
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

Ingénieur en Electronique et Electrotechnique, Ecole supérieure d'Ingénieurs (ESIEE), Paris, France
et de nationalité française

acceptée sur proposition du jury:

Lausanne, EPFL
2007

Prof. C. Petitpierre, président du jury
Prof. E. Sanchez, Prof. D. Mange, directeurs de thèse

Prof. G. De Micheli, rapporteur
Dr W. Hammer, rapporteur

Prof. G. Tempesti, rapporteur

Bio-inspired Cellular MaChines:
Towards a new eleCTroniC paper arChiTeCTure

Fabien VANNEL

THÈSE NO 3933 (2007)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 7 DÉCEMBRE 2007

À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

Groupe Sanchez

SECTION D'INFORMATIQUE

A ma grand-mère.

Version abrégée

L’informatique est une invention très récente, vieille de quelques décennies seulement.

Même si les prémices du calcul automatisé sont bien plus anciens (W. Schickard con-

struisit la première calculatrice mécanique en 1623), il faudra attendre l’invention du

transistor par W. Shockley, J. Bardeen et W. Brattain en 1947 pour propulser les cal-

culateurs hors des laboratoire et observer l’omniprésence des systèmes informatiques

dans le quotidien de chaque être humain.

Les ordinateurs ne se contentent plus d’être des systèmes très performants, capa-

bles d’exécuter des milliards d’opérations par seconde, mais envahissent notre monde

en se glissant dans les moindres recoins de notre environnement. De la montre à quartz

à l’ordinateur de bureau, en passant par la clé de voiture, le téléphone portable, la

télévision, ou la carte de crédit, les microprocesseurs sont omniprésents; il est fort

probable qu’ils seront encore plus nombreux demain, et qu’ils pourront se nicher dans

nos vêtements ou notre journal.

La recherche incessante de systèmes de plus en plus puissants, plus robustes, plus

intelligents, ne passe pas uniquement par l’amélioration des technologies de fabrica-

tion des puces électroniques, mais également par la recherche de nouvelles architec-

tures informatiques. Pour atteindre ces objectifs une des voies de recherche est la bio-

inspiration. La nature est fascinante pour l’ingénieur: quoi de plus intelligent, adap-

tatif, évolutif et robuste qu’un être vivant? D’une simple cellule possédant son plan

de construction sous forme d’ADN va se développer un être multi-cellulaire complet.

Ces particularités de la nature ont souvent été étudiées et mimées afin de concevoir

des systèmes artificiels adaptatifs, robustes et insensibles aux défaillances. Le modèle

POE résume les trois grandes sources de la bio-inspiration: l’évolution des espèces

(P: phylogenèse), le développement par division et différenciation d’un être multi-

cellulaire (O: ontogenèse) et l’apprentissage par interaction avec l’environnement (E:

épigenèse).

Cette thèse se propose d’approfondir l’étude de l’axe ontogenétique du modèle

POE, grâce à l’étude de trois machines informatiques cellulaires tout à fait originales

dont l’élément de base satisfait les six caractéristiques suivantes: (1) il est reconfig-

urable, (2) de complexité minimale, (3) présent en grand nombre, (4) interconnecté

avec ses voisins de façon locale, (5) disposant d’un système d’affichage et (6) d’un

capteur permettant une interaction minimale.

Le BioWall, qui est notre première réalisation, est constitué d’une surface de 4’000

éléments de base ou molécules, aptes à réaliser tous les systèmes cellulaires compor-

i

ii Version abrégée

tant au plus 160 × 25 éléments.

La seconde réalisation, le BioCube, transpose l’architecture à deux dimensions du

BioWall dans un espace à trois dimensions, limitée à 4× 4× 4 = 64 éléments de base

ou sphères, cherche à préfigurer un ordinateur tridimensionnel construit à partir des

nanotechnologies.

Quant à la troisième machine, le BioTissue, elle reprend les hypothèses du

BioWall tout en poussant ses performances aux limites des techniques actuelles tout

en lui ajoutant les atouts d’un système autonome.

La convergence de ces trois réalisations, étudiées dans le contexte des technolo-

gies émergentes, nous amène à définir et proposer l’architecture informatique de

l’ordinateur du futur: le tissu ou papier électronique.

Mot-clés: système bio-inspiré, ordinateur cellulaire, système reconfigurable,

conception électronique, architecture des ordinateurs, Embryonique, tolérance aux

pannes, FPGA, nanotechnologies, papier électronique.

Abstract

Information technology has only been around for about fifty years. Although the be-

ginnings of automatic calculation date from as early as the 17th century (W. Schickard

built the first mechanical calculator in 1623), it took the invention of the transistor by

W. Shockley, J. Bardeen and W. Brattain in 1947 to catapult calculators out of the lab-

oratory and produce the omnipresence of information and communication systems in

today’s world.

Computers not only boast very high performance, capable of carrying out billions

of operations per second, they are taking over our world, working their way into every

last corner of our environment. Microprocessors are in everything, from the quartz

watch to the PC via the mobile phone, the television and the credit card. Their con-

tinuing spread is very probable, and they will even be able to get into our clothes and

newspapers.

The incessant search for increasingly powerful, robust and intelligent systems is

not only based on the improvement of technologies for the manufacture of electronic

chips, but also on finding new computer architectures. One important source of inspi-

ration for the research of new architectures is the biological world. Nature is fasci-

nating for an engineer: what could be more robust, intelligent and able to adapt and

evolve than a living organism? Out of a simple cell, equipped with its own blueprint

in the form of DNA, develops a complete multi-cellular organism. The characteristics

of the natural world have often been studied and imitated in the design of adaptive,

robust and fault-tolerant artificial systems. The POE model resumes the three major

sources of bio-inspiration: the evolution of species (P: phylogeny), the development

of a multi-cellular organism by division and differentiation (O: ontogeny) and learning

by interaction with the environment (E: epigenesis).

This thesis aims to contribute to the ontogenetic branch of the POE model, through

the study of three completely original cellular machines for which the basic element

respects the six following characteristics: it is (1) reconfigurable, (2) of minimal com-

plexity, (3) present in large numbers, (4) interconnected locally with its neighboring

elements, (5) equipped with a display capacity and (6) with sensor allowing minimal

interaction.

Our first realization, the BioWall, is made up of a surface of 4,000 basic elements

or molecules, capable of creating all cellular systems with a maximum of 160 × 25
elements.

The second realization, the BioCube, transposes the two-dimensional architecture

iii

iv Abstract

of the BioWall into a two-dimensional space, limited to 4×4×4 = 64 basic elements

or spheres. It prefigures a three-dimensional computer built using nanotechnologies.

The third machine, named BioTissue, uses the same hypothesis as the BioWall
while pushing its performance to the limits of current technical possibilities and offer-

ing the benefits of an autonomous system.

The convergence of these three realizations, studied in the context of emerging

technologies, has allowed us to propose and define the computer architecture of the

future: the electronic paper.

Keywords: bio-inspired hardware, cellular computing, reconfigurable computing,

electronic design, computer architecture, Embryonics, fault tolerance, FPGA, nan-

otechnologies, electronic paper.

Chapter1
Introduction

W
HAT would the words computer or computer science have meant for

our grandparents? Probably an inconceivable revolution. For younger

people, these concepts are part of the fabric of our world. In less than

50 years, the invention of the transistor has projected the computer

from the laboratories to the public place, where it is now found everywhere: watches,

mobile phones, music players, cars, credit cards. . .

Computing needs are evolving towards faster microprocessors and the conquest

of new targets and applications. The newspaper becoming a computer [92], and the

integration of processors in clothes [79] are just two examples. Computers are also be-

coming smaller and thinner - less noticeable - but increasing by present in our everyday

world.

1.1 Bio-inspired cellular computing

Up to now, the main research in computing has focused on increasing the computa-

tional performance of microprocessors. This has been achieved mainly through reduc-

ing the size of etching silicon technologies making it possible to increase the operating

frequency of the microprocessors. Recently, the demands for ever increasing com-

puting power have been addressed by designing architectures capable of exploiting

parallelism at the instruction level through hardware mechanisms such as super-scalar

execution. However, all these approaches seem to have reached their practical limits,

mainly due to issues related to design complexity and cost-effectiveness.

The current trend in computer design seems to favor a switch to coarser-grain

parallelization, typically at the thread level. In other words, high computational power

is achieved not by a single very fast and very complex microprocessor, but through

the parallel operation of several on-chip processors, each executing a single thread.

This kind of approach is currently implemented commercially through multi-core

processors and in the research community through the Multi-processors Systems On

Chip (MPSoCs) term, which is itself largely based on the Network On Chip (NoC)

paradigm [34, 33].

Extrapolating this trend to take into account the vast amount of on-chip hardware

resources that will be available in the next few decades (either through further shrink-

1

2 Introduction

age of silicon fabrication processes or by the introduction of molecular-scale devices),

together with the predicted features of such devices (i.e. the impossibility of global

synchronization), this approach comes to resemble another computational paradigm,

commonly known as cellular computing.

Loosely based on the observation that biological organisms are in fact highly com-

plex structures, which function thanks to the parallel operation of vast numbers of

relatively simple elements (the cells), this paradigm tries to draw an analogy between

multi-cellular organisms and multi-processor systems. At the root of this analogy is

the observation that organisms, in addition to being completely asynchronous, are built

through a bottom-up self-assembly process and do not require the specification of a

complete layout.

The existing interpretations and implementations of this paradigm are extremely

varied, ranging from theoretical studies [115, 118] to commercial realizations (notably,

the Cell CPU [97, 98] jointly developed by IBM�, Sony� and Toshiba�), through

wetware-based systems [9], OS-based mechanisms [49] and amorphous computing

approaches [2].

Depending on the authors, the cells may comprise different levels of complex-

ity ranging from very simple, locally-connected, logic elements to high-performance

computing units endowed with memory and complex network capabilities. However,

in every case, the basic idea of two-dimensional systems composed of relatively simple

connected elements, remains.

1.2 Thesis goal

The objective of this thesis is to study different systems based on a cellular architecture.

From the simplest architecture, which can nonetheless do complex computation thanks

to its huge size, to the most complex cellular system able to challenge today’s computer

performances, this thesis will discuss how cellular systems can been applied to solve

various problems, and be included in future computing systems. Moreover, newcomer

technologies like molecular electronics, or nanoelectronics, will probably be made

up of regular arrays interconnected together locally [130]. This thesis will study an

algorithm able to configure a cellular network of any size, and which includes fault

tolerance capabilities. Our final goal is to propose an architecture which could be used

for manufacturing a product of the future: electronic paper.

It has long been a practice of our research laboratory to attempt to physically re-

alize, in hardware, systems in order to verify their properties and to analyze their ef-

ficiency. Considering the complexity of this kind of systems, prototyping in hardware

requires vast amounts of reconfigurable resources, which for this project take the form

of Field Programmable Gate Array (FPGA) components, as specified in this thesis.

Our realizations are all based on a recurrent basic topology: each cell of our cellular

machines is endowed with at least the following three key components: a reconfig-

urable computing unit, a display element and an external sensor allowing users to

interact with the cell.

1.3 Thesis organization 3

1.3 Thesis organization

This thesis is divided into 10 chapters. Chapters 3 to 8 present our three realizations.

The presentation of each of the three realizations is structured in the same way: a first

chapter describes the hardware machine, and a second chapter focuses on applications.

Chapter 2 provides a rather general overview of the world of computer hardware.

It summarizes the evolution of the computer from its birth to the current models, and

makes some predictions concerning its future. We also outlined the evolution of tech-

nologies and of computer hardware architectures. As the focus for the past several

decades has been on speeding up processing by miniaturization, we will discuss some

new research topics like nanotechnologies for technology improvements, and cellular

computing for architecture improvements.

1.3.1 Three biologically-inspired machines

The next chapters describe the three bio-inspired machines developed during this the-

sis. They are all based on a same common cellular architecture, where several identical

units are interconnected using a mesh-network topology. At the heart of each of our

units, is an FPGA, which allows several experiments to be easily conducted thanks to

its reconfigurable properties and computing performance.

Chapter 3 deals with our first invention: the BioWall. This bio-inspired electronic

tissue was firstly developed to study and test the ontogenetic model described in the

Embryonics project in hardware. The BioWall is made of 4’000 identical molecules

and is also the largest of the three realizations in terms of size. The results obtained

from this machine are very promising, but the BioWall needs some additional features

and improvements in order to supply the autonomy needed to accomplish our final

goal: the electronic paper.

Chapter 5 extends the concept of the BioWall from a wall in 2D to a cube in 3D.

This second invention, called the BioCube, proposes an architecture that could be

used with promising circuits of the future based on nanotechnologies. Several im-

provements towards autonomy have been added to this cellular system.

Chapter 7 presents our final realization: the BioTissue. It is the outcome of our

current research in terms of systems conceived in hardware. This tablet, still based on

a cellular architecture, similar to the BioWall global structure, is fully autonomous and

can run several different applications at the same time. Its structure is a precursor of

tomorrow’s electronic paper architecture.

1.3.2 Two common applications

For the purpose of comparing our three architectures, we developed two different ap-

plications, that were both implemented in the three different machines. The first ap-

plication, the Game of Life, will be a useful tool for comparing the performance of

each machine and a good example to show how to develop an application on the three

systems. The second application, the Tom Thumb replicating loop, is a perfectly ded-

icated application, which is used for investigating the bio-inspired capabilities of each

4 Introduction

machine. Improvements to this application are added in each new implementation (de-

pending on the resources of each machine) and the final version implemented onto the

BioTissue is the current result of our research on this topic.

Chapter 4 describes these two applications running onto the BioWall, chapter 6
does the same for theBioCube, and chapter 8 shows the evolution of these applications
running on the BioTissue.

The Game of Life

Our first application is a simple Cellular Automata (CA): John Conway’s Game of

Life [47]. It is probably the best known CA. Chapter 4 will present the principles of

this automaton. We chose this application for several reasons:

• This simple automaton is easy to implement on our three realizations.

• Since it is a cellular automaton, it is well suited to our cellular architectures

which are perfectly adapted for parallel computation.

• The biological aspects found in this automaton match the bio-inspired quality of

our research. “Because of Life’s analogies with the rise, fall and alterations of

a society of living organisms, it belongs to a growing class of what are called

’simulation games’ (games that resemble real life processes)” [47].

• From these simple, local rules, some astoundingly complex global behaviors

have been observed and developed, and a tissue with a huge number of automa-

ton cells allows the Game of Life to be programmed to perform computations.

Indeed, it is a universal computer [101]. The perfect example of its universality

is the implementation of the Turing machine [105].

• Another capacity of this automaton is the self-reproduction of organisms [14],

which is part of our research topic.

This application will be tailored to the three systems.

Self-replicating loop

The second application is a novel self-replicating loop endowed with universal con-

struction properties, perfectly suited to the regular cellular structure of our systems.

The goal of this application is to perform configuration, cloning, cicatrization and re-

generation mechanisms through a single process inspired from the biological world.

Self-replicating and self-repairing machines could be used in the development of

new physical architectures where defects and failures are common. This is not the case

with our current silicon technologies, but could soon be used with the development of

molecular electronics where manufacturing defects may be present in many parts of the

component. This application proposes a new methodology for configuring a regular

network of computational units, even if some units are defective. Our research focuses

on a 2D and a 3D network topologies. The cicatrization and regeneration mechanisms

have only been added in the last version of our application, i.e. the application running

on the BioTissue, as the latter is complex enough to support these processes.

1.4 Contributions 5

1.3.3 The electronic paper

The final chapter before the conclusion is a summary of our three machines and a

proposal for a novel architecture, the electronic paper. Chapter 9 focuses on a possible

future system, which would allow computing power to invade our newspapers and

our clothes. Our research could be adapted for products like electronic paper. In this

chapter, we will discuss how our cellular architectures could be perfectly suited for

this kind of product, and for the manufacturing processes of these tissues. Primarily

the research done on the BioTissue but also the research on the BioCube will help us

to define an architecture specially suited for an electronic tissue, which will hopefully

become common after some years once the appropriate manufacturing technologies

are be ready.

Chapter 10 resumes our work and gives some ideas for future researches based on

our thesis work.

1.4 Contributions

The following major contributions were important in the realization of this thesis work:

1.4.1 BioWall

The BioWall was a huge and time consuming realization which involved many re-

searchers of the Logic Systems Laboratory (LSL). As one of the major developers of

this machine, I proposed and developed several features for the control and the config-

uration of this wall: FPGA configuration process, clocking and synchronization of the

FPGAs, system supervising, interfaces with external modules (remote control, audio,

video). In addition to the hardware side of this machine, important work was done to

simplify the implementation of the applications described in chapter 4; many reusable

Intellectual Property (IP) cores have been developed for the SPARTAN� FPGA. The

study and implementation of the applications running on this wall was conducted in

collaboration with the BioWall LSL team.

1.4.2 BioCube

The BioCube is an evolution of the BioWall architecture towards the third dimension.

Since the dimensions of this new machine are smaller than those of the BioWall, and
although it is just as complex or more, I found myself nearly alone to define and

build this new system. The definition of the new architecture, the development of the

hardware devices and all stages of testing the prototypes were accomplished by myself.

The analysis of the capabilities and performance of this machine was carried out via

the development of applications as seen in chapter 6. The research concerning the 3D

Tom Thumb loop was a collaborative work with researchers of the LSL.

1.4.3 BioTissue

The BioTissue architecture is a novel proposal inspired by the BioWall architecture,
but completely revisited to match the new needs I specified to create a powerful,

6 Introduction

autonomous cellular machine whose performance is closer to that of an actual Per-

sonal Computer (PC) than to a dedicated cellular research tool. Research done on

the BioTissue before its construction has always been in connection with the idea of

defining and building a machine the architecture of which could fit the needs of a possi-

ble electronic paper machine of the future. As well as defining the whole architecture

of the BioTissue, I built the machine. The need for an operating system led me to

imagine and to implement the μOS application. The help of the LSL researchers was

needed to update the Tom Thumb algorithm to create the eSOS application described

in chapter 8.

1.4.4 Electronic paper

This thesis would not be complete if we didn’t look ahead and find a common future for

our three cellular machines. The predicted electronic newspaper product [96], which

will be similar to the current paper version, led us to propose an architecture based

on our research, which could match the new printing fabrication process of electronic

components, while being perfectly adapted to any flat computer like the electronic

paper.

Chapter2
The computer through the ages

T
HE twenty century was a fascinating era with many memorable develop-

ments. Since then planes have developed from the first prototype made of

wood to the huge Airbus A380, able to carry more than 500 passengers and

automobiles have colonized the city. Another evolution, or maybe revolu-

tion, happened in less than half a century: the invention of the semiconductor and the

democratization of its main application, the computer. In a few decades the computer

went from a huge, expensive and slow machine dedicated to a single simple task, to

incredibly powerful computers, small, inexpensive, interactive, multitasking, present

in each family, and connected all together via the Internet.

This chapter will focus on the computer’s history from its first prototype to the

current omnipresent machines, and will make some predictions for its future evolution.

This subject could fill a book, or even an encyclopedia, let alone a chapter. Studying

the history of computers since the first prototype to the current powerful microproces-

sors is not the aim of this chapter, which will only give some major points which will

help understand the research contained in this thesis paper.

Section 2.1 presents a short overview of the main events in the history of the

computer and more particularly its main component, the microprocessor. Section 2.2

presents the current microprocessor architectures, and the different components al-

lowing computation. The last section 2.3 is consecrated to our vision for improving

microprocessor performance, such as new research into materials, or the introduction

of bio-inspired architectures.

2.1 The birth of the computer

Originally, the term “computer” did not refer to a computing machine, but referred

to a person who performed numerical calculations [50]. Such a human computer of-

ten worked with the aid of mechanical calculating devices like abacus, slide rules or

astrolabes.

7

8 The computer through the ages

2.1.1 The first computing machine

If a computing machine is a device able to input data, compute it and produce a re-

sult, then the first computing machine is the Antikythera mechanism [109, 35] dating

from around 80 BC, designed to calculate astronomical positions. Nothing so complex

was subsequently developed before the beginning of the 17th century, when Wilhelm

Schickard conceived the first calculating machine able to accomplish addition, sub-

traction, multiplication and division [123]. At the same time, Gottfried Leibniz pub-

lished an article describing the principles of binary arithmetic, the basis of our modern

computing numeral system. Two centuries later, George Boole published in 1854 a

landmark paper detailing a logic system that would become known as Boolean alge-

bra. The next step toward the implementation of Boolean algebra was performed by

Claude Shannon in 1937, who used electronic relays and switches to include binary

arithmetic in hardware, the basis of modern computing and practical digital circuit

design.

During the first half of the 20th century, several machines were built, mainly

for military purposes. The Electronic Numerical Integrator And Computer (ENIAC)

[109], the construction of which started in 1943, was the first large-scale, electronic,

digital computer capable of being reprogrammed (by rewiring the machine) to solve

a full range of computing problems. Physically, ENIAC (Fig. 2.1) was a massive ma-

chine of 27 tons, roughly sized 30m×2.4m×0.9m, and consuming 150 kW of power.

This computer was built with 17,468 vacuum tubes, 7,200 crystal diodes, 1,500 relays,

70,000 resistors, 10,000 capacitors and around 5 million hand-soldered joints. Data

to process were input using a punched card reader, while a punched card perforator

wrote the results. The ENIAC machine could perform 385 multiplication operations

per second, but needed to be partially rewired to update its program. Two years after

the start of ENIAC, in 1945, John von Neumann, while he was working on the devel-

opment of the Electronic Discrete Variable Automatic Computer (EDVAC), presented

a paper describing the complete design of a stored-program computer, the architecture

of which, named “von Neumann architecture”, is still used nowadays.

Most of these machines were made of vacuum tubes, which had a notable disad-

vantage, specially when used in huge number: they tended to leak, and the metal that

emitted electrons burned out. Moreover, tubes were big and required so much power

that big machines were too large and took too much energy to run. These problems led

scientists and engineers to think of other ways to perform the tubes’ tasks by looking

at how one might control electrons in solid materials, like metals and semiconductors.

2.1.2 The invention of the transistor

In 1947, John Bardeen and Walter Brattain, working at Bell Telephone Laboratories

under the direction of William Shockley, were trying to understand the nature of the

electrons at the interface between a metal and a semiconductor, when they realized that

by putting two point contacts very close to each other, they could get similar results

as a three-electrode tube. They had just invented the first “point contact” transistor.

(Fig. 2.2)

Their first application was to build a few of these transistors and to connect them

with some other components in order to develop an audio amplifier. This device was

2.1 The birth of the computer 9

Figure 2.1: The ENIAC machine.

shown to chief executives at Bell Telephone Company, who were very impressed by

the fact that it did not need time to warm up before use (unlike the heaters in vacuum

tube circuits). The importance of this new technology was immediately realized and

this invention was the spark that ignited a huge research effort in solid state electronics.

William Shockley developed an improved version of this “point contact” transistor, the

junction transistor, which was built on thin slices of different types of semiconductor

material pressed together. The junction transistor was easier to understand theoreti-

cally, and could be manufactured more reliably. The amazing thing about the inven-

tion of this “point contact” transistor is that the first patent for the field-effect transistor

principle was registered in Germany in 1928 by the physicist Julius Edgar Lilienfeld.

Unfortunately, Lilienfeld did not publish any research articles about his device, and his

work was ignored by industry.

For many years, transistors were manufactured as individual electronic compo-

nents and replaced vacuum tubes in computers. Electronic circuits could be made more

complex, with more transistors, switching faster than tubes and consuming much less

power. However, it did not take a long time before the limits of this construction tech-

nique were reached. Circuits based on transistors became too large and too difficult to

assemble since there were too many electronic components to deal with. Global com-

puter performance was limited because the time taken for electric signals to propagate

over a long distance could not be reduced any further. To make the circuits even faster,

one needed to pack the transistors closer and closer together.

10 The computer through the ages

Figure 2.2: The first point contact transistor developed by J. Bardeen and W. Brat-

tain. Paper clips and razor blades were used to make the device.

2.1.3 The integrated circuit

In 1958 and 1959, Jack Kilby at Texas Instruments and Robert Noyce at Fairchild

Semiconductor, came up, almost simultaneously, with a solution to the problem of

packaging a large number of components, and the Integrated Circuit (IC) was born

(Fig. 2.3). Instead of making and assembling transistors one-by-one, several transistors

could be manufactured at the same time, in the same piece of semiconductor. Not

only transistors, but other electric components such as resistors, capacitors and diodes

could be realized by the same process into the same material. The first IC contained

only around a dozen transistors. Since this time the number of transistors inside an IC

has continuously increased, along with the complexity and performance of computers

build upon these ICs.

Nowadays, ICs still use the same principle as the concepts developed by

J. Kilby [65] and R. Noyce [89]. The structure is still two dimensional and only

differs in the substrate used, where silicon has mainly replaced germanium.

2.1.4 From the microprocessor to the Personal Computer (PC)

For years, new ICs were built for each new product. The methodology was the same;

IC manufacturers got the specifications from their customer and designed a circuit able

to compute the customer’s needs. The story [17] of the invention of the first micropro-

cessor starts with Busicom, a Japanese company specializing in hand-held calculators,

which asked Intel� to produce a line of products with different capabilities, each with

different advanced mathematical functions, aimed at a different market segment. In-

stead of manufacturing the multiple requested ICs, Intel� focused on looking for a

way to design fewer chips with more general capabilities. In 1971, Intel� were able to

2.2 Today’s computers 11

Figure 2.3: The first IC developed by R. Noyce.

offer Busicom a logic chip that incorporated more of the concepts of a general purpose

computer, and which could be used for many other applications besides calculators.

The first microprocessor was born: the Intel� 4004. With the addition of three other

dedicated ICs, a simple microprogrammable computer was built. The other chips con-

tained Read-Only Memory (ROM), Random Access Memory (RAM), and a chip to

handle output functions. Together, these ICs constituted a computer as powerful as the

ENIAC machine described on page 8. After this, several new more powerful models

were designed and sold as general purpose microprocessors. Different products could

use the same microprocessors, only software running on these microprocessors was

different.

During the following decade, several computers based on microprocessors were

built and sold by different companies. Software development become more and more

important since it allowed the specialization of each computer to a dedicated task and

made it possible to switch between programs easily. In 1981, IBM� brought out its

first low-cost single-user computer that they dubbed a Personal Computer (PC). This

machine came with a monochrome screen, a keyboard and an Operating System (OS).

Different kinds of software, for word processing, accounting, spreadsheets and games

was developed and sold for use with this kind of machine.

From the time of the first PC, relentless technological advances and innovation

have put powerful PCs at the center of daily activities for people worldwide, with more

than one billion computers connected to Internet in 2007. The PC has changed the way

people communicate, retrieve information, go shopping, and entertain themselves.

2.2 Today’s computers

The first Intel� microprocessor, the 4004, was a simple 4-bit model made of 2’300

transistors, which worked at a maximum frequency of 108 KHz. Nowadays, micro-

processors are 100’000 times more complex than the 4004. They are built with 64-bit

architectures, are made of millions of transistors, and have a core frequency of around

3 GHz. Today, microprocessors are available in a wide range of types, architectures,

performance and also price. They range from tiny microprocessors costing less than

one US dollar and suited for embedded systems requiring low processing performance,

12 The computer through the ages

Figure 2.4: The first Intel� 4004 microprocessor. Source: Intel�.

like watches, to extremely powerful models designed for the fastest computers, but

which are enormously power hungry and cost more than a thousand US dollars.

Until very recently, the main research on microprocessors has focused on increas-

ing computational performance. The major factor for performing this task has mainly

been through reducing the size of etching silicon technologies, resulting in reduction

of the transistor size from 10 μm for the Intel� 4004 to 0.065 μm or 65 nm for the

latest microprocessor currently on the market. A higher number of transistors can con-

sequently fit onto the same surface, resulting in higher speeds. Another major key to

these performance increases comes from the evolution of the microprocessors archi-

tecture.

2.2 Today’s computers 13

2.2.1 Microprocessor architecture

From the first microprocessor, which was based on a very simple architecture with a

4-bit Arithmetic Logic Unit (ALU), to the 64-bit microprocessors available today, the

principle of operation is still the same: microprocessors execute a sequence of stored

instructions, or programs, sequentially to compute information coming from memory

or a peripheral, and write the result in memory or send it to a device. To perform

this task several microprocessor architectures have been developed over the past few

decades, and several architecture models are in use today.

Single core

Since speed was the main limitation to technological developments, improvements

were made by looking for methods to compute a higher quantity of data during each

cycle. Complex Instruction Set Computers (CISCs) and Reduced Instruction Set

Computers (RISCs) are two different Central Processing Unit (CPU) architectures

which coexist for a long time. Whereas CISC based machines are mainly used in

extremely fast and high performance PCs, RISC microprocessors are succeeding

in performing the same tasks, at a reduced frequency. RISC architectures are thus

often used in tiny or embedded microprocessors working at low power. Several

other architectures, theoretically extremely powerful, such as Very Long Instruction

Word (VLIW) and Explicitly Parallel Instruction Computing (EPIC) have been

invented, but they are not widely used since the development of software for these

kinds of CPUs is more complex and thus only used on few highly specialized

computers. Aside from the internal CPU structure, several improvements have been

made to performance through the addition of cache memory inside the microprocessor

chip. Descriptions of all these architectures can be found in several books [91, 53].

Since our thesis work uses several RISC based microprocessors, we describe below

some specifications of this architecture.

The Reduced Instruction Set Computer (RISC), is a CPU design philosophy that

favors an instruction set reduced both in size and complexity of addressing modes, in

order to enable easier implementation, greater instruction level parallelism, and more

efficient compilers. Our example in figure 2.5 is a simple 8-bit microcontroller1 based

on a Harvard architecture, which is a computer design model, in which program and

data are accessed on separate buses. This improves bandwidth over traditional von

Neumann architectures where program and data are fetched on the same bus. Sepa-

rating program and data memory also allows instructions to be sized differently. The

Microchip� PIC10F20x uses, for example, an 8-bit wide data word, and a 12-bit wide

instruction, making it possible to have the whole instruction in a single word. The

advantage of a RISC structure is the possibility, by using a pipeline, to execute an

instruction at each cycle with the exception of program branches, which could need

more than one cycle in some cases.

Recently, the ever-increasing demand of computing power has been met by de-

1The difference between a Microcontroller unit (MCU) and a microprocessor resides in the addi-

tional features included in the same package. An MCU is built upon a microprocessor with embedded

memory, and peripherals allowing direct reading and writing on Input/Output (I/O), or including specific

communication buses, timers, display drivers. . .

14 The computer through the ages

Figure 2.5: Diagram of the Microchip� RISC PIC10F20x microcontroller based

on a Harvard architecture. Source: [57]

signing architectures capable of exploiting parallelism at the instruction level through

hardware mechanisms such as VLIW super-scalar architecture. However, as previ-

ously mentioned, all these approaches have reached their practical limits, mainly due

to issues related to design complexity and cost-effectiveness.

Multi-cores

For the past few years, a new trend in computer design has favored another methodol-

ogy to parallelize computations. Rather than using a unique single very fast and very

complex microprocessor, parallelism has been reached by the introduction of multi-

core microprocessors. A multi-core microprocessor combines into a single physical

package, two or more independent single CPUs similar to the one described in the

previous paragraph (Fig. 2.6). Each core has its own cache memory and can share

a single coherent cache at the highest on-device cache level (e.g. L2 in figure 2.6).

The processors also share the same interconnection with the rest of the system. Such

architecture with two cores allows concurrent execution of two threads.

Some years after the first dual-core microprocessors, new developments are mov-

ing towards processors with quad-, eight- or more cores. Research done on Multi-

processors Systems On Chip (MPSoCs), and Network On Chip (NoC) systems [34,

2.2 Today’s computers 15

Figure 2.6: Diagram of a dual core microprocessor, with CPU-local Level 1 caches,

and a shared, on-die Level 2 cache.

33] have, for example, been used for the development of the Cell processor [61, 97, 98]

jointly developed by IBM�, Sony� and Toshiba�, which include up to eight identical

cores (Fig. 2.7). The multi-core structure is currently used for PC microprocessors

(with several dual- or quad-core CPUs), or in game consoles, which require highly

powerful CPUs (the Cell multi-core microprocessor is used in the Sony� PS3). The

general trend in this domain will be from multi-core to many-core where the number

of independent cores will increase to large numbers of tens or even hundreds, thus

allowing as many threads as the number of cores present in the microprocessor to be

executed in parallel. The Intel� Tera-scale research project [54] tried to study how by

varying the mix of functional elements (with experiment up to 100 cores), the Tera-

scale architecture can allow designers to create multiple implementations that match

specific market needs.

Since all cores are identical, and rather than manufacturing new chips for each new

multi-core configuration, a new packaging method, based on 3D stacking, allows each

individual core to be stacked in the same package.

3D electronics

Figure 2.8 represents the rendering of a small Complementary Metal-Oxide-

Semiconductor (CMOS) standard cell with three layers of metal. Even if the

construction seems to be in 3D, we call this kind of circuit a 2D component, since all

the transistors are on the silicon substrate plane (represented in blue in the figure).

The definition of 3D integrated circuit would have been to be able to place transistors

inside or on top of this metal web [52]. A solution based on a laser recrystallization

process has been proposed in 1983 [64]. However, at this time, the additional costs

for having several transistors layers was not justified, and this technique has never

been used.

16 The computer through the ages

Power

core

On-chip coherent bus (up to 96 bytes per cycle)

SXU

LS

SXU

LSLS

SXU

LSLS

SXU

LS

Dual Rambus

XDR**

Rambus

FlexIO**

LS

SXU

LS

SXU SXU SXU

Bus interface

controller

Memory

controller

L2

L1

DMA DMADMADMA DMADMA DMA DMA

PPE

SPE

(a)

(b)

Rambus XDR DRAM interface

Power
core

L2
0.5 MB

Memory controller

Test and debug logic

C
oh

er
en

t
bu

s

Rambus XDR DRAM interface

Power
core

L2
0.5 MB

SPE SPESPE SPE

SPE SPESPE SPE

SPE SPESPE SPE

SPE SPESPE SPE

Memory controller

I/O controllerI/O controller

Rambus RRACRambus RRAC

Test and debug logic

C
oh

er
en

t
bu

s

Figure 2.7: (a) Cell microprocessor block diagram and (b) die photo. The first gen-

eration Cell processor contains a Power Processor Element (PPE) with

a Power core, first- and second-level caches (L1 and L2), eight Syn-

ergistic Processor Elements (SPEs) each containing a Direct Memory

Access (DMA) unit, a Local Store memory (LS) and execution units

(SXUs), and memory and bus interface controllers, all interconnected

by a coherent on-chip bus. Source: [61]

2.2 Today’s computers 17

Today, huge silicon surfaces are needed to meet the need for memory components

with enormous capacities. The solution for having a large amount of memory within

a small package has been reached through stacking several wafer layers in the same

package [110]. Several low-cost methods have been developed, and are mainly used

by memory chip manufacturers.

A System in Package (SiP) is a number of integrated circuits enclosed in a single

package or module. The chips constituting the SiP are stacked vertically inside the

package (Fig. 2.9). They are internally connected by fine wires that are buried in the

package. A SiP can contain up to 50 silicon dies. Despite its benefits, this technique

decreases the yield of fabrication since any defective chip in the package will result

in a non-functional packaged integrated circuit, even if all other modules in that same

package are functional. Other methods less expensive and simpler to implement ex-

ist, like the Stacked Package-Chip Size Package (SP-CSP) stacking where each die is

connected to the others using classic bonding technology (Fig. 2.10).

Figure 2.8: CMOS small standard cell with three layers of metal layers. For visual

purposes, the dielectric has been removed. The yellow structures are

metal interconnections, with the vertical pillars being contacts. The

red structures are polysilicon gates, and the blue at the bottom is the

crystalline silicon bulk.

Currently SiP are mainly used by memory manufacturers, but are also used for

dedicated components used in cellphones, where telecommunication circuits lay over

a microprocessor in the same package. The recent developments in multi-core mi-

croprocessors are starting to use these technique. Intel� for example includes two

identical dual-core processors in the same package to produce its quad-core micropro-

cessor.

2.2.2 Components

Nowadays, three approaches are most often used to perform a computing task. The

first one consists in building a dedicated component, commonly named Application-

18 The computer through the ages

Figure 2.9: Two individual ICs at the bottom-right and a stacked chip made of 19

layers of these ICs. Source: [58]

Figure 2.10: Cross-sectional schematic of SP-CSP. Source: [62]

Specific Integrated Circuit (ASIC), which will be suited for this specific task. The

second method is to use a microprocessor, which has the advantage of being able to

execute many other different tasks, but the disadvantage of not being as powerful an

ASIC since its architecture allows it to processes only sequential programs. The third

approach is to use a Field Programmable Gate Array (FPGA), which combines the

advantages of both microprocessors and ASICs.

Table 2.1 summarizes the advantages and disadvantages of these three families,

which will be described in the next paragraphs.

ASIC

An Application-Specific Integrated Circuit (ASIC) is an integrated circuit (IC) cus-

tomized for a particular use, rather than for a general use. The design of an ASIC

leaves for engineers the liberty to design the circuit according to their specifications.

The engineer can specify the exhaustive features of the chip and optimize the func-

tionality of the circuit, or the power consumption. It is possible to distinguish semi-

custom integrated circuits, where only logic gates blocks are placed and routed, and

full-custom circuits, where even the characteristics of each transistor can be specified.

Nowadays many components libraries are available for the designer, who can buy

2.2 Today’s computers 19

ASIC Microprocessor FPGA

Performancea + + o

Parallelism + o +

General use - + +

Reconfigurability - + +

Component costb + o -

Development costs - + o

Development time - + o

aIn terms of clock speed.
bIndication based on high volume.

Table 2.1: Comparison of microprocessor, ASIC and FPGA technologies.

(“-” means disadvantage “0” neutral and “+” advantage).

specific blocks, also called Intellectual Property (IP) modules. An IP can be for exam-

ple a MP3 audio decoder, a memory module, an encryption system. . . . Since produc-

tion costs are very high, particular care should be taken with verification. The whole

circuit should be simulated to avoid errors, which are expensive and can cause big

delays to the project. To simplify the conception, designers most often use System-

On-Chip (SoC) [5] methodologies, which allow several modules to be designed in

parallel, optimized, tested, and integrated together into the same circuit.

Microprocessors

The best example of an ASIC full custom design is the PC microprocessor, where the

end goal is high frequency. Microprocessors are the most commonly used components,

perfectly suited for computing. Their sequential programming helps to easily develop

programs. The microprocessor family includes microprocessors from the well-known

PC microprocessor, extremely powerful and fast, to the tiny microprocessor of your

watch, which is slow and low power. MCUs and Digital Signal Processors (DSPs) are

the perfect example of ICs that include one microprocessor and additional features,

like memory, I/O interfaces, bus controllers, analog interfaces, display controllers in

the same package. . . The MCU model is often chosen based on the peripherals and

memory resources of the component, more than on the microprocessor features.

FPGA

A field-programmable gate array is a semiconductor device containing programmable

logic components called “logic blocks”, or CLB, and programmable interconnections

(Fig. 2.11). Logic blocks can be programmed to perform the function of basic logic

gates such as AND, XOR, or more complex combinational functions such as decoders

or simple mathematical functions. In most FPGAs, the logic blocks also include mem-

ory elements, which may be simple flip-flops or more complete blocks of memories.

A hierarchy of programmable connections allows logic blocks to be interconnected as

needed by the system designer, somewhat like a one-chip programmable breadboard.

20 The computer through the ages

Figure 2.11: SPARTAN�3 Family Architecture. Source: [142]

Logic blocks and connections can be programmed by the customer or designer, after

the FPGA is manufactured, to implement any logical function.

FPGAs are usually slower than their Application-Specific Integrated

Circuit (ASIC) counterparts, as they handle a more complex design, and draw

more power. But their advantages include a shorter time to market, ability to

be re-programmed, and low development costs. The main difference between

programming a standard microprocessor chip and an FPGA are into the program.

Microprocessor involves the specification of a sequence of actions, or instructions,

while FPGA involves a configuration of the machine itself, often at the gate level.

The FPGAs have the main advantage of being able to fulfill the same role as a

MCU since they can embed microprocessor softcores in their configuration. Then,

once the FPGA is configured, its microprocessor can be programmed to execute a

sequential program. Advantages over MCU solution can reside in the possibility to

integrate specific customs periphericals.

After the prototyping and test phases, it is still possible to migrate the developed

design into a fixed version that more resembles to an ASIC [42].

2.3 The future of the computer

In 1965, a researcher named Gordon E. Moore made the empirical observation that

the number of transistors on an integrated circuit doubles every 24 months: “The com-

plexity for minimum component costs has increased at a rate of roughly a factor of

two per year ... Certainly over the short term this rate can be expected to continue,

if not to increase. Over the longer term, the rate of increase is a bit more uncertain,

although there is no reason to believe it will not remain nearly constant for at least

10 years. That means by 1975, the number of components per integrated circuit for

2.3 The future of the computer 21

minimum cost will be 65,000. I believe that such a large circuit can be built on a single

wafer.” [82]

Figure 2.12: Moore’s law: growth of transistor counts for Intel� processors.

This prediction was made a few years after the realization of the first IC; 40 years

later, Moore’s law is still correct [30]. Figure 2.12 shows the evolution of the number

of transistors for Intel� microprocessors, with a line representing the prediction of

Moore’s law. Many factors are linked to the evolution of transistor number: the size

decrease, the power consumption decrease, the price decrease, the frequency increase

of a transistor. The observation of the evolution of all these factors also matches the

prediction of Moore’s law. Another factor is correlated with this law: the price of an

IC foundry, which is, for a current brand new factory, about one billion US Dollars.

