.
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For these reasons, this approach is usually followed only to build hard real-
time systems with very tight requirements.

7.2.1.2 Latency reduction
“Latency” can be defined as the time between the occurrence of an event
and the beginning of the action to respond to the event [4]. In the case of
an OS, it is often defined as the time between the interrupt signal arriving to
the processor (signaling the occurrence of an external event like data from a
sensor) and the time when the handling routine starts execution (e.g., the real-
time task that responds to the event). Since in the development of critical real-
time control systems, it is necessary to account for the worst-case scenario, a
particularly important measure is the maximum latency value.

The two main sources of latency in general-purpose OSs are task latency
and timer resolution:

1. Task latency is experienced by a process when it cannot preempt a lower
priority process because this is executing in kernel context (i.e., the
kernel is executing on behalf of the process). Typically, monolithic OSs
do not allow more than one stream of execution in kernel context, so
that the high-priority task cannot execute until the kernel code either
returns to user-space or explicitly blocks. As we will explain in the
following paragraphs, Linux has been capable of mixing the advantages
of a traditional monolithic design with the performance of concurrent
streams of execution within the kernel.

2. The timer resolution depends on the frequency at which the electronics
issues the timing interrupts (also called “tick”). This hardware timer is
programmed by the OS to issue interrupts at a pre-programmed period of
time. The periodic tick rate directly affects the granularity of all timing
activities. The Linux kernel has recently switched towards a dynamic
tick timer, where the timer does not issue interrupts at a periodic rate.
This feature allows the reduction of energy consumption whenever the
system is idle.

In the course of the years, several strategies have been designed and imple-
mented by kernel developers to reduce these values. Among the mechanisms
already integrated in the official Linux kernel, we can find:

• Robert Love’s Preemptible Kernel patch to make the Linux kernel
preemptible just like user-space. This means that several flows of ker-
nel execution can be run simultaneously. Urgent events can be served
regardless of the fact that the system is running in the kernel context.
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Hence, it becomes possible to preempt a process at any point, as long
as the kernel is in a consistent state. With this patch the Linux kernel
has become a fully preemptive kernel, unlike most existing OSs (UNIX
variants included). This feature was introduced in the 2.6 kernel series
(December 2003).

• High Resolution Timers (HRT) is a mechanism to issue timer interrupts
aperiodically – i.e., the system timer is programmed to generate the
interrupt after an interval of time that is not constant, but depends on
the next event scheduled by the OS. Often, these implementations also
exploit processor-specific hardware (like the APIC on modern x86 pro-
cessors) to obtain a better timing resolution. This feature was introduced
in the 2.6.16 kernel release (March 2006).

• Priority inheritance for user-level mutex, available since release 2.6.18
(September 2006). Priority inheritance support is useful to guarantee
bounded blocking times in case more than one thread needs to concur-
rently access the same resource. The main idea is that blocking threads
inherit the priority of the blocked threads, thus giving them additional
importance in order to finish their job early.

• Threaded interrupts by converting interrupt handlers into preemptible
kernel threads, available since release 2.6.30 (June 2009). To better
understand the effect of this patch, we have to consider that the typical
way interrupts are managed in Linux is to manage the effect of the
interruption immediately inside the so-called interrupt handler. In this
way, peripherals are handled immediately, typically providing a better
throughput (because thread waiting for asynchronous events are put
earlier in the ready queue). On the other hand, a real-time system
may have a few “important” IRQs that need immediate service, while
the others, linked to lower priority activities (e.g., network, disk I/O),
can experiences higher delays. Therefore, having all interrupt services
immediately may provide unwanted jitter in the response times, as low-
priority IRQ handlers may interrupt high-priority tasks. The threaded
interrupt patch solves this problem by transforming all IRQ handlers
into kernel threads. As a result, the IRQ handlers (and their impact on the
response time) are minimized. Moreover, users can play with real-time
priorities to eventually raise the priorities of the important interrupts,
therefore providing stronger real-time guarantees.

PREEMPT RT [10] is an on-going project supported by the Linux
Foundation [11] to bring real-time performance to a further level of
sophistication, by introducing preemptible (“sleeping”) spinlocks and RT
mutexes implementing Priority Inheritance to avoid priority inversion.
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It is worth specifying that the purpose of the PREEMPT RT patch is
not to improve the throughput or the overall performance. The patch aims
at reducing the maximum latency experienced by an application to make the
system more predictable and deterministic. The average latency, however, is
often increased.

7.2.1.3 Real-time CPU scheduling
Linux systems traditionally offered only two kind of scheduling policies:

1. SCHED OTHER: Best-effort round-robin scheduler;
2. SCHED FIFO/SCHED RR: Fixed-priority POSIX scheduling.

During the last decade, due to the increasing need of a proper real-time
scheduler, a number of projects have been proposed to add more sophisticated
real-time scheduling (e.g., SCHED SOFTRR [12], SCHED ISO [13], etc.).
However, they remained as separate projects and have never been integrated
in the mainline kernel.

