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ABSTRACT

Virtualization has grown increasingly popular, thanks to its benefits of isolation,
management, and utilization, supported by hardware advances. It is also re-
ceiving attention for its potential to support security, through hypervisor-based
services and advanced protections supplied to guests. Today, virtualization is
even making inroads in the embedded space, and embedded systems, with their
security needs, have already started to benefit from virtualization’s security po-
tential. In this thesis, we investigate the possibilities for thin hypervisor-based
security on embedded platforms. In addition to significant background study,
we present implementation of a low-footprint, thin hypervisor capable of provd-
ing security protections to a single FreeRTOS guest kernel on ARM. Backed by
performance test results, our hypervisor provides security to a formerly unse-
cured kernel with minimal performance overhead, and represents a first step in
a greater research effort into the security advantages and possibilities of embed-
ded thin hypervisors. Our results show that thin hypervisors are both possible
and beneficial even on limited embedded systems, and sets the stage for more
advanced investigations, implementations, and security applications in the fu-
ture.
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1. INTRODUCTION

1.1 Security and Virtualization on Embedded Systems

Virtualization, the use of hypervisors or virtual machine monitors to support
one or more virtual machines on a single real machine, is quickly becoming more
and more popular today due to its benefits of increased hardware utilization and
system management flexibility, and because of increasing hardware and software
support for virtualization in commodity platforms. With the hypervisor pro-
viding an abstraction layer separating virtual machines from the real hardware,
and isolating virtual machines from each other, many useful architectural pos-
sibilities arise.

In addition to hardware utilization and system management, virtualization
has been shown to be a strong enabler for security – both as a result of the
isolation enforced by the hypervisor between virtual machines, and due to the
hypervisor’s high-privilege suitability as a strong base for security services pro-
vided for the virtual machines.

Additionally, multicore is quickly gaining prevalence, with all manner of sys-
tems shifting to multicore hardware. Virtualization presents both opportunities
and challenges with multicore hardware – while the layer of abstraction provided
by the hypervisor affords a unique opportunity to manage multicore complexity
and heterogeneity beneath the virtual machines, supporting multicore in the
hypervisor in a robust and secure way is not a trivial task.

These issues become especially interesting and relevant in embedded scenar-
ios. Both virtualization and multicore are enjoying quickly increasing promi-
nence in the embedded world. Embedded system software is growing in com-
plexity, and embedded systems are being used in more and more mission-crtical,
security-focused situations. Virtualization can answer many security challenges
in the embedded world (via hypervisor supported isolation and security ser-
vices), as well as practical challenges such as abstracting varied or quickly
changing hardware and managing power usage, in addition to inspiring new
applications such as flexible system composition where virtual machines can
be combined in novel ways on a single platform. Since virtualization enables
security services to be implemented outside a virtual machine, the implementa-
tion can be decoupled from the considerable heterogeneity in embedded systems
software (including proprietary system stacks). And, embedded virtualization
also presents the opportunity to abstract hardware heterogeneity and multicore
complexity. Virtualization thus offers profound opportunities and challenges for
embedded systems.
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1.2 Thesis Organization

This thesis is organized as follows. The Introduction chapter defines the general
problem, motivations, goals, and methods of the research. Due to the thorough
and detailed background required to set the stage for later research phases,
background material is withheld from the introduction and instead included in
Chapters 2 and 3. Chapter 2, Virtualization Technologies, gives an extensive
overview of virtualization systems in use today (including software and hardware
aspects), as well as an examination of virtualization as an enabler for security
architectures and services and an overview of numerous security services pre-
sented in current research. Chapter 3, Multicore and Embedded Systems, gives
an overview of embedded systems, multicore hardware, and their relation to
virtualization and virtualization-based security.

Chapter 4, Thin Hypervisors on ARM Architecture, presents the ARM ar-
chitecture as a platform for thin hypervisors, describing the basics of ARMv5
architecture and suggesting approaches and challenges for implementing a thin
hypervisor upon it. This chapter also includes suggestions on how to imple-
ment selected security services from section 2.7, and furthermore incorporates
commentary on how ARM hardware support for virtualization (“TrustZone”)
could help or hinder thin hypervisors. Chapter 5 describes our implementation
of a thin hypervisor, including an analysis of its security, as well as design rec-
ommendations for future implementation. Chapter 6 describes test procedures
conducted on our implementation, and results. Chapter 7 presents conclusions,
including recommendations for future work.

1.3 Problem Definition

1.3.1 Impetus

Motivated by concerns briefly outlined in section 1.1, we are interested in ex-
ploring the possibilities of thin hypervisor-based architectures as a way of pro-
viding security services to and possibly managing multicore hardware for an
embedded system. Such a thin hypervisor is intended to be an extremely small
footprint, dedicated functionality hypervisor, inexpensive to run and typically
only supporting one virtual machine for simplicity, but still capable of provid-
ing important security services. Due to their small size and light overhead,
such thin hypervisors should be extremely appropriate for constrained embed-
ded platforms. They can provide an avenue for implementing relevant security
functionality (including memory protection, isolation of security applications,
and system monitoring services), and may provide an avenue for managing and
leveraging multicore hardware.

1.3.2 Originality

While there is substantial work being done in the area of virtualization, and
even a good amount in the area of embedded virtualization, the body of work
thins out when it comes to multicore virtualization and in the area of ultra-thin
hypervisors. Furthermore, within embedded virtualization, there has been little
work done on support for security services beyond virtual machine isolation.
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And, virtually no work has been done in the area of ultra-thin hypervisors for
embedded systems.

1.3.3 Feasibility

By focusing on research into thin hypervisors with minimal complexity, we en-
sure that implementation is still feasible for the time and resource constraints
of a master’s thesis project. Via freely available embedded hardware emulators,
it is possible to implement and test implemetations efficiently. Furthermore,
even if only limited implementation is possible, it is still quite feasible to assess
the current state of the art, and thereupon suggest and motivate designs and
recommendations for future research.

1.4 Purpose and Goals

The principal purpose of this research is to facilitate greater security for em-
bedded systems through use of thin hypervisor-based security protections. A
secondary purpose is to set the stage for facilitating secure, robust support for
multicore and heterogeneous hardware in embedded virtualization, in service of
system robustness and performance.

The individual goals we intend to accomplish in this research to support
these overall purposes include:

1. A thorough investigation into current virtualization technologies, security
architectures, and multicore and embedded systems, and how virtualiza-
tion can apply to multicore and embedded scenarios.

2. Implementation of a basic thin hypervisor running on a simulated em-
bedded hardware platform, capable of providing security to a guest OS.
The simulated platform will be single core and as simple as possible to
facilitate development.

3. Offering of considerations based on the research for how implementation
could be extended to support additional security services and heteroge-
neous/multicore embedded hardware.

4. Conducting of performance tests on the simulated platform.

1.5 Method

Logical approach

The logical approach in our research will comprise a blend of induction and
deduction. Background study of existing research will lead to theoretical ap-
proaches and motivation for new solutions. Both background study and subse-
quently formulated design approaches will guide implementation efforts. Imple-
mentation and background research experience will feed back into suggestions
for improved designs, new solutions and future work. Empirical test results will
assess the effectiveness of our implementation.
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Data collection approach

Data collection will begin with extensive study and analysis of exsiting work
and technology. It will continue with empirical testing of our implementated
solutions. Note that specific test procedures will be described in Chapter 6.



2. VIRTUALIZATION TECHNOLOGIES

2.1 What is virtualization?

An excellent overview of virtual machines is found here [95], and in a book by
the same authors[96]. Virtualization is a computer system abstraction, in which
a layer of virtualization logic manages and provides “virtualized” resources to
a client layer running above it. The client accesses resources using standard
interfaces, but the interfaces do not communicate with the resources directly;
instead, the virtualization layer manages the real resources and possibly multi-
plexes them among more than one client. See figure 2.1.

Fig. 2.1: Virtualization in a nutshell

The virtualization layer resides at a higher privilege level than the clients,
and can interpose between the clients and the hardware. This means that it can
intercept important instructions and events and handle them specially before
they are executed or handled by the hardware. For example, if a client attempts
to execute an instruction on a virtual device, the virtualization layer may have
to intercept that instruction and implement it in a different way on the real
resources in its control. This interposition behavior is illustrated in figure 2.2.

Each client is presented with the illusion of having sole access to its resources,
thanks to the management performed by the virtualization layer. The virtual-
ization layer is responsible for maintaining this illusion and ensuring correctness
in the resource multiplexing. Virtualization therefore promotes efficient resource
utilization via sharing among clients, and furthermore maintains isolation be-
tween clients, who need not know of each other’s existence. Virtualization also
serves to abstract the real resources to the client, which decouples the client
from the real resources, facilitating greater architectural flexibility and mobility
in system design.
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Fig. 2.2: Interposition

For these reasons, virtualization technology has become more prominent,
and its viable uses have expanded. Today virtualization is used in enterprise
systems, service providers, home desktops, mobile devices, and production sys-
tems, among other venues.

Oftentimes, the client in a virtualization system is known as a guest.

2.2 Virtualization Basics

2.2.1 Interfaces

The article and book cited above ([95, 96]) discuss, in part, how virtualization
can be understood in terms of the interfaces present at different levels of a
typical computer system. Interfaces offer different levels of abstraction which
clients use to access resources. Virtualization technology exposes an expected
interface, but behind the scenes is virtualizing resources accessed by the interface
– for example, in the case of a disk input/output interface, the “disk” that
the interface provides access to may actually be a file on a real disk when
implemented by a virtualization layer. A discussion of important interfaces in
a typical computer system follow, as seen in [95].

ISA

The Instruction Set Architecture (ISA) is the lowest level instruction interface
that communicates directly with hardware. Software may be interpreted by
intermediaries, for example a Java Virtual Machine or .NET runtime, or a script
interpreter for scripting languages like Perl or Python, or it may be compiled
from a high-level programming language like C, and the software may utilize
system calls that execute code found in the operating system kernel, but in the
end all software is executed through the ISA. In a typical system, some of the ISA
can be used directly by applications, but another part of the ISA (usually that
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dealing with critical system resources) is only available to the higher-privileged
operating system. If unprivileged software attempts to use a restricted portion
of the ISA, the instruction will “trap” to the privileged operating system.

Device drivers

Device drivers are a software interface provided by device vendors to enable the
operating system to control devices (hard drives, graphics cards, etc.). Device
drivers often reside in the operating system kernel and run at high privilege,
and are hence part of the trusted computing base in traditional systems – but
as they are not always written with ideal security or robustness, they constitute
a dominant source of operating system errors [36].

ABI

The Application Binary Interface (ABI) is the abstracted interface to system
resources that the operating system exposes to clients (applications). The ABI
typically consists of system calls. Through system calls, applications can obtain
access to system resources mediated by the operating system. The operating
system ensures the access is permitted and grants it in a safe manner. The ABI
can remain consistent across different hardware platforms since the operating
system handles the particularities of the underlying hardware, thus exposing a
common interface regardless of platform differences.

API

An Application Programming Interface (API) provides a higher level of ab-
straction than the ABI. Functionality is provided to applications in the form of
external code “libraries” that are accessed using a function call interface. This
abstraction can facilitate a common interface for applications not only across
different hardware platforms (as with the ABI), but also across different oper-
ating systems, since the API can be reimplemented as necessary for each ABI.
Furthermore, APIs can be built on top of other APIs, making it at least possible
that only the lower-level APIs will have to be reimplemented to be used on a
new operating system. (In reality, however, depending on the language used
to implement the library, it doesn’t always work out so ideally.) As previously
mentioned, however, all software is executed through the ISA in the end – mean-
ing that an API or application may have to be recompiled, even if it doesn’t
have to be reimplemented, as it moves to a new platform.

Interfaces, abstraction, and virtualization

Each of these interface levels represents an opportunity for virtualization, since
clients of an interface depend only on the structure and behavior of the interface
(also known as its contract), and not its implementation. Here we see the idea
of abstraction. Abstraction concerns providing a convenient interface to clients,
and can be illustrated as follows – an application asking an operating system
for a TCP/IP network connection most likely does not care if the connection
is formed over a wireless link, a cellular radio, or an ethernet cable, or if TCP
semantics are achieved using other protocols, and it does not care about the
network card model or the exact hardware instructions needed to set up and
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tear down the connection. The operating system deals with all these issues,
and presents the application with a handle to a convenient TCP/IP connection
that adheres to the high-level interface contract, but may be implemented under
the surface in numerous ways. Abstraction enables clients to use resources in a
safe and easy manner, saving time and effort for common tasks. Virtualization,
however, usually means more than just abstraction; it implies more about the
nature of what lies behind the abstraction. A virtualization layer not only
preserves abstraction for its clients, but may also use intermediate structures
and abstractions between the real resources and the virtual resources it presents
to clients[95] – such as using files on a real disk to simulate virtual disks, or using
various resources and techniques above the physical memory to simulate private
address spaces. And it may multiplex resources, such as the central processing
unit (CPU), among multiple clients, presenting each client with a picture of
the resource corresponding to the client’s own context, creating in effect more
instances of the resource then exist in actuality.

2.2.2 Types of virtualization

There are two most prominent basic types of virtualization – process virtualiza-
tion and system virtualization[95]. Also noteworthy topics are binary transla-
tion, paravirtualization, and previrtualization, which are approaches to system
and/or process virtualization, as well as containers, a more lightweight relative
of system virtualization. These concepts illustrate basic types of virtualization
currently in use.

Process virtualization

Process-level virtualization[96, ch. 3] is a fundamental concept in virtually ev-
ery modern mainstream computer system. In process virtualization, an oper-
ating system virtualizes the memory address space, CPU registers, and other
system resources for each running process. Each process interacts with the op-
erating system using a virtual ABI or API, unaware of the activities of other
processes[95].

Processes, OSs, and memory hierarchy are discussed at length in [93]. The
operating system manages process virtualization and maintains the context for
each process. For instance, in a context switch, the operating system must swap
in the register values for the newly scheduled process, so that the process can
begin executing where it left off. The operating system typically has a scheduling
algorithm to ensure that every process gets a fair share of CPU time, thereby
maintaining the illusion of sole access to the CPU. Through virtual memory,
each process has the illusion of its own independent address space, in which its
own data and code as well as system and application libraries are accessible.
A process typically can’t access the address space of another process. The
operating system achieves virtualization of memory through the use of page
tables, which translate the virtual memory page addresses in processes’ virtual
address space to actual physical memory page addresses. To map a virtual
address to a physical address, the operating system conducts a “page table
walk” and finds the physical page corresponding to the virtual page in question.
In this way, different processes can even access the same system libraries in
the same physical locations, but in possibly different virtual pages in their own
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address spaces. A process simply sees a long array of bytes, whereas underneath,
some or all of those bytes may be loaded into different physical memory pages
or stored in the backing store (usually on a hard drive). Furthermore, a modern
processor typically has multiple cache levels (termed the L1 cache, L2 cache,
and so on) where recently or frequently used memory pages can be stored to
enhance retrieval performance – the higher the level, the smaller the cache size
but the greater the speed. (A computer system memory hierarchy can often
be visualized as a pyramid, with slower, lower cost, higher capacity storage
media at the bottom, and faster, higher cost, lesser capacity media at the top.)
And, a CPU typically also uses other specialized caches and chips, such as a
translation lookaside buffer (TLB) that caches translations from virtual page
numbers to physical page numbers (that is, the results of page table walks).
Virtual memory, depicted in figure 2.3, is thus the outward-facing facade of a
complex internal system of technologies.

Fig. 2.3: Virtual memory for processes

In short, processes interact obliviously with virtual memory and other re-
sources through standard ABI and APIs, while the operating system manages
the virtualization and multiplexing of resources under the hood.

System virtualization

In contrast to process virtualization, in system virtualization[96, ch. 8] an entire
hardware system is virtualized, enabling multiple virtual systems to run isolated
alongside each other [95]. A hypervisor or virtual machine monitor (VMM) vir-
tualizes all the resources of a real machine, including CPU, devices, memory, and
processes, creating a virtual environment known as a virtual machine (VM).
Software running in the virtual machine has the illusion of running in a real ma-
chine, and has access to all the resources of a real machine through a virtualized
ISA. The hypervisor manages the real resources, and provides them safely to the
virtual machines. The hypervisor may support one or more virtual machines,
and thus is responsible for making sure all real machine resources are properly
managed and shared, and for maintaining the illusion of the virtual resources
presented to each virtual machine (so that each virtual machine “thinks” it has
its own real machine). This type of virtualization is depicted in figure 2.4.

Note here that the VMM may divide the system resources in different ways.
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Fig. 2.4: System virtualization

For instance, if there are multiple CPU cores, it may allocate specific cores
to specific VMs in a fixed manner, or it may adopt a dynamic scheme where
cores are assigned and unassigned to VMs flexibly, as needed. (The latter is
similar to how an operating system allocates the CPU to its processes via its
scheduling algorithm.) The same goes for memory usage – portions of memory
may be statically allocated to VMs, or memory may be kept in a “pool” that is
dynamically allocated to and deallocated from VMs. Static allocation of cores
and memory is simpler, and results in stronger isolation, but dynamic allocation
may result in better utilization and performance[95].

Virtualization of this standard type has been around for decades, and is
increasing quickly in popularity today, thanks to the flexibility and cost-saving
benefits it confers on organizations[105], as well as due to commodity hardware
support discussed in section 2.5. Note as well that it is expanding from its
traditional ground (the data center) and into newer areas such as security and
mobile/embedded applications[64].

ISA translation

If the guest and virtualization host utilize the same ISA, then no ISA translation
is necessary. Clearly, running the host and guest with the same ISA and thus not
requiring translation is simpler, and better for performance. Scenarios do arise,
however, in which the guest uses a different ISA than the host. In these cases,
the host must translate the guest’s ISA. Both process and system virtualization
layers can translate the ISA; a VMM supporting ISA or binary translation[96,
ch. 2] is sometimes known as a “Whole System” VMM[95].

ISA translation can enable operating systems compiled for one type of hard-
ware to run on a different type of hardware. Therefore, it enables a software
stack for one platform to be completely transitioned to a new type of hardware.
This may be quite useful. For example, if a company requires a large legacy
application but lacks the resources to port it to new hardware, they can use a
whole system VMM. Another example of the benefits of ISA translation might
be if an ISA has evolved in a new or branching CPU line, but older software
should still be supported – systems such as the IA32 Execution Layer, or IA32-
EL[22], which supports execution of Intel IA-32 compatible software on Itanium
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processors, can be used. Alternatively, if a company develops for multiple hard-
ware platforms, whole-system VMMs can facilitate multiple-ISA development
environments consolidated on a single workstation.

A virtualization system may translate or optimize the guest ISA in different
ways[95]. Through interpretation, an emulator runs a binary compiled for one
ISA by reading the instructions one by one and translating them to a different
ISA compatible with the underlying system. Through dynamic binary transla-
tion, blocks of instructions are translated at once and cached for later, resulting
in higher performance than interpretation. Even if the guest and host run the
same ISA, the virtualization layer may also seek to dynamically optimize the
binary code, as in the case of the HP Dyanmo system[21].

Binary translation may also be needed in systems where the hardware is not
virtualization-friendly; in these cases, the VMM can translate unsafe instruc-
tions from a VM into safe instructions.

Paravirtualization

In relation to ISA translation, paravirtualization represents a different, possi-
bly complementary approach to virtualization. In paravirtualization, the actual
guest code is modified to use a different interface that is either safer or easier to
virtualize, improves performance, or both. The interface used by the modified
guest will either access the hardware directly or use virtual resources under the
control of the VMM, depending on the situation, facilitating performance and
reliability[105]. Sometimes portions of the interface that call into a hypervisor
are known as hypercalls. The Denali system first coined the term paravirtualiza-
tion, utilizing the strategy in support of a lightweight, multi-VM environment
suited for networked application servers[118]. Other systems, such as Xen[23],
also use paravirtualization.

Paravirtualization comes, of course, at the cost of modifying the guest soft-
ware, which may be impossible or difficult to achieve and maintain. But in cases
of well-maintained, open software (such as Linux), paravirtualized distributions
may be conveniently available.

Like binary translation, paravirtualization can also serve in situations where
underlying hardware is not supportive of virtualization. The paravirtualization
of the guest gives the VMM control over all sensitive operations that must be
virtualized and managed.

Pre-virtualization

Pre-virtualization, or transparent paravirtualization, as it is sometimes called,
attempts to bring the benefits of both binary translation (which offers flexibil-
ity) and paravirtualization (which brings performance)[68]. Pre-virtualization is
achieved via an intermediary between the guest code and the VMM – this inter-
mediary can come in the form of either a standard, neutral interface agreed on
by VMM and guest OS developers, or an automated offline translation process
such as using a special compiler. Both are offered by the L4Ka implementation
of the L4 microkernel – L4Ka supports the generic Virtual Machine Interface
proposed by VMWare [109], and also provides their Afterburner tool that com-
piles unmodified guest OS code with special notations that enable it to run on
a special, guest-neutral VMM layer[68].
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Pre-virtualization aims to decouple the authoring of guest OS code from the
usage of a VMM platform, and thereby retain the security and performance
enhancements of paravirtualization without the ususal development overhead
– a neutral interface or offline compilation process facilitate this decoupling.
Pre-virtualization is a newer technique that bears watching.

Containers

Containers are an approach to virtualization that runs above a standard operat-
ing system but provides a complete, lightweight, isolated virtual environment for
collections of processes [105]. An example is the OpenVZ project for Linux[80],
or the system proposed in [97].

Applications running in the containers must run natively on the underlying
OS – containers do not enable heterogeneous OS environments. But in such
situations, containers can pose a less-resource intensive path to system isolation
than traditional virtualization.

One must, however, observe that a container system is not a minimal trusted
hypervisor, but instead running as a part of what may be a monolithic OS;
hence, any security ramifications in the container system architecture and the
isolation mechanisms must be considered.

2.2.3 Non-standard systems

The above discussion on the basics of virtualization has concerned itself with
typical system types, where layers of abstraction are used to expose higher
and higher level interfaces to clients, promoting portability and ease-of-use, and
creating a hierarchy of responsibility based on interface contracts. This common
sort of architecture lends itself to virtualization. But it is worth mentioning
that there are other types of computer systems in existence that may be not so
amenable to virtualization. For instance, exokernels[43] take a totally different
approach – instead of trying to abstract and “baby-proof” a system with higher
and higher level interfaces, exokernels provide unfettered access to resources and
allow applications to work out the details of resource saftey and management
for themselves. This yields much more control and power to the application
developer, but is more difficult and dangerous to deal with – similar to the
difference between programming in C and Java.

2.3 Hypervisors

The hypervisor or VMM is the layer of software that performs system virtual-
ization, facilitating the use of the virtual machine as a system abstraction.

2.3.1 Traditional hypervisors

Traditional hypervisors, such as Xen[23] and VMWare ESX[110], run on the
bare metal and support multiple virtual machines. This is the classic type of
hypervisor, dating back to the 1970s[48], when they commonly ran on main-
frames. A traditional hypervisor must provide device drivers and any other
components or services necessary to support a complete virtual system and ISA
for its virtual machines.
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To virtualize a complete ISA and system environment, traditional hypervi-
sors may use paravirtualization, as Xen does, or binary translation, as VMWare
ESX does, or a combination of both, or neither, depending on such aspects as
system requirements and available hardware support.

The Xen hypervisor originally required paravirtualization, but can now sup-
port full virtualization if the system offers modern virtualization hardware sup-
port (see section 2.5). Additionally, Xen deals with device drivers in an inter-
esting way. Instead of having all the device drivers included in the hypervisor
itself, it instead uses the device drivers running in the OS found in the spe-
cial high-privilege Xen administrative domain, sometimes known as Dom0[35,
ch. 6]. Dom0 runs an OS with all necessary device drivers. The other guests
have been modified, as part of the necessary paravirtualization, to use simple
abstract device interfaces that the hypervisor then implements through request
and response communication with Dom0 and its actual device drivers.

Protection rings and modes

In traditional hypervisor architecture, the hypervisor leverages a hardware-
enforced security mechanism known as privilege rings or protection rings, or the
closely related processor mode mechanism, to protect itself from guest VMs and
to protect VMs from each other. The protection ring concept was introduced
in the Multics operating system in the 1970s[90]. With protection rings, differ-
ent types of code execute in different rings, with higher privilege code running
in higher rings (ring 0 being the highest), with only specific predefined gate-
way mechanisms able to transfer execution from one ring to another. Processor
modes function in a similar way. The current mode is stored as a hardware flag,
and only when in certain modes can particular instructions execute. Transition
between modes is a protected operation. For example, Linux and Windows
typically use two modes – supervisor and user – and only the supervisor mode
can execute hardware-critical instructions such as disabling interrupts, with the
system call interface enabling transition from user to supervisor mode [119].
Memory pages associated with different rings or modes are protected from ac-
cess by lower privilege rings or modes. Rings and modes can be orthogonal
concepts, coexisting to form a lattice of privilege state.

Following this pattern, the hypervisor commonly runs in the highest privilege
ring or mode (possibly a new mode above supervisor mode, such as a hypervi-
sor mode), enabling it to oversee the guest VMs and intercept and handle all
important instructions affecting the hardware resources that it must manage.
This subject will be further discussed in section 2.5 on virtualization hardware
support.

