529 research outputs found

    A describing function study of saturated quantization and its application to the stability analysis of multi-bit sigma delta modulators

    Get PDF
    Just as their single-bit counterparts, multi-bit sigma delta modulators exhibit nonlinear behavior due to the presence of the quantizer in the loop. In the multi-bit case this is caused by the fact that any quantizer has a limited output range and hence gives an implicit saturation effect. Due to this, any multi-bit modulator is prone to modulator overloading. Unfortunately, until now, designers had to rely on extensive time-domain simulations to predict the overloading level, because there is no adequate analytical theory to model this effect. In this work, we have developed such an analytical theory based on multiple input describing function analysis. This way, we obtained expressions for the signal gain, the noise gain and the variance of the quantization noise. Here, both the case of DC as well as sinusoidal signals was considered. These results were used for the stability analysis of multi-bit Sigma Delta modulators, which allows to predict the overloading level. Code implementing the proposed expressions is available for download at http://cas1.elis.ugent. be/cas/en/download

    Micromachined vibratory gyroscopes controlled by a high order band-pass sigma delta modulator.

    No full text
    Abstract—This work reports on the design of novel closed-loop control systems for the sense mode of a vibratory-rate gyroscope based on a high-order sigma-delta modulator (SDM). A low-pass and two distinctive bandpass topologies are derived, and their advantages discussed. So far, most closed-loop force-feedback control systems for these sensors were based on low-pass SDM’s. Usually, the sensing element of a vibratory gyroscope is designed with a high quality factor to increase the sensitivity and, hence, can be treated as a mechanical resonator. Furthermore, the output characteristic of vibratory rate gyroscopes is narrowband amplitude- modulated signal. Therefore, a bandpass M is a more appropriate control strategy for a vibratory gyroscope than a low-pass SDM. Using a high-order bandpass SDM, the control system can adopt a much lower sampling frequency compared with a low-pass SDM while achieving a similar noise floor for a given oversampling ratio (OSR). In addition, a control system based on a high-order bandpass SDM is superior as it not only greatly shapes the quantization noise, but also alleviates tonal behavior, as is often seen in low-order SDM control systems, and has good immunities to fabrication tolerances and parameter mismatch. These properties are investigated in this study at system level

    Contribución al modelado y diseño de moduladores sigma-delta en tiempo continuo de baja relación de sobremuestreo y bajo consumo de potencia

    Get PDF
    Continuous-Time Sigma-Delta modulators are often employed as analog-to-digital converters. These modulators are an attractive approach to implement high-speed converters in VLSI systems because they have low sensitivity to circuit imperfections compared to other solutions. This work is a contribution to the analysis, modelling and design of high-speed Continuous-Time Sigma-Delta modulators. The resolution and the stability of these modulators are limited by two main factors, excess-loop delay and sampling uncertainty. Both factors, among others, have been carefully analysed and modelled. A new design methodology is also proposed. It can be used to get an optimum high-speed Continuous-Time Sigma-Delta modulator in terms of dynamic range, stability and sensitivity to sampling uncertainty. Based on the proposed design methodology, a software tool that covers the main steps has been developed. The methodology has been proved by using the tool in designing a 30 Megabits-per-second Continuous-Time Sigma-Delta modulator with 11-bits of dynamic range. The modulator has been integrated in a 0.13-”m CMOS technology and it has a measured peak SNR of 62.5dB

    Calibration of DAC mismatch errors in sigma delta ADCs based on a sine-wave measurement

    Get PDF
    We present an offline calibration procedure to correct the nonlinearity due element mismatch in the digital-to-analog converter (DAC) of a multibit Sigma Delta-modulation A/D converter. The calibration uses a single measurement on a sinusoidal input signal, from which the DAC errors can be estimated. The main quality of the calibration method is that it can be implemented completely in the digital domain (or in software) and does not intervene in any way in the analog modulator circuit. This way, the technique is a powerful tool for verifying and debugging designs. Due to the simplicity of the method, it may be also a viable approach for factory calibration

    Design, analysis and evaluation of sigma-delta based beamformers for medical ultrasound imaging applications

