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Abstract 
The research carried out in this thesis is focused in the development of a new class of 

data converters for digital radio. There are two main architectures for communication receivers 

which perform a digital demodulation. One of them is based on analog demodulation to the 

base band and digitization of the I/Q components. Another option is to digitize the band pass 

signal at the output of the IF stage using a bandpass Sigma-Delta modulator. Bandpass Sigma-

Delta modulators can be implemented with discrete-time circuits, using switched capacitors or 

continuous-time circuits. 

The main innovation introduced in this work is the use of passive transmission lines in 

the loop filter of a bandpass continuous-time Sigma-Delta modulator instead of the 

conventional solution with gm-C or LC resonators. As long as transmission lines are used as 

replacement of a LC resonator in RF technology, it seems compelling that transmission lines 

could improve bandpass continuous-time Sigma-Delta modulators. The analysis of a Sigma-

Delta modulator using distributed resonators has led to a completely new family of Sigma-

Delta modulators which possess properties inherited both from continuous-time and discrete-

time Sigma-Delta modulators. 

In this thesis we present the basic theory and the practical design trade-offs of this new 

family of Sigma-Delta modulators. Three demonstration chips have been implemented to 

validate the theoretical developments. The first two are a proof of concept of the application of 

transmission lines to build lowpass and bandpass modulators. The third chip summarizes all 

the contributions of the thesis. It consists of a transmission line Sigma-Delta modulator which 

combines subsampling techniques, a mismatch insensitive circuitry and a quadrature 

architecture to implement the IF to digital stage of a receiver. 
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Introduction 
The semiconductor electronics industry has achieved an explosive growth over the last 

few decades since the invention of monolithic integrated circuits (ICs) in the early 1960's. This 

progress is a direct consequence of rapid advances in information technologies and large-scale 

system design. The use of ICs in high-performance computing, telecommunications, and 

consumer electronics has been growing at a very fast pace. A number of different IC fabrication 

technologies are available to us. Because of its intrinsic feature in low-power consumption, low 

noise margins, and ease of design, CMOS emerged as the dominant Very-Large-Scale 

Integration (VLSI) IC technology and can be regarded as the main driver for semiconductor 

device scaling. Nowadays, CMOS VLSI ICs are widely used to develop RAM chips, 

microprocessor chips, digital signal processor chips, application specific integrated circuits, and 

system-on-chip design solutions. The continuous introduction of new VLSI CMOS products 

with the enhanced performance, smaller feature sizes, lower energy consumption per binary 

transition, faster transistor switching speed, and lower cost has revolutionized the existing 

market as well as created new commercial opportunities with intention to further dominate the 

market [Wes92].  

One of the main applications where CMOS technology is used is in wireless 

communication systems. In most of these applications, the “physical” information comes as 

analog signals. Therefore, these systems require Analog-to-Digital Converters (ADC) as long as 

Digital-to-Analog Converters (DAC) to connect with the “real world”. 

The application of digital techniques to process analog modulated RF signals in radio 

receivers requires high linearity and high-resolution ADCs. In portable applications these 

converters must have an extremely low-power consumption to allow a long standby time. In 

low-cost signal processing applications these converters are combined with a digital signal 

processing system onto a single chip. Today digital signal processing systems use advanced 

CMOS technologies requiring the ADC to be implemented in the same (digital) technology. 

Such an implementation requires special circuit techniques [Pla97]. 

These converters contain both digital and analog circuitry, and their speed and accuracy 

is usually limited by that of the analog components. As the speed and accuracy of the internal 

Digital Signal Processing (DSP) increases, the corresponding requirements on these converters 

also become harder to meet. Also, while state-of-the-art IC processes help with the design of 
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faster analog as well as digital circuits, they are detrimental rather than helpful in meeting the 

analog accuracy specifications due to their reduced dimensions and supply voltages [Moo99]. 

There are two main architectures for communication receivers which perform a digital 

demodulation. One of them is based on analog demodulation to the base band and digitization 

of the I/Q low pass components. For this purpose, Sigma-Delta Modulators (Σ∆M) have been 

used extensively. Another possible choice is to digitize the band pass signal at the output of the 

IF stage in a superheterodyne receiver.  In that case, subsampling pipeline ADCs are the most 

common option although Bandpass Sigma-Delta modulators (BP-Σ∆M) are another alternative. 

Bandpass Σ∆Ms have considerably evolved [Sch06], [Luh06] since its conception [Pau]. 

