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In the near future, it will be common that a variety of robots are cooperating

to perform a mission in various fields. There are two software challenges when

deploying collaborative robots: how to specify a cooperative mission and how to

program each robot to accomplish its mission. In this paper, we propose a novel

software development framework that separates mission specification and robot

behavior programming, which is called service-oriented and model-based (SeMo)

framework1. Also, it can support distributed robot systems, swarm robots, and

their hybrid.

For mission specification, a novel scripting language is proposed with the

expression capability. It involves team composition and service-oriented behavior

specification of each team, allowing dynamic mode change of operation and multi-

tasking. Robots are grouped into teams, and the behavior of each team is defined
1This thesis includes our recent work [1] https://ieeexplore.ieee.org/document/8412595 and

[2] https://dl.acm.org/doi/10.1145/3061639.3062260. It is slightly amended version of [1] and [2].
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with a composite service. The internal behavior of a composite service is defined by

a sequence of services that the robots will perform. The notion of plan is applied

to express multi-tasking. And the robot may have various operating modes, so

mode change is triggered by events generated in a composite service. Moreover,

to improve the robustness, scalability, and flexibility of robot collaboration, the

high-level mission scripting language is extended with new features such as team

hierarchy, group service, one-to-many communication. We assume that any robot

fails during the execution of scenarios, and the grouping of robots can be made

at run-time dynamically. Therefore, the extended mission specification enables a

casual user to specify various types of cooperative missions easily.

For robot behavior programming, an extended dataflow model is used for

task-level behavior specification that does not depend on the robot hardware

platform. To specify the dynamic behavior of the robot, we apply an extended

task model that supports a hybrid specification of dataflow and finite state ma-

chine models. Furthermore, we propose a novel extension to allow the explicit

specification of loop structures. This extension helps the compute-intensive appli-

cation, which contains a lot of loop structures, to specify explicitly and analyze at

compile time. Two types of information sharing, global information sharing and

local knowledge sharing, are supported for robot collaboration in the dataflow

graph. For global information, we use the library task, which supports shared

resource management and server-client interaction. On the other hand, to share

information locally with near robots, we add another type of port for multicas-

ting and use the knowledge sharing technique. The actual robot code per robot

is automatically generated from the associated task graph, which minimizes the

human efforts in low-level robot programming and improves the software design

productivity significantly.

By abstracting the tasks or algorithms as services and adding the strategy
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description layer in the design flow, the mission specification is refined into task-

graph specification automatically. The viability of the proposed methodology is

verified with preliminary experiments with three cooperative mission scenarios

with heterogeneous robot platforms and robot simulator.

Keywords : High-level Specification, Dataflow, SDF Graph, Iterative Behav-

ior Specification, Shared Information Management, Automatic Code Generation,

Software Development Framework, Cooperating Robots

Student Number : 2013-20912
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Chapter 1

Introduction

1.1 Motivation

In recent years, there has been a growing interest in multiple robots per-

forming a single mission collaboratively in various types. On the one hand, in a

distributed robot system, robots are usually assigned different tasks to accom-

plish a common goal collaboratively. For instance, when the military wants to

know the enemy’s situation, different robots can be used to obtain more accurate

information. Alternatively, when trying to find a specific person in a building,

different types of robots, such as an unmanned ground vehicle (UGV) and un-

manned aerial vehicle (UAV), can work together. On the other hand, in swarm

robotics, robot behavior is defined collectively without specification of the role of

individual robots. For example, Amazon deploys up to 800 robots simultaneously

to pick up and bring a parcel in its warehouse. A mixture of those two different

collaboration styles is also possible. In the deployment of cooperating robots, there

are two software challenges: how to specify the cooperative mission at the user

level and how to program each robot to accomplish the mission. For general robot

programming, we need to take into account a wide range of robot platforms, from

insect-sized miniature mobile robots [13], [26], [27], that are small in size and have

limited energy and computational performance, to humanoid robots [14], [28].
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A traditional method to program a robot is to use the robot-specific pro-

gramming environment provided by the robot manufacturer[29][30][31][32]. The

programming environment typically provides device drivers and software libraries

to control the robot hardware in a conventional style of programming. Since the

robot software depends on the robot hardware platform, it is necessary to re-

design the software again whenever the robot hardware platform is changed even

for the same behavior specification. It is an inefficient and laborious practice to be

overcome. Therefore, this method is not adequate for the behavior specification

of cooperating robots that may be heterogeneous.

To increase the reusability of the software over diverse robot hardware plat-

forms, several robotic software platforms have been developed recently for system-

atic software development. The most popular robot software platform is robot op-

erating system (ROS) [33] that was first introduced ten years ago and has gained

wide popularity. It is an open-source framework based on the component-based

software design methodology. It provides a set of APIs (application programming

interfaces) abstracting the hardware platform and libraries and tools to enable

robot programming agnostic of the hardware platform. However, since it assumes

a Unix-based operating system such as Linux, it has a disadvantage of heavy re-

source requirements for miniature robots. Our preliminary experiment with an

autonomous moving scenario on a V-Rep simulator [34] environment reveals that

the memory requirement of ROS-based software is 5.81 times higher than the

software designed by the proposed framework as shown in Table 1.1. Also, ROS

programming is not easy for a casual user that has little knowledge of computer

programming [35]. Moreover, how to specify a collaborative mission of robots is

not addressed in the ROS platform [36], [37].

Two approaches have been proposed for the software development of mul-

tiple robots: 1) bottom-up approach and 2) top-down approach. The bottom-up

2



Table 1.1: The memory requirement comparison between ROS and the SeMo
framework for a simple autonomous moving scenario of a robot (Unit: MB)

ROS SeMo Ratio

Application 73.48 45.37 1.62
ROS framework 190.33 - -

Total 263.82 45.37 5.81

approach is to program the behavior of individual robots and their interaction with

a predefined set of APIs for communication and synchronization between robots.

This approach is widely used by extending the existent robot programming en-

vironment for distributed robot systems. Since it gives the developer complete

control over the design, the developer is exposed to the overwhelming burden of

design details such as synchronization and robust programming [38] [39] [40]. The

top-down approach, on the other hand, is to abstract multiple robots into groups

and specify their behaviors as a single robotic motion. Since it lacks expressive

power to fine-tune specific robot behaviors, it is difficult to specify a cooperative

mission in which heterogeneous robots behave differently [40]. Thus, it is applica-

ble for swarm robotics.

We identify four requirements for desirable software design methodology of

cooperating robots as follows:

(R1) The software design should be independent of the robot hardware platform,

similar to ROS.

(R2) The resource requirement should be minimized for miniature mobile robots

that have a limited budget of resources, which is not considered in ROS.

(R3) A user that lacks knowledge of the robot hardware and programming lan-

guages should be able to specify the mission of robots easily.

(R4) In the mission specification, a collaboration of robots and dynamic behavior

3



could be expressed intuitively.

(R5) Mission specification supports both distributed robot systems and swarm

robotics.

The first two requirements are related to robot behavior programming, and the

next three are about robot application programming or mission programming.

In this paper, we propose a novel software development methodology that in-

tegrates the top-down and the bottom-up approaches synergistically and satisfies

these four requirements, by separating mission specification and robot behavior

programming. For mission specification, a novel scripting language is introduced

with the expression capability of dynamic mode change and multi-tasking. A mis-

sion is specified by a sequence of services that the robots can provide to the user.

Since a service is independent of the robot hardware and software, the proposed

mission specification method satisfies R3 and R4 requirements. To improve the

robustness, scalability, and flexibility of robot collaboration, we include some key

features of swarm robotics in the scripting language. We add a team hierarchy,

which allows the developer to form a group of robots dynamically in a team. A

team of robots may have several groups that perform different services at the same

time. Also, a new notion of a service, called group service, is introduced, which

corresponds to the cooperative mission specification in the top-down approach.

Moreover, intra-team communication via broadcasting and local information shar-

ing, which are essential for swarm robotics, are supported in the framework. Thus,

the proposed framework enables a casual user to specify various types of coop-

erative missions for distributed robot systems, swarm robots, and their hybrid,

which satisfies R5 requirement.

For robot behavior programming, on the other hand, we use an extended

dataflow model for task-level behavior specification of each robot. Dataflow mod-

els attract attention for the design and implementation of a parallel application

4



on a multicore system since they explicitly specify the task-level parallelism of

an application. A class of dataflow models, called decidable dataflow models, has

restricted execution semantics so that we can analyze the application behavior at

compile time to detect critical design errors such as deadlock and buffer overflow,

which saves the huge overhead of testing and debugging of a parallel applica-

tion. Nonetheless, they are not widely used in general, except for a limited set

of signal processing and streaming applications, because the expression capability

of decidable dataflow models is severely limited. Thus, extensive researches have

been performed to enhance the expression capability by expressing the dynamic

behavior of an application [25][41], allowing the use of shared resources [42], and

so on. The operation of each robot is specified by a task graph that consists

of tasks following the pre-defined formal semantics on inter-task communication

and scheduling. For each robot, it is assumed that all tasks are programmed and

prepared in the task library, which corresponds to the bottom-up approach. The

actual robot software is automatically generated from the dataflow model after

mapping and scheduling of tasks onto the robot hardware platform is determined.

Thanks to its formal semantics, we can estimate the resource requirement and per-

formance at compile-time, which enables us to make the best task mapping and

scheduling decisions based on the estimation result. And thanks to automatic gen-

erated individual robot program, it relieves the programmer of the aforementioned

burden of the bottom-up approach and reduces the risk of manual programming

error drastically. Thus, R1 and R2 requirements can be satisfied with the proposed

method of robot behavior programming.

Note that there is a significant abstraction gap between the mission spec-

ification and task-level behavior specification. To fill the gap, we add another

specification layer, called a strategy description. A task or a task subgraph in the

task-level specification is abstracted as a service at this layer. Since there may

5



exist multiple tasks providing the same service, we manage a database that re-

lates a service with the tasks or task subgraphs that provide the service. In the

strategy description, additional information is specified to decide which task or

task subgraph is selected for a given service request from the mission specification.

The viability of the proposed methodology is validated with experiments

with a robot simulator and distributed robot systems. The former demonstrates

the added features for swarm robotics, and the other performs a common mission

as case studies. In particular, we focus on how to specify the mission and the

resultant dataflow specification translated through the strategy layer. To verify

the productivity of software development, we compare the number of lines of the

generated code.
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1.2 Contribution

The contributions of this dissertation can be summarized as follows:

• We propose a novel software development framework for cooperating robots

combining the top-down and bottom-up approaches. It separates the service-

oriented mission specification and model-based robot behavior program-

ming, so-called SeMo framework. It satisfies five requirements in the software

design of cooperating robots: software reusability, resource minimization, the

easy specification of the mission, the specification of robot collaboration and

dynamic behavior, and the support of swarm robotics as well as distributed

robot systems.

• A novel scripting language is proposed to specify a mission as a sequence

of services so that the user who is ignorant of robot hardware and software

programming can use it easily. The scripting language supports dynamic

mode change and multi-tasking that are not supported in most existent

scripting languages. Also, to support swarm robotics as well as distributed

robot systems, we add features for dynamic group formulation, the defini-

tion of group services, local information sharing and so on. It improves the

scalability, flexibility, and robustness of multiple robots.

• We use an extended dataflow model for the task-level specification of each

robot’s behavior. For individual robots, we adopt an extended SDF model

with a finite state machine (FSM) to express dynamic behavior and propose

a novel extension to the SDF model, called SDF/L graph to express and con-

trol the loop structure explicitly. The SDF/L graph can express the C-type

loop easily that the SDF model cannot specify. For the cooperative operation

of multiple robots, we adopt a library task to access global information and

support server-client interaction and extend one-to-many communication

7



adding multicasting port and adopting the knowledge-sharing technique.

• We develop an automatic code generation technique from the model to the

actual software code to run on each robot platform. By generating the run-

time system and an adaptive resource management module automatically,

we improve the productivity of software development and save resource re-

quirements adaptively.

• By abstracting a task or a task subgraph as a service and introducing an

additional strategy specification, we generate the task graph specification

that corresponds to the mission specification automatically.
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1.3 Dissertation Organization

The rest of the dissertation is organized as follows:

• Chapter 2 presents a brief explanation of terminologies and a quick liter-

ature review on several topics related to the robot software development

frameworks and parallel embedded software development framework.

• Chapter 3 describes the overview of the proposed SeMo framework. It has the

refinement process among four levels of abstraction in software development.

Also, we introduce several examples to explain our flow.

• Chapter 4 explains model-based task graph specification for individual

robots and cooperating robots, respectively. Extended task graph models for

dynamic and iterative behavior specification are used for individual robots.

Especially as the demand for compute-intensive applications such as vision

and machine learning grows, the SDF/L graph is formally defined in Sec-

tion 4.2.2. For cooperating robots, two types of information sharing, global

information shared and local knowledge sharing, are expressed explicitly.

Automatic code generation techniques are explained in Section 4.4.

• Chapter 5 focuses on high-level mission specification, explicitly expressing

team formation, dynamic mode change of operation, and multitasking in

Section 5.1. To improve the robustness, scalability, and flexibility of robot

collaboration, we append new features such as team hierarchy, group service,

and one-to-many communication in Section 5.1.3. Also, it is refined into

extended dataflow graphs, one for each robot, with the help of a strategy

description file. Section 5.3 shows how to convert the mission description to

the task model.

• Finally, we summary the proposed methodology and discuss possible areas

9



for future works in Chapter 6.
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Chapter 2

Background and Existing Research

This chapter provides basic terminologies and a comprehensive overview of

software development methodologies and frameworks for robot and embedded

systems. Among many embedded system software development methodologies, we

will focus on the special way, HOPES approach, used in this study. The goal of this

chapter is not to provide a comprehensive and thorough literature review of the

topic represented, but to provide an overview of the topics referenced throughout

this dissertation.

2.1 Terminologies

2.1.1 Robot

A robot is a machine that can automatically carry out a complex series of

movements. In particular, it can be programmed by a computer [43]. It has begun

to be developed to perform dangerous or difficult tasks on behalf of humans, which

is resulting in increased productivity. As technology advances, however, its scope

of application is gradually expanding. For example, robots can collaborate with

workers, improve quality of life, and even interact with people.

According to the International Federation of Robotics (IFR), robots can be

classified into three categories [44], [45]: 1) industrial robots, 2) professional service
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robots, and 3) personal service robots. Industrial robots are responsible for the

automation process in the manufacturing industry. For instance, there may be

integrated circuit handlers, dedicated assembly robots, and automated guided

vehicles. Service robots perform useful tasks for unspecified individuals except for

industrial automation applications. Service robots for personal and private use

are used for non-commercial work, usually used by laypeople. Examples are home

servant robots, sweeping robots, educational robots, and entertainment robots.

And service robots for professional use are used in the commercial or professional

task by properly trained operators. Examples are fire-fighting robots, medical

operating robots, and guided robots in the military.

Robots can be divided into ground robots, flying robots, and marine robots

according to the actual operating space. The most common ground robots can

be categorized as crawling, walking, rolling, jumping, and climbing, depending on

how they move. Their sizes vary widely, ranging from insect-sized small mobile

robots [26], [27] to humanoid robots. Aerial robots are mainly made by imitating

birds or flying insects. They are widely used with unmanned control, especially

Industrial Robot
Service Robot

Personal Service Robot Professional Service Robot

Figure 2.1: Robot classification by use, image from [3], [4], [5], [6], [7], [8], [9]
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for performing militarily dangerous tasks such as scouting and dropping bombs

on behalf of humans. Marine robots are primarily developed for underwater ex-

ploration or military reconnaissance [46]. Furthermore, hybrid robots that can be

operated on the ground and underwater or on the ground and in the air have been

developed. Figure 2.2 shows the classification, where each robot has specialized

form and function adapted to the characteristics of the activity area.

In order to operate a robot as a system, it is necessary to integrate compo-

nents such as structural, driving, control, sensing, and power parts. In addition,

it requires several algorithms to perform a mission [47], [48]. For example, path

planning, localization, and mapping algorithms are required so as to move au-

tonomously. It is imperative to control actuator or manipulator, which is the most

distinguishing feature of the computer. And stabilization algorithm is important

as well to control attitude and pose, because a robot with four legs, like a bug,

is easy to flip while moving [49]. Recently, intelligent robots, which operate au-

tonomously, are in the spotlight. They are equipped with various kinds of sensors,

such as optical, acoustic, vibration, temperature, pressure, and chemical sensor,

which are similar to the human five senses, such as visual, auditory, touch, smell,

and taste [50]. They can recognize the external environment (perception), deter-

mine their status (cognition), and operate autonomously (manipulation). With

the recent explosive development of deep learning, recent researches are based

on this technology. Especially, it is useful for object recognition, which is to find

out the information such as type, size, the orientation of the object based on

previously learned knowledge. Besides, human-robot interface (HRI) technology

has been developed to understand human emotions and intentions [51], [52]. Such

intelligent robots are applied not only to the industrial area but also to civilian

service fields such as medical care management and household utilities.

Boston Dynamics reported that BigDog robots shown in Figure 2.2 was de-
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DynaRoACH

Crawling robot 

e-puck 

HUBO
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Figure 2.2: Robot classification by movement method, image from Big Dog [10],
DynaRoACH [11], crawling robot [12], e-puck [13], HUBO [14], Robobee [15], iBird
[16], BOLT [17], Bitdrone[18], DJI Phantom 3 [19], Perambulator [20], Robotic
lobster [21], Boxybot [22], Aqua AUV [23], water strider [24]
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veloped to go almost anywhere. Because outdoor terrain is too rough for existing

wheeled and tracked vehicles to access, BigDog has a variety of locomotion behav-

iors using about 50 sensors, four legs, and a control system [10]. Seoul National

University developed intelligent mobile cognitive robots based on machine learn-

ing [53]. Inspired by the human brain process, they combined deep learning models

with memory models to overcome restricted paradigms of classical artificial intel-

ligence (AI). Their robot has various perception modules, such as object detection

and recognition, human pose estimation, scene description, and speech recogni-

tion modules, and action modules such as navigation and following modules. As a

result, their robot provides essential social services to the customers in dynamic

environments such as a house, hotels, restaurants, and even airports.

2.1.2 Multiple Robots

The concept of multiple robots appeared in the early 2000s, but the study

has been actively researched and developed in the recent 4-5 years [54]. This is

because multiple robots can cooperate effectively. As an example, when looking

for survivors in the wreckage of an earthquake, it can be much better to deploy

thousands of insect robots. Multiple robots are a set of robots that work in a shared

environment to accomplish a given task. Deploying multiple robots efficiently

offers several advantages over a single robotic solution, such as distributed control,

fault-tolerance, redundancy, support of team members when needed, performing

different tasks in parallel, and achieving faster missions [55]. For example, a small

mobile robot has a limited battery, which allows it to perform its mission in a

limited area within a limited time. Multiple robots can perform the same mission

in more areas than a single robot. In general, multiple robots are likely to increase

the robustness and reliability of the robotic solution. However, it is difficult to

coordinate multiple robots so as to execute complex group tasks efficiently, while
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maximizing group performance and optimizing the available resources.

Multiple robots can be composed of homogeneous robots or heterogeneous

robots. Also, they can perform a similar task to save time and complement them-

selves by doing different tasks. For instance, robots can take care of the house

by cleaning each room. On the other hand, robots can play soccer in teams [56].

Each robot plays the role of a defender, midfielder, and attacker, playing games

to get as many goals as possible.

Inspired by ants, bees, birds, fish, and such social animals, swarm robots

are large numbers of homogeneous robots [57], [38]. They allow each robot to

move simply and communicate with each other. So one would think each robot’s

behavior is too trivial to do meaningful. However, their simple function would

result in a sophisticated algorithm when a bunch of robots is doing it. In addition,

even if a few are lost, the number is so large that it does not affect the entire

mission. Therefore, swarm robots are robust, scalable, and flexible. To define three

terms here [58], [38], robustness is the ability to cope with the loss of the individual.

It improves when the robots are redundant, and there is no leader. And with local

sensing and communication, swarm robots perform well in different group sized

robots. Therefore, the introduction or removal of the individual robot does not

result in a drastic change in the performance of the swarm. Lastly, flexibility is

the ability to cope with different environments and tasks, which is related to task

allocation.

It is common to see examples of swarm robots. At the opening ceremony of

the 2018 Winter Olympics in Pyeongchang, many people admired the swarm of

drones covered with LED lights to make patterns of the Olympic rings and its

mascot. It consists of 1218 drones, each with built-in LED lights, and weighs just

280 g [59]. One operator can control hundreds of drones at once to create images

in the sky. This is because drones are not controlled by hand one by one, but by
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Kilobot

(a) A group of drones formed the Olympic
rings at the 2018 Winter Olympics opening
ceremony, Images from [62]

Kilobot

(b) Self-assembly using up to 1024 kilobots,
Images from [63]

Figure 2.3: Examples of swarm robot

carefully moving in choreographed lines. Also, robots know where they are, so the

operator may give commands again if they move abnormally.

Numerous biobots [60] resembling cockroaches were deployed to buildings de-

stroyed by earthquakes or unknown environments, creating a map with wall fol-

lowings [61]. It is especially beneficial when the global positioning system (GPS) is

not available. The robots with sensors were randomly sprayed, and after a while,

they kept moving until they found the wall, sending signals to the operator when-

ever they get closer to each other. When the map of the zone is drawn, the biobots

moved to the next adjacent area under the control of the drone corresponding to

the controller and continued to draw the map.

The most popular swarm robot is the Kilobot [63], whose size is 1024 units.

The coin-sized robot has three rigid legs, two vibration motors for moving straight

or turning on a flat surface, and an infrared transmitter and receiver. Robots

do not have direct information about their global position, but stationary seed

robots know their location and orientation. Other robots can move along the

edge and receive messages to calculate their location and gradient values. Using

a self-assembly algorithm, they can form a cluster and change shape for different

purposes. Thus, we can anticipate kilobots to transport large objects or coordi-
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nate the construction of bridges or specific structures like ant colonies [64]. Like

this, swarm robots following simple rules and communicating with each other can

achieve a specific desired result.