2.3.2 Hosted hypervisors

A hosted hypervisor, such as VirtualBox[113] or VMWare Workstation[99, 111],
runs atop a standard operating system and supports multiple virtual machines.
The hypervisor runs as a user application, and therefore so do all the virtual
machines. Performance is preserved by having as many VM instructions as
possible run natively on the processor. Privileged instructions issued by the
VMs (for example, those that would normally run in ring 0) must be caught
and virtualized by the hypervisor, so that VMs don’t interfere with each other or
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with the host. One potential advantage of the hosted approach is that existing
device drivers and other services in the host operating system can be used by the
hypervisor and virtualized for its virtual machines (as opposed to the hypervisor
containing its own device drivers), reducing hypervisor size and complexity[95].
Additionally, hosted hypervisors often support useful networking configurations
(such as bridged networking, where each VM can in effect obtain its own IP
address and thereby network with each other and the host), as well as sharing
of resources with the host (such as shared disks). Hosted hypervisors provide a
convenient avenue for desktop users to take advantage of virtualization.

2.3.3 Microkernels

Microkernels such as L4[104] offer a minimal layer over the hardware to pro-
vide basic system services, such as interprocess communication (IPC) and pro-
cesses or threads with isolated address spaces, and can serve as an apt base for
virtualization[53]. (However, not everyone agrees on that last point [20, 49].)
Microkernels typically do not offer device drivers or other bulkier parts of a
traditional hypervisor or operating system. To support virtualization, such ser-
vices are often provided by a provisioning application such as Iguana on L4[73].
The virtual machine runs atop the provisioning layer. Alternatively, an OS can
be paravirtualized to run directly atop the microkernel, as in L4Linux[67].

Microkernels can be small enough to support formal verification, providing
formal assurance for a system’s trusted computing base (TCB), as in the recently
verified seL4 microkernel [63, 74]. This may be of special interest to parties
building systems for certification by the Common Criteria[28], or in any domain
where runtime reliability and security are mission-critical objectives.

Microkernels can give rise to interesting architectures. Since other applica-
tions can be written to run on the microkernel in addition to provisioned virtual
machines, with each application running in its own address space isolated by
the trusted microkernel, a system can be built consisting of applications and
entire operating systems running side by side and interacting through IPC. Fur-
thermore, the company Open Kernel Labs advertises an L4 microkernel-based
architecture where not only applications and operating systems, but also device
drivers, file systems, and other components can be run in isolated domains, and
where device drivers running in one operating system can be used by other op-
erating systems via the mediation of the microkernel[75]. (This is similar to the
device driver approach in Xen.)

2.3.4 Thin hypervisors

There is some debate as to what really constitutes a “thin” hypervisor. How
thin does it have to be to be called thin? What functionality should it provide?
VMWare ESXi, which installs directly on server hardware and has a 32MB
footprint[110], is advertised as an ultra-thin hypervisor. But other hypervisors
out there are considerably smaller, and one could argue that 32MB is still quite
large enough to harbor bugs and be difficult to verify. The seL4 microkernel
has “8,700 lines of C code and 600 lines of assembler”[63], and thus is quite a
bit smaller while still providing isolation (although not, in itself, capable of full
virtual machine support). SecVisor, a thin hypervisor intended to sit below a
single OS and provide kernel integriy protection, is even tinier, coming in at 1112
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lines when proper CPU support for memory virtualization is available [91] – but
of course, it offers still less functionality than seL4. This also indicates that the
term “hypervisor” is a superset of “virtual machine monitor”, including as well
architectures that provide but a thin monitoring, interposition or translation
layer between a guest OS and the hardware.

Thin hypervisors are a subject of interest in this thesis. There are numer-
ous thin hypervisor architectures in the research, including the aforementioned
SecVisor[91] and also BitVisor[92]. Like traditional hypervisors and microker-
nels, thin hypervisors run on the bare metal. We will be most interested in
ultra-thin hypervisors that monitor and interpose between the hardware and a
single guest OS running above it. This presents the opportunity to implement
various services without the guest needing to know, including security services.
Since ultra thin hypervisors are intended to be extremely small and efficient,
they are thus suitable for low cost, low resource computing environments such
as embedded systems.

The issue of hardware support is especially relevant for ultra-thin hypervi-
sors, since any activities that can be handled by hardware relieve the hypervisor
of extra code and complexity. Since an ultra-thin hypervisor runs with such
a bare-bones codebase, hardware support will be instrumental in determining
what it can do.

One interesting question is if it is possible to create an ultra-thin hypervisor
that will run beneath a traditional hypervisor/VMM, instead of beneath a typi-
cal guest OS, and thereby effectively provide security services for multiple VMs
but still with an extremely tiny footprint. It is also interesting to consider the
possibility of multicore support in a thin hypervisor, given the added complexity
yet increasing relevance and prevalence of multicore hardware.

Thin hypervisors will be discussed more later in the context of implementa-
tion and security architecture.

2.4 Advantages of System Virtualization

Traditional system virtualization, by enabling entire virtual machines to be
logically separated by the hypervisor from the hardware they run on, creates
compelling possibilities for system design. Put another way, “by freeing develop-
ers and users from traditional interface and resource constraints, VMs enhance
software interoperability, system impregnability, and platform versatility.” [95]
Virtualization yields numerous easily discernible advantages, some of which are
discussed in the following sections.

2.4.1 Isolation

A fundamental and manifest advantage of virtualization is isolation between the
virtual machines, or domains, enforced by the hypervisor. (Domain is a more
generic term than virtual machine, and can denote any isolated domain, such
as a microkernel address space.) This leads to robustness and security.

It is worth mentioning that nowadays, instead of traditional pure isolation,
virtualization is used in architectures where virtual machines are intended to
cooperate in some way – especially in mobile and embedded platforms, discussed
in a later section. Therefore it may be important for the hypervisor to provide
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secure services for inter-VM communication, such as microkernel IPC, while still
preserving isolation.

2.4.2 Minimized trusted computing base

A user application depends on, or trusts, all the software running beneath it.
A compromise in any software beneath it on the stack, or in any other software
that can compromise or control any software on the stack, can compromise the
application itself. In modern operating systems, where software often runs with
administrative privileges, a compromise of any piece of software can result in
total machine compromise and therefore be devastating to any other software
running on the machine. Such an architecture presents an immense attack sur-
face – the entire exposed facade through which the attacker can approach the
system. It could include user applications, operating system interfaces, network
services, devices and device drivers, etc.

Virtualization can address this problem by placing a trustworthy hypervisor
at the highest privilege on the system and running virtual machines at reduced
privilege. Guest software can be partitioned into virtual machines that are
trusted and untrusted, and a compromise of an untrusted VM will have no
effect on a trusted VM, since the hypervisor guards the gates, so to speak.
Total machine compromise now requires compromise of the hypervisor, which
typically presents a much slimmer attack surface than mainstream operating
systems (although of course that varies in practice). A slimmer attack surface
means, in principle, that it is easier to protect correctly. We have already seen
in this chapter that very thin hypervisor layers and microkernels have been
developed, and even formally verified.

2.4.3 Architectural flexibility

The decoupling of virtual and real renders a great deal of architectural flexibility.
VMs can be combined on a single platform arbitrarily to meet particular needs.
In the case of whole-system VMMs that translate the ISA, the flexibility even
extends to running VMs on more than one type of hardware, and combining
VMs meant for more than one type of hardware on a single platform.

2.4.4 Simplified development

Virtualization can lead to simplified software development and easier porting.
As mentioned, instead of porting an application to a new operating system, an
entire legacy software stack can simply run in a virtual machine, alongside other
operating systems, on a single platform. In the case of ISA translation, instead
of targeting every hardware platform, a developer can write for one platform,
and rely on virtualization to extend support to other platforms.

In addition to reducing the need for porting and developing across platforms,
virtualization can also facilitate more productive development environments, for
instance by enabling a development or testing workstation to run instances of
all target operating systems.

Another example is that when developing a system typically comprised of
multiple separate machines, system virtualization can be used to virtualize all
these machines on a single machine and connect them with a virtual network.
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This approach can also be used to facilitate product demos of such systems –
instead of bringing all the separate machines to a customer, a laptop hosting
all the necessary virtual machines can be used to portably demonstrate system
functionality.

2.4.5 Management

The properties of virtualization result in many interesting benefits when it comes
to system management.

Consolidation/resource sharing

Virtualization can increase efficiency in resource utilization via consolidation[51,
64]. Systems with lower needs can be run together on single machines. More
can be done with less hardware. Virtualization’s effectiveness in reducing costs
has been known for decades[48].

Load balancing and power management

In the same vein as consolidation, virtualization can be used to balance CPU
load by moving VMs off of heavily loaded platforms (load balancing), and can
also be used to combine VMs from lightly loaded machines onto fewer machines
in order to power down unneeded hardware (power management)[51, 64].

Migration

Virtual machines can be migrated live (that is, in the middle of execution) be-
tween systems, an increasingly useful capability[96, ch.10]. Research has been
done to support virtualization-based migration even on mobile platforms [100].
In theory, computing context could be migrated to any compatible platform.
Challenges include ensuring that a fully compatible environment is provided for
virtual machines in each system they migrate to (including a consistent ISA), so
that execution can be safely resumed. Besides facilitating the above-mentioned
management applications of consolidation and load balancing, migration sup-
ports new scenarios where working context is seamlessly transitioned between
environments, such as for employees working in multiple corporate offices, client
sites, and travel in between.

2.4.6 Security

Last but definitely not least, virtualization can provide security advantages,
and is moving more and more in this direction[64][96, ch. 10]. Of course,
these advantages are founded on the minimized TCB and VM/VMM isolation
mentioned earlier, the basic properties that make virtualization attractive in
secure system design. But building upon these foundational properties can lead
to substantial additional security benefit.

A hypervisor has great visibility into and control over its virtual machines,
yet is isolated from them, and thus forms an apt base for security services
of many and varied persuasions. An interesting aspect of virtualization-based
security architecture is that it can bring security services to unmodified guest
systems, including commodity platforms.
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By using virtualization in the creation of secure systems, designers can reap
not only the bounty of isolated domains, but additionally the harvest of what-
ever security services the hypervisor can support. A later section will discuss
virtualization-based security services in greater detail.

2.5 Hardware Support for Virtualization

Virtualization benefits from support in the underlying hardware architecture.
If hardware is not built with system virtualization in mind, then it can become
difficult or impossible to implement virtualization correctly and efficiently. Chal-
lenges can include virtualization of the CPU, memory, and device input/output.
For example, if a non-privileged CPU instruction (that is, a portion of the ISA
that non-privileged user code is still permitted to execute) can modify some
piece of hardware state for the entire machine, then one virtual machine is ef-
fectively able to modify the system state of another virtual machine. The VMM
must prevent this breach of consistency. In another common example relating
to memory virtualization, standard page tables are designed for one level of
virtualized memory, but virtualization requires two – one layer for the VMM to
virtualize the physical memory for the guest VMs, and one layer for the guest
VMs to virtualize memory for their own processes. Lacking hardware support
for this second level of paging can incur performance penalties. (Software mech-
anisms for implementing two-level paging are sometimes known as shadow page
tables.) In another example, regarding device Input/Output (I/O) where de-
vices use direct memory access (DMA) to write directly to memory pages, a
VMM must ensure that devices being used by one VM are not allowed to write
to memory used by another VM. If the VMM must validate every I/O operation
in software, it can be expensive. There are many other potential issues with
hardware and virtualization, mostly centering around the cost and difficulty
of trapping/intercepting and emulating instructions and dealing with overhead
from frequent context switches in and out of the hypervisor and VMs whenever
privileged state is accessed. It is important that hardware contain mechanims
for dealing with virtualization issues if virtualization is to be effectively and
reasonabley supported.

Without hardware support, VMMs can also rely on the aforementioned par-
avirtualization, in which the source code of an operating system is modified
to use a different interface to the VMM that the VMM can virtualize safely
and efficiently, or the already described binary translation [72], in which the
VMM translates unsafe instructions at runtime. Neither of these solutions is
ideal, since paravirtualization, while effective and often resulting in performance
enhancements, requires source-code level modification of an operating system
(something not always easy or possible), and translation, as stated earlier, can
be resource intensive and complicated. (Pre-virtualization could offer a bet-
ter solution here.) Specifically regarding I/O virtualization without hardware
support, a VMM can emulate actual devices (so that device instructions from
VMs are intercepted and emulated by the VM, analagous to binary translation),
supporting existing interfaces, or it can provide specially crafted new device in-
terfaces to its VMs[57]. Emulating devices in a VM can be slow, and difficult to
implement correctly, while providing a new interface requires modification to a
VM’s device drivers and/or OS, which may be inconvenient. Besides sidestep-
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ping these troubles, having hardware shoulder more of the burden for virtu-
alization support can simplify a hypervisor’s code overall, further minimizing
the TCB, easing development, and raising assurace in security[72]. There are
other software-based solutions for enabling virtualization without hardware sup-
port, such as the “Gandalf” VMM [60] that attempts to implement lightweight
shadow paging for memory management, but it is unlikely that a software-based
solution will be able to compete with a competent hardware-based solution.

2.5.1 Basic virtualization requirements

Popek and Goldberg outlined basic requirements for a system to support virtual
machines in 1974[84]. The three main requirements are summed up in a simple
way in [2]:

1. Fidelity – Also called equivalency, fidelity indicates that running soft-
ware on a virtual machine should result in identical results or behavior as
running it on a real machine (excepting time-related issues).

2. Performance – Performance should be reasonably efficient, which is
achieved by having as many instructions as possible run natively, direct
on the hardware, without trapping to the VMM.

3. Safety – The hypervisor or VMM must have total control over the virtu-
alized hardware resources.

Many modern hardware platforms were not designed to support virtualization
and did not meet the fidelity requirement out of the box, meaning that VMM
software had to do extra work – negatively impacting the efficiency requirement.
But today, CPUs are being built with more built-in virtualization support,
including chips by Intel and AMD, and are actually able to meet Popek and
Goldberg’s requirements.

2.5.2 Challenges in x86 architecture

Intel x86 CPU architecture formerly offered no virtualization support, and in-
deed included many issues that hindered correct virtualization (necessitating
binary translation or paravirtualization). As a common architecture, it is worth
taking a closer look at some of its issues. Virtualization challenges in Intel x86
architecture include (as described in [72]):

• Certain IA-32 and Itanium instructions can reveal the current protection
ring level to the guest OS. Under virtualization, the guest OS will be
running in a lower-than-normal privilege ring. Therefore, being able to
discern the current ring breaks Popek and Goldberg’s fidelity condition,
and can reveal to the guest that it is running in a virtual machine.

• In general, if a guest OS is made to run at lower privilege than ring 0,
issues may arise if any portion of the OS was written expecting to be run
in ring 0.

• Some IA-32 and Itanium non-faulting instructions (that is, non-trapping,
non-privileged instructions) modify privileged CPU state. User-level code
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can execute such instructions, and they don’t trap to the operating sys-
tem. Therefore, VMs can issue non-trapping instructions that modify
state affecting other VMs.

• IA-32 SYSENTER and SYSEXIT instructions, typically used to start and
end system calls, cause a trap to and exit from ring 0, respectively. If SY-
SEXIT is called outside ring 0, it causes a trap to ring 0. With a VMM
running at ring 0, SYSENTER and SYSEXIT will therefore trap to the
VMM – on system call entry (when the user application calls SYSEN-
TER, trapping to ring 0) and exit (when the guest OS not at ring 0 calls
SYSEXIT, resulting in a trap to ring 0). This creates additional overhead
and complication for the VMM.

• Activating and deactivating interrupt masking (for blocking of external
interrupts from devices) by the guest OS is a privileged action and may
be a frequent activity. Without hardware support, it could be costly for
a VMM to virtualize this functionality. This concern also applies to any
privileged CPU state that may be accessed frequently.

• Also relating to interrupt masking, the VMM may have to deliver virtual
interrupts to a VM, but the guest OS may have masked interrupts. Some
mechanism is required to ensure prompt delivery of virtual interrupts from
the VMM when the guest deactivates masking.

• Some aspects of IA-32 and Itanium CPU state are hidden – meaning they
are inaccessible for reading and/or writing by software – and it is therefore
impossible for a context switch between VMs to properly transition that
state.

• Intel CPUs typically contain four protection rings. The hypervisor runs at
ring 0. In 64-bit mode, the paging-based memory protection mechanism
doesn’t distinguish between rings 0-2; therefore, the guest OS must run
at ring 3, putting it at the same privilege level as user applications (and
therefore leaving the guest OS less protected from the applications running
on it). This phenomenon is known as ring compression.

Modern Intel and AMD CPUs offer hardware support to deal with these
challenges. Prominent aspects of hardware virtualization support include sup-
port for virtualization of CPU, memory, and device I/O, as well as support for
guest migration.

2.5.3 Intel VT

Intel Virtualization Technology (VT) is a family of technologies supporting vir-
tualization on Intel IA-32, Xeon, and Itanium platforms. It includes elements
of support for CPU, memory, and I/O virtualization, and guest migration.

Intel VT on IA-32 and Xeon is known as VT-x, whereas Intel VT for Itanium
is known as VT-i. Of those two, this document will focus on VT-x. Intel VT
also includes a component known as VT-d for I/O virtualization, discussed in
later this section, and VT-c for enhancing virtual machine networking, which is
not discussed.
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VT-x

Technologies under the VT-x heading include support for CPU and memory
virtualization, as well as guest migration.

A foundational element of Intel VT-x’s CPU virtualization support is the
addition of a new bit of CPU state, orthogonal to protection ring, known as
VMX root operation mode[72]. (Intel VT-i has a similar new bit – the “vm”
bit in the processor status register, or PSR.) The hypervisor runs in VMX root
mode, whereas virtual machines do not. When executed outside VMX root
mode, certain privileged instructions will invariably trap to VMX root mode
(and hence the VMM), and other instructions and events (such as different
exceptions) can also be configured to trap to VMX root mode. Exit from VMX
root mode is called a VM entry and entry to this mode is called a VM exit. VM
entries and exits are managed in hardware via a structure known as the Virtual
Machine Control Structure (VMCS). The VMCS stores virtualization-critical
CPU state for VMs and the VMM so that it can be correctly swapped in and
out by hardware during VM entries and exits, freeing VMM software from this
burden. Note also that the VMCS contains and provides access to formerly
hidden CPU state, so that the entire CPU state can be virtualized.

The VMCS stores the configuration for which optional instructions and
events will trap to VMX root mode. This enables the VMM to “protect” ap-
propriate registers, handle certain instructions and exceptions, handle activity
on certain input/output ports, and other conditions. A set of CPU instructions
provides the VMM with configuration access to the VMCS.

Regarding interrupt masking and virtualization, the interrupt masking state
of each VM is virtualized and maintained in the VMCS. Further, VT-x provides
a control feature whereby a VMM can force traps on all external interrupts and
prevent a VM from modifying the interrupt masking state (and attempts by
the VM to modify the state won’t trap to the VMM). There is also a feature
whereby a VMM can request a trap if the VM deactivates masking [72]. There-
fore, if masking is active, the VMM can request a trap when masking is again
deactivated – and then deliver a virtual interrupt.

Additionally, it is important to observe that since VMX root mode is orthog-
onal to protection ring, a guest OS can still run at ring 0 – just not in VMX
root mode. This alleviates any problems arising from a guest OS running at
lower privilege but expecting to run at ring 0 (or from a guest OS being able
to detect that it isn’t running in ring 0). It also solves the problem of SYSEN-
TER and SYSEXIT always faulting to the VMM and thus impacting system
call performance – now, they will behave as expected, since the guest OS will
run in ring 0.

Another salient element of VT-x’s CPU virtualization support is hardware
support for virtualizing the Task Priority Register (TPR)[72]. The TPR resides
in the Advanced Programmable Interrupt Controller (APIC), and tracks the
current task priority – only interrupts of higher priority priority will be delivered.
An OS may require frequent access to the TPR to manage task priority (and
therefore interrupt delivery and performance), but a guest OS must not modify
the state for any other guest OSes, and trapping frequent TPR access in the
VMM could be expensive. Under VT-x, a virtualized copy of the TPR for
each VM can be kept in the VMCS, enabling the guest to manage its own task
priority state – and a VM exit will only occur when the guest attempts to drop
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its own TPR value below a threshold value also set in the VMCS [72]. The
VM can therefore modify, within set bounds, its TPR – without trapping to the
VMM. (This technology is advertised as Intel VT FlexPriority.)

Moving on from virtualization of the CPU, Intel VT-x also now contains a
feature called Extended Page Tables (EPTs)[56], which support virtualization
memory management. Standard hardware page tables translate from virtual
page numbers to physical page numbers. In virtualization scenarios, use of these
basic page tables requires frequent synchronization effort for the VMM, since
(as described in the beginning of section 2.5) the VMM needs to virtualize the
physical page numbers for each guest. The VMM must somehow maintain the
physical mappings for each guest VM. With EPTs, there are now two levels of
page tables – one page tabe translates from “guest virtual” to “guest physical”
page numbers for each VM, and a second page table translates from “guest
physical” to the “host physical” page numbers that correspond to actual physical
memory. In this way, a VM is free to access and use its own page tables, mapping
between the VM’s own virtual and “guest physical” addresses, in a normal way,
without needing to trap to the VMM – resulting in performance savings.

However, EPTs do result in a longer page table “walk” (a page table walk
is the process of “walking” though the page tables to find the physical address
corresponding to a virtual address), due to the second page table level. There-
fore, if a process incurs many TLB misses, necessitating many page table walks,
performance could suffer. One possible solution to this problem is to increase
page size, which could reduce the number of TLB misses (depending on the
process’s memory layout).

Another VT-x feature supporting memory virtualization is Virtual Process
Identifiers (VPIDs), which enable a VMM to maintain a unique ID for each
process running within the VMs (and for its own process). TLB entries can
then be tagged with a VPID, and therefore the TLB won’t have to be flushed
(which is expensive) in VM entries and exits ([72]), since entries for different
VMs are distinguishable.

Finally, VT-x includes a component dubbed “FlexMigration” that facilitates
migration of guest VMs among supporting Intel CPUs. Migration of guest
VMs in a varied host pool can be challenging, since guest VMs may query
the CPU for its ID and thereafter expect the presence of a certain instruction
set, but then may be migrated to another system supporting slightly different
instructions. FlexMigration helps possibly heterogeneous systems in the pool to
expose consistent instruction sets to all VMs, thus enabling live guest migration.

VT-d

Device I/O uses DMA, enabling devices to write directly to memory pages with-
out going through the operating system kernel. (DMA for devices has been a
source of security issues in the past, with devices such as Firewire devices be-
ing able to write to kernel memory, even if accessed by an unprivileged user.
Attacks on the system via DMA are sometimes called “attacks from below”.)
The problem with DMA for devices on virtualization platforms is that devices
being used by a guest shouldn’t be allowed to access memory pages on the sys-
tem belonging to other guests or the VMM – therefore, on traditional systems,
all device I/O operations must be checked with or virtualized by the VMM,
thereby reducing performance. Hardware support can enable guest associations
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and memory access permissions to be established for devices and automatically
checked for any I/O operation.

Intel VT for Directed I/O (also known as Intel VT-d) offers hardware support
for device I/O on virtualization platforms[57]. It provides several key features
(as described in [57]):

• Device assignment – The hardware enables specification of numerous iso-
lated domains (which might correspond to virtual machines on a virtu-
alization platform). Devices can be assigned to one or more domains, so
that they can only be used by those domains. In particular, this allows a
VM domain to use the device without trapping to the VMM.

• DMA remapping – through use of I/O page tables, the pages included in
each I/O domain and the pages that can be accessed by each device can
be restricted. Furthermore, pages that devices write to can be logically
remapped to other physical pages. In I/O operations, the page tables are
consulted to check if the page in question may be accessed by the device
in question on behalf of the current domain. Different I/O domains are
effectively isolated from each other. Note that this feature is necessary to
make device assignment safely usable – since it prevents a device assigned
to one domain from accessing pages belonging to another domain.

• Interrupt remapping – Device interrupts can be restricted to particular
domains, so that devices only issue interrupts to the domains that are
expecting them.

DMA remapping offers a plethora of potential uses, both for standard sys-
tems with a single OS and for VMMs with multiple VMs[57]. For standard
systems, DMA remapping can be used to protect the operating system from
devices (by prohibiting device access to kernel memory pages), and to partition
system memory into different I/O domains to isolate the activity of different
devices. It can also be used on 64-bit systems to support legacy 32-bit devices
that are only equipped to write to a 4GB physical address space; the addresses
the device writes to can be remapped to higher addresses in the larger system
address space (which would otherwise require expensive OS-managed bounce
buffers).

A VMM, on the other hand, might simply assign devices to domains (which
will most likely correspond to VMs), and devices will thereby be restricted to
operating on any memory owned by that domain (VM). As mentioned, this
will also enable guest VMs (and their device drivers) to interact with their
assigned I/O devices without trapping to the VMM. Furthermore, the VMM can
assign devices to multiple domains to facilitate I/O sharing or communication.
Finally, if the VMM virtualizes the DMA remapping instructions for its VMs,
then the guest VMs can use the remapping support in a similar way to an
OS on a standard system – protecting the OS, limiting and partitioning the
memory regions that a device can write to, and remapping regions for legacy
devices. To virtualize the remapping instructions and state, the VMM could
maintain this state (in an eagerly updated “shadow copy”[57]) for each VM,
by intercepting VM modification of its I/O page tables and VM usage of the
registers controlling the remapping. (Perhaps a future hardware revision could
provide built-in hardware support for virtualization of the remapping facilities.)
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The interrupt remapping component of VT-d can also be put to multiple
uses by a VMM[57]. A VMM can ensure that device-generated interrupts are
routed only to the domains that the devices are assigned to. It can also use the
remapping hardware as a kind of “interrupt firewall” to ensure that external
interrupts do not have characteristics that would cause them to be confused
with internal VMM interrupts. Finally, the interrupt remapping can be used to
enable safe migration of interrupts (the transfer of interrupts to the correct pro-
cessor) when the associated domain/workload has moved to another processor
– useful in load balancing situations.