Moore’s law has been applied to several electronic domains, and states for example

that RAM storage capacity increases at the same rate as microprocessor performance.

Currently, PC microprocessors are fabricated using a 65nm process. The next

generation will be 45nm and will start to be commercially produced at the end of

2007 [31]. Research for building the next generation foundry, which will be 32nm,

is on the way. In some years, silicon process technologies will approach the physical

limits of the atomic structure. The semiconductor industry’s roadmap identifies a near

future where current CMOS technology will no longer be adequate, since scaling the

transistor down to atomic size will become ineffective and very costly [59]. This could

happen in less than a decade. Will it be the end of Moore’s law? [41]

22 The computer through the ages

2.3.1 Nanotechnology and future architectures

Because of the need for ever better systems, and more powerful PCs with new features,

it seems that the evolution of the computer will continue, at least until the singularity

has been reached [68]. Predictions place this date prior to the end of our century,

which mean that up to this date, new technologies need to be developed by humans.

However, the CMOS silicon will reach its manufacturing limits before the ultimate

computer [138] targeting the singularity is developed. Thus, new technologies such

as nanotechnology2 [103, 95, 43] will have to take over the current CMOS silicon

technology. In 1959 Richard Feynman introduced this field of research in his well-

known statement: “There is plenty of room at the bottom” [44]. He stated that from

the point of view of physics there are not in principle any obstacles for implementing

devices at the atomic level. Nowadays it is evident that nanotechnology has grown

into a multidisciplinary field, drawing from chemistry, biology, computer science and

mechanical engineering [112].

However, there is a lack of consensus on what type of technology and computing

architecture will take over. Several research direction, all based on nanotechnology,

are already on the go. Among them, the most probable break through technology

successor to the current silicon technology are:

• Nanoelectronics, the main elements of which are constituted of nanotubes or

nanowires. Nanotubes are predicted as replacements for transistors, whereas

nanowires will be able to link together components at the nanometer scale.

• Molecular electronics aims to ultimately miniaturize logic circuits using single

molecules which will act as electronic switches and storages elements [26, 135,

134].

• Quantum computing breaks the classic paradigm by introducing qubits

in place of bits. Physical quantic phenomena will help solve problems

exponentially faster than our classical methods [138, 24].

• DNA computing allows to computation to be carried out directly on molecules.

All operations are performed using specific Deoxyribonucleic Acid (DNA)

strands. Its main advantages reside in its massively parallel computing

strength [19]. Unfortunately, the reliability of the computational process with

the amount of DNA that must be supplied is not verifiable.

• Membrane computing is another biological field, where computations are per-

formed inside a region defined by a membrane structure. Membranes can evolve

and dissolve themselves to allow the next operations to be performed [130]. Al-

though the formal approach to membrane computing is completely described in

theory, no implementation exists yet.

2Nanotechnology definition (Dr. Mike Roco, National Science and Technology Council, February

2000): “research and technology development at the atomic, molecular or macromolecular levels, in

the length scale of approximately 1–100 nanometer range, to provide a fundamental understanding of

phenomena and materials at the nanoscale and to create and use structures, devices and systems that have

novel properties and functions because of their small and/or intermediate size.”

2.3 The future of the computer 23

Based on current results, nanoelectronics will probably be the first breakthrough

technology ready for manufacturing a future microprocessor generation. However this

new revolution will not be ready for a huge production before a decade.

In parallel to these attempts to produce a mature substitute for the CMOS silicon

technology, researchers are working on many other fields. Among these fields, we can

mention the research for new microprocessor architectures, which may increase pro-

cessor performance, using massive parallelism similar to biological cellular structure

for example.

The future of the computer lies not only in increasing performance, but also the ar-

rival of the pervasive computing, where computation capabilities are less crucial than

size, or physical structure. One of the current research domains involves the realiza-

tion of thousands of identical autonomous microcomputers which could be scattered

in fields or included in wall paint in the aim of gathering specific information and com-

municating it to a user through an auto-organized network. The Smart Dust project is

a perfect example of such a project, the aim of which is to build such a system in a

cubic millimeter [137].

Processors are also looking to conquer new applications like the newspaper [67].

This kind of application does not require powerful system, but needs the integration of

CMOS technology into new materials like flexible polymers.

The following paragraphs will be focus on two of the most promising new

paradigms: nanoelectronics and bio-inspiration.

2.3.2 Nanoelectronics and nano-computer

The ultimate operating limit of the silicon transistor may be around 10 nm, or about

30 atoms long. Since it will be crucial to find alternative technologies that can

further shrink computing devices, the most promising candidates are nanotubes and

nanowires. Carbon nanotubes (Fig. 2.13) are cylindrical carbon molecules with novel

properties that make them potentially useful in a wide variety of applications and

especially in the nanoelectronics domain. A nanotube is a seamless cylinder with a

diameter of around a nanometer and whose length-to-diameter ratio exceeds 10,000.

Depending on its structure, a nanotube can have semiconductor properties (Fig. 2.13),

or behave like a metallic element, giving it electric conductive abilities. Nanotubes

Figure 2.13: Representation of a twisted carbon nanotube, which behaves like a

semiconductor. Source: [27]

24 The computer through the ages

differ from the current materials used in the electronic field in several novel properties,

and especially in their capacity to carry high currents. As a comparison, the current

density estimated for a nanotube is around 1 billion amps per square centimeter,

whereas copper wires burn out at about 1 million A
cm2 . Researchers have succeeded

in building transistor components using nanotubes [27] (Fig. 2.14), and designing

a microprocessor using nanotubes could become a reality in some years [12].

P
H

IL
IP

 G
.C

O
L
L
IN

S
 A

N
D

 P
H

A
E
D

O
N

 A
V
O

U
R
IS

GOLD

SOURCE

NANOTUBE

CHANNEL

SILICON DIOXIDE

INSULATOR

GOLD DRAIN

Figure 2.14: Nanotube used in an experimental field-effect transistor. Source: [27]

For example, André Dehon has specialized his research in the development of

nanoelectronic architectures toward the development of Programmable Logic

Array (PLA) [36]. Figure 2.15 shows an example of a PLA structure able to realize

combinational functions: the first step toward FPGAs built with carbon nanotubes

and nanowires. In the nanoelectronic world, the construction of 3D structures will be

much easier than with CMOS silicon technologies. Thus, creation of 3D chips could

be considered once the technology is mature (Fig 2.16).

Ohmic contacts to high and low supply voltages

nanowires

 programmable
diode crosspoints Lightly doped

control region

Precharge or static
 load devices

Stochastic
 Buffer
 Array

(Sec 2.2)

Stochastic
 Inversion
 Array
(Sec 3)

(Sec 2.1)

Vrow1

Vrow2

A0 A1 A2 A3

Lightly doped
control region

(OR Planes)

 Stochastic Address
 Decoder (Sec 2.3)
[for configuring array]

OR term

Restoration
 Wire

Ohmic
Contact
to Power
Supply

Programing
and Precharge
Power Suppplies

Stochastic
 Inversion
 Array
(Sec 3)

Stochastic
 Buffer
 Array

Restoration Columns Restoration Columns

Ohmic contacts
to high and low
supply voltages

Figure 2.15: Example of a nanowire PLA structure. Source: [36]

2.3 The future of the computer 25

Relative sizes and number of wires not shown to scale.

Figure 2.16: Details of a 3D Nanowire PLA. Source: [48]

2.3.3 Bio-inspiration

The evolution of technology is the product of human imagination. We have been

able to create some really impressive and powerful systems, like the one discussed

in this thesis: the microprocessor. Developing and manufacturing microprocessors is

extremely expensive. The cost for building and equipping a cleanroom is currently

near to a billion US dollars. Moreover, the latest PC microprocessors are certainly

very powerful, but they need a lot of power, and thus need to be cooled.

On the other hand, Nature has found incredibly good solutions for building ex-

tremely small and complex living systems, moreover at an incredibly low cost and

low power consumption. The human brain, for example, is able to perform extremely

complex operations like object recognition. The biggest computers, the size of which

is many times greater than a human brain, are not yet able to perform this task, and are

limited to the recognition of some pre-learned objects.

Rather than trying to improve our current technologies by miniaturizing the tran-

sistor size, it could be interesting to look at how Nature has created the living world,

and thus try to find some ideas that might be used for designing or manufacturing mi-

croprocessors. If we look closer, a living creature is composed of cells, the number of

which may vary from one for a bacterium, to hundred trillion for a human being. Each

cell has in common the construction map of the whole organism, the DNA. The hu-

man cell, sizing about 10μm, is able to self-replicate in a few minutes, with its 3 billion

DNA pairs perfectly copied. The most spectacular aspect of this process may be that

this transformation requires little energy and occurs at normal temperature and pres-

sure (unlike the IC process which needs strong acids, high temperatures and pressures

and a dust free atmosphere).

It is thus very interesting to copy Nature in our research. The aim is not to use

natural processes and add them to our microprocessor design, but to try to take inspi-

ration from them and find applications where they could be used. Bio-inspiration is

not a new concept and has already been introduced into computer science [78], but

several research fields could still benefit from this approach to find new developments.

The POE model

Bio-inspiration encompasses a lot of different areas. To help researchers to define their

bio-inspiration domain, a classification model has been proposed, the POEmodel [119,

26 The computer through the ages

111]. If we consider life on Earth since its very beginning, then the following three

levels of organization can be distinguished [119, 111]:

• Phylogeny: The first level concerns the temporal evolution of the genetic pro-

gram, the hallmark of which is the evolution of species, or phylogeny. The mul-

tiplication of living organisms is based upon the reproduction of the program,

subject to an extremely low error rate at the individual level, so as to ensure

that the identity of the offspring remains practically unchanged. Mutation (asex-

ual reproduction) or mutation along with recombination (sexual reproduction)

give rise to the emergence of new organisms. The phylogenetic mechanisms

are fundamentally non-deterministic, with the mutation and recombination rate

providing a major source of diversity. This diversity is vital for the survival of

living species, for their continuous adaptation to a changing environment, and

for the appearance of new species.

• Ontogeny: Upon the appearance of multicellular organisms, a second level of

biological organization manifests itself. The successive divisions of the mother

cell, the zygote, with each newly formed cell possessing a copy of the original

genome, is followed by a specialization of the daughter cells in accordance with

their surroundings, i.e., their position within the ensemble. This latter phase is

known as cellular differentiation. Ontogeny is thus the developmental process

of a multicellular organism. This process is essentially deterministic: an error

in a single base within the genome can provoke an ontogenetic sequence which

results in notable, possibly lethal, malformations.

• Epigenesis: The ontogenetic program is limited in the amount of information

that can be stored, thereby rendering the complete specification of the organ-

ism impossible. A well-known example is that of the human brain with some

1010 neurones and 1014 connections: far too large a number to be completely

specified in the four-character genome of length approximately 3 × 109. There-

fore, upon reaching a certain level of complexity, there must emerge a different

process that permits the individual to integrate the vast quantity of interactions

with the outside world. This process is known as epigenesis, and primarily in-

cludes the nervous system, the immune system, and the endocrine system. These

systems are characterized by the possession of a basic structure that is entirely

defined by the genome (the innate part), which is then subjected to modifica-

tion through lifetime interactions of the individual with the environment (the

acquired part). The epigenetic processes can be loosely grouped under the head-

ing of learning systems.

In analogy to nature, the space of bio-inspired hardware systems can be partitioned

along these three axes: phylogeny, ontogeny, and epigenesis, giving rise to the POE

model. Combinations of these components over these three axes give new possibilities

for research fields (Fig. 2.17).

The following list gives the computer applications and implementations of these

three axis and their combinations:

• P: If in life, phylogeny principally concerns the genetic evolution of species,

2.3 The future of the computer 27

Phylogeny (P)

Epigenesis (E)

Ontogeny (O)

OE hardware

POE hardware

PO hardware

PE hardware

Figure 2.17: The tri-dimensional representation of the POE model

then in the engineering world this corresponds mainly to the panel of evolution-

ary algorithms, genetic algorithms and evolvable hardware [55, 112].

• O: The ontogenetic axis involves the development of a single individual from its

own genetic material, essentially without environmental interactions. It involves

multi-cellular organization, cellular division and differentiation from the mother

cell to the daughter cells. Each daughter cell possesses a copy of the original

genome. Our thesis research will be mainly based on this axis of inspiration.

• E: The epigenetic axis involves learning through environmental interactions that

take place after formation of the individual. Artificial neural networks are the

most common illustration of epigenesis [63].

• PO: The combination of the phylogeny and ontogeny axes exhibits the evolu-

tion of cellular structures, and the creation of self-reproducing and self-healing

evolvable hardware. The Morphogenetic Evolutionary System is an example of

such a PO plane [108].

• PE: An example of the PE plane is evolutionary artificial neural networks, where

evolution allows adaptation of the network structure, the synaptic weights and/or

learning rules [144].

• OE: This plane combines ontogenetic mechanisms (self-replication, self-

repair) with epigenetic learning (neural network). The combination gives

self-reproducing and self-healing learning hardware systems.

• POE: This space comprises systems that exhibit characteristics pertaining to all

three axes, like a hardware system that exhibits learning, evolutionary diversity

and a multi-cellular array [111, 120]. The POETIC project concluded the real-

ization of IC able to support these three axes [84].

28 The computer through the ages

From a technological point of view we observed that many bio-inspired realiza-

tions are based on programmable circuits like FPGAs.

Of these three bio-inspired research axes, we will focus on ontogeny in the next

paragraph, with the presentation of an original bio-inspired research project developed

by the Logic Systems Laboratory (LSL) team: the Embryonics project.

The Embryonics project

In the previous paragraph we mentioned the powerful characteristics of the human be-

ing, whose hundred trillion of cells execute their genome, divide and replicate cease-

lessly from conception to the death of the individual. Faults are rare and, in the ma-

jority of cases, successfully detected and repaired. This remarkable process relies

on the structure of the DNA for its complexity and its precision. The Embryonics3

project [75, 76, 78] is inspired by the basic processes of molecular biology and by the

embryonic development of living beings. By adopting certain features of cellular orga-

nization, and by transposing them to the two-dimensional world of integrated circuits

on silicon, the Embryonics project shows that properties unique to the living world,

such as self-replication and self-repair, can also be applied to Integrated Circuits (ICs),

and proposes a novel robust architecture to fulfill these objectives.

Almost every living being, with the notable exceptions of viruses and bacteria,

share the same basic principles for their organization. The incredible complexity

present in organisms is based on multi-cellular organization where cells having a lim-

ited function are able to behave on very complex ways by assembling themselves into

specific structures and operating in parallel.

Each cell can be considered as universal since each contains the whole of the or-

ganism’s genetic material, the genome. The Embryonics project is based on the same

structure and features the three fundamental features of an organism:

1. Multicellular organization divides the organism into a finite number of cells,

each charged with a unique function (neuron, muscle, intestine,. . .). The same

organism can contain multiple cells of the same kind.

2. Cellular division is the process whereby each cell (beginning with the first cell

or zygote) generates one or two daughter cells. During this division, all of the

genetic material of the mother cell, the genome, is copied into the daughter

cell(s).

3. Cellular differentiation defines the role of each cell of the organism, that is,

its particular function (neuron, muscle, intestine,. . .). This specialization of the

cell is obtained through the expression of part of the genome, consisting of one

or more genes, and depends essentially on the physical position of the cell in the

organism

When a minor (wound) or major (loss of an organ) trauma occurs, living organisms

are thus potentially capable of self-repair (i.e. cicatrization) or self-replication (i.e.

cloning or budding). The main goal of the Embryonics project is the implementation

of the above three features of living organisms in an integrated circuit in silicon, in

order to obtain the properties of self-repair and self-replication.

3For embryonic electronics

2.3 The future of the computer 29

Multicellular organization The Embryonics project is based on a regular two di-

mensional grid, similar to the silicon process possibility, but different from the living

world where cells are organized on a three dimensional structure.

The artificial organism is divided by the multicellular organization into a finite

number of cells; each cell realizes a unique function, defined by a subprogram called

the gene of the cell, which is part of the genome (Fig. 2.18). The same organism

can contain multiple cells expressing the same gene. However, the state and values

computed by each cell are independent from the other cells.

Figure 2.18: Multicellular organization of a 6-cell organism expressing 6 different

genes.

Cellular differentiation The operative genome (OG) is the program containing all

the genes of an artificial organism, where each gene (A to F) is a subprogram char-

acterized by a set of instructions and by the cell’s position (coordinates X,Y=1,1 to

X,Y=3,2).
When each cell contains the entire operative genome (Fig. 2.19), depending on

its position in the array, i.e., its place within the organism, each cell can interpret the

operative genome and extract then execute the gene which defines its function.

In summary, storing the whole operative genome in each cell makes the cell uni-

versal: it can execute any one of the genes of the operative genome and thus implement

cellular differentiation.

In our artificial organism, any cell CELL[X,Y] continuously computes its

coordinate X by incrementing the coordinate WX of its neighbor immediately to

the west. Likewise, it continuously computes its coordinate Y by incrementing the

coordinate SX of its neighbor immediately to the south. At startup, the first cell,

at the bottom left of the organism, is arbitrarily defined as having the coordinates

X,Y=1,1, and holds the one and only copy of the operative genome OG. After time

t1, the genome of the zygote (mother cell) is copied into the neighboring (daughter)

cells to the east (CELL[2,1]) and to the north (CELL[1,2]). This process of cellular

division continues until the six cells of the organism are completely programmed (in

our example, the farthest cell is programmed after time t3).

The self-replication of organisms The self-replication or cloning of the organism,

i.e., the production of an exact copy of the original, can be performed if empty cells

exist on the silicon circuit (at least six in our organism example) and if the calculation

30 The computer through the ages

Figure 2.19: Cellular differentiation of the organism with the operative genome

and its expressed gene depending on the coordinates.

of the coordinates produces a cycle X = 1 → 2 → 3 → 1 . . . and Y = 1 → 2 → 1 . . .
in figure 2.20, implying X = (WX + 1) modulo 3 and Y = (SY + 1) modulo 2.

When both conditions are present, a copy of the mother organism will be produced

and one or many daughter organisms will populate the IC silicon surface.

Figure 2.20: Self-replication of a six-cell organism in a limited homogeneous array

of 6 × 4 cells (situation after 5 cellular divisions).

The self-repair of organisms In order to implement the self-repair of the organ-

ism, two columns of spare cells have been added to the right of the original organism

(Fig. 2.21). The existence of a fault is detected by a KILL signal, which is produced in

each cell by a built-in self-test mechanism. The state KILL=1 identifies the faulty cell,

2.3 The future of the computer 31

and the entire column to which the faulty cell belongs is considered faulty and is deac-

tivated (column X=2 in figure. 2.21). All the functions (X coordinate and gene) of the

cells at the right of the column X=1 are shifted by one column to the right. Obviously,

this process requires as many spare columns to the right of the array as there are faulty

cells or columns to repair (two spare columns, tolerating two successive faulty cells, in

the example of figure. 2.21). It also implies that the cell needs to be able to bypass the

faulty column and to divert to the right all the required signals (such as the operative

genome and the coordinate, as well as the data buses).

Figure 2.21: Self-repair of a 6-cell organism with four spare cells and a faulty col-

umn.

The Embryonics Landscape In each cell of every living being, the genome is trans-

lated sequentially by a chemical processor, the ribosome, to create the proteins needed

for the organism’s survival. The ribosome itself consists of molecules, whose descrip-

tion is an important part of the genome.

In the Embryonics project each cell is a small processor that sequentially executes

the instructions of the artificial genome, the operative genome OG.

The need to realize organisms of varying degrees of complexity has led us to design

an artificial cell characterized by a flexible architecture, that is itself configurable. The

Embryonics project could therefore be implemented using previously described FPGA

components. Each element of this FPGA (consisting essentially of a buffer and a

multiplexer associated with a programmable connection network) is then equivalent to

a molecule, and an appropriate number of these artificial molecules allows the creation

of application specific processors, i.e. cells.

As a result of this new definition, the final architecture of the Embryonics project

is based on the following four hierarchical levels of organization, described from the

bottom up (Fig. 2.22):

32 The computer through the ages

Figure 2.22: The Embryonics landscape: a four level hierarchy.

• The basic primitive of the system is the molecule, the FPGA element, consisting

essentially of a buffer and a multiplexer associated with a programmable con-

nection network. The multiplexer is duplicated to allow the detection of faults.

The logic function of each molecule is defined by its molecular code or MOL-
CODE.

• A cell is made up of a finite set of molecules: essentially a processor with the

associated memory. In a first programming step of the FPGA, the polymerase

genome PG defines the topology of the cell, that is, its width, height, and the

presence and positions of columns of spare molecules. In a second step, the

ribosomic genome RG defines the logic function of each molecule by assigning

its molecular code or MOLCODE.

• An organism, an application specific multiprocessor system is made up of a

finite set of cells. In a third and last programming step, the operative genome

OG is copied into the memory of each cell to define the particular application

executed by the organism, for example the electronic watch, the random number

generator,. . .

2.4 Towards cellular machines 33

• The organism can itself self-replicate, giving rise to a population of identical

organisms, the highest level of our hierarchy.

Since fault-tolerance is a recurrent topic in the Very-Large-Scale

Integration (VLSI) industrial world [70, 29], the Embryonics project provided

an illustration of the use of bio-inspiration to solve a specific problem. Even if

the results of this project are not currently used in the industry as, for example,

inside FPGA’s architectures, the Embryonics project is a perfect example of an

ontogenetic hardware [117] whose results can stimulate new kinds of research and

future applications [129, 22, 77].

2.4 Towards cellular machines

In the space of a few decades, computers have produced a revolution in the industrial

domain. From a small number of machines and only few researchers in the computer

domain in the 1960’s, computing has developed to the extent that millions of people

now own a PC and several microprocessors embedded in everyday tools like watches,

music players, automobiles. . . At the same time, the number of researchers around the

world working in the computer sciences area has to be one of the most rapidly expand-

ing communities. In a few decades, the CMOS silicon technology has been invented

and has practically reached its apogee. Substitutes, like nanoelectronic components,

or the quantum computer will soon be a reality.

In parallel to the research concerning these successors to silicon technology, a

lot of work is being done on new kinds of architectures suited for microprocessors.

One of the next promising source of inspiration is the living world and the human

itself [130, 3].

We mainly focused in this chapter on bio-inspiration and the description of an

ontogenetic architecture: the Embryonics project. This architecture, in addition to

its intrinsic purposes which are self-replication and self-repair, showed us the use of

a massively parallel and regular structure based on reconfigurable components like

FPGAs, which is to say a cellular architecture.

The cellular architecture constitutes a relatively recent paradigm in parallel com-

puting, and is becoming to be used in commercial products. Pushing the limits of

multi-core architectures to their logical conclusion where the programmer has the pos-

sibility to run many threads concurrently, this architecture is based on the replication of

many similar computing elements. Containing all the memory, computational power

and communication capabilities, each cell provides a complete environment for run-

ning a whole thread. Thus, the problem of achieving greater performance becomes a

matter of how many cells can be put in parallel and, by extension, of how well thread-

level parallelism can be extracted from the application.

For our thesis research, it seemed interesting to investigate the concept of cel-

lular architectures. Rather than focusing on networks made of a limited number of

extremely powerful microprocessors, we chose to create extremely large cellular net-

works with rather simple reconfigurable components: FPGAs.

34 The computer through the ages

Our first realization will implement the Embryonics project presented in this chap-

ter into hardware. This massively parallel machine, made of thousands of FPGAs or

molecules, is the BioWall.

Chapter3
BioWall hardware description

T
HE BioWall is the first realization that employs the Embryonics concepts.

This bio-inspired electronic tissue was firstly developed to study and verify

in hardware the three essential biological models presented in § 2.3.3:

• Phylogeny - the history of the evolution of species.

• Ontogeny - the development of an individual directed by genetic code.

• Epigenesis - the development of an individual through learning processes (ner-

vous system, immune system), influenced both by genetic code (the innate) and

environment (the acquired).

In the first section, we describe the hierarchical structure of our cellular system.

Section 3.2 presents all the electronic components that make up the BioWall. Before
concluding this chapter, we give a closer look at the software running this machine.

3.1 Specifications and global overview

The implementation of the Embryonics model led us to imagine a machine with the

following attributes: a basic computing element with limited complexity, bio-inspired

features like growth and cicatrization, homogeneity, scalability, interactivity. More-

over, to tally with the ontogenetic model, we built our system using a large amount

of identical computing units (like for an organism which is composed of many cells),

where each unit computes its genome in parallel.

We named our machine BioWall due to its biological inspiration, as well as its size
(5.3m x 0.8m x 0.5m). Thanks to a grant from the Villa Reuge foundation, we built

the BioWall and were able to demonstrate the features of the Embryonics project to

the public through visual and tactile interaction (Fig. 3.1).

As the BioWall should be an easily reprogrammable flexible tool, we decided

to base our design on reconfigurable components, notably Field Programmable Gate

Array (FPGA) circuits. The first planned application, the BioWatch[124], involved

4’000 independent basic units (artificial molecules). Each artificial molecule is imple-

mented within an FPGA. Thus we built the BioWall on an array of 4’000 FPGAs.

35

36 BioWall hardware description

Figure 3.1: Photograph of the BioWall running the BioWatch application.

3.1.1 BioWall specifications

To fulfil with the previous mentioned specifications, we designed the BioWall as a

reconfigurable (1) machine built on a mesh-topology (2), able to continuously display

the state of each molecule (3) and to interact with multiple users (4):

1. Since the BioWall machine is made of a large array of FPGAs, it was important

to choose a moderately priced component. We chose the XCS10XL SPARTAN�

from Xilinx�, which was a new product at the start of the project and especially

attractive for its low price. The main advantages of this FPGA are that there is

no limit to the number of times it can be reconfigured, it has enough logic gates

to match our needs and it is very simple to use. Moreover this FPGA is really

robust and supports hazardous Input/Output (I/O) shortcuts due to development

faults.

2. The BioWall is built on a mesh-network where each FPGA is connected with a

von Neumann neighborhood to its four adjacent FPGAs using about 25 direct

lines. The 4’000 FPGAs are globally synchronized using a common clock at a

fixed frequency of 1.0MHz. Operation control is possible thanks to global lines

under supervision of external software running on a Personal Computer (PC).

3. Each FPGA can access a dedicated screen consisting of an 8 by 8 two color

Light-Emitting Diode (LED) dot matrix.

4. A transparent touchsensor directly connected to the SPARTAN� reconfigurable

circuit is glued onto the top of the display module. This 3.2×3.2 cm membrane

indicates if the surface is activated or disactivated.

3.1 Specifications and global overview 37

3.1.2 BioWall overview

The BioWall is a two-dimensional tissue consisting of 4’000 identical basic elements

(also named molecules), as shown in figure 3.2. Each molecule is made of:

• An input element (a touch-sensitive membrane).

• An output element (an array of 64 two-color LEDs).

• A programmable computing element (a Xilinx� SPARTAN� XCS10XL FPGA).

Our machine is constructed using a hierarchical structure, in which an external

computer manages all the BioWall functions through the BioBox, which is the wall’s

main controller. 160 BioStack boards, each made of 5 × 5 = 25 molecules, are

plugged into a hard iron structure. Each BioStack board is made up of a BioLogic and

a BioDisplay boards rigidly bound together.

The electronic components are mounted on these two boards. The logic board

(BioLogic) hosts 25 FPGAs, and the display board (BioDisplay) holds 25 displays

and their membranes. The boards are connected together by a flat wire to allow two-

way communications between the logic and the display (a dedicated circuit on the

logic board automatically distributes the signals to the display).

On the logic board, the SPARTAN� devices are placed in a regular two-dimensional

grid. Each FPGA is connected to its four cardinal neighbors using approximately 25

pins per link. The pins of the FPGAs placed along the edges of the board are wired

to a set of connectors which allow pin-to-pin connection across boards, thus creating

perfectly uniform surfaces of FPGAs spanning as many boards as required.

The remaining pins are connected to a centralized circuit that handles the distribu-

tion of the global signals (the clocks, resets, and FPGA configuration streams) arriving

from the BioBox.

The BioWall is composed of 160 BioStacks for a total of 4’000 molecules. Thanks

to their architecture, the boards can be seamlessly connected with each other to form a

homogenous surface of any shape and size.

This tissue of 4’000 FPGAs represents an impressive amount of computational

power, coupled with I/O interfaces (comprising the membranes, the LED arrays and

I/O pins around the BioWall edges) that allow large-scale visual and tactile interac-

tions. The advantage of this solution is the size of the display, which enables an im-

mediate interaction with the applications, normally limited to software simulation on

a computer screen. Furthermore, the computing power and programmability of the

Xilinx� FPGAs enable the easy prototyping of new bio-inspired applications.

All biological organisms have in common the same kind of genetic information, the

Deoxyribonucleic Acid (DNA), contained in each cell. The BioWall contains similar

information, as each molecule gets the same configuration.

To cope with the mechanical problems caused by the big size of the BioWall, we
divided the machine into several identical structures and board assemblages.

38 BioWall hardware description

Figure 3.2: BioWall molecule structure.

3.2 BioWall board description

3.2.1 The BioLogic board

(a) Top view: connector to the BioDisplay

board, 3.3V input connector, Actel� FPGAs

controlling all the SPARTAN
� FPGAs located on

the bottom side.

(b) Bottom view: the 5 x 5 SPARTAN
� FPGA

array with connectors to next BioLogic boards.

Figure 3.3: Pictures of the BioLogic board.

The BioLogic board (Fig. 3.3) constitutes the main module of the BioWall plat-
form and houses all the computational components within which the applications will

run.

This board is articulated around a grid of 25 SPARTAN� FPGAs1 from Xilinx�

and some other components, whose tasks are dedicated to controlling the FPGA array

(Fig. 3.4). All these components are soldered on a big (160×160 mm) 6-layer Printed

Circuit Board (PCB).

1The exact model is the XCS10XL-4TQ144C [141].

3.2 BioWall board description 39

SPARTAN

FPGA

SPARTAN

FPGA

SPARTAN

FPGA

SPARTAN

FPGA
SPARTAN

FPGA

SPARTAN

FPGA

SPARTAN

FPGA

SPARTAN

FPGA

SPARTAN

FPGA

SPARTAN

FPGA

SPARTAN

FPGA

SPARTAN

FPGA

SPARTAN

FPGA

SPARTAN

FPGA

SPARTAN

FPGA

T
o

B
io

D
is

p
la

y

SPARTAN

FPGA

SPARTAN

FPGA

SPARTAN

FPGA

SPARTAN

FPGA

SPARTAN

FPGA

SPARTAN

FPGA

SPARTAN

FPGA

SPARTAN

FPGA

SPARTAN

FPGA

SPARTAN

FPGA

ACTEL

FPGA

(Spartan control)

ACTEL

FPGA

(Display control)

F
ro

m
B

io
H

o
s
t,

o
r

fr
o
m

p
re

v
io

u
s

B
io

L
o
g
ic

T
o

n
e
x
t

B
io

L
o

g
ic

Figure 3.4: Architecture of the BioLogic board.

The main features of the BioLogic board are as follows: (1) computational FPGAs,

(2) configuration and control, and (3) BioDisplay interface:

1. Equivalent to 10′000 logic gates, this FPGA articulated on a simple Configurable

Logic Block (CLB) structure, each made of three Lookup Tables (LUTs) asso-

ciated with two flip-flops, is really easy to use. It has direct links with its four

direct neighbors and connections, through a dedicated controller FPGA, with

the LED display and touchsensor located at the top. Based on Static Random

Access Memory (SRAM) technology, an unlimited number of reconfigurations

is possible.

2. Configuration and control of all FPGAs are performed by two dedicated Actel�

FPGAs located on the top side of the PCB. The first Actel� FPGA receives

configuration streams, reset, and clock signals from the BioBox and distributes

them to the 25 SPARTAN� FPGAs.

40 BioWall hardware description

3. The second Actel� FPGA provides an interface between all the Xilinx� FPGAs

and the BioLogic board. It receives the serial encoded stream with the pixel

values from each SPARTAN� circuit, transmits it to the BioDisplay board and

manages the display refresh cycle. Another task assigned to this component is

to scan the touchsensor surface and distribute the corresponding sensor status

to the matching SPARTAN� FPGA. All communications between the BioLogic

and the BioDisplay boards go through 40-pin connectors.

Each SPARTAN� FPGA possesses various connections with its neighbor FPGAs

and the other components of the system. White connectors surrounding the board

and visible on figure 3.3(b) allow to directly connect adjacent FPGAs of two

sided BioLogic boards. Signals and communication possibilities available for each

SPARTAN� components are described in table 3.1.

Type Line number Description

Horizontal links 27 CMOS signaling connecting adjacent FPGAs

in the horizontal direction. These lines are

bidirectional and functionality is specified in-

side an application.

Vertical links 21 CMOS signaling connecting adjacent FPGAs

in the vertical direction. These lines are bidi-

rectional and functionality is specified inside

an application.

Clock 1 1.0 MHz clock signal coming from the

BioBox.

Reset 1 FPGA reset signal generated by the BioBox

(active high).

X_EN 1 Enable signal generated by the BioBox which

frequency can vary from a step-by-step mode

to a 200 khz frequency.

F_EN 1 Second enable signal generated by the

BioBox which frequency can vary from a

step-by-step mode to 200 khz.

Touchsensor 1 State of the tactile sensor; low level when

pressed, high logic level otherwise.

Display 5 These lines must be connected to a specific

Intellectual Property (IP) core; they provide

the interface between the FPGA to the LED

display.

Table 3.1: BioLogic FPGA I/O summary.

In the current BioWall version, the SPARTAN� FPGAs can only be programmed

with the same configuration, which limits the functionality of the units to the 10′000
logic gates of the SPARTAN� circuit, while the considerable delays inherent in prop-

agating a global signal over distances measured in meters limit the clock speed to a

low frequency. We set this clock limit to the frequency of 1.0 MHz which is more ad-

3.2 BioWall board description 41

equate if coupled with the massive parallelism of the system and considerably too fast

for human interaction in many applications. In addition to the fixed frequency clock

signal, two configurable enable signals make it possible to slow down the computation

speed in order to have time to show the computational results on the BioWall screen.
The first enable signal labeled X_EN can be controlled from the 1 Hz frequency up to

200 khz. A specific mode allows it to generate pulses uniquely on request. Frequency

speed as step-by-step mode are controlled from a software running on a PC. The sec-

ond signal, F_EN, has the same control possibilities as X_EN, but should be slower or

equal to the frequency of X_EN. Figure 3.5 exhibits these signals and the way in which

they are correlated together. The F_EN signal will always be in phase with the X_EN

signal, and can never be present without X_EN being high. For most applications we

only use the X_EN signal; it was for the BioWatch application that these two enable

signals were needed.

CLK

X_EN

F_EN

���

��

��

Figure 3.5: BioWall clock and enable timings.

3.2.2 The BioDisplay board

The density of components on the BioLogic board does not allow integration of the

LED display modules on the same substrate. We solved this problem by building

another board, named BioDisplay. This board, the size of which is 165 × 165 mm,

is made of a grid of 5 × 5 small display modules each constituted by a 8 × 8 red and

green LED matrix (Fig. 3.6). On the upper face of each of these modules is glued a

touchsensor, which gives a logical 0 signal when its surface is pressed, and a logical 1

signal otherwise. In the interest of simplifying and limiting the number of transistors

driving the LED display, we decided to define a pixel as a group of two by two LEDs.

Thus each FPGA of the BioLogic board drives its corresponding display (Fig. 3.7) and

can assign to the 4 × 4 = 16 pixels four different colors which are: black, red, green

and orange. Table 3.2 gives the description of the interface of the IP core that needs to

be used by each application and which will reside inside the SPARTAN� FPGA.

The assemblage of the whole BioWall has been taken in consideration in the con-

ception of the entire system. This results in the fact that a single connector should

connect the BioDisplay board to the BioLogic board. Thus, all display signals are

multiplexed together with the touchsensors data; they are gathered on a connector lo-

cated on the bottom side of the PCB.

42 BioWall hardware description

Figure 3.6: Picture of the BioDisplay board with the top-right display module re-

moved.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 3.7: BioWall pixel ordering.

3.2.3 The BioStack

The previous paragraphs have described the BioLogic and the BioDisplay boards.

These two main elements of the BioWall machine are bolted together to build a new

module: the BioStack .

The BioDisplay board, which is placed on top of the stack, is easily recognizable

3.2 BioWall board description 43

Name Bus size Direction Description

red 16 IN red signal; one bit for each pixel.

green 16 IN green signal; one bit for each pixel.

DISP_R_CCK 1 IN

signals used by this core to send display data

with the Actel� FPGA.

DISP_RST 1 IN

DISP_EN 1 IN

DISP_IN 1 IN

DISP_OUT 1 OUT

Table 3.2: BioWall display interface.

in figure 3.8, with its LED display and touchsensor surface. The flexible plastic wires

between the BioDisplay PCB and the top of the screen constitute the connection for

the touchsensors.

Under this board is fixed the BioLogic card, which handles all the computational

logic. Both boards are connected with a 40-pin connector, which transmits all the

display and sensor data.

Figure 3.8: Picture of the BioStack.

Scalability in cellular architecture is crucial, and the BioStack is not the final result

of our research, but an element of the system. Several of theses boards can be joined

together, through border connectors in the BioLogic board, in a two-dimensional array.

Connections are realized using flat wires linking adjacent boards.

3.2.4 The BioWall: an assemblage of BioStack modules

The connection of several boards together potentially allows the creation of

programmable logic surfaces of any size. The current BioWall configuration that has

44 BioWall hardware description

been built and tested consists of 160 BioStacks, organized as a 5 by 32 rectangular

array.

Due to the large BioWall sizes, we had to build a specific iron frame, or rack, that

can hold precisely ten BioStacks on its structure. Figure 3.9 represents such a rack

seen from the back. Once the BioStacks are fixed onto the rack, they are connected

together using flat wires linking each adjacent FPGA together.

Figure 3.9: BioWall’s rear with the red frame surrounding a rack.

The whole BioWall is built using 16 racks coupled together, edge-to-edge (hor-

izontally). If another BioStack arrangement were be needed, racks could be added

edge-to-edge to extend the wall surface.

Each rack holds two other essential elements: a power supply and the BioBottom

board. This board is fixed at the bottom of the rack and gathers control signals com-

ing from the BioBox. These signals are then transmitted to the two BioStacks lo-

cated at the bottom of the rack, and thereafter relayed to the upper BioStack modules.

Thus each rack becomes an autonomous unit with up to 250 molecules (or FPGAs),

its power supply, and the connector allowing all the reconfigurable elements of the

BioLogic boards to be driven.

3.2 BioWall board description 45

Power supply

As previously noted, each rack holds a global power supply block that converts a

220 AC voltage to a regulated 3.3 V DC voltage. Since current consumption of the

ten BioStacks constituting a rack can be up to 40 A, we wired all the power cables

from each BioStack to an electrical distribution block fixed near the power convertor

output.

Interface boards

The BioWall width is 5.3 meters, which means that a signal propagated from the

BioBox (which is for technical purposes placed on one side of the machine) to the

other side of the BioWall needs to go through several meters of wires. Since these

signals are 3.3 V logic CMOS, they will be too sensitive to noise perturbations. The

BioBottom board placed at the bottom of each rack will avoid this kind of problem,

by amplifying signals coming from the BioBox (Fig. 3.10).

The same kind of boards, named BioSide are present on both sides of the BioWall
and are also responsible for amplifying signals coming in or out from the BioWall
sides.

Both cards (BioBottom and BioSide) are connected through 8 meter shielded wires

to the BioBox. This extreme long length, coupled with the small bandwidth of our

amplifiers, has the drawback of altering the signal quality. Thus, we limited the clock

frequency and all other signals inside the BioWall to 1.0 MHz.

3.2.5 The BioBox

All previously described elements make up the BioWall’s surface, but are unusable

without the BioBox, which is the crucial module for the BioWall to work. This box

(Fig. 3.11) is powered by a dedicated power supply and generates from a specific

FPGA all the signals driving the BioWall. This box provides an interface between all

the racks and the BioSoft software running on a PC. The multiple tasks executed by

the BioBox are (1) the BioWall FPGA configuration, (2) the clock and enable signals

generation, (3) the serial stream transmission, and (4) the BioWall status monitoring.

1. All the 4’000 SPARTAN� FPGAs can only be configured with the same config-

uration. The configuration data is sent by the BioSoft to the BioBox through a

RS232 serial line. The BioBox is responsible for clearing the FPGA contents,

and transmitting the bitstream to all the FPGAs at the same time. The success

of this operation is signalled by a LED near each FPGA, which lights-up red.

Once all the FPGAs are configured, the BioBox generates a reset signal which

will start, at the same time, the application in all the BioWall FPGAs.

2. An accurate oscillator generates the 1.0 MHz frequency which is distributed to

all the 4’000 FPGAs in parallel. The BioSoft software can send commands for

setting the frequency of the enable signals over the RS232 bus. The BioBox

FPGA will then generates the desired timing for both X_EN and F_EN. New

RS232 commands are only necessary to change the desired frequency for the

enable signals or to switch them into the step-by-step mode.

