474 research outputs found

    Proceedings of Abstracts Engineering and Computer Science Research Conference 2019

    Get PDF
    Ā© 2019 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Note: Keynote: Fluorescence visualisation to evaluate effectiveness of personal protective equipment for infection control is Ā© 2019 Crown copyright and so is licensed under the Open Government Licence v3.0. Under this licence users are permitted to copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. Where you do any of the above you must acknowledge the source of the Information in your product or application by including or linking to any attribution statement specified by the Information Provider(s) and, where possible, provide a link to this licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/This book is the record of abstracts submitted and accepted for presentation at the Inaugural Engineering and Computer Science Research Conference held 17th April 2019 at the University of Hertfordshire, Hatfield, UK. This conference is a local event aiming at bringing together the research students, staff and eminent external guests to celebrate Engineering and Computer Science Research at the University of Hertfordshire. The ECS Research Conference aims to showcase the broad landscape of research taking place in the School of Engineering and Computer Science. The 2019 conference was articulated around three topical cross-disciplinary themes: Make and Preserve the Future; Connect the People and Cities; and Protect and Care

    Mechatronic Systems

    Get PDF
    Mechatronics, the synergistic blend of mechanics, electronics, and computer science, has evolved over the past twenty five years, leading to a novel stage of engineering design. By integrating the best design practices with the most advanced technologies, mechatronics aims at realizing high-quality products, guaranteeing at the same time a substantial reduction of time and costs of manufacturing. Mechatronic systems are manifold and range from machine components, motion generators, and power producing machines to more complex devices, such as robotic systems and transportation vehicles. With its twenty chapters, which collect contributions from many researchers worldwide, this book provides an excellent survey of recent work in the field of mechatronics with applications in various fields, like robotics, medical and assistive technology, human-machine interaction, unmanned vehicles, manufacturing, and education. We would like to thank all the authors who have invested a great deal of time to write such interesting chapters, which we are sure will be valuable to the readers. Chapters 1 to 6 deal with applications of mechatronics for the development of robotic systems. Medical and assistive technologies and human-machine interaction systems are the topic of chapters 7 to 13.Chapters 14 and 15 concern mechatronic systems for autonomous vehicles. Chapters 16-19 deal with mechatronics in manufacturing contexts. Chapter 20 concludes the book, describing a method for the installation of mechatronics education in schools

    Assembly Line

    Get PDF
    An assembly line is a manufacturing process in which parts are added to a product in a sequential manner using optimally planned logistics to create a finished product in the fastest possible way. It is a flow-oriented production system where the productive units performing the operations, referred to as stations, are aligned in a serial manner. The present edited book is a collection of 12 chapters written by experts and well-known professionals of the field. The volume is organized in three parts according to the last research works in assembly line subject. The first part of the book is devoted to the assembly line balancing problem. It includes chapters dealing with different problems of ALBP. In the second part of the book some optimization problems in assembly line structure are considered. In many situations there are several contradictory goals that have to be satisfied simultaneously. The third part of the book deals with testing problems in assembly line. This section gives an overview on new trends, techniques and methodologies for testing the quality of a product at the end of the assembling line

    Bio-inspired cellular machines:towards a new electronic paper architecture

    Get PDF
    Information technology has only been around for about fifty years. Although the beginnings of automatic calculation date from as early as the 17th century (W. Schickard built the first mechanical calculator in 1623), it took the invention of the transistor by W. Shockley, J. Bardeen and W. Brattain in 1947 to catapult calculators out of the laboratory and produce the omnipresence of information and communication systems in today's world. Computers not only boast very high performance, capable of carrying out billions of operations per second, they are taking over our world, working their way into every last corner of our environment. Microprocessors are in everything, from the quartz watch to the PC via the mobile phone, the television and the credit card. Their continuing spread is very probable, and they will even be able to get into our clothes and newspapers. The incessant search for increasingly powerful, robust and intelligent systems is not only based on the improvement of technologies for the manufacture of electronic chips, but also on finding new computer architectures. One important source of inspiration for the research of new architectures is the biological world. Nature is fascinating for an engineer: what could be more robust, intelligent and able to adapt and evolve than a living organism? Out of a simple cell, equipped with its own blueprint in the form of DNA, develops a complete multi-cellular organism. The characteristics of the natural world have often been studied and imitated in the design of adaptive, robust and fault-tolerant artificial systems. The POE model resumes the three major sources of bio-inspiration: the evolution of species (P: phylogeny), the development of a multi-cellular organism by division and differentiation (O: ontogeny) and learning by interaction with the environment (E: epigenesis). This thesis aims to contribute to the ontogenetic branch of the POE model, through the study of three completely original cellular machines for which the basic element respects the six following characteristics: it is (1) reconfigurable, (2) of minimal complexity, (3) present in large numbers, (4) interconnected locally with its neighboring elements, (5) equipped with a display capacity and (6) with sensor allowing minimal interaction. Our first realization, the BioWall, is made up of a surface of 4,000 basic elements or molecules, capable of creating all cellular systems with a maximum of 160 Ɨ 25 elements. The second realization, the BioCube, transposes the two-dimensional architecture of the BioWall into a two-dimensional space, limited to 4 Ɨ 4 Ɨ 4 = 64 basic elements or spheres. It prefigures a three-dimensional computer built using nanotechnologies. The third machine, named BioTissue, uses the same hypothesis as the BioWall while pushing its performance to the limits of current technical possibilities and offering the benefits of an autonomous system. The convergence of these three realizations, studied in the context of emerging technologies, has allowed us to propose and define the computer architecture of the future: the electronic paper