During the last years, the real-time scheduler SCHED DEADLINE
[14, 15] originally proposed and developed by Evidence Srl in the context
of the EU project ACTORS [16], has been integrated in the Linux kernel.
It is available since the stable release 3.14 (March 2014). It consists of a
platform-independent real-time CPU scheduler based on the Earliest Dead-
line Scheduler (EDF) algorithm [17], and it offers temporal isolation between
the running tasks. This means that the temporal behavior of each task (i.e., its
ability to meet its deadlines) is not affected by the behavior of the other tasks
running in the system. Even if a task misbehaves, it is not able to exploit
larger execution times than the amount it has been allocated. The scheduler
only enforces temporal isolation on the CPU, and it does not yet take into
account shared hardware resources that could affect the timing behavior.

A recent collaboration between Scuola Superiore Sant’Anna, ARM Ltd.
and Evidence Srl, has aimed at overcoming the non-work-conserving nature
of SCHED DEADLINE while keeping the real-time predictability. This joint
effort that replaced the previous CBS algorithm with GRUB has been merged
since kernel release 4.13.

7.2.2 Survey of Existing Embedded RTOSs

The market of embedded RTOSs has been exploited in the past decades
by several companies that have been able to build solid businesses. These
companies started several years ago, when the competition from free OSs
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was non-existent or very low. Thus, they had enough time to create a
strong business built on top of popular and reliable products. Nowadays, the
market is full of commercial solutions, which differentiate in the applica-
tion domain (e.g., automotive, avionics, railway, etc.) and in the licensing
model. Most popular commercial RTOSs are: Windriver VxWorks [8], Green
Hills Integrity [18], QNX [19], SYSGO PikeOS [20], Mentor Graphics
Nucleus RTOS [21], LynuxWorks LynxOS [22], and Micrium µc/OS-III [23].
However, there are some other interesting commercial products like Segger
EmbOS [24], ENEA OSE [25], and Arccore Arctic core [26].

On the other hand, valid Open-Source alternatives exist. The development
of a completely free software tool chain being our target, the focus of this
subsection will be more on the free RTOSs available publicly. Some free
RTOSs, in fact, have now reached a level of maturity in terms of reliability
and popularity that can compete with commercial solutions. The Open-
Source licenses allow the modification of the source code and porting the
RTOS on the newest many-core architectures.

This section provides an overview of the free RTOSs available. For each
RTOS, the list of supported architectures, the level of maturity and the kind
of real-time support are briefly provided. Other information about existing
RTOSs can be found in [27].

FreeRTOS
FreeRTOS [28] is a small RTOS written in C. It provides threads, tasks,
mutexes, semaphores and software timers. A tick-less mode is provided for
low-power applications.

It supports several architectures, including ARM (ARM7/9, Cortex-A/M),
Altera Nios2, Atmel AVR and AVR32, Cortus, Cypress PSoC, Freescale
Coldfire and Kinetis, Infineon TriCore, Intel x86, Microchip dsPIC
and PIC18/24/32 and dsPIC, Renesas H8/S, SuperH, Fujitsu, Xilinx
Microblaze, etc.

It does not implement very advanced scheduling algorithms, but it offers
a classical preemptive or cooperative fixed-priority round-robin with priority
inheritance mutexes.

The RTOS is Open Source, and was initially distributed under a license
similar to GPL with linking exception [29]. Recently the FreeRTOS kernel
has been relicensed under the MIT license thanks to the collaboration with
Amazon AWS. A couple of commercial versions called SafeRTOS and
OpenRTOS are available as well. The typical footprint is between 5 KB
and 10 KB.
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Contiki
Contiki [30] is an Open-Source OS for networked, memory-constrained
systems with a particular focus on low-power Internet of things devices. It
supports about a dozen microcontrollers, even if the ARM architecture is not
included. The Open-Source license is BSD, which allows the usage of the OS
in commercial devices without releasing proprietary code.

Although several resources include Contiki in the list of free RTOSs,
Contiki is not a proper RTOS. The implementation is based on the concept
of protothreads, which are non-preemptible stack-less threads [31]. Context
switch can only take place on blocking operations, and does not preserve the
content of the stack (i.e., global variables must be used to maintain variables
across context switches).

Stack sharing is a useful feature, but the lack of preemptive support and
advanced scheduling mechanisms made this OS not suitable to meet the needs
of the parallel programming software framework we want to implement.

Marte OS
Marte OS [32] is a hard RTOS that follows the Minimal Real-Time POSIX.13
subset. It has been developed by the University of Cantabria. Although it
is claimed to be designed for the embedded domain, the only supported
platform is the x86 architecture. The development is discontinued, and the
latest contributions date back to June 2011.

Ecos and EcosPro
Ecos [33] is an Open-Source RTOS for applications which need only one
process with multiple threads. The source code is under GNU GPL with
linking exception.

The current version is 3.0 and it runs on a wide variety of hardware
architectures, including ARM, CalmRISC, Motorola 68000/Coldfire, fr30,
FR-V, Hitachi H8, IA32, MIPS, MN10300, OpenRISC, PowerPC, SPARC,
SuperH, and V8xx.

The footprint is in the order of tens of KB, which does not make it suitable
for processing units with extremely low memory. The kernel is currently
developed in a closed-source fork named eCosPro.

FreeOSEK
FreeOSEK [34] is a minimal RTOS implementing the OSEK/VDX automo-
tive standard, like Erika Enterprise. The Open-Source license (GNU GPLv3
with linking exception) is similar to the one of Erika Enterprise too. However,
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it only supports the ARM7 architecture, the development community is small,
and the project does not appear to be actively maintained.