In this paper, we divide the cooperating robots into distributed robots and

swarm robots, shown in Figure 2.4. To begin with, we define the distributed robots

as multiple robots that move independently of each other. So each robot can do

different things taking into account hardware and software constraints. In this way,

individual robots can complement one another to perform one task. For instance,

Amazon deploys up to 800 robots simultaneously to pick up and bring a parcel in

its warehouse [65]. To minimize congestion, the system coordinates the route of

every robot. On the contrary, a robot in the swarm robots is autonomous because

it has its local sensing and communication capabilities. Thus, swarm robots can

work together to tackle a given task like biobots and kilobots.

- Robots are autonomous

- Robot’s sensing and 

communication capabilities 

are local

- Robots may not have access 

to centralized control and to 

global knowledge 

- Robots cooperate to tackle 

a given task

- Each robot can do different things 

- Individual robot can perform one 

task complementarily, taking into 

account HW constraints

- Robots enable to consider the 

different environments each robot 

faces

Distributed Robots Swarm Robots

Hybrid

Figure 2.4: Cooperating robot
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To operate cooperating robots, four skills are required: behavioral control, sit-

uational awareness, network, and system integration. First, the control technology

can be divided into centralized and distributed control methods. The centralized

approach regards the entire robots as a system, controlling all robots from a single

control tower to ensure optimality and completeness. However, as the number of

robots increases, it requires the amount of computation and the complexity of

communication. The distributed approach, meanwhile, is to control each robot as

an independent system. Although there are advantages in that it can compensate

for the shortcomings of the centralized approach, it is difficult to guarantee the

optimality and completeness of the mission. Therefore, it is necessary to identify

the characteristics of individual robots that constitute cooperating robots, and

to determine what kind of control methods to use for the operation of multiple

cooperative robots. In addition, the robot can allocate the role dynamically rather

than statically to enhance the robustness. If one robot encounters a problem while

performing a mission, other robots should be able to handle it on their behalf so

that it does not become a problem. If you want to use a leader-follower struc-

ture within robots, you need additional technologies on how to check the leader

periodically and determine the leader robot [39], [66].

Communication is indispensable to operate a mission with multiple robots.

As though a single robot communicates with the operator, multiple robots may

communicate only with the operator, not with each other [67]. However, commu-

nication between them is essential to make them more efficient. Communication

between robots can be divided into one-to-one and one-to-many or many-to-many

communication. One-to-one communication is useful in a stable communication

environment, enabling highly reliable. On the other hand, one-to-many or many-

to-many communication is useful when robots share information. Like control

technology, one robot has information centrally, and the others can query infor-
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(a) Robot formation switch from diamond to line, Images from [68]

Robot #1 Map

Robot #2 Map

Robot #1, 2 Map after merging

(b) Multi simultaneous localization and mapping (multi-SLAM),
Images from [69]

Figure 2.5: Examples of swarm robot behavior

mation to get it. Additionally, each robot has its information and update the

information through communication with nearby robots. Since the method of

sharing information may vary depending on the mission scenario, it is necessary

to determine the characteristics of individual robots and mission scenarios.

Compared to a single robot, using multiple robots provides more available

services. For example, they can move in formation [70], [68], [71], [72], [73] and

transport objects larger than robots. A study [74] researches a probabilistic col-

lision avoidance algorithm for navigation among other robots and moving obsta-

cles. In experiments, two quadrotors share the space with two humans and sixteen

quadrotors in the simulation verify the coordination approaches. In addition, the
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trajectory planning algorithm is developed for swarm navigation [75]. With up to

200 quadrotors, it generates spare roadmaps with possible collisions and creates

smooth trajectories in a few minutes.

Moreover, there are various studies about the observation of the environment

with multiple sensors. Each micro aerial vehicles (MAVs) estimates its motion and

centralized ground station generates its individual map for each MAV and merges

maps to create collaborative localization and mapping in unknown indoor and

outdoor environments [76], [77].

In this way, multiple robots can be used much more efficiently as hundreds

of drones can save time and money than a single helicopter on the disaster scene.

Currently, robots are mainly used in industrial areas or in particular service areas,

but they are expected to be used much more as the prices go down in the era of

the Internet of Things (IoT).

2.1.3 Robot Software

Robot software has a hierarchical structure similar to a general computer,

but it is connected to various I/O devices and performs mainly a given task, as

shown in Figure 2.6. It consists of four layers: 1) hardware abstraction layer, 2)

operating system layer, 3)middleware layer, and 4) application layer.

The bottommost layer, the hardware abstraction layer (HAL), lies between

the robotic system hardware and the operating system. It includes the boot load-

ers, device drivers, and other components. Similar to the basic inputoutput system

(BIOS), the boot loader is a program that initializes hardware and prepares the

hardware and software environment before the operating system kernel runs. De-

vice drivers provide an integrated software interface for hardware components and

peripherals.

The operating system layered on top of the HAL manages hardware and soft-
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ware resources and provides standard services such as scheduling and networking.

The operating system for robots may not only use general-purpose operating sys-

tems such as Linux and Windows, but may also use a specific operating systems

such as sensor nodes or real-time operating systems depending on the purpose.

For example, Micro COS III [78] is a real-time operating system with pre-

emptive multitasking. It has the advantage of being able to manage an unlimited

number of tasks and be ROMed along with the application code. Its high porta-

bility to 8, 16, 32, and 64 bit systems makes it easy to port on many robots. Texas

Instrument created uC-OS-based robots and provided the software development

environment including libraries, called StellarisWare. Most robot software is pre-

programmed in ROM, allowing programmers to focus on application development

rather than setup. In addition, VXWorks [79] made by WindRiver is the world’s

most widely deployed real-time operating system and is widely used in industrial

robots.

TinyOS [80] and Contiki [81] are operating systems for sensor networks that is

Sensor Communication Motor Data Storage

Memory CPU Accelerator

Hardware

Hardware Abstraction Layer (Device Controller, Driver)

Operating System

Middleware (ex. Robot Operating System)

Cognitive Layer

(Machine Learning)

Navigation, 

Path Following
Mapping

Application #1 App. #2 App. #3 App. #4

Software

Figure 2.6: Software architecture of robot
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lighter than Linux and use an event-based programming model that is convenient

for specifying the behavior of robots. Event simulator TOSSIM for TinyOS appli-

cations gives the programmer a complete view of the network and makes it easier

to develop. However, it does not provide all the components of the actual robot

named CotsBots [82]. Contiki focuses on low-power wireless Internet-enabled de-

vices. It also uses protothreads, which are very lightweight and stackless threads

that can significantly reduce memory overhead [83].

Besides, the robot software often requires the entire code, including the sched-

uler code, to be compiled and loaded into the robot without an operating system.

In this case, the robot manufacturers typically provide code for controlling the

hardware of the robot in the form of a device driver or library or directly support

program specification and code generation through its development environment.

Therefore, the operating system of the robot can be different, so this must

be taken into account when making the software for the robot. In this thesis, we

propose a methodology for developing software for various operating systems.

Robot middleware helps robot builders to simplify the development process,

support communications and interoperability, and provide integration with other

systems [84]. There are various robot middleware projects such as Player Project

[85], Urbi [86], and robot operating system (ROS) [33]. The following section

explains this in more detail.

The top-level software is the application layer that implements system func-

tionality. Robot applications sometimes require specific services such as naviga-

tion, path following, and cognition. Then it executes additional program such

as PyTorch [87] and TensorFlow [88]. Also, the application provides a graphical

user interface (GUI) to interact with the user easily. When programmers develop

robotic software applications, they use the robot simulators such as Webots [89],

MORSE [90], Gazebo [91], and V-Rep [34] to verify their developed technology
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before applying it to the actual robot environments. They provide realistic sim-

ulation environments that take into account robot-to-robot communication and

two- or three-dimensional world modeling. They also support physic engines that

consider disturbances to simulate the real world.

Many software systems and frameworks have been proposed to make pro-

gramming robots easier. I’ll explain more in the next section.
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2.2 Robot Software Development Frameworks

The existent software development frameworks for robots can be divided into

two categories: manufacturer-specific software framework and general-purpose

software framework.

2.2.1 Manufacturer-specific Software Framework

The traditional method to program a robot is to use the robot-specific pro-

gramming environment that is provided by the robot manufacturer. The pro-

gramming environment typically provides device drivers and software libraries to

control the robot hardware in a conventional style of programming. For instance,

the POB Robotics Suite supports the Software Suite, which is designed to allow

an easy and quick start [30]. For beginners, the icon programming software is intu-

itive. A complete development environment allows advanced users to use common

languages such as C and Java.

Since the robot software depends on the robot hardware platform, it is nec-

essary to redesign the software again whenever the robot hardware platform is

changed even for the same behavior specification. It is an inefficient and laborious

practice to be overcome.

2.2.2 General-purpose Software Framework

To increase the reusability of the software over diverse robot hardware plat-

forms, several robotic software platforms have been developed recently for sys-

tematic software development.

The ROS (Robot Operating System) [33] is the most popular robot software

platform based on the component-based approach, which emphasizes reusability

and scalability. It is a virtualization layer between applications and distributed

computing resources, providing hardware abstraction, low-level device control,
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Figure 2.7: Comparison of the software structure: ROS and the proposed frame-
work

and message-passing between nodes. Nodes are processes that perform compu-

tation, corresponding to tasks in the SeMo framework. In ROS, a master node

acts as a name server for node-to-node connection and message communication.

Each node is initialized by registering itself and the topic to the master node.

Then nodes can communicate with each other via publishing/subscribing topics,

requesting/responding a service, or sending goals. While ROS is focusing on indi-

vidual robots, several studies use two or more robots for a cooperative mission[92].

Even though ROS supports various languages such as Python, Java, and C++,
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Figure 2.8: Robot operating system
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there are no specific APIs defined for a cooperative mission. Hence it is difficult

to specify a collaborative mission for robots[36]. Since ROS is based on a cen-

tral node called rosmaster that provides naming and registration services for the

rest of the nodes to discover one another, it is known that a robot may get dis-

connected in multi-robot systems due to unreliable network[37]. Thus, using one

master inside each reliable network, which is typically one master per robot, is

taken as a solution[93]. There are three significant differences between ROS and

our SeMo framework. First, while ROS supports Unix-based operating systems

only as illustrated in Figure 2.7 (a), SeMo framework does not assume any specific

operating system. As shown in Figure 2.7 (b), we can synthesize kernel codes such

as scheduling and adaptive policy manager if necessary. Second, since the oper-

ating system performs node scheduling in ROS, it is not possible to estimate the

performance or to verify the feasibility of the specified scenario beforehand. On the

other hand, in the SeMo framework, we can determine the task schedule consid-

ering the performance requirement and resource limitations, thanks to the static

analyzability of the formal dataflow model. Thus, the proposed software frame-

work can support miniature mobile robots, which usually have tightly constrained

resources. Last but not least, ROS is mainly used by those who have background

knowledge of robots and programming so that it is not easy for a casual user to

use [35]. Moreover, it is laborious for an expert to specify a mission of cooperating

robots in the ROS framework [36]. In contrast, while the proposed framework

aims to make both application programming and behavior programming easy.

OPRoS (Open Platform for Robotics Service) [94] and Orocos (Open Robot

Control Software) [95] are also component-based frameworks similar to ROS. Like

ROS, they do not concern resource limitations, supporting mainly high-level oper-

ating systems such as Windows and Linux. While ROS focuses on the specification

of algorithms performed on a single robot, OPRoS supports server-client robot
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control and management, allowing more flexible specification and implementation

of cooperating missions. In the case of Orocos, a scripting language is proposed

to help users to write programs and state machines controlling the system, which

corresponds to the mission script language in the SeMo framework. It provides a

tool to generate C++ code from the script language, assuming that the code is

run on a single processor sequentially. On the contrary, the mission specification

is translated into a task graph model that can be mapped to a multicore platform

in the SeMo framework.

MissionLab [96] is a robot software framework that consists of different lev-

els of abstraction, which is similar to the proposed framework. It is designed to

support cooperating robots. For each robot, it allows the user to specify the char-

acteristics of the robot and the robot behavior with the state machine in the

GUI (graphical user interface) environment. This high-level specification is re-

fined to CDL (configuration description language), CNL (configuration network

language), CMDL (command description language) and finally to C/C++ target

code that is run on each robot, adding more information at each refinement step.

Their high-level specification is not a scripting language, and its expressing capa-

bility is too restricted to specify complicated missions. For instance, CMDL does

not support iterative and conditional constructs but supports only sequential con-

trol constructs. Moreover, it is not designed to support miniature mobile robots,

targeting power robots that run the Linux operating system.

Some approaches use a popular scripting language to program the robot

application since a scripting language is relatively easy to learn. One example

is pyro [97] that uses the Python language. TMkit [98] belongs to this category

since the domain-specific mapping from scenes to task state and task operators to

motion planning problems can be written in Python or Common Lisp. Since the

scripting language is independent of the hardware platform, it can be categorized
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as a general-purpose framework as long as the Python interpreter is supported

for the hardware platform. In these approaches, however, there is no distinction

between the mission specification and the behavior specification unlike ours. We

believe that a Python language is still hard for a casual user to use for the mission

specification of cooperating robots.

Aseba [99] is an event-based software architecture that provides two specifi-

cation methods for beginners and intermediate users. For beginners, the behavior

of a robot can be specified by event-action pairs in a GUI environment. On the

other hand, intermediate users can directly program the robot codes by using

Aseba language that is an imperative language similar to PASCAL. Even though

it considers beginners who lack knowledge of programming, this approach is dif-

ferent from ours that does not sacrifice the expression capability of beginners with

a novel notion of abstraction hierarchy. DRONA [100] uses a new programming

language, called P [101] for asynchronous event-driven systems. It describes the

distributed mobile robots with state-machines and generates the robot code auto-

matically from the high-level specification. Recent work in [102] is similar to our

framework in that they generate robot code from a high-level specification that a

casual user may learn easily. They propose the natural language interface of the

LTL (linear temporal logic), called Structured English[103]. The LTL specification

is translated to FSM, and finally to a ROS node. While it is similar to control

task synthesis from mission specification in our framework, it does not consider

computation tasks and no cooperating missions.

Karma[104] is a framework for programming and managing swarms of micro-

aerial vehicles (MAVs) based on a centralized hive-drone model. A drone is an

individual MAV that performs the specified commands without in-field commu-

nication. And the hive, as the central coordinator, orchestrates the drone and ex-

ecutes a given mission. The user specifies the cooperative mission by considering
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many drones as a swarm rather than individuals. The centralized hive maps the

drones by location, and each drone works in that area and returns to the hive to

share information, which leads to long information latency. Although this method

has the advantage of easy decision making thanks to the centralized hive and

simplified programming of the MAV, it is not applicable for general distributed

robot systems.

Another category of the software development framework usually aims to

support robots that do not use high-level operating systems such as Linux and

Windows, for instance, a light-weight operating system for a sensor node or a real-

time operating system. For example, Texas Instruments provides StellarisWare as

a software development environment for the robot based on Micro C/OS Ⅲ. In

the case of Mindstorms NXT Lego robot based on OSEK, RobotC [105] is used

as the programming language. Since it does not fully support C standard, care

should be taken to consider its characteristics and limitations in programming.

In summary, there is no general-purpose robot software development frame-

work that supports diverse operating systems and hardware platforms and allows

a casual user to make applications of the cooperating robots, which motivates the

invention of the new design methodology.
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2.3 Parallel Embedded Software Development
Framework

An embedded system is an electrical system that performs a dedicated func-

tion, often with real-time computing constraints. In other words, it is designed

for specific tasks rather than a general-purpose computer for multiple tasks. And

it is embedded as part of a complete device, including hardware and mechanical

parts, and acts as the brain for a system that requires control [106]. Examples are

smartphones, cameras, refrigerators, industrial robots, cars and so on.

As more processors are integrated into a single system and the application

range of embedded systems continues to grow and become smarter, developing

parallel embedded software has become more difficult. There are five requirements

for embedded software development. As the complexity of embedded systems in-

crease, more processing elements are involved. Therefore, multiprocessor systems-

on-chip (MPSoC) requires parallel processing. And building real-time embedded

software is emphasized because both value and time affect the physical outputs of

embedded systems for interfacing with the real world. Throughput requirements

are critical when the application runs iteratively with the input data stream,

whereas latency requirements are important to control the application. In addi-

tion, embedded systems may have strict restrictions on memory size and power

consumption. Moreover, custom hardware and software interface designs are often

required. Finally, correctness and performance estimation are fundamental [107],

because debugging a program at runtime is not easy.

For parallel embedded programming, there are several approaches to develop

parallel embedded software for multi-core systems [108]. With a simple exam-

ple shown in Figure 2.9, we compare the four approaches: 1) compiler-based

approaches, 2) language-extension approaches with annotations, 3) language-
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extension approaches with application programming interfaces (APIs), and 4)

model-based approaches.

The compiler-based approach looks like a dream methodology. This is because

traditional sequential languages like C are used for initial specification without

modification, as shown in Figure 2.9 (a). The compiler then automatically paral-

lelizes the application. The key technique is to find parallel regions of the code

and check their data dependencies. After finding the data-parallel regions, the

partitionermapper converts each parallel region into a set of concurrent tasks and
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D

C

1

1 99

1

1

1

A()
B()
kernel = clCreateKernel(progC, “C”);
work_size[0] = 99;
range = clCreateNDRangeContainer(…, work_size, …);
clExecuteKernel (…, kernel, …, range, …)
D()

A()
B()
#pragma omp parallel for
for ( i = 0; i < 99; i ++)

C()
D()

A()
B()
for ( i = 0; i < 99; i ++)

C()
D()

(a) Compiler-based approach (b) Language-based approach (annotation)

(c) Language-based approach (API)

(d) Model-based approach

Functional task
Sample rate

FIFO channel

Figure 2.9: Design methods of parallel embedded software
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maps them to multiple processors. This approach eliminates the burden of par-

allel programming for application programmers. However, the compilers support

a limited set of applications because functional level parallelism cannot be easily

detected.

Since it is not easy to extract parallelism from sequential code, programmers

provide parallelism information such as where and how to parallelize the code. Al-

though the programmers can program the code manually using threaded libraries,

additional annotations and application programming interfaces (APIs) are widely

used in the industry and academia [109]. In the Figure 2.9 (b), sequential code

with high-level compiler directives specifies potential parallel regions. This allows

the compiler to concentrate on exploiting the specified parallelism. The language

extensions with annotations have the merit of reducing the amount of annota-

tion overhead and the burden of the compiler. Nevertheless, it is not easy for this

approach to control low-levels for optimization only with the annotations.

For low-level control, programmers use APIs to develop parallel programs.

Compared with the annotation-based language extension, the APIs need to dis-

cover the parallel regions, distribute the code and data to the processors, and

restructure the code using the APIs. This means that the programmer has a lot

of work to do, as depicted in Figure 2.9 (c). Nonetheless, it is the most widely

used approach, thanks to the low level of control.

An abstracted model simplifies the application behavior, decoupling com-

putation and communication. In model-based design, a designer decides on an

apposite model that explicitly represents the features of the application behavior.

Thanks to the model, analysis and verification can be applied before implementa-

tion. It also increases productivity with automatic code synthesis based on models.

In the example of the Figure 2.9 (d), nodes represent functions that can be exe-

cuted when input data are available and arcs or edges represent first-in-first-out
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(FIFO) queue that can expose dependencies between nodes. The number in each

arc stands for the number of samples read or written in the arc per node exe-

cution. Thus, it explains that the node B and D are independent of each other

and the node C should run 99 times for each execution of node B. The models of

computation naturally express the available parallelism even if most programmers

are not familiar with the computational model. With the use of a model of com-

putation, a Y-chart approach is common. It is to explicitly separate application

and architecture specifications [110]. A separate mapping specification describes

how to execute the application spatially (binding) and temporally (scheduling)

on the architecture. Design space exploration (DSE) is then performed by itera-

tively analyzing and optimizing the application, the structure of the underlying

(hardware) architecture, and candidate mappings, as shown in Figure 2.10.

Formal models, including semantic restrictions, describe the behavior of the

system at a high-level abstraction [111]. They have several advantages in software

design. First, formal specifications can help to discover ambiguities, omissions,

Application 

Specification

Architecture

Specification

Mapping

Specification

Performance

Analysis

Design Space

Exploration

Synthesis

Figure 2.10: Y-chart approach for designing MPSoC
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and contradictions early. Second, formal models can carry out formal verification,

which determines decidability and complexity bounds as well as estimates the re-

source requirement and real-time performance at compile time. Simulation cannot

guarantee the correctness of the design, so in recent years, researches focus on for-

mal verification and model refinement for ”correct-design-by-construction”. Last

but not least, we can synthesize the error-free target code. Kahn process network

(KPN) model [112] and synchronous dataflow (SDF) model [113] are examples

of formal models. In the KPN model, a node represents autonomous thread, and

arc represents communication. A node communicates asynchronously with each

other through unlimited FIFO channels, allowing the model to express task par-

allelism and pipelining naturally. The blocking read makes it deterministic, and

non-blocking write enables parallel execution. Since it is determinate [110], the

results do not depend on the execution order of processes, which is good for de-

bugging. However, it cannot express asynchronous inputs. Like the KPN model,

the existent formal models have severe restrictions in expression capability. There

are several extensions to overcome these limitations. This paper will describe the

SDF model and its extensions in detail in Section 4.1.

2.3.1 HOPES Approach

The proposed methodology is based on the HOPES (Hope of Parallel Em-

bedded Software) approach [114] that supports parallel embedded software design,

from the behavior specification to code synthesis. Figure 2.11 shows the overall

design flow of HOPES. Although not included in the figure, there are steps for

static performance estimation and design space exploration (DSE). While other

environments focus on the design of hardware and software modules and static

analysis, the HOPES framework separates the design and implementation of em-

bedded software and places more emphasis on implementation. The formal-model
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based design represents available parallelism and independence of hardware. By

keeping the semantics of formal models, the implemented software is free from

errors that programmers make through automatic code generation.