2.5.4 AMD-V

AMD’s version of virtualization support is entitled AMD-V[8], and offers com-
parable support for CPU, memory, and I/O virtualization, and migration.

CPU

AMD-V incorporates a new bit of CPU state entitled “guest mode” [3] that is
analagous to non-VMX root mode in Intel VT-x. Guest mode is entered via
the VMRUN instruction. Whenever VMRUN is called for a specific VM, the
hardware accesses a structure called a Virtual Machine Control Block (VMCB)
for that VM. The VMCB stores configuration information on what events and
interrupts should be intercepted by the VMM for that guest, as well as CPU
state for that VM, and bits to indicate additional special instructions for prepar-
ing the VM’s execution environment. On VMRUN, the VMCB is used to swap
in the VM CPU state, and VMM state is saved to memory for later.

AMD-V also offers similar support to Intel for interrupt virtualization[3].
First, it has a master bit in the VMCB that activates or deactivates interrupt
virtualization – if active, then the guest interrupt masking bit only controls
virtual interrupts, and the VMM’s interrupt masking bit controls physical (ex-
ternal) interrupts. (If interrupts aren’t virtualized, the guest controls both
physical and virtual interrupt masking.) If interrupts are virtualized, then the
TPR value for each guest is also virtualized. The VMM can choose to inter-
cept all physical interrupts, deliver virtual interrupts to guests, and also force
a trap when a VM with interrupts masked enables them once again. There are
additionally mechanisms for the VMM to clear out the pending interrupt queue
in an arbitrary manner or disregard certain interrupt vectors when determining
the highest priority pending external interrupt – this can help in the case of a
VM that is blocking other VMs by not processing its own external interrupts.

Memory

Rapid Virtual Indexing, also known as Nested Paging, is AMD’s version of
hardware support for virtualization memory management[4]. Like Intel’s EPTs,
it incorporates a second level of hardware page tables, eliminating the need
for shadow paging. It functions similarly to EPTs, and has been shown to
yield dramatic performance increases (but, likewise, potentially suffers from the
problem of slower page table walks)[108].

Address Space Identifiers (ASIDs) are used to eliminate the need for TLB
flushes when switching to a new VM[4]. An ASID is a unique ID assigned to
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each guest by the hypervisor, and is used to tag TLB entries, so that TLB
entries for different VMs can be distinguished. It is similar to Intel’s VPID
feature, and basically updates the TLB along with the page tables to support
a two-level virtual memory scheme.

Migration

AMD-V Extended Migration also provides hardware support for live migration
of VMs between AMD Opteron processors in a pool of systems[5]. This support
includes features to facilitate backward compatibility (by limiting the instruc-
tion set features exposed to guests to the lowest common denominator of all
systems in the pool) and forward compatibility (by allowing VMMs to disable
instructions found on newer processors that guests expect to not be function-
ing). In other words, similar to Intel’s FlexMigration, it helps ensure that a
guest will never find an unexpected instruction environment, no matter where
it migrates to in the pool.

I/O

Similar to Intel VT-d, AMD-V contains a component termed an I/O Memory
Management Unit (IOMMU) (previously DEV) that provides support for I/O
virtualization[7]. It uses similar components – through I/O page tables, I/O
memory accesses are checked for permissibility and remapped. Through a de-
vice table, devices can be assigned to certain domains, which correspond to a
particular portion of the I/O page tables (and therefore memory regions and
remappings). And, through an interrupt mapping table, interrupts are checked
for permissibility and routed to the appropriate domains.

It is worth mentioning that, due to AMD64 systems consisting potentially
of multiple processors and device nodes that are spread out and connected
with AMD “HyperTrasport” links, an IOMMU can only intercept I/O memory
accesses if the operation goes through the IOMMU node in the HyperTransport
network – therfore, multiple IOMMUs can be necessary to cover all devices[7].

2.5.5 ARM TrustZone

ARM TrustZone technology, for ARM11 and ARM Cortex embedded proces-
sors (include ARM Cortex-A9 MPCore multicore processors), offers support for
creating two securely isolated virtual cores (or “worlds”, as they are termed) on
a single real core. One world is Secure and one world is Normal, and TrustZone
manages transitions between them, preventing state or data from leaking from
the Secure world to the Normal world[18]. While overall less developed and
more limited in capabilities than Intel VT or AMD-V, and intended more for
supporting security architectures in general, it does offers some similar compo-
nents to those found in x86 virtualization support packages. It is described in
detail in [18] and [17].

First to mention is that the system bus control signals now contain one extra
bit, the NS or “Non-Secure” bit, that functions like a 33rd address bit to dif-
ferentiate between the two worlds. Each virtual core has its own address space
– through special TrustZone memory controllers ([13, 14]), physical memory is
statically assigned to the Secure or Normal worlds. Furthermore, TrustZone pro-
vides a feature called the Advanced Peripheral Bus (APB) that is connected to
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the main system bus by a bridge component – this bridge component enforces
security for all peripherals on the APB, and can deny unsecure or otherwise
problematic transactions from being dispatched to peripherals. Hardware de-
vices can be assigned to the Secure or Normal world. This enables tight control
of, for example, the interrupt controller, screen and keyboard.

Both worlds have user and privileged modes as usual. But the Secure world
also contains a special mode called “Monitor Mode” that is responsible for con-
text switching between the two worlds. The secure monitor call (SMC) instruc-
tion can be issued by the Normal world when in privileged mode, and always
traps to Monitor mode. The Secure and Normal worlds and Monitor mode each
have their own exception handlers and vector tables, so exceptions issued in
the Normal world will trap to privileged mode handlers in the Normal world.
External interrupts and aborts can also be made to trap to Monitor mode, but
system calls, Memory Management Unit (MMU) memory faults, and misuse
of undefined or privileged instructions can’t be configured to trap to Monitor
mode. Monitor mode is responsible for swapping in and out CPU state when
switching from one world to another, allowing execution to begin where it left
off in whichever world is being switched to.

TrustZone supplies a virtual MMU for each of its two worlds, enabling each
one to manage its own virtual to physical mappings for greater efficiency and
isolation. Note that the Secure world can map in pages from the Normal world,
but not the other way around. Important MMU state (such as the location of
page tables) is kept independently for each world. Additionally, TLB entries
are tagged with the associated world, to prevent the need for TLB flushes in a
context switch between worlds. Cache entries are also tagged with the associated
world, easily facilitating cache usage by both worlds.

External interrupts generated for either world can be handled efficiently;
if they are destined for the currently running world, then they are delivered
immediately, whereas if they are intended for the other world, execution can
trap to Monitor mode and then the interrupt can be properly routed. The
Monitor typically runs in a non-interruptible state (interrupts disabled).

In addition to the above-described mechanisms, one could say that security
begins on TrustZone platforms with the secure boot process initiated when the
device is powered on. The hardware bootloaders that kick off the process can
utilize public key cryptography to verify the integrity of code at each succes-
sive step in the process (creating a chain of trust), and can leverage a Trusted
Platform Module (TPM)[121] or other tamper-resistant module. The system
always boots into the Secure world first, and the Secure world then loads the
Normal world – this prevents untrusted code in the Normal world from making
unauthorized system changes before the Secure world has properly prepared the
system.

There are numerous other features available in the TrustZone hardware “li-
brary”, including a special DMA controller (DMAC) capable of simultaneously
handling channels for the Secure and Normal worlds. As previously covered,
taking the I/O memory traffic burden off of the processor and the high-privilege
software can offer significant performance savings.

So, while TrustZone doesn’t offer support for arbitrarily many virtual ma-
chines, it does support two strongly isolated virtual cores with partitioned de-
vices and independent memory management facilities, as well as regulated paths
for transition between the two worlds.
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Potential TrustZone system designs for secure architectures, using various
TrustZone-supportive hardware components, can be broken down into different
tiers, as described in [19]:

• Tier One – In this basic (and low-cost) mode, intended to support secure
PIN entry and payment protocols, the Secure world runs a Secure OS
and the Normal world runs an Open OS. The Open OS is running and
controlling input peripherals and the screen the majority of the time, but
if secure entry of a PIN or other data is required (especially in service of
some type of payment transaction), the Secure OS takes control of the
input devices and the screen. The Secure OS uses an isolated contiguous
block of memory. It is booted with a trusted boot process, whereby a
hardware component boots a base OS, then loads the Secure OS, which
subsequently loads the Open OS.

• Tier Two – A superset of Tier One, Tier Two is intended to support
Digital Rights Management (DRM) applications. The Secure OS owns
certain protected memory regions used for DRM content, and if the Secure
OS itself doesn’t perform the decoding, then an external chip or other
peripheral can also be used (and access to this component will be restricted
to the Secure OS). Tier Two involves more complex control capabilities
over devices and I/O than Tier One, to safeguard the protected content.

• Tier Three – Tier Three, a superset of Tier Two, is intended to offer full
support for “cloud computing” in which secure services run in a protected
manner in the Secure OS and untrusted data is received, processed, and
distributed by the Open OS. It increases support for device control, and
adds the DMA controller as well as additional acceleration mechanisms
for securely, efficiently processing DRM on large content files.

It is at least conceivable to use TrustZone to support virtualization. The
hypervisor runs in the Secure world, and a single guest runs in the Normal world.
The DMA controller and device control mechanisms support I/O virtualization,
and the TrustZone isolation mechanisms and interrupt handling support isolate
the hypervisor from the guest. However, the lack of complete interposition
capabilities (for example, on system calls and memory faults) and inability to
control the Normal world memory management may create difficulties.

2.6 Typical Virtualization Scenarios

In this section we will discuss virtualization scenarios seen today.

2.6.1 Hosting center

Hosting centers can use virtualization to provide systems for clients. Clients can
share time on virtualized systems with quality of service guarantees. Restricted
to their own isolated domains, clients are prevented from interfering with each
other. This scenario sounds quite familiar to the time-sharing mainframes of
yesteryear, and indeed the scenarios bear resemblance. The hosting center is a
very typical virtualization use-case, where VMs are purely isolated and share
resources according to a local policy.
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2.6.2 Desktop

Virtualization on the desktop is becoming much more common nowadays, which
has inspired (and is inspired by) progress in virtualization support in commodity
desktop hardware [72]. In corporations, especially development houses, virtual-
ization is used to give engineers easy access to multiple target platforms. An-
other possible corporate scenario is enabling employees to have virtual machines
configured for different clients or workplace scenarios on one machine. With Vir-
tualBox freely available, even home users can cheaply leverage virtualization to
access multiple operating systems or partition their system into trusted and un-
trusted domains. Virtualization gives desktop users the freedom to have all the
heterogeneous computing environments they need at their fingertips, without
absorbing extra hardware cost.

2.6.3 Service provider

A service provider (such as a web service provider) may utilize virtualization to
consolidate resources or servers onto fewer hardware platforms. For instance,
a web application may have a front end web server and multiple back end tier
servers, hosted as virtual machines on a single physical machine. Application
servers and/or machines processing business logic and may actually be virtual
machines that migrate across banks of real machines as needed.

2.6.4 Mobile/embedded

Lastly, a quickly emerging virtualization scenario is the mobile/embedded arena
– it is becoming more and more common now to have mobile devices containing
isolated domains entrusted with different purposes[101], such as an employee
smartphone containing isolated home and work environments[64]. With pro-
cessors shrinking in size and increasing in performance, growing numbers of
embedded systems have the power to support virtualization and leverage its
benefits. Embedded CPUs with multiple cores and/or potential built-in secu-
rity/virtualization support, as in the already discussed ARM Trustzone, further
enhance possibilities.

Multiple companies are working in the mobile virtualization space, including
Open Kernel Labs[76], VirtualLogix [107], and now VMWare[112]. It has been
found to be not unduly onerous to port virtualization architectures to mobile
platforms[29], and open systems such as the L4 microkernel [104] and Xen on
ARM [55, 123] afford open, low-cost solutions.

Therefore, the benefits of virtualization already discussed can be brought
to mobile systems, additionally enabling applications and benefits specific to
the mobile/embeddded environment. For example, due to the high frequency
of hardware changes and the wide variety of available platforms in embedded
systems, virtualization can provide an especially convenient layer of abstraction
to facilitate application development. Applications could be distributed as an
entire software stack (including a specific OS) to run in a VM, and therefore
not depend on any particular ABI[51]. Isolated virtual machines can serve as
mobile testbed components or nodes in opportunistic mobile sensor networks
[38], and support heterogeneous application environments[51]. Modularity and
live system migration is of interest in the mobile environment[100]. Virtual-
ization can also support mobile payment, banking, ticketing, or other similar
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applications via isolated trusted components (as in TrustZone design tiers) – for
instance, Chaum’s vision of a digital wallet, with one domain controlled by the
bank and one domain by the user [32], could potentially be implemented with
virtualization, enabling people to carry “e-cash” in their PDA or smartphone.
And of course, beyond isolation, many aspects of security in embedded scenarios
may be served by virtualization, as will be discussed later.

2.7 Hypervisor-based security architectures

2.7.1 Advantages

Virtualization serves as a powerful enabler for security services and security
architectures, due to the hypervisor’s minimized TCB, the isolation enforced
between hypervisors and guests, and the hypervisor’s presence in a higher hard-
ware protection zone than the guest(s). Security services based on a hypervisor
have excellent visibility into guests, yet are still securely protected from guests
– this overcomes the problems inherent in traditional architectures such as in-
trusion detection systems, where the security service is either remotely located
(with greatly reduced visibility) or located on the monitored system itself (with
greatly increased vulnerability to attackers)[46].

Due to modern operating systems’ bulk and complexity, and abundance
of continually unearthed critical security flaws, security services implemented
by such OSs may not be trustworthy. In fact, the OSs themselves may not
be trustworthy. Hypervisor-based security services can be externally applied, in
some cases to totally unmodified guest OSs, and thereby bring more trustworthy
security. This can provide protection for the guest OS from its applications, for
the guest applications from each other, and even for guest applications from the
guest OS.

Implementing secure services through hypervisors and virtualization also
benefits from virtualization’s inherent modularity. Services can potentially be
reused for different guests and on different hardware platforms. This could fa-
cilitate, for example, a company enforcing consistent security policies efficiently
on a wide variety of systems.

2.7.2 Virtualization security challenges

While offering clear benefits, virtualization also creates security-related chal-
lenges that must be considered when implementing hypervisor-based secure ar-
chitectures.

Virtualization is simpler when it concerns strictly isolated virtual machines
– but what about when VMs must cooperate? Bellovin discusses the difficulties
in defining the interfaces and interactions between VMs, and how this breaks
pure isolation and introduces problems[26]. Indeed, as shall be discussed later,
there are many emerging scenarios (particularly in mobile platforms) where
isolated domains must cooperate in some fashion, and in such cases some sort
of mandatory access control, information flow control, or other mechanisms must
ensure the security of the interactions and the protection of important resources
in the system.

Garfinkel and Rosenblum enumerate a number of potential security problems
introduced by virtualization [47]:
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• Scaling – Virtualization enables rapid creation and addition of new vir-
tual machines. Without total automation, this dynamic growth capacity
can destabilize security management activities such as system configura-
tion and updates, resulting in vulnerability to security incidents.

• Transience – Whereas normal computing environments/networks tend
to converge on a stable state, with a consistent collection of machines,
virtualization environments can have machines that quickly come and go.
This can foil attempts at consistent management, and leave, for instance,
VMs that come and go and are vulnerable to and/or infected by a worm
that goes undetected. Infections can persist within such a fluctuating
environment and be difficult to stamp out.

• Software lifecycle – Since a VM’s state is encapsulated in the VMM
software (along with any supporting hardware), snapshots of state can
easily be taken. A VM can be instantiated from a prior snapshot, enabling
easy state rollback – this can interfere with assumptions about the lifecycle
of running software. For example, previously applied patches or updates
may be lost, or VMs that accept one-time passwords may be made to
re-accept used passwords. If rolled back state causes the reuse of stream
cipher keys or repetition of other cryptographic mechanisms that shouldn’t
be reused in an identical fashion, cryptosystems may be compromised.

• Diversity – Increased heterogeneity of operating systems and environ-
ments will increase security management difficulties, and present a more
varied attack surface.

• Mobility – While also cited as an advantage of virtualization, mobility
and migration automatically engender more complexity and security is-
sues. Moving a VM across different machines automatically increases that
VM’s TCB to include each one of those machines – therefore increasing
security risk, and in a dynamic environment, potentially making it harder
to track which VMs may have been exposed to physical machine com-
promises. It also poses the danger of moving VMs from an untrusted
environment (such as a home machine) to a trusted environment, and
makes it easier for a malicious insider to steal a machine (since a machine
is simply a file on a disk).

• Identity – Static means of identifying machines, such as MAC addresses
or owner name, may not function with virtualization. Machine ownership
and responsibility is harder to track in a dynamic virtualized environment.

• Data lifetime – Guest OSs may have security requirements about data
lifetime that are invalidated by a VMM’s logging and instruction replay
mechanisms; through external logging facilities, combined with VM mo-
bility, it is possible that sensitive data may be left in widely distributed
persistent storage.

Nichols echoes the configuration and management difficulties, and highlights
other virtualization security issues in [106]. For instance, virtual networks,
whose traffic is routed internally within a physical machine, won’t be protected
by all the usual physical network security mechanisms, allowing attacks to be
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mounted and spread. Furthermore, attacks on VMMs yield a bigger payoff than
traditional OS platforms, since a VMM can control multiple virtual machines
(and possibly a varying collection over time), so any hypervisor vulnerability
becomes extremely critical. Nichols also mentions how security and management
tools supporting virtual environments in general are not yet mature, due to the
relatively recent gains in virtualization popularity.

Measures may have to be taken to address these challenges, depending on lo-
cal requirements. Fortunately, ultra-thin, single guest, monitoring/enforcement-
oriented hypervisors are not affected by many of these concerns – their small
code size lessens likelihood of hypervisor compromise, with a single guest and no
hypervisor network presence there is no virtual network, and they do not support
the complex management features (mobility, transience) that result in security
difficulties. However, they may create some additional management complexity
simply because of the increase in individual system complexity. Also, should
such a monitoring hypervisor be made to sit beneath a traditional VMM, some
of these issues may of course need to be addressed again.

2.7.3 Architectural limitations

Hypervisor-based security services are not a panacea. There are limitations to
what can be accomplished.

The semantic gap

Hypervisor-based services, as running external to and at higher privilege than
the guest OSes, have complete access to guest memory, but do not have intimate
access to guest OS services and context. They have total visibility into the guest,
and have the capacity to see all guest memory pages, but they do not have
interactivity with guest ABIs, APIs, and abstractions. To have understanding
of guest state, the hypervisor (or the service running on it) must somehow bridge
the so-called semantic gap – the gap in understanding between the hypervisor’s
view and the guest OS state. Without additional facilities to bridge this gap,
the hypervisor will see guest memory, but it will be a meaningless jumble of
values. The hypervisor must be endowed with relevant structural, contextual
knowledge of the particular guest OS in question.

This is important for security because many security services must have
accurate understanding of relevant guest state to implement meaningful func-
tionality. Without such knowledge, a service won’t know what is happening in
a guest nor will it be able to make reasonable deductions, decisions, or actions
based on guest state. Such a service must have processing facilities capable of
mapping in guest pages and then interpreting the pages to divine the current
relevant state from raw guest memory. Different services may require knowledge
of different aspects of guest state.

Using the hypervisor’s view into its VMs coupled with contextual knowledge
and processing facilities to interpret guest OS state is known as VM introspection
(VMI); introduced in the Livewire system[46], it is an established technique,
but increases the complexity of the security services code, and furthermore
introduces management issues since the knowledge base must remain updated
in parallel with any relevant updates to the monitored guest OS.
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VMI could be divided into two areas – inspection, and interpretation (or
semantic reconstruction). Inspection is the process of actually mapping the
proper guest pages into hypervisor memory. Interpretation is the process of
comprehending those pages. There are VMI frameworks in existence such as the
publicly available XenAccess[81], as well as the as yet unreleased VIX toolkit
(also for Xen)[50], that attempt to provide extensible foundations and tools for
VMI. VIX, for instance, contains a set of Unix-like utilities built over an inspec-
tion library that can be used from a Xen administrative domain to examine a
running virtual machine – this may reveal relevant forensics data, or discrep-
ancies between the guest OS and VMM views due to malware such as rootkits.
XenAccess provides an API for mapping and inspecting guest pages from an
observer domain, and some examples of how to use the API and interpret guest
memory. More advanced, context-specific modules for interpreting state can be
built above XenAccess.

Interposition granularity

For performance reasons, as many guest instructions as possible run directly on
the hardware. However, as we know, certain instructions and events must trap
to and be handled by the hypervisor so it can enforce virtualization, isolation,
and so forth. The granularity of events on which the hypervisor can interpose
is limited by the hardware interface. The ability to handle events by immedi-
ately trapping to hypervisor control is sometimes called active monitoring, since
the hypervisor and the security service can guarantee active response to sup-
ported events, as opposed to passive monitoring, wherein guests are periodically
monitored at the discretion of the hypervisor-based monitoring service. Passive
monitoring by the hypervisor can’t guarantee discovery of problems resident in
unmonitored state or conditions that can hide or change between monitoring
cycles, and can’t support immediate prevention or handling of events or negative
conditions as they arise.

The hypervisor can handle any event that can be made to trap to the hyper-
visor’s high privilege mode, possibly including privileged instructions, memory
accesses, device operations, exceptions/interrupts, or other conditions. Without
special virtualization support in hardware, the range and specification of traps
may be more limited. In either case, the hardware-supported granularity may
not be sufficient for certain applications. For example, certain security mon-
itoring services may need to guarantee response to fine-grained guest events.
This problem can be alleviated by using already discussed techniques such as
paravirtualization and previrtualization, where the guest OS is made to use a
hypercall interface, or binary translation, where appropriate instructions are
translated at runtime. These techniques suffer problems already mentioned.
Another method is to dynamically introduce hook code into the guest OS, but
this code, as resident on the guest and potentially vulnerable to guest compro-
mise, comes with its own security problems. The Lares system[82] uses carefully
placed and VMM-protected hook code injected into the guest OS to increase
the active monitoring capabilities of the VMM.

Limitations on interposition granularity and the capacity for VM introspec-
tion are critical issues for implementing security services, and any improvement
to either area will enhance the possibilities for virtualization-based security ar-
chitectures.
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2.7.4 Architectural patterns

When designing virtualization-based security services (that is, security services
that run atop a hypervisor and operate on guest domains), there are basic
architectural/design patterns that may be followed.

Augmented traditional hypervisor

One method for implementing security services using traditional system virtu-
alization hypervisors is to implement the services in the hypervisor itself. This
may be convenient for development, especially if the code of the hypervisor
is readily available and already understood. However, it poses the major dis-
advantage of adding to the complexity and code size of the hypervisor, which
counters one of virtualization’s fundamental strong points – the minimized TCB
presented by the hypervisor. Therefore, it is most likely advisable to take a dif-
ferent approach.

Security VM

With traditional hypervisors, it is quite common to implement security services
in a specially designated security VM, similar to Xen’s administrative domain
“dom0”. Through this approach, the security services run in a special VM
granted all the necessary privileges by the hypervisor, presumably runnning a
stripped down operating system specially crafted for the security services. The
VMM/hypervisor must be modified only to the extent that it can communicate
with the security VM and provide it with the privileges and resources it needs
to implement the security services. This approach, while probably presenting
more development overhead than developing directly in the hypervisor, preserves
the hypervisor’s minimal TCB, and is furthermore more modular (enabling the
security services to be more easily modified, transferred, or recombined in other
systems in the future).

Microkernel application

In the case of a microkernel serving as a hypervisor, security services can be
implemented in a specially written microkernel application, which will run in
its own protected address space. It can connect to the VM provisioning layers
using the microkernel’s IPC services. The application will have to run with
sufficient privileges to implement the desired security services.

Thin hypervisor

Lastly, thin, single-guest hypervisors can be used to provide an ultra-low foot-
print monitoring and enforcement layer between hardware and OS software for
implementing security services. An extremely small code size can lead to eas-
ier verification and hopefully therefore stronger security and correctness. It
is important to consider what types of services can be implemented on which
hardware platforms, and still maintain the ultra-low footprint. In this thesis, we
are particularly interested in the possibilities of thin hypervisors on embedded
systems.
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2.7.5 Isolation-based services

We can now briefly examine some of the potential security services provided
by virtualization-based architectures, of which there are many. They can be
loosely divided into two categories – monitoring- and isolation-based services.
Monitoring-based services focus on observing, interpreting, and possibly re-
sponding to VM state, and may make heavy use of VM introspection. Isolation-
based services, on the other hand, leverage the hypervisor’s high privilege and
interposition capability to isolate and protect system components and enforce
system security. Note that this distinction is not precise, and other categoriza-
tions are possible.

We will describe some isolation-based services first.