Compared with a receiver with base band A/D conversion, a receiver with a bandpass A/D 

converter at IF has the advantages of being free from interferences such as DC offset, flicker 

noise, LO leakage and allows digital I/Q demodulation. Bandpass Σ∆Ms can be implemented 

with discrete-time (DT) circuits, using switched capacitors (SC) or continuous-time (CT) 

circuits, usually using gm-C or LC resonators. Switched capacitor Σ∆Ms are able to produce 

robust performance, but only at low speed. The major drawback of a high speed SC-Σ∆M is the 

settling time of the SC filter, which requires the opamps to have a very large bandwidth. On the 

other hand, CT-Σ∆Ms are able to operate at much higher sampling frequencies compared with 

their SC counterparts. However, conventional CT-Σ∆Ms implementations are limited by effects 

such as clock jitter, low resonator Q or feedback loop delay. 

Motivation and objectives of the thesis 

A LC resonator was the key component of classical bandpass CT-Σ∆Ms [Sch96] [Tro93]. 

Transmission lines are used as replacement of a LC resonator at high frequencies in RF 

technology. The original idea of the thesis was to exploit this analogy between a LC resonator 

and a transmission line, because it seemed compelling that transmission lines could improve 

bandpass CT-Σ∆Ms.  In the development of such bandpass converters, the author has found 

that the mathematical modeling of a transmission line Σ∆M leads to a completely new family of 

Σ∆Ms. 

The main advantage of using transmission lines instead of LC or gm-C resonators in a 

Σ∆M is that the system behavior resembles more to a discrete time modulator than a continuous 

time modulator, inheriting its robustness. Yet, it uses continuous time circuitry without 
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switches or opamp settling constraints. In particular, building a band-pass Σ∆M with the 

approach presented in this thesis, benefits from the high Q factor of transmission lines, allows 

sub-sampling of the input [Kap05], permits a fixed loop delay [Her04] and has a smaller clock 

jitter sensitivity than that of an equivalent CT solution [Her03]. Moreover, the I and Q paths of a 

quadrature Σ∆M may be time multiplexed through a single loop filter if it is implemented with 

transmission lines [Ree07], eliminating any mismatch.  

On the other hand, to fully seize the properties of transmission line bandpass Σ∆Ms, 

we would need to integrate the transmission lines together with the associated active elements 

in a single chip. This is nowadays only possible at very high frequencies. The demonstration 

circuits that we present in this thesis operate at a sampling rate of hundreds of megahertz and 

therefore require off-chip coaxial transmission lines. 

A full integration of the transmission lines in a chip could be possible, but the 

technological aspects of such integration are beyond the scope of this thesis. In this work we 

have preferred to focus on the theoretical development of the transmission line Σ∆Ms and their 

applications, which is a preliminary step before fully integrated solutions can be implemented 

as competitive options for the market. However, we believe that the advantages of transmission 

line Σ∆Ms to implement data converters at very high frequencies may motivate more research 

on the field, especially in the achievement of a full integrated solution.  

As a consequence, the main objectives that we have targeted for this thesis are: 

• To develop the basic mathematical theory that permits to design a Σ∆M using 

continuous time delays (Chapter 2). 

• To make a survey of the possible implementations alternatives for such 

modulators (Chapter 3) 

• To analyze the advantages and implementation problems of Σ∆Ms using 

continuous time delays implemented with transmission lines (Chapter 4). 

• To validate experimentally the concepts developed in the thesis with three 

demonstration chips (Chapters 5, 6 and 7). 
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Structure of the thesis 

This document is divided into two main blocks. The first block comprises the 

theoretical modeling and the analysis of the implementation issues of transmission lines Σ∆Ms. 

The second block comprises the experimental work showing the design details and 

measurements of the three demonstration chips. The structure of the document is shown in the 

following diagram: 

 

THEORETICAL 
MODEL

(Chapter 2)

EXPERIMENTAL 
WORK

LOWPASS TL- M 
0.6 m CMOS
(Chapter 5)

BANDPASS TL- M 
0.35 m CMOS

(Chapter 6)

QUADRATURE
TL- M

0.35 m CMOS
(Chapter 7)

IMPLEMENTATION 
ISSUES

(Chapter 3, 4)

 

Figure I.1. Structure of the document. 
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CHAPTER 1 
Introduction to Sigma-Delta A/D Converters 
for Radio Receivers 

1.1 Introduction 

The Sigma-Delta (ΣΔ) ADC is the converter of choice for modern voice band, audio, 

and high-resolution precision industrial measurement applications. The highly digital 

architecture is ideally suited for modern fine-line CMOS processes, thereby allowing easy 

addition of digital functionality without significantly increasing the cost. Because of its 

widespread use, it is important to understand the fundamental principles behind this converter 

architecture. 