QP
Quantum platform (QP) [35] is a family of lightweight, open source soft-
ware frameworks developed by company Quantum Leaps. These frameworks
allow building modular real-time embedded applications as systems of coop-
erating, event-driven active objects (actors). In particular, QK (Quantum
Kernel) is a tiny preemptive non-blocking run-to-completion kernel designed
specifically for executing state machines in a run-to-completion (RTC)
fashion.

Quantum platform supports several microcontrollers, including ARM
Cortex-M, ARM 7/9/Cortex-M, Atmel AVR Mega and AVR32, Texas
Instruments MSP430/TMS320C28x/TMS320C55x, Renesas Rx600/R8C/H8,
Freescale Coldfire/68HC08, Altera Nios II, Microchip PIC24/dsPIC, and
Cypress PSoC1.

The software is released in dual licensing: an Open-Source and a com-
mercial license. The Open-Source license is GNU GPL v3, which requires
the release of the source code to any end user. Unfortunately, the Open-
Source license chosen is not suitable for consumer electronics, where
the companies want to keep the intellectual property of their application
software.

Trampoline
Trampoline [36] is an RTOS which aims at OSEK/VDX automotive certifi-
cation. However, unlike ERIKA Enterprise, it has not yet been certified.

Only the following architectures are supported: Cortex M, Cortex A7
(alone or with the Hypervisor XVisor), RISC-V, PowerPC 32 bits, AVR,
ARM 32 bit.

The Open-Source license at the time the evaluation was made was LGPL
v2.1. This license is not very suitable for consumer electronics because it
implies that any receiver of the binary (e.g., final user buying a product) must
be given access to the low-level and the possibility of relinking the application
towards a newer version of the RTOS. The license was changed afterwards to
GPL v2 in September 2015.

RTEMS
RTEMS [37] is a fully-featured Open-Source RTOS supporting several appli-
cation programming interfaces (APIs) such as POSIX and BSD sockets. It
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is used in several application domains (e.g., avionics, medical, networking)
and supports a wide range of architectures including ARM, PowerPC, Intel,
Blackfin, MIPS, and Microblaze. It implements a single process, multi-
threaded environment. The Open-Source license is similar (but not equal)
to the more popular GPL with Linking Exception [29].

The footprint is not extremely small, and for the smallest applications,
ranges from 64 to 128 K on nearly all CPU families [38]. For this reason,
another project called TinyRTEMS [39] has been created to reduce the
footprint of RTEMS. However, its Open-Source license is GPLv2, which is
not suitable for development in industrial contexts.

TinyOS
TinyOS [40] is an Open-Source OS specifically designed for low-power
wireless devices (e.g., sensor networks) and mainly used in research insti-
tutions. It has been designed for very resource-constrained devices, such as
microcontrollers with a few KB of RAM and a few tens of KB of code space.
It’s also been designed for devices that need to be very low power.

TinyOS programs are built out of software components, some of which
present hardware abstractions. Components are connected to each other
using interfaces. TinyOS provides interfaces and components for common
abstractions such as packet communication, routing, sensing, actuation, and
storage.

TinyOS cannot be considered a proper real-time OS, since it implements
a non-preemptive thread model.

The OS is licensed under BSD license which, like GPL with link-
ing exception, does not require redistribution of the source code of the
application.

TinyOS supports Texas Instruments MSP430, Atmel Atmega128, and
Intel px27ax families of microcontrollers. Currently, it does not support the
family of ARM Cortex processors. The development of TinyOS has been
discontinued since a few years.

ChibiOS/RT
ChibiOS/RT [41] is a compact and Open-Source RTOS. It is designed for
embedded real-time applications where execution efficiency and compact
code are important requirements. This RTOS is characterized by its high
portability, compact size and, mainly, by its architecture optimized for
extremely efficient context switching. It supports a preemptive thread model
but it does not support stack sharing among threads.
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The official list of supported microcontrollers is mainly focused on the
ARM Cortex-M family, even if a very few other processors (i.e., ARM7, AVR
Mega, MSP430, Power Architecture e200z, and STM8) are supported as well.
Some further microcontrollers are not officially supported, and the porting of
the RTOSs has been done by individual developers.

The footprint of this RTOS is very low, being between 1 KB and 5.5 KB.
ChibiOS/RT is provided under several licenses. Besides the commercial

license, unstable releases are available as GPL v3 and stable releases as
GPL v3 with linking exception. Since version 3 of GPL does not allow
“tivoization” [42], these Open-Source licenses are not suitable for indus-
trial contexts where the manufacturer wants to prevent users from running
modified versions of the software through hardware restrictions.

ERIKA Enterprise v2
Erika Enterprise v2 [43] is a minimal RTOS providing hard real-time guar-
antees. It is developed by partner Evidence Srl, but it is released for free.
The Open-Source license – GPL with linking exception (also known as
“Classpath”) [29] – is suitable for industrial usage because it allows linking
(even statically) the proprietary application code with the RTOS without the
need of releasing the source code.

The RTOS was born in 2002 to target the automotive market. During the
course of the years it has been certified OSEK/VDX and it is currently used
by either automotive companies (as Magneti Marelli and Cobra) or research
institutions. ERIKA Enterprise v2 implements the AUTOSAR API 4.0.3 as
well, up to Scalability Class 4.