46 BioWall hardware description

BioBottom 1

BioBox

To PC RS232

BioStack

1 - 1

BioStack

1 - 2

BioStack

1 - 3

BioStack

1 - 4

BioStack

1 - 5

BioStack

1 - 6

BioStack

1 - 7

BioStack

1 - 8

BioStack

1 - 9

BioStack

1 - 10

BioStack

2 - 1

BioStack

2 - 2

BioStack

2 - 3

BioStack

2 - 4

BioStack

2 - 5

BioStack

2 - 6

BioStack

2 - 7

BioStack

2 - 8

BioStack

2 - 9

BioStack

2 - 10

BioStack

16 - 1

BioStack

16 - 2

BioStack

16 - 3

BioStack

16 - 4

BioStack

16 - 5

BioStack

16 - 6

BioStack

16 - 7

BioStack

16 - 8

BioStack

16 - 9

BioStack

16 - 10

BioBottom 2 BioBottom 16

Power supply

2

Power supply

1

Power supply

16

220 V

3.3V 3.3V 3.3V

BioSide

W1

BioSide

W2

BioSide

W3

BioSide

W4

BioSide

W5

BioSide

E1

BioSide

E2

BioSide

E3

BioSide

E4

BioSide

E5

Figure 3.10: Schematic of the BioWall architecture; each red rectangle correspond
to a rack.

3. Several applications need to receive computation data which will be processed.

These data are transmitted by the BioSoft software and then transmitted over

a serial link to one or more FPGAs on one edge (the signal goes through the

BioSide boards).

4. BioWall status polling is possible. In the BioWatch application [124], we need

to monitor the watches death in order to reset (or regenerate) a new watch or-

3.3 Conclusion 47

Figure 3.11: The BioBox opened; the controller board is fixed in the cover on the

left ; the right box helds all connectors where each cable is going to

the racks.

ganism. This kind of information can then be handled inside the BioBox and

also be transmitted to BioSoft .

The last operation controlled by the BioBox is the electrical main status of the

whole BioWall. A command sent by the BioSoft can switch on or off the power

supply of all the racks.

3.2.6 BioSoft

The BioBox performs all control tasks at the hardware level, and needs to get config-

uration streams and orders from a more advanced system which is a software running

on a PC in this case.

A simple user interface on the PC allows the user to define a set of files that will be

used to configure the tissue (Fig. 3.12). Four kinds of files are currently defined (more

can be added): the configuration file for the SPARTAN� FPGAs, and three different

formats used to send user-defined data via the input pins at the edges of the tissue

(used, for example, to provide an initial configuration for a cellular automaton).

3.3 Conclusion

In this chapter, we described a novel hardware platform aimed at the realization of

bio-inspired cellular computing. The versatility and scalability of the platform along

with the potential parallel computational power it can provide make possible very in-

teresting research applications, as we will see in the next chapter.

Aside from the computational aspect, the system is also open to several improve-

ments related to I/O aspects. For example, it is clear that the interface between the

48 BioWall hardware description

Application list

Frequency control

for enable signals

Figure 3.12: BioSoft main window.

BioWall FPGAs and an external system can be modified and in order to bypass the

BioBox. The perfect example of such a modification is the BiotaMusik applica-

tion [60] where the top-right FPGA of the BioWall directly command a sound card

which generates and amplifies the sound synthesized inside the wall . Other adapta-

tions are easily possible by using Logidules [15].

Chapter4
BioWall applications

W
HEREAS the previous chapter described the hardware of the BioWall,
this chapter focuses on the applications running on this large reconfig-

urable machine. Our first implementation of a bio-inspired machine is

an organism endowed with all the features of the Embryonics project:

the BioWatch [124, 125], which counts hours, minutes, and seconds, demonstrates the

growth and self-repair capabilities of our system.

The implementation of the BioWatch would have been sufficient to justify the ef-

fort that went into the construction of our embryonic BioWall. However, in developing
our machine, we quickly realized that the capabilities of such a platform were not lim-

ited to a single application. In fact, it is an ideal platform to prototype many different

kinds of two-dimensional cellular systems, which are systems comprising arrays of

small, locally connected elements. The BioWall is ideally suited to the implementa-

tion of Cellular Automatas (CAs), but is by no means limited to them.

The first application, described in section 4.1, is the famous Game of Life CA.

We place the emphasis on showing how this simple automaton can be implemented on

the BioWall, and that it performs very highly on this machine thanks to the massively

parallel architecture of the latter. In our second application we focus on the develop-

ment of a novel self-replicating loop endowed with universal construction properties,

the cellular structure of which is perfectly suited to the BioWall architecture.

4.1 Game of Life

Life is complexity. The way a spider weaves its web or an ant colony builds its nest

suggests that these creatures are intelligent. They are nothing of the sort. Biologists

have demonstrated that by blindly following basic rules that have been gradually devel-

oped through natural selection, every animal behaves in sometimes extremely complex

ways. John Conway’s Game of Life [47] is a striking example of this kind of emergent

behavior. The game is based on a very simple two-dimensional CA, in which each

element represents an individual. Each individual has only two possible states: dead

or alive. The next state of each individual depends on the current state of the individual

itself and that of its eight nearest neighbors, according to the following rules:

49

50 BioWall applications

• If the number of living neighbors is too small (zero or one), the individual dies

of isolation and its future state is “dead” (loneliness).

• If an individual has exactly two living neighbors, it conserves its current state

(persistence).

• If an individual has exactly three living neighbors, its future state is “alive” (re-

production).

• If an individual has too many living neighbors (four or more), it dies of over-

population and its future state is “dead” (overcrowding).

The initial pattern constitutes the “seed” of the system. The first generation is

created by applying the above rules simultaneously to every cell; births and deaths

happen simultaneously. Figure 4.1 illustrates the Game of Life rules with some simple

examples.

Lo
ne

lin
es

s

Lo
ne

lin
es

s

Per
si
st
en

ce

R
ep

ro
du

ct
io
n

O
ve

rc
ro

w
di
ng

Figure 4.1: Game of Life evolution rule examples.

A strikingly visual application, the Game of Life is ideally suited for implementa-

tion on the surface of the BioWall, where the touch-sensitive membranes are used to

override the states of the game and to give life to the individuals. We developed two

different implementations:

• In Life1, each of the 4’000 molecules of the BioWall represents a single in-

dividual of the Game of Life. The surface is toroidal and the touch-sensitive

membranes toggle the state of the individuals.

• In Life16, each molecule represents an array of 4x4=16 individuals (a total of

64’000 Game of Life cells on the BioWall), and the touch-sensitive membranes

insert a glider (one of the stable configurations of the game of Life, which moves

diagonally across the space as illustrated in figure. 4.2).

4.1 Game of Life 51

1 2 3 4 1

Figure 4.2: A Game of Life stable pattern: the glider

This application, while not of direct interest for our research (it is mostly aimed at

providing direct interaction for the general public), is nevertheless a good example of

an application ideally suited to illustrate the features (display the capabilities, interac-

tivity, etc.) of the BioWall. Moreover, we chose to implement this simple CA in order

to describe how a simple application can be adapted to the BioWall.

4.1.1 Version 1: Life1

Figure 4.3: Life1 running on the BioWall.

The first implementation of the Game of Life automaton is Life1 (Fig. 4.3), which

is perfectly suited to the BioWall architecture since each cell of the automaton can

be implemented in one molecule, i.e. one FPGA. Local connections between each

adjacent FPGA and a global synchronous clock allow the Game of Life computations

to be parallelized. Since the automaton clock is adjustable using the BioSoft , the

operator can switch the automaton to a frozen state and can then introduce the state of

each cell. Once this task is performed, the automaton clock can be restarted to compute

the previously inserted Game of Life pattern.

Another way to determine the initial state of each automaton is to set the state of

the 4’000 cells of the BioWall just after having configured all the FPGAs. This process
is accomplished by sending a configuration stream to all Game of Life cells, as detailed

below.

For the first implementation of this CA on the BioWall, each FPGA acts as a cell

52 BioWall applications

of the automaton, where its new state is computed depending on the state of its eight

neighbors. All cells are synchronized by a global signal, which is the X_EN enable

signal in our application.

For each FPGA, we enumerated three main tasks:

• Computation of the new automaton state.

• Loading and configuring each cell with a user-defined initial state.

• Interacting with people by detecting touches on the BioWall surface and dis-

playing the state of the Game of Life cell.

Initial pattern register

Game of Life

automaton

c
lk

Display / sensor

interface

c
lk

c
lk

X_EN

Figure 4.4: inside the FPGA: Game of Life architecture.

These tasks and mutual interactions can be illustrated in figure 4.4. Figure 4.5

highlights the connections of FPGAs with their neighbors. Since in the BioWall ar-
chitecture each FPGA is directly connected with only four cardinal neighbors, we had

to redirect some connections, as displayed in figure 4.5, to create the diagonal links

needed by the Moore neighborhood.

The automaton state, which is only one-bit variable, can be “0” or “1”, dead or

alive. In the alive state all of the green Light-Emitting Diodes (LEDs) of the BioWall
molecule are lit, while in the dead state all of the molecule’s LEDs are turned off (black

state). Each pressure exerted on the touchsensor toggles the state of the automaton

from dead to alive or vice-versa. This application, like all of the other applications on

the BioWall, is clocked at a fixed frequency of 1.0 MHz. However in order to display

4.1 Game of Life 53

Figure 4.5: Game of Life communication structure; each big gray box represents a

FPGA and the white box inside is a Game of Life cell core.

the automaton evolution process, we slowed down the automaton’s computation speed,

using the X_EN signal. This signal, which can be controlled by the user from the

BioSoft application, allows very low computation speeds to be set. Thus, the next

state of the Game of Life automaton is computed when X_EN signal is high and when

a global clock rising edge occurs.

We previously mentioned that the user could load an initial pattern; the next para-

graph will give some details on how this task is performed on the BioWall

Initial pattern

Figure 4.3 gives an example of a predefined pattern which, in this case, will generate

three spaceships moving from top to bottom. Several others predefined patterns exist

and can be found on the Internet [46].

To avoid executing the whole FPGA Xilinx� synthesis process each time we

wanted to change the initial pattern, we decided to use a file with the initial states

54 BioWall applications

of each automaton cell along with common FPGA configuration. This is done by

sending a serial stream after the FPGA configuration. In this file sent by the BioSoft

software, each bit of the file represents the state of one of the 4’000 automaton cells.

These data are transmitted to the BioWall through a specific pin located in the bottom

left FPGA of the wall. The data are shifted to the next FPGA as depicted in figure 4.6.

This chain acts as a 4’000-bit long Shift Register (SR), where each flip-flop of the SR

is located inside one FPGA. Once the 4’000 bits are shifted and stored in their respec-

tive flip-flop, they are transferred to the Game of Life molecule where they determine

the initial state (see “initial pattern register” in figure 4.4).

c
lk

c
lk

c
lk

c
lk

c
lk

c
lk

c
lk

c
lk

c
lk

c
lk

c
lk

c
lk

c
lk

c
lk

c
lk

c
lk

c
lk

c
lk

c
lk

c
lk

Serial stream (IN)

Figure 4.6: configuration scheme for loading the Game of Life initial pattern ; each

big gray box represents a FPGA and the white box inside is a serial

shift register. (This process is showed over a reduced BioWall of only
5 rows.)

4.1 Game of Life 55

4.1.2 Version 2: Life16

Life1 shows us an implementation of Conway’s Game of Life on the BioWall. This
application does not use all the resources of the BioWall and FPGA utilization percent-

age is really low. Life16 version (Fig. 4.7), reuses the previously described application,

but instantiates 16 cells in each FPGA, thus giving 64’000 cells over the BioWall sur-
face, and assigning a unique Game of Life cell to every 2 × 2 pixels of the BioWall.
In this experiment, we changed the interaction method so that each pressure over the

touchsensor would generate a glider (Fig. 4.2).

Figure 4.7: Life16 running on the BioWall.

4.1.3 Performance

The Game of Life automaton is probably one of the best known CAs and has been

studied for a long time. In fact, a lot of computer software allows to simulate a large

Game of Life array.

However, our hardware-only solution gives some really interesting results, which

would be difficult to obtain on a computer. Even if the BioWall computes at very

slow speeds, the parallelization of thousands of specialized cells exceeds the capability

of any Personal Computer (PC). For comparison, we simulated an equivalent Game

of Life surface on a PC1 running the Xlife software [143]. This program gave us a

maximum computation speed of 871 generations/second for 64’000 cells configured

with an initial random pattern. In the same time the BioWall can compute as many as

200’000 generations/s.

Table 4.1 gives some comparisons between software and hardware implementa-

tions. Even if a PC can compute infinite sized organisms, it rapidly becomes slower

than our Life16 application. A major advantage of the BioWall version over a PC

software version is interaction, where multiple users can play together on the BioWall.

4.1.4 Game of Life conclusion

This application gives us a first overview on how CAs are easily implemented on the

BioWall. Moreover, whereas the BioWall performances seem to be really limited in

1Pentium 4, running at 1.8 Ghz, with 1.0 GByte RAM; Linux operating system.

56 BioWall applications

Computer BioWall
organism size + -

simulation speed - +

constant time step - +

interaction - +

Table 4.1: Game of Life comparisons: computer/BioWall.

speed, the BioWall’s parallel architecture allows it to surpass the PC’s powerful capa-

bilities.

4.2 Tom Thumb

After a survey of the theory and some realizations of self-replicating machines, this

section presents a novel self-replicating loop endowed with universal construction

properties. Based on the hardware implementation of the so-called Tom Thumb al-

gorithm, the design of this loop leads to a new kind of cellular automaton made of

a processing and a control unit. The self-replication of the “LSL” acronym serves as

an artificial cell division example of the loop and results in a new and straightforward

methodology for the self-replication of computing machines of any dimensions.

4.2.1 Introduction and survey

Self-replicating loops

The main goal of this application is to present a new self-replicating loop endowed

with universal construction properties. While the early history of the theory of self-

replicating machines is basically the history of John von Neumann’s thinking on the

matter [136], a practical implementation requires a sharply different approach. It was

finally Langton, in 1984, who opened a second stage in this field of research. In order

to construct a self-replicating automaton simpler than von Neumann’s, Langton [71]

adopted more liberal criteria. He dropped the condition that the self-replicating unit

must be capable of universal construction and computation.

Langton proposes a configuration in the form of a loop, endowed notably with a

constructing arm and a replication program or genome, which turns counterclockwise.

After 151 time steps, the original loop (mother loop) produces a daughter loop, thus

obtaining the self-replication of Langton’s loop.

To avoid conflicts with biological definitions, we do not use the term “cell” to

indicate the parts of a cellular automaton, opting rather for the term “molecule”. In

fact, in biological terms, a cell can be defined as the smallest part of a living being

which carries the complete blueprint of the being, that is the being’s genome.
According to the biological definitions of a cell, we end up with the following

observations.

• Langton’s self-replicating loop is a unicellular organism: its genome requires 28

molecules and is a subset of the complete loop which requires 94 molecules.

4.2 Tom Thumb 57

• The size of Langton’s loop is perfectly reasonable, since it requires 94

molecules, thus allowing complete simulation.

• There is no universal construction nor calculation: the loop does nothing but

replicate itself. Langton’s self-replicating loop therefore represents a special

case of von Neumann’s self-replication of a universal constructor. The loop is

a non-universal constructor, capable of building, on the basis of its genome, a

single type of machine: itself.

As did von Neumann, Langton emphasized the two different modes in which in-

formation is used, interpreted (translation) and uninterpreted (transcription). In his

loop, translation is accomplished when the instruction signals are executed as they

reach the end of the construction arm, and upon collision of signals with other signals.

Transcription is accomplished by duplication of signals at the arm junctions.

More recently, Byl [21] proposed a simplified version of Langton’s automaton.

Last but not least Reggia et al. [104] discovered that having a sheath surrounding

the data paths of the genome was not essential, and that its removal led to smaller

self-replicating structures which also have simpler transitions functions. Moreover,

they found that relaxing the strong symmetry requirement consistently led to transition

functions that required fewer rules than the corresponding strong symmetry version.

Self-replicating loops with computing capabilities

All the previous loops lack any computing and constructing capabilities, their sole

functionality being that of self-replication. Lately, new attempts have been made to

redesign Langton’s loop in order to embed such calculation possibilities. Tempesti’s

loop [128] is thus a self-replicating automaton, with an attached executable program

that is duplicated and executed in each of the copies. This was demonstrated for a

simple program that writes out (following the loop’s replication) the “LSL”, acronym

of the Logic Systems Laboratory. Finally, Perrier et al.’s self-replicating loop [94]

shows some kinds of universal computational capabilities. The system consists of three

parts, loop, program, and data, all of which are replicated, followed by the program’s

execution on the given data.

So far, all self-replicating loops lack universal construction, i.e. the capability to

construct a computing machine of any dimension, even though this goal is of great

interest in the development of new cellular automata, for example three-dimensional

reversible cellular automata designed by Imai et al. [56] for the emerging field of

nanotechnologies.

Self-replicating loop with universal construction

Our main goal is to show that a new algorithm, the Tom Thumb algorithm, will make

it possible to design a self-replicating loop with universal construction easily imple-

mented into silicon.

A second goal is to generalize the notion of the classical “cellular automaton” by

introducing the Data and Signals Cellular Automaton (DSCA) which perfectly suits

the specifications of our basic molecule. Moreover, such an automaton will allow

58 BioWall applications

a straightforward and systematic methodology for synthesizing cellular automata, a

methodology which is completely absent at the present time.

In § 4.2.2, our new algorithm will be described by means of a minimal mother cell

composed of four molecules which will grow and then divide to trigger the growth

of two daughter cells. This example is sufficient to derive the detailed architecture of

the basic molecule. Paragraph 4.2.3 deals with the generalization of the methodology

previously described and its application in a real example, the self-replication of the

“LSL” acronym. Universal construction and computation are briefly demonstrated. We

will conclude by opening new avenues based on the self-replicating loop with universal

construction and by showing the experimental results on the BioWall.

4.2.2 The Tom Thumb algorithm for cell division

Cell division in living organisms

Before describing our new algorithm for the division of an artificial cell, let us remem-

ber the two key roles that cellular division plays in the existence of living organisms.

• The construction of two daughter cells in order to grow a new organism or to

repair an existing one (genome translation).

• The distribution of two identical sets of chromosomes in order to create two

copies of the genome from the mother cell in order to program the daughter

cells (genome transcription).

Starting with a minimal cell made up of four artificial molecules, we will propose a

new algorithm, the Tom Thumb algorithm, to construct both the daughter cells and the

associated genomes. This algorithm will finally allow us to derive the detailed archi-

tecture of our final molecule. A tissue comprised of such molecules will be endowed

with both universal construction and computation properties.

Initial conditions

The minimal cell compatible with our algorithm is made up of four molecules, orga-

nized as a square of two rows by two columns (Fig. 4.8). Each molecule is able to store

in its four memory positions four hexadecimal characters of our artificial genome, and

the whole cell thus contains 16 such characters.

21 3 4

t = 0

Figure 4.8: The minimal cell (2 × 2 molecules) with its genome at the start (t = 0).

4.2 Tom Thumb 59

The original genome for the minimal cell is organized as a string of eight hexadeci-

mal characters, i.e. half the number of characters in the cell, moving counterclockwise

by one character at each time step (t = 0, 1, 2, ...).

The 15 hexadecimal characters composing the alphabet of our artificial genome

are detailed in figure 4.9. They are either empty data (0), molcode data (for molecule

code data, from 1 to 7) or flag data (from 8 to E). Molcode data will be used for con-

figuring our final artificial organism, while flag data are indispensable for constructing

the skeleton of the cell. Furthermore, each character is given a status and will even-

tually be mobile data, indefinitely moving around the cell, or fixed data, permanently

trapped in a memory position of a molecule.

M

: empty data

: molcode data

: branch activation and north connection flag

: north branch and east connection flag

: east branch and west connection flag

: north connection flag

: east connection flag

: south connection flag

: west connection flag

- : don't care data

: flag dataF

(1 ... E)

(1 ... 7)

(8 ... E)

(0)

(8)

(9)

(A)

(B)

(C)

(D)

(E)

(a)

: mobile data : fixed data- -

(b)

Figure 4.9: The 15 characters forming the alphabet of an artificial genome. (a) Graphi-

cal and hexadecimal representations of the 15 characters. (b) Graphical representation

of the status of each character.

Constructing the cell

At each time step, a character of the original genome is shifted from right to left and

simultaneously stored in the lower leftmost molecule (Figs. 4.8 and 4.10). Note that,

due to our algorithm, the first, third, etc. character of the genome (i.e. each odd

character) is always a flag F , while the second, fourth, etc. character (i.e. each even

character) is always a molcode M . The construction of the cell, i.e. storing the fixed

data and defining the paths for mobile data, depends on two major patterns (Fig. 4.11).

• If the two, three or four rightmost memory positions of a molecule are empty

(blank squares), the characters are shifted by one position to the right (shift

data).

60 BioWall applications

• If the rightmost memory position is empty, the characters are also shifted by

one position to the right (load data). In this situation, the rightmost F ′ and
M ′ characters are trapped in the molecule (fixed data), and a new connection

is established from the second leftmost position toward the northern, eastern,

southern or western molecule, depending on the fixed flag information (F ′ = 8

or C, 9 or D, A, B or E).

At time t = 16, 16 characters, i.e. twice the contents of the original genome,

have been stored in the 16 memory positions of the cell (Fig. 4.10). Eight characters

are fixed data, forming the phenotype of the final cell, and the eight remaining ones

are mobile data, composing a copy of the original genome, i.e. the genotype. Both

translation (i.e. construction of the cell) and transcription (i.e. copy of the genetic

information) have therefore been achieved.

The fixed data trapped in the rightmost memory position of each molecule remind

us of the pebbles left by Tom Thumb to remember his way back.

Dividing the mother cell into two daughter cells

In order to grow an artificial organism in both the horizontal and vertical directions, the

mother cell should be able to trigger the construction of two daughter cells, northward

and eastward.

At time t = 11 (Fig. 4.10), we observe a pattern of characters which is able to

start the construction of the northward daughter cell; the upper leftmost molecule is

characterized by two specific flags, i.e. a fixed flag indicating a north branch (F =

D) and the branch activation flag (F = C). This pattern is also visible in figure 4.12

(northward signal, third row). The new path to the northward daughter cell will start

from the second leftmost memory position.

At time t = 23, another particular pattern of characters will start the construction

of the eastward daughter cell; the lower rightmost molecule is characterized by two

specific flags, i.e. a fixed flag indicating an east branch (F = E), and the branch activa-

tion flag (F = C). This pattern also appears in figure 4.12 (eastward signal, third row).

The new path to the eastward daughter cell will start from the second leftmost memory

position.

The other patterns in figure 4.12 are needed for constructing the inner paths of

the minimal cell (Fig. 4.10) as well as a cell more complex than the minimal cell, for

example that of figure 4.18(b).

Growing a multicellular organism

In order to analyze the growth of a multicellular artificial organism, careful observa-

tion of the interactions between the different paths created inside and outside each

individual cell are needed.

As for the initial conditions, we suppose that at time t = −1 a first path is con-

structed from the shift register storing the original genome (Fig. 4.8) to the lower

leftmost molecule. After each period of eight time steps (i.e. t = 7, 15, 23, ...), the

same order will trigger the construction of this path again (Fig. 4.13(a)).

The construction of the cell is characterized by the successive launch of four inner

paths northward (t = 3), eastward (t = 7), southward (t = 11), and westward (t = 15)

4.2 Tom Thumb 61

12

4 2

1

32

1

3

14

2

1 2

5

9 10 11

1 2

1

3

13 14

12

4

3

1

3

1

4

1

2

6

2

1

7

2

1

4 3

12

15

4

2 3

1

16

4

2 3

1

1

2

8

1 2

3 3

3

4

3 4

1 1

1

2

4

2

2

13

12

13 1 1

23

4

17

4

2 3

11 1

23

4

18

4

2 3

111 2

34

19

4

2 3

111 2

34

20

4

2 3

11

1

2 3

4

21

4

2 3

11

1

2 3

4

22

4

2 3

11

12

3 4

23

4

2 3

11

12

3 4

24

4

2 3

11 1

23

4

25

4

2 3

11 1

23

4

26

4

2 3

111 2

34

27

4

2 3

111 2

34

28

4

2 3

11

1

2 3

4

29

4

2 3

11

1

2 3

4

30

4

2 3

11

12

3 4

31

4

2 3

11

12

3 4

32

4

2 3

11 1

23

4

33

4

2 3

11 1

23

4

34

4

2 3

111 2

34

35

4

2 3

111 2

34

36

4

2 3

11

1

2 3

4

37

4

2 3

11

1

2 3

4

38

4

2 3

11

12

3 4

39

4

2 3

11

12

3 4

40

4

2 3

11 1

23

4

Figure 4.10: Constructing the minimal cell (t = 4: north path, t = 8: east path,

t = 12: south path and north branch, t = 16: west path and loop completion, t = 24:
east branch, t = 28: north branch cancelation, t = 40: east branch cancelation).

(Fig. 4.13(a)). Due to our algorithm, this construction is carried out only once, and

these paths are never reactivated. Just notice the collision between the two signals at

time t = 15 where priority is given to the westward inner path.

Finally, the division of the mother cell into two daughter cells will trigger a north-

62 BioWall applications

M'F'' F'M'F''load data:

shift data:

t t +1

F F

F'M''

FM FM

F'F'' M F'MF''

M''

Figure 4.11: The two memory patterns for constructing a cell.

M

M

M'M''

westward signal:

northward signal: M

M

M'

eastward signal:

M

M

Msouthward signal:

F

F

F

F

F

F

M''

F

Figure 4.12: Patterns of characters triggering the paths to the north, east, south and

west molecules.

ward outer path at time t = 11. Due to our algorithm, this path is reactivated periodi-

cally every eight time steps, i.e. t = 19, 27, 35, ... For the same reason, the cell division

will trigger another eastward outer path at time t = 23; this path is also reactivated

periodically every eight time steps, i.e. t = 31, 39, ...

A macroscopic representation of the mother cell is given in figure 4.13(b) where

the different activation times of the initial path (ti = -1, 7, 15, 23, 31, 39, ...), the

northward outer path (tn = 11, 19, 27, 35, ...), the eastward outer path (te = 23, 31, 39,

...), and the inner path closing the loop (tc = 15) are summarized. It is then possible

to derive the number of time steps Δtn between the occurrence of the first initial path

(ti = −1) and the first northward outer path (tn = 11):

Δtn = tn − ti = 12 (4.1)

The number of time steps Δte, until the first eastward outer path, becomes:

Δte = te − ti = 24 (4.2)

while Δtc, the number of time steps until the inner path closing the loop, corre-

sponds to:

Δtc = tc − ti = 16 (4.3)

Figure 4.14(a) shows the macroscopic representation of a multicellular organism

made up of 2 × 2 = 4 cells where each path activation (northward, eastward, and

closing the loop) is given its precise timing according to the temporal characteristics

of the minimal cell (Fig. 4.14(b)). In this cell tn, te and tc are defined as follows:

4.2 Tom Thumb 63

1 2 3 4 5 7

-1

9

17

10

18

11

19

12

20

13

21

15

23

6 8

14 16

0

22 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

(a)
tn=11,19,27,35

te=23,31,39ti=-1,7,15,23,31,39

Δtn=12

Δtc=16 Δte=24

tc=15

(b)

Figure 4.13: Macroscopic representations of the mother cell. (a) Activated path from

t = −1 to t = 40. (b) Number of time steps Δtn, Δte and Δtc.

tn = ti + Δtn + K.8 = ti + 12 + K.8 (4.4)

te = ti + Δte + K.8 = ti + 24 + K.8 (4.5)

tc = ti + Δtc = ti + 16 (4.6)

where K is an integer (0, 1, 2, 3, ...).

64 BioWall applications

15 39

27 51

35,43,51,59

23,31,39,47 47,55,63,71

1.1 2.1

2.21.2

-1,7,15,23 23,31,39,47

35,43,51,59

11,19,27,35

47,55,63,71

59,67,75,83

(a)

ti te

tn

tc

ti

(b)

Figure 4.14: Macroscopic representations of a multicellular organism. (a) The 2 × 2
organism. (b) Temporal characteristics of the minimal cell with the different activation

times of the initial path (ti), the northward outer path (tn), the eastward outer path

(te), and the inner path closing the loop (tc).

Defining the priorities between cells

When two or more paths are simultaneously activated, a clear priority should be estab-

lished. We have therefore chosen three growth patterns (Fig. 4.14(a)).

• For cells in the lower row (1.1 and 2.1) a collision occurs at time tc = ti +
Δtc = ti+16 between the closing loop and the path entering the lower leftmost

molecule. As already mentioned, the inner loop (i.e. the westward path), will

have the priority over the eastward path.

• For cells in the leftmost column (1.2), the inner loop (i.e. the westward path),

will take priority over the northward path, at the exception of the mother cell

1.1.

• For all other cells (2.2), two types of collisions may occur:

– between the northward and eastward paths (2-signal collision);

– between these two previous paths and a third one: the closing loop at time

tc (3-signal collision).

4.2 Tom Thumb 65

In this last case, the northward path will have priority over the eastward path

(2-signal collision), and the westward path will have priority over the two others

(3-signal collision).

The results of such a choice are as follows: a closing loop has priority over all other

outer paths, which makes the completed loop entirely independent on its neighbors,

and the organism will grow by developing bottom-up vertical branches. This choice is

quite arbitrary and may be changed according to other specifications.

It is now possible to come back to the detailed representation of a multicellular

organism made up of 2 × 2 minimal cells (Fig. 4.15) and exhibit the latter at different

time steps in accordance with the priorities mentioned above.

0 8

1

23

4

16

112

4

2 3

11 1

23

4

2

1

4 31

2

4

2 3

11 1

23

4

24

4

2 3

11 1

23

4

4

2 3

11

1

2 3

4

1

23

4

32

112

4

2 3

11 1

23

4

4

2 3

11

1

2 3

4

4

2 3

11 1

23

4

40

4

2 3

11

1

2 3

4

4

2 3

11 1

23

4

4

2 3

11

1

2 3

4

4

2 3

11 1

23

4 4

2 3

11 1

23

4

4

2 3

11

1

2 3

4

56

2

1

4 31

2

4

2 3

11 1

23

4

48

Figure 4.15: Analyzing a multicellular organism made up of 2 × 2 minimal cells (t =
32: cell 1.2 closed on itself and independent of its mother cell 1.1, t = 40: cell 2.1
closed on itself and independent of its mother cell 1.1, t = 56: cell 2.2 closed on itself
and independent of its mother cell 2.1).

Towards a hardware implementation: the Data and Signals Cellular Automaton
(DSCA)

We are now able to describe the detailed architecture of our actual molecule

(Fig. 4.16(a)) which is made up of two main parts, an upper part or processing unit

66 BioWall applications

(PU) and a lower part or control unit (CU) (Fig. 4.16(b)). The processing unit itself
consists of three units.

• An input unit, the multiplexer DIMUX, selecting one out of the four input data

(NDI3:0, EDI3:0, SDI3:0 or WDI3:0), plus the empty data 0000; this se-

lection is operated by a 3-bit control signal I2:0.

• A 4-level stack organized as two genotypic registers GA3:0 and GB3:0 (for mo-

bile data), and two phenotypic registers PA3:0 and PB3:0 (for fixed data) accord-
ing to the definitions of figure 4.11. The two phenotypic registers are idle (i.e.

performing the HOLD operation) only when the rightmost memory position of

the molecule is a flag (i.e. HOLD=PB3 = 1).

• An output unit, the buffer DOBUF, which is either active (PB3 = 1, flag in the

rightmost memory position) or inhibited.

The control unit is itself divided into two units.

• An input encoder ENC, a finite state machine calculating the 3-bit control signal

I2:0 from the four input signals NSI , ESI , SSI , and WSI . The specifica-

tion of this machine, which depends on the priorities between cells as men-

tioned above (Figs. 4.13(a) and 4.14(a)), is described by the state graph of fig-

ure 4.16(d). The five internal states QZ, QN , QE, QS, and QW will control

the multiplexer DIMUX for choosing the input value 0000 or the input data

NDI3:0, EDI3:0, SDI3:0 or WDI3:0 respectively.

• An output generator GEN, which is a combinational system producing the north-

ward, eastward, southward, and westward signals (NSO, ESO, SSO, and

WSO) according to the patterns described in figure 4.12.

The processing unit (PU) and control unit (CU), in addition to the final molecule,

are represented at macroscopic levels in figures 4.16(b) and 4.16(c); these figures

define a new kind of generalized cellular automaton, the Data and Signals Cellular

Automaton (DSCA) [127].

What’s new with the Data and Signals Cellular Automaton (DSCA) ?

A look at figure 4.16(a) allows the calculation of the number of state variables involved

in the molecule (each sequential register being represented by a small triangle), i.e. 16

for the stack (GA3:0, GB3:0, PA3:0, PB3:0) and three for the control signals of the

input multiplexer (I2:0), which amounts to a total of 19. Therefore, the number of

possible states is 219. Thanks to our methodology, i.e. separating the molecule into a

processing unit and a control unit, we do not need to carry out the whole state table

with 219 rules.

• 16 variables (GA3:0, GB3:0, PA3:0, PB3:0) are data variables, required for

transferring or storing the flags and molcodes of the original genome.

• Three variables (I2:0) are control variables, required for coding the five states

of the graph in figure 4.16(d) and for controlling the different priorities.

4.2 Tom Thumb 67

SDI3:0

DO3:0

EDI3:0
NDI3:0

WDI3:0

ENC
GEN

P
A

3:
0

DIMUX

G
A

3:
0

NSO
ESO
SSO
WSO

NSI
ESI
SSI
WSI

P
B

3:
0

PB3PB3

PB3:0
PA3:0
GA3:0

DOBUF

I2:0

PB3

G
B

3:
0

(a)

NDI
EDI

DOPU
SDI

WDI

NSI
ESI

NSO
ESO
SSO
WSO

CU
SSI
WSI

ESI
EDI
DO

WSO

ESO
DO
WDI
WSI
N

S
I

N
D

I
N

S
O

D
O

S
D

I
S

S
I

D
O

S
S

O

DSCA

(b) (c)

QN

NSI,ESI,SSI,WSI

QZ QW

QEQS

1001
1101

1000
1100

0100 0101

0001

0010

1100
1000
0000

1100
1000
0100
0000

0000

0000 0000
0100

QN

NSI,ESI,SSI,WSI

QZ QW

QEQS

10011000

0100 0101

0001

0010

1000
0000

1100
1000
0100
0000

0000

0000 0000
0100
1100

1100 1101

(d) (e)

Figure 4.16: A possible implementation of the basic molecule as a novel Data and

Signals Cellular Automaton (DSCA). (a) Detailed architecture. (b) Macroscopic rep-

resentation made up of a processing unit (PU) and a control unit (CU). (c) Macroscopic

representation of the DSCA. (d) State graph of the finite state machine ENC. (e) Mod-

ified graph of the finite state machine ENC.

The information containing all the characteristics of the self-replicating loop

(height, width, changes of direction, useful information) is entirely included in the

68 BioWall applications

genome (flags and molcodes), which is easily programmable by the user: it constitutes

the data part of the 19 variables.

The only information needed for controlling our DSCA is used for priorities calcu-

lation. Any change of specifications will then necessitate a transformation of the graph

of figure 4.16(d). As an example, if we wish to build our multicellular organism row

by row (and not column by column as in figure 4.15), we would have to start with the

modified graph of figure 4.16(e).

4.2.3 Generalization and design methodology

Non minimal loops

The self-replicating loops in figure 4.17 are two examples of non minimal loops. Note

that the molcode data can be directly used to display some useful information, such

as in the example on page 69, or can be used indirectly as a configuration string able

to control a programmable device such as a Field Programmable Gate Array (FPGA)

(for such an application, see [124]).

2 3

6

4 5

7 61 1 1

2345

7 1

(a)

1

4 5

5

3 4

2

3 6 2 5

2 1

453

1

2 7 1 6

712

36

7

2

4

6

7 1

(b)

Figure 4.17: Two examples of non minimal self-replicating loops. (a) A 4 × 2 = 8
molecule loop (Δtn = 20, Δte = 28, Δtc = 32). (b) A 4 × 4 = 16 molecule loop

(Δtn = 40, Δte = 60, Δtc = 64).

If C is the number of columns in the cell and R its number of rows, it is easy to

derive the following relationships.

• The total number of the molecules M in a cell is:

M = C.R (4.7)

• The total number T of hexadecimal characters in a cell is therefore:

T = 4.C.R (4.8)

while the length L of the artificial genome is half the value of T , i.e.:

4.2 Tom Thumb 69

L = 2.C.R (4.9)

The period of a cell, i.e. the time needed for a complete circulation of the genome,

is equal to L time steps. A careful examination of the new self-replicating loop ob-

tains the following relationships defining the different numbers of time stepsΔtn (first

northward outer path), Δte (first eastward outer path), and Δtc (inner path closing the
loop):

Δtn = L + 2.R = 2.(C + 1).R (4.10)

Δte = 3.L = 12.R if C = 2 (4.11)

Δte = 2.L − 2.(C − 2) = 4.C.R − 2.(C − 2) if C > 2 (4.12)

Δtc = T = 2.L = 4.C.R (4.13)

The LSL acronym design example

In [128], Tempesti has already shown how to embed the acronym “LSL” (for Logic

Systems Laboratory) into a self-replicating loop implemented on a classic cellular au-

tomaton. Thanks to a “cut-and-try” methodology and a powerful simulator, he was

able to carry out the painful derivation of over ten thousand rules for the basic cell.

Unlike Tempesti’s heuristic method, we will show that the same example can be

designed in a straightforward and systematic way thanks to the use of our new DSCA

associated to the Tom Thumb algorithm.

The “LSL” acronym is first represented in a rectangular array of 12 columns by 6

rows (Fig. 4.18(a)). While the number of rows is not important, the number of columns

should be even in order to properly close the loop (Fig. 4.18(b)). The cell is therefore

made up of 12×6 = 72molecules connected according to the pattern in figure 4.18(b):

bottom-up in the odd columns, top-down in the even columns, with the lower row re-

served for closing the loop. It is then possible to define all the flags in the rightmost

memory position of each molecule (grey characters in figure 4.18(b)) without forget-

ting the branch activation and north connection flag in the lower molecule of the first

column, the north branch and east connection flag in the upper molecule of the first

column, and the east branch and west connection flag in the lower molecule of the last

column.

Among the 72 molecules, 25 are used to display the three letters “L”, “S” and “L”,

and are given the character “2” as molcode (black data in figures 4.18(a) and 4.18(b)),

while 47 are blank (molcode “1”).

The detailed information of the final genome, i.e. 72×2 = 144 hexadecimal char-

acters (Fig. 4.18(c)), is derived by reading clockwise the fixed characters (black and

grey characters in figure 4.18(b)) of the whole loop, starting with the lower molecule

of the first column.

Lastly, it was possible to embed the basic molecule of figure 4.16(a)in each of the

4’000 field-programmable gate arrays of the BioWall and to show the rather spectacu-

lar self-replication of our original cell (equivalent to a unicellular artificial organism),

the “LSL” acronym, in both vertical and horizontal directions (Fig. 4.18(d))2.

2In this experiment we used only half of the original BioWall, i.e. 2’000 molecules instead of 4’000.

70 BioWall applications

The LSL acronym design example can be easily generalized to produce the fol-

lowing algorithm:

1. Divide the given problem in a rectangular array of C columns by R rows. While

the number of rows R is unimportant, the number of columns C should be even

in order to properly close the loop.

2. Define all the flags in the rightmost memory position of each molecule according

to the following patterns: bottom-up in the odd columns and top-down in the

even columns, with the lower row reserved for closing the loop.

3. Complete the path by adding the branch activation and north connection flag (C)

in the rightmost memory position of the lower molecule of the first column, the

north branch and east connection flag (D) in the rightmost memory position of

the upper molecule of the first column, and the east branch and west connec-

tion flag (E) in the rightmost memory position of the lower molecule of the last

column, in order to trigger the two daughter loops northwards and eastwards

respectively.

4. According to the original specifications, complete all the molcode data in the

second rightmost memory position of each molecule. These molcode data con-

stitute the phenotypic information of the artificial cell.

5. The detailed information of the final genome, i.e. the genotypic information of

the artificial cell, is derived by reading clockwise along the original path the

fixed characters of the whole loop, i.e. the two rightmost characters of each

molecule, starting with the lower molecule of the first column. The genotypic

information, or artificial genome, is used as the configuration string of the artifi-

cial cell and will eventually take place in the two leftmost memory positions of

each molecule.

Classical cellular automaton versus Data and Signals Cellular Automaton
(DSCA)

Coming back to Tempesti’s self replicating loop [128], we can now point out the major

differences between his method and our new approach.

Tempesti used a classical cellular automaton (CA). With its self-replicating mech-

anism, the “LSL” acronym is entirely wired inside the CA, by means of more than a

thousand rules, written thanks to a heuristic “cut-and-try” methodology. Even a slight

modification of the original specifications could be very complex. It is impossible to

demonstrate the property of universal construction.

With the Tom Thumb algorithm and its implementation as a data and signals cel-

lular automaton [127], all the description of the “LSL” acronym is part of an external

program, the artificial genome, simply flowing through the processing units of the

DSCA. The design is straightforward, and the modifications are immediate. Changes

inside the DSCA are only necessary for modifying the priorities which regulate the

growth of the successive self-replicating loops.

4.2 Tom Thumb 71

Universal construction

In his original contribution [136], von Neumann defined construction (or constructibil-

ity) as the capability of constructing, i.e. assembling and building an automaton from

appropriately defined “raw materials” using another automaton, the constructor. More

precisely, the constructor, a two-dimensional automaton, is able to build in the two-

dimensional array defined by von Neumann a specimen of another automaton de-

scribed by a one-dimensional string of characters (the artificial genome) stored into

the tape of the constructor.