The ΣΔ ADC architecture had its origins in the early development phases of pulse code 

modulation (PCM) systems—specifically, those related to transmission techniques called delta 

modulation and differential PCM [Max91]. Delta modulation was first invented at the ITT 

Laboratories in France by E. M. Deloraine, S. Van Mierlo, and B. Derjavitch in 1946 [Del46]. The 

principle was "rediscovered" several years later at the Phillips Laboratories in Holland, whose 

engineers published the first extensive studies both of the single-bit and multi-bit concepts in 

1952 and 1953 [Jag52], [Weg53].  

In 1954 C. C. Cutler of Bell Labs filed a very significant patent which introduced the 

principle of oversampling and noise shaping with the specific intent of achieving higher 

resolution [Cut54]. His objective was not specifically to design a Nyquist ADC, but to transmit 

the oversampled noise-shaped signal without reducing the data rate. Thus Cutler's converter 

embodied all the concepts in a ΣΔ ADC with the exception of digital filtering and decimation 

which would have been too complex and costly at the time using vacuum tube technology. 

Occasional work continued on these concepts over the next several years, including an 

important patent of C. B. Brahm filed in 1961 which gave details of the analog design of the loop 

filter for a second-order multibit noise shaping ADC [Brah65]. Transistor circuits began to 

replace vacuum tubes over the period, and this opened up many more possibilities for 

implementation of the architecture. 
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In 1962, Inose, Yasuda, and Murakami elaborated on the single-bit oversampling noise-

shaping architecture proposed by Cutler in 1954 [Ino62]. Their experimental circuits used solid 

state devices to implement first and second-order ΣΔ modulators. The 1962 paper was followed 

by a second paper in 1963 which gave excellent theoretical discussions on oversampling and 

noise-shaping [Ino63]. These two papers were also the first to use the name delta-sigma to 

describe the architecture. The name delta-sigma stuck until the 1970s when AT&T engineers 

began using name sigma-delta. Since that time, both names have been used; however, sigma-

delta may be the more correct of the two. 

It is interesting to note that all the work described thus far was related to transmitting 

an oversampled digitized signal directly rather than the implementation of a Nyquist ADC. In 

1969 D. J. Goodman at Bell Labs published a paper describing a true Nyquist ΣΔ ADC with a 

digital filter and a decimator following the modulator [Goo69]. This was the first use of the Σ-Δ 

architecture for the explicit purpose of producing a Nyquist ADC. In 1974 J. C. Candy, also of 

Bell Labs, described a multibit oversampling ΣΔ ADC with noise shaping, digital filtering, and 

decimation to achieve a high resolution Nyquist ADC [Can74]. 

The IC ΣΔ ADC offered several advantages over the other architectures, especially for 

high resolution, low frequency applications. First and foremost, the single-bit ΣΔ ADC was 

inherently monotonic and required no laser trimming. The ΣΔ ADC also lent itself to low cost 

foundry CMOS processes because of the digitally intensive nature of the architecture. Since that 

time there have been constant streams of process and design improvements in the fundamental 

architecture proposed in the early works cited above. 

Nowadays, the current explosion of interest in the realization of mixed-signal systems 

on chip using VLSI technologies has motivated the use of oversampling ΣΔ ADCs to implement 

the front-end of such systems. This type of ADCs, composed of a low-resolution quantizer 

embedded in a feedback loop, uses oversampling (a sampling frequency much larger than the 

Nyquist frequency) to reduce the quantization noise and Σ∆ modulation [Ino62] to push this 

noise out of the signal band. The combined use of redundant temporal data (oversampling) and 

filtering (Σ∆ modulation) results in high-resolution, robust ADCs, which have lower sensitivity 

to circuitry imperfections and are more suitable than traditional Nyquist-rate ADCs for the 

implementation of A/D interfaces in a standard CMOS technology. 
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The efficiency of Σ∆ ADCs has been demonstrated in a large number of ADC 

Integrated Circuits (ICs) for digitizing lowpass signals with diverse bandwidths and 

applications [Nor97]. Recently, the principle of Σ∆ modulation has been extended to bandpass 

signals, leading to a new type of Σ∆ ADCs, named Band Pass Σ∆ ADC (BPΣ∆-ADC) [Sch89], 

which are especially suited to convert bandpass signals with a narrow bandwidth. This has an 

obvious application at the front-end of modem wireless communication systems such as mobile 

phones, digital radio receivers, etc. 