The HOPES approach introduces a novel concept of software architecture

for heterogeneous multiprocessor embedded systems, called universal execution

model (UEM) [115]. Figure 2.12 illustrates the vertical software structure based

on the UEM. The UEM sits on top of the operating system layer to hide the

low-level details of the architecture from the application programmers. The UEM

layer consists of 1) execution engine, 2) UEM tasks, and 3) a set of application

programming interfaces (APIs). The engine acts as middleware. It runs the UEM

tasks on the target architecture. In the middle, a set of UEM tasks is generated

from the application. Thanks to the APIs, the application programmer can de-

sign an embedded software on top of UEM without knowing the actual hardware

platform.

Among many formal models, the synchronous dataflow (SDF) model is chosen

as a base model in the HOPES framework. In the SDF model [113], an application

is specified as a dataflow graph, where a node represents a functional task, and

an edge is a FIFO channel between two adjacent tasks. The number of samples

Model-based Design Manual Design

Programming Platform 

(Architecture Independent Specification)

Architecture-aware Code Translation

(Exploit task-, temporal, and data-parallelism)

Final Code optimized for Target-architecture

Software Platform

Hardware Platform

Figure 2.11: HOPES Design flow
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consumed or produced at the input or output port is known a priori and is fixed

at run-time per task execution. This number is called the sample rate of the

relevant port. A task can only be run if the number of samples accumulated on

each input channel is no less than the specified sample rate of the input port.

These characteristics of the SDF model enable us to determine when and where

to execute the tasks at compile time. Nevertheless, the SDF model has limited

expressive power, so there are several extensions to existent models.

The UEM model adopts a hierarchical composition of different models of

computation to represent the system behavior, as depicted in Figure 2.13. At the

top level, the UEM model uses process networks to expresses the system behavior.

If an application can be specified by the extended SDF graph, the application is

encapsulated as a super node with an extended SDF graph at the bottom level.

Note that the top-level process network and the extended SDF model themselves

can be specified in a hierarchical fashion. The control process defined in the dy-

namic behavior of each application is specified formally by the finite state machine

(FSM).

Application #1 Application #2 Application #3 Application #4

Network

Processing 

Element #1

Processing 

Element #2

Processing 

Element #3

Universal Execution Model (UEM) Layer

Operating 

System #1
Operating 

System #2

Operating 

System #3

Figure 2.12: Software structure based on the universal execution model (UEM)

37



The task graph consists of UEM tasks and channels, as shown in Figure 2.14.

Following the dataflow semantics, a task communicates with other tasks through

connected channels through ports. There are two types of UEM tasks, time-driven

and data-driven, depending on the triggering condition of the task. The source task

without any input channel is specified as time-driven for the periodic invocation

of the task graph. A pre-defined period is provided as a parameter. A data-driven

task, on the other hand, is triggered when data samples arrive at the input ports.

It is assumed that the input channels of data-driven tasks are the FIFO queues.

The task graph can naturally specify data dependencies between tasks.

The task code template is shown in Figure 2.14. The task code con-

sists of three segments defined by three keywords, TASK INIT, TASK GO,

(extended) KPN

Application
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Application

Group #2

Application
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(extended) SDF
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Figure 2.13: Hierarchical software architecture of the universal execution model
(UEM)
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and TASK WRAPUP, depending on when the code segment is executed.

The TASK INIT section is executed when the task is initialized, and

the TASK WRAPUP section is executed just before termination. The

TASK GO function is the main body that repeats until the task is ended.

A task can read and write to connected channels using generic APIs:

UFPort ReadFromQueue and UFPort WriteToQueue. Note that the code

template does not contain any platform-specific code. The UFPort Initialize

API in the TASK INIT function initializes the ports used to read or write

data in the TASK GO function. The UFPort ReadFromQueue API per-

forms blocking read operation on the associated input port, while the

UFPort WriteToQueue API performs a non-blocking write operation on the

associated output port. The UFPort GetNumOfAvailableData API checks

for the presence of the data on the input FIFO channel. That is, if there

is no data, it blocks the UFPort ReadFromQueue API but does not block

UFPort GetNumOfAvailableData API.

Task A

Task B

Task C Task D

Functional Task: 

time / data driven

Channel

Task A Task B Task C

Task: time / data-driven         Port: If sample rate is ቊ
specifed: fixed

not specified: changeable

channel

1 TASK_INIT { … initialize code … }

2 TASK_GO {

3 UFPort_ReadFromQueue (port_name, data, size);

4 … // code 

5 UFPort_WriteToQueue (port_name, data, size);

6 }

7 TASK_WRAPUP { … wrapup code … }

Figure 2.14: A task graph and the code template of a task
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The UEM assumes that there is a hidden supervisor who manages the tasks.

It defines a set of services that a task can request to the supervisor using a spe-

cial API. For example, a task can ask for the supervisor to set the timer and

to check the timer alarmed; int timer id = UFTimer Set (10, ”S”), int time-

out = UFTimer GetAlarmed (timer id). The more services such as running or

suspending a specific task will be explained in Section 4.1.
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Chapter 3

Overview of the SeMo Framework

SeMo is a software development framework that separates high-level mis-

sion specification and robot behavior programming. The overall flow of the pro-

posed software development methodology is shown in Figure 3.1, which can be

understood as the refinement process among four levels of abstraction in software

development.

The first step is mission specification, which corresponds to the highest level

of abstraction. A user can express the mission of cooperating robots with a script

program that is written in a new scripting language proposed in this work. In a

script program, robots are grouped into teams that perform the same sequence of

services. Since a team may consist of heterogeneous robots, the scripting language

needs to be independent of hardware platforms. A service is an abstracted function

that each robot can perform. The framework includes a script editor to aid the

user for mission specification, as shown in Figure 3.2. The values and services of

available robots are listed on the left side, and the program template is provided

in the central window. The bottom window is the console window, and the help

message is displayed on the right side.

The second step is strategy description that defines the second level of ab-

straction that tells more information on how to perform services. Suppose that
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Figure 3.1: Overview of our proposed SeMo framework
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Figure 3.2: A captured screen of the SeMo script editor

we want to let a robot move from one position to another autonomously. In the

mission specification, ”move” is specified as a service that the robot should per-

form. There may exist several algorithms of autonomous moving depending on

various conditions and requirements such as speed and energy consumption. For

service refinement, we describe conditions and requirements to select the proper

algorithm for each service. To this end, the strategy description layer is introduced
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in the proposed methodology, and it is written in an XML file. In addition, non-

functional requirements, such as execution time and power budget, and special

execution policies can be added in step, which will be explained in Section 5.2.

The next level of abstraction is task graph specification that depicts the

internal behavior of each robot to perform the services. A task graph consists of

tasks that will be scheduled and executed by the operating system of a robot.

Unlike mission specification, we assume that a task is coded by an expert pro-

grammer and abstracted as a service function that a robot can perform. Recently

the request for compute-intensive services such as vision and machine learning

grows for intelligent robots. Then, a compute-intensive service can be specified by

a task subgraph that can be mapped to multiple processors for parallel process-

ing. In this case, the task subgraph as a whole is encapsulated as a service and

registered in the database. A sequence of services depicted in the mission script

at the highest level of abstraction is automatically translated into a task graph

based on the information given in the strategy description step.

For the static analysis and performance estimation of robot behavior, we

adopt a formal task graph model, called synchronous dataflow (SDF) model [113]

for task graph specification. In the SDF model, inter-task communication is made

by the FIFO communication channel between two tasks. And the number of sam-

ples consumed from an input channel or produced to an output channel is fixed

at runtime for each execution of a task. A task becomes executable only when

the number of samples accumulated on each input channel is no less than a spec-

ified number, called the sample rate of the input port. This restriction of fixed

sample rates enables us to make the task scheduling decision at compile-time and

estimate the performance and resource requirements based on the mapping and

scheduling decision. However, it suffers from limited expression capability, espe-

cially for dynamic behavior specification and shared resource management. Thus,
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the proposed methodology uses an extended SDF model with a finite state ma-

chine (FSM) to express dynamic behavior [116] and with shared resources for the

cooperative operation of multiple robots, which will be explained in Chapter 4.

The bottom level of abstraction is the software code running on the robot

hardware platform. We generate the target code automatically from the task graph

specification after mapping and scheduling decision of tasks is made. With the

same task graph, we generate different software codes depending on the robot

hardware platform and operating system. The burden of making a code generator

for a new robot platform is analogous to that of making a compiler for a new

processor. Once a code generator is built, we can reuse the software that is designed

for other robot platforms. As will be explained later, we can add software modules

without the intervention of the user. For instance, we can add a self-adaptive

resource manager to adjust the task scheduling and execution policy depending on

the mode of operation in order to minimize the energy consumption for miniature

mobile robots.
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3.1 Motivational Examples

To explain the proposed methodology, we devise several cooperation scenarios

for multiple robots.

3.1.1 Example 1: Robots following specific object

A team of robots has a mission to follow a specific object. The robots run

in the remote control mode, where their movement is controlled by an operator

manually. If the distance between a robot and the object is close enough, they

follow the object automatically.

3.1.2 Example 2: Scouting Mission With Multiple Het-
erogeneous Robots (Simple Version)

Multiple heterogeneous robots move to a specific destination and then co-

operate to find all colored papers in the bounded region like a treasure-hunting

game. To find all colored papers in the bounded area, each robot moves straight

and changes its direction periodically. If it detects a black line, it stops and turns

back not to get out of the bounded zone. If it detects a colored paper that has

not been found yet, it notifies the color to the master robot. Otherwise, it ignores

the colored paper and keeps going. When all colored papers are found, each robot

spins clock-wise and stops there. The global information is the set of colored pa-

pers that have been found so far. One of the robots plays the role of the master

of this mission and has global information.

3.1.3 Example 3: Scouting Mission With Multiple Het-
erogeneous Robots (Complicated Version)

This example is a slightly more complicated situation based on the previous

example. Similar to the previous example, the cooperative mission is for heteroge-
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neous robots to scout a specific area. After they all move to a specific destination, a

group of robots works together to find colored papers within a particular area, and

the other robots watch around the area to detect any danger. When any danger

is detected, they signal to the searching robots to hide. When they are considered

safe, they continue searching for papers again. The robots share the information

of the colored papers they have found with each other, and that information is

periodically reported to the user.
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Chapter 4

Robot Behavior Programming

In the SeMo framework, the internal behavior of each robot is specified by

a set of task graphs following the dataflow models of computation. To adopt the

formal model for software design, the software code will be correct by construction.

What features should be reflected in the formal model to describe the robot

behavior? I think the three specifications are required. Robots change their be-

havior in response to events so that we can specify their dynamic behaviors.

Moreover, the computation of the robotic application continues to increase. In

particular, deep learning algorithms are commonly used for perception and cogni-

tion. Since deep learning algorithms contains a lot of loop structures that usually

spend most of their execution time, loop structures have been the main object

of parallelization for accelerating the application. Even though dataflow models

express the task parallelism explicitly, they do not express the loop structures

explicitly. So we need to express loop structures efficiently. Lastly, we can express

shared information for multiple robots. For these reasons, we introduce robot be-

havior for individual robots and cooperating robots in order. Notably, some works

are adopted in the extended models, and some works are designed for robotic op-

erations. Automatic code generation techniques are explained, too.

47



4.1 Related works

Dataflow models attract attention for the design and implementation of a

parallel application on a multicore system since they explicitly specify the task-

level parallelism of an application. A class of dataflow models, called decidable

dataflow models, has restricted execution semantics. So we can analyze the appli-

cation behavior at compile time to detect critical design errors such as deadlock

and buffer overflow, which saves the considerable overhead of testing and debug-

ging of a parallel application.

We first review the synchronous dataflow (SDF) model and describe the ex-

tensions to the SDF model.

4.1.1 Synchronous Dataflow (SDF) Model

The synchronous dataflow (SDF) model [113] is a pioneering decidable

dataflow model widely used for digital signal processing and computation-oriented

algorithm specification. In the SDF model, an application is specified with an SDF

graph where a node represents a functional task, called a task in this paper, and

an edge represents a FIFO channel between two adjacent tasks. Figure 4.1 (a)

shows an example of SDF graph. The number of samples consumed or produced

from an input or to an output port is known a priori and fixed at run-time per task

execution. This number is called the sample rate of the associated port, which is

annotated on edge. The sample rate is greater than 1. When it is 1, no separate

notation is used. If all rates are 1, it is called homogeneous dataflow. In the SDF

model, a task becomes executable only when no input port has fewer data samples

than the specified sample rate of the input port. We can compare the input and

output sample rates to determine the relative execution rates. For example, the

execution rate of task D should be twice that of task B in Figure 4.1 (a). This

constraint can be formulated as the equation 4.1, called balance equation.
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γ(A)×produce(A) = γ(B)× consume(B) (4.1)

where γ(A) means repetition counts of task A. In this example, task B pro-

duces (produce(B) = 2) sample and task D consumes (consume(D) = 1) sample

per execution. Then γ(B) and γ(D) are 1 and 2, respectively. If there is a positive

integer solution to the balance equations, an SDF graph is said to be consistent.

Otherwise, the graph is called the sample rate inconsistent. Figure 4.1 (b) is an

example of an SDF graph that has a buffer overflow error.

These characteristics of the SDF model enable us to analyze the application

behavior at compile time. We can make a scheduling decision at compile time

determining where and when to execute the tasks. Figure 4.1 (c) is one of valid

periodic schedules of SDF graph (Figure 4.1 (a)). By mapping tasks onto two pro-

cessing elements, we can get this schedule. Using a static schedule, we can detect
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Figure 4.1: An example of SDF graph
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critical errors such as buffer overflow and deadlock and estimate the performance

and resource requirement.

Nonetheless, SDF model is not widely used in general, except for a limited set

of signal processing and streaming applications, because the expression capability

is severely limited. Thus, extensive researches have been performed to enhance

the expression capability by expressing the dynamic behavior of an application

[25][41], allowing the use of shared resources [42], expressing the loop structure

which usually takes most of its execution time of an application [117], and so on.

The following sections explain the extensions of the SDF model.

4.1.2 Extensions of SDF model to Dynamic Behavior

There are two types of dynamism: 1) inter-application dynamism, and 2)

intra-application dynamism. To specify the dynamic behavior of a system, the

similar researches, [116] and [25], are devised.

First, a set of the application running concurrently may change. In [116], dy-

namic behavior is specified as a control task that manages the execution of applica-

tions. Inside the control task, the finite state machine (FSM) is used to express the

change of execution. Figure 4.2 shows the relationship between the computational

task and control task. The control task can run, call, stop, suspend, or resume a

task with UFControl RunTask, UFControl CallTask, UFControl StopTask, UF-

Control SuspendTask, UFControl ResumeTask directives in HOPES framework.

An application may have multiple modes of operation. Or an application may

take different execution times of tasks. To express intra-application dynamism, the

dynamic behavior of an application can be expressed by defining each scenario of

execution with a different SDF graph in the scenario-aware dataflow (SADF)

model [25]. In [116] similar to the SADF model, an application consists of a finite

number of operation modes, each of which is specified by an SDF graph. The finite
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state machine model specifies the mode transition.

In this paper, our model is based on [116]. At the top level, there are a control

task and computational tasks. A computational task may contain a subgraph

inside, which makes a hierarchical graph. And it may have a finite number of

Computational

Task A

Control

Taskchannel

Task: time / data-driven Task: control-driven

State 

#1

State 

#2

State 

#3

Task B 

Start!

Task C 

Start!

FSM model

Task B

Task C

1 TASK_GO {

2 switch (current_state) {

3 case STATE_1: 

4 if (…) current_state = STATE_2; // transition #1 → #2 

5 else current_state = STATE_3; // transition #1 → #3

6 … break;

7 case STATE_2: 

8 UFControl_RunTask (“TaskB”);

9 … break;

10 case STATE_3: 

11 UFControl_RunTask (“TaskC”);

12 … break;

13 }

14 }

Figure 4.2: A control task and its example code
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operation modes, and each mode is specified by an SDF graph.

4.1.3 Extensions of SDF model to Iterative Behavior

In this section, we review the related work on the SDF extensions, which

enhance the expression capability to support iterative applications.

Cyclo-static dataflow (CSDF) [117] and fractional rate dataflow(FRDF) [118]

are decidable dataflow models to specify the periodic sample rate change. However,

they cannot specify that the sample rate change is not periodic. Several SDF

extensions have been proposed to express varying sample rates.

In the scenario-aware dataflow (SADF) model [25], the dynamic behavior of

an application can be expressed by defining each scenario of execution with a

different SDF graph. Figure 4.3 shows a SADF specification of the case when task

B and C are repeated until a specific condition is satisfied. It has a detector node,

E, that varies the sample rates of tasks B and C by sending control tokens via

control channels. In the Pre− loop scenario, task B receives a sample from task A

and executes one iteration of the loop (B-C). In the Loop scenario, loop (B-C) can

be executed without requiring any input from task A. In the Post− loop scenario,

task C sends the output to task D. In [116], behavior change is expressed by a

separate FSM graph that controls the SDF graph.

Parameterized synchronous dataflow (PSDF) [41] specifies the dynamic be-

havior by defining a subgraph that can be configured dynamically by a set of

Phase 1

Phase 2

Phase 3

A B C
1    1    1  1    0    1

D

1  1

A B C
1    0    1  1    0    1

D

1  1

A B C
1    0    1  1    1    1

D

1  1

Rate
Scenario

Pre-loop Loop Post-loop

a 1 0 0

b 0 0 1

1   a 1     1   b   1
A B C D

1   1

E
1

1
10 1

1     1

1

1

Figure 4.3: SADF specification of the example of Fig. 4.8 where E is the detector
node. Symbols in the figure are the same as [25].
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parameters. It requires two additional subgraphs, init and subinit graphs, to

control the behavior of the body graph. Parameterized and interfaced dataflow

meta-model (PiMM)[119] enhances the expression capability further by defining

both hierarchy interfaces and parameterization. Parameterization makes it possi-

ble to reconfigure the production and consumption token rates at runtime. The

PiMM model can specify a loop structure with varying iteration using a special

actor, called configuration actor, and a special data FIFO, called a round buffer.

Hierarchical modeling of a loop structure has been proposed in [120] where

the template of a dynamic structure is predefined as a subgraph. A loop with

varying iteration can be expressed with a do−while loop structure in their work.

It is not an extended SDF graph, however, but a restricted model of dynamic

data flow (DDF) that allows the use of non-SDF type nodes. Their approach uses

the graph hierarchy to distinguish two different models of computations, SDF

and DDF. A similar approach can be found in synchronous piggybacked dataflow

(SPDF)[121] where the template of a dynamic structure is also defined in their

model.

In summary, the SDF model and its extensions focus on expressing task-level

parallelism explicitly.

4.1.4 Extensions of SDF model to Shared Resource
Management

Dataflow models are good at explicitly exposing the potential parallelism,

and various analysis methods and design tools have been developed. However,

due to strict semantics, shared variables cannot be used among tasks. To this

end, the model is extended with a special type of the task, library task, adopting

the library task that was first introduced in [42].

A library task is a shareable and mappable object that defines a set of function

53



Task B

Task C

Task A

Library 

Task 1

Library 

Task 2

Library 

Task 3

channel

Library 

master port

Library 

slave port

Library 

slave port

Library 

master port

Library 

master port

1 static int my_value;

2 LIBFUNC(void, init, void) { … } 

3 LIBFUNC(void, wrapup, void) { … } 

4 LIBFUNC(void, getValue, void) { 

5 return my_value;

6 }

7 LIBFUNC(void, getValue, void) { 

8 return my_value;

9 }

Library Task Code (Library Task 1)

Figure 4.4: A library task and its example code

interfaces inside. Figure 4.4 describes an SDF graph that consists of three normal

computational tasks and three library tasks. The connection between a library task

and a regular task is made through a pair of two particular ports: library master

port and library slave port. They are represented by white diamonds and black

diamonds, respectively. The edge between the library master port and library slave

port represents a client-server relationship, not data forwarding. The library task

acts as a server and requires a single slave port to connect to multiple master ports.
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1 TASK_GO {

2 … // code 

3 value = LIBCALL(master_port, getValue); 

4 … // code 

5 value = update();

6 LIBCALL(master_port, setValue, value);

7 … // code 

8 }

Caller Task Code (Task A)

1 static int my_value;

2 LIBFUNC(void, init, void) { … } 

3 LIBFUNC(void, init, void) { … } 

4 LIBFUNC(void, getValue, void) { 

5 return my_value;

6 }

7 LIBFUNC(void, getValue, void) { 

8 return my_value;

9 }

Library Task Code (Library Task 1)

Figure 4.5: The code templates of the caller task in the figure 4.4

The code template for the library task is in Figure 4.4. Unlike a computational

task, a library task is not invoked by input data but by a function call inside from

other tasks.

Figure 4.4 and Figure 4.5 show the code templates how a normal task can

communicate with a library task. A programmer defines a service as a function

with LIBFUNC() directive in a library task. On the other hand, a client task can

request a service with LIBCALL() directive.

55



4.2 Model-based Task Graph Specification for
Individual Robots

In the SeMo framework, the internal behavior of each robot is specified by a

set of task graphs following the dataflow models of computation.

A task graph consists of tasks and channels, as shown in Figure 2.14, as ex-

plained above. A task is a software component that performs the service specified

in the mission script. Following the dataflow semantics, a task communicates with

other tasks through connected channels via ports. The source task without any

input channel is specified as time-driven for the periodic invocation of the task

graph. Or the task is specified as control-driven for controlled invocation of the

control task. The task graph can naturally specify data dependencies between

tasks. Complex services can be expressed as a task subgraph, as explained earlier.