    Get PDF
    The inherent analogue nature of medical ultrasound signals in conjunction with the abundant merits provided by digital image acquisition, together with the increasing use of relatively simple front-end circuitries, have created considerable demand for single-bit beamformers in digital ultrasound imaging systems. Furthermore, the increasing need to design lightweight ultrasound systems with low power consumption and low noise, provide ample justification for development and innovation in the use of single-bit beamformers in ultrasound imaging systems. The overall aim of this research program is to investigate, establish, develop and confirm through a combination of theoretical analysis and detailed simulations, that utilize raw phantom data sets, suitable techniques for the design of simple-to-implement hardware efficient digital ultrasound beamformers to address the requirements for 3D scanners with large channel counts, as well as portable and lightweight ultrasound scanners for point-of-care applications and intravascular imaging systems. In addition, the stability boundaries of higher-order High-Pass (HP) and Band-Pass (BP) Σ−Δ modulators for single- and dual- sinusoidal inputs are determined using quasi-linear modeling together with the describing-function method, to more accurately model the modulator quantizer. The theoretical results are shown to be in good agreement with the simulation results for a variety of input amplitudes, bandwidths, and modulator orders. The proposed mathematical models of the quantizer will immensely help speed up the design of higher order HP and BP Σ−Δ modulators to be applicable for digital ultrasound beamformers. Finally, a user friendly design and performance evaluation tool for LP, BP and HP modulators is developed. This toolbox, which uses various design methodologies and covers an assortment of modulators topologies, is intended to accelerate the design process and evaluation of modulators. This design tool is further developed to enable the design, analysis and evaluation of beamformer structures including the noise analyses of the final B-scan images. Thus, this tool will allow researchers and practitioners to design and verify different reconstruction filters and analyze the results directly on the B-scan ultrasound images thereby saving considerable time and effort

    A selectable-bandwidth 3.5 mW, 0.03 mm(2) self-oscillating Sigma Delta modulator with 71 dB dynamic range at 5 MHz and 65 dB at 10 MHz bandwidth

    Get PDF
    In this paper we present a dual-mode third order continuous time Sigma Delta modulator that combines noise shaping and pulse-width-modulation (PWM). In our 0.18 micro-m CMOS prototype chip the clock frequency equals 1 GHz, but the PWM carrier is only around 125 MHz. By adjusting the loop filter, the ADC bandwidth can be set to 5 or 10 MHz. In the 5 MHz mode the peak SNDR equals 64 dB and the dynamic range 71 dB. In the 10 MHz mode the peak SNDR equals 58 dB and the DR 65 dB. This performance is achieved at an attractively low silicon area of 0.03 mm^2 and a power consumption of 3.5 mW

    Contribution to the design of continuous -time Sigma - Delta Modulators based on time delay elements

    Get PDF
    The research carried out in this thesis is focused in the development of a new class of data converters for digital radio. There are two main architectures for communication receivers which perform a digital demodulation. One of them is based on analog demodulation to the base band and digitization of the I/Q components. Another option is to digitize the band pass signal at the output of the IF stage using a bandpass Sigma-Delta modulator. Bandpass Sigma- Delta modulators can be implemented with discrete-time circuits, using switched capacitors or continuous-time circuits. The main innovation introduced in this work is the use of passive transmission lines in the loop filter of a bandpass continuous-time Sigma-Delta modulator instead of the conventional solution with gm-C or LC resonators. As long as transmission lines are used as replacement of a LC resonator in RF technology, it seems compelling that transmission lines could improve bandpass continuous-time Sigma-Delta modulators. The analysis of a Sigma- Delta modulator using distributed resonators has led to a completely new family of Sigma- Delta modulators which possess properties inherited both from continuous-time and discretetime Sigma-Delta modulators. In this thesis we present the basic theory and the practical design trade-offs of this new family of Sigma-Delta modulators. Three demonstration chips have been implemented to validate the theoretical developments. The first two are a proof of concept of the application of transmission lines to build lowpass and bandpass modulators. The third chip summarizes all the contributions of the thesis. It consists of a transmission line Sigma-Delta modulator which combines subsampling techniques, a mismatch insensitive circuitry and a quadrature architecture to implement the IF to digital stage of a receiver