Isolation architectures

Fig. 2.5: Domain isolation in a mobile device

While this section focuses on isolation-based security services, it is also worth
discussing the interesting possibilities for isolation architectures engendered by
virtualization. Although isolation of hosted domains is a given security advan-
tage in virtualization, it bears deeper investigation in specific contexts. For
example, in a system that contains important components and trusted and un-
trusted software, virtualization can be used to create a safer environment for the
trusted and critical components. Envision a mobile system containing trusted
cellular hardware (including the SIM card and cellular radio, which must be
safe from compromise), a trusted software stack that controls authentication
and the critical hardware, an untrusted software stack running user applica-
tions and accessing wireless networks (such as cellular, 802.11 or Bluetooth),
a trusted hardware and software component for decoding and protecting DRM
content, and possibly other components that must be protected (such as a mod-
ule for storing private user information). While these components may have
been initially contained in a single domain/OS, hence each vulnerable to any
compromise of the other, virtualization can support such a scenario by isolating
each component in its own domain[29] (see figure 2.5). The hypervisor-enforced
isolation protects each domain from the compromise of other components (and
potentially protecting each component from even a compromise of itself). The
hypervisor must provide secure communication facilities between domains, and
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possibly limit the communication to only what is needed to support functional
requirements. To illustrate the advantages with an example from [38]– if the
device’s Bluetooth implementation is compromised (Bluetooth has been known
to have security vulnerabilities[88]), user applications may be vulnerable, but
system authentication and the cellular radio will remain unharmed. Therefore,
virtualization can be used to partition a system into various isolated yet coop-
erative domains and thereby increase security for the system as a whole, also
reducing the TCB for the most important components.

Kernel code integrity

There are multiple research systems supporting kernel code integrity.
First off, we have SecVisor[91], an ultra-thin hypervisor (only 1100 lines of

code in the presence of Intel-VT or AMD-V) supporting a single guest, ensur-
ing that only approved code is ever executed in kernel mode and that kernel
code is not modified (except by SecVisor). The system uses IOMMU support
to prevent DMA writes to kernel code, page tables for memory protection, and
MMU support to virtualize guest OS memory to protect the page tables. All
hardware locations where kernel entry points are specified (such as the inter-
rupt vector table) are virtualized, so that SecVisor can always verify that kernel
entries will go to a valid kernel code location. When in kernel mode, user mode
pages are marked non-executable, and vice versa. This forces a trap when-
ever transitioning between modes, enabling SecVisor to switch the set of pages
marked non-executable. This trap also enables SecVisor to enforce, in the case
of transitioning from kernel code to user code, that the CPU switches to user
mode. (Therefore, a buffer overflow in the kernel can’t be made to execute shell-
code supplied by a malicious user process.) When marking pages executable,
SecVisor also marks them read-only, so that code that can be executed can’t
be modified. Furthermore, when entering kernel mode, SecVisor only marks
as executable those pages that are approved by the kernel code policy, so that
execution of non-approved code will trap.

A VMM-based kernel protection system, found in [124] and dubbed UCONKI
for usage control framework for kernel integrity, offers more flexibility. This
system provides an access control model based on subjects, objects, attributes,
rights, and events. Subjects include processes and loadable kernel modules, ob-
jects include kernel memory spaces and registers, attributes describe subjects
or objects, rights are actions on objects permissible by subjects, and events are
key points at which policy can be enforced by the system. Virtual machine in-
trospection techniques are used to determine subject attributes. Policy includes
predicates describing whether rights are to be granted or denied depending on
events, subjects, objects, and attributes. One interesting feature of the sys-
tem is that rights and attributes are dynamic and mutable with continuity –
meaning that if an event happens which changes a subject’s attributes, its cur-
rently granted access rights may be revoked. There may be cascading rights
evaluations from a single event. The authors successfully used the system to
summarily defeat a large collection of rootkits attempting to modify the kernel.
The flexibility of the system indicates it could be adapted and expanded for
further uses. In tests it was run on the Bochs emulator, but could be used with
other virtualization layers as well.
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Memory multi-shadowing

The Overshadow system[33] runs in a VMM and protects applications on a
guest OS from each other and from the guest OS itself by using multiple views
of guest application memory. To the application, the real view of memory is
presented. To other processes (including the OS), an encrypted and integrity-
protected view of the memory is presented. The crucial component in this
system is a protected shim that is inserted into protected applications at load
time – this shim is needed to identify and maintain the context of each protected
application, and is also used by the Overshadow system to handle complicated
operations such as marshalling system call arguments and return values to en-
able safe transition of data across the application-OS protection boundary. The
shim uses a hypercall interface to communicate directly with the VMM. Over-
shadow uses multiple page tables for an application (one with cleartext pages for
the application’s own use, one with ciphertext for the use of the rest of the sys-
tem), and any protected page will only be present in one page table at any given
time. Pages can be swapped to disk in encrypted state, and encrypted data can
be moved around by untrusted components. In one limited sense, Overshadow
is able to remove the OS from the application’s TCB, in that the OS can no
longer inspect or tamper with application memory pages. The Overshadow sys-
tem was built on a VMWare binary translation VMM, but it is pointed out that
a smaller, higher assurance VMM could have been used as well.

Another system dubbed Software-Privacy Preserving Platform (SP 3)[125]
(published at the same time as Overshadow, in March 2008) also protects data
secrecy for user applications, including memory pages and even registers (the
latter during context switches). However, unlike Overshadow, SP 3 instead relies
on extensions to the page table and emulation of a modified x86 interface in the
Xen hypervisor, and requires modification of guest code to utilize new virtual
instructions that prompt the hypervisor to invoke operations for creating and
managing protection domains. Fortunately, at least in the case of Linux, signif-
icant modifications to the guest OS were not required. Protection domains can
consist of one or more guest processes, and memory for a domain is encrypted
with a domain-specific set of keys. Furthermore, the hypervisor maintains a
cache of decrypted pages, to speed up memory accesses in cases when the page
has been already encrypted. So, while some features of this system are more
developed than Overshadow, it does require modification of guest code, which
Overshadow managed to avoid.

Protecting against a malicious OS

In a follow up[85] to Overshadow, it is pointed out that many virtualization-
based security architectures have focused on isolating applications and domains,
protecting memory, and other such services, but have not addressed “OS seman-
tics”. The authors highlight that in spite of Overshadow’s memory protection, it
won’t safeguard an application against its own vulnerabilities, nor can it prevent
a compromised and malicious OS from posing a serious threat. For example,
a malicious OS could grant multiple mutexes simultaneously, or simply refuse
to schedule a process, or carry out other nefarious activities that render appli-
cations useless. Therefore, the authors suggest and motivate more developed
system components that expand Overshadow’s model and take more aspects of
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security-critical functionality out of the hands of the OS, protecting applications
at the level of OS semantics.

I/O Security

BitVisor[92] is a thin hypervisor system that provides I/O security for a sin-
gle guest OS. It relies on modern virtualization hardware support (Intel VT or
AMD-V). For example, it uses IOMMU functionality to protect against DMA
attacks, and I/O instruction trapping bitmaps to configure which devices’ in-
structions will trap to the hypervisor. It implements its services via what it
terms parapass-through drivers – drivers that can be substantially smaller than
usual device drivers, since they only need to handle a small subset of normal
driver functionality, namely the control and data instructions. Handling the
control instructions enables BitVisor to observe device state, and handling the
data instructions enables it to perform security operations on the data. Such a
parapass-through driver resides in the hypervisor layer. Most I/O instructions
pass through the driver directly to the hardware, but the control and data in-
structions are specially handled. A test system was implemented using an ATA
parapass-through driver to perform encryption of stored data, a service that
could be provided regardless of the guest OS.

Componentization

The Nizza system[54] is based on a L4-microkernel variant and provides a way
to decompose an operating system and its applications into critical/secure and
non-critical components, reducing the TCB for applications and even removing
the OS from the TCB. Security critical components, such as for sealed storage,
cryptography, and ensuring application isolation within a GUI, are run as mi-
crokernel applications. These components are loaded by an additional “loader”
microkernel application. The guest OS may be paravirtualized to run on the
microkernel, or may run above a VM provisioning layer. Applications and the
guest OS then rely on the isolated, minimized microkernel components for secure
functionality. They connect to these services using the IPC interface exposed
by the microkernel.

The Nizza system does require potentially extensive modification to guest
software, but presents a compelling method of drastically reducing application
TCB. In comparison to the Nizza system, Overshadow attempts a similar (albeit
lesser) goal without requiring guest modification, which leads to more perfor-
mance and implementation challenges on the VMM side.

Mandatory Access Control

Mandatory Access Control (MAC) policies such as Bell LaPadula, the Biba in-
tegrity model, and the Chinese Wall model[12] can offer stronger security for
critical applications. With hypervisor-based MAC, the benefits of MAC can be
brought to existing systems and architectures, and enable greater security for
virtual domains. The sHype system[87] brings MAC to the Xen hypervisor. Its
granularity operates at the level of VMs and the shared VM resources (event
channels and shared memory) used by Xen guest device drivers, enabling the
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mentioned MAC policies and others to be applied to domains and their inter-
actions. This can facilitate a secure VM coalition as earlier described, where
domains cooperate securely to achieve the system goals.

The Xen Security Modules project[37] is still developing, and attempts to
modularize the application of MAC and other services for Xen. It provides a
common framework whereby different security services and models can be used
depending on the situation. For instance, it supports both sHype and Flask[98]
modules.

Instruction set virtualization

The Secure Virtual Architecture (SVA) system[39] presents an interesting design
where a hypervisor layer exports a type safe instruction set interface for carry-
ing out all the activities in the system. The interface is divided into SVA-Core
(which includes all instructions for typical computation, including logic, arith-
metic, memory allocation, function calls, branching, and other instructions) and
SVA-OS (consisting of privileged OS-only operations such as I/O and MMU con-
figuration that are typically implemented in assembler). All virtual machines
must use this interface. Operating systems that run in a virtual machine will
have to be ported in three steps:

1. Port the platform-dependent portions of the kernel, including all assembly
code, to use the SVA interface. The authors argue that this is acceptable
as a typical step for porting an OS, and furthermore may be easier for
SVA, since SVA’s interface is higher level and more abstract than typical
ISAs.

2. Make certain documented, specific changes to kernel memory allocators.

3. Optional modifications to the kernel to improve SVA performance.

Applications, on the other hand, typically need only be recompiled to take
advantage of the secure SVA-Core interface.

The system uses a “safety checking compiler” to compile guest code to pro-
duce SVA bytecode, whose safety properties are then checked at load time by a
Java-reminiscent “bytecode verifier”. This process can occur offline, combined
with digital signatures to authenticate the verification. A runtime translator
converts the bytecode into native machine instructions.

Since SVA can manage all critical system operations via its type safe in-
terface, it can provide security guarantees for the guest systems (even though
the guest kernel is probably written in C), including control flow integrity, type
safety for certain types of objects, array bounds safety, no dereferences of unini-
tialized pointers, and no double frees, among others.

In a sense, SVA is like “Java for operating systems” in that safety guaran-
tees are enforced and software isolated by a virtualization layer – but it is quite
interesting to consider how this system facilitates bringing such guarantees to
legacy systems implemented in unsafe languages with arguably reasonable port-
ing cost. It in effect creates a new interface layer between the ISA and the
ABI.
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2.7.6 Monitoring-based services

Now we shall discuss some monitoring-based services presented in research.
Monitoring services also leverage the hypervisor’s high privilege, but focus more
on observing, interpreting, and possibly responding to guest state. Monitoring
services may operate at a higher level of abstraction than isolation services, and
require knowledge and interpretation of higher level guest OS abstractions.

Attestation

Hypervisors, in their high-privilege position, can be used to attest to guest
code integrity and state. This, of course, aligns with the Trusted Computing
Group (TCG) and their architectures for remote attestation. An emerging po-
tential area for attestation is on mobile devices; the TCG has relased a mobile
platform specification[103], and virtualization may possibly be used to fulfill
this specification. While SELinux has already been used to do so[1, 126], to
our knowledge virtualization has not. Discussion on utilizing ARM TrustZone
technology to facilitate Trusted Computing is found in [122].

An early VMM-based system for attestation was Terra[45]. Terra, using a
“Trusted VMM” coupled with a management VM, supports open and closed
box domains, sealed storage, and remote code attestation for domains. If a do-
main is designated as closed-box, Terra gives it stronger isolation – in addition
to standard memory isolation, it will provide privacy and integrity protection
for stored data, thus sealing it off from observers. Closed-box domains can’t
even be examined by the system owner. A closed box domain can approximate
a proprietary closed box system such as a hardware component or custom em-
bedded system. Suggested examples of such systems are game consoles, ATMs
and mobile phones. Terra was implemented using VMWare GSX Server, with
a management VM that is charged with allocating resources (memory, disk, de-
vices) as well as setting up connections between VMs. It is remarked that, as
with Overshadow, a higher assurance VMM could be used in production envi-
ronments. Due to Terra’s support for closed-box domains and sealed storage, it
could be argued that it also provides isolation-based services, but it was placed
in the monitoring section due to its attestation and trusted computing emphasis.

Malware analysis

Numerous virtualization-based systems for malware analysis have been pre-
sented. Two examples will be discussed.

Firstly, the Patagonix system[70] is interesting because it attempts to dis-
pense with the semantic gap in a unique way. It tracks code execution by using
generic hardware mechanisms that remain consistent independent of any OS
differences. By setting the non-executable (NX) bit on all pages, any code ex-
ecution traps to the hypervisor, whereupon the page can be inspected. (Code
need only be inspected when it first runs, or after it is modified.) Hardware-
stored data such as addresses of page tables themselves is used to differentiate
between execution contexts. The system uses a database of known good binaries
(including Windows and Linux kernel binaries) to check the identity of executing
code. This database is the only aspect of the system that is OS-dependent, and
since it is decoupled from the implementation of the system (and it is arguably
much easier to acquire system binaries than to implement system-dependent
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logic), the system’s genericity and convenience is maintained. The results of
the identity checking are sent to the user, who can compare Patagonix’s re-
port on currently executing code with the report issued by the OS itself, and
thereby detect covert executions like rootkits. The system successfully detected
all rootkits tested on it. So long as a sufficient database of known-good binaries
for the guest in question is available, the system can support any guest.

Another system[61] offers broader malware detection support, but is more
heavily dependent on VM introspection. It uses VM introspection and seman-
tic reconstruction to capture the relevant state of an observed system (files,
processes, etc.). This state can be compared with the state reported by the
operating system to detect discrepancies. The semantic reconstruction facilities
also enable the system to run existing malware detection utilities externally on a
VM, potentially even facilitating the use of utilities written for one platform to
scan a different platform. The system can be run on multiple VMMs, including
Xen, VMware, UserMode Linux and QEMU.

Intrusion detection

Another natural virtualization monitoring service is intrusion detection. The
previously introduced Livewire system[46] was the seminal use of VM intro-
spection. It consists of a management VM, running both a policy engine and
a semantic reconstruction component that used standard crash dump utilities
on guest pages to analyze system state. A later system, Introvirt[62], supports
an interesting feature whereby exploit-specific predicates (possibly written by a
software patch author) can be used to provide perfect detection of the occur-
rence of the exploit. To bridge the semantic gap between predicates and guest
software, and enable predicates to be highly expressive, the system can execute
existing guest code (such as system calls or application functions) in the guest
address space. To prevent modification to guest state as a result of executing
the guest code, the system supports rollback functionality.

Forensics

Virtualization-based forensics services enable new possibilities for live forensics
analysis. While offline analysis can accommodate many forensics applications,
volatile and dynamic system state can only be obtained via live analysis of a
running system under attack. Traditionally however, live analysis presents diffi-
culties since the presence of the forensics investigator might be easily discerned
by an attacker, and other aspects of system state may be affected by the investi-
gator’s presence. In the previously cited system using the VIX toolkit[50], safe
live analysis is enabled via virtual machine isolation and introspection. The
system runs in a Xen administrative domain, and data is therefore gathered
externally to the monitored user VM. While the authors hope the system is un-
detectable, they acknowledge that using timing/performance analysis or other
similar circumstantial techniques an attacker may be able to conclude that the
system is being monitored. It has been suggested that running such a forensics
system on its own core in a multicore system might lessen the potential for
timing analysis, but it may still be necessary to “freeze” the monitored system
in certain moments to gather state information.
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Execution logging and replay

Another apt and canonical use of virtualization’s monitoring possibilities is to
log and replay VM execution. The ReVirt system[41] enables complete logging
and replay of VM execution, and since it is VMM-based, the logging will per-
sist in periods before, during, and after guest attacks. Then, if an attack is
discovered, the incident can be replayed in exactitude to ascertain its source,
cause, effects, and so on. It can also be used to generally audit system activities.
ReVirt can naturally enhance or be combined with intrusion detection, malware
analysis and forensics services.

To reconstruct execution completely, instruction by instruction, ReVirt must
log all non-deterministic events and data, and it does so with reasonable perfor-
mance. Non-deterministic events that must be logged include device input and
system interrupts – fortunately, such events can be handled by the VMM.

SMP-ReVirt[42] brings the same complete logging and replay functionality
to multiprocessor systems, and must deal with such challenges as shared mem-
ory (since the order of operations on such memory by different cores must be
preserved), which can introduce significant performance overhead over single-
processor ReVirt.

2.7.7 Alternatives

What other alternatives are out there for implementing security services in a
way that is isolated from yet with high-privilege visibility into the monitored
system? We have already mentioned Flask/SELinux as possible alternatives
([1, 126]), although we also saw with Xen Security Modules[37] that Flask may
complement rather than supplant virtualization.

Another possibility is enforcing security via FPGAs. [30] proposes a so-
lution where a FPGA is used to enforce a configurable security policy in a
high-performance hardware-based manner. Other dedicated hardware security
modules may be able to offer specific high-assurance security services, such
as storage or I/O encryption modules (as in the venerable BLACKER [115]),
tamperproof smart cards for a variety of cryptography and authentication appli-
cations, or TPMs[121] for sealed storage, attestation, and other uses. Of course,
any of these hardware solutions could also be combined with virtualization.

2.8 Summary

This chapter has introduced virtualization, covered in depth some important
principles behind virtualization, and shown different virtualization trends and
types. It has examined different types of hypervisors, typical virtualization use
cases, and general advantages that can be obtained with virtualization. The
chapter also takes a good look at modern virtualization hardware support, and
a quite thorough examination of security architectures that leverage virtualiza-
tion – including investigating the benefits, challenges, and limitations of virtu-
alization for security, and a study of security services implemented in research.
The chapter shows foremost that virtualization is a powerful and relevant tech-
nology, and a viable means by which to enhance system security in a variety of
ways. It also demonstrates that hardware support is truly critical and a great
aid for virtualization and security.



3. MULTICORE AND EMBEDDED SYSTEMS

In this chapter, we will discuss the characteristics of embedded systems and
multicore systems, and their relation to virtualization.

3.1 Embedded systems

An overview of embedded systems in relation to virtualization, including a dis-
cussion of traditional traits and incoming trends in embedded systems, is found
in [51]. Some of the main points will be summed up in the following two sub-
sections 3.1.1 and 3.1.2.

3.1.1 Traditional characteristics

Embedded systems are traditionally known by a number of traits. Firstly, they
are resource constrained, having limits on power, CPU performance, memory,
and/or any other such limitations. They may have real-time needs, in which
certain performance guarantees must be met to fulfill the responsibilities of
the system. They have typically been hardware-centric, with more functional-
ity in hardware than in software, and whatever software is present has often
been of minimal complexity. Embedded systems are traditionally closed and
proprietary, perhaps based on a custom hardware and software setup catered
specifically to the system at hand. The software portions are often static, unlike
frequently updated desktop computer systems. And another ruling principle is
heterogeneity – due to the broad number of tailored embedded applications and
systems, and their proprietary, custom nature, the embedded world is populated
with a great variety of hardware architectures and systems overall.

Embedded systems can clearly have very different requirements and at-
tributes than desktop or other systems. They may also have special robustness,
security, and tamperproofing needs, and may require special considerations in
their communications and interfaces with other systems.

3.1.2 Emerging trends

While some of their traditional characteristics may still hold, embedded systems
are changing rapidly in many ways. For instance, their software is increasing
in size and complexity, with millions of lines of code running in a smartphone
and gigabytes of software running in a car. Embedded systems are supporting
higher level development and traditional APIs, with developers with no previous
embedded experience authoring for embedded platforms (such as the iPhone).
From closed, proprietary systems, there is a growing trend to support open
and/or mainstream application-friendly OSes. The static nature of the software
stack is being replaced by a highly dynamic and complex picture. And, the
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ubiquity of embedded systems and their use in critical situations are increas-
ing. Therefore, the picture of embedded systems is changing, introducing new
challenges (including security challenges).

3.2 Virtualization and embedded systems

Virtualization, with its isolation and security benefits as well as its management-
oriented advantages, promises to bring great dividends to embedded systems,
addressing traditional and emerging needs.

3.2.1 Existing platforms

Embedded platforms are still lagging behind x86 platforms when it comes to
in-built virtualization support. The TrustZone architecture described earlier is
the only embedded system we know of that approaches a level of virtualiza-
tion support. However, this dearth of support has not stopped development of
embedded virtualization platforms.

Xen-ARM

The Xen-ARM project[123] brings the Xen hypervisor to the ARM architecture.
Initially described in [55], the implementation had to deal with several challenges
and limitations of the ARM architecture. For instance, the ARM architecture
only supported two privilege levels, so the lower user level was logically separated
into two privilege levels for the guest OS and applications. Memory protection
for the 3 required privilege modes (hypervisor, kernel, user) was achieved by
using 3 of ARM’s 16 available memory protection domains. Since the ARM
TLB didn’t support tagging when switching between address spaces, the system
was specially made to at least allow context switches vertically in the stack
(from guest application to guest kernel to hypervisor) without necessitating a
TLB flush. Additionally, the implementers attempted to make intelligent and
resourceful use of TLB lockdown entries that persist across a flush, allowing
oft-used hypervisor pages to stay in the TLB. Finally, to support virtualization
requirements and maintain performance, the system follows in traditional Xen
footsteps by requiring paravirtualization of the guest OS, which can simplify
many aspects including memory management.

L4 Microkernel

The L4 microkernel family[104] has also been ported to embedded platforms
such as ARM. As discussed, it can provide a base for virtualization support.

3.2.2 Companies

As further evidence that embedded virtualization is taking off, several companies
are now competing in the space.

First off, VMWare is planning offerings in the mobile virtualization area[112],
fueled by their purchase of Trango[10]. However, no concrete information is yet
available.
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VirtualLogix[107] offers a traditional hypervisor-based virtualization plat-
form for embedded and mobile systems. They apparently aim to support real-
time embedded OS requirements, and their website advertises their virtualiza-
tion platform as a strong way to secure a trusted system OS from an open
application OS. Detailed information on their closed platform is, however, hard
to come by.

Open Kernel Labs[76], on the other hand, base their products on open source
L4 microkernels, and encourage open development. Via the L4 microkernel,
they support virtualization, and also aim for interesting Nizza-like architectures
based on “hypercells” that enable the partitioning of many different system
resources into separate domains[75].

In a repeat of the microkernel vs. VMM debate waged in [49, 53], Open
Kernel Labs and VirtualLogix have argued over the merit of their respective
approaches to virtualization. A paper by VirtualLogix associates[20] criticized
microkernels and presented negative performance test results, while in a multi-
part blog response Gernot Heiser of Open Kernel Labs decried the paper’s con-
clusions and methods[52]. While clearly about angling for competitive advan-
tage, these exchanges emphasize that there are differences between microkernels
and hypervisors, with different benefits and drawbacks, that must be considered
in context. For instance, microkernels may be much smaller than a hypervisor,
and thus higher assurance, but using a microkernel may require more extensive
paravirtualization of guest software, and leveraging more potential microker-
nel benefits such as finely partitioning system functionality may require even
more software modification. Additionally, hypervisors are closely tied to the
hardware, and present a hardware-like interface to guests, whereas microkernels
present a small number of low level OS abstractions. This means that microker-
nels may duplicate some functionality that will be implemented again by guest
OSs, and that a hypervisor may present a more familiar interface to guests, but
it also means that architectures built atop microkernels might have the potential
to be more platform or hardware independent.

3.2.3 Applications

Numerous applications for embedded virtualization have been suggested and/or
implemented.

In [51], Heiser suggests the following potential uses:

• Supporting heterogeneous operating system environments. For instance,
a device might combine a proprietary, legacy, real-time software stack of
millions of lines of code with a similarly large application OS like Windows,
Linux, or Symbian. The VMM can ensure real-time priority to the legacy
stack, and lesser priority to the application OS.

• In the fast-changing world of embedded hardware, virtualization can ab-
stract hardware architecture, and also enable software to move between
multicore and single core platforms.

• Of special note is virtualization’s potential to abstract and manage forth-
coming many-core hardware platforms, such as Tilera’s Tile64 [102].

• Of course, virtualization can support security in embedded systems as
it can on other systems, and can especially apply in the previously given
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example of partitioning embedded/mobile systems into domains to protect
the various system stakeholders (operator, user, protected content owner).
With these new scenarios where components cooperate but must protect
the interests of various parties, virtualization can provide such protection.

• Supporting new methods of application distribution. Via virtualization,
an entire specialized software stack can be distributed as one package,
and run in either a virtual machine or as a microkernel application. For
instance, a multitasking real time application using a minimal FreeRTOS
scheduler[44] or something similar can be distributed as a self-contained
binary to be run in a VM.

In [38], the authors likewise suggest a number of potential applications:

• System security, as already discussed.

• Security services, including for instance the isolation and monitoring ser-
vices described earlier.

• Mobile testbeds, where a VM conducting experimentation or otherwise
processing test data is run in the background on a virtualization-capable
device. This allows researchers to take advantage of mobile networks and
environments in their testing, and the research VM will be isolated from
other device domains, but it still requires some thought as to protecting
the privacy of the device owner should the research VM process data such
as phone location or other revealing information.

• Opportunistic sensor networks, where a sensor VM migrates to support-
ing nearby mobile/embedded devices. This again requires thought as to
how to protect the user’s privacy, and also to prevent the opportunistic
migration path from becoming a malware or otherwise malicious vector.

In [29], the authors discuss similar potential applications, notably including
system security and the potential to safely support new and popular open mo-
bile operating systems alongside other closed stacks and modules. They also
highlight the potential for virtualization to ease embedded development pro-
cesses, quickening time to market by abstracting the heterogeneity of embedded
platforms and enabling developers to focus on a reduced common environment.