For example, an object tracking service is expressed as a set of tasks in Figure 5.10

(b).

Note that the granularity of a task is made large enough to become the

scheduling unit as a thread or a process in the generated code. Thanks to the

formal semantics of the SDF graph, we can determine the mapping of tasks onto

processing elements in the heterogeneous target system manually or automatically.

Through profiling by each task, we can predict memory usage, energy consump-

tion, and performance at compile time. Also, we can get a schedule that contains

mapping and ordering of tasks on a multiprocessor system to minimize the re-

source requirement while satisfying the throughput or latency constraint.

To get benefits of static analyzability, we keep the restricted semantics of

the SDF graph [113] as much as possible in the SeMo framework. Because the

SDF model is not able to specify dynamic behavior, however, its model is not

suitable for control-oriented applications that change their behavior dynamically
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… … 

S1 S2

S3

: Sensor Task         : Communication Task       : Computational Task

: Computation Task (SADF +MTM)                : Actuator Task 

: Control Task        

Figure 4.6: Task graph specification of individual robot platform

depending on internal/external events or interrupts. Therefore, we adopt an ex-

tended model for dynamic behavior specification. Besides, it is difficult to exploit

the parallelism of loop structures since they are not explicitly specified in existent

dataflow models. Thus, we propose a novel extension to the SDF model, specifying

the loop structures explicitly in a hierarchical fashion.

4.2.1 Applying Dynamic Behavior Specification

To overcome limited expression capability, we use an extended task model

that supports a hybrid specification of dataflow and FSM models, distinguishing

two types of dynamism: OS-level or application-level [116].

As shown in Figure 4.6, the behavior of each robot is specified by a task

graph. Each sensor input task is triggered periodically, and the sensor value is

transferred to the control task after being filtered. The control task is a special

type of task to control the execution of other tasks and manage the overall system

status. It plays the role of supervisor of the internal operation of a robot, similarly

to the statechart in the old STATEMATE [122] environment. The control task

has a finite state machine (FSM) template inside; a user can specify the state

transition condition and the behavior at each state. Note that a task may have a
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task graph inside to make the task graph hierarchical. In the example of Figure 4.6,

the ”Algorithm#1” task may have a task graph inside. Refer to [116] for more

details in the hybrid specification of dataflow and FSM.

4.2.2 Extending Iterative Behavior Specification

Since an application usually spends most of its execution time in loop struc-

tures, loop structures have been the main object of parallelization for accelerating

the application. Even though dataflow models express the task parallelism explic-

itly, they do not express the loop structures explicitly. In the SDF model, a loop

structure is implicitly expressed by sample rate changes. Consider a simple SDF

graph that consists of four nodes, as shown in Figure 4.7. Since tasks B and C are

executed ten times after the execution of task A, a looped schedule A10(BC)D can

be constructed among many possible schedules. In case 10 executions of (BC) can

be parallelized with ten output samples from A, a user may want to construct a

parallel schedule, as illustrated in Figure 4.7(c). However, identifying such a loop

structure and parallelizing it are not easy because parallel scheduling techniques

usually aim to exploit task-level parallelism only. Moreover, there is a type of loop

structure that cannot be specified with an SDF graph when the number of task

executions may vary at run time. In the example of Figure 4.8(a), the number of

loop iterations varies depending on the exit condition (line 6).

To overcome these drawbacks, we propose a novel extension to allow the ex-

plicit specification of loop structures in an SDF graph. The extended SDF graph

with loop structures is called as an SDF/L graph. In an SDF/L graph, a loop

structure is encapsulated as a single SDF node at the upper layer, and it con-

tains another SDF graph inside to make the graph hierarchical. Figure 4.7(b) and

Figure 4.8(b) are examples of SDF/L graph where a black square represents an

initial sample stored in the FIFO channel. A white circle denotes a broadcasting
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(b) SDF/L representation
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(c) Mapping/scheduling of graph (a)

Figure 4.7: (a) An SDF graph that has a loop structure by sample rate changes,
(b) SDF/L graph for the SDF graph of (a), (c) a possible mapping/scheduling of
graph (a)

port and a shaded circle denotes a distributing port.

For the expression of loop structures in the SDF/L graph, two types of loop

structures are distinguished: data loop (D-type) and convergent loop (C-type).

In a data loop, the loop structure consumes new input data for each iteration

so that the number of iterations is determined by the number of samples on the

input FIFO channels. The loop structure in Figure 4.7(b) is a D-type loop. In a

convergent loop, on the other hand, the loop structure consumes an input data

from the outside and then iterates the internal SDF graph without consuming

no more input data. After the iteration ends, it produces an output data. The

number of iterations can be fixed statically or vary dynamically at run-time. The

loop structure in Figure 4.8 (b) is a C-type loop. Note that a convergent loop
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1  execute task A
2 for(i := 1~10)
3 execute task B
4    execute task C
5  }
6  execute task D

A B C
1  1  1 1     1

D

1         1

1  1  1

(C-type)   loop_count: 10 

1 a = execute task A 
2 c1 = initial value
3 for(i := 1~10){
4 b = execute task B with a, c1
5 (c1, c2) = execute task C with b
6 if ( c2 > threshold) break
7 }
8 execute task D with c2

(a) Code example of loop structure

1  execute task A
2 for(i := 1~10)
3 execute task B
4    execute task C
5  }
6  execute task D

A B C
1  1  1 1     1

D

1         1

1  1  1

(C-type)   loop_count: 10 

1 a = execute task A 
2 c1 = initial value
3 for(i := 1~10){
4 b = execute task B with a, c1
5 (c1, c2) = execute task C with b
6 if ( c2 > threshold) break
7 }
8 execute task D with c2 (b) SDF/L representation

Figure 4.8: (a) Pseudo-code of an example with a loop structure, (b) SDF/L graph
for the code (a)

cannot be expressed by the original SDF model because the sample rate at the

boundary of loop structure varies.

We define the proposed SDF/L graph formally and explain the execution

semantics of loop nodes.

4.2.2.1 SDF/L graph definition

Definition 4.2.1 (SDF/L Graph). SDF/L graph G is defined as a tuple (N,L,E)

where N denotes a finite set of nodes representing the computation tasks, L a finite

set of loop nodes, and E a finite set of edges describing the data dependency

between adjacent nodes or loop nodes.

Loop nodes are distinguished from normal SDF nodes since they enclose an

SDF subgraph inside to construct a hierarchical graph.

Definition 4.2.2 (Loop Node). A loop node L is defined as a tuple (In, Out,

60



loop count, type, inG, exit flag, T ) where In and Out represent the set of input

and output ports, respectively, such that In ∩ Out = ∅, loop count ∈ N∪ {∞}

the maximum number of the loop iteration, type the loop type which is ei-

ther D-type(D) or C-type(C), inG an internal SDF/L graph in the loop node,

exit flag ∈ {true,false} a shared flag that tasks in inG can access to check if

the exit condition of the loop is satisfied or not, and T a designated task in inG

that can set the exit flag. Note that exit flag and T are omitted if the number

of iterations is statically determined by loop count.

The exit flag is used for C-type loop structures. In the SDF/L graph of Fig-

ure 4.8(b), the exit flag becomes true when the exit condition (c2 > threshold)

is satisfied or the loop iteration becomes 10. The exit flag is initially false before

the loop node is executed and a designated task T in inG may set it to be true

during the execution.

Definition 4.2.3 (Input Port Types). There are two types of input ports for a

loop node: distributing and broadcasting. Input data samples from a distributing

port are distributed to the iterations of the loop. Input samples from a broadcast-

ing port are broadcast to or reused in all iterations of the loop.

For instance, the input port of the D-type loop node in Figure 4.7(b) is a

distributing port: every iteration the loop node consumes one sample among 10

input samples. On the other hand, the input port of the C-type loop node in

Figure 4.8(b) is a broadcasting port.

Definition 4.2.4 (Sample Rate Consistency Condition at Loop Boundary). A

port of a loop node is associated with two sample rates, one for the outside con-

nection and the other for the connection to the inner subgraph. To satisfy the

sample rate consistency, the following conditions should be held.

• For a distributing input port and an output port of a D-type loop, the sample
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(b) SDF/L representation
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(c) SDF graph unrolling loop structure

Figure 4.9: (a) A pseudo-code example, (b) SDF/L graph representation of (a),
and (c) a homogeneous SDF graph expanded from the SDF/L graph of (b)

rate of the outside connection is equal to the product of the inside sample rate

and the loop count of the loop.

• For a broadcasting input port and an output port of a C-type loop, the sample

rate of the outside connection is equal to the inside sample rate. It implies that

the inside channel at the loop boundary is not a FIFO queue but a buffer.

From the sample rate consistency condition requirement, the following re-

striction on the port types is induced depending on the loop type.

Definition 4.2.5 (Port Type Restriction). A D-type loop node may have both

types of input ports, but a C-type node may not have a distributing input port.

Figure 4.9(b) shows an SDF/L graph that is associated with a pseudo code

in Figure 4.9(a). 10 iterations of the loop can be instantiated as separate task

instances in the homogeneous SDF graph expanded from the SDF/L graph as

shown in Figure 4.9(c). A sample from task A is broadcast to all iterations of the

loop node while 10 samples from task B are distributed to 10 instances of the loop

node.
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4.2.2.2 Execution semantics of a loop node

A loop node behaves like a normal SDF node at the upper layer: A loop

node becomes executable when all input channels have the specified number of

input samples and it consumes and produces the specified number of samples per

execution. The internal interface behavior, however, depends on its loop type. If

it is D-type, it consumes as many input samples as specified by the associated

sample rate from each distributing input port and produces the specified number

of samples at each execution. On the other hand, if it is C-type, it consumes the

specified number of samples from each input port at the first loop iteration only

and produces the specified number of samples at the last loop iteration only. In

addition, the iteration number of an internal graph in a loop node is dependent on

the loop type. For a D-type loop, the number of iterations is statically determined

by the loop count attribute of the loop node. For a C-type loop, however, the

number of iterations may vary at run-time. If the exit flag is set true, then the loop

terminates before it reaches the maximum number of iterations. When the inner

subgraph is scheduled at run time, care should be taken to satisfy the causality

condition that the next iteration does not start before the designated task T that

may set the exit flag finishes its execution.

4.2.2.3 SDF/L specification of two machine learning ap-
plications

We choose two machine learning applications as benchmark applications to

confirm the enhanced expression capability of the proposed SDF/L graph.

• K-means Clustering

K-means clustering [123] aims to partition n input data into k clusters in

which each data belongs to the cluster with the nearest mean, serving as a proto-
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Figure 4.10: SDF/L graph of k-means clustering

type of the cluster. Figure 4.10 represents the SDF/L specification of a k-means

clustering algorithm at a very coarse grain.

Based on the Rodinia benchmark implementation [124], the k-means algo-

rithm proceeds by iteratively processing two steps, assignment step and update

step, until the assignments no longer change. In our implementation, the threshold

of error is set to 0.001 and the maximum iteration count to 500. The C-type loop

node contains two tasks: a D-type loop node and Replace center that sets the

exit flag of the loop to terminate the C-type loop. The D-type loop node calcu-

lates the new means to be the centroids within each sub-cluster, which expresses

the data parallelism explicitly.

• Deep Neural Network

Artificial neural network (ANN) [125], which is a machine learning technique

inspired by biological neural networks, is composed of an input layer, hidden lay-

ers, and an output layer. A deep neural network (DNN) is a deep, fully-connected

graph (artificial neural network) with multiple hidden layers between the input

layer and output layer. Figure 4.11 shows a simple DNN structure for MNIST

[126] dataset recognition. Each node denotes a neuron which reads an input, pro-

cesses it, and generates an output. Each line represents a connection between two

neurons and indicates the pathway for the flow of information. Each connection
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Figure 4.11: Architecture of deep neural network used for digits recognition

has a weight that indicates the amplification factor of the signal between two

neurons.

In the Figure 4.11, the leftmost layer is the input layer accepting the

input data from the MNIST dataset. Since each training data consists of a

28×28 grayscale pixel image of a handwritten digit, the input layer contains

784(= 28 × 28) neurons. Each input value lies between 0 and 1, indicating the

grayscale level of the pixel with 0.0 representing white and 1.0 black. The second

and third layers of the network are hidden layers that consist of 500 neurons in

this example. The output layer, which is the rightmost layer in the network, rep-

resents the features to recognize. In the MNIST dataset recognition, the output

layer consists of 10 neurons that correspond to 0 to 9 digits respectively. In sum-

mary, Figure 4.11 shows a 784 - 500 - 500 - 10 network, which is similar to the

one used in [126].

Note that Figure 4.11 shows the feed-forward inference network only. In the

training or learning phase, however, there is an invisible feed-back path, called
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back-propagation [127], in the network. The supervised learning is performed by

repeating the following two steps until the convergence condition is satisfied. Ini-

tially, small random values are assigned to all edge weights. The first step is a

feed-forward step that computes the inference outputs using the current edge

weights following the forward direction in Figure 4.11. A neuron computes the

output with the following equation where σ means an activation function that

models a non-linear response of a neuron, wji means the weight value between

the jth neuron in the former layer and the ith neuron in the current layer, and xj

means the input value. In this example, a rectified linear unit (ReLU) function,

f(x) = max(x,0), is used between input/hidden and hidden/hidden layers.

yi = σ(
∑

j

wji ·xj) (4.2)

The second step is the propagation of errors in the backward direction to adjust

the edge weights to reduce the error, E, between the correct answer and the

inference result. A gradient descent algorithm is used to adjust the weight values

as follows where η indicates the learning rate.

w(t+1) = w(t)−η
∂E

∂w
(4.3)

The neural network is trained by repeating these two steps.

Note that Figure 4.11 is not a dataflow model since it does not show all

computations involved in the training phase, particularly the feedback path for

back-propagation. It is very challenging to represent loop structures in the DNN

application. The application requires a loop structure to present 60,000 iterative

training step from the MNIST database for instance. In addition, this training

step is repeated until the training error becomes smaller than a given bound or

the maximum number of repetitions is reached. To the best of our knowledge, no
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Figure 4.12: SDF/L graph of deep neural network with two hidden layers

dataflow modeling of a DNN has been tried due to limited expression capability

of decidable dataflow models.

Figure 4.12 represents the DNN application by an SDF/L graph that has

three levels of nested loop structures to build a hierarchical graph. Symbols are

used to specify common sample rates where their values are shown in the figure.

1. D-type Loop Node for Each Layer

At the bottom level, three loop nodes specify the computation of two hidden

layers and one output layer, respectively. Since each neuron performs the com-

putation of the equation ( 4.2) independently, each layer is specified by a D-type

loop node. Variable loop count in the loop node denotes the number of neurons

in the corresponding layer. Note that the input port from the predecessor in the

feed-forward direction is a broadcasting port so that all input values are copied

to all iterations of the loop node. On the other hand, the input port from the

back-propagation path is a distributing port that receives the updated weight

factors.

2. D-type Loop Node for One Epoch of Learning

At the second level, a D-type node specifies one epoch of learning. In this

example, 60,000 train images are used to adjust the weight values by iteratively
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performing the feed-forward and back-propagation algorithms. Since one image

is processed in each iteration, loop count is set to 60,000 and the input port is

marked as a distributing port.

The inside SDF/L graph consists of eight tasks. Task Preprocess receives a

single image and sends 784 pixel values to the first hidden layer. After process-

ing the forward computation, task Check Error computes the error between the

correct answer and the inference output, and triggers the back-propagation algo-

rithm. Note that each layer in the DNN consists of two tasks: one (kth Fwd) in

the feed-forward path and the other (kth Bkw) in the back-propagation path. A

forward task provides the current weighted sum values to the associated backward

task while the backward task sends the updated weight values to the forward task.

A black square represents the initial weight values that are necessary for the first

execution of the forward task.

3. C-type Loop Node at Top Level

Epochs of learning phase are repeated until the training error becomes smaller

than a given error bound. In our example, the error bound is 0.1% and the max-

imum iteration count is 100. Since the 60,000 test images are reused in every

epoch, the input port of the C-type loop is a broadcasting port. The outermost

C-type loop node contains two tasks: a D-type loop node and Check Err.rate.

Task Check Err.rate is designated as a special task that can set the exit flag of

the loop.

4.2.2.4 Summary of SDF/L specification

We introduce a novel extended SDF graph, called SDF/L, to express a loop

structure as a super node explicitly to build a hierarchical graph. By distinguish-

ing two types of loop structures, D-type and C-type, and two types of ports,

broadcasting and distributing, the expression capability of the SDF/L graph is
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extended significantly enough to express the full computation workload of a deep

neural network (DNN) application in an SDF/L graph.

Since the aim of this study is to enhance the expression capability of decid-

able dataflow models to support iterative applications, not claiming that dataflow

modeling is better than other specification methods for iterative applications,

we can compare the related work on the SDF extensions in brief. Some models

such as Cyclo-static dataflow (CSDF) [117] and fractional rate dataflow(FRDF)

[118] model can not specify loop structures with varying iterations. Although

the scenario-aware dataflow (SADF) model [25], [116] model, Parameterized syn-

chronous dataflow (PSDF) [41] model can specify all of loop structures, they

require additional specifications, which make them complicated. We believe that

SDF/L graph is more natural and simpler to express the loop structures. Further-

more, in contrast to previous work on dataflow modeling, the proposed SDF/L

graph allows users to control the execution of the loop structures explicitly and

to perform task scheduling in a hierarchical fashion.
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4.3 Model-based Task Graph Specification for
Cooperating Robots

A significant difference between a single robot and cooperating robots lies

in information sharing. We distinguish between two types of shared information

management: centralized management and decentralized management. In a cen-

tralized approach, globally shared information is managed by a specific robot,

ensuring global information consistency. Whenever new information is entered

into the robot that manages global information, the information is updated, and

the information is sent whenever a request occurs. In the decentralized approach,

on the other hand, the whole robot has its own information, and it sends and

receives information. Although global consistency is not guaranteed, it is more

robust than a centralized method because it is not affected by the specific robot

that manages global information. Both approaches have their pros and cons, so

the programmer needs to decide how to share information based on the charac-

teristics of the information and the robot. This section introduces how to specify

shared information in two approaches.

4.3.1 Globally Shared Information Specification

For the cooperation of heterogeneous robot platforms, we need to support

shared resource management and server-client interaction. To this end, global

information is maintained by a special type of the task, called library task [42].

Figure 4.13 shows how multiple robots share information. As mentioned earlier,

a library task can handle access conflicts for shared variables. It defines a set

of function interfaces inside to share data or algorithms. And other tasks may

request to get or set data or run algorithms for library tasks.

Figure 4.14 is the code example that shows how a normal task can commu-
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Robot #1 Robot #2

Sensor #1

Sensor #N

… 

Filter #1

Filter #N

Algorithm #1 Actuator #1Controller

Receive Send

Algorithm #N

… … 

S1 S2

S3

Robot #N… 

Locally Shared Information

channel

: Unicast Port : Multicast Port 

Globally Shared Information

: Sensor Task         : Communication Task       : Computational Task

: Computation Task (SADF +MTM)                : Actuator Task 

: Control Task        : Library Task

Actuator #N

… 

Figure 4.13: Task graph specification for the internal behavior of a robot, sup-
porting two types of information sharing

nicate with a library task. For motivational example 2, a list of colors already

founded by robots is shared. And each robot requests a service with LIBCALL()

directive to update the list.

Since a library task is a shareable and mappable object, a robot that maps

a library task has a separate thread that sequentially processes library requests

from other tasks or other robots, and allows only one request to access shared

information at a time. Therefore, all robots can access the same global information

1 TASK_GO { … // code static int currentColorList[N];

2 LIBCALL(…, updateColor, RED); LIBFUNC(void, updateColor, int colorVal){

3 … // code currentColorList[colorVal] = 1;

4 } }

< Caller Task Code > < Library Task Code >

Figure 4.14: The code templates of a library task and the caller task
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by sending a query to the robot. However, if many tasks call the library at the

same time, it can be a bottleneck. In addition, the robot is a single point of failure,

so it is essential to keep the robot live at all times.

4.3.2 Locally Shared Information Specification

Robots may want to share information locally with near robots, without guar-

anteeing the global consistency of the knowledge. This local knowledge sharing is

useful for performing a group service together. Adopting the knowledge sharing

technique proposed in [128], we disseminate the local knowledge through broad-

casting. Since the broadcasting message includes the creation time of knowledge,

the robots can maintain up-to-date knowledge. By delivering the received up-to-

Task C

Task D

Task A

Task B

Time Data

Unicast port

Multicast port

1 TASK_INIT { … initialize code … 

2 UFMulticastPort_Initialize(…, &group_id, &port_id);

3 UFMulticastPort_GetMulticastSize(group_id, &max_size);

4 }

5 TASK_GO {

6 UFMulticastPort_ReadFromBuffer(…, port_id, data, size, …);

7 … // code 

8 UFMulticastPort_WriteToBuffer (…, port_id, data, size, …);

9 }

10 TASK_WRAPUP { … wrapup code … }

Figure 4.15: Multicast port and the example code
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date knowledge to neighbors, even distant robots will receive the local knowledge

eventually. While the task graph model in the SeMo framework only supports

one-to-one communication using channel through ports, we add another type of

port for multicasting, as shown in Figure 4.13 and Figure 4.15.

Multicast is a group communication in which data transmission is addressed

to a group of destinations simultaneously [129]. Therefore, the same multicast

group can communicate using the multicast port without connecting tasks one by

one. In Figure 4.15, task A and B communicate with task C and D using the mul-

ticast port. If the programmer uses only unicast ports that need to be connected

to the channel, the communication looks complicated. Also, if task E is added

while task A and B are running, it is difficult to represent new communication

among task A, B and E. Multicast communication, on the other hand, allows

task E to receive information from task A and B, if task E is the same multicast

group with task A and B. Thanks to the characteristics of multicast, adding or

removing robots dynamically does not affect the entire system while the robots

work together.