1.2 Analog-to-digital interfaces for digital radio receivers 

A Radio Frequency (RF) receiver is a system that extracts a desired low-power signal 

(typically 1µW) in the presence of other noisy and higher power (30-60 dB) interfering signals of 

the RF electromagnetic spectrum. The performance of an RF receiver is characterized by two 

figures [Viz95], [Raz98]: sensitivity and selectivity. The former measures the ability to detect 

signals in the absence of any interference other than noise, while the latter characterizes the 

capacity of the receiver to discriminate between the desired signal and large adjacent-channel 

interferers [Ros00]. 

Fig. 1.1 shows the block diagram of an analog superheterodyne RF receiver composed of 

three fundamental parts [Hay94]: 

a) The RF section, where after filtering and amplifying, the incoming RF signal is 

translated to a fixed Intermediate Frequency (IF) through the combination of a 

mixer and a Local Oscillator (LO) (of adjustable frequency). As the sensitivity of 

the superheterodyne RF receiver is primarily dominated by the noise of this 

stage, a Low-Noise Amplifier (LNA) is normally used (see Fig.1.1) to reduce the 

noise contributions of subsequent stages in the receiver. 

b) The IF section, where the IF signal is filtered, amplified and downconverted to 

baseband. The selectivity of the receiver is mainly determined by the channel 

select filtering performed at this stage. This is because in practice it is easier to 

achieve high-Q bandpass filters centered at IF (typically in the MHz range) than 

at RF (in the GHz range). 

c) The demodulation section, which retrieves the information from the modulated 

carrier (demodulation process). 
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Figure 1.1. Analog RF superheterodyne receiver. 

In recent years, the market of digital RF communication portable devices (mobile 

phones, digital AM/FM radio receivers, wireless LANs ...) is rapidly expanding with the 

development of new services and applications. On the one hand, the variety of new applications 

and devices has led to the proliferation of a large number of communication standards with 

different modulation schemes, carrier frequencies, channel bandwidths, dynamic range 

requirements, etc. On the other hand, consumers demand low-cost, low-power, and small form 

devices that satisfy those communication requirements. 

This market demand together with the continuous scaling of CMOS technologies 

makes it possible to integrate a RF receiver onto a single chip with two main objectives. On the 

one hand, increasing integration will reduce the receiver cost and the power dissipation. On the 

other hand, aggressive utilization of VLSI technology enables the combined integration of an 

ADC along with the front-end stages of the receiver. In this manner, the back-end signal 

processing (channel-selection and demodulation) can be shifted from the analog into the digital 

domain. This offers two main advantages. First, to take full advantage of the smaller geometries 

by reducing the die size, it is desirable to perform most RF receiver functions using digital 

circuits, which, unlike the analog circuits, scale with technology. Second, Digital Signal 

Processing (DSP) simplifies the implementation of programmable filters, thus allowing the 

adaptability of the RF receiver to multiple communication standards in different countries 

[Abi95]. 

Fig.1.2 shows the ideal block diagram of a digital RF receiver [Fel98]. In this approach, 

the RF signal is directly digitized by the ADC. Hence, the channel selection and demodulation 

process is performed in the digital domain. Unfortunately, the receiver of Fig.1.2 is unrealizable 

because it would require realizing the A/D conversion of a signal at 900MHz-2.5GHz 

(depending on the carrier frequency) with accuracy of 14-18bits. Hence, a more realistic digital 

radio receiver would contain an Analog Signal Processing (ASP) section including signal 

conditioning, i.e.: frequency translation, amplification and filtering. 
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Figure 1.2. Ideal digital RF receiver. 

The implementation of these analog functions can be realized in different manners 

resulting in several RF receiver architectures. Fig.1.3 shows the most significant ones [Raz98]. 

Fig.1.3.a is a digital superheterodyne receiver, where the signal is first down-translated to IF and 

then to baseband where it is digitized and demodulated. This is the more conventional 

architecture. However, it is not appropriate for fully-integrated RF receivers because high-

frequency high-Q bandpass filters (in both the RF and the IF sections) are required. 

 

Figure 1.3. Digital RF receivers. a) Superheterodyne. b) Direct conversion. c) IF conversion. 