Recommendations from the Open and Secure Terminal Initiative (OSTI)[59]
and Open Mobile Terminal Platform (OMTP) project[78, 77] also delve into
the system security potential for embedded virtualization, focusing on isolation,
recommending architectures where the legacy/operator OS is isolated from the
open/application OS. The fact that large industry players, such as Intel behind
OSTI and AT&T, Vodafone, and Orange as members of OMTP, are supporting
embedded virtualization is further evidence of its arrival in the market and the
industry.

Finally, as an example of a specific security service, a multilevel MAC-based
architecture for embedded virtualization is described in [69]. The system is built
on Xen-ARM, and is based on the aforementioned sHype system. Furthermore,
it attempted to deal with specific embedded considerations, such as the need for
minimal performance overhead, the potential for a malicious domain to cause
denial of service by draining device power and resources, the potential for ma-
licious DRM tampering, and the need for protected mobile financial services.
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There are undoubtedly more potential applications waiting to be explored.
Virtualization can provide solutions to deal with traditional embedded con-
cerns, such as need for securely protected systems, different proprietary software
stacks, heterogeneous hardare, and real time processing, and can also deal with
emerging embedded systems needs, such as newer security concerns, needs for
multi-stakeholder systems, securing systems that require open OSs, enabling
dynamic and flexible software distribution, and abstracting the complex and
evolving hardware scene (especially in the context of multicore and many-core).
Questions include how virtualization hardware support can and should be ex-
panded for embedded systems, how virtualization platforms can maintain ade-
quate performance on embedded systems, what virtualization approaches (par-
avirtualization, binary translation, previrtualization, hardware support) and
design patterns are most apt, how virtualization can best support embedded
multicore, and what virtualization-based security services can and should be
supported on embedded systems.

3.3 Multicore systems

3.3.1 Why multicore?

An excellent overview of multicore hardware today, including hardware and soft-
ware concerns and challenges, is found in [27]. Additionally, [83] also discusses
contemporary multicore developments, and furthermore merges the discussion
with a description of virtualization concerns and opportunities on multicore.

As noted in [27, 83] and elsewhere, the advent of ubiquitous multicore is
due to the megahertz plateau in CPU development. Heat and power consump-
tion curves increase beyond tractable levels when CPU clock speeds are pushed
beyond their current, leveling-off capabilities. New methods were needed to
increase performance, among them the following (as described in [27, 83]:

• Increase the L2 cache size. The benefits of this strategy can only be as
great as the losses due to L2 cache misses, which vary from context to
context. Note that increasing L1 cache size is not recommended, since
making the L1 cache too large would have a negative impact on clock
frequency.

• Exploit instruction level parallelism (ILP) by having the CPU execute
parallelizable instructions simultaneously. The benefits of this technique
are limited by the inherenet parallelism in the instruction set and the
executing program, and it must be balanced with the resultant complexity
in hardware needed to detect and exploit ILP.

• Increase use of pipelining, wherein multiple instructions are piped through
the different stages of an execution cycle one after the other, so that
overall throughput is increased. Multiple instructions can be active in
different stages of processing, instead of the processor having to complete
the execution of an instruction before starting a new one. However, this
approach can increase processor complexity, as well as increase the time
for a single instruction to be processed.
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• Simultaneous multithreading (SMT), also called Hyperthreading on Intel
platforms, where a single core with multiple functional units can execute
multiple threads simultaneously.

• Multicore CPUs, where multiple cores are located on a single chip.

All these techniques have of course been used. This thesis focuses on the
issues and opportunities arising from multicore hardware (which often includes
use of SMT, ILP, pipelining, and increased cache sizes).

In particular, also noted by [27, 83] and elsewhere, multicore CPUs cre-
ate challenges for both software and hardware. The dominant Von Neumann
hardware architecture, with a uniform memory space accompanied by input,
output, and a sequential processing unit, lends itself to single processor sys-
tems. The creators of the Barrelfish multicore operating system agree that OS
designers, in spite of the considerable differences between multicore and single
core hardware, still think of systems in a Von Neumann way (in part due to
the continuance of laborious cache coherence mechanisms) – continuing to see
a system with a uniform computation and memory architecture[25]. There are
many new hardware-related questions that must be addressed in order to create
efficient and suitable multicore systems. In addition, common software devel-
opment models, as an outgrowth of the sequential Von Neumann instruction
architecture, are not well suited to parallel programming. Software develop-
ers in general do not have the tools or knowledge to leverage parallelism in
most types of software, presenting a formidable obstacle to the fruitful use of
multicore hardware. The following subsections will discuss these issues.

3.3.2 Hardware considerations

In some situations, multicore hardware might seem to be a simple extension of
single core. For example, in a basic dual-core situation, the two cores might
have private L1 caches, but share the L2 cache and the communication inter-
faces. The rest of the system might be the same. However, as system complexity
increases, such as in a many-core hardware platform like Tilera’s TilePro64[102],
a broad spectrum of issues come to light. A range of hardware concerns in mul-
ticore systems is illustrated in [27, section 2.1], and summarized in the following
subsections.

Core count and complexity

The number of cores that a system should have is directly related to the par-
allelism in the expected workload. If performance gain for adding cores is not
linear, it is most likely better to focus on increasing the performance capacity
of each of a few cores. If on the other hand performance gain for adding cores
is expected to be linear, then more cores are most welcome. However, here an
interesting phenomenon takes hold, where the spatial area of the chip must be
considered – performance gains resultant from adding any complexity to the
chip must be proportional to the increase in chip spatial area (that is, the gain
should be at least as substantial as the area increase), or else the better path is
to simply add additional chips. This concern is only the first way in which we
will see that physical size and layout affect multicore systems.
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Core heterogeneity

Cores in a multicore system may be homogeneous (identical) or heterogeneous
by design. There may also be a distinction where cores implement the same
instruction set, but have differing assemblies of functional units or other com-
ponents. For generic, non-specialized workloads, fully homogeneous cores (as
found in Intel or Tilera processors) are advisable. However, in specialized cases
where the workload is expected to have characteristics appropriate to multiple
architectures, heterogeneity may be beneficial. The Cell processor[120] is an
example in which some cores use different instruction sets than others. A com-
mon pattern in large heterogeneous core systems is to have a small number of
high performance cores that execute generic, non-parallelizable workloads, and
a large number of small cores usable for highly parallel workloads. It must be
noted that core heterogeneity can greatly complicate software development, and
taking full advantage of the available core palette can be challenging.

Core heterogeneity in general is more common in embedded systems than
desktop systems.

Memory hierarchy

Memory hierarchy becomes considerably more complicated in a multicore sce-
nario. Cores may have internal memory for their own use, and they typically
still have a private L1 cache. But should cores share an L2 cache, or have pri-
vate L2 caches as well? Should they share an L3 cache? How many cores should
share each cache? Shared caches can result in better utilization of hardware,
and may create performance gains in situations where cores are sharing loads or
in other such circumstances, but sharing requires more costly external (off-core)
communication, and may hurt performance in other scenarios. It also decreases
inherent isolation between cores (which may be a security or reliability concern).
Additionally, the less cache sharing, the more complex the coherency mainte-
nance mechanisms must be – if each core has a fully private, multi-megabyte
L2 cache, and the system has many cores, maintaining coherency can be daunt-
ing. On the other hand, sharing a cache between too many cores also becomes
complicated and costly. The problems will only increase with the number of
cores.

The Tile64 is an example of a multicore CPU where each CPU in an eight
by eight mesh has its own L2 cache, and the chip even supports an additional
“dynamic distributed cache” (DDC) comprising the caches of a core’s neighbors
[102].

Interconnects (core communication)

Cores in a multicore system need to communicate with each other. A primary
reason is to support cache coherency. We will not go in depth into the various
possibilities for core interconnection (such as crossbars, rings, meshes, and hier-
archies) here, but as with other aspects, the challenges of core interconnection
increase with the number of cores, and physical layout of the cores can become
an important consideration.
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Extended instruction sets

The x86 instruction set is firmly in place, and isn’t going anywhere[83]; hence,
though x86 may not have been intended to support multicore from the be-
ginning, it is necessary now to use expanded instructions that can support
multicore. In general, if an ISA must continue to be used on multicore hard-
ware, it may be necessary to upgrade it with special instructions to support
multicore operations, especially specific instructions relevant to implementing
shared/transactional memory[27, section 2.3.1] or low-latency message passing.
For instance, memory shuffling instructions that can atomically read a location
value and set a new value based on a test predicate can be useful for synchro-
nization.

Other concerns

Other issues, including how the main system memory will be laid out and inter-
face with the cores, and maintain sufficient bandwidth to the cores, as well as
how many simultaneous threads to support on each core, are other important
concerns with their own tradeoffs. For instance, supporting more simultane-
ous threads on a core can increase the number of cache misses (since multiple
threads compete for the cache), but can overall increase performance and utiliza-
tion since the core’s processing components will be used by other threads when
a thread must wait for a cache miss to be filled. Regarding memory interfaces,
in some cases with large numbers of cores, it may even become beneficial to
forego the traditional strategy of having external interfaces along the periphery
of the chip and instead stack chips in a 3D manner[71].

3.3.3 Software considerations

Some would say that software is at the heart of the multicore problem, since all
the advanced hardware in the world isn’t going to help if software isn’t written
to utilize multicore capabilities. Software concerns in multicore systems are
discussed in [27, section 2.2], and summarized in the followikng subsections.

Programming models

The dominant imperative programming model, where instruction after instruc-
tion, function after function are executed in sequence without easy support for
concurrent programming and synchronization and safe sharing of data, must be
evolved to suport multicore. But concurrency and synchronization are not sim-
ple tasks – for instance, concurrency vulnerabilities have been discovered in sys-
tem call wrappers (system call interposition layers/reference monitors intended
to support security) due to improper synchronization between the wrappers and
the system calls, among other causes[114].

A general strategy for how to handle interprocess (inter-core) cooperation
and concurrent programming must be settled on. The fundamental mechanism
can be something along the lines of shared memory, where cores synchronize and
share access to regions of memory, or message passing. Message passing may be
more useful in situations where cores are more widely distributed and do not
have easy access to shared physical memory. If software such as the OS kernel
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is to run on multiple cores, special care must be taken when synchronizing its
data.

Firstly, though, one must note that programming may indeed proceed using
the standard sequential model, should a compiler be available that can auto-
matically extract parallelism. However, the parallelism to be found in common
programs may be quite minimal, not to mention difficult for a compiler to dis-
cover and articulate. Therefore, it is most likely needed to proceed with other
approaches.

There are many programming models available to support concurrency and
parallelism. The dominant model is kernel threads (such as pthreads on Unix).
Kernel threads are supported by the OS, and hence are expensive to create and
destroy. They may need to synchronize with other threads using mutexes or
other synchronization primitives or strategies. Kernel threads are a low level
primitive, and thus suitable for expert implmentation – including implementa-
tion of additional higher-level programming models.

User-level threads, as opposed to kernel threads, are created and managed
by user-level processes. This can make them less expensive than kernel threads.
However, they are far less common than kernel threads.

In the single-program, multiple data (SPMD) model, the program is meant
to be run identically in multiple threads on multiple collections of data. This
model could be seen as a master with worker threads, where the master sends
data to a force of identical workers who operate on the data in parallel. It may
be that the parallel workers collectively contribute to a greater result, requiring
concurrent operation. OpenMP is a programming language extension that was
originally implemented to support this model[40].

The task programming model is slightly different, in that a task is an inde-
pendent unit of work that may be executed in parallel, but doesn’t have to be.
Cilk is a task-oriented extension to the C programming language[11].

Domain-specific languages, as opposed to generic languages like C, C++, and
Java, may provide a deft approach to extracting parallelism from a workload,
in that the specific parallelizable qualities of the workload can be brought out
and facilitated by the language.

Although there are clearly many alternatives for paralell programming, most
development uses kernel threads (and that only minimally), and the overall
mentality of most software development is, understandbly, grounded in the se-
quential model.

Programming tools

Programming tools, including languages and debugging support, must meet the
challenge of multicore, multithreaded development.

Debugging of course becomes instantly more complex if there are multiple
execution contexts in a program. Concurrent programming gives rise to non-
determinism as well as new error classes such as deadlock. Debuggers meant for
single-threaded development may be insufficient to deal with such complexity,
and programmers used to single-threaded development may not know how to
debug multithreaded programs.

Programming languages need to evolve to support multithreaded, multicore-
friendly development. As mentioned, extensions such as OpenMP and Cilk pro-
vide high-level mechanisms for leveraging multicore parallelization. A difficulty
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here is that fundamental change of programming languages and models takes
significant time, and multicore hardware, unfortunately, is being introduced into
a legacy world filled with single-threaded code and mentality.

Locality

The easy accessibility of memory to cores, whether from caches or system mem-
ory, is essential for performance. The more that cores can be made to reference
locally accessible memory, the higher performance that can be attained. Differ-
ent strategies can increase locality within a specific core, or within an entire chip,
with different tradeoffs. For example, if memory locality can be increased within
a chip, this might result in more communication between cores within the chip
as they share their caches, but less communication off the chip, the latter type
of communication being more expensive. Multicore systems in the future seem
to be heading towards more Non-Uniform Memory Architecture (NUMA)-like
architectures, where physical memory is more closely associated with individual
multicore CPUs, in an effort to enhance locality[83].

Load-balancing and scheduling

Scheduling of threads (including when and how often they are scheduled and
how they are distributed among cores) is clearly an important challenge in multi-
core. Different scheduling policies can greatly influence system performance and
properties, including (of course) locality. Scheduling must also be considered in
higher level models like tasks, where threads are but an underlying entity.

3.3.4 Interesting multicore architectures

The Barrelfish multikernel

The Barrelfish operating system[89, 25, 24] is intended to deal with both increas-
ing system heterogeneity and the distributed nature of multicore hardware. The
authors argue that OSs are still being developed as if they are to be run on uni-
form CPU and memory architectures, but they need to be rewritten to function
well on, take advantage of and scale on new multicore hardware. Addition-
ally, with continual rapid, dynamic shifts in hardware technologies, increasing
core counts, and massive amounts of variety present in cores, devices, mem-
ory hierarchies, core interconnects, and other hardware aspects, it is difficult
for designers to optimize for certain system configurations. Greater flexibility
and management of diversity is required. To achieve this, Barrelfish acknowl-
edges modern computer systems as networked enviornments in their own right
and attempts to integrate distributed systems lessons in supporting dynamic, di-
verse, adaptable, scalable systems. Introducing the concept of a multikernel[24],
Barrelfish treats cores as indepedent, isolated, distributed entities, capable of
running independent software stacks and communicating with each other via
message passing/IPC. It is capable of managing heterogeneous cores. The au-
thors argue that handling shared state via message passing is less expensive than
using shared memory, and that by making the OS implementation as indepen-
dent as possible from the specifics of hardware implementation, it can remain
easily adaptable and scalable to new architectures. (Only the message passing
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mechanisms and the device- and CPU- specific interfaces are tailored to specific
hardware.)

In a multikernel model, each core is intended to be a truly independent entity.
In the Barrelfish multikernel, each core has its own independent CPU driver
running in privileged mode. CPU drivers share no state with each other. This
minimal driver is non-preemptible, and processes traps and interrupts in serial.
It does not perform inter-core communication. A user-level monitor process also
runs on each core, and is responsible for communicating with other cores and
the system and maintaining its own copies of any global system state. Processes
in Barrelfish are unconventionally implemented as a collection of “dispatcher”
objects. A process has dispatchers situated on each core upon which it might
execute. The CPU drivers schedule the dispatchers, and then a dispatcher runs
its own user-level thread scheduling on its own core.

Configurable isolation

With cores sharing components such as caches, core interconnects, and external
communication interfaces, multicore hardware presents the potential for isola-
tion problems. This may result in security issues, where state leaks between
execution contexts. It may also result in reliability issues, since a failure in one
core (or its components) may cascade into a failure in another core. Further-
more, as hardware feature size and the space between components decreases,
the likelihood for hardware failure increases[9, 116], meaning that in today’s
chips there is more risk for such hardware failures. Therefore, in [9], the au-
thors propose a configurable isolation model where cores can be configured as
fully isolated from each other and not sharing any unnecessary components in
critical scenarios, or can be allowed to share resources in the usual way in com-
mon scenarios. The authors point out the need for fault isolation, detection,
and repair, and argue that such a configurable isolation system would support
scenarios where either speed or reliability are important concerns.

Mixed-Mode Multicore reliability

For the same reasons, the authors in [116] provide a system for making flexible
use of dual-modular redundancy (DMR), in which a process is run simultae-
nously on multiple cores in order to achieve greater robustness. The contribu-
tion of the research is Mixed-Mode Multicore reliability (MMM). On traditional
DMR systems, everything runs in DMR mode, which can be expensive. Under
MMM, only critical processes are run in DMR mode, while non-critical processes
can execute normally. As with the configurable isolation proposal, this system
enables users to take advantage of robustness or performance, depending on the
needs of the situation.

3.4 Multicore and virtualization

As mentioned, a discussion of multicore and virtualization can be found in [83].
The article highlights how virtualization provides a promising path for scalabli-
tiy – indeed, if software cannot generally be adapted to parallel models, then
at least utilization of multicore hardware can be achieved by housing multiple
independent systems on it. It also emphasizes that virtualization is good for
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locality – if a virtual machine is assigned to a single chip or core, then its locality
to that chip or core will increase. Finally, it mentions that I/O requirements will
be more complex and critical in a multicore virtualization scenario, requiring
channel and device assignments for cores and VMs. Fortunately, I/O hardware
support (Intel VT-d and AMD-IOMMU) seems to be rising to the challenge.

Overall, virtualization seems like an apt way to leverage multicore hard-
ware. Multiple VMs can be hosted on a system, and users may benefit from
adopting a new architectural perspective, where they divide their system into
categorized and trusted/untrusted domains (for example, one domain for finan-
cial applications, one for games, one for office work, etc.). It has already been
mentioned how virtualization can abstract hardware differences, and thus facili-
tiate smoother transitions between platforms as hardware evolves. It appears a
big win, so to speak.

However, before jumping ahead, we must consider some important issues.
First, how does this affect the security of the system? With more complex
hardware and software, is it more likely that the system will host critical vul-
nerabilities? Will the potential isolation and reliability difficulties in multicore
engender security liabilities? Furthermore, hypervisors must be explicitly de-
signed (and made more complex) to support multicore. These changes may
make the hypervisor – the base of the system TCB – harder to verify. For ex-
ample, the seL4 microkernel, as we saw, is formally verified, but only for a single
core environment! What kind of multicore support does a particular hypervisor
offer? How good is it at promoting fair and efficient scheduling, and locality?
One can’t sidestep these issues when looking to multicore virtualization.

3.4.1 Multicore virtualization architectures

There are a number of architectures in research that are specifically intended
to enhance system potential via multicore and virtualization. In this section we
wil discuss two of them.

Managing dynamic heterogeneity

For example, the authors of [117] (who were also behind the MMM system
above) propose a system addressing an interesting problem. They point out
that even if a multicore system has physically homogeneous cores, those cores
can exhibit widely varying runtime characteristics, making them in effect het-
erogeneous. These characteristics can include thermal state, other hardware
strain, cache and TLB contents, and potentially other aspects, and altogether
this runtime heterogeneity can have a sizble impact on performance. The pro-
posed system is a thin hypervisor meant to run directly on the hardware and
abstract and manage this multicore dynamic heterogeneity, and thereby increase
overall system performance. The hypervisor can support different nummbers of
virtual cores than there are real cores, and can be run below a guest OS or a tra-
ditional hypervisor and thereby manage the heterogeneity for virtual machines.
The virtualization layer can also support MMM.

Sidecore

Another interesting architecture is Sidecore[66], whose authors make the obser-
vation that VM entries and exits are expensive even with hardware support,
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and offer a solution to this problem that leverages multicore hardware. They
describe a system whereby the VMM functionality is partitioned and partially
assigned to specific cores in a multicore system. Then, those cores (termed
sidecores) will always run in VMM mode, thereby removing the need for VM
entries and exits for those cores. By using sidecalls for certain tasks, guest
VMs or system devices can communicate with the sidecores, rather than per-
form costly VM entries and exits to enter VMM mode themselves. The paper
includes experimental results highlighting the performance advantages of imple-
menting an operation via sidecalls instead of typical VM entries and exits.

The authors also cite many other supporting influences that facilitate or jus-
tify this sort of architecture. For instance, it is reasonably argued that having
cores specialize on portions of the VMM will increase locality. They also sug-
gest that, as in [65], assigning certain functionality to specialized heterogeneous
cores can increase performance, and that assigning cores will simplify and en-
hance scalability for I/O in multicore virtualization systems. Finally, they cite
evidence that multicore architecture is moving towards high-performance inter-
core communication[86], as in AMD HyperTransport[6] and Intel QuickPath[58],
which will further improve the inter-core communication latency of sidecore-
inspired architectures.

3.5 Embedded multicore systems

As one might expect, the multicore embedded market is set for large growth, but
embedded software must be rewritten to take advantage of multicore hardware[34].
There are many multicore embedded architectures available, including ARM1,
MIPS2, and Freescale (Power)3, in addition to the previsouly mentioned Tilera.

3.5.1 Virtualization and embedded multicore

Given that embedded systems are heading to multicore, virtualization can help.
As already mentioned in this thesis (and discussed in [51]), virtualization can
abstract hardware hetereogeneity and changes, thus enabling embedded software
to more easily transition to new multicore platforms. Virtualization can also
potentially help embedded systems make intelligent use of multicore hardware,
assigning system components and balancing load across cores and/or minimizing
power usage as dictated by system constraints. In this way legacy embedded
software that is ignorant of multicore can still benefit from multicore hardware.

In fact, from a security standpoint, it is critical that embedded hypervisors
support multicore and are able to intelligently handle its complexity, so that
isolative security architectures and other valuable services can still be supported.
While challenging enough to support multicore complexity on desktop systems,
hypervisors and security services must deal with embedded system attributes
– lack of hardware support for virtualization, limited system resources, wider
variation in hardware, and other such issues that complicate implementation.

Regarding embedded multicore hardware support for virtualization, the only
player is, again, TrustZone – for example, the ARM Cortex-A9 MPCore can
support up to 4 cores, each offering TrustZone features. Some question remains,

1 http://www.arm.com/products/CPUs/ARMCortex-A9_MPCore.html
2 http://www.mips.com/products/processors/32-64-bit-cores/mips32-1004k/
3 http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=P4040&fsrch=1

http://www.arm.com/products/CPUs/ARMCortex-A9_MPCore.html
http://www.mips.com/products/processors/32-64-bit-cores/mips32-1004k/
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=P4040&fsrch=1
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however, as to how effective TrustZone is for supporting full virtualization with
multiple virtual machines. In general, more virtualization hardware support
could be helpful for embedded scenarios, at least in generic cases where open or
application based OSs and/or non-specific workloads are expected – in extremely
particular scenarios, with proprietary software stacks, it may be that para- or
pre-virtualization or binary translation offer implementers better solutions than
generic hardware support.

An embedded hypervisor stands at a unique position to both facilitate mul-
ticore hardware utilization and enforce security, but in so doing it may be forced
to bear the brunt of the mutlicore burden, having to support and abstract widely
varying and fast changing embedded multicore hardware (potentially without
strong virtualization hardware support).

3.6 Summary

This chapter has performed a study of embedded and multicore systems, and
their relation to virtualization and security. It has demonstrated that hetero-
geneous embedded systems are increasingly in need of security, and that vir-
tualization is quickly gaining prominence in the embedded world and is being
used to provide embedded security. It has also demonstrated that multicore is
on the rise, even in the embedded space, and brings with it a number of inter-
esting challenges and opportunities, especially in the context of virtualization.
The chapter shows that when developing on multicore hardware, it is critical
to remain cognizant of sundry multicore issues, especially when developing a
low level system like a hypervisor. Together with Chapter 2, this chapter mo-
tivates the need for further harnessing the use of virtualization in embedded
systems – primarily for security, but also as a means to abstract and manage
hardware complexity and heterogeneity, and to potentially facilitate utilization
of multicore.



4. THIN HYPERVISORS ON ARM ARCHITECTURE

In this thesis, we have expressed an intent to explore and develop possibilities
for thin hypervisor-based security architectures on embedded systems. This is
clearly an immense research topic that extends far beyond the scope of a master’s
thesis. However, to provide a good start and foundation for futher research,
we intend to implement a basic thin hypervisor on a single core embedded
hardware platform, to host a guest operating system above it, and to experiment
with different possible security protections provided by the hypervisor. This
basic thin hypervisor will provide a platform for implementation and testing,
evaluation of constraints and possibilities for embedded thin hypervisors, and
assessment of challenges and opportunities for future work. Therefore, this
thesis represents a first step in a larger effort.

To facilitate this research, we will ground our efforts in a specific embed-
ded architecture – the ARMv5 architecture – and even a specific CPU, the
ARM926EJ-S. While not the newest variant, ARMv5 architecture is still quite
common. Moreover, since hardware support for virtualization in embedded sys-
tems is scarce (again, to our knowledge, only even partially available in ARM
TrustZone processors), it makes sense to focus initial efforts on a platform with-
out such support. Furthermore, the cost of ARM TrustZone CPUs is prohibitive,
while ARMv5 architecture CPUs (including the ARM926EJ-S and others) can
be easily and flexibly simulated using free Open Virtual Platforms (OVP) simu-
lation tools[79], which enable the construction of simulated platforms containing
various CPUs, devices, memory, and busses arranged in flexible configurations.
Therefore, we will focus on the ARMv5 architecture, but also offer comparisons
with TrustZone to facilitate transition or later applications. Additionally, while
in this thesis we will focus on a single processor with a single core, we will offer
suggestions based on our experience for expanding thin hypervisor support to
multiple processors/cores.