However, multicast communication is implemented using buffers rather than

FIFO queues, which does not guarantee the transfer of information between tasks.

Therefore, multicast is not suitable when data must be delivered securely.
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4.4 Automatic Code Generation

In the proposed technique, the actual code that will run on each processor is

generated automatically from the task-graph specification based on the compile-

time decision on mapping and scheduling. This feature will increase the design

productivity of software by minimizing the possibility of human error in man-

ual programming. Refer to [116] for more details. The overall code generation

procedure in the SeMo framework is shown in Figure 4.16.

The code generation flow consists of two main steps: platform-independent

code generation and platform-dependent code generation. In the first step, we

construct data structures for tasks, channels, and libraries and the skeleton of

the main scheduler code that creates the task threads. Inter-task communication

method depends on the mapping result. For instance, if a client task calling a

Specified task code

Task graph info.

Scheduling & 

Mapping info.

Input files

Build inner data structures

Partitioning inner data structures 

into target platforms

Step#1: Parse and Setup

Data structure 

files(tasks, channels)
Scheduler code

Step#2: Executable code generation

Makefile
Communication 

(channel) code

Task code

Figure 4.16: Code generation flow in the SeMo framework
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1 void thread_routine(){

2 TASK_INIT;

3 while(true):

4 TASK_GO;

5 if (termination condition) break;

6 if (time_driven_task) wait remaining time;

7 TASK_WRAPUP; }

8 void main{

9 target_dependent_init(); init_channel();

10 for all tasks in a specified task graph 

11 THREAD_CREATE(…, thread_routine);

12 wrapup_channel(); target_dependent_wrapup(); }

(a) Scheduler code

1 int Core_1_go(){

2 int i_a = 0;

3 for(i_a =0; i_a < 3; i_a++)

4 TaskA_GO();

5 TaskB_GO();  …

(b) TASK GO code for a virtual task

Figure 4.17: Scheduler code

library function and the library task are mapped to the same processor, the code

is simply generated in the form of a function call. Otherwise, the additional code

should be generated to access the library function that is mapped to a different

processor.

The skeleton of the scheduler code is shown in Figure 4.17 (a). In main()

function, it first calls target dependent init() function for platform-specific ini-

tialization. Next, a function is called to initialize channels and allocate buffers for

each channel. The scheduler invokes threads for all tasks. In the thread routine,

it calls TASK INIT/GO/WRAPUP functions of its task. Note that the internal

75



THREAD_CREATE(…)

TI Evalbot

OSTaskCreate(…)

NXT Lego

StartTask(…)

iRobot Create

pthread_create(…)

Figure 4.18: Target specific code for thread creation

code of a task is already prepared in the task library, and no platform-specific

API is used in the code except some I/O tasks that access hardware components

directly. Thus, we distinguish two kinds of task libraries: platform-independent

task library and platform-dependent task library.

The second step of platform-dependent code generation depends on the oper-

ating system that the robot platform uses. For the tasks mapped on a processor,

we may use the scheduler of the OS. However, we may want to follow the schedul-

ing decision made at compile time. Then we make a virtual task that contains the

subgraph and generate an appropriate data structure for the virtual task. After

constructing a static schedule for the task graph, the TASK GO function of the

virtual task is generated that invokes the TASK GO functions of tasks in the stat-

ically determined schedule order of tasks. Figure 4.17 (b) illustrates an example

of TASK GO function of a simple virtual task. In this step, target-independent

APIs are redefined with target-specific APIs, and target-specific code is added

for initialization and wrapup actions. Figure 4.18 shows an example of target-

specific code for thread creation for each target platform used in our experiments

(Table 4.1).

In addition to the application code, an adaptive resource management module

can be synthesized in case the resource management policy is specified in the

strategy description file to increase the lifetime of the robot under a given energy

budget. The adaptive resource manager monitors the remaining battery power to
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change the execution policy if necessary. It may change the invocation period of

tasks or send signals to the control task so that specific algorithms and actuators

can be turned on or off, or parameters such as motor speed in the actuator task

can be changed.
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4.5 Experiments

To prove the viability of the proposed methodology, preliminary experiments

are conducted with a scenario of the cooperative mission. It verifies the automatic

code generation process from task graphs to the actual robot codes. This experi-

ment confirms the benefits of the modular structure of the SeMo framework; we

may change the hardware platform easily without laborious manual coding. Fi-

nally, we compare the memory usage of ROS and our framework. The information

on heterogeneous robots used in the experiments is summarized in Table 4.1.

The scenario is to perform a cooperative mission, which explained in Sec-

tion 3.1.2. It verifies the reusability of software thanks to a platform-independent

design with model-based task graph specification. Figure 4.19 shows the snapshot

of this scenario using three robots. Automatic code generation also improves the

productivity of software development since the error-prone job of interface code

design and thread scheduling is all automated. The detailed experimental results

and process from mission specification to task graph model specification can be

found in the Appendix B.

As an indirect measure of effectiveness and productivity improvement of the

Table 4.1: Target platforms

TI Evalbot NXT Lego iRobot Create

OS uC-OS3 NXT-OSEK Linux (Ubuntu)

Processor LM3S9B92
(80MHz)

Atmel 32-bit
ARM (48MHz)

ARM Cortex-A7
(quad, 900MHz)

Memory 96KB 64KB 1GB

Extension Arduino UNO
(for sensors) - Raspberry Pi 2

(for controller)
Code size(lines) 2721 3301 2960

Manual code ratio(%) 30.43 23.60 31.42
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Figure 4.19: Heterogeneous robots work together to find colored paper like moti-
vational example 2

Table 4.2: The memory usage (VSZ/RSS) comparison between ROS and the SeMo
framework (Unit: MB)

Scenario ROS SeMo Ratio

Remote control 282.8 / 64.02 25.55 / 0.44 11.07 / 146.32
Tracking object 568.92 / 103.73 206.82 / 45.18 2.75 / 2.30

proposed framework, in the last two rows of Table 4.1, we show the total lines

of the generated code and how much is the portion of user-specified code. As

shown in Table 4.1, about 70% of the total code is automatically generated on

average. Considering that the average development period is proportional to the

line counts [130], the result indicates that the productivity is improved about 3.3

times.

4.5.1 Memory Usage Comparison with ROS

The resource requirement is an essential metric for miniature mobile robots.

To compare the memory footprint between ROS and our framework, we imple-

mented two mission scenarios in ROS with an ”iRobot Create” robot: one is a
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simple remote control scenario, and the other is tracking a specific object. For

other robots, TI Evalbot and NXT Lego, a comparison cannot be made since

ROS does not support their operating systems. Table 4.2 displays the virtual set

size (VSZ) and resident set size (RSS) value of the process, measured by using

ps command. As shown in the table, ROS requires significantly larger memory

than our framework, particularly when the computation task size is small. This

is because additional processes such as rosmaster and roscore are required in

ROS besides the computation tasks to manage nodes and messages when ROS is

running.
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Chapter 5

High-level Mission Specification

In this chapter, a new scripting language is devised to make it easy for casual

users to learn and use for the mission specification of cooperating robots. In addi-

tion, to increase the robustness, scalability, and flexibility of robot collaboration,

we add some critical features of swarm robotics in the scripting language.

The mission scripting language has the following features that are not fully

supported by existent scripting language: hierarchical team composition, service-

oriented programming, multitasking specification, dynamic mode change, dynamic

group allocation. Also, to fill a large gap between two abstractions, mission spec-

ification and model-based task graph specification, an intermediate level of ab-

straction, called strategy description, is introduced. In this chapter, we explain

these two levels of abstraction with two motivational mission scenarios explained

in Section 3.1.2 and Section 3.1.3 in which robots move to a specific destination

and collaborate to find some treasures. In addition, the task graph specification

described in the previous chapter can be automatically generated from the mis-

sion specification and strategy description. Therefore, the mission specification is

refined to the robot codes through strategy description and task graph generation

in the proposed framework.
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5.1 Service-oriented Mission Specification

For the mission specification of cooperating robots, a new scripting language

is devised to make it easy for casual users to learn and use. The mission scripting

language has the following four features that are not fully supported by existent

scripting languages: team formation, service-oriented programming, multitasking

specification, dynamic mode change. In this section, we explain these features

with a motivational mission example described in the previous Section 3.1.2.

The robots are grouped into teams. In our example, there are two teams of

robots, Team1 and textitTeam2. A robot in Team2 plays the role of the master

that controls the actions of robots in Team1.

A robot may have multiple modes of operation depending on the environment

and user requests. In our example, robots have three modes of operation: remote

control (”RC MODE”), autonomous move (”AUTO MODE”), and treasure-hunt

mode (”SEARCH MODE””). An event triggers the mode change. For instance, in

the remote control mode, the user sends commands to control the robot’s action

remotely. To make a change to the autonomous move mode, the user can send a

specific command that becomes a triggering event of mode change.

A robot usually performs several tasks at the same time, equipped with var-

ious sensors, actuators, and computation components. Thus, it is necessary to

specify multitasking naturally. Multitasking is not easy to express in a popular

scripting language such as Python and Lua. For multitasking specification, we

adopt the notion of plan from an earlier work [131]. A plan is a sequence of exe-

cutions like threads. To simulate multitasking, Python and Lua use the concept

of a coroutine, which is different from multitasking because only one coroutine

is executed at a time to emulate multitasking by time-sharing. In our example,

we have three plans running concurrently: ”Listen”, ”Report”, and ”Action” plan.

The ”Listen” plan describes that robots receive information from the operator
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Plan

Mode
Listen Plan Report Plan Action Plan

Remote 

Control
Receive commands 

from operator

Broadcast 

commands

Move by 

command

Autonomous 

Move Receive warnings 

from other teams

Send its 

location

Move avoiding 

obstacles 

Treasure

Hunt

Send its 

view
Search target

(a) (b)

(c)

Figure 5.1: Specification of behaviors by robot team ”Team1”

or other robots periodically. The ”Report” plan contains information on when it

reports its status or action result to the operator or other robots. It may include

the current position of the robot, hardware information such as battery status,

and information about the object being searched. The ”Action” plan depicts the

behavior that the robot will perform, for instance, moving to a specific region and

searching for a target object.

Figure 5.1 illustrates what tasks to be performed in each combination of mode

and plan for Team1 of our example. As explained earlier, we abstract the task

functions as services and register them in the database. For example, a robot

may have an autonomous driving service that moves to a specific point, a video

service that captures an image, and a detecting service that perceives a specific

object. A user can define a composite service as a sequence of basic services.

For instance, a ”scouting” service can be defined as a sequence of driving, video,

and detecting services. A composite service may include composite services inside

to make it hierarchical.

The syntax of the scripting language is formally defined by the Backus-Nauer

form (BNF). The suffixes ”*”, ”+”, and ”?” mean ”repeated zero or more times,”

”repeated one or more times” and ”zero or one time,” respectively.
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5.1.1 Service-oriented Programming

The mission scenario is a collection of team scenarios that consists of two

parts, team composition and team behavior. The team behavior comprises service

definition, multitasking information, and dynamic mode change information.

<MissionScenario> ::= <TeamScenario>+

<TeamScenario> ::= <TeamComposition> <TeamBehavior>

<TeamBehavior> ::= <Function>* <Service>+

<Multitasking>+

<DynamicModeChange>

Figure 5.2 illustrates a part of mission specification for Team1 written in our

proposed scripting language.

As mentioned above, robots are grouped into teams. The syntax for team

formation in BNF is following:

<TeamComposition> ::= <TeamName> : <RobotList>+

<RobotList> ::= <RobotType> <RobotName>

It specifies the composition of teams with a list of robots. Each robot is

described by its type and name. In our example, there is a team whose name is

Team1 as illustrated in line 1 of Figure 5.2. Team1 includes an r1 which type is

lego robot.

A behavior of a robot is defined by a sequence of services in the scripting

language. ”GroupStmt” will be explained in Section 5.1.3. The syntax of service

is shown as follows:

<Service> ::= <TeamName>.<PlanName>.<CompServiceName>

{ <Stmt>+ } <RepeatStmt>?

<Stmt> ::= <GeneralStmt> | <GroupStmt>
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1 Team1: lego_robot r1… # team formation

2 Team1.Listen.Comm_operator{      # composite service definition

3 receive (Team2, Team2.warning) …. } repeat (10 sec)

4 Team1.Report.Broadcast {

5 send (user, Team1.location) …

6 } repeat (mission_ongoing)

7 Team1.Action.ApproachDestination {

8 move (Torino Congress Center)

9 if (Team1.arrived) throw find_treasure

10 } repeat (Team1.not_arrived)

11 Team1.AUTO_MODE {                           # multitasking per mode 

12 set(Listen, Comm_operator) 

13 set(Report, Broadcast)

14 set(Action, ApproachDesination) }  ….

15 Team1.main {                           # dynamic mode change definition

16 case (AUTO_MODE):

17 catch(find_treasure): mode = SEARCH_MODE

18 catch(remote_control): mode = RC_MODE

19 case (SEARCH_MODE): …. 

20 default: mode = AUTO_MODE }

Figure 5.2: Mission scripting language example associated with Figure 5.1

<RepeatStmt> ::= repeat (<LoopCondition>*)

<Function> ::= def <FunctionName>

{ <GeneralStmt>+ }

Since a service depends on the plan it belongs to, the plan name is explicitly

specified in the syntax of a service. Iterative execution of a composite service is

specified by repeat phrase with an argument that determines whether it continues

or not. Three composite services, one for each plan, are defined in lines 2-10 in

Figure 5.2.
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Our scripting language supports conditional and loop constructs in a com-

posite service definition. Conditional executions can be described by using if and

else phases. A loop statement is used to express an iterative execution of services.

Since communication statements are frequently used, send and receive statements

are reserved for pre-defined services. A throw statement is used to generate an

event in a composite service. This output event can be used to change the mode

dynamically or to perform conditional execution of behavior. In line 10 of Fig-

ure 5.2, if Team1 arrives at the destination, it throws an event to change the mode

to ”SEARCH MODE”. Moreover, there are various kinds of built-in-services such

as ”move”, ”video capture”, and ”detect an object”, which mean the services reg-

istered in the database. Statements used frequently can be registered as functions,

but they are not used to represent simple motivational examples. The syntax of

general statements in BNF is following:

<GeneralStmt> ::= <ConditionalStmt>

| <IterationalStmt>

| <ExpressionStmt>

<ConditionalStmt> ::= if(<Condition>+) {<GeneralStmt>+}

<ElseStmt>?

<ElseStmt> ::= else {<GeneralStmt>+}

<IterationalStmt> ::= loop(<LoopCondition>+){<GeneralStmt>+}

<LoopCondition> ::= <PeriodTime>

| <Condition>

<ExpressionStmt> ::= send(<TeamName>, <Attribute>+)

| receive(<TeamName>, <Attribute>+)

| <Built-in-Service, <TimeoutStmt>?>

| <FunctionName>

| throw <EventName>
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<TimeoutStmt> ::= timeout = <PeriodTime>

5.1.2 Multitasking and Dynamic Mode Change

As explained earlier, multitasking is supported by having multiple plans run-

ning concurrently. Depending on the mode, the action of each plan may vary as

shown in Figure 5.1 (b). Thus, we map a composite service to each plan in each

mode by using the following syntax:

<Multitasking> ::= <TeamName>.<ModeName> {<SetStmt>+}

<SetStmt> ::= set(<PlanName>, <CompServiceName>, <TimeoutStmt>?)

| set(<PlanName>, OFF)

To terminate a plan, set (<PlanName>, OFF) can be used. Lines 11-14 in

Figure 5.2 show how to define the action of each plan in the ”AUTO MODE”.

When a robot starts its execution, the main loop is executed forever, ini-

tially setting the mode to the default mode. A generated event triggers a mode

transition. Remind that a composite service may generate an output event. The

main loop decides the next mode of operation based on the event caught by catch

phrase during the execution of the current mode. In Figure 5.2, mode conversion

can be found in lines 15-19, where the initial mode is set to ”AUTO MODE” in

line 20. The summary of the dynamic mode change syntax is following:

<DynamicModeChange> ::= <TeamName>.main{

<ModeChange>* <InitialMode>}

<ModeChange> ::= case(<ModeName>):<EventListener>*

<EventListener> ::= catch(<EventName>):<ModeAssign>

<ModeAssign> ::= mode = <ModeName>

<InitialMode> ::= default:<ModeAssign>
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5.1.3 Extensions for Multiple Robots

A cooperative mission is specified as a sequence of services that the robots

perform at a high level by a scripting language: grouping robots into teams and

specifying the behavior of each team assuming that all robots in a team perform

the same specified service. The robots that perform different tasks should be

assigned to different teams. While it supports communication between teams, it

does not allow robots in a team to communicate with each other. Moreover, it

has no consideration of robot failure, which is a common assumption in swarm

robotics. Since the behavior of the robots is statically determined, if one robot

fails to perform its role, the entire mission is affected.

In order to improve the robustness, scalability, and flexibility of robot collab-

oration, we consider adding some key features of swarm robotics in the scripting

language. Unlike the fixed team formation in a priori research, we add a team

hierarchy, which allows the developer to form a group of robots dynamically in

a team. A team of robots may have several groups that perform different ser-

vices at the same time. Also, a new notion of a service, called group service,

is introduced, which corresponds to the cooperative mission specification in the

top-down approach. Moreover, intra-team communication via broadcasting and

local information sharing, which are essential for swarm robotics, are supported

in the extended framework. Thus, the proposed framework enables a casual user

to specify various types of cooperative missions for distributed robot systems,

swarm robots, and their hybrid. In this section, we explain these features with a

motivational mission example, which explained in Section 3.1.3.

Figure 5.3 shows a snippet of mission specification associated with the ex-

ample mentioned above. Robots are grouped into teams (line 1 and 2) and the

behavior of each team is defined with a composite service; for instance, Ap-

proachDestination (lines 3-5) and Search (lines 6-16) are two composite services
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1 MasterTeam: iRobotCreate irobot # team formation

2 SlaveTeam: TurtlebotBurger burger[2], Ev3Robot ev3[2] 

3 SlaveTeam.Action.ApproachDestination { 

4 move (Paris palace of congress )   # composite service definition

5 throw find_color_paper } repeat (SlaveTeam.not_arrived)

6 SlaveTeam.Action.Search {            

7 [[ 

8 group (instance of TurtlebotBurger) { 

9 loop(2 SEC)  

10 if (SlaveTeam.lightness < 200 )

11 publish(SlaveTeam, SlaveTeam.Message = suggestHiding)} 

12 others {

13 searchPaper(); 

14 publish(SlaveTeam, SlaveTeam.Message = suggestReturning) }

15 ]]

16 } ….

17 SlaveTeam.AUTODRIVE_MODE{          # multitasking per mode 

18 set( Listen, CommOperator ) 

19 set( Action, ApproachDestination) } ….

20 SlaveTeam.main {                    # dynamic mode change definition

21 case (AUTODRIVE_MODE):

22 catch(find_color_paper): mode = SEARCH_MODE

23 catch(remote_control): mode = RC_MODE

24 case (SEARCH_MODE): …. 

25 default: mode = AUTODRIVE_MODE }

Figure 5.3: Mission scripting language example associated with Section 3.1.3

for SlaveTeam. The internal behavior of a composite service is defined by a

sequence of services that the robots will perform. There are two plans, Listen and

Action, defined for SlaveTeam as can be found on lines 17-19 in the example of

Figure5.3. Besides, how to express mode transition can be found on lines 20-25.
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In a priori research, the cooperative mission is described by a set of team

services that may be changed dynamically depending on the mode of operation.

The first extension is made to the composite service definition of a team, as

displayed below in the BNF form.

<GroupStmt> ::= [[ <LeaderDef> <OtherStmt>? ]]

| [[ <GroupDef>+ <OtherStmt>? ]]

<LeaderDef> :: = leader(<GroupCondition>) {<GeneralStmt>+}

<GroupDef> ::= group(<GroupCondition>) {<GeneralStmt>+}

<OtherStmt> ::= others {<GeneralStmt>+}

<GroupCondition> ::= instance of <RobotType>+

| capable of <RobotCapability>+

We introduce the team hierarchy in which the robots in a team can be grouped

dynamically. While team formation is statically defined at the beginning of the

mission script, groups are defined inside the composite service to support dynamic

grouping. We support two types of group structure, leader-follower structure [39]

and peer-peer structure [68], [71] as defined in ”GroupStmt” in the above BNF

description. As illustrated in Figure 5.4, the leader-follower structure is a vertical

structure in which one robot is designated as the leader to control the other robots.

The peer-peer structure, on the other hand, has a horizontal relationship between

robots.

We can group robots based on the type or the capability of the robot (”Group-

Condition” in the BNF description). For example, robots with a camera sensor

can perform video shooting service. In the composite service of a team, we may

divide the robots into multiple groups that are assigned different services. A pair

of symbols, [[ and ]], are used to specify concurrent execution of services by mul-

tiple groups of the robots. Note that a robot can belong to one group at most;

if it satisfies more than one grouping condition in a composite service, it has to
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Figure 5.4: Dynamic group allocation

choose one group arbitrarily. In the example of Figure 5.3, SlaveTeam is divided

into two groups in the Search service, as shown in lines 7-15. One group that is of

type TurtlebotBurger detects a dangerous condition, while the other group that

consists of the remaining robots search for the color papers.

The second extension is the introduction of group service that can be per-

formed by two or more robots together without the specification of the role of

individual robots. It is an example of a top-down specification for swarm robotics.

How to perform a group service is elaborated in the strategy description in the

proposed methodology. The service SearchPaper described in Figure 5.3 can be

defined as a group service, for instance. Since we assume that a robot in a group

may fail during operation, the group service is performed collaboratively by avail-

able robots.