Besides the very small footprint (about 2–4 KB), ERIKA Enterprise
has innovative features, like advanced scheduling algorithms (e.g., resource
reservation, immediate priority ceiling, etc.) and stack sharing to reduce
memory usage.

It supports several microcontrollers (from 8-bit to 32-bit) and it has been
one of the first RTOSs supporting multicore platforms (i.e., Altera NiosII).
The current list of supported architectures includes Atmel AVR and Atmega,
ARM 7 and Cortex-M, Altera NiosII, Freescale S12 and MPC, Infineon Aurix
and Tricore, Lattice Mico32, Microchip dsPIC and PIC32, Renesas RX200,
and TI MSP430. A preliminary support for ARM Cortex-A as well as the
integration with Linux on the same multicore chip has been shown during a
talk at the Automotive Linux Summit Fall [44] in October 2013.
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Version 3 of ERIKA Enterprise has also been released recently [45]. The
architecture of ERIKA Enterprise v3 has been directly derived as an evolution
of the work described in this chapter, and is aimed to support full AUTOSAR
OS compliance on various single and multi-/manycore platforms, including
support for hypervisors.

7.2.3 Classification of Embedded RTOSs

The existing open-source RTOSs can be grouped in the following classes:

1. POSIX RTOSs, which provide the typical POSIX API allowing dynamic
thread creation and resource allocation. These RTOSs have a large
footprint due to the implementation of the powerful but complex POSIX
API. Examples are: Marte OS and RTEMS.

2. Simil-POSIX RTOSs, which try to offer an API with the same capabili-
ties of POSIX (i.e., dynamic thread creation and resource allocation) but
at a lower footprint meeting the typical constraints of small embedded
systems. Examples are: FreeRTOS, Ecos and ChibiOS/RT.

3. OSEK RTOSs, implementing the OSEK/VDX API with static thread
creation but still allowing thread preemption. These RTOSs are
characterized by a low footprint. Moreover, they usually also offer
stack-sharing among the threads, allowing the reduction of memory
consumption at run-time. Examples are: ERIKA Enterprise, Trampoline,
and FreeOSEK.

4. Other minimal RTOSs, which have a low footprint and a non-preemptive
thread model by construction. Usually, these RTOSs offer the stack-
sharing capability. Examples are: TinyOS and Contiki.

This classification is shown in the following Table 7.1:

Table 7.1 Classification of RTOSs
POSIX Simil-POSIX OSEK Other Minimal

API POSIX Custom OSEK/VDX Custom
Footprint size Big Medium Small Small
Thread preemption V V V X
Thread creation V V – –
Stack sharing – – V V
Examples MarteOS

RTEMS
FreeRTOS

Ecos
ChibiOS/RT

ERIKA Enterprise
Trampoline
FreeOSEK

TinyOS
Contiki

QP
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7.3 Requirements for The Choice of The Run Time System

This section includes a short description of the main requirements that influ-
enced the choice of the OS platform for the implementation of our parallel
programming model.

7.3.1 Programming Model

The run-time system is a fundamental software component of the parallel
programming model to transform the parallel expressions defined by the user
into threads that execute in the different processing units, i.e., cores.

Therefore, the OS system must provide support to execute the run-time
system that will implement the API services defined by the parallel program-
ming model. In our case, the requirement is related to the fact that an UNIX
environment such as Linux should be present, with support for the C and C++
programming languages.

7.3.2 Preemption Support

In single-core real-time systems, allowing a thread to be preempted has a
positive impact on the schedulability of the system because the blocking on
higher-priority jobs is significantly limited. However, in many-core systems,
the impact of preemptions on schedulability is not as clear, since higher
priority jobs might have a chance to execute on one of the many other cores
available in the system. Nevertheless, for highly parallel workloads, it may
happen that all cores are occupied by lower-priority parallel jobs, so that
higher-priority instances may be blocked for the whole duration of the lower-
priority jobs. In this case, a smart preemption support might be beneficial,
allowing a subset of the lower-priority instances to be preempted in favor of
the higher-priority jobs. The remaining lower-priority instance may continue
executing on the remaining cores, while the state of the preempted instances
needs to be saved by the OS, in order to restore it as soon as there are
computing units available again.

In order to develop the proper OS mechanisms, it is necessary to support
the kind of preemption needed by the scheduling algorithms described in
Chapter 4, with particular reference to the hybrid approach known as “limited
preemption,” and to the store location of the preempted threads context. In
order to implement such techniques, the OS design needs to take into account
which restrictions will be imposed on the preemptability of the threads,
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whether by means of statically defined preemption points, or by postponing
the invocation of the scheduling routine by a given amount of time.

7.3.3 Migration Support

In migration-based multicore systems, a preempted thread may resume its
execution on a different core. Migration support requires additional OS mech-
anisms to allow threads to be resumed on different cores. Different migration
approaches are possible:

• Partitioned approach: Each thread is scheduled on one core and cannot
execute on other cores;

• Clustered approach: Each thread can execute on a subset (cluster) of the
available cores;

• Global approach: Threads can execute on any of the available cores.