Fig. 1.3.b shows the block diagram of a direct conversion receiver. In this architecture, 

the RF signal is mixed-down directly to baseband where is digitized. This approach is more 

suited to integration than the superheterodyne because it eliminates the IF section. Hence, only 
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off-chip RF filters are required. However, non-idealities of the mixer (offset and flicker noise) 

can severely degrade the performance of this type of receiver. 

Many of the problems arising in the mentioned architectures can be eliminated using 

the IF conversion receiver, shown in Fig. 1.3.c. In this architecture the incoming signal at the 

antenna is first mixed-down to IF where it is digitized. Hence an ADC capable of digitizing IF 

bandpass signals, often called bandpass ADC, is required. 

In all the architectures shown in Fig.1.3, the ADC is one of the most critical blocks for 

several reasons. On the one hand, the sensitivity of the digital receiver depends on the accuracy 

with which the signal is digitized. On the other hand, in some architecture such as the one 

shown in Fig. 1.3.c, part of the signal channel selection is performed by the ADC itself. 

The rest of the chapter is devoted to describing the fundamental principles of Sigma-

Delta modulators. This type of converters has been demonstrated to be the optimum solution 

for digitizing IF signals in a large number of ICs as will be seen in Section 1.4. 

1.3 Oversampling Σ∆ Analog-to-Digital Converters 

By embedding the quantizer in a feedback loop, it is possible to reduce the inband 

quantization noise power of an ADC significantly beyond what can be achieved by simply 

using oversampling. This is the basic principle of Σ∆ converters, introduced by Inose et al. in 

1962 [Ino62] [Ros00]. 

Oversampling Σ∆ ADCs operate with redundant temporal data, obtained using 

oversampling with low-resolution quantizers (one-bit quantizers in many cases), and apply 

signal processing techniques (averaging in the simplest case) to combine these temporal data, 

thus increasing the effective resolution. 

 
Figure 1.4. Block diagram of an oversampling Σ∆ ADC. 
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Figure 1.4 shows the block diagram of an oversampling Σ∆ ADC which includes three 

basic components: an anti-aliasing filtering, a Σ∆ modulator (Σ∆M), and a digital decimator. The 

signal is oversampled and quantized in the modulator. This block also filters the quantization 

error, by shaping its PSD in such a way that most of its power lies outside of the signal band, 

where the error is eliminated by digital filtering. This fact has resulted in the qualifier noise-

shaping, which is also used to name the Σ∆Ms. The modulator output - coded into a reduced 

number of bits - is passed through the decimator, where, after filtering all the components out 

of the signal band, data are decimated to reduce fs down to fd. The result is the signal coded in a 

large number of bits and clocked at fd. 

Among the converter blocks, the modulator is the hardest to design since 

oversampling simplifies the analog anti-aliasing filter requirements and the decimator is a pure 

digital block whose design can be highly structured and automated [Nor97]. 

1.3.1 Basic architecture of a Σ∆ modulator 

Figure 1.5.a shows the basic scheme of a Σ∆ modulator. Its output, y, is subtracted from 

its input, x, which has been sampled at a rate much larger than the Nyquist rate. The result is 

filtered by H(z), and passed through a quantizer, which usually has a reduced number of levels. 

If the gain of H(z) is high in the interval of the frequency of interest, and low outside of it, the 

quantization error is attenuated in said band due to the feedback loop. 

Assuming that the quantization error (e) can be modeled as an additive, white noise 

source, the modulator in Fig.1.5.a can be viewed as in Figure 1.6. The system of Fig.1.6 is a 

linear model that has two inputs, x and e, and one output, y, which in the Z-domain can be 

represented by 

)()()()()( zEzNTFzXzSTFzY +=  (1.1) 

where X(z) and E(z) are the Z-transform of the input signal and quantization noise, 

respectively; STF(Z) and NTF(Z) are the respective transfer functions of the input signal and 

quantization noise. The exact form of both functions will depend on the architecture of the 

modulator. Analyzing the block diagram of Fig.1.6, yields 
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In view of Eq.1.1, we can impose the following conditions to get operative modulators: 
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with k being a constant. If NTF(z)  0 around dc, the modulator is called a lowpass Σ∆ 

modulator (LPΣ∆M). Otherwise, if NTF(z)  0 in a narrow passband centered at a given 

frequency (usually called notch frequency and represented by fn), the modulator is called a 

bandpass Σ∆ modulator (BPΣ∆M) [Sch89]. Figure 1.5.b illustrates the filtering functions 

performed for both types of modulators [Ros00]. 
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Figure 1.5: a) Basic structure of a Σ∆ modulator. b) Quantization noise filtering. 
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Figure 1.6. Linear model of a Σ∆ modulator. 