As the third extension, one-to-many communication is added. The SeMo

framework supports one-to-one communication only with two APIs, send and

receive. Since multicasting can be realized by multiple one-to-one communications,

it can specify the cooperative mission of a distributed robotics system as long as

all robots are live during operation. Unfortunately, any robot may fail in swarm

robotics, so it is recommended to use broadcasting. To this end, a pair of new APIs,

publish and subscribe, is introduced. In line 11 and 14 of Figure 5.3, broadcasting
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communication is used for each group to send a message.

Last not least, a new semantics for robot synchronization is defined. Since

the performance of robots has a large variation, the robots in a team may sit in a

different execution state. For group services, however, we need to synchronize the

robots. Thus, in the proposed semantics, all robots involved in a group service are

synchronized at the start of the group service. In the case of the leader-follower

structure of grouping, we may need to select a new leader at the group formation

step if the previous leader fails during operation. The leader selection scheme is

not described in the mission specification phase but in the strategy description

phase.

In summary, the proposed extension offers greater flexibility and robustness

than the previous work, assuming that any robot may fail during the execution

of group services, and grouping of robots can be made at run-time dynamically.

Figure 5.3 shows how a group service is used in the service-oriented mission spec-

ification as a hybrid system example of distributed robotics and swarm robotics.

The full script codes are covered in detail in Appendix C.
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5.2 Strategy Description

There is a large gap between two abstractions, mission specification and

model-based task graph specification from which the actual target code is gener-

ated automatically. To fill this gap, an intermediate level of abstraction, called a

strategy description, is introduced in the SeMo framework.

In this layer, a high-level service specified in the mission script is refined into

a set of lower-level services that can be mapped to the tasks in the task graph

model. Suppose that ”move to X” service is used in the mission script. Since

there may exist multiple algorithms that require different hardware resources and

computation power for autonomous moving, it is necessary to specify which algo-

rithm to use for actual code generation. For strategy description, we use the XML

markup language instead of using a scripting language or programming language,

as shown in Figure 5.5. The XML format is suitable for the description of complex

requirements with the relatively simple schema. This XML description can be re-

placed with a graphical user interface (GUI) for user-friendliness. For example,

when detecting a color value, some robots can use the color sensor directly, while

others need to use the color filter after capturing an image from the camera. Fig-

ure 5.5 shows a part of the XML description that refines the ”move” service into

a set of fine-grain services to accomplish the following action: ”check the current

position and obstacles, and then move on wheels.” This refinement information is

supposed to be prepared by a robot manufacturer or a knowledgeable user in the

robot operation.

Since several extensions are made in the mission specification, the correspond-

ing extension should be made in the strategy description. In particular, we need to

clarify how to synchronize robots for the leader selection and execution of group

service. It is also necessary to specify which algorithm to use for selecting leaders

or groups. Besides, how to share the information and who has the information
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should be expressed in this layer.

Also, non-functional requirements that are not expressed in the mission can be

specified in the strategy description file. For instance, it is necessary to monitor the

remaining battery energy of miniature mobile robots before performing a service.

1 <Strategy name=“SlaveTeam” xmlns=“…”>

2 <ValueInfo>

3 <Value name=“distance”>

4 <TargetRobot name=“TurtlebotBurger” .. />

5 <CheckSensor name=“LaserDistanceSensor”>

6 <Parameter name=“distance” …/> </CheckSensor>

7 </Value> …. <!– other values > </ValueInfo>

8 <ServiceInfo>

9 <Service plan_name=“Action” service_name=“move”>

10 <TargetRobot name=“Ev3Robot” .. />

11 <ActionsInfo>

12 <Action name = “CheckGoal” actionId =“0” >

13 <Parameter name=“current_location” .. />

14 <Parameter name=“goal” .. />

15 <Transition srcId=“0” dstId=“7” >

16 <Condition cond=“current_location == goal” />

17 </Transition> … <!– other transition> 

18 <Action name = “CheckObstacle” actionId =“1”> …

19 </Service> … <!– other services >

20 <GroupingInfo>

21 <LeaderSelectionInfo>

22 <plan_name=“Resolve” cs_name=“decide” … /> …

23 <BatteryRequirement>

24 <Condition cond=“battery < 50” >

25 <Sensor name=“Distance Sensor” period=“10” / >

26 … <!– non-functional requirement>

Figure 5.5: A strategy description example of moving service
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Then, a user may change the algorithms depending on the remaining battery level

and the characteristics of the work performed by the robot. In our example, we

check the battery level and adjust the execution period of a particular service

(sensing or actuating) or the algorithm for adaptive resource management at run-

time.
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5.3 Automatic Task Graph Generation

Based on the strategy description file, the task graph specification can be

automatically generated from a given mission specification. For each robot, ser-

vices that the robot should perform are identified. Since we assume that the task

graph associated with each service is registered in the database, task graphs are

instantiated as illustrated in Figure 4.13. We can instantiate all the required tasks

from the mission specification in a straightforward fashion without any intercon-

nection among tasks. With the instantiated tasks, we have to add dependency

arcs between tasks by analyzing the dependency between services in the mission

Control Task

RC

AUTO SEARCH

Other 

plans

…

Action plan

Mission

Mode information

Plan information

Service information

Strategy

Fine-grained service 

move throw

Check
goal

Check
obs.

Avoid
obs.

Go Action≈

switch(current_state):

case CheckGoal:

if(current_location == goal”)

current_state = CheckObstacle;

….

case CheckObstacle: 

….

Figure 5.6: Automatic generation of control task from mission specification and
strategy description
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specification. In case the mission requires knowledge sharing, we identify the re-

quested types of knowledge sharing and insert the additional tasks for knowledge

sharing and associated communication ports and channels.

The most challenging is to synthesize the control task that realizes the dy-

namic behavior of each robot. In the control task, a hierarchical finite state ma-

chine (FSM) is constructed according to mission specification and strategy de-

scription. In the mission specification, a robot may change the operation mode,

and grouping is changed dynamically. Such dynamic behavior is expressed by a

hierarchical FSM inside a control task, Controller in Figure 4.6 or Figure 4.13.

Figure 5.6 sketches how the mode and plan information from the mission is trans-

lated into the state transition diagram in the top-level FSM. In each mode, the

sequence of services is translated into a hierarchical FSM. In bottom-level FSM,

we may change the execution state of the task, such as suspending and resuming

or change the parameter of the task. As illustrated in Figure 5.5, we can spec-

ify a condition variable used as a state transition condition in the synthesized

bottom-level finite state machine.

The inside of the control task is shown in Figure 5.7 for the mission specifica-

tion of Figure 5.3. Note that we generate different FSMs for two robots that belong

to the same team since they belong to different groups in the Search composite

service. Since the group conditions can be inferred from the candidate robots of

the group in advance, the robots only contain a set of services that need to be

performed. For example, a sensing task that checks brightness should be included

only inside the TurtlebotBurger robot task, and only the parts that are necessary

to search for color papers are created for Ev3Robot. If a leader exists in the team,

the leader candidate robotic task should include a leader selection algorithm and

periodically check the leader. Figure 5.7 shows that there are additional states

that check the leader and separates what the leader or the rest needs to do in the
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Figure 5.7: Automatic generation of task graph from mission specification and
strategy description

”Resolve” plan.

Communication between robots can also be extracted from the communica-

tion statements in the mission specification. For information sharing, getter and

setter functions can be automatically generated in a library task. The function

that handles shared information is manually defined in the current implementa-

tion.
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5.4 Related works

Several graphical languages have been proposed for easy specification of robot

application for casual users [132], [133]. They typically use block diagram style

of programming where programming is done by assembling blocks of pre-defined

functions. Even if they are easy to learn and use, its expression capability is quite

limited; it cannot specify a cooperative mission nor dynamic mode change.

Another popular approach is to extend existing scripting languages. For ex-

ample, JavaScript has been extended to a variety of languages, such as RosLib.js

[134], Cylon.js [135], and Johny-five [136], because it is easy to specify an ap-

plication for event-based systems and to work with the web. Since event-based

programming is a general programming paradigm, these languages can be used

for robot application programming. Like ROS supports various languages such as

Python, Java, and C++, RosLib.js [134] provides a library of JavaScript interfaces

for ROS. Cylon.js [135] adds extra commands such as ’every’ and ’after’ to specify

the periodic behavior. It helps the user can specify the behavior of the Internet

of Things (IoT) device or robot more intuitively.

Dolphin [137] is a programming language that extends Groovy for au-

tonomous vehicle networks. It assumes a centralized program, allowing a human to

orchestrate an entire network of vehicles based on a global specification. Since the

high-level abstraction helps the user to write a program without in-depth techni-

cal knowledge, Dolphin is included in Groovy as a domain-specific language. This

work is similar to the proposed methodology in that it is easy for users to use

with scripting languages, but it does not support swarm robotics.

The language called Buzz [40], which is a Lua extension, takes into consider-

ation the characteristics of robots that repeat the behavior of ’sensing → commu-

nication → judgment/control → communication → actuation.’ And it supports

heterogeneous robots. Similar to our research, Buzz has taken both a top-down
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approach and a bottom-up approach. Buzz includes several constructs designed

explicitly for top-down swarm-level development, such as primitives for group for-

mation and management, local communication, and global consensus. It can group

many robots into one team and specify the action of each team, similarly to our

proposed scripting language. Buzz is also designed to work with small systems.

Since Buzz allows seamless mixing of bottom-up and top-down constructs in one

language, it is difficult for novice programmers to use.

A general-purpose scripting language such as JavaScript and Lua is not easy

to use for casual users who have little knowledge of computer programming. More-

over, multitasking is not supported in conventional scripting languages in general

since a scripting language is interpreted at run-time. On the other hand, our

scripting language specifies multi-tasking, dynamic mode change, and robot col-

laboration directly with corresponding keywords and syntax, which makes it dif-

ferent from general scripting languages that may express those behaviors with

more programming efforts.

There exist some studies that have developed new languages for robots. As

an example, MALLET [138] uses a team-oriented programming method includ-

ing team intelligence, similar to human teamwork. It provides sequential, itera-

tive, and conditional statements as well as parallel statements regarding control

aspects. And the MALLET parser transforms into PrT nets (specialized Petri-

Nets), which is similar to translating from mission to task graph model in our

SeMo Framework. Also, there are four languages SDL, DDL, TDL, and MDL

[139] to specify the robot behavior in detail. However, it is not easy to learn since

it requires a user to learn four different languages to express the robot behavior

up to code level.

Proto [140] is a functional programming language for homogeneous robots. It

suggests a primitives library for group behaviors such as flock, scatter, disperse,
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and cluster-by [141]. It also provides five constructs, including behavior assignment

to groups and activation of the group action [141]. The program specifies a swarm-

like behavior and neighborhood-based computation. It is compiled to an abstract

bytecode that is deployed using a viral propagation mechanism over the network

and then executed by each robot in a distributed manner. Bytecode execution

uses a stack-based virtual machine for programs that may run on very lightweight

microprocessor chips. There are several studies that extend Proto. While Proto is

cumbersome because it is a functional language and has LISP-like syntax, Protelis

[142] is a more recent Proto-based language built into Java. And Protoswarm [143]

extends to program the swarm of robots. They focus on the swarm robotics mission

that is performed by homogeneous robots, which is different from the proposed

methodology.

There are several studies that use LTL (linear temporal logic) or its exten-

sion for the motion planning of autonomous robots [144], [145], and [146]. With

LTL specification, they could verify the correctness of a motion plan formally and

synthesize the task codes automatically. We believe that this approach is com-

plementary to our work since the generated task code can be understood as a

service definition that can be provided in a task or a task subgraph in the SeMo

framework.

As a summary of related works, we compare the proposed one with some

selected frameworks in terms of the following characteristics in Table 5.1: 1) de-

velopment approach, 2) the orchestration type, 3) supporting type of cooperation,

and 4) support of dynamic task allocation.

The development approach can be a top-down approach, a bottom-up ap-

proach, or a mixture approach. While most studies are using either the top-down

approach or the bottom-up approach, Buzz and our proposed work take two ap-

proaches. Among them, several studies use two or more robots for a cooperative
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Table 5.1: Framework for programming multiple robots

Framework Approach Orchestration Cooperation
type

Dynamic
allocation

ROS Bottom-up Centralized Individual/
Distributed No

Karma Top-down Centralized Swarm Yes
Dolphin Top-down Centralized Distributed No

Proto Top-down Decentralized Swarm Yes

Buzz Mixture Centralized &
Decentralized Swarm Yes

Ours Mixture Centralized &
Decentralized Both Yes

mission, but ROS is focusing on individual robots [92]. It is challenging to specify

a collaborative mission for robots [36], because there are no specific APIs defined

for a cooperative mission. Since ROS is based on a central node called rosmaster

that provides naming and registration services for the rest of the nodes to discover

one another, it is known that a robot may get disconnected in multi-robot sys-

tems due to unreliable network [37]. Thus, using one master inside each reliable

network, which is typically one master per robot, is taken as a solution [93].

The orchestration indicates whether multiple robots are centrally managed

or not. Many studies, even the latest research [137], manage robots centrally,

assuming that human intervention and control are necessary for robots because

swarm robots contain a large number of robots. ROS is classified as centralized in

terms of multiple robots because communication between nodes (robots) is made

through the name server called ros master. However, Buzz and SeMo consider

both orchestrations.

In the case of cooperation type, most of the researches only consider swarm

robots but do not take into account distributed robots. Lastly, the dynamic task
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Table 5.2: Comparison with other languages

- Python Protoswarm Dolphin Buzz Ours

Number of
Keywords 31 28 61 64 38

Example 1 - 11 22 43 16
Example 2 - 19 24 43 11
Example 3 - 20 22 47 21
Example 4
(Service) - - - 30 3

allocation represents robots allocate groups dynamically depending on the envi-

ronments or situations, which is closely related to robustness.

With regard to the lines of code in Table 5.2, we compare our mission script

with other languages. The number of keywords is shown at the top of the table.

Buzz and Dolphin are extensions of existing languages, so they have a relatively

large number of keywords. On the other hand, new language Protoswarm and our

mission script have a few keywords. Moreover, we compare the number of lines

when representing the same example in each language. Example 1, 2, and 3 are

simple scenarios taken from [141]. In Example 1, there are two teams, a red team

and a blue team. The red team proceeds to the blue team, and then the blue team

runs away when they find the incoming red team. The second example is about

deployment, and the third example is more complex than other scenarios. One

team patrols to find another team. When they detect, they are scattered. Since

Buzz is based on the bottom-up approach, the lines of code are long. Example 4

is only expressing the service in the Buzz example. Our approach uses abstracted

services so that the user can do the same with terse lines of code.
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5.5 Experiments

To examine the viability of the proposed methodology, preliminary experi-

ments are conducted with a V-Rep robot simulator [34] and real robots. A sim-

ple swarm robotics example is demonstrated in the V-Rep robot simulator in

Section 5.5.1. And in Section 5.5.2, real robots are used to demonstrate some

cooperative examples including the example explained in Section 3.1.3.

5.5.1 Swarm Robotics Example

In this example, several 4-leg biomimetic robots that are equipped with a

proximity sensor and a camera are marching in line, which is defined as a group

service in the mission specification. Figure 5.8 (a) is a snippet of mission specifica-

tion. When a robot detects an obstacle, it shares this knowledge with neighboring

robots to stop marching and turn back. Without knowledge sharing, the other

robots would crash the obstacle shown in Figure 5.8 (b). The proposed framework,

however, generates the code with knowledge sharing correctly to avoid crashing.

And we change the number of robots from 3 to 10 to test the scalability in swarm

robotics. Since the detailed robot movement takes long in the V-Rep robot simu-

lator, we used a small number of robots in this experiment. Some snapshots are

shown in Figure 5.8 (c) and Figure 5.8 (d).

5.5.2 Scouting Mission with Heterogeneous Robots

To prove the viability of the proposed methodology, preliminary experiments

are conducted with a scenario of the cooperative mission. The scenario verifies

the refinement process from the mission script to task graphs. This experiment

confirms the benefits of the modular structure of the SeMo framework; we may

change mission, strategy easily without laborious manual coding.
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1 { Team : VRepQuadruptor quad[3] }

2 Team.Action.Move{

3 march()

4 } repeat()

5 Team.Report.LookAround {

6 if (obstacle == true)

7 publish(Team, Team.Message = suggestAvoiding)

8 } repeat ()

(a) A part of mission script example

1 { Team : VRepQuadruptor quad[3] }

2 Team.Action.Move{

3 march()

4 } repeat()

5 Team.Report.LookAround {

6 if (obstacle == true)

7 publish(Team, Team.Message = suggestAvoiding)

8 } repeat ()

(b) Snapshot of 3 robots without knowledge
sharing

1 { Team : VRepQuadruptor quad[3] }

2 Team.Action.Move{

3 march()

4 } repeat()

5 Team.Report.LookAround {

6 if (obstacle == true)

7 publish(Team, Team.Message = suggestAvoiding)

8 } repeat ()

(c) Snapshot of 3 robots with knowledge shar-
ing

(d) Snapshot of 10 robots

Figure 5.8: Quadruped robots share information to avoid falling

5.5.2.1 Scenario 1

In this scenario, a team of robots has a mission to follow a specific object.

Initially, the robots run in the remote control mode where their movement is
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1 Team1.Listen. Comm_operator{

2 receive(user, user.cmd) } repeat (1 sec)

3 Team1.Action.RemoteControl{

4 process (user.cmd) } repeat (1 sec)

5 Team1.RemoteControlMode{

6 set(Listen, Comm_operator) 

7 set(Report, Broadcast)

8 set(Action, RemoteControl) }  ….

1 Team1.Action.RemoteControl{

2 process (user.cmd) 

3 if (distance < threshold) throw auto                       // add condition

4 } repeat (…)

5 Team1.Action.AutonomousMovingMode {// new composite service

6 follow (object) } repeat (…)

7 Team1.RemoteControlMode{

8 set(Listen, Comm_operator) 

9 set(Report, Broadcast)

10 set(Action, RemoteControl) } 

11 Team1.AUTO_MODE {                                        // additional mode

12 set(Listen, OFF); set(Report, OFF)

13 set(Action, AutoFollow) }  ….

(a) Only remote control mode

1 Team1.Listen. Comm_operator{

2 receive(user, user.cmd) } repeat (1 sec)

3 Team1.Action.RemoteControl{

4 process (user.cmd) } repeat (1 sec)

5 Team1.RemoteControlMode{

6 set(Listen, Comm_operator) 

7 set(Report, Broadcast)

8 set(Action, RemoteControl) }  ….

1 Team1.Action.RemoteControl{

2 process (user.cmd) 

3 if (distance < threshold) throw auto                       // add condition

4 } repeat (…)

5 Team1.Action.AutonomousMovingMode {// new composite service

6 follow (object) } repeat (…)

7 Team1.RemoteControlMode{

8 set(Listen, Comm_operator) 

9 set(Report, Broadcast)

10 set(Action, RemoteControl) } 

11 Team1.AUTO_MODE {                                        // additional mode

12 set(Listen, OFF); set(Report, OFF)

13 set(Action, AutoFollow) }  ….

(b) Add autonomous moving mode

Figure 5.9: Change of the mission script

controlled by an operator manually, and a part of the associated mission script is

displayed in Figure 5.9 (a). In the SeMo framework, the mission script is translated

into a task graph that represents the internal behavior of a robot, as shown in

Figure 5.10 (a) where the controller task is triggered by the events received by the

communication module (”Receive”). Suppose the user wants to modify the mission

scenario in which if the distance between a robot and the object is close enough,
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(a) Remote control mode behavior specification

: Sensor Task   : Control Task    : Computational Task
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(b) Autonomous moving mode behavior specification based on the TLD algorithm

Figure 5.10: Task graph specification for two different modes of operation

they follow the object automatically. The changed scenario is the same as the

motivational example in Section 3.1.1. It can be done by adding an autonomous

moving mode in the mission script to follow the object as displayed in Figure 5.9

(b). In addition, we describe which algorithm is to use for autonomous moving in

the strategy description. In this experiment, the TLD algorithm [147] is used for

object tracking. Then the framework synthesizes the new task graph, as shown in

Figure 5.10 (b), where a task subgraph that specifies the TLD algorithm task is

added and the controller task is modified adding an autonomous moving mode.

Remind that the task graph specification of the TLD algorithm is assumed to

be given and registered as a service a priori by the robot manufacturer or a

knowledgeable user. Figure 5.11 is some snapshots.

Table 5.3 compares the line of codes user has written with the generated

code. If the robot are using only remote control mode, only 39 lines of mission
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Figure 5.11: Robot to follow a specific robot

Table 5.3: Lines of the mission scripting, strategy, and task code

Only
RC mode

Adding
auto mode

Mission 39 60
Strategy 123 172

Task graph code

Task code 375 2,591
Control code 198 271

Communication code 52 52
Total code 625 2,914

Mission / Total task code (%) 6.24 2.06
Mission + Strategy / Total task code (%) 25.92 7.96

script are represented. After modifying the scenario, the user needs to write 20

more lines to add autonomous driving mode, which result in generating more than

2,900 lines of task code. Therefore, the modularity allows user to easily perform

various scenarios with the help of our methodology, even with minor changes.
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5.5.2.2 Scenario 2

For the scouting mission of Section 3.1.3, three different types of robots are

used: one iRobotCreate [148], two TurtleBot3 Burgers [149], and two Ev3Robots

[150]. The iRobotCreate is controlled by a Raspberry pi board with Ubuntu.

TurtleBot3 Burger is equipped with a laser distance sensor, a light sensor, an

LED, two wheels, and a Raspberry Pi 3 Model B+ (ARM Cortex-A53, quad-core,

1.4GHz) as a single-board computer and OpenCR 1.0 board [151](ARM Cortex-

m7, 216MHz) as a micro-controller. Ev3Robot has a color sensor, a distance sensor,

two motors, and a brick(ARM926EJ-S, 300MHz). All robots communicate with

each other using Wi-Fi.

To verify the robustness of the group service, we test a scenario where the

leader robot in the SlaveTeam fails during the operation. Since the leader robot is

in charge of communication with the MasterTeam, its failure will fail the mission.