7.3.4 Scheduling Characteristics

Real-time scheduling algorithms are often divided into static vs. dynamic
scheduling algorithms, depending on the priority assigned to each job to
execute. Static algorithms assign a fixed priority to each thread. Although
they are easier to implement, their performance could be lower than with
more flexible approaches that may dynamically change priorities of each
thread. Depending on the scheduling strategy, fixed or dynamic, different OS
kernel mechanisms will be needed.

Another design point concerns the policies for arbitrating the access to
mutually exclusive shared resources. Depending on the adopted policy, par-
ticular synchronization mechanisms, thread queues, and blocking primitives
may be needed.

7.3.5 Timing Analysis

In order for the timing analysis tools to be able to compute safe and accurate
worst-case timing estimates, it is essential that the RTOS manages all the
software/hardware resources in a predictable manner. Also, it is crucial for
the timing estimates to be as tight as possible because subsequently these
values (like the worst-case execution time of a task or the maximum time to
read/write data from/to the main memory) will propagate all the way up and
will be used as basic blocks in higher-level analyses like the schedulability
analysis. Deriving tight estimates requires that all the OS mechanisms that
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allocate and arbitrate the access to the system resources are thoroughly
documented and do not make use of any procedure that involves randomness
or based on non-deterministic parameters.

Task-to-thread and thread-to-core mapping: The allocation of the tasks to
the threads and the mapping of the threads to the cores must be documented;
ideally, it should also be static and known at design time. If the alloca-
tion is dynamic, i.e., computed at run-time, then the allocation/scheduling
algorithm should follow a set of deterministic (and fully documented) rules.
The knowledge of where and when the tasks execute considerably facilitates
the timing analysis process, as it allows for deriving an accurate utilization
profile of each resource and then uses those profiles to compute safe bounds
on the time it takes to access these resources.

Contract-based resource allocation scheme: Before executing, each appli-
cation or task has a “contract” with every system resource that it may need to
access. Each contract stipulates the minimum share of the system resource
(hardware and software) that the task must be allowed to use over time.
Considering a communication bus shared between several tasks, a TDMA
(Time Division Multiple Access) bus arbitration policy is a good example
of a contract-based allocation scheme: the number of time-slots dedicated to
each task in a time-frame of fixed length gives the minimum share of the bus
that is guaranteed to be granted to the task at run-time. When the resource
is a core, contract-based mechanisms are often referred to as reservation-
based scheduling. Before executing, an execution budget is assigned to every
task and a task can execute on a core only if its allocated budget is not
exhausted. Technically speaking, within such reservation-based mechanisms,
the scheduling algorithm of the OS does not schedule the execution of the
tasks as such, but rather it manages the associated budgets (i.e., empties
and replenishes them) and defines the order in which those budgets are
granted to the tasks. There are many advantages of using contract-based
mechanisms. For example, they provide a simple way of protecting the system
against a violation of the timing parameters. If a task fails and starts looping
infinitely, for instance, the task will eventually be interrupted once it runs out
of budget, without affecting the planned execution of the next tasks. These
budgets/contracts can be seen as fault containers. They guarantee a minimum
service to every task while enabling the system to identify potential task
failure and avoid propagating the potentially harmful consequences of a faulty
task through the execution of the other tasks.
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Runtime budget/contract reinforcement: Mechanisms must be provided to
force the system resources and the tasks to abide with their contract, e.g., a
task is not allowed to execute if its CPU budget is exhausted or if its budget
is not currently given to that task by the scheduler. This mechanism is known
in the real-time literature as “hard reservation.”

Memory isolation: The OS should also provide mechanisms to dedicate
regions of the memory to a specific task, or at least to tasks running on a
specific core.

Execution independence: The programs on each core shall run independent
of the hardware state of other cores.

7.4 RTOS Selection

Considering the architecture of the reference platform (i.e., host processor
connected to a set of accelerators, similarly to other commercially available
many-core platforms), we decided to use two different OSs for the host and
the many-core processors.

7.4.1 Host Processor

Linux has been chosen for the host processor, due to its excellent support for
peripherals and communication protocols, the several programming models
supported, and the popularity in the HPC domain.

Given the nature of the project and the requirements of the use-cases, soft
real-time support has been added through the adoption of the PREEMPT RT
patch [10].

7.4.2 Manycore Processor

For the manycore processor, a proper RTOS was needed. The selected RTOS
should have been Open-Source and lightweight (i.e., with a small footprint)
but providing a preemptive thread model. For these reasons, only the RTOSs
belonging to columns 2 (i.e., Simil-POSIX) and 3 (i.e., OSEK) of Table 7.1
could be selected. Moreover, the selected RTOS must be actively maintained
through the support of a development community.

Ecos has been discarded due to the big footprint (comparable to the one
of POSIX systems). FreeOSEK has been discarded because the project is
not actively maintained and because it does not offer any additional feature
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with respect to ERIKA Enterprise. ChibiOS/RT, Trampoline, and QP, instead,
have been discarded for the too restrictive open-source license, not suitable
for industrial products.

The only RTOSs that fulfilled our requirements, therefore, were ERIKA
Enterprise [43] and FreeRTOS [28]. The project eventually chose to use
ERIKA Enterprise due to its smaller footprint, the availability of advanced
real-time features, and the strong know-how in the development team.