The PSD of the shaped quantization noise is 

2)()()( fNTFfSfS EQ =   (1.4) 

and the shaped quantization noise in-band power is calculated as follows: 

}
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1.3.2 Figures of merit 

At this point, it is convenient to define the figures of merit cornmonly used to 

characterize the oversampling converters. 

1.3.2.1 Signal-to-Noise Ratio (SNR) 

This is the ratio between the output power at the frequency of a sinusoidal input and 

the in-band noise power. It is usually given in decibels: 











=

QP
ASNR 2/log10

2

10  (1.6) 

where A is the input amplitude of the sinusoide. Note that the SNR monotonously 

increases with A. However, beyond certain input amplitude, the quantizer input lies outside of 

the interval which produces the overloading of the latter and consequently a sharp drop is 

observed in the SNR curve. The value of the SNR at said input amplitude - the maximum value 

of SNR - is often called the SNR-peak. 

As will be shown in next Chapters, besides quantization noise, there are other 

contributions to the in-band noise power due to non-idealities of the circuitry. To take into 

account all these errors, the Signal-to-(Noise plus Distortion) Ratio (SNDR) is normally used. 

1.3.2.2 Dynamic Range (DR) and effective number of bits (ENOB) 

The dynamic range is defined as the ratio between the output power of the frequency 

of a sinusoidal input with amplitude XFS, and the output power when the input is a sinusoide of 

the same frequency, but of a small amplitude, so it cannot be distinguished from noise, that is, 

with SNR = 0dB. 

Ideally, the full-scale range of the modulator input is approximately given by that of 

the quantizer, and hence, 

for LPΣ∆Ms 

for BPΣ∆Ms 
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On the other hand, the dynamic range of an ideal B-bit Nyquist ADC can be calculated 

from [Nor97] and Eq.1.7, yielding 
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Manipulating this expression yields the effective number of bits or effective resolution of 

an ADC as a function of its DR, expressed in dB, DR(dB), 

02.6
76.1)()( −

=
dBDRbitsENOB  (1.9) 

In general, the above expression is used to express the effective resolution of a Σ∆M in 

terms of DR(dB) if the performance of the modulator is limited by either quantization noise or 

by circuitry errors. 

1.3.3 Bandpass Σ∆ modulators 

Digitization of a signal in digital superheterodyne RF receivers (see Fig.1.3.a) can be 

basically accomplished using the methods represented in Fig.1.7. The first one, shown in 

Fig.1.7.a uses an analog quadrature mixer [Ped94] to multiply the IF signal by two carriers that 

are 90° out of phase. As a result, the signal is separated into its lowpass In-phase (I) and 

Quadrature (Q) components which are digitized by means of two lowpass ADCs. 

The other method, shown in Fig.1.7.b, changes the order of the ADC and the mixer and 

uses only one bandpass ADC. Thus, the signal is first translated to the digital domain and then 

mixed to the baseband. This is advantageous for several reasons. On the one hand, the I and Q 

components of the signal are separated in the digital domain rather than in the analog domain 

as occurs in Fig.1.7.a. Hence, the problems associated with the analog mixer - mismatch 

between I and Q signal paths, low-frequency noise and de offset - are avoided [Nor97]. 

Another advantage of the scheme shown in Fig.1.7.b is that it allows channel select 

filtering, gain control and demodulation to be handled in the digital domain [Jan93], [Sin95]. 

This results in robust RF receivers with a high degree of programmability, thus allowing a 
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single software-controlled RF receiver to be employed for multi-standard receivers, being 

suitable for use in widely varying propagation environments. 
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Figure 1.7. Digitizing a signal in a digital superheterodyne RF receiver using: a) Two lowpass ADCs. b) One bandpass ADC. 

Digitization of an IF signal can be accomplished either with a wideband Nyquist rate 

ADC or a BPΣ∆ ADC. The use of the latter is the optimum solution for digitizing these signals 

for several reasons. On the one hand, it is problematic to design high-precision Nyquist-rate 

converters in modem standard CMOS technologies, optimized for digital circuits, but 

deficiently modeled for analog interfaces which require precise components. On the other hand, 

as the bandwidth of IF signals is typically much smaller than the carrier frequency, reducing the 

quantization noise in the entire Nyquist band becomes superfluous. Instead of that, by using 

BPΣ∆ ADCs the quantization noise power is reduced only in a narrowband around the IF 
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location (see Fig.1.5.b), thus taking advantage of the higher oversampling ratio1 and hence 

yielding a high DR. 