Additionally, for a guest OS, we will use FreeRTOS[44], an extremely small,
task-based, widely ported, real-time multitasking kernel for embedded systems.
We chose FreeRTOS because of its simplicity and popularity, as well as for its
preemptive multitasking scheduler. Using a small, manageable kernel that is
less burdensome and complex than a mainstream OS kernel will increase the
likelihood of achieving interesting results appropriate for a first-step project.

This chapter will set the stage for implementation by discussing essential
foundational issues, and outlining implementation concerns and approaches. To
begin with, section 4.1 offers a short description of key points of the ARMv5
architecture. We will also provide a brief comparison with more advanced ARM
TrustZone CPUs. Next, we will describe the FreeRTOS kernel in section 4.2. A
discussion of concerns and strategies for implementing thin hypervisors in gen-
eral on the ARMv5 architecture (as well as specifically for FreeRTOS) follows in
section 4.3. As in section 4.1, we will briefly cover salient differences in possible
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approach with a TrustZone CPU. Finally, in section 4.4 we will examine a few
potential security services to be supported by embedded thin hypervisors, dis-
cussing how such existing virtualization-based security services could be ported
and adapted to a thin hypervisor on ARMv5. Likewise, we will identify oppor-
tunities and challenges for porting said services to TrustZone CPUs.

4.1 ARMv5 Architecture

The ARMv5 architecture, and specifically the ARM926EJ-S CPU, are described
in [15, 94] and [16], respectively. Here we will provide a brief overview of some
of the important aspects.

4.1.1 Operating modes

There are 7 operating modes in ARMv5, as described in table 4.1. Each oper-
ating mode is entered on different occasions and serves different purposes. User
(usr) mode is non-privileged, while all other modes are privileged. Access to
certain registers and instructions, as well as access to protected memory regions
if an MMU is used, requires operation in privileged mode.

Mode Mode number Description
User (usr) 0b10000 (0x10) User execution mode
FIQ (fiq) 0b10001 (0x11) Fast, high priority external interrupt

mode
IRQ (irq) 0b10010 (0x12) Normal priority external interrupt

mode
Supervisor (svc) 0b10011 (0x13) For software interrupts (system calls)

and other OS kernel activities
Abort (abt) 0b10111 (0x17) For memory faults
Undefined (und) 0b11011 (0x1b) For handling undefined instructions

(which facilitates emulation, and in-
struction set expansion)

System (sys) 0b11111 (0x1f) For other privileged OS kernel opera-
tions

Tab. 4.1: ARMv5 operating modes

4.1.2 Exceptions and exception handlers

There are also seven types of exceptions, each of which trigger transition to
a specific mode. Exception types are described in table 4.2. Reset, FIQ and
IRQ interrupts are triggered by signals on external CPU ports. Software inter-
rupts, used for system calls, are trigered by the non-privileged SWI instruction.
Prefetch and data aborts are triggered by the MMU coprocessor as it checks
memory access attempts. Undefined instruction exceptions are triggered by the
CPU attempting to execute an unknown or malformed instruction, or a privi-
leged instruction from a user mode.

When an exception occurs, the CPU halts current execution and switches to
the appropriate operating mode. The CPU branches to a set location called an
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“exception vector” that is specific to the exception type. An exception vector is
a specific location in memory, part of an “exception vector table”, and usually
contains an instruction that transfers execution to an exception handler. The
exception vector table is usually located at address 0x0 in memory. Each 4
byte entry in the table is an exception vector for one of the seven exception
types. The exception vector table should be initialized at system startup. The
addresses of the exception vector for each exception type are also shown in table
4.2.

Exception Traps to mode Vector address
Reset (resets the CPU) svc 0x00000000
Undefined instruction execution und 0x00000004
Software interrupt (via SWI instruction) svc 0x00000008
Prefetch abort (instruction fetch memory
fault)

abt 0x0000000C

Data abort (data access memory fault) abt 0x00000010
IRQ (normal interrupt) irq 0x00000018
FIQ (fast, high priority interrupt) fiq 0x0000001C

Tab. 4.2: ARMv5 exceptions

4.1.3 Registers

The ARM architecture has 16 general purpose registers, designated r0 - r15.
However, three of these registers are designated for special usage, as described
in table 4.3.

Register Special purpose
r13 Stack Pointer (SP).
r14 Link Register (LR). Holds return addresses for

branch instructions and exceptions.
r15 Accesses the program counter (PC).

Tab. 4.3: ARMv5 “special” general purpose registers.

Some operating modes have their own instances of certain general purpose
registers. fiq mode has its own r8 - r14 registers, and irq, svc, abt, and und
each have their own r13 and r14 registers (the SP and LR). The larger number
of private registers for fiq mode is to faciliate the processing of extremely fast
interrupts that only require the use of r8 and above. When in any of these
modes, only their private versions of the registers are visible. One interesting
point to remember is that each mode has its own SP, and should therefore have
an independent stack. With these modes “banking” their own private copies
of these registers, easier transition and isolation between modes is facilitated.
Note that System (sys) mode does not have any banked registers; therefore, it
always has the same general purpose registers as seen in user mode.

In addition to the general purpose registers, there is a status register known
as the CPSR or Current Program Status Register. In this register are encoded
important attributes of system state, including the enabled/disabled status of
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IRQ and FIQ interrupts, conditional flags for executing conditional instructions,
as well as the current operating mode. Each exception-centric operating mode
(that is, fiq, irq, svc, abt, and und) also has a private SPSR (Saved Program
Status Register) for saving and restoring the CPSR for the faulting mode.

Even though some registers are banked, thus preserving state for individual
modes, it is likely that an exception handler needs to use registers that aren’t
banked – in which case the non-banked registers need to be saved (typically on
the stack). Furthermore, an additional exception triggered while already in the
associated operating mode will result in loss of banked state. For example, if the
CPU is in IRQ mode and receives another IRQ exception, then the IRQ-specific
private registers may be overwritten with new values. One way to deal with this
problem is to ensure interrupts are always disabled in the operating mode in
question. If that is unacceptable, another way to solve this problem is to write
“reentrant” exception handlers, which safely store all state so that interrupts
can “pile up.”

4.1.4 MMU

The ARMv5 memory management unit in the ARM926EJ-S processor can man-
age a single address space via page tables and provides simple access control
configuration based on domains and permission bits. The MMU contains a TLB
capable of caching 64 virtual-physical translations to reduce the need for page
table walks.

When the MMU is enabled, the processor interprets each address it sees as
a modified virtual address (MVA). A MVA is passed to the MMU, which first
looks to see if a MVA-to-physical address translation is present in the TLB. If
not, the MMU walks the page table (which is stored in system memory) and
translates the MVA to the appropriate physical address. The MVA’s physical
page translation is then stored as an entry in the TLB, possibly evicting another
TLB entry.

MMU registers

The MMU, part of the “system control coprocessor” in the ARM926EJ-S CPU,
is controlled by a set of coprocessor registers. Coprocessor registers are read
from and written to via the MRC and MCR instructions, respectively. Access to
these registers is a privileged operation, and will trigger an Undefined exception
if attempted from usr mode. A description of the important registers exposed
by the coprocessor is found in table 4.4.

Page table structure

The page table in system memory has a simple structure. First, the base table
(pointed to by the TTB register) has 4096 entries, each of which is either a sec-
tion descriptor or a coarse page table descriptor. A section descriptor describes
a simple 1MB region of physical memory, whereas a coarse page table descriptor
points to another table containing descriptors for either large (64KB) or small
(4KB) physical pages that total 1MB of physical space.

A section descriptor contains the base address for the physical memory sec-
tion (at 1MB granularity), a 4-bit domain specifier associating the section with
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Register Name Description
c1 Control Contains bits for enabling the MMU (the M bit), enabling

address alignment faults (the A bit), and the S (system) and
R (ROM) protection bits which affect MMU access control
checks.

c2 TTB The translation table base register stores the base address
of the translation table (page table).

c3 Domain AC Contains two bits of access control information for each
of the 16 domains supported by the MMU. By these two
bits, domains are designated as Manager domains, Client
domains, or No Access domains.

c5 FSR When a memory abort occurs, the fault status register in-
dicates the domain from which the fault originated and a
status code depicting the nature of the fault.

c6 FAR The fault address register holds the MVA whose attempted
access yielded a Data Abort exception. (In the case of a pre-
fetch abort, the faulting MVA is stored in general purpose
register r14.)

c8 TLB operations For invalidating specific TLB entries, or flushing the entire
TLB.

c10 TLB lockdown For locking down specific TLB entries, so they always re-
main in the TLB, even after a flush.

c13 FCSE PID The Fast Context-Switch Extension Process ID (FCSE
PID) register facilitates context switching between minimal
address spaces without requiring a TLB flush.

Tab. 4.4: ARMv5 system control coprocessor registers

one of the 16 MMU domains, and two access permission bits. It also contains
bits indicating whether the memory region is bufferable and cacheable.

A coarse page table descriptor contains the base address for the coarse page
table, and a domain specifier. The large and small page descriptors contained
in the coarse page table contain the base address for the physical memory they
describe, 4 sets of 2-bit access permissions (one for each quarter of the page),
and bits indicating whether the region is cacheable and bufferable. When small
pages are used, a coarse page table contains 256 entries, addressing a total of
1MB of virtual address space.

Note that this setup means that domains, which are specified in the first
level table, can only apply at 1MB granularity, to sections or entire coarse page
tables – individual pages can’t be assigned to specific domains. It is still possible
to operate with less physical memory however, and simply not map all the pages
in a domain to real memory.

A MVA contains all the information necessary to walk the page table. The
high 12 bits in a MVA always point to an entry in the base table. If that entry
is a section descriptor, then the remaining 20 bits point to an address within
the 1MB of physical memory indicated by the section descriptor. If that entry
is a coarse page table descriptor, then the next 4 or 9 bits (depending on if
the coarse table contains large or small page descriptors) index the appropriate
coarse page table entry, and the final MVA bits point to an address within the
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large or small physical page.
Each running process in a typical OS will probably need its own page table,

so that each process can have an independent virtual address space. When an
OS switches to another running process, it changes the TTB register to point to
the appropriate page table.

Also note that there is additional support for tiny (1KB) pages via fine page
tables (as opposed to coarse page tables) and tiny page descriptors that we won’t
discuss here.

Access control

As we have seen so far, memory regions (coarse page tables or sections) are
assigned to a domain. Each of the 16 domains has two bits in the domain access
control register c3 that designate it as either Client, Manager, or No Access.
Memory regions at the page or section level also have access permission (AP)
bits. There are also S (system protection) and R (ROM protection) bits in the
CPSR register. The AP, S, and R bits, together with the current operating mode
(privileged or non-privileged), determine whether a memory access attempt will
succeed or fail.

First, if the domain in question is a Manager domain, then access is uncon-
ditionally granted, regardless of any other bits. If the domain is a No Access
domain, then access is unconditionally denied. If the domain is a Client domain,
then the 2 access permission bits and the S and R bits are evaluated. These 4
bits, in conjunction with the current privileged/non-privileged operating mode,
determine if read-only, read/write, or no access is allowed. Note that an access
decision is limited to these three varieties – read-only, read/write, and no access.
This means that it is impossible to mark a page as non-executable, a limitation
that will create some difficulties later in implementing thin hypervisor-based
security services. For instance, kernel code integrity services (see section 4.4.1)
depend on a NX bit to ensure non-approved pages aren’t executed while in the
kernel.

Table 4.5 describes access control decisions based on the AP and S and R
bits and operating mode, as seen in [15].

S bit R bit AP bits Privileged Mode Non-Privileged Mode
0 0 00 No Access No Access

ignored ignored 01 Read/Write No Access
ignored ignored 10 Read/Write Read-only
ignored ignored 11 Read/Write Read/Write

0 1 00 Read only Read only
1 0 00 Read only No access
1 1 00 Unpredictable Unpredictable

Tab. 4.5: ARMv5 MMU access control

The S and R bits create more opportunities for privileged mode access control
– the AP bits alone either grant full access or no access to privileged mode, but
the S and R bits can grant read-only privileged access. However, because the S
and R bits are stored in an MMU register, they are a global setting, and hence
offer less flexibility than per-page settings.
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If an access attempt is denied, a page table walk discovers an invalid de-
scriptor, or some other problem arises, an abort exception is issued.

Domains and the TLB

One interesting feature of domains is that domain membership is part of a
TLB and cache entry. This means that changing the MMU’s domain access
control bits in the c3 register doesn’t require a TLB flush. The end result is
that via domains, large regions of memory can be enabled and disabled without
changing page tables or flushing the TLB. We will leverage this mechanism in
our implementation.

Fast Context-Switch Extension

As mentioned briefly earlier, the system control coprocessor contains a register
holding the FCSE PID, which can enable support for fast context switching. In
a typical context switch (where execution changes to a different user process),
the TLB must be flushed, since typical operating systems provide an identical
virtual address space for each running process. This results in expensive page
table walks.

When used, the FCSE inserts a step in the calculation of the MVA. Ordi-
narily, addresses seen by the CPU are treated as MVAs and forwarded directly
to the MMU. With FCSE, if an address A seen by the CPU points to a location
within 0 - 32MB, then the MVA is calculated as:

MVA = A+ (FCSEPID ∗ 32MB)

This facilitates systems where all guest processes can run with an indepen-
dent 32MB address space, and context switches between them will not require
a TLB flush – as described here[31].

This feature is an interesting innovation, and might work well for embedded
scenarios where processes may not need large quantities of virtual memory, but
a 32MB address space certainly won’t suffice for all applications. It also creates
potential difficulties when trying to protect the address spaces from each other,
since it is possible to “manually” access any address space by simply specifying
addresses above 32MB.

4.1.5 Key differences with ARM TrustZone processors

ARM processors that implement TrustZone (a.k.a., “security extensions”) have
some key differences from ARMv5 CPUs. First of all, a TrustZone-enabled
processor will implement either ARMv6 or ARMv7 architecture, which differ
from ARMv5. One example is that ARMv6 and v7 MMUs support a NX (also
known as XN, or execute never) bit in their page tables, which creates new
possibilities. Furthermore, they support two page tables simultaneously – one
for memory that is more static (kernel memory), one for memory that will be
swapped in and out (application memory) – which can lead to performance
benefits and simplified management. Additionally, TLB entries can be tagged
with an Address Space Identifier (ASID), which can further help in reducing
the need for TLB flushes.

And of course, TrustZone offers the security features described earlier in sec-
tion 2.5.5, including two isolated virtual worlds with the possibility to partition
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hardware and intercept external interrupts from a Monitor mode. TrustZone
CPUs also enable the Secure and Normal worlds, as well as the Monitor mode,
to locate their exception vector table in custom locations, via indepedent Vector
Base Address Registers (VBARs).

And, there are other “cosmetic” differences to be aware of – for instance,
the swi or “software interrupt” instruction that traps to Supervisor (svc) mode
to allow system calls has been replaced by a svc instruction (“supervisor call”)
that also traps to Supervisor mode.

We will see that these differences altogether (excepting the cosmetic ones)
present a quite different environment for hypervisors and security services.

4.2 The FreeRTOS Kernel

The FreeRTOS kernel[44] is an extremely tiny multitasking real-time kernel
ported to a wide collection of embedded sytems. It is based on tasks, which
basically consist of a looping function, and are assigned a priority. The kernel
implements preemptive, priority-aware scheduling via a periodic timer inter-
rupt. Scheduling can also be non-preemptive (cooperative), in which case tasks
must explicitly yield execution. Tasks can communicate with each other via
synchronized message queues.

The primary, portable kernel consists of only 3 C source files – tasks.c,
which contains the task and scheduling logic; queue.c, which contains queue
structures used by the scheduler and for message passing; and list.c, which
implements a linked list used in the queue structure. Our interest is mostly in
the tasks and scheduling.

Porting to a platform requires additional platform-dependent code, includ-
ing:

• Low level boot and initialization code to set up hardware, establish stacks
in memory, and populate exception vectors, as well as code to set up a
timer interrupt at proper frequency and register the kernel’s timer tick
handler

• Assembler code for basic operations such as saving and restoring CPU
context, and enabling and disabling interrupts.

• Interrupt service routines for the timer interrupt or any other interrupts.

• Memory management code for allocating stack space to tasks (the FreeR-
TOS distribution provides 3 alternative C files containing such code, and
at least one suffices for all ported platforms).

• Any device driver code needed by the actual tasks.

The timer interrupt is the heartbeat of the FreeRTOS kernel; at each timer
tick, the kernel chooses the highest priority unblocked task for execution.

The kernel provides a collection of header files which expose the task cre-
ation, control and communication interfaces. To use the kernel, one writes an
application broken down into individual tasks, includes the kernel source when
compiling, and simply calls kernel functions from main to instantiate and man-
age tasks and start the real-time scheduler. Therefore, tasks and the kernel
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reside in the same binary to be executed directly by the target hardware plat-
form.

Both tasks and the kernel run in privileged mode, with tasks in system mode
and the kernel in supervisor mode. The kernel allocates a requested amount of
memory for the stack of each task, using a malloc-style interface. There is no
strict protection between tasks and the kernel or each other.

Because of these last points, FreeRTOS makes for an interesting guest OS to
run above a thin hypervisor. Firstly, since the kernel and the tasks don’t expect
to be at a different privilege level from each other, it ought to be possible to
have them both run at user level. Secondly, the hypervisor can provide memory
protection for the kernel and the tasks, at least protecting the kernel from the
tasks, and possibly protecting the tasks from each other. Furthermore, because
FreeRTOS is a widely used embedded real-time OS, it comprises a relevant and
useful research platform.

4.3 Thin Hypervisor Approach

When implementing an ultra-thin hypervisor for this thesis, we support a single
guest domain, so we don’t care about things like VM scheduling. But we do
have to address other issues in order to isolate the hypervisor, protect the guest
kernel from its applications, and provide the guest kernel with its expected
operating environment.

We will begin by discussing potential issues relating to thin hypervisor im-
plementation on ARMv5 in a general way in section 4.3.1. We will then continue
with a discussion of how implementation would differ on a more advanced Trust-
Zone platform in section 4.3.2. Finally, we will address implementation of a thin
hypervisor specifically for a FreeRTOS guest kernel in section 4.3.3.

4.3.1 General concerns

This section discusses thin hypervisor development concerns in a general way,
and is divided into material on operating mode, interposition on guest kernel
entries and exits, memory virtualization, use of FCSE in a thin hypervisor, and
CPU virtualization. Note that in this section we are not yet considering use
of paravirtualization or binary translation, which could alleviate many of the
concerns.

Operating mode

A hypervisor must run in a higher privilege mode than the guest system. In
the ARM case, there is only one non-privileged mode (usr mode), so both the
guest kernel and guest applications must run in the same mode (as in Xen-
ARM). It must be assessed how this will affect guest OS operation, and what
further measures must be taken to protect the guest kernel from its applications.
At minimum, this means that all privileged operations attempted by the guest
kernel must be virtualized by the hypervisor, including access to privileged reg-
isters and instructions. Such operations will be intercepted by the hypervisor’s
Undefined (und) exception handler. Note that without paravirtualization or bi-
nary translation, this could quickly become prohibitive, for instance if the guest
kernel frequently attempts to enable and disable interrupts.
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Protecting the guest kernel from its applications also becomes challenging;
a hypervisor must have tight control over memory management and context
switches, and ensure that, in spite of each running in User mode, the guest
kernel and guest applications each run with expected memory protections.

Interposing on all guest kernel entries and exits

Especially due to the challenges introduced by having the guest kernel and ap-
plications run in the same mode, an important condition that a thin hypervisor
might have to uphold for successful virtualization of a guest domain is that it
interpose on or mediate all guest kernel entries and exits.

To interpose on all kernel entries, it might be sufficient for the hypervisor to
interecept and handle all exceptions – including external interrupts (IRQs and
FIQs such as timer or I/O interrupts), memory aborts, undefined or privileged
instructions, and software interrupts (system calls). This is easily achievable;
however, note that exceptions may originate from the guest kernel, in which case
they do not signify a kernel entry. In any case, fulfilling this level of interposition
will of course cover interception of all attempts to execute privileged instructions
(as mentioned above), as such attempts (such as accessing the MMU) generate
an undefined instruction exception.

When intercepting any would-be kernel entry, the hypervisor must evaluate
the circumstances and take appropriate action. Such action may involve vir-
tualizing or assigning resources, evaluating the security of a memory access or
modifying memory access permissions, emulating undefined or unsafe instruc-
tions, and forwarding operations to guest kernel handlers.

To interpose on kernel exits, one possible method is that the hypervisor can
specially handle attempts by the guest kernel to write to the CPSR and change
operating mode. When the guest kernel attempts to change to user mode, a
kernel exit is occurring. There are other possibilities as well. For instance, the
FreeRTOS distribution has optional support for a wrapper mechanism in which
all kernel functions are accessed through controlled wrapper functions that can
lift and restore kernel access controls appropriately.

By interposing on all guest kernel entries and exits, we have a foundation
that can support other important elements of guest virtualization, including
memory and CPU virtualization.

Memory virtualization

To promote Popek and Goldberg’s fidelity requirement, the guest domain should
run in an address space that is consistent with what it would run in in normal
circumstances. Further, to protect the hypervisor memory space, hypervisor
pages must be inaccessible by (and ideally, invisible to) the guest domain. To
protect the guest kernel, guest kernel pages must be protected from guest appli-
cations. As noted previously, on ARM both guest kernel and guest application
must run in usr mode which means the hypervisor must manage guest kernel
memory protection.

As in the case of Xen-ARM, ARM’s MMU domains can be used to protect
the guest kernel. Xen-ARM uses three domains – one for the hypervisor, one for
guest kernels, and one for guest applications[123]. In such a system, protecting
the kernel might be managed as follows. Hypervisor pages will be in a domain
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that will always be designated as Client (called the hypervisor memory domain,
or domH ), and marked as only accessible by privileged mode. Guest kernel
pages will be in a separate domain (the kernel memory domain, or domK ). On
a guest kernel entry, domK can be made a Client domain (so that areas of kernel
memory can be protected by the hypervisor in different ways), but on an exit to
guest application mode, domK will be changed to a No Access domain. Finally,
the guest application domain (the application memory domain, or domA) can
be set to Client at all times. The three memory domains are listed in table 4.6.
Since changes to domain access control take immediate effect without a TLB
flush, the mechanism should demonstrate reasonable performance.

Domain Short Name Number Contents
Hypervisor memory domain domH 0x0 Hypervisor pages

Kernel memory domain domK 0x1 Guest kernel pages
Application memory domain domA 0x2 Guest application pages

Tab. 4.6: Memory domains

To facilitate fast context switches (without TLB flushing) vertically in the
stack – between hypervisor, guest kernel, and guest application – barring use
of FCSE, all three would have to occupy the same address space. This may or
may not be possible, depending on the guest OS and its expectations about its
address space.

Finally, in order to support virtual address spaces for the guest domain, the
hypervisor may need to maintain shadow page tables for the guest kernel. The
hypervisor can watch guest OS page tables (which map from “guest virtual”
to “guest physical” addresses) and translate them to page tables usable by the
real MMU (so they map from “guest virtual” to “machine physical” addresses).
One possible method for doing so is to handle the instruction wherein the guest
kernel attempts to change the TTB register – then the hypervisor can locate the
new guest page table in memory, update the corresponding shadow page table,
and write-protect the memory page(s) on which the guest page table resides.
Any subsequent access to the page table will generate a fault.

The hypervisor will store the shadow page tables in its own protected mem-
ory space. In the case of using FCSE, there will be only one page table, but
32MB virtual segments of it will shadow the individual page tables kept by the
guest kernel.

Use of FCSE

If we can use FCSE, fast context switching may be simplified. We have not seen
the use of FCSE in a hypervisor before. If the guest kernel together with a single
guest application can be restricted to a 32MB address space (for example, with
the guest kernel using the low 4MB), then using FCSE in a thin hypervisor may
be possible. Whenever the guest kernel attempts to change the TTB register,
indicating a change to a different process’ address space, the hypervisor will
intercept it and can then change the FCSE PID. This will cause the MVAs fed
to the MMU to point to a different 32MB region of virtual memory. The guest
kernel portion of that 32MB will most likely map to the same physical memory
for each user application. The hypervisor’s 32MB segment (at 0-32MB) will
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include physical memory inaccessible to the guest. The hypervisor can also
access virtual addresses outside its 32MB by simply using virtual addresses
above 32MB. However, as yet it is not clear whether there is an acceptable way
to prevent guest processes from doing the same (and thereby accessing other
guest application memory or even guest kernel memory) without modifying page
tables and flushing the TLB on a context switch, which would negate FCSE’s
fast context-switching benefit.

One possibility to address this problem would be to again use memory do-
mains – reserve 14 of the 16 memory domains for user applications. Then, as
long as there are 14 or fewer user processes, each user process can have its own
domain. When switching to a particular user process, the memory domains for
all other processes can be marked as No Access (which doesn’t require a TLB
flush). If there are more than 14 processes, then when switching to a process all
other processes that share the same memory domain must be evicted from the
TLB, and their page permissions modified to prevent access. Alternatively, after
being evicted from the TLB, the pages could be assigned to another memory
domain. This solution might work, but it would require performance testing to
demonstrate its feasibility – that is, to see if the performance cost of managing
and protecting domains in FCSE is outweighed by the benefits of avoiding TLB
flushes.