7.5 Operating System Support

7.5.1 Linux

As for the Linux support, we started with the Linux version provided together
with the reference platform. In particular, the Kalray Bostan AccessCore
SDK included an Embedded Linux version 3.10, and on top of it we assem-
bled and configured a filesystem based on the Busybox project [46] produced
using Buildroot [47].

The Linux version provided included Symmetric Multi-Processing (SMP)
support (which is a strong requirement for running PREEMPT RT [10]), and
included the PREEMPT RT patch.

7.5.2 ERIKA Enterprise Support

We have successfully ported the ERIKA Enterprise [43] on the MPPA
architecture, supporting its VLIW (Very Large Instruction Word) Instruction
Set Architecture (ISA) and implementing the API used by the off-loading
mechanism. The following paragraphs list the main challenges we had during
the porting, and the main choices we addressed, together with some early
performance results.

7.5.2.1 Exokernel support
The development on the platform directly supports the Kalray “exokernel,”
which is a set of software, mostly running on the 17th core of each cluster
(the resource manager core), used to provide a set of services needed to let
a cluster appear “more like” a SMP machine. Among the various services,
the exokernel includes communication services and inter-core interrupts. The
exokernel API is guaranteed to be maintained across chip releases, while the
raw support for the resource manager core will likely change with newer chip
releases.
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7.5.2.2 Single-ELF multicore ERIKA Enterprise
One of the main objectives during the porting of the ERIKA RTOS has been
the reduction of the memory footprint of the kernel, obtained by using a
Single-ELF build system.

The reason is that the multicore support in ERIKA was historically
designed for hardware architectures which did not have a uniform memory
region, such as Janus [48]. In those architectures, each core had its own
local memory and, most importantly, the view of the memory as seen by the
various cores was different (that is, the same memory bank was available at
a different address on each core). This imposed the need for a custom copy
of the RTOS for each core. Other architectures had a uniform memory space,
but the visibility of some memory regions was prevented by the Network on
Chip. On Altera Nios II, for example, addresses differentiating by only the
31st bit referred to the same physical address with or without caching. This,
again, implied the need for separate images (in particular, you can refer to the
work done during the FP6 project FRESCOR, D-EP7 [49]). More modern
architectures like Freescale PPC and Tricore AURIX allowed the possibility
of single-ELF, but the current multi-ELF scaled relatively well on a small
number of cores, reducing the need for single-ELF versions of the system.

In manycore architectures such as Kalray, the multi-ELF approach
showed its drawback: the high number of cores, in fact, required avoiding
code duplication to not waste memory. Moreover, each core has the visibility
of a memory region, and the addressing is uniform across the cores. For
this reason, after an initial simple single-core port of ERIKA on the Kalray
MPPA, the project decided to eventually design a single-ELF implemen-
tation; this activity required a complete rewrite of the codebase (named
ERIKA Enterprise v3). The new codebase is now in production and sponsored
through a dedicated website [45] in order to gather additional comments and
feedbacks. The next paragraphs include a short description of the main design
guidelines, which are also described in a specific public document [50].

7.5.2.3 Support for limited preemption, job, and global
scheduling

The ERIKA Enterprise RTOS traditionally supported partitioned schedul-
ing, where each core has a set of statically assigned tasks which can be
individually activated.

In order to support the features requested by the parallel programming
framework, the ERIKA Enterprise scheduler has been modified to allow the
following additional features:
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• Limited preemption scheduler – ERIKA Enterprise has been improved
to allow preemptions only at given instants of time (i.e., at task schedul-
ing points, see Chapters 3 and 6). The main advantage is related to
performance, because the preemption is implemented in a moment that
has a limited performance hit on the system.

• Job activation – In ERIKA Enterprise, each task can be individually
activated as the effect of an ActivateTask primitive. In the new environ-
ment, the OS tasks are mapped onto the OpenMP worker threads (see
Chapter 6). Those threads are activated in “groups” (named here “jobs”),
because their activation is equivalent to the start of an OpenMP offload
composed by N OS tasks on a cluster. For this reason, ERIKA Enterprise
now supports “Job activation,” which allows activating a number of tasks
on a cluster. Typically, those tasks will have all the same priority (as they
map the execution of an OpenMP offload).

• Global scheduling – In order to obtain the maximum throughput,
ERIKA implemented a work conserving global scheduler, which is able
to implement migration of tasks among cores of the same cluster. The
migration support also handles contention on the global queue in case
there are two or more cores idle.

7.5.2.4 New ERIKA Enterprise primitives
The implementation of ERIKA Enterprise required the creation of a set of
ad hoc primitives, which have been included in a new kernel explicitly
developed for Kalray. The new primitives are described below:

CreateJob: This primitive is used to create a pool of OS tasks which are
coordinated for the parallel execution in a cluster. A “Job” is composed by a
maximum number of tasks which is equal to the cluster size (16 on Kalray
MPPA). It is possible to specify how many tasks should be created, and on
which cores they should be mapped in case of partitioned scheduling. All
tasks which are part of a Job have the same priority, the same entry point, the
same stack size. Finally, they all have an additional parameter which is used
by the OpenMP workers to perform their job.

ReadyJob and ActivateJob: These two primitives are used to put in the ready
queue (either global or partitioned depending on the kernel configuration)
the tasks corresponding to a specific mask passed as parameter (the mask
is a subset of the one passed previously to CreateJob). In addition to this,
ActivateJob adds a preemption point on the calling site and issues inter-core
interrupts in full preemptive configuration.
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JoinJob: This is a synchronization point at the termination of all tasks of a
Job. It must be called on a task which has lower priority than the Job task
priority.