According to von Neumann [136], a constructor is endowed with universal con-

struction if it is able to construct every other automaton, i.e. an automaton of any

dimension. This concept is pointed out by Freitas [116], where construction universal-

ity implies the ability to manufacture any of the finitely sized machines which can be

formed from specific kinds of parts, given a finite number of different kinds of parts

but an indefinitely large supply of parts of each kind.

If we assume, firstly the existence of an array, as large as desired, of molecules such

as that described in figure 4.16(a) and secondly the existence of a string of characters,

as large as desired (the artificial genome), then we are able to construct a computing

machine of any dimensions into the array. Remember that the molcode dataM , limited

to the range 1 − 7, may be directly used, as in the previous example, for displaying

the given specifications or may configure any kind of field-programmable gate array

aimed at defining a more complex digital architecture. There are only two restrictions

involved in our actual implementation.

• The number of rows and/or columns should be even, in order to properly close

the loop.

• For any artificial organism characterized by a molcode alphabet greater than

1−7, we would be led to slightly modify the architecture of the actual molecule

(Fig. 4.16(a)) and either use a deeper stack (with an even number of registers: 4,

6, 8, ...) or use larger registers (with more than 4 bits). For a flag alphabet greater

than 8,...,F (particularly for addressing the 3-dimension case), larger registers

would also be required.

If the two conditions are met, we can insert into an array of molecules any array

of boolean (octal, hexadecimal) values and observe the self-replication of the original

pattern.

On the other hand, it has already been shown that a universal Turing machine may

be included in a regular array of identical cells [106], themselves decomposed and im-

plemented onto a regular array of molecules. Our new loop with universal construction

can therefore verify universal computation, thus meeting the two basic properties of

the historical self-replicating cellular automaton designed by von Neumann [136], i.e.

universal construction and computation.

4.2.4 Tom Thumb conclusion

Several years before the publication of the historic paper by Crick and Watson [139]

revealing the existence and the detailed architecture of the Deoxyribonucleic Acid

72 BioWall applications

(DNA) double helix, von Neumann was already able to point out that a self-replicating

machine necessitated the existence of a one-dimensional description, the genome, and

a universal constructor able to both interpret (translation process) and copy (tran-

scription process) the genome in order to produce a valid daughter organism. Self-

replication will allow not only division of a mother cell (artificial or living) into two

daughter cells, but also the growth and repair of a complete organism. Self-replication

is now considered as a central mechanism indispensable for those circuits which will

be implemented in the nascent field of nanotechnologies [107, 40].

A first field of application of our new self-replicating loops with universal con-

struction is quite naturally the study of all self-replicating automata.

A second, and possibly more important field of application is Embryonics, where

artificial multicellular organisms are based on the growth of a cluster of cells, them-

selves produced by cell division [74, 76].

A major by-product of this research is the introduction of a new kind of cellular

automaton, the Data and Signals Cellular Automaton (DSCA) [127], divided into a

processing and a control unit, which allows for a systematic and straightforward design

methodology which is lacking at the moment.

Other avenues to explore are the evolution of such loops and/or their capability of

carrying out massive parallel computation [25].

4.3 Conclusion

This chapter details two different applications: Game of Life shows how easily a clas-

sic cellular automaton can be implemented on the BioWall, while the Tom Thumb

application focuses on research based upon a new kind of CA, the Data and Signals

Cellular Automaton (DSCA). This last application, while highlighting the BioWall’s
capabilities as a cellular computer, uses the maximum capacities of the FPGA. Im-

proving of the Tom Thumb algorithm by adding self-repair concepts is thus impossible

within the present BioWall hardware configuration. Some other limitations exist for

the development of new applications. The POETIC tissue [133], for example, is not

compatible with the BioWall architecture: the number of FPGA logic gates is not suffi-

cient, nor is the number of lines between each molecule. Because of these limitations,

the POETIC tissue was simulated using a computer, which has the big disadvantage

of hindering the interactions and the parallel computation allowed by the BioWall, re-
sulting in very slow tissue simulation timings (less than 10 simulated clock steps per

second) even with a recent computer. These drawbacks will all be avoided with the

development of the BioTissue (cf. chapter 7), which is smaller than the BioWall in
terms of size, but represents a much more powerful cellular computing system.

4.3 Conclusion 73

(a)

1

2

2

2

2

2

1

22

2

2

2

2

2 22

1

1 2

2

2

2

1

2

2

2

2

1

2

2

1

2

1 1

1

1

1

1

1

1

1

1

1

1

1

1 1 1

1

1

11

1

1

11

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

12 2

1

1

1

1

1 1 1

1

2

2

2

2

2

11 1

1

1

1

1

12

2

1

2

2

1

2

2

2

1

1

1

1

1

1 1 1 1

1

2

2

2

1

2

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

12 2

1

2

2

2

2

2

(b)
1

1

2 2 2 22

1 1 1

11 1 1 1

1

2 2 21 1 2

2

2

2

1

1

2

21

1 2 22

2 1

1 1

1

1 1 1 1

1

21

2 2

11 1

1 1 1 1 12

2 1

2

2

1 1 1 1 1 1 1 1

1 1

1

(c)

(d)

Figure 4.18: Self-replication of the “LSL” acronym. (a) Original specifications (LSL

= Logic Systems Laboratory). (b) The 12 × 6 = 72 molecules of the basic cell.

(c) Genome. (d) BioWall implementation displaying both the genotypic path and the

phenotypic shape (Photograph by E. Petraglio).

Chapter5
BioCube hardware description

D
UE to the permanent evolution of technologies, the transistor size of cir-

cuits is getting smaller while at the same time the complexity of elec-

tronic circuits increases. Current industrial process technology is based

on a 65 nm grid size for transistors, and is evolving towards ever smaller

nanometer dimensions. In a few years, the limits of the current manufacturing process

will be reached, and new solutions will need to be found to continue improving compo-

nent performance. While all current micro-electronic layout methodologies still place

transistors on a 2D grid, we are seeing the beginning of circuit construction stack-

ing several conventional dies (cf. § 2.2.1 on page 15). It seems likely that 3D design

methodologies will replace 2D methodologies in the near future, and that nanotech-

nologies will govern the construction of the 3D chips (cf. section 2.3.2).

The BioWall is a large 2D cellular machine made up of 4’000 identical molecules.

However, this machine is not able to simulate or study topologies such as 3D cellular

structures.

Our new machine, called BioCube1, is closer to the biological world, where or-

ganisms are an assemblage of cells arranged in a 3D architecture. We will build

the BioCube using the BioWall architecture, but expanded to a 3D structure. Each

molecule of the BioCube is still composed of a Field Programmable Gate Array

(FPGA), but differs from the BioWall by its topology and its display.
In the next section, we describe the structure of this new cellular machine. Sec-

tion 5.2 presents all the electronic components that makes up the BioCube, and the

improvements made to the BioWall architecture. In section 5.3 we explain how the

tasks of configuring and differentiation of the FPGAs’ contents is performed.

5.1 Specifications and global overview

One of the BioCube’s specifications was to extend the 2D BioWall structure to a 3D

architecture, which could act as a hardware simulator for 3D cellular machines, such

as machines built on the nanometer scale.

Similarly to the BioWall, the BioCube (Fig. 5.1) is designed as a reconfigurable

1This name comes from the contraction of bio and cube, a cube-shaped bio-inspired machine.

75

76 BioCube hardware description

Figure 5.1: The BioCube.

3D computing structure able to interact with its environment by means of touch-

sensitive elements coupled with LED displays. Its structure is inspired by cellular

organisms, which are made up of 3D cell arrays.

The BioWall showed us that interaction is really crucial, since each BioWall FPGA
can display its logical status on a LED display and receives stimuli from the sensitive

membrane glued on the display. For this reason, the BioCube will be built using an

original structure inspired by the atomic world, where crystalline elements are repre-

sented by an array of spheres (the atoms) connected together with cylinder links (the

atomic links): both displays and sensitive spheres will make interaction possible.

Each atom, a semi-transparent plastic sphere, contains a board with all the elec-

tronic components. Two truecolor Light-Emitting Diodes (LEDs) light up the whole

surface of the sphere. Thanks to a capacitive sensor, the sphere surface can detect a

finger touch. Each sphere is connected to its neighbors by six links, with the exception

of the spheres at the surface of the BioCube. These links are made of a small plastic

tube. The whole structure stands on a metal place which provides the energy distribu-

tion through the columns. The sphere located at the X, Y, Z = 0, 0, 0 coordinate has

an additional link with the controller board.

The BioCube contains 64 spheres, arranged as 4 layers of 4 rows by 4 columns,

measuring 60 × 60 × 60 cm.

Each sphere can be located inside the BioCube using a 3D Cartesian coordinate

system where each sphere gets a unique X, Y, Z coordinate. We also chose the fol-

lowing nomenclature to represent interconnections between spheres: a positive X-axis

5.1 Specifications and global overview 77

Figure 5.2: BioCube simulator.

points eastwards; a negative X goes westwards; a positive Z-axis southwards; a nega-

tive Z northwards; a positive Y-axis up; a negative down.

5.1.1 BioCube specifications

The BioCube is designed as a reconfigurable 3D computing structure capable of inter-

acting with its environment by means of touch-sensitive elements coupled with LED

displays. Its structure is inspired by cellular organisms, which are 3D arrays of cells.

The BioCube is built using a similar architecture to the BioWall. Thus it also

contains a reconfigurable component (1) interconnected with its neighbors (2), able

to display the operations of the system (3) and to interact with several users (4). The

whole cube is controlled by a Personal Computer (PC) (5). We decided to add some

additional features, highly desirable for machines built on the nanometer scale: asyn-

chronous computation (6) and configuration differentiation for each FPGA (7).

1. Because the BioWall machine is made up of a large array of FPGAs, it was

important to choose an inexpensive component. Since the BioCube is a

machine composed of only a small number of spheres, we chose a more

powerful FPGA than the SPARTAN� FPGA of the BioWall. We chose the

XCS3S200 SPARTAN�3 from Xilinx�, which is attractive for its low price,

and is still more powerful than the first version of the SPARTAN� used in

78 BioCube hardware description

the BioWall. The main advantages of this FPGA are that it has a higher

number of logic gates and a more powerful architecture, and includes several

internal modules like Random Access Memory (RAM) blocks, Digital Clock

Manager (DCM), hardware multipliers. . .

2. The BioCube is built on a mesh-network where each FPGA is connected by a

von Neumann neighborhood to its six adjacent FPGAs. To simplify the con-

struction of the BioCube, and for aesthetic reasons, we limited the number of

wires between each sphere to a 10-line flat wire. Thus, communications between

all FPGAs are multiplexed over a high-speed serial line.

3. Each FPGA can control a Red Green Blue (RGB) LED serving an output ele-

ment designed to illuminate the sphere uniformly with one of 16’777’216 colors

(8 bits for each basic color).

4. A proximity sensor acting as an input element is able to detect a finger touching

any part of the plastic bubble. This information is then transmitted to the FPGA.

5. The whole cube is controlled by a dedicated controller. The latter supervises

and synchronize the operations of the 64 units. Dedicated software running on a

PC can interact with the controller and transmits and receives data from all the

spheres.

6. In the BioWall, clock signals were transmitted by the main global lines. To avoid

this in the BioCube, each sphere has a local oscillator, resulting in a Glob-

ally Asynchronous, Locally Synchronous (GALS) architecture for the whole

BioCube.

7. We have already shown that having the same configuration for all the FPGAs

was a limitation in the BioWall; we therefore added the possibility of having

different configurations running at the same time in different FPGAs of the

BioCube.

5.1.2 BioCube overview

Before constructing the BioCube, we developed a simulator which helped us to find

the best ratio for sphere size, the cylinder diameter and the cylinder size. Figure 5.2

shows the output window of the simulator representing the RGB cube [13] with a

different color (or state) for each sphere.

We named the elementary units of the BioCube, i.e. the spheres or atoms, BBall .

Each BBall is made of a Printed Circuit Board (PCB) contained in a plastic sphere.

The scalable structure allows several topologies, but for cost and time reasons, we

chose to build our BioCube with 4 × 4 × 4 BBall s.

The whole system is controlled by a computer. Simple software and a specific

interface (BioCubeCtrl) allow new FPGA configurations to be sent from the computer

to the BioCube’s BBall s. These configurations can be saved in FLASH memory slots.

A very interesting possibility is to have different FPGA configurations running in each

sphere. With this option we can, for example, configure all the BBall s in the interior

of the cube with one application, and the external BBall s with another configuration.

5.2 BioCube board description 79

This external interface also fulfils a second task, allowing synchronization of all the

cube’s BBall s with a specific synchronizing signal.

The entire BioCube consists of about 13 million reconfigurable gates. This num-

ber can be compared with the 40 million gates of the BioWall.

5.2 BioCube board description

5.2.1 The BBall board

(a) Topside view: the RGB LED is located in the

center of the picture; all the logic components are

located on this face: FPGA, CPLD, FLASH and

also the power convertor on the bottom-left edge.

(b) Underside view: a second RGB LED is

placed in the center; the surrounding connectors

link the BBall to its neighbors; the red connector

is the power supply input.

Figure 5.3: Pictures of the BBall board.

The BBall board (Fig. 5.3) constitutes the main unit of the BioCube platform and

houses all the computational components within which the applications will run.

This board is articulated around an FPGA coupled to a Complex Programmable

Logic Device (CPLD) which has a FLASH memory for storing the FPGA configura-

tion. The output display element is composed of two LEDs in the same location on the

two sides of the PCB. A capacitive proximity sensor [113] allows an user to interact

with the system (Fig. 5.4). All these components are soldered on a round (60 mm

diameter) 2-layer PCB.

It was decided at the beginning that, unlike the BioWall, the BioCube would be

designed with rather limited dimensions. The low price argument was therefore not so

crucial, and we decided to choose a new more powerful FPGA (as mentioned in 5.1.1).

Each BBall consists of:

• An input element. We used a proximity sensor which enables each unit to detect

a finger touching any part of the plastic bubble. The small line circling the PCB

in figure 5.3(b) is the sensitive electrode which is linked to a specific electronic

80 BioCube hardware description

Figure 5.4: Architecture of the BBall board.

circuit. A logic signal toggles when a human presence is detected near this

electrode wire (the sensitivity is of about 5-10 mm on our board).

• An output element. A tri-color LED capable of lighting uniformly the sphere

with one of 16’777’216 colors (8 bits for each basic color). Whereas each cell

of the BioWall drives a display of 8×8 pixels constituted of two LEDs (i.e. four

colors), a single pixel of the BioCube can display one of millions of colors.

Thus several states can be displayed by changing the color of a sphere.

• A programmable computing element, an FPGA (SPARTAN�3 XC3S200

Xilinx� FPGA2) with 200’000 equivalent logic gates. Some of the interesting

features included are the 18x18 multipliers, the several 18 Kb Block RAM and

the four digital clock managers (DCM) which make it possible to multiply the

clock frequency.

• A FLASHmemory and a CPLD. The FLASHmemory can save up to four differ-

2The exact model is the XC3S200-VQ100C.

5.2 BioCube board description 81

ent FPGA configurations. The CPLD manages the configuration protocol of the

FPGA and can configure the FPGA with one of the four configurations stored in

the FLASH memory.

• A local clock at 50MHz. The FPGA uses this clock as an input, and can multiply

it with one internal DCM up to 300 MHz.

• I/O with neighboring units. Each link uses a 10-wire cable. This choice was

made with the aim of having small cable routing from sphere to sphere. Com-

munications use serial data transfers. Signals need to be multiplexed and demul-

tiplexed inside each FPGA before going to these serials links.

Each FPGA possesses various connections with its neighbors in other BBall s.

Beige connectors surrounding the board and visible in figure 5.3 allow direct connec-

tion of adjacent BBall s. Signals and communication possibilities available between

SPARTAN�3 components are described in table 5.1.

Type Line number Description

Point to point links 2× (1 LVDS pair +

1 CMOS wire)

One output communication with the

next FPGA and one input commu-

nication; each link is constituted of

a Low Voltage Differential Signaling

(LVDS) pair plus a single Comple-

mentary Metal-Oxide-Semiconductor

(CMOS) line allowing a bandwidth of

400 Mb in each direction.

Global control lines 2 CMOS signaling connecting all

FPGAs together with the external

control module. The status of these

lines is set by the BioCubeCtrl box.

GND 2 Ground line for setting the same refer-

ence voltage between each BBall s.

Table 5.1: BBall FPGA I/O summary.

Display management

Two RGB LEDs, each located on a face of the BBall PCB, light up the sphere. The

FPGA drives each LED-color (red, green, blue) directly. A logic signal set to “1”,

lights up the corresponding LED, whereas a logic “0” turns it off.

The RGB color model is an additive model in which red, green, and blue are com-

bined in various ways to produce other colors. We know that the light output of a LED

is dependent on the current flowing through it [66]. However, controlling brightness

using a variable current source is not a recommended method because a very precise

current source, would be needed, and this would be complex to build. The preferred

technique for brightness control is through Pulse-width modulation (PWM) [10]: a

square wave whose duty cycle is modulated should be used resulting in the variation

82 BioCube hardware description

of the average value of the waveform, which controls the amount of power sent to the

LED. (Fig. 5.5)

0 %

10 %

50 %

90 %

100 %

��

��

��

��

��10 ms 10 ms

Figure 5.5: LED intensity controlled by a PWM signal.

Persistence of vision is the human visual phenomenon that allows video images to

be viewed without flicker [28]. When the human visual system is presented with an

image, that image continues to be perceived even though it is no longer in the visual

field of the observer, albeit for a short time. The rate at which the frames are refreshed

is termed the refresh frequency. If the frequency is above a certain threshold frequency,

the observer will not notice any flickering. For LED displays, a refresh rate of above

60 Hz is recommended [4]. For our PWM control module implemented into the FPGA

we chose a refresh frequency of 100 Hz to avoid any flickering effects (Fig. 5.5). The

pulse width is controlled by a 10 bit value, where the value 0 means LED off, and the

value 1023 means full luminosity output. The intermediate values set the pulse width

proportionally to the value selected. The range between the values 0 and 1023 must

give all the intermediate gradation levels in a linear way. Unfortunately, as in the ma-

jority of all luminary devices, the transfer function between the electrical and optical

components of the display system is non-linear. If this non-linearity is not compen-

sated, high brightness regions are expanded and dim regions are compressed [4]. Thus

we added into the FPGA a gamma [102] correction lookup table (8-bit wide input, 10-

bit wide output), which compensates the non-linearity of the LED display, and results

in a linear transfer function. We adjusted the contents of this Lookup Table (LUT)

based on a personal subjective measurement.

Finally to control the sphere display, a VHDL module was implemented into the

FPGA with three 8-bit buses. Each module controls the luminosity intensity of the red,

green and blue LEDs in a linear way.

5.2 BioCube board description 83

5.2.2 The BioCube: an assemblage of BBall boards

We decided to build our machine as a cubic arrangement of 64 BBall s (4 layers of 4

by 4 spheres). Each BBall board is placed into a plastic sphere from which six pipe

connections allow connections to other BBall s. These plastic pipes give mechanical

solidity to the BioCube structure, and can carry electric wires inside then. Figure 5.1

shows the BioCube running: since the links are themselves not lighted, they are not

easily visible in this illustration, but can be spotted in the synthesis image of figure 5.2.

This image is a snapshot from the BioCube simulator, software specially developed

for simulating the BioCube and also helping us to define the construction ratios of the

machine. Some parameters can be adapted to change the number of spheres on each

side of the cube, the diameter of each sphere, the length and the diameter of the pipes.

Since we were looking for ratios allowing the internals layer of the BioCube to be

seen without having too big a gap between spheres, we chose a ratio of 1/2 between

the diameter of the sphere and the length of the tube with the help of this simulator.

For the BioCube we thus have the following dimensions:

• Sphere diameter = 6 cm.

• Tube length = 12 cm.

• Tube diameter = 1 cm.

The tube between each BBall has an inside diameter allowing the insertion of a

flat cable made of 10 thin wires and another cable made of four wires to carry the 5 V

power supply. Each BBall is connected to the others in all directions using the signal

flat wire. The power supply is only carried by the vertical links, i.e. connections of

columns composed of four BBall s.

The whole BioCube structure is placed on a dedicated table, the bottom layer

of the cube held above the table-top by shorter 6 cm pipes. An electric distribution

network is fixed beneath this support, allowing each column of four BBall s to be

powered with a regulated 5 V supply. An external AC/DC power supply provides

energy to the whole BioCube, which can consume up to 125 W when a complex

configuration is running inside the FPGA and when all the BBall s are simultaneously

lit with the color white.

Since the BioCube is not an autonomous machine, it needs to be controlled by

an external device. The BBall located at coordinates X,Y, Z = 0, 0, 0 is connected

through a flat wire to a controller module called BioCubeCtrl . This electronic board

allows a PC running dedicated software to interface with the BioCube. Details of this
control system will be given in paragraph 5.2.3.

Paragraph 5.2.1 detailed the structure and the performances of the BBall board.

We will now explain the method used to communicate between BBall modules.

Cellular communications

Since the BioCube’s main purpose is the study of conventional cellular systems and

unconventional systems like regular nanometer structures, we needed simple commu-

nication protocols between BBall s. The most appropriate and simplest intercommu-

nication system is a simple bus made up of several wires linking each BBall together.

84 BioCube hardware description

The BioWall is already constructed in this manner, but as we saw in chapter 4, the

predefined number of wires was not large enough for more complex applications. We

wanted to avoid this limitation, but the idea of a bus made up of dozens of wires was

not a practical solution, requiring large flat cables, incompatible with the tiny links

between spheres.

1 1 1 1 1 1 1 1 1 0 dn dn-1 n-7 0 .. 0 d7 d6 0 1 1 1 1 1 1 1 1 1

Start sequence Delimiter flag

IN_n
IN_n-1

IN_1

IN_0

OUT_n
OUT_n-1

OUT_1

OUT_0

BBall

n

IN_0
IN_1

IN_n-1

IN_n

OUT_0
OUT_1

OUT_n-1

OUT_n

BBall

n+1

Figure 5.6: Detail of the BBall inter-links.

The chosen solution (Fig. 5.6), based on Time Division Multiplexing (TDM) [7], is

a type of digital multiplexing in which two or more signals are transferred apparently

simultaneously as sub-channels in one communication channel, but in reality taking

turns on the channel. TDM avoids having a large number of cables, while still offering

the advantage of having big busses interconnecting FPGAs. We have only three wires

in each direction between two adjacent FPGAs. The first wire is the clock of the

transmitting FPGA, and the two other nets are a differential line transmitting the data,

which can sustain a bandwidth of 400 MHz. On the input side of our VHDL module,

we have as many channels as we want. The module has a bus on the input side whose

size is defined by the application (size should be a multiple of eight and not exceed

256), and which encodes the inputs and serializes them on a single line. The receiving

FPGA decrypts the stream and reconstructs the bus states on the output module. This

process is done in the following way, as illustrated in figure 5.6:

1. A start of sequence header composed of nine consecutive bits set to 1 is sent ont

the output serial bus.

2. The next transmitted bit is the delimiter flag always set to 0.

3. The eight Most Significant Bit (MSB) input bus are scanned and serialized.

5.2 BioCube board description 85

4. Go to step 2 until eight Least Significant Bit (LSB) input buses have not been

transmitted.

5. Repeat from step 1.

The VHDL module inside the receiving FPGA analyzes the incoming stream and

reconstructs the state of the bus in a similar way to the module used for the transmis-

sion.

The multiplexing and demultiplexing protocol allows the state of a large bus to be

transmitted over a single line from one BBall to another. The weakness of this method

is the need for several clock steps for the state of the bus to be replicated to the other

FPGA. This system is perfectly suited to our architecture, since it allows all kinds

of cellular applications to run easily inside the BioCube while physical connections

between each BBall use only a small 10-wires cable. The operating frequency for these

communications can even be high, and frequencies of some megahertz are possible.

The time in number of clock steps to parse and serialize all the bits of the input bus

is defined as follow:

9 +
9
8
n (5.1)

where n is the bus size which should be a multiple of 8.

By adding delays (12 in our current implementation) for processing the data in the

multiplexing and demultiplexing modules, we obtain a maximum frequency in MHz

of:

400
9 + 9

8n + 12
(5.2)

This value is based on the maximum bandwidth sustainable by the differential

lines: 400 MHz.

For the state of the bus to transmit correctly from an FPGA to its neighbor, the

signals on this bus must not change at a frequency higher than the one computed by

the previous formula.

For example, with a 32-bit wide bus (which is bigger than that of the BioWall), we
can have a system working at 7 MHz, which is 35 times faster than on the BioWall.
This frequency is maximum for interfaces, but not for core operations where speeds

can be up to 100 MHz.

The module described here only illustrates connections between two BBall s, but

there are five similar links with the other cardinally located FPGAs.

5.2.3 The BioCubeCtrl

The BioCubeCtrl board (Fig. 5.7) is responsible for interfacing with and controlling

the BioCube from a PC. Simple software running on the PC helps to exploit the

possibilities of the BioCube.
The tasks executed by the BioCubeCtrl module and its software are:

• Transmission of the FPGA bitstream from the computer to the FLASH memory

of all BBall s.

86 BioCube hardware description

(a) Top view: LCD display with the three control buttons.

(b) Bottom view: USB connector on the left; connections with the BioCube are accomplished with the

two connectors on the right; the FPGA controlling the whole system is on the right.

Figure 5.7: Pictures of the BioCubeCtrl board.

• Launch of the application.

• Global synchronization of the whole system, as for Cellular Automata (CA)

applications.

• Reception of the states from the BioCube. This allows results to be gathered

from the BioCube and transmitted to the PC where they can be stored or pro-

cessed.

Global synchronization

In the current BioCube version, the SPARTAN�3 FPGAs run with their local

50.0 MHz clock. To synchronize all of the BBall s, as for cellular automaton

applications, we added a synchronization system controlled by the BioCubeCtrl

interface. A signal, labeled C_EN, is generated by the BioCubeCtrl board and

5.3 Boot loader 87

synchronizes the state of each BBall . This signal acts as an enable signal where

its high state means for the BBall FPGA: compute. The low state of C_EN means:

update the output ports with the computed data. This signal can also slow down the

computation speed to give the user time to view the computational results. This C_EN

signal can thus be controlled from the 1 Hz frequency up to 1 MHz. A specific mode

allows it to generate pulses only on request. Frequency speed and step-by-step mode

are controlled through a software running on a PC or by the BioCubeCtrl module

using its local interface. Figure 5.8 shows this signal and how it is correlated with the

clock of an FPGA.

CLK

C_EN

�����������������������������������

���
Compute Set output Compute Set output

Figure 5.8: BioCube synchronization: enable timing.

In addition to the point to point connection between FPGAs, two global signals

(G bus) are controlled by the BioCubeCtrl . Their purpose will be detailed in the next

section.

5.3 Boot loader

Whereas the BioWall FPGAs were configured by the BioBox using dedicated lines,

the BioCube does not have such configuration possibilities. This method would have

had the big disadvantage of adding five more wires between each BBall , resulting in

bigger and unaesthetic pipes linking the spheres. To solve this problem, the FPGA

configuration can only be stored inside the FLASH memory. Thus, the CPLD will be

in charge of configuring the FPGA using the configuration stored inside the FLASH

memory.

This G control bus allows the state of all the BBall s to be changed at the same

time, which is really important in order to have the same bus interface between each

BBall at the same time.

G boot loader application

00 test mode not used

01 not used run mode

10 command mode reset

11 enumeration mode kill application and reload boot

loader

Table 5.2: G control signal meaning for the boot loader and the applications.

88 BioCube hardware description

The BioCubeCtrl can send commands to each BBall individually, or to all of them

at the same time.

5.3.1 Enumeration

Since each BBall is identical in terms of components, we can not differentiate them

inside the BioCube tissue. However such a feature is required by the boot loader and

by some applications, which need to locate each BBall inside the tissue with its X,Y,Z

coordinates. To perform this task, we added a dynamic enumerating process executed

at the start of the boot loader configuration. Once the BioCube is started, each BBall

configures the FPGA with the boot loader configuration. At the same time, the G[1:0]

control bus should be set to 11, meaning that the enumeration task must be performed.

All the BBall s set their X,Y,Z identifier to {0,0,0}. They transmit their identifier,

i.e. {0,0,0}, over North-, East- and Up-links in this situation. The BBall s connected

on the other side of these links receive the identifier and add 1 to this value on the

corresponding axis. For example, the next BBall connected on top of another BBall ,

will add the value 1 only to the Y coordinate (Bottom-Top axis). The BBall s on

the West, South and Bottom sides don’t have any connection with any BBall s in these

directions, hence they will not receive any coordinate value, meaning that they keep the

initial 0 value. As a result of these operations, all BBall s will increase their coordinates

by 1 in the three X,Y,Z axes, respectively in the East-, North- and Up-directions. After

a short time, all BioCube BBall s are identified with their X,Y,Z coordinates

A unique identifier (0 to 63) is also computed based on the X,Y,Z coordinates:

ID = 16 ∗ Z + 4 ∗ Y + X (5.3)

with X, Y, Z = {0, 1, 2, 3}
This identifier is then stored inside a dedicated register of the CPLD where the

value will remain until the power is switched off. Each application subsequently

loaded can communicate with the CPLD to get the coordinates of the BBall s inside

the BioCube.
The BioCubeCtrl can transmit dedicated commands to specific BBall s by address-

ing them with the previously computed identifier.

The identifier is needed primarily by the boot loader. In the next paragraph, we

will look at how this coordinate value is used to send FPGA configurations from the

BioCubeCtrl and store them in the dedicated FLASH memory.

5.3.2 Application launch

As we chose to avoid direct configuration of the FPGA, as for the BioWall, the config-
uration must be stored into the FLASH memory of the BBall . The FLASH memory

has four storage slots that can each contain an FPGA configuration. The number three

slot is by default reserved for the boot loader. Slots 0 to 2 are available for storing

applications. At the power-on of the BioCube and once the CPLD of the BBall has

completed its initial starting phase, the CPLD reads the contents of the number three

slot of the FLASH and configures the FPGA with the bitstream stored into this slot.

Once the FPGA has been configured, it owns the boot loader application and thus adds

the control feature to the BBall .

5.4 Conclusion 89

The BioCubeCtrl can send a command requesting the boot loader to reconfigure

the FPGA of its BBall with the application number 0,1 or 2. Once this command is

sent, the boot loader transfers it to its CPLD which will erase the FPGA’s bitstream

and configure the FPGA with the requested application.

Since the boot loader commands can only be sent while the G[1:0] control bus is

set to 10, this bus value means “reset” once the new application is configured inside

the FPGA. The value of the G bus needs to be changed to 01 in order to start the

application.

There are two methods to change the running FPGA configuration. The first one

is performed by the application itself, which will request the CPLD to reconfigure the

FPGA with another application stored into the FLASH. This method only applies to

the BBall which initiated the process and can not be propagated to all the other BBall s.

The second way, which is the most common, is based on the G control bus. Changing

the state of the bus from 01 (running application mode) to 11 kills the application and

reloads the boot loader to all the FPGAs of the BioCube at the same time. A request

for loading a new application can then be performed by changing the G bus state to 10
(boot loader command mode). This is equivalent to the methodology explained at the

beginning of this paragraph.

Since having only three applications in execution is too limiting, a configuration

bitstream needs to be replaced by another when an application which is not yet avail-

able in one of the three application slots is called.

5.3.3 Application storage

During the fabrication of the BBall board, the boot loader application is stored inside

the FLASH memory using a dedicated programming tool. The boot loader will be

responsible for erasing application bitstreams and installing new ones into the three

available memory slots.

The BioCubeCtrl module will firstly send a command to the boot loader of some

or all of the BBall s in the BioCube, giving the order to erase a slot (number 0,1 or

2) of the FLASH memory. Once this task is complete, which can take a few seconds,

another command initiates the writing of a new FPGA bitstream inside the FLASH

memory. This is followed by a stream broadcast from the BioCubeCtrl to all the

BBall s and which will be saved inside the FLASH memory. The whole process of

decoding the serial stream, and state machine’s handling of data storage inside the

memory is executed by the boot loader.

Once the new configuration bitstream is stored in the FLASH, the boot loader

reverts to command listening mode, and can, for example, start the process of storing

another bitstream into another memory slot.

5.4 Conclusion

In this chapter, we described a new hardware platform designed to enable advances

in 3D bio-inspired cellular computing. The BioCube is also a hardware simulator

for cellular machines implemented at the nanometer scale. The versatility and scala-

bility of the platform along with its potential parallel computational power offer very

90 BioCube hardware description

interesting prospects for application research, as we will see in the next chapter.

It is also interesting to notice, that the BioCube gave us some really nice artistic

effects when switched on in the dark. We are not interested by these aesthetic features,

but two similar machines have been built by other laboratories at the same time and

are only used for their graphical (or artistic) performances. The Cubatron [32], an

industrial project, is a 9× 9× 9 cube where the color of each sphere can be controlled

by a PC. The NOVA [88] project, which is an academic creation, is a huge construction

made of 25×25×10 spheres. It is exposed in the main hall of the Zürich central station

and displays many different artistic performances. Both machines are passive displays

whose spheres do not contain any processing capabilities.

Several other 3D displays exist as prototypes [85, 39] or even commercial prod-

ucts [80], but none of these have, in contrast to the BioCube, processing power con-

tained in their structures.

Chapter6
BioCube applications

W
HEREAS the BioWall was a 2D cellular machine, the BioCube can

be seen has the product of an evolution towards the third dimension.

The main differences when compared with the BioWall reside in the

physical aspect of the system and in the display capabilities, which

are limited to one unique truecolor pixel (16,777,216 unique colors) for each FPGA.

The isometric crystalline structure of the BioCube is perfectly suited for the study of

Cellular Automata (CA) up to the third dimension.

This chapter will cover the evolution from 2D to 3D of the two BioWall applica-
tions mentioned in chapter 4. The first application implemented on the BioCube is

the 3D Game of Life, with each BBall acting as a cell of the automaton. The second

application extends the Tom Thumb algorithm to a 3D structure, thereby showing how

a bio-inspired computing machine built at the nanometer scale could be programmed.

6.1 3D Game of Life

The 3D generalization of John Conway’s Game of Life was investigated by Carter

Bays [11]. In an M -dimensional Life automaton with a Moore neighborhood, a cell

has 3M−1 neighbors, i.e. 8 for 2D (M = 2) and 26 for 3D (M = 3). Therefore the 3D
version has richer rules and structures than the 2D one. The difference with Conway’s

2D version is in the rules defining the dead or alive states. In the 3D Game of Life,

more variations are possible and although several of them have been studied by Carter

Bays and Alexander Keewatin Dewdney [11, 37], no specific rules are commonly used

for the 3D automaton. With the help of a java applet [1], we simulated a 4 × 4 × 4
cube with different rules. Since the dimensions of our BioCube are quite small, we

looked for rules that allow us to have a 3D Game of Life automaton with interesting

visual animations, and initial patterns which don’t converge too rapidly towards a static

situation or death. Von Neumann’s neighborhood, where each cell is only connected

to its six 3D direct neighbors, gave us better results than Moore’s neighborhood (with

26 neighbors) and was thus chosen for our application. The following rules fulfilled

our expectations and we also found some initial patterns from which oscillator patterns

emerged:

91

92 BioCube applications

• If the number of living neighbors is too small (zero), the individual dies of iso-

lation and its future state is “dead” (loneliness).

• If an individual has exactly one living neighbor, it conserves its current state

(persistence).

• If an individual has two or three living neighbors, its future state is “alive” (re-

production).

• If an individual has too many living neighbors (four or more), it dies of over-

population and its future state is “dead” (overcrowding).

6.1.1 Application operations

Figure 6.1: Simulation of the 3D Game of Life automaton running on the

BioCube. Red: the cell is alive; black: the cell is dead.

In a similar way to the Life1 application (cf. § 4.1.1), the 3D version implements

a unique cell of the Game of Life automaton in each BBall . The state of the cell is

displayed by the BBall lighting up red when the cell is alive, and going out (becoming

black) when the cell is dead. Figure 6.1 shows a view of the BioCube running the 3D

Game of Life application, which is only composed of 64 Game of Life cells (in com-

parison to the 64’000 cells of the Life16 application). Interaction with the cube is very

simple: merely touching a BBall toggles the status of the automaton cell from death

6.1 3D Game of Life 93

to life, and vice versa. As for the BioWall, the speed of the automaton is controlled by

the external device BioCubeCtrl .

6.1.2 Application architecture

The BioCube has the same structure as the BioWall where each FPGA is connected to

its adjacent neighbors, and where a global enable signal, generated by the BioCubeCtrl

module, allows synchronization of the computation of all BBall s. This BioCubeCtrl

board controls the BioCube operations, and carries out the following tasks for our

application:

• Configuration of all BioCube FPGAs with the Game of Life automaton appli-

cation.

• Sending the initial states of each automaton cell to all the BBall s of the

BioCube.

• Generating the global synchronization signal for the automaton (the C_EN en-

able signal).

This procedure allows us to start the 3D Game of Life automaton with a predefined

pattern. Since the number of cells in the BioCube is smaller than that of the BioWall,
it was difficult to find many interesting initial patterns capable of producing a periodic

animation. Through computer simulations, we succeeded in finding a small periodic

oscillator running over our small 4× 4× 4 BioCube. Without any human interaction,

our initial pattern converges after more than 30 steps to a state where this oscillation

emerges.

Figure 6.2 summarizes all the tasks executed inside each FPGA, and shows the

connections with the adjacent FPGAs. The main tasks are:

• Computation of the new automaton state.

• Loading and configuring each automaton cell with the initial state sent by the

BioCubeCtrl .

• Interacting with users by sensing the BBall surface and displaying the state of

the Game of Life cell.

As for the BioWall, the automaton clock needs to be slow enough to interact with

human users. For enhanced performance, this global signal can be speeded-up to sev-

eral MHz. While this possibility is not interesting for our Game of Life automaton, it

could be needed in applications requiring a lot of computing resources and speed.

Since the communication capability between BBall s is limited to a single Low

Voltage Differential Signaling (LVDS) link in each direction, we used the cellular com-

munication module described in § 5.2.2 to transmit signals between BBall s. Figure 6.3

shows the assignment of signals to the inputs and outputs of this module. The two first

signals are used for controlling the application and the IN_2 signals transmit the state

of the cell to the neighboring cells. None of the other signals are used in the 3D Game

of Life application.

94 BioCube applications

Figure 6.2: Inside the FPGA: 3D Game of Life architecture. The big grey box im-

plements the Game of Life including the automaton, display and con-

figuration modules; the other external modules allow the application to

interface with the I/Os of the BBall easily.

Initial pattern

Once all the FPGAs of the BioCube are configured with the 3D Game of Life applica-

tion, the BioCubeCtrl box transmits a serial stream with the initial pattern that needs

to be loaded into the automaton cells in order to store its initial state. Once all the

BBall s have received these data, the computation of the automaton can be started.

For the BioWall’s Game of Life application we used a Shift Register (SR) to chain

all the FPGAs together. This method had the advantage of simplicity, as serializing the

data with the initial patterns was easy to implement and didn’t use a lot of resources in-

side each FPGA. In the BioCube, we chose another method: although the SR method

was still possible, we decided to add more flexibility to our configuration process and

used the following solution.

6.1 3D Game of Life 95

IN_n
IN_n-1

IN_0: C_EN enable signal

IN_2: X,Y,Z automaton state

BBall

X,Y,Z

BBall

X+1,Y,Z

LVDS line

IN_1: init. pat. data stream

OUT_n
OUT_n-1

OUT_0: C_EN enable signal

OUT_2: X,Y,Zautomaton state

OUT_1: initial pattern data stream

Figure 6.3: Signals used with the cellular communication module.

T C YZ X Data (8 bits)

C=1 Clear register.

C=0 Append data.{

T=1 Data for BBall number X,Y,Z.

T=0 Data for all the BBalls.{

Figure 6.4: Protocol details of the serial stream transmitting the initial pattern to

the BioCube.

The FPGAs are connected in the form of a tree to the main node, which is the

BioCubeCtrl . The signal, labeled IN_2 (Fig. 6.3) is broadcast from this controller to

all the BBall s. The data transmitted over this line reaches all the BioCube FPGAs.

Thus to assign the correct initial value to the correct cell of the automaton, a preamble

is added in front of each item of data to indicate the intended receiver of the messages.

These messages are always composed of two bytes, as detailed in figure 6.4. The first

byte gives the identifier of the target BBall , and the second byte includes the payload.

The following list gives the different modes of transmission available:

• T = 0; the data byte will be addressed to all BBall s in the BioCube.

• T = 1; the data byte will be addressed only to the BBall with the identifier equal
to the Z,Y,X values (each of the three coordinates is encoded on two bits).

• C = 0; the receiving register inside each FPGA can have a dimension of several

bytes. In this case, the data is appended to the data already written in this buffer.

• C = 1; any pre-existing data in the receiving register is firstly cleared, and the

data is then stored in the Least Significant Bit (LSB) position.

96 BioCube applications

In our 3D Game of Life application, only one bit needs to be transferred from the

computer to each FPGA. Thus the initial state of the automaton cell is encoded in the

LSB position of the payload byte. This application doesn’t make the best use of all the

possibilities given by such a method. However, since this module is provided to the

application developer as an Intellectual Property (IP) core, it is only used in a minimal

way for the 3D Game of Life, but it could be used to transmit several items of data for

more complex application, as we will see with the next application in the following

section.