CPU Virtualization

Also in support of the fidelity requirement, the hypervisor must virtualize the
CPU so that the guest system’s expectations are met. This may mean that
on guest kernel entries and exits the hypervisor will have to manually restore
and bank the registers that the CPU normally would when switching between
privileged modes and user mode. Fortunately, certain ARM instructions can be
used to read and write user mode registers even from privileged mode. When
the guest leaves the kernel and executes user code again, the hypervisor will
likewise save/restore banked state. It is important to be sure, that all the
registers (including the CPSR) are properly handled.

4.3.2 A thin hypervisor on TrustZone

TrustZone, with its virtualization-related features (discussed in section 2.5.5),
might seem like an ideal platform for implementing a thin hypervisor, by having
the hypervisor run isolated and protected in the Secure world and the guest OS
run in the Normal world. This has many advantages. Significantly, the guest OS
can now run in privileged mode above its applications. Moreover, the guest OS
can perform its own memory management with its own MMU, and the hyper-
visor can manage its own memory as well as map in guest OS pages. The guest
OS can perform its own exception handling with its own independent exception
handlers and vector table. The hypervisor can control system boot and assign
hardware resources to the Secure and Normal worlds, and can intercept external
interrupts (FIQ and IRQ exceptions and external, non-MMU generated aborts).
It can provide a hypercall interface to the guest OS through the agency of the
SMC instruction, which traps to Monitor mode. Such an interface may in turn
be exposed to guest applications via system calls if necessary. ARM TrustZone
is clearly capable of supporting two isolated domains, with one having certain
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powers over the other, but each having independent control of its own basic
facilities. As a result, the hypervisor can dispense with memory management
and other traditional issues, and focus solely on security and other meaningful
functionality.

When it comes to implementing security services in a hypervisor, however,
this side-by-side isolation may not be enough. One of the major shortcomings
of TrustZone is that it does not enable interposition on all exception types –
as described earlier, system calls, undefined instruction exceptions, and MMU
(both data and prefetch) aborts cannot be configured to trap to Monitor mode.
Of course, it could be possible to have privileged mode exception handlers in
the Normal world that forward exceptions to the Secure world via a monitor
call, but this may not be feasible, reasonable, or trustworthy, depending on the
situation. Another potential problem is the independent MMU and other state
management in each world – while this does simplify isolation, preventing the
Secure world from controlling or protecting important aspects of the Normal
world state (such as memory permissions, and page table and exception vector
table locations) can impede security-oriented functionality. A hypervisor in the
secure world thus becomes a sort of “co-visor” – at higher privilege, but off to
the side of the guest OS. We shall see these issues reflected in specific situations
in section 4.4.

4.3.3 A thin hypervisor for FreeRTOS

In this section we will describe our approach for implementing a thin hypervisor
specifically for a FreeRTOS guest kernel on ARMv5.

Interposition

The hypervisor must run in a privileged mode, with the FreeRTOS kernel and
its tasks running in User mode. The hypervisor will have to interpose between
FreeRTOS and the hardware, and virtualize whatever privileged operations are
required by the kernel and the tasks.

The hypervisor can contain its own platform-dependent code for facilitating
critical basic setup, including the establishment of a periodic timer interrupt.
Any other platform-dependent code required by the kernel itself can also be
located within the hypervisor. For instance, the platform-dependent code for
enabling/disabling interrupts can be implemented via a hypercall.

Memory protection

As mentioned in section 4.2, the FreeRTOS kernel does not employ virtual
memory address spaces for its tasks. Indeed, each task runs in privileged mode
with a dynamically allocated block of memory for its stack. The kernel maintains
the heap from which these blocks are allocated. There is no built-in memory
protection. Tasks can access any memory in the system.

As thin hypervisor implementers, this state of affairs is interesting to us for
three reasons. One, the thin hypervisor does not need to support shadow page
tables, since the guest kernel has no such table to shadow. Two, the hypervisor
can provide memory protection where there is none – supporting greater security
and robustness for FreeRTOS operation. Three, if we can locate the hypervisor
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in the same 32-bit address space as the kernel and tasks, we need never flush
the TLB as part of a context switch.

By using the ARMv5 MMU, we can partition the space into, again, domH,
domK, and domA (where domA now contains task memory, rather than appli-
cation memory). domH is a Client domain, only accessible in privileged mode.

The separation between domK and domA, on the other hand, becomes a lit-
tle more interesting. The kernel contains functions used by the tasks to manage
themselves and communicate with each other. In a normal FreeRTOS setup,
the kernel and tasks run at the same privilege level, so none of these functions
are implemented as system calls – they are more like library calls. With our
hypervisor, the tasks need to be able to call these functions, but shouldn’t be
able to tamper with kernel memory. Ideally, the tasks shouldn’t be able to even
read kernel memory.

We intend to handle this problem by using the wrapper mechanism used
already by a few ports of FreeRTOS to embedded systems with a Memory
Protection Unit (MPU) – a less capable version of a MMU. When using this
mechanism, the kernel is inaccessible to tasks. To access the kernel, tasks call
a controlled wrapper function, which can enable access to the kernel, call the
desired kernel function, and disable access to the kernel in a controlled fashion.

When it comes to protecting tasks from each other, the situation becomes
more complex. A meaningful way to protect tasks would be to separate different
tasks’ stack memory. One potential way to achieve this would be to modify the
memory allocation code to be able to allocate memory from spaces in different
domains. Then, when executing a particular task, the domain for its stack
would be enabled, but other stack domains would be disabled. If there are
not enough memory domains to assign one to each task stack, then cooperating
tasks could have their stacks in the same domain. Alternatively, individual page
permissions could be managed, which would incur a greater performance hit.
Whatever the case, for this to work it must be possible to associate user-mode
execution context with a stack domain, so that the hypervisor can update MMU
settings appropriately when a context switch occurs.

4.4 Analysis and Transitioning of Current Systems

In this section we will discuss a few security services that are candidates for
being implemented in an ARMv5 thin hypevisor. As with section 4, we will
discuss for each service general concerns, TrustZone-specific opportunties and
challenges, and approaches for implementing the service for a FreeRTOS guest
kernel.

4.4.1 Kernel code interity

Implementing a kernel code integrity service is a natural first foray, as such
a service has already been run in a thin hypervisor (SecVisor [91]). However,
the lack of a NX bit in ARMv5 memory protection will prove to be a serious
obstacle.

Protecting kernel code integrity means we must ensure that approved kernel
code and only approved kernel code is executed when in the guest kernel. This
means that memory in all non-kernel pages and even kernel data pages must
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never be executed when in the guest kernel (even in the presence of kernel vul-
nerabilities), kernel code must not be modified, and only kernel code approved
by a policy is ever executed. In certain situations, it might even be necessary
to support dynamic modification of the approved set of kernel code.

To fulfill the above conditions, actions must be taken at key points. Upon
entering guest kernel mode, the hypervisor must ensure that only approved code
is executed until exiting the guest kernel. Without a NX bit, this unfortunately
means that all pages that aren’t approved kernel code, including kernel data
pages and all application pages, must be rendered inaccessible. Otherwise, a
code execution vulnerability could be used to execute non-approved code. How-
ever, this condition of coure means that any legitimate read-only access by the
kernel to any of those pages will generate Data Aborts. Since a kernel must
often access its own data pages, and likely application data pages, the cost and
complexity of handling these aborts and allowing the valid accesses will likely
become prohibitive.

The best possible approach seems to be to use ARM MMU domains to parti-
tion the kernel into approved code and data, and to also use one or more domains
for application pages. Then, when in kernel mode all non-approved pages can
at least be disabled without flushing the TLB or changing page permissions.
However, this doesn’t get around the excessive abort problem. It would seem
that kernel integrity protection service in this context is at an impasse.

Other issues

In order to ensure that only approved code is executed, we need to be sure that
kernel code pages aren’t modified – therefore, all code pages in domK should
be marked as read-only, even when in the guest kernel. Then, even a kernel
vulnerability can’t be exploited to modify kernel code.

If the policy doesn’t need to be runtime-flexible, then kernel pages can be
evaluated against the policy at system startup.

In order to have a runtime-flexible policy defining allowable code, we can be-
gin by evaluating kernel pages against the current policy at startup and marking
approved pages as read-only. But from that point, we would need to interpose
on policy changes, and update page permissions as the policy changes. An inter-
face for modifying such a policy is a security challenge in its own right, and not
discussed here. Likewise, the possible formats of the policy are not discussed
here.

Kernel integrity on TrustZone

With a hypervisor in the TrustZone Secure world, how could kernel integrity
protection be implemented?

In considering this possibility, we immediately run into the key limitation
mentioned earlier in section 4.3.2 – that is, TrustZone offers no built-in way to
intercept all Normal world exception types, and therefore no way to interpose
on all guest kernel entries and exits. However, there is a way around this issue.

The problem can be remedied by paravirtualizing the guest kernel. This
effort could be rather minimal, potentially involving only the insertion of a SMC
instruction at the start of each exception handler in the guest OS, or in the
exception vector table. From here, kernel integrity protection mechanisms can
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proceed as described above. At this point, the protection mechanisms become
simplified in comparison to ARMv5, since any TrustZone processor will have a
NX bit (as described in section 4.3.2). The kernel integrity protection mecha-
nisms will protect the paravirtualized kernel code; the kernel must be booted
safely by the Secure world to complete the “chain of trust”.

However, there is a potentially weak link in this chain. As also described in
section 4.3.2, the hypervisor in the Secure world has no way to control certain
aspects of Normal world state or interpose on Normal world privileged attempts
to modify this state. This includes the Normal world MMU registers that con-
trol the location of the exception vector table and the translation table base
addresses. What this means is that if there is some sort of kernel vulnerability
whereby the kernel can be wrongfully induced to modify the location of the
exception vector table, which wouldn’t violate kernel code integrity, an attacker
may be able to circumvent the paravirtualized exception handlers that trap to
Monitor mode. Furthermore, if the kernel contains even a small amount of ap-
proved malicious code (potentially inserted by an insider, or via a device driver
or kernel module), then this approved code could change the exception vector
table or the handler code and thereby unravel the mechanism. Basically, it is
difficult to protect the integrity of an entity that has ample permissions and
opportunity to violate its integrity itself!

In spite of these issues, using TrustZone is still compelling, since it so dras-
tically reduces the complexity of the thin hypervisor. Depending on the com-
plexity of the kernel and other context, TrustZone might possibly make for an
attractive kernel code integrity platform.

Kernel code integrity for FreeRTOS

Implementing kernel code integrity for a FreeRTOS guest kernel on ARMv5 is
simpler than doing so for a Linux or other mainstream OS kernel. For instance,
there is no need with FreeRTOS to load kernel modules or change the kernel
code at runtime, so we don’t need to support a dynamically configurable policy.
With a simple unified address space, page table management becomes easier.

However, there is still the “missing NX bit” problem described earlier, which
appears difficult to overcome.

4.4.2 Application protection

Application memory protection, as offered by Overshadow and SP 3, provides
compelling benefits but in both of these cases involves significant complexity.
We will look at possible simpler approaches on a thin ARMv5 hypervisor. By
application memory protection, we mean protecting memory used by individual
applications from being viewed or modified by other applications or the OS.
There are several possible avenues for achieving this protection.

Via encryption

One possible approach is via encryption, which both Overshadow and SP 3

selected. It might be implemented on a thin hypervisor as follows:

• First, the hypervisor must be able to differentiate between the guest kernel
and each application. If the hypervisor is already interposing on guest ker-
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nel entries and exits, it thereby distinguishes the kernel from applications.
With an OS that manages a page table for each process, applications can
be distinguished from each other via the base address for their page table,
stored for the current process in the TTB register. Note that it will thusly
be necessary for the hypervisor to protect guest OS page table memory
(as already necessitated for maintaining shadow page tables), to prevent
the guest OS from discreetly swapping page tables for different processes.
With an OS that keeps all application memory in the same address space,
some other method of differentiation will be required, perhaps facilitated
by use of ARM memory domains.

• The hypervisor must provide encryption facilities. For simplicity’s sake,
the hypervisor could keep a single secret key with a single algorithm (e.g.,
AES-128) that it uses to encrypt all applications, although it wouldn’t be
difficult to expand this setup to use indendent keys for different processes
and multiple algorithms.

• If application protection is to be configurable by the guest applications
(at least, capable of being activated and deactivated), the hypervisor must
expose some sort of interface. One way to do this is extend the instruc-
tion set with a new emulated instruction that will activate and deactivate
protection. This instruction would be intercepted and emulated by the
hypervisor’s undefined instruction handler. On receiving the activation
instruction, the hypervisor will inspect the LR register, the TTB register,
or other registers to see which application or domain the instruction came
from. If the instruction came from an application, then the hypervisor
will activate protection for that application’s memory regions. For this
to work, the hypervisor must also be able to tell when the same process
exits, so that it can cease protecting those memory regions.

• The hypervisor needs to manage the memory protection, so that an appli-
cation works with decrypted memory, but the OS sees encrypted memory
(for example, when swapping encrypted pages to disk).
One approach for implementing this is to keep an extra “protection ta-
ble” alongside each shadow page table that denotes whether each page is
currently in an encrypted or decrypted state. Via a shadow page table to-
gether with this additional structure, a hypervisor could track if any given
page is in physical memory or swapped out, and encrypted or decrypted. It
is important that any swapped-out page always be encrypted. On a guest
kernel exit, we can mark all encrypted pages for the target application as
inaccessible (but cache their actual permissions in the protection table).
Then, if the guest application tries to access an encrypted page, it will
fault to the hypervisor. The hypervisor can evaluate the access attempt
against the cached permissions. If the access is invalid, then execution
will be aborted. If the access is valid, the hypervisor must address two
alternatives. One, if the page is already in memory, the hypervisor can
simply decrypt the page and allow the access to continue. Two, if the page
isn’t in memory, the hypervisor can swap in the page itself and decrypt,
or attempt to delegate to the guest kernel to swap in the page. In the
former case, the hypervisor must ensure the guest OS page tables reflect
the change; in the latter case, the hypervisor has to somehow ensure that
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the page is safely decrypted after being swapped in and never visible in
the clear by the kernel.
On a kernel entry, all decrypted guest application pages in memory will
be marked as inaccessible. If the kernel attempts a valid access to such
a page, the hypervisor will encrypt the page in memory. In this way,
any page the kernel swaps to disk is sure to be encrypted. To improve
efficiency, the hypervisor can cache encrypted/decrypted versions of a page
in memory. If a user application accesses an encrypted page (causing it to
be decrypted), but doesn’t modify it, then a cached encrypted version of
the page can be mapped back to guest kernel memory on a kernel entry.
Likewise, if the guest kernel accesses user memory pages (hence causing
them to be encrypted), after returning to the guest application, cached
decrypted versions of those pages can be mapped to application memory
when the application accesses them again.
For this scheme to work, cache and TLB entries for decrypted application
pages must be invalidated on a kernel entry, just as for encrypted pages
belonging to the target application on a kernel exit. This of course may
cause performance issues.

• Finally, the hypervisor must specially handle any operations that cross the
kernel-application boundary. For instance, when it intercepts a system
call, the hypervisor must copy the contents of any pointer arguments to a
memory region accessible by the guest OS kernel, then dispatch the system
call with the new arguments to the guest OS.

Via memory protection

One other extremely simple possibility to protect guest applications from only
the guest kernel is to simply mark application domains or pages as inaccessible
whenever entering the guest kernel. This would require the hypervisor to copy
system call arguments to a neutral buffer space, as described in the last bullet in
the above list. This dovetails with previously discussed possible approaches for
kernel integrity protection. However, this approach precludes swapping pages
to disk, foremost since the guest kernel will have no read access to any guest
application pages, and also because such pages would be decrypted and therefore
visible to anyone who can read the disk.

Via memory protection and virtualized swapping

Another possibility, that we have not seen in prior work, would be to protect
guest application memory by having the hypervisor completely virtualize the
swapping of memory pages. To achieve this safely, the hypervisor would need
access to a private disk, and most likely a device driver for the disk. It might
also be possible to manage a private space on an existing system disk by using a
guest OS driver and by intercepting and carefully examining all I/O interrupts.
Alternatively, the hypervisor could of course encrypt every page that it swaps
to disk, and then any disk could be used.

In this approach, whenever the hypervisor intercepts a memory fault due to
a valid access to a page not present in physical memory, it will swap out a page
itself and swap in the requested page. In this way, when in guest kernel mode,
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application domains or pages can simply be marked as No Access, assuming
system call parameters can be copied by the hypervisor to a neutral memory
space as already described. To protect applications from each other, a pool of
separate user application memory domains could be used, as in our suggestion
for using FCSE – all domains except the target application’s would be marked
No Access when entering the target application. This approach circumvents
the need for invalidating cache or TLB entries, since memory domain state is
evaluated at each access.

In any of the above three strategies, it is clear that performance testing is
necessary to ensure the feasibility of any implemented solutions.

Guest application protection on TrustZone

Use of TrustZone for protecting application memory is predicated on the use of
paravirtualization, as with kernel integrity protection, to interpose on all kernel
entries and exits.

When using TrustZone CPUs that support ASIDs, it becomes simpler to
partition the memory space into hardware-enforced components. If the hyper-
visor can differentiate between guest application processes, then it can assign an
address space ID to the guest kernel and each application. When the Monitor
mode intercepts kernel entries and exits, it will maintain the current ASID field.

However, since the need for application protection is premised on a malicious
OS, the possibilities for TrustZone founder – it is impossible to ensure that
the Normal world OS doesn’t move around process page tables in memory or
conduct other trickery to subvert the system, even if the Secure world completely
manages swapping pages itself.

Task protection for FreeRTOS

If on a kernel entry we mark the application domain (and any stack domains)
as inaccessible, and are able to copy over parameters to kernel functions so that
the kernel need not access the application domain for any legitimate reason, it
should be possible to protect the tasks from the kernel. Since pages are never
swapped to disk, we don’t need to consider anything further.

It should also be possible to protect task stack memory from other tasks by
using memory domains and/or FCSE in a previously suggested manner. How-
ever, fully protecting tasks from each other is more complicated, since normal
FreeRTOS tasks may share a great deal of writable static data, kernel message
queues, and other data. Since tasks do not have their own address spaces, it
becomes difficult to isolate them completely.

4.4.3 Identifying covert binaries

By monitoring all kernel entries and exits, a thin hypervisor on ARMv5 stands
in a position to implement an approach similar to that in [70] used to monitor
covertly executing binaries.

To implement this well, it is necessary to mark all code pages as inaccessible.
If it is not possible to distinguish code pages from data pages, then we run
into the same problem encountered before – the lack of a NX bit in ARMv5.
Getting around this problem requires marking all pages inaccessible, which may
be prohibitive for a running application.
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At each memory fault in a code page, the current execution context can
be ascertained via the TTB register. The accessed page can be hashed and
compared with a database of known-good hashed binaries to see if known-good
code is being executed. (This is especially important for kernel code.) After
this check, the page can be marked read-only in the current page table (and the
page table memory protected by the hypervisor), so that accesses to the same
page by the same process in the future can proceed freely.

The hypervisor can also intercept each attempt by the guest to change the
TTB register; by doing so it should be able to see all processes running in the
system.

In this way, the hypervisor should be able to get a picture of what code
is running in which processes in the system. The hypevisor then needs some
mechanism by which to report feedback to the user. Such a mechanism will not
be discussed here, although it could involve emulating new instructions usable
by guest applications. A user can compare feedback from the hypervisor with
information provided by the guest system itself as to which processes are run-
ning, and thereby determine via examination of any mismatch if any processes
are running covertly.

Identifying covert binaries on TrustZone

On TrustZone, once again the primary difficulties are the lack of complete inter-
position, as well as the independent memory control structures present in each
world. Therefore, actively identifying covert binaries from the security world
would require some level of paravirtualization. However, passively monitoring
for covert binaries from the Secure world (at the discretion of the “co-visor”)
would still be possible, and assuming the monitoring was done frequently enough
(and possibly with an unpredictable pattern), then TrustZone easily supplies all
the needed components. The Monitor mode is capable of examining Normal
world CPU and MMU registers, and the Secure world can map in Normal world
memory pages, which furnishes the hypervisor all the tools required to identify
covert binaries as in [70].

Identifying covert binaries for FreeRTOS

Identifying covert binaries running on a FreeRTOS kernel using an ARMv5 thin
hypervisor should be fairly straightforward, though of questionable usefulness.
By watching kernel entries and exits, and observing the memory regions in which
each task operates, our hypervisor could track task identity.

A covert binary for FreeRTOS amounts to a covert task. A covert task might
be initiated by a malicious or hijacked task. If a task can be started at arbitrary
priority and possibly hidden from kernel API functions due to a vulnerability,
then a covert task might be possible. The likelihood of this situation seems
quite lower than that of a mainstream OS kernel rootkit.

However, it may still be useful for a FreeRTOS hypervisor to keep close watch
of executing tasks. Monitoring task execution could support other services, such
as preventing tasks from performing malicious operations or otherwise harming
other tasks (flooding message queues, attempting to deny service to other tasks,
etc.). The potential of such a task execution monitoring service for FreeRTOS
can be explored in the future.
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4.5 Summary

This chapter introduces our main technologies in detail, the ARMv5 architec-
ture and the FreeRTOS kernel. It outlines general concerns for various aspects
of thin hypervisor development on ARMv5, and makes specific observations on
supporting FreeRTOS as a guest. It also moves on to suggest specific security
services inspired by results from the background study, and potential approaches
for implementing them on ARMv5. Throughout, comparison of ARMv5 archi-
tecture and approaches with more advanced TrustZone architecture is provided.
This chapter provides a foundation for implementation, gathering relevant in-
formation, isolating important concerns and providing guidance and strategies.



5. IMPLEMENTATION OF A THIN HYPERVISOR

With the previous chapter laying the groundwork for implementation, in this
chapter, we describe our actual implementation. We have implemented a thin
hypervisor running on ARM and supporting the FreeRTOS kernel[44] as a single
guest. We have simulated an ARM926EJ-S CPU (which supports the ARMv5
architecture) and peripherals using the Open Virtual Platforms (OVP)[79] sim-
ulation environment.

Section 5.1 describes our use of OVP. Section 5.2 summarizes the overall
structure of our hypervisor, while section 5.3 continues with a closer look at
specific important aspects of our implementation. Section 5.4 offers an analysis
of the security properties of our implementation, and finally, section 5.5 explores
and motivates ideas for expansions to the hypervisor.

5.1 Use of OVP

We used Open Virtual Platforms free simulation tools to build and emulate
our ARM platform. We selected OVP because it is flexible and powerful, en-
abling precise construction of custom hardware simulations with a wide variety
of CPUs and peripherals, and facilitating efficient development and testing. An-
other advantage is that the source code of much of the simulated hardware is
available from the OVP website[79]. Thus, one can examine, for instance, the
code that models a particular peripheral, which can facilitate implementation
and debugging.

To simulate a platform on OVP, one writes a C program that calls OVP
APIs to instantiate CPUs, peripherals, buses, connections, and memory, possi-
bly loads a binary file (such as an ELF file) into platform memory, and then
starts the simulation. From that point, the simulated hardware platform is run-
ning, and the OVP APIs also enable the simulation program to interact with the
simulated platform, for example by reading and writing memory and registers,
simulating interrupts, or other such operations.

By using platform-specific toolchains (such as the ARM GNU compiler
toolset, which can be acquired from the OVP website and elsewhere), one can
compile binaries that will run on the simulated platform.

Additionally, while OVP tools include many prebuilt CPU and peripheral
models, one can write additional models for peripherals and CPUs and use those
in simulated platforms.

We have created and experimented with different platform configurations
with various ARM CPUs and peripheral devices. For our FreeRTOS hypervi-
sor, we have adapted an OVP example program that simulates an Atmel ARM
board complete with a variety of standard peripherals (including memory, inter-
rupt controller, timer, and others). We selected this particular platform because
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the FreeRTOS kernel has already been ported to a similar Atmel platform with
identical peripherals, and therefore running FreeRTOS on that simulated plat-
form was expected to be relatively simple. One key difference between the
original simulated platform and our adapted version is that we “upgraded” the
CPU from an ARM7TDMI to an ARM926EJ-S to acquire the MMU in the
latter.

In using a simulated platform, one encounters the issue of consistency and
compatibility – does the simulated platform correctly duplicate the hardware?
OVP only attempts to duplicate the interfaces and behavior, and for the most
part we found it to be correct. In some instances, however, we noticed dis-
crepancies between the vendor-documented interface for certain peripherals and
the behavior implemented by OVP’s simulated peripherals. This development
slightly dashed our hopes that running FreeRTOS on our simulated platform
would be straightforward, but we were able to work around these issues. The
OVP team has been notified of our discoveries.

5.2 Overall structure

This section gives an overview of the structure of our FreeRTOS hypervisor
system, which is depicted in figure 5.1.

Fig. 5.1: Overall implementation structure

Our software has three central components – one, the core FreeRTOS kernel;
two, platform-dependent code outside both the hypervisor and the core kernel
that is used by the core kernel; three, the hypervisor layer itself, which contains
minor boot and hardware setup code, exposes hypercalls used by the platform-
dependent code, and manages the MMU.

The hypervisor runs in privileged mode, whereas all other code runs in user
mode. Within user mode, kernel functions and data receive special protection
and a virtual mode of their own via use of MMU domains, which will be de-
scribed in section 5.3.2. The FreeRTOS main and tasks run atop the kernel. All
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components are compiled into a single binary, which we have elected to do for
simplicity, as our current implementation is purposed for performance testing
and ascertaining basic security potential – future efforts will look into separat-
ing the hypervisor and FreeRTOS binaries and having the hypervisor load the
FreeRTOS binary in a trustworthy manner.

The three major components are described here in subsections.