Synchronization primitives are also provided to allow the implementation
of use-level locks and higher-level programming model synchronization
constructs for the OpenMP runtime library (discussed in Chapter 6).

SpinLockObj and SpinUnlockObj: These primitives provide a standard
lock API, and are directly based on spinlock primitives provided by the
Kalray HAL. At the lowest abstraction level, the lock data structure is
implemented as a 32-bit integer, which could be allocated at any memory-
mapped address. Using this approach, the lock variables can be statically
allocated whenever it is possible, and when more dynamism is required, lock
data structures can be initialized via standard malloc operations on a suitable
memory range.

WaitCondition and SignalValue: These primitives provide a synchroniza-
tion mechanism based on WAIT/SIGNAL semantics. ERIKA supports four
condition operators (equal, not equal, lower than, greater than) and three
different wait policies:

1. BLOCK NO – The condition is checked in a busy waiting loop;
2. BLOCK IMMEDIATELY – The condition is checked once. If the

check fails (and no other tasks are available for execution) the processor
enters sleep mode until the condition is reached. A specific signal is then
used to wake-up the processor.

3. BLOCK OS – Informs the OS that the ERIKA task (i.e., the OpenMP
thread mapped to that task) is voluntarily yielding the processor. The OS
can then use this information to implement different scheduling policies.
For example, the task can be suspended and a different task (belonging
to a different job) can be scheduled for execution.

7.5.2.5 New data structures
Addressing the single-ELF image implementation in the end required a
restructuring of the kernel data structures.

The initial version of ERIKA Enterprise used a set of global data struc-
tures (basically, C arrays of scalars) allocated in RAM or ROM. Each core had
its own copy of the data structures, with the same name. Data which is shared
among the cores is defined and initialized in one core referred to as the master
core. The other cores are called slave cores. Afterwards, when compiling
the slave cores’ code, the locations of the shared data are appended to each
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core’s linker scripts (see also [48]). Figure 7.2 shows the structure of the two
ELF files, highlighting the first core (master), which has everything defined,
and the subsequent slave cores, which have the shared symbols addresses
appended in the linker script.

The single-ELF approach required a complete restructuring of the binary
image. The complete system is compiled in a single binary image, and the
data structures are designed to let the cores access the relevant per-CPU
data. The main guidelines used when designing the data structures are the
following:

• All data is shared among all cores.
• The code must be able to know on which core it is running. This is done

typically using a special register of the architecture that holds the CPU
number.

• Given the CPU number, it is possible to access “private” data structures
to each core (see Figure 7.3). Note that those “private” data structures
can be allocated in special memory regions “near” each core (for exam-
ple, they could be allocated in sections which can be pinned to per-core
caches).

• Clear distinction between Flash Descriptor Blocks (named *DB) and
RAM Control Blocks (named *CB). In this way the reader has a clear
idea of the kind of content from the name of the data structure.

• Limited usage of pointers (used to point only from Flash to RAM), to
make the certification process easier.

Figure 7.2 Structure of the multicore images in the original ERIKA Enterprise structure.
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Figure 7.3 Structure of the Single-ELF image produced by ERIKA Enterprise.

7.5.2.6 Dynamic task creation
In the original version of ERIKA, RTOS tasks were statically allocated by
defining them inside an OIL file. In the new version of ERIKA, we allowed
a pre-allocation of a given number of RTOS tasks, which can be afterwards
“allocated” using a task creation primitive. In this way, the integration with
the upper layers of OpenMP becomes simpler, as OpenMP makes the hypoth-
esis of being able to create as many threads as needed using the underlying
Linux primitive pthread create.

In addition to the changes illustrated above, we also took the opportunity
for making the following additional changes to ease future developments.

7.5.2.7 IRQ handlers as tasks
The original version of ERIKA handled interrupts in the most efficient way
in the case of no memory protection among tasks. When memory protec-
tion comes into play, treating IRQs as special tasks has the advantage of
simplifying the codebase.

In view of the future availability of multi-many cores with memory
protection we implemented the possibility for an IRQ to be treated as a task.
A special fast handler is called upon IRQ arrival, which has the main job of
activating the “interrupt task.”

This approach also simplified the codebase by allowing a simpler context
change primitive, which in turn simplifies the implementation in VLIW chips
such as Kalray.
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7.5.2.8 File hierarchy
For the new version of ERIKA, we adopted a new file hierarchy which aims
to a simplification of the codebase. In particular, the main changes of the new
codebase are the following:

• In the old version, CPU (the specific instruction set, such as PPC,
Cortex-MX, etc.), MCU (the peripherals available on a specific part
number), Boards (code related to the connections on the PCB) were
stored in directories under the “pkg” directory. With the growing number
of architectures supported, this became a limitation which also made the
compilation process longer. The new version of the codebase includes
MCUs and Boards under the CPU layer, making the dependencies in the
codebase clearer.

• We adopted a local self-contained flat (single directory) project structure
instead of a complex hierarchy. All needed files are copied once in the
project directory at compilation time, leading to simpler makefiles.