6.1.3 3D Game of Life conclusion

This application shows us that an application from a 2D world, like the BioWall is eas-
ily transferable, to the 3D BioCube and that the applicative structure is quite similar,

even if the machine’s architecture is different. The BioWall has the main advantage

of having a large surface able to display several pieces of information, or computation

states. The BioCube suffers from the display limitations of the BBall , since it is more

difficult for a human to visualize different states over a three dimensional structure.

Thus, even though the computational power of the BioCube’s FPGAs is far higher
than that of the SPARTAN� used in the BioWall, the BBall display does not allow for

more than a single Game of Life cell inside each FPGA. Consequently we will not

try to exceed the computational and display surface of the BioWall, but limit our re-

search to demonstrative applications of new 3D cellular algorithms (implemented on a

hardware machine).

6.2 3D Tom Thumb

The main goal of this application is to present the hardware implementation of three-

dimensional (3D) self-replicating structures endowed with universal construction and

universal computation properties. Basically designed for the self-replication of two-

dimensional (2D) loops with universal construction and universal computation, the

Tom Thumb algorithm (cf. section 4.2) is revisited here in order to deal with the third

dimension. According to this algorithm, a piece of configuration information com-

prised of flag data and code data is used twice during the self-replication process. It

is used first in translation: the information ends up trapped in the new replicated loop,

defining both its structure and its functionality. Second, it is used in transcription: the

information remains mobile and moves along the loop in order to allow further repli-

cations. Through the addition of just a few supplementary flags, the Tom Thumb algo-

rithm allows the self-replication of 3D structures equipped with universal construction

and computation capabilities.

We will first describe the 3D Tom Thumb algorithm by means of a minimal struc-

ture composed of eight cells which will grow and then self-replicate to trigger the

growth of three identical structures (Fig. 6.5). This example is sufficient to derive

the detailed architecture of a three-dimensional Data and Signals Cellular Automaton

(DSCA).

6.2 3D Tom Thumb 97

Figure 6.5: Simulation of the 3D Tom Thumb running on the BioCube; the green
cube is replicated three times with the child structures colored in yel-

low, pink and red.

6.2.1 The 3D Tom Thumb algorithm

This minimal 3D structure is made up of eight cells organized as a 2 × 2 × 2 array.

In order to show the growth and the self-replication of this minimal structure, we have

included 2D graphical representations. In figure 6.6, the eight cells of the minimal

structure are organized as two levels L = 1 and L = 2 of two rows by two columns.

Each cell is able to store in its four memory positions four items of configuration

data. The original configuration information is a string of 16 items of data moving

counterclockwise by one item of data at each time step (t = 0, 1, 2, ...).

The graphical representation as well as the hexadecimal representation of the data

contained in the configuration string are detailed in figure 6.7. They are either empty
data (0), code data (from 1 to E) or flag data (from 1 to 9 in addition to F). The

code data is used to define the functionality of the structure. The flag data is used to

98 BioCube applications

1 2 3 4 5 6 7 8

t = 0

L = 2

L = 1

Figure 6.6: 2D representation of the minimal 3D structure (2×2×2 cells) with its

configuration string at the start (t = 0).

build the connections between the cells of the structure and to create branches for self-

replication. The main difference with the 2D Tom Thumb is that the addition of new

flags allows connections with superior and inferior levels to be created. In addition,

each item of data is given a status and can be mobile data, indefinitely moving around

the structure, or fixed data, definitely trapped in a memory position of a cell.

: empty data (0)

- : don't care data (1 ... F)

C

F

: code data (1 ... E)

: flag data (1 ... 9, F)

-

-

: north connection flag (1)

: east connection flag (2)

: south connection flag (3)

: west connection flag (4)

: up connection flag (5)

: down connection flag (6)

: north branch and
 east connection flag (7)
: east branch and
 up connection flag (8)
: up branch and
 down connection flag (9)
: branch activation and
 north connection flag (F)

: mobile data

: fixed data

Figure 6.7: Graphical and hexadecimal representations of the data.

At each time step, an item of data from the original configuration string is shifted

from right to left and simultaneously stored in the lower leftmost cell (Fig. 6.6). Note

that the first, third, . . . data of the string (i.e. each odd data) is always a flag F , while

the second, fourth, . . . data (i.e. each even data) is always a code C. According to the

Tom Thumb algorithm (cf. section 4.2), the construction of the structure, i.e. storing

the fixed data and defining the paths for mobile data, depends on two major patterns

(Fig. 6.8).

• If the two, three or four rightmost memory positions of a cell are empty (blank

squares), the data are shifted by one position to the right (shift data).

• If the rightmost memory position is empty, the data are shifted by one position to

the right (load data). In this situation, the rightmost F ′ and C ′ data are trapped
in the cell (fixed data), and a new connection is established from the second

leftmost position toward the northward, eastward, southward, westward, upward

or downward cell, depending on the fixed flag information (F ′ = 1 or F, 2 or 7,

3, 4, 5 or 8, 6 or 9).

6.2 3D Tom Thumb 99

F

C F'

F F

C C F

F'' C F'F''

C' F'F''C'' C' F'F''C''

t t +1

t t +1
(b)

(a)

Figure 6.8: Memory patterns for constructing a structure. (a) Shift data. (b) Load

data.

By applying the memory patterns in figure 6.8 to our original configuration string,

we get two data trapped in a cell and a new connection toward another cell in the

structure every four time steps (Fig. 6.9). At time t = 32, 32 pieces of data, i.e. twice

the contents of the original configuration, have been stored in the 32 memory positions

of the final structure. 16 data items are fixed data, defining both the structure and the

functionality of the structure, and the 16 remaining ones are mobile data, which form

a copy of the original configuration information. Translation (i.e. construction of the

structure) and transcription (i.e. copy of the configuration) have thus been achieved.

For self-replication, the original structure is able to trigger the construction of three

copies: one northward, one eastward and one upward. At time t = 19, the data pattern
initiates the construction of the northward structure. In this pattern, the lower level

upper leftmost cell is characterized by two specific flags, i.e. a fixed flag indicating

a north branch (F = 7) and the branch activation flag (F = F). This pattern is visible

in figure 6.10(a) (third row). The new path to the northward structure starts from the

second leftmost memory position (Fig. 6.9). At time t = 23 and t = 47, the patterns
corresponding to the third row of the eastward and upward signals in figures 6.10(b)

and 6.10(e) initiate self-replication of the structure both to the east and upward. The

other patterns are needed for constructing the inner paths of the structure.

The self-replicating structure in figure 6.11 is an example of a non-minimal four-

column, three-row and three-level structure. All non-minimal structures can be real-

ized according to this implementation which keeps the number of columns even in

order to properly close the data path. These non-minimal structures involve a new flag

(Fig. 6.12) and two more construction patterns (Fig. 6.13).

6.2.2 The Data and Signals Cellular Automaton (DSCA)

Data and Signals Cellular Automaton (DSCA) were originally conceived to provide

a formal framework for designing growing structures [127, 126]. Such an automaton

is made up of an array of cells, each of which is implemented as a digital system

processing both data and signals in discrete time steps. The cellular array (grid) is

n-dimensional, where n = 1, 2, 3 is used in practice.

In growing structures, the data and the signals represent two different types of

information. The data constitutes the information that travels through the grown struc-

ture. The signals constitute the information that controls the growth of the structure.

The basic cell of our three-dimensional seven-neighbor DSCA works with the

northward (N), eastward (E), southward (S), westward (W), upward (U) and down-

ward (D) directed data (D) and signals (S) (Fig. 6.14). The cell computes its digital

outputs O from its digital inputs I .

100 BioCube applications

4

12

8

1

23

4

5 2

12

16

34

3

16

1

27

8 45

6 3

24

1

2

4

5

67

8

1

23

44

2

20

1

3

56

7

81

2

4

2

28

1

3

5

678 1

2

3

45

6

3

32

1

2

4

5

67

81

2

8

7

3

4

5

6

Figure 6.9: Constructing the minimal structure (t = 4: north path, t = 8: east path,
t = 12: south path, t = 16: up path, t = 20: north path (L = 2) and
north branch (L = 1), t = 24: west path (L = 2) and east branch (L =
1), t = 28: south path, t = 32: down path and structure completion).

F C

F C

C'' C' F C

F C

F C

F C

F C

F C

C'' C'

F C

C'' C'

F C

(a) (b)

(c)

(d) (e) (f)

Figure 6.10: Patterns of data triggering the path signals. (a) Northward. (b) East-

ward. (c) Southward. (d) Westward. (e) Upward. (f) Downward.

This cell is designed as a digital system, resulting from the interconnection of a

data processing unit and a control unit. The processing unit handles the data. It is

made up of the following resources:

• A 6-input multiplexer DIMUX for the selection of one of the six data input lines,

NDI3 : 0, EDI3 : 0, SDI3 : 0, WDI3 : 0, UDI3 : 0, or DDI3 : 0.

6.2 3D Tom Thumb 101

1 C B A

2

3

5

4

6

7

9

8

8 D E 1

9

8

6

7

5

4

2

3

7 6 5 4

A

B

D

C

E

1

3

2

1

2 3 4 5

6

78

9A

BC

D

E

1 2

3 4

5 6

7

89A

B C D

E

12

34

56

7

8

L = 3

L = 2

L = 1

Figure 6.11: Example of a non minimal structure (4 × 3 × 3 cells).

: east branch and west connection flag (A)

Figure 6.12: Graphical and hexadecimal representations of the additional data.

C'' C'F C

(a) (b)

Figure 6.13: Additional patterns of data triggering the path signals. (a) Westward.

(b) Eastward.

• A 4-level stack interconnecting two 4-bit registers GA3:0 and GB3:0 for the

propagation of the configuration data with two 4-bit registers PA3:0 and PB3:0

for the memorization of the configuration data.

• A buffer DOBUF to enable the data output DO3 : 0.

The control unit computes the signals. It combines three resources:

• SI signals are the inputs of the encoder ENC.

• A 4-bit data register I3:0 used for the memorization of the selection operated by

the multiplexer DIMUX.

• SO signals are the outputs of the generator GEN.

102 BioCube applications

SDI3:0

DO3:0
EDI3:0
NDI3:0

WDI3:0

ENC GEN

P
A

3:
0

DIMUX

G
A

3:
0

NSO
ESO
SSO
WSO

NSI
ESI
SSI
WSI

P
B

3:
0

LDPLDP

PB3:0
PA3:0
GA3:0

DOBUF

I3:0

ENO

G
B

3:
0

UDI3:0
DDI3:0

USI
DSI

USO
DSO

(a)

U
S

I
U

D
I

U
S

O
U

D
O

D
D

I
D

S
I

D
D

O
D

S
O

DSCA

SDO
SSO

NDI
NSI

NSO
NDO

SDI
SSI

ESO
EDO

WDI
WSI

ESI
EDI

WDO
WSO

(b)

NDI
EDI

PU
SDI

WDI

NSI
ESI

NSO
ESO
SSO
WSO

CU
SSI
WSI

UDI
DDI

USI
DSI

USO
DSO

NDO
EDO
SDO
WDO
UDO
DDO

(c)

Figure 6.14: Basic cell of the three-dimensional seven-neighbor DSCA. (a) De-

tailed architecture. (b) Macroscopic representation made up of the

processing unit (PU) and the control unit (CU). (c) Macroscopic rep-

resentation of the DSCA in 3D.

The genotypic registers GA3:0 and GB3:0 always propagate the data DI selected

by the multiplexer DIMUX, while the phenotypic registers PA3:0 and PB3:0 perform a

hold operation or a load operation according to the control variable LDP. When equal

to “1” this control variable indicates that the phenotypic register PB3:0 contains an

empty data.

The selection realized by the data input multiplexer DIMUX is specified by the

data input register I3:0.

The operations of the data output buffer DOBUF imply the control variable ENO.

When equal to “1” this control variable indicates that the phenotypic register PB3:0

contains a flag.

The data input register I3:0 performs a load operation every time that there is at

6.2 3D Tom Thumb 103

least one input signal equal to “1”.

The encoder ENC operates a priority coding of the input signals.

The generator GEN implements the output signals implied in the construction of

the connections according to the patterns in figures 6.10 and 6.13.

6.2.3 BioCube implementation

The implementation inside the BioCube FPGAs consists of the VHDL description

of the 3D Tom Thumb DSCA. Several additional modules are added to this module

to allow the 3D Tom Thumb cell to interface with the resources of the BBall . The

following modules provided as IP cores are included inside the FPGA and accomplish

the described below tasks:

• Cellular communication: the control unit needs only one communication line

between each cells; the processing unit transfers its data over a 4 bits bus. These

communications are multiplexed over a serial line using the module described

in § 5.2.2.

• Global synchronization: the C_EN enable signal generated by the BioCubeCtrl

allows synchronization of the computation of the 3D Tom Thumb algorithm.

• Initial configuration: the configuration module described in the previous appli-

cation is used for transferring the initial genome to the FPGA located at po-

sition 0, 0, 0. These data originating from the BioCubeCtrl box are buffered

inside the FPGA and the module output is connected to an input of the DIMUX

(Fig. 6.14(a)). This application show the need fot the possibility of transmitting

many data to the same BBall and justifies the C bit in figure 6.4, as 64 bits (or 8

bytes) corresponds to the minimal structure in figure 6.6.

• Graphic representation: we firstly chose to assign the data value stored in the

phenotypic register a color displayed on the BBall ’s Light-Emitting Diodes

(LEDs). This solution shows us the configuration and replication process of the

structure. Another variation of the display information we implemented con-

sists of displaying the mobile data, or the genotype information, thus showing

the data looping inside the structure. To distinguish each 2× 2× 2 structure, we

changed the color of the child’s structures.

• Replication trigger: the BBall ’s sensitive sensor triggers the replication of the

loop. This process is executed on a cell currently configured and which has a

branch flag in its fixed data register.

6.2.4 3D Tom Thumb conclusion

Self-replication allows not only the growth, but also the repair of complete 3D struc-

tures. Self-replication is now considered as a central mechanism indispensable for

those circuits which will be implemented through the nascent field of nanotechnolo-

gies [107, 40].

The applications of the self-replication of 3D structures are quite naturally classic

self-replicating automata, such as three-dimensional reversible automata [56].

104 BioCube applications

Some research could be done to improve the algorithm and its DSCA implemen-

tation to have an asynchronous implementation, which would be more suited to the

BioCube architecture. In the same way, research on asynchronous cellular automata

[86] is a field in which research could be carried out with the help of our system.

6.3 Conclusion

In this chapter and in chapter 4 we study two applications in a 2D and then a 3D

environment. We used the Game of Life automaton to illustrate the implementation

of a simple CA on the BioWall and the BioCube. This application is perfectly suited

for these hardware architectures, where each FPGA can interact with its surrounding

neighbors in the same way a cellular automaton does. Moreover, the interaction and

display capabilities of the two machines are perfectly adapted for public interaction

and demonstrating CA principles.

The 3D Tom Thumb application, by adding some specific code to the 2D algo-

rithm (cf. section 4.2), allows the creation of complex structures, able to replicate

inside an electronic crystalline structure. In chapter 9 we will discuss how the 3D Tom

Thumb algorithm could be used to program and replicate a cellular structure inside an

electronic paper tissue.

Aside from the major structural differences between the BioCube and the

BioWall, an additional important difference resides in the FPGAs used in the

BioCube: they are more powerful and can support larger designs and higher

computing speeds, this could allow new kinds of research, especially in parallel

computing, or interconnected networks.

In chapter 9 we will present some ideas for an electronic tissue whose internal

structure is similar to that of the BioCube, but on the nanometer scale.

Chapter7
BioTissue hardware description

A
S mentioned in the conclusion of chapter 3, the BioWall is a very powerful
machine specially suited for huge cellular applications. However due to

some weakness in its structure, it is unable to support more complex ap-

plications. Based on the limitations and missing features of the BioWall,
we have developed a new cellular system, named BioTissue. As we will see in the

next section, the BioTissue is still based on a cellular architecture, but we have added

some main features such as dynamical reconfiguration and autonomy. The following

sections will present all of the electronic boards that make up the BioTissue. Towards
the end of this chapter, we will have a closer look at the firmware implemented inside

this machine and how an application should interact with it in order to benefit from all

of the features of the BioTissue system.

7.1 Characteristics and global overview

7.1.1 Introduction and motivation for creating a new bio-inspired ma-
chine

As seen in the previous chapters, the BioWall is a huge cellular machine, allowing ex-

perimentation with multiple bio-inspired applications. The development of this system

enabled us to discover the general characteristics of such hardware architecture, but

also showed us some limitations which hinder new research. A structure more closely

resembling to biological cellular world was needed: autonomous and able to handle

cell division, differentiation and reconfiguration. This is the reason for development of

the BioTissue1. Its system’s architecture is once more based on a cellular structure, as

for the BioWall and the BioCube. The new structure is made of several layers and a

partition has been created in the intelligent layer, giving us a computational layer and a

control layer. This gives us the advantage of a reconfigurable element totally dedicated

to the application for each cell, as we will see in this chapter.

There is another significant distinction between the BioWall, and the BioTissue.
The BioWall is a large machine for which interactive dimensions are more important

1The word BioTissue is a combination of the words bio (for bio-inspired) and tissue (to emphasize

the link with a biological cellular tissue).

105

106 BioTissue hardware description

than the performance. On the BioTissue, we placed the emphasis on the architecture

and bio-inspired specificity rather than on size. The results is a small machine with a

surface area of only 60 cm by 20 cm.

7.1.2 From BioWall to BioTissue

The BioWall has been successfully used for testing applications as described in chap-

ter 4, but also for prototyping bio-inspired computing machines [131], and has served

as a basis for the development of a second bio-inspired architecture, the POEtic tissue

[133, 132]. In both cases, the same concept of highly parallel interconnected sim-

ple cells has been used as the background idea for the realization of the BioTissue
architecture.

Despite the fact the BioWall fulfilled its role and has been successfully used for

several others research projects, it suffers from several limitations which hinder the

development of new complex applications.

BioWall limitations

These limitations are related to (1) the type of Field Programmable Gate

Arrays (FPGAs), (2) the clock performance, (3) the communication performances,

(4) the autonomy, and (5) the display:

1. Nowadays FPGA developments are happening very fast and new products are

announced as often as new microprocessors; and performance increase as prices

decrease ([6, 38]). At the time of the BioWall’s components selection process,

the Xilinx� SPARTAN� FPGA was able to offer quite satisfactory characteris-

tics for a relatively low price. Due to the large size of the BioWall, we chose

the XCS10XL SPARTAN� from Xilinx�. Today, the SPARTAN� third gener-

ation is on the market, which means that the BioWall’s FPGA performance is

quite limited in comparison to the current market offer. Moreover, the BioWall
architecture forces us to use the same FPGA configuration for each cell in the

whole system. It means that all of the 4′000 FPGAs of the BioWall must be

set with the same configuration, limiting the functionality of every unit to the

10′000 equivalent logic gates of the Spartan XCS10XL. Having different FPGA

configurations for the same application would have been useful for optimizing

and improving some developments (like BioWord [20] which could be a perfect

example of such a feature).

2. Due to the full synchronous architecture of the whole systemwith only one clock

source, the considerable delays inherent in propagating a global signal over dis-

tances measured in meters limit the clock speed to about one megahertz. This

latter fact confines the system to applications where the required computational

speed is very low, like the ones for which human interaction is required (this is

the intended target of the platform).

3. Each FPGA of the BioWall can only communicate with its immediate neigh-

bor cells. About 20 lines connect each FPGA horizontally and vertically. As

previously mentioned, the maximal frequency on these lines is less than one

7.1 Characteristics and global overview 107

megahertz. There is no direct link between FPGAs located diagonally from each

other, nor any global lines linking several FPGAs together; such diagonal com-

munications can be established, but with the disadvantage of using FPGA and

lines resources. Signal multiplexing can be built inside each FPGA in order to

increase the number of channels between each circuit, but has the disadvantage

of being a big resource consumer.

4. The entire system is controlled by the BioBox, an electronic board connected to

a PC, designed to configure all the FPGAs, and to set and distribute the clock

signal to the 4′000 FPGAs. Thus, the BioWall acts as a slave electronic system,

although the application does not require any interaction with the host com-

puter once configured. This limitation prevents the BioWall from being fully

autonomous and introduces a functional bottleneck at the interface between the

PC and the reconfigurable logic. Moreover, such architecture hinders dynamic

reconfiguration, as the configuration process is controlled by the user from the

PC.

5. The huge display of the BioWall is only able to display three different colors

because it is composed of red and green Light-Emitting Diodes (LEDs). Fur-

thermore, as the LEDs’ intensity can not be changed, there is no brightness

control, nor are intermediate shades available.

These drawbacks, along with the evolution of programmable logic devices, have

led us to define a novel platform for the implementation of our BioTissue. In section

7.2, we will present this structure and its salient features.

The BioTissue specifications

We thus chose to develop the new BioTissue architecture based on a bio-inspired

cellular structure like that of the BioWall but improving several aspects. Thus, we still

find an array of FPGA aimed at computational purposes, coupled with input sensors,

and output displays. But, the BioTissue needs to be more powerful (1), faster (2),

suited for high speed communications (3), autonomous (4) and equipped with a Red

Green Blue (RGB) display (5):

1. Since the BioTissue machine is made of a large array of FPGAs, it is

important that the FPGA selected is powerful, and affordable. We chose

the XCS3S200 SPARTAN�3 from Xilinx�, which at the beginning of this

project was a new product only available as engineering samples. The main

advantages are a bigger size in terms of the number of logic gates, with a

more powerful architecture, coupled to several internal modules like Random

Access Memory (RAM) blocks, Digital Clock Managers (DCMs), hardware

multipliers. . .Moreover each FPGA should be rapidly configured with diverse

bitstreams.

2. The SPARTAN�3 FPGA is manufactured with one of the newest lithographic

process at a 90nm size, allowing fast functionality speeds. Consequently, a

global synchronous system was no longer recommendable: the BioTissue is

108 BioTissue hardware description

built on a Globally Asynchronous, Locally Synchronous (GALS) architecture,

enabling each cell in the tissue to have a dedicated clock oscillator at a fixed

frequency of 50.0Mhz.

3. Links between each FPGA must be universally configurable in terms of chan-

nel number and also fast enough to match with the computational power of the

FPGA. Using a high speed serial communication protocol with a dedicated cir-

cuit will allow 1Gbit data bandwidth between each FPGA and will permit sev-

eral communication types, like direct links between neighbored FPGAs as well

as between distant ones.

4. A new kind of architecture allows the BioTissue to be totally autonomous. Each

FPGA in the system is able to dynamically reconfigure a specific FPGA located

elsewhere in the system. The BioTissue is no longer controlled by an external

board or Personal Computer (PC).

5. The display is a 24-bit RGB LED screen.

7.1.3 Overview of the BioTissue

Autonomy and dynamic reconfiguration cannot easily be managed by a FPGA, so we

decided to built our computational part on two layers. The first layer (computational

layer), will be composed of an FPGA dedicated to the application purpose. It will not

be linked to its neighboring FPGAs, but with another FPGA on a second layer(routing

layer). The routing layer will handle the task of configuring the FPGAs on the com-

putational layer and also solve the communication paradigm. As the SPARTAN�3 is

built on volatile Static Random Access Memory (SRAM) memory, each cell will have

a FLASH memory module to store configuration bitstreams and also user data.

This gives us the structure of our minimal unit, also called a BioTissue cell, which

contains two FPGAs (only one can be configured by the user), two types of memories

(FLASH and also SRAM), one touchsensor input, and an 8x8 RGB LED display.

Figure 7.1 shows the layered structure of the BioTissue cell (to be compared with the

BioWall molecule structure on page 38).

As we will see in the next sections, our BioTissue is composed of a set of 108 of

these units. However, as the BioTissue is built using commercial components, it was

not possible to design a machine made of an array of elements like in figure 7.1. We

had to make some changes to fit with the dimensions of real components. Thus the

system is built hierarchically from a very simple computing unit, called the ECell (the

computational layer). Several of these units can then be connected, to a more complex

structure called the EStack . Consisting of four different kinds of interconnected boards

(computational, routing, power supply, and display), these stacks can then be joined

to form a parallel network of any size of programmable circuits called the BioTissue
(Fig. 7.3).

The EStack is composed of a set of stacks of Printed Circuit Boards (PCBs)

(Fig. 7.2), that can be connected together side by side to create two-dimensional arrays

of any size. The EStack size was given by the display element, which has a manufac-

tured external dimension of about 20 cm by 10 cm.

Each EStack is composed of four kinds of boards:

7.1 Characteristics and global overview 109

Display

Touchsensor

Computational layer

Cell's links

Routing layer

Figure 7.1: The BioTissue cell structure.

�������	

�
���

������

�������

Figure 7.2: The EStack - schematic

• The ECell boards (18 per EStack) represent the computational part of the sys-

tem and are composed of an FPGA and static memory. Each ECell is directly

connected to a corresponding routing FPGA in the subjacent ERouting board.

• The ERouting board (1 per EStack) implements the communication layer of the

system, and also carries out the configuration task for the ECell FPGA. Artic-

ulated around 18 FPGAs, the board implements a routing network based on a

mesh topology which provides inter-FPGA communication but also communi-

cation with other routing boards.

• The topmost layer of the EStack , the EDisplay board, consists of an RGB LED

display to which a touch sensitive matrix has been added.

110 BioTissue hardware description

• Above the routing layer lies a board called EPower that generates all the power

supplies required by the system and handles functions such as startup and mon-

itoring.

As we will later see in further detail in this chapter, some others electronics boards

are needed, in addition to the EStack , to power, col, and monitor the BioTissue.

Figure 7.3: Photograph of the BioTissue version composed of six EStacks.

The BioTissue platform tries to avoid the different drawbacks described above

by proposing an increased amount of versatility and interchangeability in the different

constituting elements of the hardware system. Moreover, the system is built hierarchi-

cally by connecting elements of increasing complexity, which permits to handle more

easily the complexity of the whole system.

7.2 BioTissue boards description

7.2.1 The ECell board

The ECell (Fig. 7.4), also labeled computational layer in figure 7.1, constitutes the

basic building module of our hardware platform. All of the developed applications will

run inside this board, and it thus represents the essential part of the BioTissue. As we
will see in this section, all of the surrounding boards add features to the application

and simplify user developments.

This board is articulated around a SPARTAN�3 FPGA2 from Xilinx� coupled with

8 Mbits of SRAM memory and a temperature measurement chip. All of these compo-

nents are soldered on a very small and thin (26 × 26 mm) 8-layer PCB.

2The exact model is the XC3S200-4VQ100C.

7.2 BioTissue boards description 111

(a) Top view: SRAM memo-

ries.

(b) Bottom view: FPGA and

connector (in white) to the

ERouting board.

Figure 7.4: Pictures of the ECell board.

I/O connector

FPGA

XC3S200

SRAM

8Mbit

T°C

Figure 7.5: Architecture of the ECell board.

The main features are as follows: (1) FPGA, (2) memory and (3) temperature

sensor:

1. Equivalent to 200′000 logic gates, this FPGA possesses some interesting fea-

tures such as hardware multipliers, 216 Kb of internal dual-port memory, LVDS

high-speed differential signaling and four DCM that make it possible to obtain,

working frequencies up to 300 MHz, from the 50 MHz local clock.

2. In addition to the 216 Kb of FPGA internal memory, two external memory chips

are present on the board, which gives additional memory of 8 Mb fast SRAM3

directly linked to the FPGA.

310 ns access time.

112 BioTissue hardware description

3. Depending on the configuration running inside the FPGA, overheating can oc-

cur. A measurement chip located close to the FPGA can give information on

local temperature, which is transmitted to the EPower board (the main supervi-

sor of all EStack temperature sensors).

The ECell possesses various connections with the other components of the system

that all pass through the connector visible on top of Fig. 7.4(b); these connections are

described in table 7.1.

Type Line numbers Description

Application links 6 LVDS Differential high-speed connections lines

with the subjacent FPGA on the ERouting

board (3 pairs in each direction, 500Mbits per

pair).

Config 5 Configuration lines needed to configure the

ECell FPGA. Control and bitstream come

from the ERouting board.

Clock 1 50.0 MHz clock signal coming from an oscil-

lator located on the ERouting board.

Reset 1 ECell reset signal, generated by the ERouting

layer.

Com. 6 Communication bus to the ERouting and

EPower boards to carry the display and con-

trol signals.

Temperature measure 3 Temperature sensor lines.

Power 12 Power supply linesa.

aeach line can sustain a 300 mA current. The maximum allowed current for all the board is 1.5 A

Table 7.1: ECell I/O summary.

7.2.2 The ERouting board

One of the main challenges in today’s hardware architectures resides in implementing

versatile communication capabilities that are able to provide a sufficient bandwidth,

whilst remaining cost- and size-efficient, as evidenced in research for Network-On-

Chip (NoC) [16] and other [83] systems. For our platform, we opted for a solution

based on high-speed serial connections able to sustain different kinds of communica-

tion routing algorithms.

To reduce as much as possible the load on the ECell board, where the compu-

tational power resides, communications in our system are implemented within the

ERouting board, which also handles tasks such as configuration and display man-

agement for the cell.

Measuring 192 × 96 mm, this highly complex board (twelve layers, more

than 7’000 vias, 1’742 components) has components soldered on both sides and

can host eighteen ECell boards (Fig. 7.6). Based on a six-by-three regular grid

7.2 BioTissue boards description 113

(a) Top view: the ERouting board with four

ECell plugged-in on the top right corner. The

regular structure is easily recognizable, with

close to each FPGA, the FLASH memory and

the connector for hosting the ECell board.

(b) Bottom view: the rectangular grey compo-

nents are the oscillator; one for each cell of the

BioTissue. White connectors surrounding the

PCB are the links to others EStack .

Figure 7.6: Pictures of the ERouting board.

topology (Fig. 7.7), this board is composed of a set of eighteen reconfigurable circuits

(the ERouting FPGAs) and eighteen FLASH memories. The functions of this board

is outlined as follows: (1) FPGA, (2) memory, (3) communications, (4) temperature

sensor:

1. The FPGA is the same type as the one used in the ECell board; this model is

characterized by a greater number of pins and contrary to the ECell FPGA, it

is not reconfigurable4. Its main tasks are to configure the ECell and manage

communication protocols.

4Excepted for firmware upgrades that can exceptionally be done using the Xilinx� Parallel Cable

adapter.

114 BioTissue hardware description

ECell connector

FLASH

16 Mbit

T°C50.0

Mhz

FPGA

XC3S200

256 pins

To EPower

Figure 7.7: Architecture of the ERouting board.

2. A 16 Mb FLASH memory directly connected to the ERouting FPGA can store

up to 16 different configurations for the ECell FPGA, and also stores data com-

puted by an application and transmitted from the ECell to this memory.

3. Three different types of bus are present on this board. The first one, which will

be presented in detail on next page, is a high-speed differential bus. In parallel to

this one, a standard CMOS bus allows control of signaling. A third bus connects

together each FPGA of the ERouting layer; it is also wired to the EPower board

and has the task of getting values to be displayed onto the screen, as well as

exchanging status information with each FPGA and with the ERouting board.

4. On this board we also have measurement circuits located close to the ERouting

7.2 BioTissue boards description 115

FPGA. Three dedicated microcontrollers collect all of the temperature values

from this board and also from the 18 ECell temperature sensors, and transmit

these values to the EPower board, using a dedicated serial bus.

�������	
����

����

�
���

��
��
��

�������	
����

�������	
����

�������	
����

�������	
����

��	������
������������ ����

Figure 7.8: Detail of ERouting FPGA links with its ERouting neighbors and it

ECell module.

High speed communication

As the main purpose of the board is to implement the routing network that connects the

computational units of the system (the ECell boards), one of the most crucial aspects

of the ERouting board is the type of connections that link the board’s FPGAs together

and with the ECell boards.

Physically, every ERouting FPGA is linked to its four cardinal neighbors and to

the ECell board above it (Fig. 7.8). This setup was selected for its modularity and

scalability (it avoids long and global communication lines that could cause bandwidth

degradation in a big BioTissue configuration) and is the kind of layout typically used

in cellular computing applications.

The links between each FPGA are implemented using the built-in SPARTAN� Low

Voltage Differential Signaling (LVDS) I/O drivers that allow, in our case, data rates up

to 500 Mbits/s. As depicted in figure 7.8, two communication buses (one for each di-

rection, 3 bits per bus) are present for each neighboring pair. Because the SPARTAN�

family does not provide serial transceivers directly integrated on-chip, the transmit-

ter and receiver blocks were written in VHDL. Also, since there is no global clock

in the system and no clock recovery possibility, a clock signal is transmitted on one

116 BioTissue hardware description

differential pair to synchronize the data transmitted on the two other pairs. Thus, at

the ERouting level, a bandwidth of 1 Gbit/s is available on each ERouting FPGA for

every direction. Moreover, the same type of bus exists between each ERouting FPGA

and its corresponding ECell .

As the ERouting boards constitute the communicating backplane of the whole

BioTissue, connections between the different EStack boards are also implemented

here, as seen in figure 7.6(b). External connectors are present on the four sides of the

board and provide the same connectivity as the links between the FPGAs: two adjacent

ERouting boards then represent effectively a single uniform surface of FPGAs. This

setup allows the creation of systems consisting of several EStacks that behave as a

single, larger EStack .

7.2.3 The EDisplay board

Unlike the above-mentioned BioWall, which was primarily a demonstrator, the main

purpose of BioTissue is the high-speed prototyping of complex multi-cell systems.

Nevertheless, the success of the earlier machine led us to integrate a relatively simple

display, into the new one. On the very top of the EStack lies a 30-bit RGB LED

display capable of displaying 48 × 24 pixels that can be refreshed at a rate of 100

times per second (a dedicated SPARTAN� on the EPower board manages the display’s

framebuffer).

The purpose of this display is to provide a distributed overview of the way the

system operates, for example, to illustrate its operation at reduced speed or to display

long-term patterns such as network congestion or thermal buildup). Each ECell has

access to only part of the screen, namely a square of eight by eight pixels directly

above it. To provide a direct human interface to the system, a touch-sensitive surface

is glued to each square.

Even if the resolution available for each ECell is very limited, the main advantage

of this kind of screen resides in the fact that it is possible to put several screens bor-

der to border without any gap, a necessary feature in view of building large systems

consisting of several EStacks side by side.

This display is manufactured by the Rohm company. It is constituted of two layers:

an electronic control PCB and on top of it a circuit with all the LEDs. As the choice

of displays of this type was really limited, we chose the LPM-1153BMU702 whose

size is 192 mm by 96 mm. This dictated the dimension of our EStack system. On top

of this display, we added a human sensitive touchscreen. The resolution of this screen

is minimalist, with only 18 different zones, giving a one bit input for each cell of the

BioTissue. These inputs are connected to the EPower board as we will now see.

7.2.4 The EPower board

The SPARTAN� FPGAs that are used throughout the BioTissue are very recent prod-

ucts, built on a 90 nm Complementary Metal-Oxide-Semiconductor (CMOS) process.

This kind of technology makes them very fast FPGAs with multiple powerful features,

but has the disadvantage of being powered with several low-power voltages. Thus,

a 1.2 voltage is needed by the FPGA core, and a 2.5 V for the LVDS interface and

for configuration purposes. Finally, a 3.3 V voltage is needed to interface the FLASH

7.2 BioTissue boards description 117

(a) Top view: the big black component on top

of the board is the connector for the EDisplay

board. The two at the bottom are the 5V and

GND inputs powering the whole EStack . Green

parts of this PCB are the DC / DC convertors.

(b) Bottom view: black connectors surrounding

the board are the power link for the ERouting

and ECell s boards. The white one are for

control and data communication between the

ERouting and the EPower.

Figure 7.9: Pictures of the EPower board.

and SRAM memories. Moreover, all these voltages must be very well stabilized, as

Xilinx� FPGAs allow only ±5 % tolerance.

To cope with all these requirements and the fact that the eighteen ECell s and the

ERouting board are not only very complex but also power-hungry, an EPower board

was added on top of the ERouting and ECell layers. This six-layer board, mainly

responsible for supplying the correct voltage to all the components on the boards un-

derneath, is the same size as the ERouting board. Articulated around six DC / DC

converters, this board generates from a global 5 V the three mentioned voltages of

1.2 V, 2.5 V and 3.3 V that are then brought to the ERouting board using six 8-pin

connectors.

Due to the high complexity of the boards in the EStack , a microcontroller on the

118 BioTissue hardware description

EStack

control

microcontroller

Interface to the

ERoutage and ECells

temperature sensors

DC / DC

converter

T°C

5
V

1
.2

V

2
.5

V

3
.3

V

FPGA

XC3S200

TQ144

Display
Touchsensor

(18 inputs)

Interface to

ERoutage

Figure 7.10: Architecture of the EPower board.

EPower board acts as a supervisor and checks several factors, like power supply sta-

bility, and monitoring the temperatures of all EPower, ERouting and ECell boards, in

the aim of preventing failures. This microcontroller is also responsible of supervising

the start-up of the whole EStack , a rather complex sequence that involves switching

on the DC / DC converters, controlling the stability of all voltages, configuring the

ERouting FPGAs, and setting initial states. If any of these tests should fail, warning

signals are set, and depending on the severity of the problem, the entire system can be

switched off to prevent damage.

As previously mentioned, another FPGA on this board is in charge of managing the

framebuffer for the EDisplay board. It periodically gets from each ERouting FPGA its

local video memory content (8 x 8 x 24 bits) and merges them together to reconstruct

a local image of 48 x 24 pixels.

The last task of this board is to scan the touchsensor surface, debounce these inputs,

and transmit the status of each sensor input to its matching ECell board.

Figure 7.9 shows this board and all its components while figure 7.10 focuses on

the EPower architecture.

7.2.5 The EStack

Up to now, we have seen the description of four different boards. Their assemblage

constitutes our main module, named the EStack .

In figure 7.11 can be clearly recognized the EDisplay board on top of the stack.

The flexible plastic wires provide the connection for the touchscreen. These are di-

rectly connected to the EPower board. Below this, at the lowest level, is the ERouting

board. ECell boards, which have a smaller size, are not visible on this picture, but they

are located between the ERouting and the EPower boards, as visible in figure 7.2 on

page 109.

7.2 BioTissue boards description 119

Figure 7.11: Picture of the EStack.

Scalability in cellular architecture is crucial. The EStack is not the end result of our

research, but an element of the system. Several of these boards can be joined together,

through border connectors in the ERouting board, in a two-dimensional array (details

of the connections between EStack boards are listed in table 7.2).

Type Line numbers Description

Application links 6 LVDS Differential high-speed connections lines

with the FPGA on the neighbouring ERouting

board (3 pairs in each direction, 500Mbits per

pair).

Control 6 Control lines needed for communication be-

tween FPGAs located on the ERouting layer.

EPower control 4 Theses lines are used for communication be-

tween EPower boards (the main messages

transferred on these lines are EStack status,

BioTissue power sequence status, display

screenshots).

Power 8 Ground lines for potential reference between

EStacks.

Table 7.2: Inter-EStack I/O summary.

120 BioTissue hardware description

7.2.6 The BioTissue: an assemblage of EStacks modules

Connecting several boards potentially allows the creation of arbitrarily large

programmable logic surfaces. The current test configuration, which has been built and

tested, consists of six EStacks in a 3 by 2 array (Fig. 7.12). Modularity given by such

an architecture could let us imagine other topology like the one in figure 7.13.

The process of connecting EStack boards is facilitated by a mechanical structure

as shown in figure 7.12. Links are not made of flat wires5 like for the BioWall and the
BioCube, but with an interconnection board consisting of a simple PCB with only fe-

male connectors on its top (the corresponding males are on the bottom of the ERouting

boards). We built a 3 x 3 support allowing several kinds of EStack dispositions, but

used for the framework of this thesis only the 3 by 2 configuration.

1 - Mechanical support
2 & 3 - Fan board
4 & 5 - Interconnect board
6 - EStack

4
5

3

2
1

6

Figure 7.12: The BioTissue system.

Due to the fact that our system is made of a set of really complex and powerful

boards, we need to take in consideration several other factors like power supply for the

BioTissue, and a common problem in high-energy consumers: heat dissipation.

Power supply

Since each application uses a different FPGA configuration, power consumption

is very difficult to calculate in advance within a reconfigurable system. However,

Xilinx� XPower�[51] tools give a worst case current consumption of 1 A for the

core. This estimation is based on the SPARTAN� 3 FPGA used, with a running clock

frequency of 100 MHz and using most of the FPGA resources.

As we have a total of thirty-six of these FPGAs for each stack, the maximum cur-

rent that might be drained could be as high as 36 A on the 1.2 V power supply. In

5Defective links could occur too easily and moreover the assemblage process is difficult.

7.2 BioTissue boards description 121

1 - Mechanical support
2 & 3 - Fan board
4 & 5 - Interconnect board
6 - EStack

1
2

3

4

5

6

Figure 7.13: Variant of theBioTissue: another arrangement of the EStacks boards.