1.3.4 Quadrature bandpass Σ∆ modulators 

As stated in Section 1.2, in IF-conversion based digital radio receivers the in-coming 

signal at the antenna, is first mixed down into an IF location where it is digitized and 

subsequently demodulated. Figure 1.8.a shows a typical block diagram of a digital receiver that 

employs a multiplier as a mixer. 

 

Figure 1.8. RF radio receiver schemes using BPΣ∆Ms. a) Typical. b) Using quadrature mixer. c) Using quadrature BPΣ∆M. 

The multiplication in the time domain between the LO and the antenna signal is 

equivalent to a convolution in the frequency domain. Because of this convolution, spectral 

                                                 
1 In the case of bandpass signals, the oversampling ratio is defined as [Vau91] OSR = fs(fn+Bw/2)/Bw/[2(fn+Bw/2)], 
where Bw is the signal bandwidth, fn is the centre frequency and x represents the largest integer not exceeding x. 
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components at the image frequency (of the signal) are mixed down into the same IF as the 

desired signal is, thus corrupting the information. This can be avoided if an image-reject filter is 

used. However, for low-IF frequencies, narrow-band high-Q bandpass filters are required, 

meaning an increase of the power consumption and forcing us to use off-chip circuitry.  

Image-rejection or quadrature mixers [Lee98] overcome this problem by mixing with 

both a cosine and a sine signal that performs a rejection of the image components. This 

cancellation effect is only obtained in the ideal case. In practice, a mismatch between both paths 

of the quadrature mixer will cause undesired image signals to appear at the IF band. 

An obvious consequence of the quadrature mixing is that the IF signal is separated into 

two components: I and Q. Hence, two BP-Σ∆Ms are required as illustrated in Figure 1.8.b, which 

means doubling the required hardware - two BP-Σ∆Ms compared to only one BP-Σ∆M used in 

Fig.1.8.a. This fact motivates finding new strategies that solve the problem of the A/D 

conversion of both I and Q signals.  

Figure 1.8.c shows a scheme that uses a complex, or quadrature, version of a BP-Σ∆M, 

called quadrature BP-Σ∆M [Jan97]. This type of BP-Σ∆M, which uses complex quantization 

noise filtering, employs only one ADC to perform directly the conversion of both I and Q mixer 

outputs. 

 

Figure 1.9. Conceptual block diagram of a quadrature BPΣ∆M. 

Figure 1.9 shows a conceptual block diagram of a quadrature BP-Σ∆Μ. The main 

difference with respect to conventional BP-Σ∆Μs is the complex bandpass filter embedded in 

the loop. Thus, the modulator output consists of a pair of high-speed bit streams, one of them 

representing the real output and the other one the imaginary output. When combined, these 
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two outputs form a complex digital signal which represents the complex input signal (I and Q 

components coming from the mixer in an RF radio receiver) and the shaped quantization noise 

[Ros00]. 

1.3.5 Continuous-time Σ∆ modulators 

The architectures described in earlier sections assumed that the loop filter is of the DT 

type. In recent years, the increased demand for high-speed Σ∆Ms has motivated the 

development of CT loop filter based Σ∆Ms, generically known as continuous-time Σ∆Ms (CT-

Σ∆Ms). This approach offers several advantages. On the one hand, CT filters are much faster 

than their DT counterparts. On the other hand, it can be shown that CT-Σ∆Ms provide an 

implicit anti-aliasing filter for out-of-band signals at no cost. In contrast, CT-Σ∆Ms are more 

sensitive to clock jitter than DT-Σ∆Ms. This is because the internal clock that controls the 

comparison instant, also controls the rising and falling edges of the DAC output. Hence, clock 

jitter errors are directly added to the input signal. Another important limitation of CT-Σ∆Ms is 

the excess loop delay contributed by each building block in the modulator loop, which can 

severely degrade the quantization noise transfer function. 

 

Figure 1.10: Basic architecture of a CT-Σ∆M. (a) Conceptual block diagram. (b) Open loop block diagram. 

The architecture of any arbitrary CT-Σ∆M can be generated by applying a DT-to-CT 

transformation to an original DT-Σ∆M that meets the required specifications. Therefore, much 

of the knowledge available for DT-Σ∆M can be utilized for synthesizing CT-Σ∆M architectures. 
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There are different ways of realizing such a DT-to-CT transformation depending on the shape 

of the DAC impulse response [Sho94]. 