    Design and implementation of a wideband sigma delta ADC

    Get PDF
    Abstract. High-speed and wideband ADCs have become increasingly important in response to the growing demand for high-speed wireless communication services. Continuous time sigma delta modulators (CTƩ∆M), well-known for their oversampling and noise shaping properties, offer a promising solution for low-power and high-speed design in wireless applications. The objective of this thesis is to design and implement a wideband CTƩ∆M for a global navigation satellite system(GNSS) receiver. The targeted modulator architecture is a 3rdorder single-bit CTƩ∆M, specifically designed to operate within a 15 MHz signal bandwidth. With an oversampling ratio of 25, the ADC’s sampling frequency is set at 768 MHz. The design goal is to achieve a theoretical signal to noise ratio (SNR) of 55 dB. This thesis focuses on the design and implementation of the CTƩ∆M, building upon the principles of a discrete time Ʃ∆ modulator, and leveraging system-level simulation and formulations. A detailed explanation of the coefficient calculation procedure specific to CTƩ∆ modulators is provided, along with a "top-down" design approach that ensures the specified requirements are met. MATLAB scripts for coefficient calculation are also included. To overcome the challenges associated with the implementation of CTƩ∆ modulators, particularly excess loop delay and clock jitter sensitivity, this thesis explores two key strategies: the introduction of a delay compensation path and the utilization of a finite impulse response (FIR) feedback DAC. By incorporating a delay compensation path, the stability of the modulator can be ensured and its noise transfer function (NTF) can be restored. Additionally, the integration of an FIR feedback DAC addresses the issue of clock jitter sensitivity, enhancing the overall performance and robustness of the CTƩ∆M. The CTƩ∆Ms employ the cascade of integrators with feed forward (CIFF) and cascade of integrators with feedforward and feedback (CIFF-B) topologies, with a particular emphasis on the CIFF-B configuration using 22nm CMOS technology node and a supply voltage of 0.8 V. Various simulations are performed to validate the modulator’s performance. The simulation results demonstrate an achievable SNR of 55 dB with a power consumption of 1.36 mW. Furthermore, the adoption of NTF zero optimization techniques enhances the SNR to 62 dB.Laajakaistaisen jatkuva-aikaisen sigma delta-AD-muuntimen suunnittelu ja toteutus. TiivistelmĂ€. Nopeat ja laajakaistaiset AD-muuntimet ovat tulleet entistĂ€ tĂ€rkeĂ€mmiksi nopeiden langattomien kommunikaatiopalvelujen kysynnĂ€n kasvaessa. Jatkuva-aikaiset sigma delta -modulaattorit (CTƩ∆M), joissa kĂ€ytetÀÀn ylinĂ€ytteistystĂ€ ja kohinanmuokkausta, tarjoavat lupaavan ratkaisun matalan tehonkulutuksen ja nopeiden langattomien sovellusten suunnitteluun. TĂ€mĂ€n työn tarkoituksena on suunnitella ja toteuttaa laajakaistainen jatkuva -aikainen sigma delta -modulaattori satelliittipaikannusjĂ€rjestelmien (GNSS) vastaanottimeen. Arkkitehtuuriltaan modulaattori on kolmannen asteen 1-bittinen CTƩ∆M, jolla on 15MHz:n signaalikaistanleveys. YlinĂ€ytteistyssuhde on 25 ja AD muuntimen nĂ€ytteistystaajuus 768 MHz. Tavoitteena on saavuttaa teoreettinen 55 dB signaalikohinasuhde (SNR). TĂ€mĂ€ työ keskittyy jatkuva-aikaisen sigma delta -modulaattorin suunnitteluun ja toteutukseen, perustuen diskreettiaikaisen Ʃ∆-modulaattorin periaatteisiin ja systeemitason simulointiin ja mallitukseen. Jatkuva-aikaisen sigma delta -modulaattorin kertoimien laskentamenetelmĂ€ esitetÀÀn yksityiskohtaisesti, ja vaatimusten tĂ€yttyminen varmistetaan “top-down” -suunnitteluperiaatteella. LiitteenĂ€ on kertoimien laskemiseen kĂ€ytetty MATLAB-koodi. Jatkuva-aikaisten sigma delta -modulaattoreiden erityishaasteiden, liian pitkĂ€n silmukkaviiveen ja kellojitterin herkkyyden, voittamiseksi tutkitaan kahta strategiaa, viiveen kompensointipolkua ja FIR takaisinkytkentĂ€ -DA muunninta. Viivekompensointipolkua kĂ€yttĂ€mĂ€llĂ€ modulaattorin stabiilisuus ja kohinansuodatusfunktio saadaan varmistettua ja korjattua. LisĂ€ksi FIR takaisinkytkentĂ€ -DA-muuntimen kĂ€yttö pienentÀÀ kellojitteriherkkyyttĂ€, parantaen jatkuva aikaisen sigma delta -modulaattorin kokonaissuorituskykyĂ€ ja luotettavuutta. Toteutetuissa jatkuva-aikaisissa sigma delta -modulaattoreissa on kytketty perĂ€kkĂ€in integraattoreita myötĂ€kytkentĂ€rakenteella (CIFF) ja toisessa sekĂ€ myötĂ€- ettĂ€ takaisinkytkentĂ€rakenteella (CIFF-B). PÀÀhuomio on CIFF-B rakenteessa, joka toteutetaan 22nm CMOS prosessissa kĂ€yttĂ€en 0.8 voltin kĂ€yttöjĂ€nnitettĂ€. Suorityskyky varmistetaan erilaisilla simuloinneilla, joiden perusteella 55 dB SNR saavutetaan 1.36 mW tehonkulutuksella. LisĂ€ksi kohinanmuokkausfunktion optimoinnilla SNR saadaan nostettua 62 desibeliin
    • 

    corecore