Power supply

2

Power supply

3

Power supply

4

Power supply

1

Power supply

5

Power supply

6

EStack

1

EStack

2

EStack

3

EStack

4

EStack

5

EStack

6

Axial fans Axial fans Axial fans

Radial fans Radial fans Radial fans

Monitoring and

PC interface

board

CAN bus

To PC USB

220 V

C
A

N
b

u
s

C
A

N
b

u
s

5
V

Figure 7.14: The BioTissue with all its surrounding boards.

comparison, the power estimations of 2.5 V and 3.3 V are very low, with a maximum

4 A for each of them. In addition to the FPGAs, the last significant energy consumer

is the screen, which can use a maximum of 30 Watts. Thus, the total maximum con-

122 BioTissue hardware description

sumption for one EStack can be up to 100 Watts. A 5 V input thus implies a maximum

current of 20 A for one EStack , or 120 A for the BioTissue!
A power supply able to sustain a stabilized 5 V voltage up to 120 A is really expen-

sive, and we chose the alternative of putting a commercial desktop PC power module

for each EStack . In addition to being low-cost, such a module has the advantage of

allowing an input voltage in the range of 85 V to 240 V with accurate output and can

easily source high current up to 30 A. One such power supply for each EStack module,

gives us the following kind of power bank (Fig. 7.15).

Figure 7.15: The BioTissue power units.

Because of the relatively high price of the components and the low number of

EStack boards produced, we took some precautions to minimize the risks in compo-

nent failure due to short circuits or thermal stress. Each power module in figure 7.15

is controlled by a dedicated board (Fig. 7.16) which controls the state of the power

brick, and monitors the current drawn by the EStack . This information is transmitted

to a supervisor unit using a Control Area Network (CAN) bus. In case of over-current

(actually set to a 20 A limit) or voltage error, a failure message is transmitted and the

power module is switched off to prevent damage to the EStack .

Heat consideration

Despite the fact that the reconfigurable circuits in the platform use a state-of-the-art

fabrication technology that makes them less power hungry than the previous FPGA

generation, the number of circuits involved in the whole system makes thermal man-

agement a real issue, as each EStack consumes a maximum power of 100 Watts. To

solve it, we implemented an adequate cooling system in order to evacuate the gener-

ated heat. Thus, we integrated boards with fans on the top and bottom borders of the

BioTissue. At the bottom of the system, there are three boards. Each of them are built

with seven independently controllable fans to blow cool air inside the system, while on

top, fans extract hot air away (Fig. 7.14). This two-stage fan construction creates an

airflow inside the several layers of boards, allowing efficient cooling of the BioTissue.
Even if the chosen fan modules are almost silent, they still generate a light audible

noise. A control process, which constantly monitors the internal temperature of ECell ,

ERouting and ECell boards, will only switch fans on when the temperature reaches

7.2 BioTissue boards description 123

Figure 7.16: Main power control boards; large current demand means several wires

are needed to sustain these loads.

Figure 7.17: The BioTissue support structure and fan boards.

a predefined level. Moreover, as the temperature distribution inside the BioTissue
depends on the application and on the FPGA speed, each fan can be switched on indi-

vidually to target the cooling operation to the needed tissue region. It is thus relatively

easy to detect thermal hot spots and turn on the necessary fans, a process which is

operated by the BioTissueCtrl board.

124 BioTissue hardware description

The BioTissueCtrl : monitoring and PC interface

Although the whole system can be used in a configuration in which it is completely

independent of any external control mechanism, a supervisor board has been developed

in order to monitor the whole system and to help during the debugging phase of the

system. This board, which lies next to the BioTissue system, as seen in figure 7.14,

comprises the following elements:

• A SPARTAN� FPGA which carries out all the executed tasks of this board.

• A Universal Serial Bus (USB) interface chip between the external computer and

the BioTissueCtrl SPARTAN� FPGA that allows transmission of configurations

and data.

• A CAN protocol controller, managed by a microcontroller, that controls the dif-

ferent power supplies and fans of the system.

This board is responsible for the following tasks:

• Transferring FPGA bitstreams from the computer to the BioTissue. Currently,
these streams are stored inside a FLASH memory, but other destinations could

be conceivable, like on the fly configuration, or storing inside the ECell SRAM

memory. This functionality is only performed when a requested bitstream is

missing inside all BioTissue FLASH memories.

• Transferring data to the ECell .

• Getting computed data from the BioTissue in order to process or store them on

a computer.

• Monitoring all elements of the BioTissue, in particular switching-on/off of

power supplies, and fans.

This interface, unlike those of the BioWall and the BioCube, is a completely pas-

sive element that can be removed at any time without blocking the operation of the

BioTissue. When it is disconnected, communications between the system and a com-

puter are no longer available, but will resume as soon as this board is plugged-in again

to the bottom-left EStack board. However, when the BioTissueCtrl board is discon-

nected, temperature monitoring is no longer available, therefore to prevent any over-

heating, we switch to a preventive mode, in which all fans are switched-on.

7.3 Firmware and software features

The previous section focused on the hardware structure of the entire BioTissue sys-

tem. We showed that the ECell s are embedded in a huge and complex stack of elec-

tronic boards with the exception of the ECell FPGA, which is reconfigurable, all other

EStack FPGA bitstreams and microcontroller codes are fixed. The firmware pro-

grammed inside these components simplifies the user application’s design and adds

several features, which will be discussed in this section.

7.3 Firmware and software features 125

7.3.1 Configuration

The various reconfigurable circuits used in BioTissue are all based on SRAM tech-

nology, and can be reconfigured an unlimited amount of times relatively quickly (typ-

ically 20 ms). One of the main interesting features of the ECell board is the dynamic

reconfiguration of its FPGAs, so the system should be able to correctly handle this

configuration process and address the correct bitstream to the desired ECell FPGA.

This task is performed within the ERouting board, where each ERouting FPGA can

access an adjacent 16 Mbits FLASH memory, typically used to store as many as six-

teen different ECell FPGA configurations or serve as non-volatile memory available

for applications. The ECell FPGA configuration process can be started by the ECell

FPGA itself, thus allowing self-reconfiguration, or by another ECell FPGA located

anywhere in the tissue, which can request new bitstreams to be loaded in one or sev-

eral FPGAs at the same time. In order to be able to carry out these multiple operations,

the FLASH memories need to have ECell bitstreams stored inside them. This can be

achieved using a computer and the BioTissueCtrl external interface, which can modify

the content of all FLASH memories located inside the tissue. This is currently the only

way to store new applications to be executed by the ECell s. Of course, the configura-

bility of the ERouting FPGAs coupled with the modularity of the whole system allows

almost unlimited versatility in the configuration scheme. For example, it allows the

implementation of applications that would update the FLASH contents using external

memories, Ethernet or Wi-Fi connection, or retrieve the ECell configurations from

sources other than the local FLASH memory.

As our SPARTAN�3 FPGA bitstream has a fixed size of 1′047′616 bits and each

application FLASH slot has a 1 Mbit size, 960 bits additional storage space is available

for each application. We decided to use this free memory space for storing additional

information like a unique ID, application characteristics, name, graphic icon, etc. . .

7.3.2 Cellular communications

In all cellular systems, connections between adjacent cells are really crucial and need

high-capacity buses between them. Although our system can sustain several types of

communication architecture or protocol, we made some IP cores that can emulate big

sized buses that connect adjacent ECell s together. We decided to use high speed LVDS

signals like those of the BioCube to ensure the connections. These have the advantage

of reducing the number of wires between components. We then provide an IP core

which emulates a direct wire link with the four cardinal neighbor ECell FPGAs. This

very simple core has only one generic parameter n which set the bus width (Fig 7.18).

The data multiplexing is similar to that of the BioCube as described on page 83, but is

more complex, as the serial stream needs to go through two ERouting FPGAs. Hence

a specific algorithm assures that no corrupted data can occur between cells due to the

imprecision of the clock oscillator of two adjacent cells.

In the example of a cellular automaton where each cell needs to know the state

of all its neighbors in order to update its own state, such a of configuration will be

realized using an instantiated VHDL module inside each ECell FPGA. This module,

which needs to be configured by setting the n bus width value, will provide four output

buses with a width of n-bits, one in each direction (North, South, East and West) and

126 BioTissue hardware description

ERouting

X, Y

ERouting

X+1, Y
ECell

X+1, Y

IN_0
IN_1

IN_n-1

IN_n

OUT_0
OUT_1

OUT_n-1

OUT_nIN_n
IN_n-1

IN_1

IN_0

OUT_n
OUT_n-1

OUT_1

OUT_0

ECell

X, Y

Figure 7.18: Detail of cellular communication between two adjacent ECells.

four such buses in input. Using the fast 500 Mbit/s lines for multiplexing all these

signals, interface frequency for a 64-bit wide bus is 4 Mhz.

These kinds of bus multiplexing and demultiplexing buses allow the same kind

of cell communications as for the BioWall, but are not really convenient for the

BioTissue architecture. This kind of cellular communication continuously transmits

the state of each bus to the next ECell module, but is not really optimized in terms of

data amount transmitted, as it can only transmit bus changes or others parameters.

The BioTissue communication architecture allows more powerful types of con-

nections between ECell ’s FPGA, such as packet protocols which will be discussed

below, but these are more complex to operate in the case of cellular automata applica-

tions.

7.3.3 Routing

While the above-mentioned high-speed links provide only very local communication

capabilities, the ERouting FPGAs can obviously allow the implementation of more

complex communication schemes such as broadcasting or point-to-point communi-

cation. Seen as a simple interface from the ECell , the routing network capabilities

provided by the ERouting board are able to implement, at application level, complex

data transfers between the ECell s. Of course, many different types of networking

paradigms exist and could be implemented in our system [87, 140, 8]. As a first real-

ization, we decided to try to use the Hermes framework [83], a powerful packet routing

system, which provides many interesting functionalities for a relatively low hardware

overhead. Available as a VHDL core, five Hermes switches may be implemented in

each ERouting FPGA, providing a bandwidth of 500 MBits/s in every direction. This

kind of routing protocol has been tested and is suitable for our BioTissue platform,

but is actually not implemented and used by our developed applications (this can be

done in the future for new developments on the BioTissue).
Depending on application and performance needs, this type of routing communi-

cation or the type previously described based on bus multiplexing can be chosen. Each

has its advantages and disadvantages.

7.3 Firmware and software features 127

7.3.4 Display driving

A really important need for the user developing applications on the BioTissue hard-

ware is to have simple interface for displaying data on the embedded screen. Each

ECell can access an 8 x 8 screen area located over its PCB board. Several applications

do not need to use color luminosity gradation, and switching on or off a LED is suffi-

cient. We then provide a choice of two different IP cores that can be used in the ECell

FPGA for accessing the display. The first one only gives the ability to address simulta-

neously each pixel with only the possibilities of switching it on or off. The second one

gives the full color range to each pixel, but need to be fixed sequentially, as described

below. These two cores are based on the same structure: they have on one side a user

interface that fits well with the structure of the 8 x 8 dot display, and on the other side,

a specific interface that must be connected to dedicated pins of the ECell FPGA. The

function of these cores is to encode the display data information, and serialize them

to the ERouting FPGA, where they will be buffered before being transferred to the

EPower FPGA. This latter will reconstruct in its internal framebuffer, the image of the

18 ECell s needed to be displayed on the screen.

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

Figure 7.19: ECell pixel ordering.

Figure 7.19 shows the user view of the 8 x 8 pixel cell topology. Each one has a

unique number and can be addressed individually. Table 7.3 shows the interface signal

of the first core, which can only display eight different colors for each pixel (black,

red, green, blue, and the colors composed of these three components: orange, pink,

cyan and white).

If all of the RGB screen color ranges are needed, the second core, whose interface

is described in table 7.4, must be used. Parallel addressing is no longer possible, as this

kind of interface will need a 1536 (64 x 24) bits input interface, which would require

too many logic gates inside the FPGA once synthesized. This problem is bypassed by

using sequential addressing to this display array. Only the modified pixel will change

on the screen. If some dots are not updated for a long time, their color will thus remain

until new data are written on them. Table 7.5 gives the corresponding signification for

each GRAM_adr.

128 BioTissue hardware description

Name Bus size Direction Description

clk 1 IN 50.0 Mhz clock.

reset 1 IN Module reset signal (active high).

red 64 IN red signal; one bit for each pixel.

green 64 IN green signal; one bit for each pixel.

blue 64 IN blue signal; one bit for each pixel.

erouting_in 1 IN signals used by this core to synchronize

display data with the ERouting FPGA.erouting_out 1 OUT

Table 7.3: ECell 1 bit display interface.

Name Bus size Direction Description

clk 1 IN 50.0 Mhz clock.

reset 1 IN Module reset signal (active high).

GRAM_adr 8 IN address for the graphical RAM memory.

GRAM_data 8 IN data for the graphical RAM memory.

we_GRAM 1 IN write signal; store GRAM_data at

GRAM_adr.

erouting_in 1 IN signals used by this core to synchronize

display datas with the ERouting FPGA.erouting_out 1 OUT

Table 7.4: ECell 8 bit display interface.

Address Content

0x00 - 0x3F red composite. pixel 0 to 63.

0x40 - 0x7F green composite. pixel 0 to 63.

0x80 - 0xBF blue composite. pixel 0 to 63.

0xC0 - 0xFF not used

Table 7.5: ECell GRAM memory content.

The data written to this module have an 8-bit range. The value 0 means LED off,

and the value 255 (or 0xFF) means full luminosity output. The range between these

two values must give all of the intermediate gradation levels in a linear way. Unfortu-

nately, as for most luminary devices, the transfer function between the electrical and

optical components of the display system is non-linear. If this non-linearity is not com-

pensated for, high brightness regions are expanded and dim regions are compressed[4].

In section 7.2.3 we described the display as a 30-bit display, with a 10-bit range for

each fundamental color. Hence we included in the EPower FPGA a gamma[102] cor-

rection Lookup Table (LUT) (8-bit wide input, 10-bit wide output), which compensates

for the non-linearity of the LED display, and result in a linear transfer function.

7.4 Conclusion and future work 129

7.4 Conclusion and future work

In this chapter, we described a novel hardware platform aimed at the realization of

cellular computing applications ranging from massively parallel computing through

the exploration of various routing paradigms to bio-inspired computing. The versatility

of the platform along with the potential computational power it can provide offer very

interesting perspectives for future developments.

For example, should more processing power be needed, the ECell boards could

easily be replaced by a bigger reconfigurable circuit or a different kind of circuit. Sim-

ilarly, from the software perspective, the system’s modularity implies that few changes

would be required, for example, to allow different types of ECell boards on the same

ERouting substrate. Another example is of particular interest in the larger perspective

of a prototyping board for unconventional computing: in the current implementation,

the ECell boards consist of conventional programmable logic, but nothing prevents

their replacement with more “exotic” or non-standard units that could potentially be of

interest for research in bio-inspired mechanisms. The interest of a modular approach

such as the one used for BioTissue would then be in the option of exploiting the

routing resources of the ERouting substrate to connect the units and, probably more

importantly, in the possibility of taking advantage of an existing design environment.

Aside from the computational aspect, the system is also open to several improve-

ments related to I/O aspects. For example, it is clear that the display available on each

EStack will not be sufficient for many types of application and, in this case, it would

also be relatively simple to add an external screen to display more complex ECell

computations. On a similar note, a planned improvement to the system is the introduc-

tion of high-speed I/O boards that, placed on the borders of the array, would allow the

implementation of data-intensive applications (video streaming, for example).

In addition to hardware improvements, software tools like routing or interface

tools, could be developed to facilitate usage and application development.

Chapter8
BioTissue applications

W
HEREAS the previous chapter focused on the BioTissue hardware de-

scription, this one details applications running on this tissue and solve

the problem of selecting and starting applications. The BioTissue
structure is particularly suited to the implementation of cellular com-

puting applications illustrated by the two following examples: the Game of Life, whose

implementation will be compared with the BioWall and the BioCube versions, and the

self-replication of a cellular organism with self-healing properties. At the end of this

chapter we will take a closer look at the BioTissue architecture to show that it is

perfectly adapted to running multiple applications simultaneously.

8.1 μOS: a tiny operating system

Although the hardware structure is now well known, one question remains unan-

swered: what happens after power-on? We saw that the EPower board is responsible

for the entire booting process, which means powering and checking the health status of

all EStack boards. The ERouting FPGAs are then be configured with their predefined

bitstream. At present the ECell FPGAs are still not configured, and no application is

running. The start-up process is carried out automatically by forcing ERouting FPGAs

to configure all ECell FPGAs with the bitstream number 0. At this point, we have our
first application running on theBioTissue; however each time theBioTissue is started

up, this same application will be loaded. This drawback is solved by implementing a

small operating system, called μOS, which will allow the selection of different ECell

FPGA configurations.

Before going any deeper into the explanation of μOS operations, it is important to

give a definition of a BioTissue application. An application is responsible for achiev-

ing a specific task. This task is implemented within a set of several adjacent ECell

Field Programmable Gate Arrays (FPGAs), defining a rectangular area called a win-

dow. Each FPGA can be configured with a specific configuration that can interact with

the configuration of its different neighbors.

As each ECell FPGA gets the configuration 0 at the startup phase, to launch an ap-

plication all required ECell FPGAs need to be reconfigured with another SPARTAN�3

configuration stored inside a FLASH memory.

131

132 BioTissue applications

8.1.1 Operation and reconfiguration

In the aim of handling and managing all of the ECell bitstreams, we created a simple

operating system for the BioTissue, which is responsible for the following tasks:

1. Allowing the user to choose an application.

2. Defining a graphical area, called a window, in which the application will run.

3. Giving the user the possibility to kill an application.

4. Receiving reconfiguration commands from ECell FPGAs.

5. Computing and memorizing application parameters, like position and window

sizes.

6. Transmitting previous memorized values to the reconfigured FPGAs.

Tasks (3), (4) and (6) are crucial and can be executed at any time independently of

the application running. Tasks (1), (2) and (5), however, will be executed on request.

The separation of these tasks will be detailed in section 8.1.2. First of all, it is important

to mention that these requirements make it necessary to modify our firmware structure.

We added to the ERouting FPGAs some modules which are always running, and which

allow them to interact with the ECell configuration. These resident modules constitute

our operating system. The volatile modules, which are in charge of the tasks (1), (2)

and (5), are implemented inside an application named μOS. The operating system and

μOS are the topics covered in this section.

The μOS application, which is the first one automatically loaded upon power-on,

is an interactive application that will display on the BioTissue screen a list of all

applications stored inside the BioTissue FLASH memories, and allow selection of

the graphical area on which this one should run. Unlike actual commercial operating

systems that can be found on computers or embedded systems, μOS is very limited

in terms of functionalities and does not include any fine graphical features, nor any

online help.

Figure 8.1 shows an example of the screen once μOS starts. Five 8 x 8 pixel

icons are displayed on the bottom-left part of the screen, representing five different

applications, as mentioned in the figure. The user presses one of these icons to select

the desired application. Two other actions are then needed for selecting on which

part of the screen the application should be loaded. The first push selects the bottom-

left ECell of the applicative area and the second push selects the top-right ECell .

The result is a window in which each ECell will be reconfigured using the selected

application FPGA bitstream (Fig 8.2). In this figure, the highlighted zone is the new

window in which the selected application will be loaded and run. The left zone, which

has not been selected, is still loaded with the μOS application: this zone changed its

layout to fit with its new dimensions.

Application parameters and reconfiguration

μOS is a special application: it is the only one able to communicate with a specific

module inside the ERouting FPGA in order to set parameters used afterwards for ap-

plication reconfiguration.

8.1 μOS: a tiny operating system 133

eGol

application (v1)

eGol

application (v2)

eSOS application

(minimal version)

eSOS application

(SOS version)

Another

application

Figure 8.1: μOS starting screen (detail of the bottom-left of application window).

Just before reconfiguring the selected window with the new application, the μOS
performs some computations (Table 8.1) whose results are stored inside the ERouting

FPGA registers, and which are supplied to the next configuration as described

in § 8.1.2.

Parameter Description

Xglo, Yglo Cell absolute coordinates inside the BioTissue.
Xwin, Ywin Cell absolute coordinates inside the application window.

Wglo, Hglo BioTissue width and height.

Wwin, Hwin Application window width and height.

Table 8.1: μOS computed parameters.

These parameters are really important for the ERouting computational layer, as

they will define the borders of the application area. Between two different, adjacent

applications, communication channels will be severed in the aim of avoiding error and

data corruption between two incompatible applications. This means that all commu-

nications between each ECell inside the window area of the application are possible,

but communications with ECell s belonging to another application are impossible.

Once loaded, the new application can still interact with the ERouting layer and the

134 BioTissue applications

07.04.2007 - 14.04.2007

New application

Figure 8.2: Window delimiting the new application zone; the unselected area still

displays the μOS application menu, with a reorganized layout.

Figure 8.3: Different types of ECell reconfiguration.

application can request ERouting FPGA to change the content of the ECell FPGA. In

this case, the current application can make several different requests:

8.1 μOS: a tiny operating system 135

• It reconfigures all the ECell FPGAs inside the window with μOS (Fig. 8.3(a)).

This is similar to ending the application and restarting the μOS with its selective

application process. The result of this configuration will be figure 8.1.

• It reconfigures all ECell FPGAs inside the defined window with a new applica-

tion (Fig. 8.3(b)). This is similar to ending the current application and loading a

specific new one.

• It reconfigures some ECell FPGAs inside the application window with a new

configuration (Fig. 8.3(c)). In this case, several different configurations are run-

ning inside the application window space, and can communicate with each other

using a communication bus. These new configurations set the “child” flag inside

the ERouting registers, which indicates that a previous “main” configuration

launched these new configurations.

8.1.2 μOS architecture

The operating system means that there is a resident module with which an application

can interact at any time. The main tasks supported by this module are, as listed in

§ 8.1.1, to manage reconfiguration schemes and parameter data used by applications

(table 8.1). Interpretation of these parameters sets some flags inside the ERouting

FPGA, which block communications between adjacent ECell s. This feature is needed

to manage the window concept at the hardware level. A last function, the “kill” feature,

is implemented inside this resident module. When the bottom-left cell touchsensor of

a window running a defective application is pushed for more than 5 s, a kill process

occurs and reconfigures the whole of the selected window with the μOS configuration.

This feature can be really useful during developing procedures and allows the termi-

nation of an application without resetting all of the BioTissue. Consequently, the

ERouting FPGAs include only the necessary code needed for performing the above

mentioned tasks, whereas the ECell FPGAs contain all of the interactive part, i.e. the

application selection process, and the coordinate computation of all the parameters

mentioned in table 8.1 (Fig. 8.4).

8.1.3 μOS task details

Once the BioTissue is started, all ERouting FPGAs configure their respective ECell

FPGAs with the configuration number 0, labeled μOS. At this point, the μOS applica-

tion finds all of its missing features inside the ERouting resident modules. They then

interact in order to choose an load a new application inside a user defined window.

The diagram in figure 8.5 shows all of the sequential tasks executed by our operating

system.

Initialization

During the first phase, which takes place before an application has been selected by the

user, several tasks occur sequentially. The first task is to locate each ECell inside the

BioTissue, i.e. to give to each ECell board an unique number composed of the X- and

Y-axis inside the tissue, where the bottom-left cell has the coordinates 0, 0. This task

136 BioTissue applications

Figure 8.4: Detailed structure of a BioTissue cell when μOS is running.

is also executed inside the window. After power-on, there is only one window corre-

sponding to the border of the BioTissue. In figure 8.2, we have two windows, with the
first one on the left part of the screen, running μOS, while the right part of the screen
will run another application. Here, local X- and Y-axes do not fit with global coordi-

nates: in our example, the ECell located at global position 3, 0 has the 0, 0 coordinate

inside its window. These enumerations are really important in our system, as they will

help to manage different applications running simultaneously on the BioTissue. Once
this localization process is achieved, μOS scans the contents of each FLASH memory

of the ERouting layer, and sorts all available applications, whose icons are displayed

in a consecutive manner on the screen (Fig. 8.1). If one of these icons is selected using

the touchsensor interface, the desired application number is memorized, and the next

steps are completed, as illustrated by the flow on the right side of figure 8.5.

Starting an application

The following procedure, executed by a human operator, selects the new window size

and the position where the application will be loaded. The first step is to select, by

pushing on a touchsensor membrane, the bottom-left corner of the new window. A

second touch, which may be on the same sensor or on the top-right of the first selected

ECell , then completes the procedure to define a rectangular area, setting the window

boundaries for the new application. The minimal zone can be as small as an ECell ,

and the maximal size is the current window size, which is the BioTissue size after

power-up.

Register file Once an application is selected with its new operation zone, all μOS
cells compute the values of table 8.1. These values, which are stored in a register file

8.1 μOS: a tiny operating system 137

Selected bottom-left

X,Y coordinates

storing

Bottom-left corner

selection

Any

touchsensor

actived?

Selected top-right

X,Y coordinates

storing

Top-right corner

selection

Any

touchsensor

actived?

Reconfiguration of

the selected area

with selected

application

END

Global X, Y

enumeration

Power on

Local X,Y

enumeration

Values

changed?

Application listing

refreshing

Setting all

variables to

undefined

Any

touchsensor

actived?

Application

number storing

Was this FPGA

reconfigured?

Figure 8.5: μOS simplified functional diagram. Dashed blocks are tasks executed

inside the ERouting FPGA and all other tasks are done inside the

ECell.

of the ERouting FPGA, help to configure the communication channels of the ERouting

layer. Once the reconfiguration is completed, these same values will be copied from the

138 BioTissue applications

ERouting register file to a register file of the ECell FPGA. These parameters localize

all of the FPGAs inside a window and can help the user in the application development

process.

ECell reconfiguration

The last task consists in reconfiguring all of the ECell FPGAs from the selected win-

dow with the chosen application. After this point, the μOS functions are complete, and

this new application becomes autonomous.

A question remains concerning the other FPGAs which were not selected to handle

a new application and are still running μOS. The area that is left for these FPGAs is
probably reduced, and they thus need to recalculate their boundaries before displaying

the list of all applications (Figs. 8.2 and 8.5).

8.1.4 μOS specificity

μOS is the only application which could communicate with applications running in

different window contexts. For other application, this is impossible. If two adjacent

windows are both running the μOS application, the ERouting FPGAs detect this and

dissolve the boundaries between these applications, resulting in an single, bigger win-

dow, still running the operating system. This feature is crucial, as it is the only way to

break window limitations, and enlarge the global window size.

8.1.5 μOS conclusion and future work

This section was focused on detailing μOS, a minimal operating system allowing ap-

plication selection, reconfiguration, and definition of window working zones.

A correct operation of the BioTissue system depends on the following rule: all

ECell s always need to run a configuration belonging to one application. Breaking this

rule could result in unconfigured ECell FPGAs, which are thus no longer controllable.

This section shows that this will not occur, as when one application is ended or killed,

μOS starts up again, to ensure the reliability of the whole platform.

This operating system application, designed to interact with the resident module

of the ERouting FPGA, is the first step towards a more powerful and convivial system.

Future evolutions of μOS could add nicer graphical interfaces and new features, like

moving an application and its window somewhere else on the tissue. Another possible

development could be to add pipe communications systems between two applications.

8.2 eGol: Game of Life application

In order to compare how the hardware architectures of our three systems (BioWall,
BioCube and BioTissue) modify the application’s internal structure, we need to have

a common application that can run in a similar manner on the three machines. We

have chosen the famous Game of Life automaton, as it has already been implemented

on the BioWall and the BioCube. Section 4.1 describes the principle of the automaton

and the way in which it runs on the BioWall. As we will see in this chapter, the

application’s implementation on the BioTissue is very similar to its implementation

8.2 eGol: Game of Life application 139

on the BioWall, the main differences being the number of cells inside each FPGA and

on the control method used.

This cellular application is designed to implement 64 Game of Life cells in each

ECell , which means that each pixel gets the state of an automaton cell. In the same

way as for the BioWall, each time the touchsensor is pushed, a glider is generated

in the selected ECell . When using the whole of the BioTissue surface, a maximum

number of 6′912 Game of Life cells can be simulated in parallel, which gives a density

four times higher than on the BioWall (cf. § 4.1).

To communicate cell states to neighboring ECell s, 24 wires1 are needed between

each FPGA in each direction. Therefore we used the multiplexed bus module described

in § 7.3.2 to complete this task.

The main difference between the BioWall and the BioTissue implementations

resides in the electronic architecture. The BioTissue is entirely built on a Globally

Asynchronous, Locally Synchronous (GALS) topology, which has the advantage of

fitting the real biological world, but the disadvantage of being less suited to automata

systems, in which a main clock signal is often needed. Unfortunately, the Game of

Life is a synchronous system in which each automaton cell must be updated at the same

time. The most suitable solution to solve this problem could be to use an asynchronous

implementation of the Game of Life [72]. However, even though this approach is

compatible with our architecture, we have decided not to use it, as this method is only

suited to this automaton, and could not be applied to other cellular systems, nor to any

globally synchronous application. Our solution is detailed in the next paragraph.

8.2.1 Automaton synchronization

To solve the synchronization problem we opted for the same methods as used for

the BioCube, which emulates a global enable signal, defining the frequency of the

automata. In our specific case, the bottom-left cell inside the window defining the run-

ning eGol area supports this task, and then broadcasts the synchronization signal to

all other ECell FPGAs running the application. This signal, also called the automaton

clock2, has a 50% duty cycle and starts the automaton computation on the rising edge,

updating these outputs on the falling edge. This method ensures that the correct values

are computed at each step, but limits maximum speed to a slow frequency because

this signal needs to be propagated from the bottom-left FPGA to the top-right FPGA.

As seen in the previous chapter, our multiplexed bus modules allow a high number of

channels to be transmitted over a single wire, but needs several clock steps to transfer

the bus state from a FPGA to its neighbors. The main disadvantage of this method-

ology is to limit the toggling frequency of this enable signal to a maximum of tens

of kilohertz, which exceeds our application’s requirements, as visual changes are no

longer visible above a hundred hertz.

18 for direct links; 16 for diagonals.
2This signal is an enable signal for the main clock, for which the frequency is set inside the BioTissue

to 50.0 Mhz.

140 BioTissue applications

8.2.2 eGol control

Whereas BioWall computing speeds are really easily controlled using the BioSoft tool

on a Personal Computer (PC), BioTissue applications do not have any other way

to control their states but by themselves. Our Game of Life implementation has an

embedded control menu that allows the automaton’s computation speed and the initial

patterns to be changed. Figure 8.6 shows the application running with the control

menu displayed in red. This menu automatically overlays in the eGol window when a

touchsensor inside the application boundary is pushed for more than one second.

Figure 8.6: eGol (v1) with a control menu and the game of life automaton.

Clock speed

Once eGol is launched, the automaton’s clock is by default set to 1 Hz. Using the

eGol menu, the “+” and “-” buttons allow changes to its frequency, which ranges from

1 Hz to 1’000 Hz. Frequencies higher than a hundred hertz are not very useful, as the

automaton’s updates will be too fast for a human user to see. When the application is

running at the 1 Hz frequency, the “-” button can be used to set the clock generator to

the step-by-step mode (Fig 8.7), where each next pressure on this button generates a

single automaton clock step. A simple push on the “+” restores the 1 Hz frequency.

Initial states

The two other buttons in this menu are responsible for setting the initial state of each

Game of Life cell. The “R” button generates a global reset signal for all automaton

cells and discards all blue pixels. The “C” button configures the Game of Life cells

8.2 eGol: Game of Life application 141

Figure 8.7: Step-by-step mode.

with a predefined pattern like the one in figure 8.6. Each successive touch switches be-

tween three predefined initial configurations. A push on any other touchsensor disables

the menu and restores the sensitive area to its primary use, which allows interaction

with the Game of Life automaton.

8.2.3 eGol architecture

Figure 8.8: eGol (v2) version with a control menu on the left and the Game of Life

automaton inside the green borders.

The eGol application includes, in the same FPGA configuration, two different

features:

• the Game of Life automaton, made of 64 cells, and all the communication mod-

ules with their neighboring ECell s.

142 BioTissue applications

• The control menu allowing changes to the automaton clock’s frequency and the

clearing or loading of predefined patterns.

Thus each FPGA bitstream has the two features, even if the menu module will

never be used by the majority of eGol FPGAs. Using the BioTissue reconfiguration

features, we can assign these two tasks to different FPGAs. Figure 8.8 shows a similar

implementation of the eGol application, where the left column (with the orange back-

ground) is only responsible for the control and all other ECell s only contain the Game

of Life automaton.

Instead of loading one single bitstream for all the applications (Fig. 8.6), the con-

figuration process is split into two sequential steps. Once this new version of eGol is

launched by the μOS, all the FPGAs inside the application window run the application

labeled number 5 (Fig. 8.9). This application remains loaded for a very short period,

while it identifies and differentiates the FPGAs of the left column from the other ones,

and reconfigures them with two different configurations. Figure 8.10 shows this spe-

cific task, during which the FPGAs on the left receive the bitstream for the control

menu (label 7), and the remaining FPGAs receive the application 6, the Game of Life

automaton. The result of these multiple steps is a window continually displaying the

menu and the automaton as in figure 8.8.

5
Figure 8.9: Step 1: differentiation of ECell’s FPGAs.

The main advantage of this procedure is to separate the tasks into two bitstreams

and avoid having them present in the same configuration without being used.

Table 8.2 gives an overview of the resources used for the two eGol variants.

The main advantage of task separation resides in the possibility of running more

complex applications without needing bigger FPGAs.

8.3 eSOS: self-organizing bio-inspired application 143

7 6

Figure 8.10: Step 2: the first column gets the control menu configuration; all other

FPGAs get the Game of Life automaton bitstream.

Configuration LUT used % FPGA used

eGol v1 3’436 79.53

eGol v2 - configuration 5 187 4.33

eGol v2 - configuration 6 (automaton) 2’053 47.52

eGol v2 - configuration 7 (menu) 656 15.19

Table 8.2: ECell LUT used for the two eGol variants.

8.2.4 eGol conclusion and future work

Further optimizations (both in terms of array size and operating frequency) are indeed

possible, but this example was sufficient to illustrate the kind of penalty experienced

to achieve global synchronization in a system as large as the BioTissue platform. This

penalty is not spurious: it reflects the conflict between the need to design scalable sys-

tems and the requirements of global synchronization, and clearly illustrates the need

for asynchronous approaches once the size of the systems increases beyond a certain

limit. Once again, it is interesting to note how biological systems have evolved to oper-

ate without the need for any sort of global synchronization between their components.

8.3 eSOS: self-organizing bio-inspired application

Borrowing three structural principles (multicellular architecture, cellular division, and

cellular differentiation) from living organisms, we have already shown in previous

144 BioTissue applications

chapters, how embryonic hardware is able to grow a bio-inspired system in silicon

thanks to two algorithms: an algorithm for cellular differentiation, based on coordi-

nate calculations, and an algorithm for cellular division, the Tom Thumb algorithm.

Implemented as a Data and Signals Cellular Automaton (DSCA), this Embryonics

application is endowed with self-developing properties like configuration, cloning, ci-

catrization, and regeneration.

The goal of this application, named eSOS, is to perform the configuration mech-

anisms (structural and functional growth), the cloning mechanisms (cellular and or-

ganismic growth), the cicatrization mechanism (cellular self-repair), and the regener-

ation mechanism (organismic self-repair) through simple processes like growth, load,

branching, repair, reset, and kill. Starting with a very simple cell made of only six

molecules, we will introduce hardware simulations of its DSCA implementation in

order to describe these self-developing mechanisms. We will then define a small or-

ganism made of three cells, the “SOS” acronym, as an application example for the

simulation of our mechanisms

8.3.1 Self-developing mechanisms

Structural configuration

The goal of the structural configuration mechanism is to define the boundaries of the

cell as well as the living mode or spare mode of its constituting molecules. This mech-

anism is made up of a structural growth process followed by a load process. For a

better understanding of these processes, we apply them to a minimal self-developing

cell. This cell is made up of six molecules arranged as an array of two rows by

three columns, the third column involving two spare molecules dedicated to self-repair

(Fig. 8.11).

The growth process starts when a growth signal is applied to the lower left

molecule of the cell at time t = i (Fig. 8.11). Every four time steps (t = i+1, i+5, ...),
according to the structural configuration data or structural genome, a molecule of the

cell selects one of its four data inputs (Fig. 8.12) in order to create a data path among

the molecules of the cell. This path allows a copy of the structural data to be captured

in the memory positions of the cell and enables another copy of the structural data

to move around the cell. At time t = i + 24, when the connection path between the

molecules is about to close, the lower left molecule delivers a close signal to the

nearest left neighbor cell. The path is really closed at time t = i + 25.
The load process is triggered by the close signal applied to the lower right molecule

of the cell at time t = i (Fig. 8.13). At each time step (t = i + 1 to t = i + 3), a load
signal will then propagate westward and northward through the cell so that each of its

molecules acquires a molecular mode (Fig. 8.14) and a molecular type (Fig. 8.15). At

time t = i+4, we finally obtain an homogeneous tissue of molecules defining both the

boundaries of the cell and the position of its living mode and spare mode molecules.

This tissue is ready to be configured by the functional configuration data.

Functional configuration

The goal of the functional configuration mechanism is to store, the functional data

needed by the specifications of the current application, in the homogeneous tissue al-

8.3 eSOS: self-organizing bio-inspired application 145

t = i+13

t = i+17 t = i+21

t = i t = i+1 t = i+5 t = i+9

t = i+24 t = i+25

Figure 8.11: Structural growth process of a minimal self-organizing cell made up of

six molecules when a growth signal is applied to the lower left molecule at time t = i;
when the path is about to close (t = i + 24), the lower left molecule delivers a close

signal.

1 2 3 4

Figure 8.12: Data input selection. (1) Northward. (2) Eastward. (3) Southward. (4)

Westward.

ready containing structural data (Fig. 8.13, t = i + 4). This mechanism is a func-
tional growth process, performed only on the molecules in the living mode while

the molecules in the spare mode are simply bypassed. Every four time steps (t =
i + 1, i + 5, ...), according to the functional configuration data or functional genome,
a path is created among the molecules of the cell in order to capture a copy of the

functional data in the memory positions of the cell and to move another copy of the

functional data around the cell. At time t = i + 17 (Fig. 8.16), the final cell is made

up of four living molecules organized as an array of two rows by two columns, while

one row of two spare molecules is bypassed. The final specifications of the cell under

construction are now stored as functional data in its living molecules.

Cloning

The cloning or self-replication mechanism is implemented at the cellular level in order

to build a multicellular organism, and at the organismic level in order to generate

a population of organisms. This mechanism supposes that there exists a sufficient

number of molecules in the array to contain at least one copy of the additional cell or

of the additional organism. It corresponds to a branching process which takes place

when the structural and the functional configuration mechanisms deliver northward

t = i t = i+1 t = i+2 t = i+3 t = i+4

Figure 8.13: Triggered by the close signal of the nearest right neighbor cell (t = i),
the load process stores the molecular types and modes of the artificial cell.

146 BioTissue applications

1 2 3 4 5

Figure 8.14: Molecular modes. (1) Living. (2) Spare. (3) Faulty. (4) Repair. (5) Dead.

2 3 4 51 6 7 8 9

Figure 8.15: Molecular types. (1) Internal. (2) Top. (3) Top-left. (4) Left. (5) Bottom-

left. (6) Bottom. (7) Top-right. (8) Right. (9) Bottom-right.

and eastward growth signals to the borders of the cell during the corresponding growth

processes (Fig. 8.17).

Cicatrization

Figure 8.16, at time t = i + 17, shows the normal behavior of a healthy minimal cell,

i.e. a cell without any faulty molecule. A molecule is considered as faulty, or in faulty
mode, if some built-in self-test detects a lethal malfunction. Starting with the normal

behavior of figure 8.16 (t = i + 17), we suppose that two molecules will become

suddenly faulty (Fig. 8.18, t = i): (1) The lower left molecule is in living mode. (2)
The upper right molecule is in spare mode. While there is no change for the upper-

right molecule, which is just no longer able to play the role of a spare molecule, the

lower-left one triggers a cicatrization mechanism. This mechanism is made up of a

repair process involving repair signals (Fig. 8.18, t = i + 1 to t = i + 2) followed
by a reset process performed with reset signals (t = i + 4 to t = i + 6). This tissue,
comprising now two molecules in faulty mode and two molecules in repair mode, is
ready to be reconfigured by the functional configuration data. This implies a functional
growth process bypassing the faulty molecules (Fig. 8.19).

Regeneration

Our minimal self-developing cell comprises a single spare molecule per row and tol-

erates therefore only one faulty molecule in each row. A second faulty molecule in

t = i t = i+1 t = i+5 t = i+9 t = i+13

t = i+17

Figure 8.16: Functional configuration of the living molecules.

8.3 eSOS: self-organizing bio-inspired application 147

t = i+16 t = i+34 t = i+12 t = i+24
(a) (b)

Figure 8.17: Northward and eastward growth signals triggering the cloning mecha-

nism. (a) Structural branching processes. (b) Functional branching processes.

t = i t = i+1 t = i+2 t = i+3 t = i+4

t = i+5 t = i+6

Figure 8.18: Cicatrization mechanism performed as a repair process (t = i+1 to i+3)
followed by a reset process (t = i + 4 to i + 6).

the same row will trigger the death of the whole cell, and the start of a regenera-
tion mechanism. Figure 8.20 illustrates the repair process and kill process involved

in this mechanism. Starting with the normal behavior of the cicatrized cell (Fig. 8.19,

t = i + 17), a new molecule, the upper middle one, becomes faulty. In a first step,

the new faulty molecule sends a repair signal eastward, in order to look for a spare

molecule, able to replace it (t = i+1). In a second step, the supposed spare molecule,

which is in fact a faulty one, enters the lethal dead mode and triggers kill signals north-
ward, westward and southward (t = i+2). In the next three steps, the other molecules

of the array are given the dead mode. At time t = i + 5, the original minimal cell is

dead.

t = i t = i+1 t = i+5 t = i+9 t = i+13

t = i+17

Figure 8.19: Functional reconfiguration of the living and repair molecules.