5.2.1 The core kernel

The core FreeRTOS kernel has remained almost completely unchanged. Pre-
viously, the kernel allocated memory for all task stacks and for task control
blocks (the OS data structure for managing a task) from the same heap. In
order to allocate the task control blocks from kernel memory, and to allocate
the task stacks from a pool of separated heaps (discussed more in section 5.3.2),
we had to modify 9 lines of one of the core kernel files. These lines mostly con-
cerned function calls to platform-dependent code, including memory allocation
functions.

5.2.2 Platform-dependent code

In a FreeRTOS port, the platform-depdent code is responsible for carrying out
critical, low level actions, as described in section 4.2. This functionality often
requires privileged instructions. The core kernel and tasks depend on these
operations. In our port of FreeRTOS running on ARMv5, we consider the
platform-dependent code to be part of the FreeRTOS kernel, and it is protected
as such.

When running our FreeRTOS port above our hypervisor, all the privileged
operations must be implemented in the hypervisor, including operations on pro-
tected peripherals. This means that, except for task memory allocation, the
platform-dependent portion of the FreeRTOS code had to be completely par-
avirtualized, using a simple interface of 10 hypercalls exposed by the hypervisor.
Since the platform-dependent code comprises only a small set of operations,
transforming it to use the hypercall interface was reasonable.

Additionally, the memory allocation platform-dependent code had to be
modified to support allocating from multiple heaps located in different memory
regions, as mentioned.

5.2.3 The hypervisor

The hypervisor layer is intended to be generic and not tied to FreeRTOS (al-
though it is of course tied to the underlying ARM hardware). The hypervisor
layer, therefore, has no particular knowledge of FreeRTOS code or structures. It
contains boot code adapted from boot code in the FreeRTOS distribution, excep-
tion handlers, and some MMU setup code, and it exposes the above mentioned
hypercall interface to allow safe implementation of critical, platform-dependent
functionality. The actual implementations of the hypercalls have been partially
adapted from platform-dependent code found already in the FreeRTOS distri-
bution, but were mostly written from scratch. In addition to supporting the
platform dependent code, note that two of the hypercalls faciliate entering and
exiting the guest kernel, which is discussed more in section 5.3.2. While the
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generic functionality supported by the hypervisor layer may not be enough to
support other OSs, it could be expanded to do so.

However, the major challenge when evolving the hypervisor to support larger,
more complex, mainstream guest OSs is to either paravirtualize an entire kernel
(as the Xen hypervisor used to require), which could be a significant and non-
portable undertaking, or to switch to a binary translation model wherein unsafe
instructions are translated live by the hypervisor to safe instructions. The latter
has the advantage that the guest OS requires no modification, but requires a
significant engineering effort. Both options are decidedly non-trivial. However,
hardware advances in embedded virtualization support could make supporting
mainstream OSs much easier overall, by offering hardware-based virtualization
of privileged operations and state as in Intel VT and AMD-V, so that a guest
OS can run with fewer changes. The less a guest OS need be translated or
modified, the better.

5.3 Key system aspects

In this section, we will examine more closely some central aspects of the hyper-
visor and the platform-dependent code.

5.3.1 Hypercall interface

The hypercall interface exposed by the hypervisor is summarized in table 5.1.
The hypercall interface provides safe access to privileged functionality re-

quired by the platform-dependent code, tasks, and the MMU wrappers. It is
extremely simple, consisting of only 10 calls. A hypercall is triggered by the SWI
instruction, and therefore handled in SVC mode. An identifier and description
for each hypercall is found in table 5.1.

ID Description Origin restriction
EIN Enable user mode interrupts kernel
DIN Disable user mode interrupts kernel
ENC Enter user mode critical section -
EXC Exit user mode critical section -
STI Set up timer interrupt kernel

ENK Enter guest kernel mode wrappers
EXK Exit guest kernel mode wrappers
YLD Yield execution -
SYH Set yield handler kernel
REC Restore execution context kernel

Tab. 5.1: Hypercall interface

The STI call, while currently specific to the timer interrupt, is designed
to support future genericity, and could easily be made to allow setting up of
different types of interrupts and to take additional parameters. For instance,
it could be possible to merge the STI and SYH calls into a single “configure
interrupt” call. As of now the only parameter to these hypercalls is a pointer
to a handler function that must be located in the kernel.
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The interrupt/yielding process, which involves the STI and SYH calls as well
as the YLD and REC calls, is described in section 5.3.3). Use of MMU wrappers
to protect the kernel, which involves the ENK and EXK calls, is described in
section 5.3.2.

The ”Origin restriction” column in table 5.1 refers to where the hypervisor
restricts the origin of the hypercall. Most calls must originate in the FreeRTOS
kernel. The ENK call must originate in the MMU wrappers. Some calls, such
as yielding and entering and exiting critical sections, have no origin restriction,
and can be issued directly by tasks. An interface for issuing such unrestricted
calls is exposed to tasks via unprotected functions or macros included in the
platform-dependent code.

5.3.2 Memory protection

Our thin hypervisor is intended to improve security for our guest kernel and
tasks, and a keystone of that security in our current system is the ARMv5
MMU. Using the MMU allows us to protect critical areas in memory while
maintaining reasonable performance. The MMU furnishes protection for the
critical elements in our TCB, namely the hypervisor and the system-critical
hardware, and additionally offers protections for the guest kernel, and the tasks.
Only privileged code – the hypervisor – can modify the MMU settings.

Fig. 5.2: MMU domains

We use several memory domains (depicted in figure 5.2). Firstly, the hy-
pervisor uses the MMU to protect itself and critical device memory (such as
the timer and interrupt controller) in the hypervisor domain. The hypervisor
domain is only accessible in privileged mode. The system starts in privileged
mode, at which point the hypervisor configures the MMU, after which execution
transitions to user mode to start the FreeRTOS kernel application. Transition
back to privileged mode only occurs as a result of hardware exceptions or hyper-
calls (the latter are implemented as a system call would normally be), ensuring
the MMU isn’t tampered with by unauthorized code.

Secondly, the hypervisor uses the MMU to protect the kernel, including all
kernel code and data, in the kernel domain. The FreeRTOS kernel API, which
is nomally freely available to task code, is now hidden behind a collection of
wrapper functions. Observe that this wrapper mechanism has been previously
used by FreeRTOS ports on platforms with a memory protection unit (MPU)
– a less flexible version of a MMU. In our system, the wrapper functions reside
in a special “transitional” MMU domain that is read-only to user mode and
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can enable and disable access to the kernel domain. The kernel domain is inac-
cessible to task code, but the transitional domain can “switch to kernel mode”
by enabling the kernel domain with a hypercall. It calls a kernel function, and
then “exits kernel mode” by disabling the kernel domain with another hypercall.
Thus, through these wrappers and domains, we have created a virtual kernel
mode. The Xen-ARM project has similarly used ARM MMU domains to create
a virtual kernel mode[55].

Note that as read-only for user mode, the transitional domain can also serve
as an area for the hypervisor to store read-only data that the kernel must be
able to view. Furthermore, the wrappers provide a means to restrict the kernel
interface, by either barring functions outright, or only allowing application code
to call functions before the scheduler is initiated. For instance, we have pre-
vented all application code from being able to allocate memory, and prevented
the creation of new tasks once the scheduler is started.

Finally, the hypervisor uses the MMU to protect individual task stacks, as
follows. While the task domain contains task code and static data, the hyper-
visor supports 10 additional separate memory domains termed “user domains”.
A non-privileged execution context can be associated with such a user domain.
When restoring execution context, the hypervisor enables access to the asso-
ciated user domain (if any), in additional to the standard task domain. The
FreeRTOS kernel can take advantage of this feature through the modifications
to the memory allocation code referenced earlier, which enable the kernel to
allocate memory from heaps located in these user domains. The kernel uses this
functionality to allocate task stacks in separate user domains.

Using this system, if each task is allocated in a separate domain, it will be
impossible for any task to access another task’s stack. This approach does limit
an application to 10 tasks. However, if feasible, tasks that are known to be
trustworthy and mutually trusting can be located in the same domain together.

The effect of this task stack protection is important. Without stack protec-
tion, tasks can tamper with each other’s stacks, which can result in inteference
with task activities, and even arbitrary code execution by overwriting a return
address saved in a stack frame. In fact, through overwriting a saved return
address, it would even be possible to break the virtual kernel mode by causing a
task in kernel mode to return to code outside the kernel without exiting kernel
mode. Protecting task stacks from other tasks resolves this problem. Addition-
ally, it should be noted that while an individual task can of course write to its
own stack, it can’t break the virtual kernel mode, since once in kernel mode all
execution is entirely in the hands of the wrappers and the kernel.

Since the hypervisor controls access to the ENK hypercall as described ear-
lier, barring other vulnerabilities, a malicious task can’t tamper with the kernel
except by using the wrapper interface. Likewise, neither can tasks nor the kernel
tamper with the hypervisor except through the hypercall interface.

Since ARM domains are specified at 1MB granularity, even with only 1MB
per domain using 14 domains requires at least 14MB of address space. However,
it is possible to use far less physical memory by not mapping all pages in a 1MB
domain – our entire system, with hypervisor, FreeRTOS kernel, stacks, and tasks
and libraries, fits easily within 1MB of real memory, using extremely generous
stacks that could be significantly reduced, and is thus suitable for quite limited
hardware platforms.
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5.3.3 Interrupts and yielding

Our hypervisor protects critical hardware, such as the interrupt controller and
timer, with the MMU. No task can manipulate the timer interrupt. However, the
hypervisor allows the FreeRTOS kernel to designate a timer interrupt handler
function via the STI hypercall.

Fig. 5.3: Interrupt sequence

The interrupt sequence is illustrated in figure 5.3. When a timer interrupt
occurs, the hypervisor first saves the interrupted task’s execution context, which
includes registers and CPU state, guest mode (that is, kernel or task, since a task
might be interrupted during a kernel call), and other details. The hypervisor
then disables user mode interrupts, dismisses the interrupt, and returns to the
designated kernel handler function. The function has read-only access to the
saved context, which it can store in a task control block. The handler can
then perform other activities, such as incrementing a tick counter or scheduling
another task for execution, and then it issues a REC hypercall to restore the
execution context of a task. Yielding is achieved with a similar mechanism
– except, the yield process begins with a YLD hypercall instead of a device
interrupt, after which the same process is followed. This mechanism is generic,
and would support the addition of other protected interrupts beyond just a
timer interrupt.

5.4 Security Analysis

This section presents a brief analysis of the security advantages and shortcom-
ings of our hypervisor.

A normal FreeRTOS application has no security protections. Tasks, hard-
ware, and the kernel are fully exposed. Therefore, our implementation started
from zero.

Our thin hypervisor uses the ARM9 MMU to protect itself, critical periph-
erals, the kernel, and the tasks. Assuming the hypervisor is sound, protections
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for the hypervisor and the peripherals are unaffected by kernel or task activity.
Furthermore, assuming the kernel is sound, the protections for the kernel and

for task stacks will also remain intact, regardless of malicious task activity. Our
hypervisor currently cannot protect the kernel against its own vulnerabilities.
If a task manages to exploit a kernel vulnerability, it may be able to circumvent
kernel memory protections to make unauthorized changes to memory, or break
the virtual kernel mode and execute arbitrary code as the kernel. And of course,
if the kernel itself is malicious, it can easily break the virtual kernel mode at
any time, by causing execution in kernel mode to branch to code outside the
kernel – nothing is forcing the kernel to return to the wrapper functions that
exit kernel mode. Hypervisor-supported kernel integrity protection as we intend
to implement in the future would at least prevent unauthorized code execution
in kernel mode, which a normal kernel itself could not guarantee.

As described, task protection is limited to task stacks. While this amounts
to a great improvement, there is still globally writable static data in shared
libraries, and potentially also in task code, and task code is readable by other
tasks. The unified address space of FreeRTOS makes it difficult to completely
isolate tasks from each other.

Wrappers are known to be a weak point in security[114]. Our system has
the benefit that it is single core, and also that the wrappers are extremely
simple – enabling kernel mode, calling a kernel function, and disabling. As
discussed earlier, task stack protection prevents a malicious task from hijacking
the execution of another task in kernel mode, which would defeat the wrapper
mechanism. From our analysis, excepting the presence of kernel vulnerabilities,
we cannot see another way that a task would be able to break the wrapper
mechanism and the virtual kernel mode it supports. Therefore, breaking the
wrappers requires a compromised or malicious kernel.

The security of the system is naturally dependent on the security of the
hypervisor. Our hypervisor exposes a minimal hypercall interface, and contains
less than 500 lines of code, much of that simple assembler. This makes it
reasonable to formally verify its security, which we intend to do in the future.

In summation, assuming hypervisor soundness, our system provides pro-
tection for the hypervisor itself and critical peripherals, and assuming kernel
soundness, our system provides protection for the kernel and the task stacks.
The soundness of the hypervisor is easier to assure, since the FreeRTOS kernel
exposes a great deal of functionality to the tasks and was not designed for secu-
rity; however, we have attempted to minimize the kernel interface and thereby
increase the level of assurance. Future implementation of kernel integrity protec-
tion in the hypervisor via newer hardware will not depend on any assumptions
of kernel soundness, and will reduce dependence on the wrapper mechanism. It
is such services that only depend on the hypervisor that we are most interested
in.

This implementation has explored the possibilities for thin hypervisors on
ARMv5, and the security properties that can be accomplished with them, driven
by a general manifest need for embedded system security. With this basic intent,
we did not yet need to identify particular security applications, though lessons
learned can be applied to future research with specific applications and possibly
different guest OSs.
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5.5 Design Recommendations

This section attempts to harvest lessons learned in the implementation, and to
make suggestions for moving to more ambitious implementation targets.

5.5.1 Trapping vs. Hypercalls

In our implementation, we took a paravirtualization approach, enabling privi-
leged operations via hypercalls. To minimize modification to the guest OS, it is
possible to explore how some of these operations could instead be implemented
by trapping privileged instructions. For example, when user-mode execution at-
tempts to enable or disable interrupts, execution would trap to the hypervisor,
and the hypervisor could evaluate the safety of the attempt – where did the
attempt occur, what is the intended change, any other context – and thereby
decide whether or not to carry out the operation. The advantage to be gained is
of course less need to port the guest OS, but the disadvantages are equally clear
– increased complexity in the hypervisor, and potential performance reduction
due to that complexity. The latter point necessitates performance testing. If
the performance impact is minimal, then trapping should probably be chosen
over hypercalls, due to the reduction in porting requirements for a guest.

The ideal goal would, of course, be to run a completely unmodified guest
OS binary above our thin hypervisor. Without implementing binary translation,
this seems quite difficult or impossible on ARMv5. However, if hardware support
for virtualization on embedded systems evolves along the lines of x86 support, a
thin embeddedhypervisor stands in a much stronger position to achieve this aim.
Just support for a higher hypervisor operating mode (invisible and inaccessible
to normal privileged mode), interrupt virtualization, and of course a NX bit
would solve most of the challenges of virtualizing FreeRTOS.

5.5.2 Memory protection

The kernel wrappers we used provide the capacity to interpose on kernel en-
tries and exits, and thereby create a virtual kernel mode. It would be much
better, however, if a hardware-based solution were found. Wrapper mechanisms
are always a potential source of problems, especially if we move to multicore
platforms with increased concurrency. Moreover, it was previously noted in our
security analysis in section 5.4 that the wrappers are frail in the face of ma-
licious or compromised kernel code. As mentioned numerous times, on newer
hardware with a NX bit we will implement kernel integrity protection, which
will solve these problems by never allowing non-kernel code to be executed in
kernel mode. Both kernel entries and exits can be detected and interposed upon
using the NX bit. However, this solution will require eviction of TLB entries,
since it involves modifying specific page permissions – thus potentially affecting
performance.

It could be advantageous to abandon the wrapper mechanism completely,
since it amounts to an unwanted change to the guest OS. However, since the
FreeRTOS kernel doesn’t use real system calls, the wrapper mechanism is still
convenient as a way to restrict which kernel functions are actually accessible
to the tasks. Therefore, the wrapper mechanism could be retained only for
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facilitating secure kernel entry, with kernel exit always being mediated by the
hypervisor via a MMU fault when execution branches to non-kernel code.

5.5.3 Security Services

Potential services and approaches were already discussed in section 4.4, and so
will not be discussed in great depth here. Our implementation does not yet
provide any additional security services beyond memory protection as covered
in this chapter. We of course intend to implement kernel integrity protection,
we possibly increased task memory protection. Monitoring and other security
services can also be implemented, ideally motivated by specific applications and
security-critical scenarios.

5.5.4 Multicore

The main challenge for our current thin hypervisor in moving to a multicore
platform would be managing and synchronizing state, especially privileged state,
for multiple simultaneous execution contexts, and in general dealing with any
concurrency issues. This would increase complexity for interrupt handling and
interposition in general.

It was already mentioned that the wrapper mechanism is a potential source
of problems especially in a concurrent environment, and special care must be
taken to ensure that critical points such as the wrappers and the interrupt
handling sequence are safe on a multicore system.

Since each core would have its own set of registers and its own CPSR (or
equivalent), it is presumable that separate stacks could be used for handling
exceptions on the different processors, and that interrupt state would be inde-
pendent for each core. It is important to ensure that exceptions (such as memory
aborts or IRQ/FIQ interrupts) are delivered to the proper core – without being
able to ensure proper delivery, exception handling would become much more
complicated.

With enough available cores, it could be worth exploring a Sidecore-like
architecture, where instead of straight hypercalls, guest code makes sidecalls to
a dedicated hypervisor core, to avoid the cost of hypervisor entries and exits.
Barring that, it could at least be possible to look into partitioning hypervisor
functionality and dedicating it to specific cores, in an effort to increase locality
and performance. Any such approach follow the Barrelfish lead of treating a
multicore system as a distributed system.

5.5.5 Hardware heterogeneity

It would be useful to begin modifying the hypervisor to support multiple hard-
ware architectures in a modular way. Since the hypervisor currently comprises
only one C file, this should not be too difficult. A first step would be to isolate
the generic portions of the hypervisor from the platform-dependent portions,
which may require a study of a range of hardware platforms to assess their
commonalities and differences. Then, platform-dependent portions can be log-
ically organized in appropriate components, and abstracted behind a macro or
function call interface.
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We have made use of the ARM-specific MMU domains feature, and so as
part of expanding to other architectures it should be evaluated how equivalent
functionality could be achieved with available features.

By exploring other hardware platforms, it might also become evident that
the hypercall interface or other facilities need be evolved, and will in general
help the hypervisor to become a more useful and versatile entity.

5.5.6 Multiple guests

Our current thin hypervisor supports a single guest, which greatly simplifies
requirements. However, it may be useful to investigate support for multiple
guests.

The minimum challenges for supporting multiple guests would be to have
proper support for scheduling, context switching, and memory protection. If
all guests are as simple as FreeRTOS, these challenges are not so burdensome.
Guests could even simply run in fixed memory locations, protected by the MMU,
still foregoing the need for virtual memory and page swapping if sufficient phys-
ical memory were available.

However, a much more useful scenario would be supporting an untrusted
open OS alongside a trusted OS, and requirements for virtualizing a mainstream
open OS are clearly much greater and well beyond the current capacity of our
hypervisor. Here again we note that advances in hardware support could provide
the needed aid. Especially if a system were limited to two guests, it is quite
conceivable to have one simpler, trusted OS running in a particular memory
region and a mainstream OS running atop advanced support for CPU, I/O and
state virtualization and two-level page tables.

5.6 Summary

This chapter described our implementation of a thin hypervisor on ARMv5. We
successfully implemented a “real” thin hypervisor providing security, albeit for
a small guest OS. As the implementation is security-focused, we have assessed
the security advantages and weaknesses of our hypervisor, and made security-
oriented recommendations for future designs. The implementation provides a
clear base for future work.
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While our hypervisor is designed to support security for a guest OS, to be
usable it must not impact performance unduly. This chapter documents our
performance tests.

6.1 Description of Tests

To assess the performance overhead of our hypervisor, we designed four per-
formance tests intended to cover the key performance burdens imposed by the
hypervisor: the MMU kernel wrappers, hypercalls, interrupts, and yielding. The
hypervisor executes code for each of these occasions. In a MMU kernel wrapper,
used when task code calls a kernel API function, hypercalls are issued to enter
and exit guest kernel mode, which modifies MMU settings. A normal FreeR-
TOS distribution would just execute the kernel function. Additionally, a kernel
function itself may use hypercalls. In interrupts and yielding, the hypervisor
saves context and returns to a kernel handler function, which performs its own
activities and then issues a hypercall to restore task context. A normal FreeR-
TOS interrupt handler or yield call would save context, perform activities, and
restore context all in the same function.

We have run each of our tests in preemptive and non-preemptive mode,
both on our hypervisor system and a normal FreeRTOS kernel. Naturally, both
preemptive and non-preemptive execution, and therefore all the tests, exercise
the interrupt handling mechanism. Our timer interrupt mechanism uses an
arbitrarily chosen 4ms period.

Our first three tests each use 5 tasks to perform a parallelizable math work-
load. The workload consists of 10000 work units (each unit consisting of some
simple math operations). Tasks take work units in a loop. To ensure consis-
tency, a task takes a work unit inside a critical section, in which interrupts are
disabled. It then leaves the critical section and carries out the work unit. En-
tering and exiting a critical section utilizes hypercalls. In the first test, called
“MathTest”, the tasks do not yield, and will continue taking work units until
preempted. One effect of this is that when using non-preemptive scheduling,
one task will simply work through the entire workload by itself. On the other
hand, in the second test known as “YieldingMathTest”, the tasks yield after
completing 5 work units, which results in significant (possibly exaggerated) ex-
ercise of the yield mechanism. In the third test, called “WrapperMathTest”, the
tasks call an arbitrary kernel function after completing 5 work units, resulting
in significant exercise of the wrapper mechanism.

The fourth test, “FlashTest”, simulates the flashing of a bank of LED lights
by having each of 5 tasks in a loop periodically activate and deactivate their
own LED light by writing to a certain memory region, as if the LED bank were
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a memory mapped device. The 5 LEDs flash with a period of 10, 20, 30, 40,
and 50 timer ticks, respectively. The test runs until the fastest LED has flashed
20 times.

To repeatedly flash its LED on and off, a task’s loop calls a kernel function
to delay execution (that is, to sleep) for half of its flash period, then activates
its LED, then calls the same kernel function to delay execution for half its
period again, then deactivates its LED. This exercises the kernel wrappers, and
the yielding mechanism. When no flash task is ready to execute because their
delay/sleep times have not expired, the idle task runs. The FreeRTOS idle task
simply loops repeatedly until another task is ready to be scheduled.

6.2 Results

We have recorded results in OVP-simulated instruction counts, and have found
that, in spite of significant usage of hypervisor mechanisms in the various tests,
use of the hypervisor engenders little overhead. These results are auspicious
and encouraging, and provide strong initial evidence that security-supportive
thin hypervisors are reasonable to use on embedded platforms. Results are
summarized in table 6.1.

Test Instruction count Instruction count Overhead %
with hypervisor without hypervisor

MathTest, Preemptive 10,696,343 10,472,960 2.133
MathTest, Non-preemptive 10,692,268 10,469,648 2.126
YieldingMathTest, Preemptive 11,885,640 11,109,395 6.987
YieldingMathTest, Non-preemptive 11,880,823 11,105,748 6.979
WrapperMathTest, Preemptive 11,128,362 10,612,814 4.858
WrapperMathTest, Non-preemptive 11,124,540 10,609,665 4.853
FlashTest, Preemptive 163,411,309 163,406,633 0.003
FlashTest, Non-preemptive 163,411,862 163,406,780 0.003

Tab. 6.1: Test Results, in OVP-simulated instruction counts

Observe that the tests with the most exaggerated usage of hypervisor mech-
anisms, YieldingMathTest and WrapperMathTest, result in the greatest over-
head, but even this overhead is still quite acceptable.

The results don’t necessarily offer direct feedback for future design recom-
mendations, but they do provide a benchmark and standard by which future im-
plementations can be measured, and they overall encourage continued progress.



7. CONCLUSIONS AND FUTURE WORK

7.1 Future Work

Future work is actually one of the most important aspects of this thesis, since
it was a foundational project intended to set the scene for continued efforts.
Many significant directions for future work have already been covered (notably
in section 5.5), including:

• Security services, including kernel integrity protection and others

• Enhanced memory protection with less reliance on wrappers

• Investigating support for multiple cores

• Branching out to additional hardware platforms

• Using trapping to reduce the need for hypercalls

Additionally, formal verification of implementations is a desired goal, and
more thorough security analysis in general and investigation of more specific
security applications is encouraged.

While we have emphasized repeatedly that evolving hardware support would
be of great benefit and potentially engender many new applications, research
should still proceed on currently available hardware – both because it is not clear
if or when more advanced hardware will become available, and innumerable new
and old embedded systems will remain or be deployed without such advanced
support.

7.2 Conclusions

This thesis has demonstrated that embedded thin hypervisors are a viable, use-
ful platform for embedded system security. With extensive background research
into virtualization, embedded, and multicore technology, it was shown that vir-
tualization is a strong security enabler and demonstrates potential to manage
hardware complexity, and it was motivated that embedded virtualization is on
the rise and is already being used to answer embedded systems’ security needs.
Our implementation shows that thin embedded hypervisors can be small and
practical, bringing security to guests with acceptable performance. Both the
background study and implementation have yielded substantial artifacts upon
which subsequent work can be built. With recommendations for future work
well outlined and lessons learned from our implementation and background re-
search, this thesis has achieved the goals established in section 1.4, and prepared
the way for meaningful future efforts.
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