    Self-Assembly from Milli- to Nanoscales: Methods and Applications

    Get PDF
    The design and fabrication techniques for microelectromechanical systems (MEMS) and nanodevices are progressing rapidly. However, due to material and process flow incompatibilities in the fabrication of sensors, actuators and electronic circuitry, a final packaging step is often necessary to integrate all components of a heterogeneous microsystem on a common substrate. Robotic pick-and-place, although accurate and reliable at larger scales, is a serial process that downscales unfavorably due to stiction problems, fragility and sheer number of components. Self-assembly, on the other hand, is parallel and can be used for device sizes ranging from millimeters to nanometers. In this review, the state-of-the-art in methods and applications for self-assembly is reviewed. Methods for assembling three-dimensional (3D) MEMS structures out of two-dimensional (2D) ones are described. The use of capillary forces for folding 2D plates into 3D structures, as well as assembling parts onto a common substrate or aggregating parts to each other into 2D or 3D structures, is discussed. Shape matching and guided assembly by magnetic forces and electric fields are also reviewed. Finally, colloidal self-assembly and DNA-based self-assembly, mainly used at the nanoscale, are surveyed, and aspects of theoretical modeling of stochastic assembly processes are discussed

    Technology 2003: The Fourth National Technology Transfer Conference and Exposition, volume 2

    Get PDF
    Proceedings from symposia of the Technology 2003 Conference and Exposition, Dec. 7-9, 1993, Anaheim, CA, are presented. Volume 2 features papers on artificial intelligence, CAD&E, computer hardware, computer software, information management, photonics, robotics, test and measurement, video and imaging, and virtual reality/simulation

    Survey of Visual and Force/Tactile Control of Robots for Physical Interaction in Spain

    Get PDF
    Sensors provide robotic systems with the information required to perceive the changes that happen in unstructured environments and modify their actions accordingly. The robotic controllers which process and analyze this sensory information are usually based on three types of sensors (visual, force/torque and tactile) which identify the most widespread robotic control strategies: visual servoing control, force control and tactile control. This paper presents a detailed review on the sensor architectures, algorithmic techniques and applications which have been developed by Spanish researchers in order to implement these mono-sensor and multi-sensor controllers which combine several sensors

    Multi-functional, self-sensing and automated real-time non-contact liquid dispensing system

    Get PDF
    Liquid dispensing in the order of pico-liter has become more and more important in biology, electronics and micro-electronic-mechanical-system (MEMS) during the past two decades due to the rapid progress of researches on the deoxyribonucleic acid (DNA) microarray, compact and low-cost direct write technology (DWT), organic semiconductors and nano-particles. The existing approaches, commercialized or experimental, to liquid dispensing in minute amounts have one common shortcoming: open loop control, i.e., they have no direct control on the quality of dispensed liquid. In contrast, the SmartPin has intrinsic self-sensing capability to not only control the process of liquid dispensing, but also the results of the dispensed liquid in real time. The dual purpose fiber optics sensor/plunger is able to detect the status of liquid morphology under dispensing, in real time, by the internal light sensor and control both the amount and the manner of liquid dispensing by its plunger-like movements. This dissertation work has implemented, with the SmartPin technology, a frilly automated DNA microarrayer based on the first generation prototype developed at NJIT\u27s Real Time Control Laboratory. This new DNA microarrayer fulfills all requirements in each step of DNA microarray fabrication, such as thorough cleaning to avoid cross contamination and clogging, aspiration of tiny amount of DNA samples, spotting on multiple slides, and flexible in stream change of DNA samples. Experiment results shows that this DNA microarrayer compares favorably with its commercialized counterpart OmniGrid 100 with SMP3 pins. As a verification of robust implementation and on-the-fly control of spot morphology, high volume of spots (120 K) have been made, from which the corresponding experiment data has been obtained, categorized and normalized as template database. In addition, this dissertation research explores the patterned microline-drawing capability of the SmartPin. Two approaches, spot sequence and liquid-column sweeping, are proposed and implemented. Experiment results show that the SmartPin is promising in the area of patterning of large area organic electronics. Besides the experimental research, computational fluid dynamics (CFD) simulation of the liquid dispensing process has been done by utilizing GAMBIT and FLUENT, which are state-of-the-art computer programs for modeling fluid flow and heat transfer in complex geometries. The CFD simulation results, validated by experimental results, offer a guide to the design of control system for different tasks of liquid dispensation, such as fabrication of protein microarray

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design
    • ā€¦
    corecore