148 BioTissue applications

t = i t = i+1 t = i+2 t = i+3 t = i+4

t = i+5

Figure 8.20: Regeneration mechanism performed as a repair process (t = i + 1) fol-
lowed by a kill process (t = i + 2 to i + 5).

8.3.2 SOS acronym organism

Structural configuration, functional configuration and cloning

Although our final goal is the self-development of complex bio-inspired systems, in or-

der to illustrate its basic mechanisms we will use an extremely simplified application

example: the display of the “SOS” acronym. The system that displays the acronym

can be considered as a one-dimensional artificial organism composed of three cells

(Fig. 8.21). Each cell is identified by a X coordinate, ranging from 1 to 3. For co-

ordinate values X = 1 and X = 3, the cell implements the S character, for X = 2,
it implements the O character. Such a cell, capable of displaying either the S or the

O character, is a totipotent cell comprising 4 × 6 = 24 molecules. An incrementer

implementing the X coordinate calculation is embedded in the final organism.

X=1 2 3

Figure 8.21: One-dimensional organism composed of three cells resulting from the

structural configuration, functional configuration and cloning mechanisms applied to

a totipotent cell.

In order to build the multicellular organism of figure 8.21, the structural configura-

tion mechanism, the functional configuration mechanism, and the cloning mechanism

are applied at the cellular level. Starting with the structural and functional configura-

tion data of the totipotent cell, these mechanisms generate successively the three cells

X = 1 to X = 3 of the “SOS” organism.

Cicatrization and functional reconfiguration

The cicatrization mechanism (or cellular self-repair) occurs when one column of spare

molecules is introduced into each cell (Fig. 8.21), defined by the structural configu-

8.3 eSOS: self-organizing bio-inspired application 149

ration of the totipotent cell, and the automatic detection of faulty molecules. Thanks

to this mechanism, each of the two faulty molecules of the middle cell (Fig. 8.22) is

deactivated, isolated from the network, and replaced by the nearest molecule to the

right, which will itself be replaced by its nearest neighbor to the right, and so on until a

spare molecule is reached. The functional reconfiguration mechanism then kicks in, in

order to regenerate the O character of the “SOS” organism. As shown in figure 8.22,

the regenerated character presents some graphical distortion.

X=1 2 3

Figure 8.22: Graphical distortion resulting from the cicatrization and reconfiguration

mechanisms applied to the middle cell of the organism.

Regeneration

The totipotent cell of the “SOS” organism containing only one spare column allows

only one faulty molecule per row. When a second one is detected, the regeneration

mechanism (or organismic self-repair) takes place and the entire column of all cells to

which the faulty cell belongs is considered faulty and is deactivated (column X = 2 in

figure 8.23; in this simple example, the column of cells is reduced to a single cell). All

the functions (X coordinate and configuration) of the cells to the right of the column

X = 1 are shifted one column to the right. Obviously, this process requires as many

spare cells to the right of the array as there are faulty cells to repair. As shown in

figure 8.23, the reparation of one faulty cell requires one spare cell to the right and

leaves a scar in the “SOS” organism.

X=1 2 3

Figure 8.23: Scar resulting from the regeneration mechanism applied to the organism.

Basic processes

As defined in § 8.3.1, the self-developing mechanisms are made up of basic pro-

cesses like growth, load, repair, reset and kill. Figure 8.24 illustrates these processes

150 BioTissue applications

while they are performed on the middle cell of the “SOS” organism. During the

structural configuration mechanism, the growth of the data path of the middle cell

(Fig. 8.24(a)) leads to the definition of the boundaries as well as the mode of its consti-

tuting molecules (living or spare) (Fig. 8.24(b)). The growth process of the functional

configuration mechanism expresses the O character which is part of the specifications

of the current application (Fig. 8.24(c)). The reset process following the repair of the

cicatrization mechanism (Fig. 8.24(d)) allows a functional regrowth process which by-

passes the faulty molecules (Fig. 8.24(e)). The detection of a second faulty molecule

in the third lower row of the middle cell triggers the kill process of the regeneration

mechanism (Fig. 8.24(f)).

(a) (b)

(c) (d)

(e) (f)

Figure 8.24: Processes performed on the middle cell. (a) Structural growth. (b) Load.

(c) Functional growth. (d) Repair and reset. (e) Functional regrowth. (f) Kill.

8.3.3 eSOS application

The BioTissue platform comprises an amount of 108 ECell s organized as a rectangle

of 6 rows by 18 columns. Using one ECell for each molecule, the complexity of

the platform thus allows the implementation of four and a half totipotent cells of the

“SOS” application.

Figure 8.25 shows the cloning of the totipotent cell in order to build a first multi-

cellular “SOS” organism and sketches the cloning of this organism in order to define

a population of them. The cloning of the organism rests on two assumptions: firstly,

that there are a sufficient number of spare cells in the array to contain at least one copy

8.3 eSOS: self-organizing bio-inspired application 151

of the additional organism, an assumption which is only partially satisfied here. Sec-

ondly, that the calculation of the coordinates produces a cycle X = 1 → 2 → 3 → 1
implying X+ = (X + 1) mod 3. Given a sufficiently large space, the cloning of the

organism could be repeated for any number of specimens in the X and/or Y axes.

Figure 8.25: Cloning of the “SOS” acronym, totally realized at the cellular level and

partially achieved at the organismic level, on the BioTissue.

Figure 8.26 illustrates cicatrization or repairs at the cellular level and regeneration

or repair at the organismic level. The cicatrization of the cells containing at most one

faulty molecule in each of their rows causes the graphical distortion of the characters

S and O. The regeneration of the cell containing more than one faulty molecule in one

of its rows leaves a scar in the “SOS” organism.

Figure 8.26: Cicatrization and regeneration of the “SOS” acronym on the BioTissue.

8.3.4 eSOS conclusion and future work

The self-developing mechanisms are mainly based on the Tom Thumb algorithm.

These mechanisms are made of simple processes like growth, load, branching, repair,

reset, and kill. They equip the cellular systems with bio-inspired properties such as:

• Cloning or self-replication at cellular and organismic levels.

• Cicatrization or self-repair at the cellular level.

152 BioTissue applications

• Regeneration or self-repair at the organismic level.

Starting with a very simple cell made of only six molecules, we realized hardware

simulations of the application’s DSCA implementation in order to describe these self-

developing mechanisms. The “SOS” acronym, a small organism made of three cells,

was introduced as an application example for the simulation of our mechanisms.

In order to improve this application, additional features could be investigated, for

example:

• Automatic detection of faulty molecules, erroneous configuration data, and ap-

plication dysfunction.

• Asynchronous implementation at the organismic level and synchronous imple-

mentation at the cellular level.

8.4 Conclusion

This chapter has described two bio-inspired applications and a simple operating sys-

tem. Even if the BioTissue can run all kinds of applications, this is not an ideal plat-

form for globally synchronous problems. Before developing new applications, the user

should determine if these applications could be built using asynchronous communica-

tions. An asynchronous implementation would be more elegant, and more efficient, as

it will be compatible with the GALS hardware architecture.

The window concept defined at the beginning of this chapter lets us split the

BioTissue surface in several distinct areas, allowing different applications to run at

the same time. At present, once a window is defined, all communications and inter-

actions between FPGAs can only be done inside this window. Thus, each application

can run at a different speed, manage buses in different ways, without disturbing other

applications. Such a system prevents hazardous behaviors, and avoids malicious ap-

plications disturbing running ones.

Figure 8.27 shows an example of these possibilities with the eSOS application

running on the left and right of the BioTissue, while eGol runs in the middle. If

two adjacent windows are running the same application, they behave like two distinct

windows with no communication and interaction possibilities between both of them.

Thus, each one can be in a different state and tolerate different speeds. Future evolu-

tions of the operating system could allow communication channels, or pipes between

applications.

Finally, it should be noted that the complexity of the eSOS application based on

the Tom Thumb algorithm with self healing properties was impossible to run on the

simplified architecture of the BioWall, and thus constituted a motivation for designing

and building a more complex system, the BioTissue.

8.4 Conclusion 153

Figure 8.27: The BioTissue running three different applications simultaneously:

eSOS on the left with two cells of the “SOS” acronym, eGol in the

middle, and again eSOS on the right with six cells of the minimal

structure.

Chapter9
Towards electronic paper

I
T is the year 2054. Aman sitting in a subway coach unfolds a piece of newspaper-

sized electronic display. News headlines and advertisements start to flash in

front of him. . .

This scene takes place in the science fiction movie Minority Report. It is exactly

this concept of flexible and lightweight electronic paper that is cheap and light enough

so that it can replace the current paper version of newsprint, that many researchers

around the world are working to make a reality. Our future will certainly include sev-

eral products made of electronic paper: newspapers as presented in Minority Report,

thin and flexible laptops, wearable cellphones or computers integrated in clothes, and

many new uses which need to be discovered. Technologies needed to build such an

electronic paper device are not yet ready. However in this chapter, we show that much

existing research could be combined to move towards a viable implementation.

Linking the results we have gotten in our thesis to the electronic paper concept

constitutes the next and final step of our project. In the next section, we will describe

in detail the concepts and the structure of the future electronic paper device, and show

that the electronic paper terminology is misused in the media and marketing to describe

what we call paper-like displays. Section 9.2 will give an overview of the technologies

currently being developed by several researchers through the world and which will

be needed for developing and manufacturing an electronic paper device based on the

novel architecture that we will describe in section 9.3, the BioTissue.

9.1 What is electronic paper?

Electronic paper, also called e-paper, is a display technology designed to mimic the

appearance of ordinary ink on paper. Unlike traditional displays, electronic paper

can be crumpled or bent like traditional paper and is also capable of holding text and

images indefinitely without drawing electricity. According to this definition, electronic

paper refers to the display itself. For being usable, such a display needs to be driven by

a microprocessor, probably with memory components, interfaces like a keyboard and

a memory card reader. In the next paragraphs we will introduce a new terminology

to name two products based on electronic paper displays, but mainly different in their

155

156 Towards electronic paper

physical structure and conception.

9.1.1 Products using a paper-like display

Nowadays, displays able to hold information once their power is shutdown are already

on the market. Most of them are rigid and can not be bent, however flexible displays

exist as prototypes and will be soon produced. The Readius� reader (Fig. 9.1) is a new

Personal Digital Assistant (PDA) the screen of which can be bent and rolled around its

case. This device needs a limited amount of power, since its display consumes energy

only for changing its contents. A battery is situated in the case along with all the elec-

tronics needed to complete the features of the PDA. Many new products similar to the

Readius� reader will be developed in the next years [73], and probably a device simi-

lar to the electronic newspaper seen in the Minority Report movie. Nevertheless, there

is always the need for a rigid case holding batteries, microprocessors and interface

electronics generally placed on one edge of the display (Fig. 9.2).

Figure 9.1: The Readius� reader manufactured by Polymer Vision�. Source:[99]

This concept does not fit my expectations of electronic paper: in my mind, elec-

tronic paper refers to a device looking like a sheet of paper endowed with some new

features such as interactive display and processing capabilities. Consequently I have

decided to name “products using paper-like displays” all of the current products using

such an architecture.

9.1.2 Electronic paper

If “products using paper-like displays” are not electronic paper, then what is my def-

inition? Firstly, if we think about paper, we can imagine a rectangular sheet, thin,

flexible, with some text or pictures drawn on its surface. This paper sheet will be light

and could be totally crumpled up. This means that the electronic sheet will be a dis-

play like the one described above, housing in its internal structure all the electronics,

batteries and communication interfaces needed for its use (Fig. 9.3).

Many products could be built using electronic paper: from the newspaper, to the

successor of the laptop, through new applications where a computer could be embed-

ded into clothes [45].

9.2 Current research 157

Figure 9.2: Electronic newspaper; control case at the bottom with its flexible dis-

play. Source: IBM.

Figure 9.3: The future electronic newspaper will look like the traditional newsprint.

9.2 Current research

In this section, we will present the research done in different fields, the results of which

could be used for building a complete electronic paper machine, with a tactile interface

on its surface, a thin display that could be bent, a source of energy, and the computing

power to perform the requested tasks.

9.2.1 Displays

Multitudes of display techniques developed over flexible substrates exist. We will only

focus on the most appropriated one, a technique developed by E Ink� and based on

ultra small colored balls.

158 Towards electronic paper

Figure 9.4: Color screen, thin and bendable like a paper sheet. Source: Sony�.

Figure 9.5: Cross section of E Ink� microcapsules. Source: E Ink�.

Each tiny capsule contains white granules suspended in a dark, oily liquid

(Fig. 9.5). When an electrode in the upper surface is given a negative charge, it attracts

granules towards it, making the surface appear white. By reversing the polarity, the

granules are pulled to the bottom, revealing the dark liquid and making the surface

appear black. The spaces between electrodes are small enough to give a resolution of

300 monochrome Dots per Inch (DPI). To create a full color display (Fig. 9.4) a fine

colored filter is laid across the top of the monochrome display - the same trick that

lends color to Liquid Crystal Displays (LCDs). The filter makes each pixel appear

either red, green or blue when the pixel below is white. When the pixel is black, the

filter above reflects very little light so that no color is seen.

9.2.2 Input interfaces

Currently many techniques already exist and may be used for sensing the surface of

our electronic display. The most adequate will be the capacitive sensors similar to

those developed by Quantum Research [113], which could enable multi-touch screen

behaviors like in the demonstrator of Perceptive Pixel [93].

9.3 The BioTissue: a basis for a new electronic paper architecture 159

9.2.3 Energy

The problem of energy storage is crucial, and several research are on their way to

increase the energy capacity of batteries, while decreasing their size. Very thin and

bendable batteries already exist and could be used for our needs.

Other important research involve energy generation. Solar cells could be good

candidates for electronic paper. The back of the paper, which is not used, could be

covered in flexible solar cells [18] allowing the battery to be recharged when using

the e-paper near a luminous source like sunlight. Along the same lines, Pasquier and

al. [90] have proposed a new kind of solar cell, made of carbon nanotubes, which has

the main advantage of being transparent. Such a solar cell could be added on the top

of the display, and power the electronic paper and/or recharge its battery.

9.2.4 Electronic components

A potential headache is the manufacturing of electronic components onto flexible sub-

strates. The knowledge of techniques based on silicon Complementary Metal-Oxide-

Semiconductors (CMOSs) is useless, as it needs a hard silicon wafer as a substrate.

Much promising research is going on and interesting results have been obtained with

transistors constructed on plastic substrates.

9.2.5 Manufacturing methodology

Since the manufacturing processes for building Integrated Circuits (ICs) are not ad-

equate for e-paper, some researchers are looking for new ways to build IC and their

transistors. Inkjet printers gave some really good hopes and results building transistors

on flexible substrates [122]. Transistors are nevertheless extremely large compared to

the nanometer scale and their performance is closer to that of the first silicon transistor.

Some other new manufacturing techniques have appeared notably the roll-to-roll

methodology used by SiPix� to produce displays for electronic paper based on a tech-

nique similar to E Ink�. On a continuous plastic substrate, the display is created by

coating, embossing, sealing and lamination processes. Figure 9.6 details this manu-

facturing process and the structure of the display. This method meets the high needs

for producing a large quantity of display material that is reliable, extremely thin, and

flexible.

9.3 The BioTissue: a basis for a new electronic paper ar-
chitecture

In this section, we will describe the principle feature of the architecture of our elec-

tronic paper. Its structure will be mainly suited for the applications needing a computer

structure; in fact, our electronic paper could be able to do the job of a laptop, once soft-

ware is available.

Currently, all traditional systems using a microprocessor are built with several

components placed on a Printed Circuit Board (PCB): the microprocessor itself, the

memory, the power regulators, the display controller, the sensors. . . This structure con-

sists of several completely different interconnected functionalities. However such an

160 Towards electronic paper

Figure 9.6: (a) Roll-to-Roll manufacturing process used by SiPix� to produce their

flexible display. (b) Structure of the SiPix� display. Source: [114]

architecture does not easily fit into an electronic paper device. The other way would

be to construct an electronic layer containing of these components. Of course, printed

technology could be used, but may have the disadvantage of reducing performance

since the microprocessor needs a rather large surface, much larger than its silicon coun-

terpart. Once this electronic layer is manufactured, three additional layers should be

glued on top of it: a thin battery at the bottom, a display on the top, and a tactile inter-

face above the display with the connections between these four layers located on one

edge.

This approach, has several disadvantages: printed technology will be difficult to

use, performance may be reduced due to the increases size of printed components.

Care should be taken with such electronic paper, it there is no fault-tolerant mecha-

nism: if the foil is carelessly bent or crumpled a bit too much, irreversible failures

could happen, since some transistors or connections between layers could break, and

the whole sheet would be destroyed.

The answer to an architecture for an electronic paper device does not lie in this

direction. Our thesis work has focused on bio-inspired cellular architectures, and the

BioTissue is an autonomous self-repairable system able to compute powerful appli-

cations like those running on a computer. The BioTissue is thus the global answer for

a new electronic paper architecture.

9.3.1 Structural definition

Based on the promising research done on printed displays, we chose to use the ar-

chitecture of the BioTissue, with a reconfigurable element for each pixel. Thus, we

defined first the following minimal structure, called a papel (for paper pixel) with,

from top to bottom:

• A tactile sensor able to detect a human finger, or stylus.

• A pixel, which could be black and white, or full color. The technique could be

based on e-ink display or similar.

• An electronic reconfigurable element. The number of logic cells will be limited

by the size of the manufacturing process with the given pixel size.

9.3 The BioTissue: a basis for a new electronic paper architecture 161

• A connection to a thin film battery.

(a) Papels inside an electronic paper.

(b) Cross section view of a papel.

Figure 9.7: Structure of a papel.

Figure 9.7 presents the structure of a papel. Like in the BioTissue, each papel is

connected to its nearest neighbors using point-to-point wires. The number of papels is

defined by the size of the electronic paper, and its pixel number.

The manufacture of such electronic paper is simple: once the design of a papel

is completed, this element should be replicated to fill in the desired electronic paper

surface.

Variation based on nanoelectronic components

Such an electronic paper device built with a printed transistor may have a weak perfor-

mance, giving to this product a limited market range. The electronic paper built upon

a matrix of papel may be interesting if it could challenge laptop performances.

Rather than using a simple printed reconfigurable element in each papel, it may

be better to have nanoelectronic components, whose performance could result in ex-

tremely fast microprocessors on a really small surface. In Chapter 5, we studied the

162 Towards electronic paper

BioCube and stated that this system could be a perfect simulator for electronic re-

programmable circuits built in 3D with nanocomponents, like nanotubes. As soon

as these technologies are industrially viable, it could be interesting to substitute the

printed transistor of our electronic paper, with a nanochip. This kind of chip could be

built in 3D to the size of a cube whose sides each measure a few micrometers. Such a

small component, while having thousand transistors, could be inserted into the paper

using DNA placement methods [69]. The configuration of each papel could use the

results of the 3D Tom Thumb application described in section 6.2.

9.3.2 Advantages

Since the architecture is based on a cellular structure, with fault-tolerance capabilities,

a papel failure will not damage the whole system: consequences for the user will be

one or several dead pixels, which is not critical.

During the manufacturing process, the device size could be easily parameterized.

Before running the printing process, the desired electronic paper size can be changed

by the operator, and for example some additional papel may be printed.

Since the system is based on the BioTissue architecture, the software running on

the electronic paper will detect the device size and automatically adapt its function-

ality. Thus, if the manufactured device is an electronic newsprint, the contents of the

newspaper will be automatically reorganized, as a web-browser does when its window

size is modified. No engineering, nor human intervention is required when changing

the machine size and its number of papels.

9.3.3 Disadvantages

There is unfortunately a major disadvantage compared to the classical architecture

based on a microprocessor, memory, a keyboard and a display controller. In this clas-

sical architecture, all processing is computed sequentially, and methodologies, as pro-

gramming tools, exist. In our new architecture, the system will operate a task in par-

allel on each papel. Thus, while developing an application, the whole methodology

needs to be reconsidered. Development will take longer than for a microprocessor ap-

proach. A solution for this issue could be to consider the whole electronic paper sheet

like a huge Field Programmable Gate Array (FPGA), and develop a microprocessor

softcore that could be dynamically placed. However, performance should be estimated

before going in this direction, and a solution needs to be found about how to distribute

the softcore microprocessor over a potentially imperfect tissue, where defective papels

could be present.

9.4 Conclusion

This chapter, which brings our thesis to a close, described how the bio-inspired ap-

proach we used as a common approach of three cellular machines, may constitute a

solution for an electronic paper architecture. Given the low cost electronic printing

techniques, which do not allow high component density, it makes senses to use a cel-

lular structure for an electronic paper.

9.4 Conclusion 163

However, as we have said our architecture can not currently be implemented. Once

the technologies needed for the integration of our structure are mature, the manufacture

of a prototype should be considered.

It is certain that electronic paper will be a reality in the future. However, in year

2054, when reality has caught up with fiction, will our character sitting in the sub-

way coach be reading this thesis on electronic paper built with the architecture and

manufacturing process we just described?

Chapter10
Conclusions

T
HIS thesis has presented our research in the field of cellular computing, in-

volving the realization of three machines, each one composed of a cellular

array. Each cell of our three inventions is based on the following common

structure: a reconfigurable computing component, a display element and an

external sensor allowing user interactions with each cell. The implementation in each

system of two similar applications enabled us to compare and evaluate the perfor-

mance of our three realizations. In addition to these developments, we have proposed

an architecture for a novel computer: electronic paper.

We will firstly present some general conclusions for the whole project, and then

give possibilities for future research based upon the current state of this thesis.

10.1 General conclusions

The evolution of computers over the last fifty years has been incredible. The first

models were huge, slow, power hungry, extremely expensive and needed many op-

erators and technicians for daily maintenance. They were very rare and could only

be found in some major companies or universities, which used them for computing

mathematical operations. The invention of the electronic transistor and the develop-

ment of the integrated circuit had lowered the cost while increasing the computation

power of the microprocessors. Twenty five years ago, the idea to put a computer into

each home was launched by IBM�. This idea was seen as a marginal business op-

portunity at the time but turned out to be the greatest and most visionary idea for the

future of the computer. Today, practically each person owns a PC at home and many

devices are built around a microprocessor, like watches, credit cards and washing ma-

chines. . . Nowadays, microprocessors are extremely powerful, inexpensive and used in

practically every electronic device. Future trends indicate further increase in the speed

and performance of processors used in computers, and the use of processors in new

targets such as clothing, or in the electronic newspaper which may replace the classic

printed newspaper.

These evolutions will be possible through the reduction of the transistor size to

nanoscale size, the development of flexible components and also the exploration of

new computer architectures mainly based on multi-cellular systems.

165

166 Conclusions

Our research has mainly been based on the study of some cellular systems. We first

concentrated on their hardware architecture, and progressed to the implementation of

some applications on these machines.

10.1.1 Three cellular machines

The first realization, BioWall, is a novel hardware platform designed for bio-inspired

cellular computing. This cellular machine is built upon a mesh topology of 4′000 iden-

tical molecules each constituted of an FPGA coupled to an 8× 8 bi-color LED display

and a touchsensor. The massive parallelism of the BioWall along with the scalabil-

ity of this platform provide possibilities for very powerful computation applications.

However, the quite complex architecture of this machine needs to be improved to al-

low the system to behave autonomously. These improvements were integrated into the

next development.

Several major improvements to the BioWall were added to develop the BioTissue,
which is a similar machine still based on a cellular architecture. The core of the new

cell is composed of a much more powerful FPGA. It is coupled to new components

like FLASH and SRAM memories. Its three color RGB LED display give it a range

of millions of colors. All these improvements make the BioTissue a cellular ma-

chine, whose specification allow it to run various complex applications and make it

autonomous. Moreover, the Globally Asynchronous, Locally Synchronous (GALS)

structure used for the architecture of the BioTissue brought it closer to the consid-

erations of the current layout techniques used in integrated circuit conception, where

multiple clock domains exist in the same circuit [81, 23, 121].

The BioCube is the expansion of our two 2D machines to the third dimension,

which may be the future topology of microprocessors built on a nanometer scale. This

machine is a novel hardware platform, created in the aim of realizing 3D bio-inspired

cellular computing. The versatility and scalability of this platform allow it to simulate

cell networks, where each cell is connected to its six neighbors.

10.1.2 Two common applications

We implemented two different applications on each of our three machines. The first

application, the Game of Life cellular automaton, was chosen especially for the notable

characteristics already mentioned, and for its simple implementation on a cellular tis-

sue. It is interesting to note the difference between these three machines. Whereas

the implementation of the application on the BioWall machine was extremely simple,

since the structure of this automaton was close to the architecture of our machine, the

implementation was more complex for the two other systems. The asynchronous be-

havior of the BioCube and the BioTissue made it difficult to reuse the developments

already made to the BioWall. Even if solutions were proposed to allow synchronous

applications like the Game of Life automaton to run on the machine, an asynchronous

implementation of this automaton would have been more elegant, and more suited to

the GALS hardware architectures of the BioCube and the BioTissue. Globally syn-

chronous automata may soon be a thing of the past, current and upcoming research on

cellular automata should be focused on asynchronous connections between cells: this

approach will be closer to the reality of electronic hardware developments.

10.2 Future work 167

The second application, based on the Tom Thumb algorithm, is intended to pro-

pose a methodology for programming a cellular hardware structure. Unlike a current

cellular programming methodology used in FPGA for example, where the dimensions

of the array need to be known in advance, our algorithm can adapt itself over a cellular

network whose dimensions are unknown or may vary. In the first implementation of

our algorithm, onto the BioWall, we discussed how programming and replicating a

configuration stream can be done on a basic cellular machine. The extension of the

algorithm from 2D to 3D was the next step. This extended algorithm was tested on the

BioCube. In the evolution of manufacturing processes the main goal is to decrease

the lithographic size of transistors, to increase their number and their speed. This has

the disadvantage of increasing the number of faults in a circuit. The size of a tran-

sistor gets smaller and smaller, to the point where the number of atoms constituting

the gate of a MOS transistor could be counted on the fingers of two hands. The direct

consequence is the increase in defective transistors at the fabrication process. To stay

ahead of the current industrial layouts and manufacturing methodologies, we added to

our algorithm self-repair concepts that could succeed in programming a cellular array,

even if some cells are defective. The BioWall did not allow this new version of the

Tom Thumb algorithm to be tested, but the BioTissue, whose architecture is more

powerful was able to support the improved algorithm.

10.1.3 Electronic paper: where all the previous research converge

Current computer trends mainly focus on improving the speed of microprocessors by

using new architectures, and decreasing the manufacturing process in the aim of having

the smallest transistor gate as possible1. The other tendency is a decrease in the size

and weight of the individual Personal Computer (PC). Currently, powerful computers

could be found as laptops, pocket PCs, and are recently included in mobile phones.

This trend is set to continue as powerful computers become more pervasive and work

their way into new areas such as clothing and the written press.

The convergence of our three realizations allowed us to define and propose in chap-

ter 9 an architecture, based on a cellular topology, for electronic paper. The Tom

Thumb application as defined for the BioTissue in chapter 8 could be used for pro-

gramming such a tissue, with the major advantage of succeeding even if some cells are

defective.

10.2 Future work

Based on our current results, this section will present some ideas for further research.

10.2.1 BioCube nanoscale implementation

Nanotechnologies constitute a brand new research domain, which is very hot and full

of possibilities. Although no logic component is ready yet for commercial industrial-

ization, a large quantity of research and some prototypes are currently on their way.

1The advantages of a small transistor gate are the increase of the switching frequency of the transistor,

the reduction in energy consumed and the increase in the number of transistors on an identical silicon

surface.

168 Conclusions

This research is just beginning and it will be interesting to follow the trends and evolu-

tions in this domain. It’s a safe bet that the current evolution of 3D component stacking

will be one of the keys of microprocessor architecture on a nanometer scale. The main

challenge will be to check if the structure currently proposed by the BioCube could

be used for manufacturing microprocessors constituted of identical cells stacked into

three dimensions.

10.2.2 Evaluation of cell resources

The current BioTissue cell is endowed with a very powerful Field Programmable

Gate Array (FPGA), and a lot of memory. In the electronic paper architecture, no size

of reconfigurable array, nor memory size has been proposed. This question is quite

difficult to answer at the present stage in our research. Based on an architecture where

a cell drives only one pixel, many thousand of cells will be needed for a small “page”

of electronic paper.

It may be interesting to conduct research to define the resources needed for each

cell to obtain a desired goal. For certain applications such as an electronic paper page

able to display the contents of a book, cells may not need a large amount of computing

resources and still have enough memory to store the contents of several pages. A

newspaper that could display texts, images, and also video on the other hand would

need more computing resources.

A study based on several tasks (e-book reader, newspaper application, video de-

compression, diary, calculator. . .) and many different topologies (one pixel for each

cell, or a matrix of several pixels for one cell) should be done. The results could allow

some typical architectures to be defined along with their pros and cons. This could

be similar to the current panel selection of microprocessors that could be bought from

a distributor. Each one would have its advantages and disadvantages in performance,

energy consumption, price, dedicated applications, multitask operations. . .

10.2.3 Operating system upgrade

We have developed an operating system for the BioTissue. It is really simple and al-

lows several applications to be run over the same medium. At the moment a misuse of

μOS could result in unexpected behaviors. These could be avoided by adding several

security checks, thus giving a strong μOS application without any corrupted results.

Many other improvements would be welcome, such as allowing applications to be

moved over the tissue, or resizing the window of an application.

10.2.4 Self-organized microprocessor

The BioTissue is endowed with a huge processing capacity that is currently not com-

pletely exploited. An interesting and promising research subject is based on resource

distribution of a task over such a cellular network. In the case of an application that is

not based on a Cellular Automata (CA) approach, and rather than having only one cell

executing a dedicated task (Fig. 10.1(a)), it may be interesting to look for an algorithm

able to distribute this task over the cellular network of the BioTissue. This could be

approached in several ways:

10.2 Future work 169

1. Distribution of a task over a predefined number of cells (Fig. 10.1(b)). The

necessary number of cells needed to execute the specified task is known and has

been precalculated by the developer. The surface where the task is executed is

known and can not be adjusted.

2. Dynamic distribution of a task over an unused surface of cells (Fig. 10.1(c)).

The application will calculate the number of cells it needs depending on the

free resources of the network. The task will be executed by several cells whose

location is dynamically calculated depending on the free cells available. When

some of these cells are no longer being used, they can be released. (This is

similar to the malloc and free functions in C++, where a block of memory can

be allocated and accessed by a pointer, and then released when this memory

block is no longer needed.)

We have summarized the advantages and disadvantages of these three methods in

table 10.1.

(a) Algorithm 1: each task is

executed by one cell.

(b) Algorithm 2: a task can be

distributed over 2×2 cells. Im-

possibility in this example to

run more than one task at the

same time, since no 2× 2 cell’s

surface is still free.

(c) Algorithm 3: a task can

be distributed over a max-

imum of 4 adjacent cells.

Disposition is dynamic and

flexible. The task C does

not have the place for run-

ning over 4 cells, and can

still run in one cell.

Figure 10.1: Three different methods for distributing tasks over a cellular network.

Examples based on a small BioTissue of 3 × 3 cells.

Algorithm 1 Algorithm 2 Algorithm 3

Complexity + 0 -

Execution time - 0 +

Number of tasks + - +

Surface lost + - +

Table 10.1: Comparison of task distribution algorithms. (“-” means bad results,

“0” neutral and “+” good results)

Currently algorithms 1 and 2 are used in the BioTissue, but also in many research

fields like that of dynamic resources allocations in FPGAs [100]. An interesting re-

170 Conclusions

search possibility could be the study of algorithm 3. Rather than speaking about tasks,

it may be interesting to study how a microprocessor could be distributed over a cellular

tissue like the BioTissue and how it could dynamically allocate new cells to compute

some specific functions. The ultimate feature would be for a microprocessor to be able

to replicate itself when needed in order to act like a multi-core microprocessor. All of

the surface’s utilization would be calculated online, and the best distribution chosen

based on this distribution algorithm (Fig. 10.1(c)). In the case of microprocessor repli-

cation, our results from the eSOS application (cf. section 8.3) could be used, since

they allow a complex structure to be replicated over a cellular network.

10.2.5 Detailed structure for the electronic paper

In this thesis work, we proposed a hardware architecture for electronic paper. This

is based on a high level overview of the general structure. The cell functionalities

and the main details are presented as are the interconnections needed to link a cell

with its surrounding neighbors. In the near future, the plastic transistor technology

will become mature and one possible manufacturing method to be expected is to place

printed electronic paper on a plastic sheet.

A future research direction or thesis could be to propose a layout for an electronic

paper machine based on our architecture. This layout will try to define the complete

mapping of all the transistors for each cell. A display technology could be chosen and

the stacking of the electronics with the display, the tactile sensor and the battery could

be studied. Once the complete layout of a cell is accomplished, its interconnection

with its neighbors should be detailed, without forgetting the edge where specific com-

ponents could be located (WIFI interface, battery charger, audio outputs, memories

card slots. . .)

Simulations and eventually prototyping would be carried out to give results about

performance, energy consumption, and failure tolerance for different sizes of a com-

plete layout of such a system.

In this thesis, we explored several cellular architectures. The different aspects

of our research converge towards a proposal for a hardware architecture of a novel

universal electronic paper machine. It is hoped that one day we will read our news or

even a PhD thesis on an electronic sheet of paper built upon our research. . .

Bibliography

[1] 3D Game of Life simulators: http://www.ibiblio.org/e-notes/
Life/Game.htm.

[2] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. F. Knight, R. Nagpal,

E. Rauch, G. J. Sussman, and R. Weiss. Amorphous computing. Commun.

ACM, 43(5):74–82, 2000.

[3] A. Adamatzky, L. Bull, B. De Lacy Costello, S. Stepney, and C. Teuscher, edi-

tors. Unconventional Computing. Luniver Press, Beckington, UK, 2007.

[4] Agilent Technologies. Introduction to driving LED matrices, application note

1216, May 2001.

[5] B. M. Al-Hashimi. System-on-Chip: Next Generation Electronics. IEE Press,

2006.

[6] P. Alfke. Evolution and revolution: recent progress in field-programmable logic.

Technical report, Xilinx, San Jose, 2001.

[7] L. Alvin and Jr. Pachynski. US Patent 3,995,120: Digital time-division multi-

plexing system, 1976.

[8] M. Amde, T. Felicijan, A. Efthymiou, D. Edwards, and L. Lavagno. Asyn-

chronous On-Chip Networks. IEE Proceedings Computers and Digital Tech-

niques, 152(02), March 2005.

[9] M. Amos. Cellular computing. Oxford University Press, New York, 2004.

[10] M. Barr. Pulse width modulation. Embedded Systems Programming, pages

103–104, September 2001.

[11] C. Bays. 3D Life (?). Complex Systems, 6(5):433–442, 1992.

[12] P. Beckett and A. Jennings. Towards nanocomputer architecture. In CRPIT ’02:

Proceedings of the seventh Asia-Pacific conference on Computer systems ar-

chitecture, pages 141–150, Darlinghurst, Australia, Australia, 2002. Australian

Computer Society, Inc.

171

172 Bibliography

[13] P. Bendito. Digital color design with the RGB color cube: Visualization and

color coordination activities. Journal of Design Communication, Northern Illi-

nois University, 2, Spring 2000.

[14] E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways for your Math-

ematical Plays, volume 2, chapter 25, pages 817–850. Academic Press, New

York, 1982.

[15] C. Bernard, D. Mange, and A. Stauffer. Catalogue logidules. EPFL, Laboratoire

de systèmes logiques, Lausanne, 1994.

[16] T. Bjerregaard and S. Mahadevan. A survey of research and practices of

Network-on-chip. ACM Comput. Surv., 38(1):1, 2006.

[17] R. Boyce andM. Hoff. A history of microprocessor design at intel. IEEEMicro,

1:8–22, Feb. 1981.

[18] C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen. Plastic solar cells. Advanced

Functional Materials, 11(1):15–26, Feb. 2001.

[19] R. S. Braich, N. Chelyapov, C. Johnson, P. W. K. Rothemund, and L. Adle-

man. Solution of a 20-variable 3-SAT problem on a DNA computer. Science,

296(5567):499–502, Apr. 2002.

[20] C. Bruetsch. BioWord. EPFL, Laboratoire de systèmes logiques, February

2005.

[21] J. Byl. Self-reproduction in small cellular automata. Physica D, 34:295–299,

1989.

[22] R. Canham and A.M. Tyrrell. An embryonic array with improved efficiency and

fault tolerance. In editor J. Lohn et al., editor, Proceedings of the NASA/DoD

Conference on Evolvable Hardware (EH’03), pages 265–272. IEEE Computer

Society, Los Alamitos, CA, 2003.

[23] A. Chattopadhyay and Z. Zilic. GALDS: a complete framework for designing

multiclock ASICs and SoCs. 13(6):641–654, June 2005.

[24] C. Q. Choi. Qubit twist. Scientific American, 292(4):28, 2005.

[25] H.-H. Chou and J. A. Reggia. Problem solving during artificial selection of

self-replicating loops. Physica D, 115(3-4):293–312, 1998.

[26] C. P. Collier, E. W. Wong, M. Belohradsky, F. M. Raymo, J. F. Stoddart, P. J.

Kuekes, R. S. Williams, and J. R. Heath. Electronically configurable molecular-

based logic gates. Science, 285(5426):391–394, Jul. 1999.

[27] P. G. Collins and P. Avouris. Nanotubes for electronics. Scientific American,

283(6):62–69, Dec. 2000.

[28] M. Coltheart. The persistences of vision. Royal Society of London Philosophi-

cal Transactions Series B, 290:57–69, July 1980.

Bibliography 173

[29] C. Constantinescu. Trends and challenges in vlsi circuit reliability. IEEEMicro,

23(4):14–19, 2003.

[30] Intel Corporation. Excerpts from a conversation with Gordon Moore:

Moore’s law. ftp://download.intel.com/museum/Moores_
Law/Video-Transcripts/Excepts_A_Conversation_with_
Gordon_Moore.pdf, 2005.

[31] Intel Corporation. Meet the world’s first 45nm processor: Intel� 45nm tran-

sistor technology. http://www.intel.com/technology/silicon/
45nm_technology.htm?iid=homepage+42nm, 2006.

[32] The Cubatron: http://www.nw.com/nw/projects/cubatron/.

[33] W. J. Dally and B. Towles. Route packets, net wires: on-chip inteconnectoin

networks. In DAC ’01: Proceedings of the 38th conference on Design automa-

tion, pages 684–689, New York, NY, USA, 2001. ACM Press.

[34] G. de Micheli and L. Benini. Networks on chip: A new paradigm for sys-

tems on chip design. In DATE ’02: Proceedings of the conference on Design,

automation and test in Europe, page 418, Washington, DC, USA, 2002. IEEE

Computer Society.

[35] D. de S. Price. Gears from the greeks: The antikythera mechanism - a calendar

computer from ca. 80 BC. Transaction of the American Philosophical Society,

64(7):1–70, Nov. 1974.

[36] A. Dehon and M. J. Wilson. Nanowire-based sublithographic programmable

logic arrays. In FPGA ’04: Proceedings of the 2004 ACM/SIGDA 12th inter-

national symposium on Field programmable gate arrays, pages 123–132, New

York, NY, USA, 2004. ACM Press.

[37] A. K. Dewdney. The game of life aquires some successors in three dimensions.

Scientific American, pages 8–13, Feb. 1987.

[38] S. Dorthi and R.L. Haggard. A survey of dynamically reconfigurable FPGA de-

vices. In Proceedings of the 35th Southeastern Symposium on System Theory,

pages 422–426, 2003.

[39] E. Downing, L. Hesselink, J. Ralston, and R. Macfarlane. A Three-Color, Solid-

State, Three-Dimensional Display. Science, 273:1185–1189, August 1996.

[40] K. E. Drexler. Nanosystems: Molecular Machinery, Manufacturing, and Com-

putation. John Wiley, New York, 1992.

[41] M. Dubash. Moore’s Law is dead, says Gordon Moore. Techworld, Apr.

2005. http://www.techworld.com/opsys/news/index.cfm?
NewsID=3477.

[42] Xilinx� EasyPath�: http://www.xilinx.com/products/
silicon_solutions/fpgas/easypath/index.htm.

174 Bibliography

[43] W. R. Fahrner. Nanotechnology and Nanoelectronics: Materials, Devices, Mea-

surement Techniques. Springer-Verlag, Berlin Heidelberg New-York, 2005.

[44] R. P. Feynman. There is plenty of room at the bottom. In Engineering and

Science. California Institute of Technology, December 29th 1959. http://
www.zyvex.com/nanotech/feynman.html.

[45] D. H. Freeman G. A. Freeman. US Patent 5,931,764: Wearable device with

flexible display, 1999.

[46] Patterns for Conway’s Game of Life: http://www.radicaleye.com/
lifepage/.

[47] Martin Gardner. Mathematical games. the fantastic combinations of John Con-

way’s new solitaire game “Life”. Scientific American, 223:120–123, 1970.

[48] B. Gojman, R. Rubin, C. Pilotto, A. DeHon, and T. Tanamoto. 3D nanowire-

based programmable logic. In Nano-Networks and Workshops, 2006. NanoNet

’06. 1st International Conference on, pages 1–5, Sept. 2006.

[49] K. Govil, D. Teodosiu, Y. Huang, and M. Rosenblum. Cellular Disco: resource

management using virtual clusters on shared-memory multiprocessors. In SOSP

’99: Proceedings of the seventeenth ACM symposium on Operating systems

principles, pages 154–169, New York, NY, USA, 1999. ACM Press.