Table 5.4: Lines of the generated code

iRobot
Create

Burgers Ev3RobotPi OpenCR

Mission 211
Strategy 203 654

Robot
Code

Task
Graph
Code

Task code 278 213 128 240
Control task 207 475 - 455
Comm. task 155 270 - 196

Scheduler 3,926 3,926 826 3,926
Data structure 1,168 2,141 375 1,163

API, wrapper, etc 15,182 16,309 5,022 15,869
Total code 20,916 23,334 6,351 21,849

Manual code ratio (%)
(Mission / Total code) 1.01 0.90 3.32 0.97

Manual code ratio (%)
((Mission + Strategy)

/ Total code)
1.98 3.70 13.62 3.96
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Figure 5.12: Heterogeneous robots work together to find colored paper
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However, the proposed framework selects a new leader after detecting the failure

of the leader by periodic monitoring and completes the mission correctly. This

experiment also confirms that we generate the target codes of different robots

automatically from the translated task graph. Table 5.4 shows the number of

lines in the generated code. The scenario represented by only 211 lines in the

mission script language is converted into control task code, communication task

code, and task code associated with the hardware component of the robot. For

TurtleBot3 Burger, two wheels, LED, and brightness sensor are connected to the

OpenCR board, so there are no additional control task and communication tasks.

Only serial communication code is added to transfer the value of each task to

the control task in the Raspberry Pi board. The generated actual robot code

contains data structures for tasks, channels, and libraries, and target specific code

for initialization and wrapup actions. In addition, target-independent APIs used

in the task graph are redefined as target-specific APIs.

5.5.2.3 Scenario 3

The low manual code ratio does not mean that the code generator is effective

because unnecessary lines of code reduce the manual code rate. To verify the

code quality, we compare the code lines between ROS and our methodology. We

implemented a simple remote control mission scenario using an ”iRobot Create”.

Table 5.5 displays the lines of code at each step. We wrote about 430 lines of

code to develop all ROS node code themselves. On the other hand, the proposed

methodology requires less programming but generates about 530 lines of code

automatically. This is because the control task consists of a hierarchical finite

state machine. Even if the robot performs simple action, the nested structures

and duplicated structures make the line of code increase like Figure 5.13.

Compared to the overall software code, the ROS code line and SeMo code line
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Table 5.5: Lines of the code

ROS Our proposed framework

Mission - 38
Strategy - 123

Robot
Code

Task
Graph
Code

Task code 436 215
Control task - 198
Comm. task - 52

Total task code 436 530
Manual rate (%) 100 30.38
Scheduler 3,194 3,926

Data structure 883 854
API, wrapper, etc 22,720 15,182

Total code 27,233 20,492

Manual rate (%)
(Manual/Robot code) 1.60 0.78

are similar. To execute the ROS node, the relevant code for topics and services is

automatically generated and run by the ros master.

As a result, ROS requires more programming than our methodology.
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1 TASK_INIT {… }

2 int service_go_forward() {

3 switch( current_state_go_forward){

4 case ID_STATE_GO_FORWARD_GOFORWARD: {

5 UFTask_SetIntegerParameter (“wheel”, “cmd”, CMD_FWD);

6 UFControl_CallTask(“wheel”);

7 break;

8 }

9 } …

10 }

11 int service_go_backward() {

12 switch( current_state_go_backward){

13 case ID_STATE_GO_BACKWARD_GOBACKWARD: {

14 UFTask_SetIntegerParameter (“wheel”, “cmd”, CMD_BWD);

15 UFControl_CallTask(“wheel”);

16 break;

17 }

18 } …

19 } …

20 void execute_Action_Move(){

21 switch(current_state_Action_Move){

22 case ID_STATE_Action_Move_if1: … break; 

23 case ID_STATE_Action_Move_action2:  

24 int result = service_go_forward(); … break; …

25 }

26 TASK_GO { 

27 switch(current_mode){

28 case ID_STATE_RC_MODE:

29 execute_Action_Move(); 

30 …}

31 TASK_WRAP { … }

Figure 5.13: Control task code of remote control mission
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Chapter 6

Conclusion

In this dissertation, we proposed a novel service-oriented and model-based

software development framework to support distributed robot systems, swarm

robots, and their hybrid. The proposed SeMo framework separates the high-level

mission specification with an easy-to-use scripting language and the model-based

task graph specification for algorithm-level behavior specification of each robot.

The overall flow of the proposed software development methodology can be un-

derstood as the refinement process among four levels of abstraction in software

development.

The first step is mission specification at the highest level of abstraction

with a scripting language. It can express team configuration, service-oriented pro-

gramming, dynamic mode change of operation, and multitasking. To our best

knowledge, no existent script language has such expression capability [138], [133],

[152] with easy-to-use syntax. The function each robot can perform is abstracted

with a service in our framework, and a user requests a service by its name. We

also allow a user to define a composite service that executes the primitive services

sequentially. Multitasking is not easy to express in popular script languages like

python or lua. To support multitasking, we adopt the notion of plan from [131];

multitasking of a robot is represented by mapping one composite service per plan.
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A robot may have multiple operating modes depending on the environments and

user requests. The generated event in the composite service can trigger a mode

transition. In addition, to improve the robustness, scalability, and flexibility of

robot collaboration, we extend the high-level mission specification by adding new

features such as team hierarchy, group service, and one-to-many communication.

The second step is strategy description that defines the second level of ab-

straction. It provides more information on how to perform services. A service writ-

ten in the mission can have different algorithms depending on various conditions

and requirements. For service refinement, we describe the conditions and require-

ments for selecting the appropriate algorithm for each service. Non-functional

requirements can be added at this step as well.

The next step is task graph specification that depicts the internal behav-

ior of each robot to perform the mission. Unlike mission specification, we assume

that the internal definition of a task is developed by a professional program-

mer. It is abstracted as a service function that a robot can perform. Recently

compute-intensive services such as vision and machine learning are getting pop-

ular in robots. A compute-intensive service can be specified by a task subgraph

that can be mapped to multiple processors for parallel processing.

To analyze the system behavior at compile-time, we apply a formal task graph

model, extended from synchronous dataflow (SDF) [113] model for task graph

specification. The SDF model that defines formal semantics for inter-task com-

munication and task execution conditions allows us to make the task scheduling

decision at compile-time and estimate the performance and resource requirements.

Our extended model uses a finite state machine (FSM) to represent dynamic be-

havior [116]. In addition, we support shared information exchange between robot

platforms. Two types of information sharing, global information shared and local

knowledge sharing, are supported for robot collaboration in the dataflow graph.

115



For global information, we use a special type of task, called library task, to man-

age shared resources [42] among multiple robots. On the other hand, we extend

the multicast port and adopt a knowledge sharing technique for local knowledge

sharing.

The actual robot code per robot is automatically generated from the associ-

ated task graph, which minimizes the human efforts in low-level robot program-

ming and improves the software design productivity significantly.

The viability of the proposed methodology is verified with preliminary exper-

iments with three cooperative mission scenarios with three different robot plat-

forms.

6.1 Future Research

Some extensions based on the proposed methodology can be identified to

require further research. Some of these are:

• Support of automatic design method. We have been studying the mission

specification that allows the user to describe the robot tasks in detail. In

recently automated design methodologies, robots can learn on their own

using deep learning technology when the user tells them only the desired

goals.

• Verbal mission specification and graphical strategy description. Since the

mission scripting language is simple, voice recognition and automatic lan-

guage translation technique can be adopted to relieve the burden of learning

the mission scripting language. Besides, developing a graphical interface for

an easy strategy description will be pursued. It may be a good idea to get

feedback from people who are not familiar with programming.

• Security-aware mission specification. The information shared by robots as
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they perform their missions often requires security. Depending on the level

of security, only limited robots should be able to access the information or

to perform the specific services.

• Librarization to improve scalability. The written mission scripts can be reg-

istered with the library and can be called and used later by the user. In

addition, even if robots are already on duty, it should be possible to add

robots as needed to work with existing robots to fulfill their mission.

• Management of robots’ work to improve robustness. In the current imple-

mentation, since the progress of each robot is not individually backed up

and managed, it is not possible to take over the work so far if there is a

problem with the robot.

• Efficient code generation considering non-functional requirements. We can

consider non-functional elements as very rudimentary in the current imple-

mentation. If we add the adaptation policy manager in the generated code,

you will be able to extend the robot’s mission time more dynamically.

• Optimized code generation. We focus on auto-generated software code that

runs functionally well. However, when the generated code is optimized as if

written by hand, it would be a much more attractive methodology.

• Comparing the performance to ROS and other frameworks. Even though

there are no benchmarks to compare performance, we did not compare any

overhead, such as the communication time between tasks.

• Applying various kinds of robots and scenarios. Even if there are no bench-

marks, we conducted experiments using case studies.
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Appendices

A The template for mission specification

1 #########################################################

2 # 1. Team Formation #

3 # Syntax ) TeamName: RobotClassName robot name #

4 #########################################################

5 { } ;

6 #########################################################

7 # 2. Behavior o f each team #

8 #########################################################

9 #−−−−−−−−−−−−−−−−−−−−−−− MASTER Team −−−−−−−−−−−−−−−−−−−#

10 #########################################################

11 # Part 1 . Composite Serv i c e D e f i n i t i o n #

12 # Syntax ) #

13 # TeamName. PlanName . CompositeServiceName{ #

14 # Serv i ce1 ( ) ; #

15 # i f ( cond i t i on ){ #

16 # Serv i ce3 ( ) ; #

17 # throw mode change event ; #

18 # } #

19 # e l s e { #

20 # throw another mode change event ; #

21 # } #

22 # } #

23 #########################################################
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24 TeamName . PlanName . CompositeServiceName{

25 # Serv i ce1 ( ) ;

26 # i f ( va lue == ” va l u e can d i da t e ”)

27 # throw mode change event ;

28 } repeat (2 SEC) #−> i f r epea t needed

29 #########################################################

30 # Part 2 . Multi−t a s k i n g Mode D e f i n i t i o n #

31 # Syntax ) #

32 # TeamName.ModeName{ #

33 # s e t (PlanName , CompositeServiceName ) ; #

34 # } #

35 #########################################################

36 TeamName . ModeName{

37 # s e t ( Plan , Composi teService or OFF) ;

38 }

39 #########################################################

40 # Part 3 . Dynamic Mode Change D e f i n i t i o n #

41 # Syntax ) #

42 # TeamName. main{ #

43 # case (ModeName ) : #

44 # catch ( ModeChangeEvent1 ) : mode = ModeName1 #

45 # catch ( ModeChangeEvent2 ) : mode = ModeName2 #

46 # d e f a u l t : #

47 # mode = ModeName #

48 # } #

49 #########################################################

50 TeamName . main{

51 # case (mode name ) :

52 # catch ( event ) : mode = mode name

53 # d e f a u l t : mode = default mode name

54 }
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55 # I f t he r e are o ther teams , repea t the above s t e p s . . .
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B Illustration of the SeMo SW development flow
for the experiment of Section 3.1.2

In this experiment of cooperation scenario, heterogeneous multiple robots in

Table 4.1 cooperate to find all colored papers in a given grid area. There are two

teams: MasterTeam and SlaveTeam. The most powerful robot (”iRobot Create”)

is designated as a master robot, and the other robots are grouped into a slave

team. All robots first move from the start point (0,0) to the target point (5,5).

After reaching the target point, the slave team performs the same action: searching

the colored papers. If it detects a colored paper that has not been found yet, it

notifies the color to the master robot. Otherwise, it ignores the colored paper and

keeps going. Until the slave team finds all colored papers, the master team waits.

When the slave team finds all of the colored papers, the master and slave team

return to the starting point.

B.1 Mission Specification

Plan

Mode
Listen Plan Report Plan Action Plan

Remote 

Control

Receive commands 

from operator

Broadcast commands Move by command

Autonomous 

Move Send its location, 

sensor values

Move to specific point 

avoiding obstacles 

Autonomous 

Return

Move to starting point 

avoiding obstacles 

Wait
Receive status of 

SlaveTeam

Forward status of 

SlaveTeam to operator
Stand by 

Figure B.1: Specification of behaviors by robot team ”MasterTeam”

Figure B.1 illustrates what tasks to be performed in each combination of

mode and plan for the MasterTeam. It has four different modes of operation and

three plans are running concurrently. In the SeMo framework, we first write a
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mission script for behavior specification as follows.

1 {

2 MasterTeam : iRobotCreate i r o b o t

3 SlaveTeam : TIEvalbot t i , NXTLego nxt

4 }

5

6 MasterTeam . L i s t en . ReceiveCmd{

7 r e c e i v e (USER, USER.RC CMD)

8 i f (USER.RC CMD == ”RC MODE” )

9 throw CHANGE RC MODE

10 else i f (USER.RC CMD == ”AUTO MODE” )

11 throw CHANGE MOVE MODE

12 else i f (USER.RC MD == ”RETURN MODE” )

13 throw CHANGE RETURN MODE

14 } repeat (2 SEC)

15

16 MasterTeam . L i s t en . ReportStatus {

17 r e c e i v e (USER, USER.RC CMD)

18 r e c e i v e ( SlaveTeam , SlaveTeam .COLOR)

19 r e c e i v e ( SlaveTeam , SlaveTeam .LOCATION)

20 i f (USER.RC CMD == ”RC MODE” )

21 throw CHANGE RC MODE

22 else i f (USER.RC MD == ”RETURN MODE” )

23 throw CHANGE RETURN MODE

24 } repeat (2 SEC)

25

26 MasterTeam . Report . SendDefault {

27 send (USER, MasterTeam .DISTANCE)

28 send (USER, MasterTeam .CAMERA)

29 send (USER, MasterTeam .LOCATION)

30 } repeat (2 SEC)
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31

32 MasterTeam . Report . Forward{

33 send ( SlaveTeam , USER.RC CMD)

34 }

35

36 MasterTeam . Report . ForwardStatus {

37 send (USER, SlaveTeam .COLOR)

38 send (USER, SlaveTeam .LOCATION)

39 } repeat (2 SEC)

40

41 MasterTeam . Action . AutonomousReturn{

42 move( ” 0 ,0 ” )

43 i f (LOCATION == ” 0 ,0 ” ){

44 throw CHANGE FINISH

45 }

46 } repeat (LOCATION != ” 0 ,0 ” )

47

48 MasterTeam . Action . AutonomousMove{

49 move( ” 5 ,5 ” )

50 i f (LOCATION == ” 5 ,5 ” )

51 throw CHANGE WAIT MODE

52 } repeat (LOCATION != ” 5 ,5 ” )

53

54 MasterTeam . Action . RemoteControl{

55 proce s s (USER.RC CMD)

56 } repeat ( )

57

58 MasterTeam . Action . Wait{

59 standby ( )

60 } repeat ( )

61
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62 #MODE D e f i n i t i o n

63 MasterTeam .RC MODE{

64 set ( Listen , ReceiveCmd )

65 set ( Report , Forward )

66 set ( Action , RemoteControl )

67 }

68 MasterTeam .AUTO MODE{

69 set ( Listen , ReceiveCmd )

70 set ( Report , SendDefault )

71 set ( Action , AutonomousMove )

72 }

73 MasterTeam .WAIT MODE{

74 set ( Listen , ReportStatus )

75 set ( Report , ForwardStatus )

76 set ( Action , Wait )

77 }

78 MasterTeam .RETURN MODE{

79 set ( Listen , ReceiveCmd )

80 set ( Report , SendDefault )

81 set ( Action , AutonomousReturn )

82 }

83 MasterTeam . FINISH{

84 set ( Listen , OFF)

85 set ( Report , OFF)

86 set ( Action , OFF)

87 }

88

89 #main

90 MasterTeam . main{

91 case (AUTO MODE) :

92 catch (CHANGE RC MODE) : mode = RC MODE
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93 catch (CHANGE WAIT MODE) : mode = WAIT MODE

94 catch (CHANGE RETURN MODE) : mode = RETURN MODE

95 case (RC MODE) :

96 catch (CHANGE MOVE MODE) : mode = AUTO MODE

97 catch (CHANGE WAIT MODE) : mode = WAIT MODE

98 catch (CHANGE RETURN MODE) : mode = RETURN MODE

99 case (WAIT MODE) :

100 catch (CHANGE RC MODE) : mode = RC MODE

101 catch (CHANGE RETURN MODE) : mode = RETURN MODE

102 case (RETURN MODE) :

103 catch (CHANGE MOVE MODE) : mode = AUTO MODE

104 catch (CHANGE RC MODE) : mode = RC MODE

105 catch (CHANGE WAIT MODE) : mode = WAIT MODE

106 catch (CHANGE FINISH ) : mode = FINISH

107 d e f a u l t : mode = AUTO MODE

108 }

109

110 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−− SlaveTeam −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

111 SlaveTeam . L i s t en . ReceiveCmd{

112 r e c e i v e ( MasterTeam , USER.RC CMD)

113 i f (USER.RC CMD == ”RC MODE” )

114 throw CHANGE RC MODE

115 else i f (USER.RC CMD == ”AUTO MODE” )

116 throw CHANGE MOVE MODE

117 } repeat ( )

118

119 SlaveTeam . L i s t en . CheckStatus {

120 r e c e i v e ( SlaveTeam , SlaveTeam .COLOR)

121 } repeat ( )

122

123 SlaveTeam . Report . ShareStatus {
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124 send ( MasterTeam , SlaveTeam .COLOR)

125 send ( MasterTeam , SlaveTeam .LOCATION)

126 i f (COLOR == ”RGB” )

127 throw CHANGE RETURN MODE

128 } repeat (COLOR != ”RGB” )

129

130 SlaveTeam . Action . AutonomousMove{

131 move( ” 5 ,5 ” )

132 i f (LOCATION == ” 5 ,5 ” )

133 throw CHANGE SEARCH MODE

134 } repeat (LOCATION != ” 5 ,5 ” )

135

136 SlaveTeam . Action . Search {

137 search ( co l o r ed pape r )

138 } repeat (COLOR != ”RGB” )

139

140 SlaveTeam . Action . RemoteControl{

141 proce s s (USER.RC CMD)

142 } repeat ( )

143

144 SlaveTeam . Action . AutonomousReturn{

145 move( ” 0 ,0 ” )

146 i f (LOCATION == ” 0 ,0 ” ){

147 throw CHANGE FINISH

148 }

149 } repeat (LOCATION != ” 0 ,0 ” )

150

151 SlaveTeam .AUTOMODE{

152 set ( Listen , ReceiveCmd )

153 set ( Action , AutonomousMove )

154 }
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155 SlaveTeam .SEARCH MODE{

156 set ( Listen , CheckStatus )

157 set ( Report , ShareStatus )

158 set ( Action , Search )

159 }

160 SlaveTeam .RC MODE{

161 set ( Listen , ReceiveCmd )

162 set ( Report , OFF)

163 set ( Action , RemoteControl )

164 }

165 SlaveTeam .RETURN MODE{

166 set ( Listen , ReceiveCmd )

167 set ( Report , OFF)

168 set ( Action , AutonomousReturn )

169 }

170 SlaveTeam . FINISH{

171 set ( Listen , OFF)

172 set ( Report , OFF)

173 set ( Action , OFF)

174 }

175

176 SlaveTeam . main{

177 case (AUTO MODE) :

178 catch (CHANGE SEARCH MODE) : mode = SEARCH MODE

179 catch (CHANGE RC MODE) : mode = RC MODE

180 case (RC MODE) :

181 catch (CHANGE MOVE MODE) : mode = AUTO MODE

182 case (SEARCH MODE) :

183 catch (CHANGE RETURN MODE) : mode = RETURN MODE

184 case (RETURN MODE) :

185 catch (CHANGE RC MODE) : mode = RC MODE
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186 catch (CHANGE FINISH ) : mode = FINISH

187 d e f a u l t : mode = AUTO MODE

188 }

In lines 1-5, we specify how two teams are composed; MasterTeam has a

single ”iRobotCreate” robot and SlaveTeam consists of a ”TIEvalbot” and a

”NXTLego”. Lines 8-109 describe the behavior of MasterTeam and lines 110-188

show the behavior of SlaveTeam. We’ll focus on the MasterTeam’s behavior.

In Figure B.1, each cell represents a verbal description of a composite service

that is described in the script language in lines 6-60. A service such as move or

standby used in the composite service is a basic service and is assumed to be

given in the database. The values such as distance, camera, and location are also

predefined values that the robot can use. The script editor helps the user to know

which values and services are available in each robot. Lines 63-87 present which

actions will be taken for each mode of operation, which corresponds to each row of

Figure B.1. In each mode, three plans are running concurrently with the specified

composite service. By default, the FINISH mode is defined to finish all plans,

which is written in lines 83-87.

The main loop of lines 90-108 depicts the mode transition based on the event

caught by catch phrase during the execution of the current mode. The behavior

of SlaveTeam is written similarly to that of MasterTeam.

B.2 Strategy Description

To fill the large abstraction gap between mission specification and model-

based task graph specification, the strategy description is needed. The following

shows a part of the strategy description file for MasterTeam.