• We maintained the RTOS code separated from the Application config-
uration. This is very useful to allow the deployment of pre-compiled
libraries; moreover it allows partial compilation of the code.

7.5.2.9 Early performance estimation
Before implementing the Single-ELF version of ERIKA on Kalray, we
performed an initial implementation of the traditional single-core porting
of ERIKA in order to get a reference for the evaluation of the subsequent
development. Please note that the evaluation of the new version of ERIKA
has been done on a prototype implementation (not the final one). However,
the numbers are good enough to allow a fair comparison of the two solutions.

Table 7.2 summarizes an early comparison between the old and the new
implementation of ERIKA, for a simple application with two tasks on a single
core. The purpose of the various columns is the following:

• The comparison between the second and the third column gives a rough
idea of the difference in the ISA on a “reasonably similar” code on
another (different) architecture, Nios II.

• The comparison between the third and the fourth column gives a rough
idea of the impact of the changes of the new version of ERIKA over
the old version. The values show an increase of the code footprint. This
increase, however, is less than indicated by the table: the old version of
ERIKA, in fact, does contain the support for multiple task activations
(which has not been compiled) and dynamic task creation (which was
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Table 7.2 ERIKA Enterprise footprint (expressed in bytes)

Description Old Version (*) Old Version
New Version
Single-core

New Version,
Multicore with

Services for
Supporting Libgomp

Platform Nios II Kalray MPPA Kalray MPPA Kalray MPPA
Code footprint (**) About 800 1984 2940 41561

Code footprint
related to multicore
(***)

– – 4156 + 502 for RM

Flash/Read-only 164 – – –
RAM 192 216 216 + 128 for each

core2

(*) Numbers taken from D-EP7v2 of the FRESCOR project [49]. These numbers can be
taken as a reference for the order of magnitude for the size of the kernel and may not
represent the same data structures. We considered these numbers as the current
implementation on ERIKA has roughly a similar size and they can be used as a reference
for comparing “similar” implementations.
(**) The code footprint includes the equivalent of the following functions: StartOs,
ActivateTask, TerminateTask
(***) Code related to the handling of the multicore features (remote notifications,
inter-processor interrupts, spin locks, and code residing) on the Resource Manager Core
(see Chapter 2).

not available). Moreover, we have to consider that the old version of
ERIKA needed 1,984 bytes for each core. The new version of ERIKA,
instead, needs 2,940 bytes, regardless of the number of cores. This
means that with just two cores, the amount of memory needed by the
new version of ERIKA Enterprise is less than using the old version of
the RTOS.

• The comparison between the fourth and the fifth column gives a rough
idea of the impact of the multicore support. The increase of the code
footprint is mainly due to additional synchronization primitives (i.e.,
spinlocks) needed for distributed scheduling – i.e., to allow the “group
activation” done by the Resource Manager on behalf of OpenMP. There-
fore, this increase is specific to the Kalray architecture, and it is missing
on other (e.g., shared-memory) architectures. Note that the footprint
takes into account only the kernel part with the services for supporting
the OpenMP runtime library; it does not include the library itself.

1The footprint takes into account only kernel and support for the OpenMP runtime library;
it does not include the library itself.

2128 = 44 (core data structures) + 84 (idle task).
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Table 7.3 Timings (expressed in clock ticks)
Feature Time on ERIKA
ActivateTask, no preemption 384
ActivateTask, preemption 622
An IRQ happens, no preemption 585
An IRQ happens, with preemption 866

Table 7.3 provides basic measurements of activation and pre-emption of
tasks on a single-core:

Tables 7.4 and 7.5 provide some timing references to compare ERIKA
Enterprise (which is a RTOS) with NodeOS on MPPA-256, taken using
the Kalray MPPA tracer. Since NodeOS does not support preemption (and
therefore a core can execute only one thread) we have configured ERIKA
Enterprise to run only one task on each core as well. Then, we have measured
footprint and execution times. In particular, Table 7.4 provides a rough
comparison of the footprint for ERIKA and NodeOS on Kalray MPPA. For
ERIKA, the footprint also takes into account the per-core and per-task data
structures in a cluster composed of 17 cores. This footprint can be reduced
by using a static configuration of the RTOS. Table 7.5 provides a comparison
between the thread creation time on NodeOS and the equivalent inter-core
task activation on ERIKA.

Table 7.4 Footprint comparison between ERIKA and NodeOS for a 16-core cluster
(expressed in bytes)

ERIKA New Version, Multicore
Description with Services for Supporting OpenMP NodeOS
Code footprint 44843 10060
RAM 2184 2196

Table 7.5 Thread creation/activation times (expressed in clock ticks)
Inter-core Task Activation on ERIKA Thread Creation on NodeOS

1200 3300

3The footprint takes into account only kernel and support for libgomp; it does not include
the whole libgomp library.
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7.6 Summary

This chapter illustrated the state of the art of the OSs suitable for the reference
parallel programming model. After reviewing the main requirements that
influenced the implementation, the selection of the RTOS for the reference
platform has been described for both the host processor and the manycore
accelerators. Furthermore, a description of the main implementation choices
for the ERIKA Enterprise v3 and Linux OS have been detailed. As can be
seen, the result of the implementation provides a complete system which is
capable of addressing high-performance workloads thanks to the synergies
between the general-purpose OS Linux and the ERIKA Enterprise RTOS.
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