[50] D. A. Grier. When Computers Were Human. Princeton University Press, May

2005.

[51] L. Hansen and T. Thomas. Complete FPGA and CPLD power analysis. Xcell

Journal, 53:80–83, Second Quarter 2005.

[52] A. Harter. Three-dimensional integrated circuit layout. Cambridge University

Press, New York, NY, USA, 1992.

[53] J. P. Hayes. Computer Architecture and Organization. McGraw-Hill Higher

Education, 2002.

[54] J. Held, J. Bautista, and S. Koehl. From a Few Cores to Many: A Tera-scale

Computing Research Overview. Intel Corporation, white paper, research at intel

edition, 2006.

[55] T. Higuchi, Y. Liu, and X. Yao, editors. Evolvable Hardware. Genetic and

Evolutionary Computation. Springer US, 2006.

[56] K. Imai, T. Hori, and K. Morita. Self-reproduction in three-dimensional re-

versible cellular space. Artificial Life, 8(2):155–174, 2002.

[57] Microchip Technoloy Inc. PIC10F200/202/204/206 Data Sheet. 6-Pin, 8-bit

FLASH Microcontrollers, ds41239d edition, April 2007.

[58] Irvine sensors: http://www.irvine-sensors.com/chip_stack.
html.

Bibliography 175

[59] ITRS. International technology roadmap for semiconductors. Technical report,

2005. http://www.itrs.net/Links/2005ITRS/Home2005.htm.

[60] D. Jilli. BioCpu. EPFL, Laboratoire de systèmes logiques, February 2003.

[61] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy.

Introduction to the cell multiprocessor. IBM J. RES. & DEV, 49(4/5):589–604,

July/September 2005.

[62] T. Kamgaing, K. Ichikawa, X. Y. Zeng, K.-P. Hwang, Y. Min, and J. Kubota.

Future package technologies for wireless communication systems. Intel� Tech-

nology Journal, 9(4):353–364, Nov. 2005.

[63] N. B. Karayiannis and A. N. Venetsanopoulos. Artificial Neural Networks:

Learning Algorithms, Performance Evaluation, and Applications. Kluwer Aca-

demic Publishers, Norwell, MA, USA, 1992.

[64] S. Kawamura, N. Sasaki, T. Iwai, M. Nakano, and M. Takagi. Three-

dimensional CMOS IC’s fabricated by using beam recrystallization. 4(10):366–

368, Oct. 1983.

[65] J. S. Kilby. US Patent 3,138,743: Miniaturized electronic circuits, 1964.

[66] Kingbright. KAAF-5060PBESEEVGC RGB LED, November 2003. Available

from http://www.kingbright-europe.de.

[67] W. Knight. Most flexible electronic paper yet revealed. NewScientist.com news

service, Jan. 2004.

[68] R. Kurzweil. The Singularity Is Near: When Humans Transcend Biology.

Viking, 2005.

[69] J. W. Tseng L. A. Bodony, R. Bryan. US Patent 6,307,751: Flexible circuit

assembly, 2001.

[70] P. K. Lala, editor. Self-checking and fault-tolerant digital design. Morgan Kauf-

mann Publishers Inc., San Francisco, CA, USA, 2001.

[71] C. G. Langton. Self-reproduction in cellular automata. Physica D, 10:135–144,

1984.

[72] J. Lee, S. Adachi, F. Peper, and K. Morita. Asynchronous Game of Life. Physica

D Nonlinear Phenomena, 194:369–384, July 2004.

[73] H. A. Lichtfuss. US Patent 6,680,724: Flexible electronic viewing device, 2004.

[74] N. J. Macias and L. J. K. Durbeck. Self-assembling circuits with autonomous

fault handling. In A. Stoica, J. Lohn, R. Katz, D. Keymeulen, and R. S. Ze-

bulum, editors, Proceedings of the 2002 NASA/DODWorkshop Conference on

Evolvable Hardware, pages 46–55, Los Alamitos, CA, 2002. IEEE Computer

Society Press.

176 Bibliography

[75] D. Mange, M. Sipper, and P. Marchal. Embryonic electronics. BioSystems,

51(3):145–152, 1999.

[76] D. Mange, M. Sipper, A. Stauffer, and G. Tempesti. Toward robust integrated

circuits: The Embryonics approach. Proceedings of the IEEE, 88(4):516–541,

April 2000.

[77] D. Mange, A. Stauffer, G. Tempesti, F. Vannel, and A. Badertscher. Evolvable

Hardware, chapter 5, Bio-Inspired Computing Machines with Artificial Divi-

sion and Differentiation, pages 85–98. Genetic and Evolutionary Computation.

Springer US, 2006.

[78] D. Mange and M. Tomassini, editors. Bio-inspired Computing Machines: To-

ward Novel Computational Architectures. Presses Polytechniques et Universi-

taires Romandes, Lausanne, Switzerland, 1998.

[79] S. Mann. Smart clothing: The wearable computer and wearcam. Personal and

Ubiquitous Computing, 1(1):21–27, Mar. 1997.

[80] Sharp Mebius PC-RD3D will be the world’s first 3D laptop: http://www.
mobilemag.com/content/100/334/C2020/.

[81] J. Monteiro, V. Tiwari, and P. Rakesh. EDA for IC Implementation, Circuit

Design And Process Technology. CRC Press, March 2006.

[82] G. E. Moore. Cramming more components onto integrated circuits. Electronics,

38(8), April 1965.

[83] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost. HERMES: an infras-

tructure for low area overhead packet-switching networks on chip. Integrated

VLSI Journal, 38(1):69–93, 2004.

[84] J. M. Moreno, Y. Thoma, and E. Sanchez. POEtic: A prototyping platform

for bio-inspired hardware. In J.M. Moreno, J. Madrenas, and J. Cosp, editors,

Evolvable Systems: From Biology to Hardware (ICES 2005), volume 3637 of

LNCS, pages 177–187, Berlin Heidelberg, 2005. Springer-Verlag.

[85] S. K. Nayar and V. N. Anand. 3D display using passive optical scatterers. Com-

puter, 40(7):54–63, 2007.

[86] C. L. Nehaniv. Self-reproduction in asynchronous cellular automaton. In A. Sto-

ica, J. Lohn, R. Katz, D. Keymeulen, and R. S. Zebulum, editors, Proceedings

of the 2002 NASA/DOD Workshop Conference on Evolvable Hardware, pages

201–209, Los Alamitos, CA, 2002. IEEE Computer Society Press.

[87] A. Ngouanga, G. Sassatelli, L. Torres, T. Gil, A. Soares, and A. Susin. A con-

textual resources use: a proof of concept through the APACHES’ platform. In

Proceedings of the 2006 IEEE Workshop on Design and Diagnostics of Elec-

tronic Circuits and Systems (DDECS), pages 44–49, April 2006.

[88] Nova: http://www.nova.ethz.ch/.

Bibliography 177

[89] R. N. Noyce. US Patent 2,981,877: Semiconductor device and lead structure,

1961.

[90] A. Du Pasquier, H. E. Unalan, A Kanwal, S. Miller, and M. Chhowalla. Con-

ducting and transparent single-wall carbon nanotube electrodes for polymer-

fullerene solar cells. Applied Physics Letters, 87, 2005.

[91] D. A. Patterson and J. L. Hennessy. Computer Organization and Design: The

Hardware/Software Interface, Third Edition. Morgan Kaufmann, August 2004.

[92] L. D. Paulson. New electronic paper can display moving images. IEEE Com-

puter, 36(12):26, Dec. 2003.

[93] Perceptive pixel: http://www.perceptivepixel.com.

[94] J.-Y. Perrier, M. Sipper, and J. Zahnd. Toward a viable, self-reproducing uni-

versal computer. Physica D, 97:335–352, 1996.

[95] C. Peterson. Taking technology to the molecular level. Computer, 33(1):46–53,

2000.

[96] Pfeiffer report: http://www.pfeifferreport.com/trends/ett_
eink.html.

[97] D.C Pham, T. Aipperspach, and D. Boerstler et al. Overview of the architecture,

circuit design, and physical implementation of a first-generation CELL proces-

sor. IEEE Solid-State Circuits, 41(1):179–196, 2006.

[98] D.C Pham, E. Behnen, M. Bolliger, H.P. Hostee, C. Johns, J. Kalhe,

A. Kameyama, and J. Keaty. The design methodology and implementation of

a first-generation CELL processor: a multi-core SoC. In Proceedings of the

Custom Integrated Circuits Conference, pages 45–49. IEEE Computer Society,

September 2005.

[99] Polymer Vision�: http://www.polymervision.com.

[100] A. E. Upegui Posada. Dynamically reconfigurable bio-inspired hardware. PhD

thesis, EPFL, 1015 Lausanne, 2006. Thesis 3632.

[101] W. Poundstone. Recursive Universe: Cosmic Consequences and the Limits of

Scientific Knowledge. NTC Publishing Group, 1985.

[102] C. Poynton. A technical introduction to digital video. John Wiley and Sons,

1996.

[103] D. Ratner and M. Ratner. Nanotechnology: a gentle introduction to the next big

idea. P T R Prentice-Hall, Englewood Cliffs, NJ 07632, USA, 2003.

[104] J. A. Reggia, S. L. Armentrout, H.-H. Chou, and Y. Peng. Simple systems that

exhibit self-directed replication. Science, 259:1282–1287, February 1993.

[105] P. Rendell. Turing universality of the Game of Life. pages 513–539, 2002.

178 Bibliography

[106] H. F. Restrepo and D. Mange. An embryonics implementation of a self-

replicating universal Turing machine. In Y. Liu, K. Tanaka, M. Iwata,

T. Higuchi, and M. Yasunaga, editors, Evolvable Systems: From Biology to

Hardware (ICES 2001), volume 2210 of Lecture Notes in Computer Science,

pages 74–87. Springer-Verlag, Berlin, 2001.

[107] M. C. Roco andW. S. Bainbridge, editors. Converging technologies for improv-

ing human performance. Nanotechnology, biotechnology, information technol-

ogy and cognitive science. NSF/DOC - sponsored report, Arlington, VA, 2002.

[108] D. Roggen, D. Floreano, and C. Mattiussi. A morphogenetic evolutionary sys-

tem: Phylogenesis of the poetic circuit. In ICES, pages 153–164, 2003.

[109] R. Rojas and U. Hashagen, editors. The first computers: history and architec-

tures. MIT Press, Cambridge, MA, USA, 2000.

[110] Samsung electronics develops 16-chip multi-stack package technology:

http://www.samsung.com/tr/PressCenter/PressKit/
presskit_20061109_0000299907.asp.

[111] E. Sanchez, D. Mange, M. Sipper, M. Tomassini, A. Pérez-Uribe, and A. Stauf-

fer. Phylogeny, ontogeny, and epigenesis: Three sources of biological inspira-

tion for softening hardware. In T. Higuchi, M. Iwata, and W. Liu, editors, Pro-

ceedings of The First International Conference on Evolvable Systems: From

Biology to Hardware (ICES96), volume 1259 of Lecture Notes in Computer

Science, pages 35–54. Springer-Verlag, Heidelberg, 1997.

[112] L. Sekanina. Evolvable Components: From Theory to Hardware Implementa-

tions. SpringerVerlag, 2004.

[113] Quantum research group: http://www.qprox.com/.

[114] SiPix�: http://www.sipix.com.

[115] M. Sipper. The emergence of cellular computing. Computer, 32(7):18–26, July

1999.

[116] M. Sipper. Kinematic self-replicating machines by Robert A. Freitas, Jr., and

Ralph C. Merkle. Artif. Life, 12(1):187–188, 2006.

[117] M. Sipper, D. Mange, and A. Stauffer. Ontogenetic hardware. BioSystems,

1997. (to appear).

[118] M. Sipper and E. Sanchez. Configurable chips meld software and hardware.

Computer, 33(1):120–121, January 2000.

[119] M. Sipper, E. Sanchez, D. Mange, M. Tomassini, A. Pérez-Uribe, and A. Stauf-

fer. A phylogenetic, ontogenetic, and epigenetic view of bio-inspired hardware

systems. IEEE Transactions on Evolutionary Computation, 1(1):83–97, April

1997.

Bibliography 179

[120] M. Sipper, E. Sanchez, D. Mange, M. Tomassini, A. Pérez-Uribe, and A. Stauf-

fer. The POE model of bio-inspired hardware systems: A short introduction.

In J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L.

Riolo, editors, Genetic Programming 1997: Proceedings of the Second Annual

Conference, pages 510–511. Morgan Kaufmann, San Francisco, CA, 1997.

[121] S. Sirowy, Wu Yonghui, S. Lonardi, and F. Vahid. Clock-frequency assignment

for multiple clock domain systems-on-a-chip. Design, Automation and Test in

Europe Conference and Exhibition, pages 1–6, April 16-20 2007.

[122] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu,

and E. P. Woo. High-resolution inkjet printing of all-polymer transistor circuits.

Science, 290(5499):2123–2126, Dec. 2000.

[123] D. D. Spencer. The timetable of computers. Camelot Publishing Co., Ormond

Beach, FL, USA, 1997.

[124] A. Stauffer, D. Mange, G. Tempesti, and C. Teuscher. Biowatch: A giant elec-

tronic bio-inspired watch. In D. Keymeulen, A. Stoica, J. Lohn, and R. S. Ze-

bulum, editors, Proceedings of the Third NASA/DOD Workshop on Evolvable

Hardware, pages 185–192, Los Alamitos, CA, 2001. IEEE Computer Society.

[125] A. Stauffer, D. Mange, G. Tempesti, and C. Teuscher. A self-repairing and self-

healing electronic watch: The biowatch. In ICES ’01: Proceedings of the 4th

International Conference on Evolvable Systems: From Biology to Hardware,

pages 112–127, London, UK, 2001. Springer-Verlag.

[126] A. Stauffer and M. Sipper. Biomorphs implemented as a data and signals cellu-

lar automaton. In W. Banzhaf, T. Christaller, P. Dittrich, J. T. Kin, and J. Ziegler,

editors, Proceedings of the 7th European Conference on Artificial Life (ECAL

2003), volume 2801 of Advances in Artificial Life, pages 235–241, Berlin Hei-

delberg, 2003. Springer-Verlag.

[127] A. Stauffer and M. Sipper. Data and signals: A new kind of cellular automaton

for growing systems. In J. Lohn, R. Zebulum, J. Steincamp, D. Keymeulen,

A. Stoica, and M. I. Ferguson, editors, Proceedings of the 2003 NASA/DOD

Conference on Evolvable Hardware, pages 235–241, Los Alamitos, CA, 2003.

IEEE Computer Society.

[128] G. Tempesti. A new self-reproducing cellular automaton capable of construction

and computation. In F. Morán, A. Moreno, J. J. Merelo, and P. Chacón, editors,

ECAL’95: Third European Conference on Artificial Life, volume 929 of Lec-

ture Notes in Computer Science, pages 555–563, Heidelberg, 1995. Springer-

Verlag.

[129] G. Tempesti, D. Mange, E. Petraglio, A. Stauffer, and Y. Thoma. Developmental

Processes in Silicon: An Engineering Perspective. In J. Lohn et al., Eds., Pro-

ceedings, 2003 NASA/DoD Conference on Evolvable Hardware, pages 255–

264. IEEE Computer Society, Los Alamitos, Calif., 2003.

180 Bibliography

[130] C. Teuscher. Amorphous membrane blending: from regular to irregular cellular

computing machines. PhD thesis, EPFL, 1015 Lausanne, 2004. Thesis 2925.

[131] C. Teuscher, D. Mange, A. Stauffer, and G. Tempesti. Bio-inspired computing

tissues: Towards machines that evolve, grow, and learn. BioSystems, 68(2–

3):235–244, February–March 2003.

[132] Y. Thoma. Tissu Numérique Cellulaire à Routage et Configuration Dynamiques.

PhD thesis, EPFL, 1015 Lausanne, April 2005. Thesis 3226.

[133] Y. Thoma, G. Tempesti, E. Sanchez, and J.-M. Moreno Arostegui. POEtic:

An electronic tissue for bio-inspired cellular applications. BioSystems, 74(1-

3):191–200, August-October 2004.

[134] J. M. Tour. Molecular Electronics: Commercial Insights, Chemistry, Devices,

Architecture and Programming. World Scientific Publishing Company, New

Jersey, 2003.

[135] J. M. Tour, W. L. Van Zandt, C. P. Husband, S. M. Husband, L. S. Wilson, P. D.

Franzon, and D. P. Nackashi. Nanocell logic gates for molecular computing. In

Nanotechnology, IEEE Transactions on, volume 1 of 2, pages 100–109, June

2002.

[136] J. von Neumann. Theory of Self-Reproducing Automata. University of Illinois

Press, Illinois, 1966. Edited and completed by A. W. Burks.

[137] B. Warneke, M. Last, B. Liebowitz, and K. S. J. Pister. Smart dust: Communi-

cating with a cubic-millimeter computer. Computer, 34(1):44–51, 2001.

[138] R.Waser, editor. Nanoelectronics and Information Technology: Advanced Elec-

tronic Materials and Novel Devices. John Wiley & Sons, Inc., New York, NY,

USA, 2003.

[139] J. D. Watson and F. H. C. Crick. A structure for desoxyribose nucleid acid.

Nature, 171:737–738, 1953.

[140] D. Wiklund and D. Liu. SoCBUS: Switched network on chip for hard real

time embedded systems. In IPDPS’03: Proceedings of the 17th International

Symposium on Parallel and Distributed Processing, page 78.1, Washington, DC,

USA, 2003. IEEE Computer Society.

[141] Xilinx. SPARTAN� and SPARTAN�-XL Famillies Field Programmable Gate

Arrays, DS060 (v1.7) edition, June 2002.

[142] Xilinx. SPARTAN�3 FPGA Familly: Complete Data Sheet, DS099 (v2.2) edi-

tion, May 2007.

[143] Xlife program download page: http://surf.de.uu.net/zooland/
download/packages/xlife/xlife-3.0.tar.gz.

[144] X. Yao. Evolving artificial neural networks. Proceedings of the IEEE,

87(9):1423–1447, Sep. 1999.

Acronyms

ACE Automatic Computing Engine

ALU Arithmetic Logic Unit

ASIC Application-Specific Integrated Circuit

CA Cellular Automata

CAN Control Area Network

CISC Complex Instruction Set Computer

CLB Configurable Logic Block

CMOS Complementary Metal-Oxide-Semiconductor

CPLD Complex Programmable Logic Device

CPU Central Processing Unit

DCM Digital Clock Manager

DNA Deoxyribonucleic Acid

DPI Dots per Inch

DSCA Data and Signals Cellular Automaton

DSP Digital Signal Processor

EDVAC Electronic Discrete Variable Automatic Computer

ENIAC Electronic Numerical Integrator And Computer

EPIC Explicitly Parallel Instruction Computing

FPGA Field Programmable Gate Array

GALS Globally Asynchronous, Locally Synchronous

GND Ground

181

182 Bibliography

I/O Input/Output

IC Integrated Circuit

IP Intellectual Property

MCU Microcontroller unit

MSB Most Significant Bit

LCD Liquid Crystal Display

LED Light-Emitting Diode

LSB Least Significant Bit

LSL Logic Systems Laboratory

LUT Lookup Table

LVDS Low Voltage Differential Signaling

NoC Network-On-Chip

OLED Organic Light Emitting Diode

OS Operating System

PC Personal Computer

PCB Printed Circuit Board

PDA Personal Digital Assistant

PLA Programmable Logic Array

PWM Pulse-width modulation

RAM Random Access Memory

RGB Red Green Blue

RISC Reduced Instruction Set Computer

ROM Read-Only Memory

SiP System in Package

SoC System-On-Chip

SP-CSP Stacked Package-Chip Size Package

SR Shift Register

SRAM Static Random Access Memory

TDM Time Division Multiplexing

Bibliography 183

USB Universal Serial Bus

VHDL VHSIC Hardware Description Language

VHSIC Very-High-Speed Integrated Circuit

VLIW Very Long Instruction Word

VLSI Very-Large-Scale Integration

List of Figures

2.1 The Electronic Numerical Integrator And Computer (ENIAC) machine. 9

2.2 The first point contact transistor developed by J. Bardeen and W. Brat-

tain. Paper clips and razor blades were used to make the device. . . . 10

2.3 The first Integrated Circuit (IC) developed by R. Noyce. 11

2.4 The first Intel� 4004 microprocessor. Source: Intel�. 12

2.5 Diagram of the Microchip� Reduced Instruction Set

Computer (RISC) PIC10F20x microcontroller based on a

Harvard architecture. Source: [57] 14

2.6 Diagram of a dual core microprocessor, with CPU-local Level 1

caches, and a shared, on-die Level 2 cache. 15

2.7 (a) Cell microprocessor block diagram and (b) die photo. The first

generation Cell processor contains a Power Processor Element (PPE)

with a Power core, first- and second-level caches (L1 and L2), eight

Synergistic Processor Elements (SPEs) each containing a Direct Mem-

ory Access (DMA) unit, a Local Store memory (LS) and execution

units (SXUs), and memory and bus interface controllers, all intercon-

nected by a coherent on-chip bus. Source: [61] 16

2.8 Complementary Metal-Oxide-Semiconductor (CMOS) small standard

cell with three layers of metal layers. For visual purposes, the dielec-

tric has been removed. The yellow structures are metal interconnec-

tions, with the vertical pillars being contacts. The red structures are

polysilicon gates, and the blue at the bottom is the crystalline silicon

bulk. 17

2.9 Two individual ICs at the bottom-right and a stacked chip made of 19

layers of these ICs. Source: [58] . 18

2.10 Cross-sectional schematic of SP-CSP. Source: [62] 18

2.11 SPARTAN�3 Family Architecture. Source: [142] 20

2.12 Moore’s law: growth of transistor counts for Intel� processors. 21

2.13 Representation of a twisted carbon nanotube, which behaves like a

semiconductor. Source: [27] . 23

2.14 Nanotube used in an experimental field-effect transistor. Source: [27] 24

2.15 Example of a nanowire Programmable Logic Array (PLA) structure.

Source: [36] . 24

185

186 List of Figures

2.16 Details of a 3D Nanowire PLA. Source: [48] 25

2.17 The tri-dimensional representation of the POE model 27

2.18 Multicellular organization of a 6-cell organism expressing 6 different

genes. 29

2.19 Cellular differentiation of the organism with the operative genome and

its expressed gene depending on the coordinates. 30

2.20 Self-replication of a six-cell organism in a limited homogeneous array

of 6 × 4 cells (situation after 5 cellular divisions). 30

2.21 Self-repair of a 6-cell organism with four spare cells and a faulty column. 31

2.22 The Embryonics landscape: a four level hierarchy. 32

3.1 Photograph of the BioWall running the BioWatch application. 36

3.2 BioWall molecule structure. 38

3.3 Pictures of the BioLogic board. 38

3.4 Architecture of the BioLogic board. 39

3.5 BioWall clock and enable timings. 41

3.6 Picture of the BioDisplay board with the top-right display module re-

moved. 42

3.7 BioWall pixel ordering. 42

3.8 Picture of the BioStack. 43

3.9 BioWall’s rear with the red frame surrounding a rack. 44

3.10 Schematic of the BioWall architecture; each red rectangle correspond

to a rack. 46

3.11 The BioBox opened; the controller board is fixed in the cover on the

left ; the right box helds all connectors where each cable is going to

the racks. 47

3.12 BioSoft main window. 48

4.1 Game of Life evolution rule examples. 50

4.2 A Game of Life stable pattern: the glider 51

4.3 Life1 running on the BioWall. 51

4.4 inside the FPGA: Game of Life architecture. 52

4.5 Game of Life communication structure; each big gray box represents

a FPGA and the white box inside is a Game of Life cell core. 53

4.6 configuration scheme for loading the Game of Life initial pattern ;

each big gray box represents a FPGA and the white box inside is a

serial shift register. (This process is showed over a reduced BioWall
of only 5 rows.) . 54

4.7 Life16 running on the BioWall. 55

4.8 The minimal cell (2 × 2 molecules) with its genome at the start (t = 0). 58

4.9 The 15 characters forming the alphabet of an artificial genome. (a)

Graphical and hexadecimal representations of the 15 characters. (b)

Graphical representation of the status of each character. 59

4.10 Constructing the minimal cell (t = 4: north path, t = 8: east path,

t = 12: south path and north branch, t = 16: west path and loop

completion, t = 24: east branch, t = 28: north branch cancelation,

t = 40: east branch cancelation). 61

List of Figures 187

4.11 The two memory patterns for constructing a cell. 62

4.12 Patterns of characters triggering the paths to the north, east, south and

west molecules. 62

4.13 Macroscopic representations of the mother cell. (a) Activated path

from t = −1 to t = 40. (b) Number of time steps Δtn, Δte and Δtc. 63

4.14 Macroscopic representations of a multicellular organism. (a) The 2×2
organism. (b) Temporal characteristics of the minimal cell with the

different activation times of the initial path (ti), the northward outer

path (tn), the eastward outer path (te), and the inner path closing the

loop (tc). 64

4.15 Analyzing a multicellular organism made up of 2 × 2 minimal cells

(t = 32: cell 1.2 closed on itself and independent of its mother cell

1.1, t = 40: cell 2.1 closed on itself and independent of its mother cell

1.1, t = 56: cell 2.2 closed on itself and independent of its mother cell

2.1). 65

4.16 A possible implementation of the basic molecule as a novel Data and

Signals Cellular Automaton (DSCA). (a) Detailed architecture. (b)

Macroscopic representation made up of a processing unit (PU) and a

control unit (CU). (c) Macroscopic representation of the DSCA. (d)

State graph of the finite state machine ENC. (e) Modified graph of the

finite state machine ENC. 67

4.17 Two examples of non minimal self-replicating loops. (a) A 4 × 2 = 8
molecule loop (Δtn = 20, Δte = 28, Δtc = 32). (b) A 4 × 4 = 16
molecule loop (Δtn = 40, Δte = 60, Δtc = 64). 68

4.18 Self-replication of the “LSL” acronym. (a) Original specifications

(LSL = Logic Systems Laboratory). (b) The 12 × 6 = 72 molecules

of the basic cell. (c) Genome. (d) BioWall implementation displaying

both the genotypic path and the phenotypic shape (Photograph by E.

Petraglio). 73

5.1 The BioCube. 76

5.2 BioCube simulator. 77

5.3 Pictures of the BBall board. 79

5.4 Architecture of the BBall board. 80

5.5 LED intensity controlled by a Pulse-width modulation (PWM) signal. 82

5.6 Detail of the BBall inter-links. 84

5.7 Pictures of the BioCubeCtrl board. 86

5.8 BioCube synchronization: enable timing. 87

6.1 Simulation of the 3D Game of Life automaton running on the

BioCube. Red: the cell is alive; black: the cell is dead. 92

6.2 Inside the FPGA: 3D Game of Life architecture. The big grey box

implements the Game of Life including the automaton, display and

configuration modules; the other external modules allow the applica-

tion to interface with the Input/Outputs (I/Os) of the BBall easily. . . 94

6.3 Signals used with the cellular communication module. 95

188 List of Figures

6.4 Protocol details of the serial stream transmitting the initial pattern to

the BioCube. 95

6.5 Simulation of the 3D Tom Thumb running on the BioCube; the green
cube is replicated three times with the child structures colored in yel-

low, pink and red. 97

6.6 2D representation of the minimal 3D structure (2 × 2 × 2 cells) with

its configuration string at the start (t = 0). 98

6.7 Graphical and hexadecimal representations of the data. 98

6.8 Memory patterns for constructing a structure. (a) Shift data. (b) Load

data. 99

6.9 Constructing the minimal structure (t = 4: north path, t = 8: east

path, t = 12: south path, t = 16: up path, t = 20: north path (L =
2) and north branch (L = 1), t = 24: west path (L = 2) and east

branch (L = 1), t = 28: south path, t = 32: down path and structure

completion). 100

6.10 Patterns of data triggering the path signals. (a) Northward. (b) East-

ward. (c) Southward. (d) Westward. (e) Upward. (f) Downward. . . . 100

6.11 Example of a non minimal structure (4 × 3 × 3 cells). 101

6.12 Graphical and hexadecimal representations of the additional data. . . 101

6.13 Additional patterns of data triggering the path signals. (a) Westward.

(b) Eastward. 101

6.14 Basic cell of the three-dimensional seven-neighbor DSCA. (a) De-

tailed architecture. (b) Macroscopic representation made up of the

processing unit (PU) and the control unit (CU). (c) Macroscopic rep-

resentation of the DSCA in 3D. 102

7.1 The BioTissue cell structure. 109

7.2 The EStack - schematic . 109

7.3 Photograph of the BioTissue version composed of six EStacks. . . . 110

7.4 Pictures of the ECell board. 111

7.5 Architecture of the ECell board. 111

7.6 Pictures of the ERouting board. 113

7.7 Architecture of the ERouting board. 114

7.8 Detail of ERouting FPGA links with its ERouting neighbors and it

ECell module. 115

7.9 Pictures of the EPower board. 117

7.10 Architecture of the EPower board. 118

7.11 Picture of the EStack . 119

7.12 The BioTissue system. 120

7.13 Variant of the BioTissue: another arrangement of the EStacks boards. 121

7.14 The BioTissue with all its surrounding boards. 121

7.15 The BioTissue power units. 122

7.16 Main power control boards; large current demand means several wires

are needed to sustain these loads. 123

7.17 The BioTissue support structure and fan boards. 123

7.18 Detail of cellular communication between two adjacent ECell s. 126

7.19 ECell pixel ordering. 127

List of Figures 189

8.1 μOS starting screen (detail of the bottom-left of application window). 133

8.2 Window delimiting the new application zone; the unselected area still

displays the μOS application menu, with a reorganized layout. 134

8.3 Different types of ECell reconfiguration. 134

8.4 Detailed structure of a BioTissue cell when μOS is running. 136

8.5 μOS simplified functional diagram. Dashed blocks are tasks executed

inside the ERouting FPGA and all other tasks are done inside the ECell .137

8.6 eGol (v1) with a control menu and the game of life automaton. 140

8.7 Step-by-step mode. 141

8.8 eGol (v2) version with a control menu on the left and the Game of Life

automaton inside the green borders. 141

8.9 Step 1: differentiation of ECell ’s FPGAs. 142

8.10 Step 2: the first column gets the control menu configuration; all other

FPGAs get the Game of Life automaton bitstream. 143

8.11 Structural growth process of a minimal self-organizing cell made up

of six molecules when a growth signal is applied to the lower left

molecule at time t = i; when the path is about to close (t = i + 24),
the lower left molecule delivers a close signal. 145

8.12 Data input selection. (1) Northward. (2) Eastward. (3) Southward. (4)

Westward. 145

8.13 Triggered by the close signal of the nearest right neighbor cell (t = i),
the load process stores the molecular types and modes of the artificial

cell. 145

8.14 Molecular modes. (1) Living. (2) Spare. (3) Faulty. (4) Repair. (5)

Dead. 146

8.15 Molecular types. (1) Internal. (2) Top. (3) Top-left. (4) Left. (5)

Bottom-left. (6) Bottom. (7) Top-right. (8) Right. (9) Bottom-right. . 146

8.16 Functional configuration of the living molecules. 146

8.17 Northward and eastward growth signals triggering the cloning mech-

anism. (a) Structural branching processes. (b) Functional branching

processes. 147

8.18 Cicatrization mechanism performed as a repair process (t = i + 1 to

i + 3) followed by a reset process (t = i + 4 to i + 6). 147

8.19 Functional reconfiguration of the living and repair molecules. 147

8.20 Regeneration mechanism performed as a repair process (t = i + 1)
followed by a kill process (t = i + 2 to i + 5). 148

8.21 One-dimensional organism composed of three cells resulting from the

structural configuration, functional configuration and cloning mecha-

nisms applied to a totipotent cell. 148

8.22 Graphical distortion resulting from the cicatrization and reconfigura-

tion mechanisms applied to the middle cell of the organism. 149

8.23 Scar resulting from the regeneration mechanism applied to the organ-

ism. 149

8.24 Processes performed on the middle cell. (a) Structural growth. (b)

Load. (c) Functional growth. (d) Repair and reset. (e) Functional

regrowth. (f) Kill. 150

190 List of Figures

8.25 Cloning of the “SOS” acronym, totally realized at the cellular level

and partially achieved at the organismic level, on the BioTissue. . . 151

8.26 Cicatrization and regeneration of the “SOS” acronym on the

BioTissue. 151

8.27 The BioTissue running three different applications simultaneously:

eSOS on the left with two cells of the “SOS” acronym, eGol in the

middle, and again eSOS on the right with six cells of the minimal

structure. 153

9.1 The Readius� reader manufactured by Polymer Vision�. Source:[99] 156

9.2 Electronic newspaper; control case at the bottom with its flexible dis-

play. Source: IBM. 157

9.3 The future electronic newspaper will look like the traditional newsprint. 157

9.4 Color screen, thin and bendable like a paper sheet. Source: Sony�. . . 158

9.5 Cross section of E Ink� microcapsules. Source: E Ink�. 158

9.6 (a) Roll-to-Roll manufacturing process used by SiPix� to produce

their flexible display. (b) Structure of the SiPix� display. Source: [114] 160

9.7 Structure of a papel. 161

10.1 Three different methods for distributing tasks over a cellular network.

Examples based on a small BioTissue of 3 × 3 cells. 169

List of Tables

2.1 Comparison of microprocessor, Application-Specific Integrated

Circuit (ASIC) and FPGA technologies.

(“-” means disadvantage “0” neutral and “+” advantage). 19

3.1 BioLogic FPGA I/O summary. 40

3.2 BioWall display interface. 43

4.1 Game of Life comparisons: computer/BioWall. 56

5.1 BBall FPGA I/O summary. 81

5.2 G control signal meaning for the boot loader and the applications. . . 87

7.1 ECell I/O summary. 112

7.2 Inter-EStack I/O summary. 119

7.3 ECell 1 bit display interface. 128

7.4 ECell 8 bit display interface. 128

7.5 ECell GRAM memory content. 128

8.1 μOS computed parameters. 133

8.2 ECell Lookup Table (LUT) used for the two eGol variants. 143

10.1 Comparison of task distribution algorithms. (“-” means bad results,

“0” neutral and “+” good results) . 169

191

192 List of Tables

Contents

Version abrégée i

Abstract iii

1 Introduction 1
1.1 Bio-inspired cellular computing . 1

1.2 Thesis goal . 2

1.3 Thesis organization . 3

1.3.1 Three biologically-inspired machines 3

1.3.2 Two common applications 3

The Game of Life . 4

Self-replicating loop . 4

1.3.3 The electronic paper . 5

1.4 Contributions . 5

1.4.1 BioWall . 5

1.4.2 BioCube . 5

1.4.3 BioTissue . 5

1.4.4 Electronic paper . 6

2 The computer through the ages 7
2.1 The birth of the computer . 7

2.1.1 The first computing machine 8

2.1.2 The invention of the transistor 8

2.1.3 The integrated circuit . 10

2.1.4 From the microprocessor to the Personal Computer (PC) . . . 10

2.2 Today’s computers . 11

2.2.1 Microprocessor architecture 13

Single core . 13

Multi-cores . 14

3D electronics . 15

2.2.2 Components . 17

ASIC . 18

Microprocessors . 19

FPGA . 19

193

194 Contents

2.3 The future of the computer . 20

2.3.1 Nanotechnology and future architectures 22

2.3.2 Nanoelectronics and nano-computer 23

2.3.3 Bio-inspiration . 25

The POE model . 25

The Embryonics project . 28

2.4 Towards cellular machines . 33

3 BioWall hardware description 35
3.1 Specifications and global overview 35

3.1.1 BioWall specifications . 36

3.1.2 BioWall overview . 37

3.2 BioWall board description . 38

3.2.1 The BioLogic board . 38

3.2.2 The BioDisplay board . 41

3.2.3 The BioStack . 42

3.2.4 The BioWall: an assemblage of BioStack modules 43

Power supply . 45

Interface boards . 45

3.2.5 The BioBox . 45

3.2.6 BioSoft . 47

3.3 Conclusion . 47

4 BioWall applications 49
4.1 Game of Life . 49

4.1.1 Version 1: Life1 . 51

Initial pattern . 53

4.1.2 Version 2: Life16 . 55

4.1.3 Performance . 55

4.1.4 Game of Life conclusion . 55

4.2 Tom Thumb . 56

4.2.1 Introduction and survey . 56

Self-replicating loops . 56

Self-replicating loops with computing capabilities 57

Self-replicating loop with universal construction 57

4.2.2 The Tom Thumb algorithm for cell division 58

Cell division in living organisms 58

Initial conditions . 58

Constructing the cell . 59

Dividing the mother cell into two daughter cells 60

Growing a multicellular organism 60

Defining the priorities between cells 64

Towards a hardware implementation: the Data and Signals

Cellular Automaton (DSCA) 65

What’s new with the Data and Signals Cellular Automaton

(DSCA) ? . 66

4.2.3 Generalization and design methodology 68

Contents 195

Non minimal loops . 68

The LSL acronym design example 69

Classical cellular automaton versus Data and Signals Cellular

Automaton (DSCA) 70

Universal construction . 71

4.2.4 Tom Thumb conclusion . 71

4.3 Conclusion . 72

5 BioCube hardware description 75
5.1 Specifications and global overview 75

5.1.1 BioCube specifications . 77

5.1.2 BioCube overview . 78

5.2 BioCube board description . 79

5.2.1 The BBall board . 79

Display management . 81

5.2.2 The BioCube: an assemblage of BBall boards 83

Cellular communications . 83

5.2.3 The BioCubeCtrl . 85

Global synchronization . 86

5.3 Boot loader . 87

5.3.1 Enumeration . 88

5.3.2 Application launch . 88

5.3.3 Application storage . 89

5.4 Conclusion . 89

6 BioCube applications 91
6.1 3D Game of Life . 91

6.1.1 Application operations . 92

6.1.2 Application architecture . 93

Initial pattern . 94

6.1.3 3D Game of Life conclusion 96

6.2 3D Tom Thumb . 96

6.2.1 The 3D Tom Thumb algorithm 97

6.2.2 The Data and Signals Cellular Automaton (DSCA) 99

6.2.3 BioCube implementation 103

6.2.4 3D Tom Thumb conclusion 103

6.3 Conclusion . 104

7 BioTissue hardware description 105
7.1 Characteristics and global overview 105

7.1.1 Introduction and motivation for creating a new bio-inspired

machine . 105

7.1.2 From BioWall to BioTissue 106

BioWall limitations . 106

The BioTissue specifications 107

7.1.3 Overview of the BioTissue 108

7.2 BioTissue boards description . 110

196 Contents

7.2.1 The ECell board . 110

7.2.2 The ERouting board . 112

High speed communication 115

7.2.3 The EDisplay board . 116

7.2.4 The EPower board . 116

7.2.5 The EStack . 118

7.2.6 The BioTissue: an assemblage of EStacks modules 120

Power supply . 120

Heat consideration . 122

The BioTissueCtrl : monitoring and PC interface 124

7.3 Firmware and software features . 124

7.3.1 Configuration . 125

7.3.2 Cellular communications . 125

7.3.3 Routing . 126

7.3.4 Display driving . 127

7.4 Conclusion and future work . 129

8 BioTissue applications 131
8.1 μOS: a tiny operating system . 131

8.1.1 Operation and reconfiguration 132

Application parameters and reconfiguration 132

8.1.2 μOS architecture . 135

8.1.3 μOS task details . 135

Initialization . 135

Starting an application . 136

ECell reconfiguration . 138

8.1.4 μOS specificity . 138

8.1.5 μOS conclusion and future work 138

8.2 eGol : Game of Life application . 138

8.2.1 Automaton synchronization 139

8.2.2 eGol control . 140

Clock speed . 140

Initial states . 140

8.2.3 eGol architecture . 141

8.2.4 eGol conclusion and future work 143

8.3 eSOS: self-organizing bio-inspired application 143

8.3.1 Self-developing mechanisms 144

Structural configuration . 144

Functional configuration . 144

Cloning . 145

Cicatrization . 146

Regeneration . 146

8.3.2 SOS acronym organism . 148

Structural configuration, functional configuration and cloning 148

Cicatrization and functional reconfiguration 148

Regeneration . 149

Basic processes . 149

Contents 197

8.3.3 eSOS application . 150

8.3.4 eSOS conclusion and future work 151

8.4 Conclusion . 152

9 Towards electronic paper 155
9.1 What is electronic paper? . 155

9.1.1 Products using a paper-like display 156

9.1.2 Electronic paper . 156

9.2 Current research . 157

9.2.1 Displays . 157

9.2.2 Input interfaces . 158

9.2.3 Energy . 159

9.2.4 Electronic components . 159

9.2.5 Manufacturing methodology 159

9.3 The BioTissue: a basis for a new electronic paper architecture 159

9.3.1 Structural definition . 160

Variation based on nanoelectronic components 161

9.3.2 Advantages . 162

9.3.3 Disadvantages . 162

9.4 Conclusion . 162

10 Conclusions 165
10.1 General conclusions . 165

10.1.1 Three cellular machines . 166

10.1.2 Two common applications 166

10.1.3 Electronic paper: where all the previous research converge . . 167

10.2 Future work . 167

10.2.1 BioCube nanoscale implementation 167

10.2.2 Evaluation of cell resources 168

10.2.3 Operating system upgrade 168

10.2.4 Self-organized microprocessor 168

10.2.5 Detailed structure for the electronic paper 170

Bibliography 171

Acronyms 181

List of Figures 185

List of Tables 191

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