1 <?xml version=” 1 .0 ” encoding=”UTF−8” standalone=” yes ”?>

2 <Strategy name=”MasterTeam” xmlns=” . . . ”>
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3 < !−− e l l i p s i s −−>

4 <S e r v i c e I n f o>

5 <Se rv i c e plan name=” Action ” name=”move”>

6 <TargetRobot name=” iRobotCreate ” nickName=”

i r o bo t ” ea=”1”/>

7 <Act ionIn fo>

8 <Action name=”CheckGoal” i n i t i a l=”Yes”

ac t i on Id=”0”>

9 <CheckSensor name=” Vicon ”>

10 <Parameter name=” currentLocat ion ”

type=” v i con In f o ”

d a t a C h a r a c t e r i s t i c=” channel ”

s i z e=”1” srcTask=” vicon ” dstTask

=” ControlTask ”/>

11 </CheckSensor>

12 <Parameter name=” goa lLocat ion ” type=”

v i con In f o ” d a t a C h a r a c t e r i s t i c=”

v a r i a b l e ” s i z e=”1”/>

13 <T r a n s i t i o n I n f o>

14 <Trans i t i on s r c I d=”0” dst Id=”1”>

15 <Condit ion cond=”

cur rentLocat ion==

goa lLocat ion ”/>

16 </ Trans i t i on>

17 <Trans i t i on s r c I d=”0” dst Id=”4”>

18 <Condit ion cond=”

cur rentLocat ion !=

goa lLocat ion ”/>

19 </ Trans i t i on>

20 </ T r a n s i t i o n I n f o>

21 </ Action>
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22 <Action name=” CheckObstacle ” ac t i on Id=”1”>

23 <CheckSensor name=” Ul t r a son i c ”>

24 <Parameter type=” i n t e g e r ” name=”

d i s t ance ” d a t a C h a r a c t e r i s t i c=”

channel ” s i z e=”1” srcTask=”

u l t r a s o n i c ” dstTask=” ControlTask

”/>

25 </CheckSensor>

26 <T r a n s i t i o n I n f o>

27 <Trans i t i on s r c I d=”1” dst Id=”2”>

28 <Condit ion cond=” d i s t ance&gt ;20

”/>

29 </ Trans i t i on>

30 <Trans i t i on s r c I d=”1” dst Id=”3”>

31 <Condit ion cond=” d i s t ance&l t ; 20

”/>

32 </ Trans i t i on>

33 </ T r a n s i t i o n I n f o>

34 </ Action>

35 <Action name=”MoveRandom” ac t i on Id=”2”>

36 <ExecuteActuator name=”Move”>

37 <Parameter type=” i n t e g e r ” name=”cmd

” value=”RandomNumber”

d a t a C h a r a c t e r i s t i c=” sysRequest ”

s i z e=”1” srcTask=” ControlTask ”

dstTask=” wheel ”/>

38 </ ExecuteActuator>

39 <T r a n s i t i o n I n f o>

40 <Trans i t i on s r c I d=”2” dst Id=”0” />

41 </ T r a n s i t i o n I n f o>

42 </ Action>
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43 <Action name=” AvoidObstacle ” ac t i on Id=”3”>

44 <ExecuteActuator name=”Move”>

45 <Parameter type=” i n t e g e r ” name=”cmd

” value=”Turn”

d a t a C h a r a c t e r i s t i c=” sysRequest ”

s i z e=”1” srcTask=” ControlTask ”

dstTask=” wheel ”/>

46 </ ExecuteActuator>

47 <T r a n s i t i o n I n f o>

48 <Trans i t i on s r c I d=”3” dst Id=”0” />

49 </ T r a n s i t i o n I n f o>

50 </ Action>

51 <Action name=” Fin i sh ” f i n a l=”Yes” ac t i on Id=

”4”>

52 <Parameter va lue=”1” type=” i n t e g e r ”

name=” r e s u l t ” d a t a C h a r a c t e r i s t i c=”

v a r i a b l e ”/>

53 <T r a n s i t i o n I n f o>

54 <Trans i t i on s r c I d=”5” dst Id=”0”/>

55 </ T r a n s i t i o n I n f o>

56 </ Action>

57 </ Act ionIn fo>

58 </ Se rv i c e> < !−− e l l i p s i s −−>

59 </ S e r v i c e I n f o>

60 <NonFunct ionalInfo>

61 <BatteryRequirement>

62 <Condit ion cond=” Battery&l t ; 30 ”>

63 <Sensor name=”Camera” per i odLeve l=”2”/>

64 <Sensor name=” Ul t r a s on i c ” pe r i odLeve l=”2”/>

65 <Actuator name=”Move” speedLeve l=”2”/>

66 </ Condit ion>
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67 </ BatteryRequirement>

68 </ NonFunct ionalInfo>

69 </ Strategy>

Lines 4-66 describe the move service defined in the Action plan. First, we

specify which robot the service description is applied as shown in line 5. The move

service is described by a textual specification of a finite state machine (FSM) that

consists of six fine-grain services, called actions. This FSM will be included in

the control task when a task graph is automatically synthesized. Each action is

given an identifier (id) along with its name. Each action can execute an algorithm,

execute an actuator, or receive an output value from a sensor or an algorithm.

For instance, on lines 7-10, the currentLocation value is taken from an algorithm

called Localization. And a transition is triggered by comparing it with the internal

variable called goalLocation.

Also, non-functional requirements can be specified in the strategy description

file. In this example, we add an adaptive resource management policy to save the

battery energy. In lines 70-76, if the remaining battery energy is lower than 30,

the period of Camera and Ultrasonic sensor is reduced to level 2, and the speed

of Move actuator is reduced to level 2.

B.3 Task Graph Specification

Based on the mission script and strategy description file, the task graphs

are automatically generated. The behavior of each robot is specified by a task

graph as shown in FigureB.2. From the team formation information specified by

the mission script, a task graph for each robot is created. For the communication

between robots, a library task is added for the management of shared information.

The sensor tasks used by a robot are instantiated by referring to the data to

be transmitted and the parameter defined in the strategy stage. In the case of
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algorithm and actuator tasks, they are added according to the service specified in

the mission script and strategy description file. For example, the mission script

says that MasterTeam transmits the values of distance, camera, and location to

the user. Thus, ultrasonic sensor task, camera task, and localization algorithm

task are synthesized in the task graph. Note that a task may be expanded as a

task sub-graph in case the sub-graph is registered in the database as a composite

service that the task performs.

(SlaveTeam)

ti

: Sensor Task         : Communication Task       : Computational Task

: Control Task        : Library Task : Actuator Task 

(MasterTeam)

irobot

Shared Information

(Operator)

user

(SlaveTeam)

nxt

Ultrasonic

sensor

Color

sensor

Filter Move
Controller

Send

Receive

Localization

RC
Ultrasonic

sensor

Camera

Filter Move
Controller

Send

Receive

Localization

RCAuto

Hide Return

Finish

Auto

Search Return

Finish

Figure B.2: Task graph specification of the example

The most challenging is the synthesis of the control task that is generated as

a hierarchical FSM based on the mission specification and strategy description.

Figure B.3 illustrates how the mode and plan information in the mission script

is translated into a state transition diagram in the top-level FSM. Fine-grained

services defined in the strategy description file are translated into a bottom-level

FSM. In this example, the move service is refined into six actions, which are

represented by six states in the FSM. In each state, values are received from the

sensor and algorithm task, and an algorithm or actuator task is executed.
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(MasterTeam)

irobot

Ultrasonic

sensor

Camera

Filter Move
Controller

Send

Receive

Localization

RCAuto

Hide Return

Finish

Listen plan FSM Report plan FSM

Action plan FSM

Check

Obstacle

Move

Random

Avoid

Obstacle

Update

Position

Finish

Check

Goal

Return mode

switch(current_state):

case CheckGoal:

if(currentLocation == goalLocation)

current_state = CheckObstacle;

….

case CheckObstacle: 

….

Figure B.3: Control task specification for the example

C Mission Specification for the experiment of
Section 3.1.3

1 {

2 MasterTeam : iRobotCreate i r o b o t

3 SlaveTeam : Turt lebot3 Burger burger [ 2 ] , Ev3 Robot ev3 [ 2 ]

4 }

5

6 MasterTeam . L i s t en . RemoteListen{

7 r e c e i v e (USER, USER.RC CMD)

8 i f (USER.RC CMD == SWITCH PERFORM MODE){

9 throw f i n d c o l o r p a p e r

10 }
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11 } repeat ( )

12

13 MasterTeam . Report . Del iverToSlave {

14 pub l i sh ( SlaveTeam , USER.RC CMD)

15 } repeat ( )

16

17 MasterTeam . Action .RCMove{

18 i f (USER.RC CMD == CMDFORWARD)

19 go forward ( )

20 else i f (USER.RC CMD == CMDBACKWARD)

21 go backward ( )

22 else i f (USER.RC CMD == CMD TURN LEFT)

23 t u r n l e f t ( )

24 else i f (USER.RC CMD == CMD TURN RIGHT)

25 t u r n r i g h t ( )

26 else i f (USER.RC CMD == CMD STOP)

27 stop ( )

28 } repeat ( )

29

30 MasterTeam . L i s t en . AutonomousListen{

31 r e c e i v e (USER, USER.RC CMD)

32 i f (USER.RC CMD == SWITCH RC MODE){

33 throw s w i t c h r c

34 }

35 } repeat ( )

36

37 MasterTeam . Action . Move{

38 move ( )

39 throw f i n d c o l o r p a p e r

40 }

41
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42 MasterTeam . L i s t en . ListenSlaveTeam {

43 r e c e i v e (USER, USER.RC CMD)

44 i f (USER.RC CMD == SWITCH FINISH){

45 pub l i sh ( SlaveTeam , USER.RC CMD)

46 throw f i n i s h

47 }

48 sub s c r i b e ( SlaveTeam , SlaveTeam .SEARCHEDCOLOR)

49 } repeat ( )

50

51 MasterTeam . Report . Del iverToUser {

52 send (USER, SlaveTeam .SEARCHEDCOLOR)

53 } repeat ( )

54

55 MasterTeam . Action . Standby{

56 stand by ( )

57 }

58

59 MasterTeam .RC MODE{

60 set ( Listen , RemoteListen )

61 set ( Report , Del iverToSlave )

62 set ( Action , RCMove)

63 }

64

65 MasterTeam .MOVEMODE{

66 set ( Listen , AutonomousListen )

67 set ( Report , Del iverToSlave )

68 set ( Action , Move)

69 }

70

71 MasterTeam .STANDBY MODE{

72 set ( Listen , ListenSlaveTeam )
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73 set ( Report , Del iverToUser )

74 set ( Action , Standby )

75 }

76

77 MasterTeam .FINISH MODE{

78 set ( Listen , OFF)

79 set ( Report , OFF)

80 set ( Action , OFF)

81 }

82

83 MasterTeam . main{

84 case (RC MODE) :

85 catch ( f i n d c o l o r p a p e r ) : mode = STANDBY MODE

86 case (MOVEMODE) :

87 catch ( s w i t c h r c ) : mode = RC MODE

88 catch ( f i n d c o l o r p a p e r ) : mode = STANDBY MODE

89 case (STANDBY MODE) :

90 catch ( f i n i s h ) : mode = FINISH MODE

91 d e f a u l t : mode = RC MODE

92 }

93

94 SlaveTeam .RC MODE{

95 set ( Listen , ListenMaster )

96 set ( Action , FollowMaster )

97 }

98

99 SlaveTeam .MOVEMODE{

100 set ( Listen , ListenMasterinMove )

101 set ( Action , Move)

102 }

103
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104 SlaveTeam . L i s t en . ListenMaster {

105 sub s c r i b e ( MasterTeam , USER.RC CMD)

106 i f (USER.RC CMD == SWITCH PERFORM MODE){

107 throw f i n d c o l o r p a p e r

108 }

109 } repeat ( )

110

111 SlaveTeam . L i s t en . ListenMasterinMove {

112 sub s c r i b e ( MasterTeam , USER.RC CMD)

113 i f (USER.RC CMD == SWITCH RC MODE){

114 throw s w t i c h r c

115 }

116 } repeat ( )

117

118 SlaveTeam . Action . FollowMaster {

119 i f (USER.RC CMD == CMDFORWARD)

120 go forward ( )

121 else i f (USER.RC CMD == CMDBACKWARD)

122 go backward ( )

123 else i f (USER.RC CMD == CMD TURN LEFT)

124 t u r n l e f t ( )

125 else i f (USER.RC CMD == CMD TURN RIGHT)

126 t u r n r i g h t ( )

127 else i f (USER.RC CMD == CMD STOP)

128 stop ( )

129 } repeat ( )

130

131 SlaveTeam . Action . Move{

132 move ( )

133 throw f i n d c o l o r p a p e r

134 }
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135

136 SlaveTeam .SEARCH MODE{

137 set ( Listen , ListenAlarm )

138 set ( Report , ReportMasterTeam )

139 set ( Action , Search )

140 set ( Resolve , Decide )

141 }

142

143 SlaveTeam . L i s t en . ListenAlarm {

144 sub s c r i b e ( MasterTeam , USER.RC CMD)

145 i f (USER.RC CMD == SWITCH FINISH){

146 throw f i n i s h

147 }

148 sub s c r i b e ( SlaveTeam , SlaveTeam .SEARCHEDCOLOR)

149 sub s c r i b e ( SlaveTeam , SlaveTeam . Message )

150 i f ( SlaveTeam . Message == CMD HIDE){

151 throw change hide

152 } else i f ( SlaveTeam . Message == CMD FINISH) {

153 throw f i n i s h

154 }

155 } repeat ( )

156

157 SlaveTeam . Report . ReportMasterTeam{

158 [ [

159 l e a de r ( i n s t ance o f Turt lebot3 Burger ){

160 l i g h t o n ( )

161 pub l i sh ( MasterTeam , SlaveTeam .SEARCHEDCOLOR)

162 }

163 ] ]

164 } repeat ( )

165
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166 SlaveTeam . Action . Search {

167 [ [

168 group ( in s t ance o f Turt lebot3 Burger ){

169 loop (2 SEC) {

170 i f ( SlaveTeam .LIGHTNESS < 200){

171 pub l i sh ( SlaveTeam , SlaveTeam . Message = SUGGEST HIDE)

172 }

173 }

174 }

175 othe r s {

176 loop ( SlaveTeam .SEARCHEDCOLOR == FULL) {

177 search ( )

178 pub l i sh ( SlaveTeam , SlaveTeam .SEARCHEDCOLOR)

179 }

180 pub l i sh ( SlaveTeam , SlaveTeam . Message = SUGGEST FINISH)

181 }

182 ] ]

183 }

184

185 SlaveTeam . Resolve . Decide {

186 [ [

187 l e a de r ( i n s t ance o f Turt lebot3 Burger ){

188 i f ( SlaveTeam . Message == SUGGEST HIDE)

189 pub l i sh ( SlaveTeam , SlaveTeam . Message = CMD HIDE)

190 else i f ( SlaveTeam . Message == SUGGEST FINISH)

191 pub l i sh ( SlaveTeam , SlaveTeam . Message = CMD FINISH)

192 }

193 ] ]

194 }

195

196 SlaveTeam .HIDE MODE{
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197 set ( Listen , HideListen )

198 set ( Action , Hide )

199 }

200

201 SlaveTeam . L i s t en . HideListen {

202 sub s c r i b e ( SlaveTeam , SlaveTeam . Message )

203 i f ( SlaveTeam . Message == SUGGEST SEARCH)

204 throw f i n d c o l o r p a p e r

205 }

206

207 SlaveTeam . Action . Hide{

208 [ [

209 group ( in s t ance o f Turt lebot3 Burger ){

210 i f ( SlaveTeam .LIGHTNESS > 500){

211 pub l i sh ( SlaveTeam , SlaveTeam . Message = SUGGEST SEARCH)

212 }

213 }

214 othe r s {

215 s c a t t e r ( )

216 }

217 ] ]

218 } repeat ( )

219

220 SlaveTeam .FINISH MODE{

221 set ( Listen , OFF)

222 set ( Report , OFF)

223 set ( Action , OFF)

224 set ( Resolve , OFF)

225 }

226

227 SlaveTeam . main{
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228 case (RC MODE) :

229 catch ( f i n d c o l o r p a p e r ) : mode = SEARCH MODE

230 case (MOVEMODE) :

231 catch ( s w t i c h r c ) : mode = RC MODE

232 catch ( f i n d c o l o r p a p e r ) : mode = SEARCH MODE

233 case (SEARCH MODE) :

234 catch ( f i n i s h ) : mode = FINISH MODE

235 catch ( change hide ) : mode = HIDE MODE

236 case (HIDE MODE) :

237 catch ( f i n d c o l o r p a p e r ) : mode = SEARCH MODE

238 d e f a u l t : mode = RC MODE

239 }

In lines 1-4, we specify how two teams are composed; MasterTeam has a

single ”iRobotCreate” robot and SlaveTeam consists of two ”Turtlebot3 Burger”

robots and two ”Ev3 Robot” robots. Lines 6-92 describe the behavior of

MasterTeam, and lines 94-239 show the behavior of SlaveTeam. We will focus

on the SlaveTeam’s behavior.

There are four modes in SlaveTeam. In SEARCH MODE, there are four

plans: ”Listen”, ”Report”, ”Action”, ”Resolve” (line 136-194). However, all robots

in SlaveTeam do not act the same. Only a leader robot which candidate is ”Turtle-

bot3 Burger” can report MasterTeam what they found colored papers (line 157-

164).
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요 약

가까운 미래에는 다양한 로봇이 다양한 분야에서 하나의 임무를 협력하여 수행하

는 모습은 흔히 볼 수 있게 될 것이다. 그러나 실제로 이러한 모습이 실현되기에는

두 가지의 어려움이 있다. 먼저 로봇을 운용하기 위한 소프트웨어를 명세하는 기존

연구들은 대부분 개발자가 로봇의 하드웨어와 소프트웨어에 대한 지식을 알고 있는

것을 가정하고 있다. 그래서 로봇이나 컴퓨터에 대한 지식이 없는 사용자들이 여러

대의로봇이협력하는시나리오를작성하기는쉽지않다.또한,로봇의소프트웨어를

개발할 때 로봇의 하드웨어의 특성과 관련이 깊어서, 다양한 로봇의 소프트웨어를

개발하는 것도 간단하지 않다. 본 논문에서는 상위 수준의 미션 명세와 로봇의 행위

프로그래밍으로나누어새로운소프트웨어개발프레임워크를제안한다.또한,본프

레임워크는 크기가 작은 로봇부터 계산 능력이 충분한 로봇들이 서로 군집을 이루어

미션을 수행할 수 있도록 지원한다.

본 연구에서는 로봇의 하드웨어나 소프트웨어에 대한 지식이 부족한 사용자도

로봇의 동작을 상위 수준에서 명세할 수 있는 스크립트 언어를 제안한다. 제안하는

언어는 기존의 스크립트 언어에서는 지원하지 않는 네 가지의 기능인 팀의 구성, 각

팀의 서비스 기반 프로그래밍, 동적으로 모드 변경, 다중 작업(멀티 태스킹)을 지원

한다. 우선 로봇은 팀으로 그룹 지을 수 있고, 로봇이 수행할 수 있는 기능을 서비스

단위로 추상화하여 새로운 복합 서비스를 명세할 수 있다. 또한 로봇의 멀티 태스킹

을 위해 ’플랜’ 이라는 개념을 도입하였고, 복합 서비스 내에서 이벤트를 발생시켜서

동적으로 모드가 변환할 수 있도록 하였다. 나아가 여러 로봇의 협력이 더욱 견고하

고, 유연하고, 확장성을 높이기 위해, 군집 로봇을 운용할 때 로봇이 임무를 수행하는

도중에 문제가 생길 수 있으며, 상황에 따라 로봇을 동적으로 다른 행위를 수행할

수 있다고 가정한다. 이를 위해 동적으로도 팀을 구성할 수 있고, 여러 대의 로봇이

하나의 서비스를 수행하는 그룹 서비스를 지원하고, 일대 다 통신과 같은 새로운

기능을 스크립트 언어에 반영하였다. 따라서 확장된 상위 수준의 스크립트 언어는

비전문가도 다양한 유형의 협력 임무를 쉽게 명세할 수 있다.

로봇의 행위를 프로그래밍하기 위해 다양한 소프트웨어 개발 프레임워크가 연

158



구되고 있다. 특히 재사용성과 확장성을 중점으로 둔 연구들이 최근 많이 사용되고

있지만,대부분의이들연구는리눅스운영체제와같이많은하드웨어자원을필요로

하는 운영체제를 가정하고 있다. 또한, 프로그램의 분석 및 성능 예측 등을 고려하

지 않기 때문에, 자원 제약이 심한 크기가 작은 로봇의 소프트웨어를 개발하기에는

어렵다. 그래서 본 연구에서는 임베디드 소프트웨어를 설계할 때 쓰이는 정형적인

모델을 이용한다. 이 모델은 정적 분석과 성능 예측이 가능하지만, 로봇의 행위를

표현하기에는 제약이 있다. 그래서 본 논문에서 외부의 이벤트에 의해 수행 중간에

행위를변경하는로봇을위해유한상태머신모델과데이터플로우모델이결합하여

동적 행위를 명세할 수 있는 확장된 모델을 적용한다. 그리고 딥러닝과 같이 계산량

을 많이 필요로 하는 응용을 분석하기 위해, 루프 구조를 명시적으로 표현할 수 있는

모델을 제안한다. 마지막으로 여러 로봇의 협업 운용을 위해 로봇 사이에 공유되는

정보를 나타내기 위해 두 가지 모델을 사용한다. 먼저 중앙에서 공유 정보를 관리하

기 위해 라이브러리 태스크라는 특별한 태스크를 통해 공유 정보를 나타낸다. 또한,

로봇이 자신의 정보를 가까운 로봇들과 공유하기 위해 멀티캐스팅을 위한 새로운

포트를 추가한다. 이렇게 확장된 정형적인 모델은 실제 로봇 코드로 자동 생성되어,

소프트웨어 설계 생산성 및 개발 효율성에 이점을 가진다.

비전문가가 명세한 스크립트 언어는 정형적인 태스크 모델로 변환하기 위해

중간 단계인 전략 단계를 추가하였다. 제안하는 방법론의 타당성을 검증하기 위해,

시뮬레이션과 여러 대의 실제 로봇을 이용한 협업하는 시나리오에 대해 실험을 진행

하였다.

주요어 : 상위 수준 명세, 데이터플로우, SDF 그래프, 반복 행위 명세, 공유 정보

관리, 코드 자동 생성, 소프트웨어 개발 프레임워크, 협업 로봇

학번 : 2013-20912
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