The block diagram of a conceptual CT-Σ∆M is shown in Figure 1.10. This modulator is 

internally a DT circuit since there is a S/H circuit inside the loop, just at the quantizer input. 

This fact makes the overall loop from the output of the quantizer back to its input have a Z-

domain transfer function as illustrated in Fig.1.10.b. The equivalent DT loop filter transfer 

function is [Sho97]: 
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is the transfer function of the DAC, which in the time domain can be expressed as: 
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Since DAC(t) has a pulse waveform, the expression in (1.10) is known as the impulse 

invariant transformation. The parameters p1 and p2 determine the DAC pulse type, which can be: 

Nonreturn-to-Zero (NZ, p1 = 0 and p2 = 1), Return-to-Zero (RZ, p1 = 0 and p2 = 1/2), and Half-

delay Return-to-Zero (HRZ, p1 = 1/2 and p2 = 1). 

The impulse invariant transformation allows us to obtain an equivalent relation 

between DT- and CT-BPΣ∆Ms. Thus, the synthesis process of a CT-BPΣ∆M starts from a DT 

loop filler that satisfies the required specifications and then it is transformed into an equivalent 

CT filter using Eq.1.10 [Ros00]. 

However, practical application of the impulse invariant transform may lead to 

modulators which are very sensitive to circuit impairments. Other design techniques which mix 

continuous time and discrete time mathematical modeling are used nowadays to design 

practical CT-Σ∆Ms [Pat05] [Mae06]. 
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1.4 State-of-the-art of Quadrature Bandpass Σ∆ ADCs 

Considerable research effort pushes toward the realization of fully monolithic and 

chiefly digital RF transceivers, with the ultimate objective being the implementation of small, 

inexpensive, low-power communication devices. These devices should be robust, testable, and 

capable of handling multiple communications standards. Two-path IF architectures and single-

path bandpass Σ∆M based architectures (see Fig.1.8.a, Fig.1.8.b) strive to attain these dual goals, 

but neither effectively achieves both. Quadrature IF receiver architectures have recently been 

proposed, which, with modern quadrature image-reject mixers and strategic IF placement, offer 

a viable solution for digital, monolithic receivers. A critical component of such a system - and 

indeed of any receiver that uses image-reject mixing to alleviate passive filtering requirements - 

is one that efficiently performs bandpass A/D conversion on quadrature signals.  

A quadrature bandpass Σ∆M IC (see Fig.1.8.c) facilitates monolithic digital-radio-

receiver design by allowing straightforward “complex A/D conversion” of an image-reject mixer’s 

I and Q outputs. Quadrature bandpass Σ∆Ms provide superior performance over pairs of real 

bandpass Σ∆Ms in the conversion of complex input signals, using complex filtering embedded 

in Σ∆ loops to efficiently realize asymmetric noise-shaped spectra. 

Quadrature bandpass DT-Σ∆Ms with switched-capacitor (SC) architectures sample the 

signal at their modulator inputs. Therefore, they need anti-aliasing filters (AAFs) between the 

quadrature mixers and the modulator inputs. A quadrature bandpass modulator with 

continuous time architecture, however, samples the signal with the quantizer inside the 

modulator and uses the loop filter as an AAF. Therefore, recently, quadrature bandpass CT-Σ∆ 

ADCs have become very popular because of low power consumption, high-resolution A/D 

conversion efficiently, high speed and small area with respect to their time-discrete 

counterparts. 

Table 1.1 and 1.2 show a summary of the main quadrature bandpass Σ∆ ADC ICs 

published to this day. For each of them, the most significant figures are shown, namely: 

Bandwidth, fs, fIF, peak SNR, IRR, the power consumption, the characteristics of the fabrication 

process and the modulator architecture. 

The modulators in Table 1.1 and 1.2 cover multiple applications in digital wireless 

communications, ranging from GPS [Ste02] to digital radio receivers and modern cellular 
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phones [Swa96] [Jan97] [Jun00] [Oh03] [Pun06] [Bre01] [Hen02] covering commercial standards 

such as GSM [Ber03] [Ban06] [Esf03], WCDMA [Ber03], GPRS [Ban06], EDGE [Ban06], Bluetooth 

[Phi03] and WLAN [Yag05] [Ari06]. Also, covering TV tuner standards [Sch06]. 

As mentioned before, quadrature bandpass CT-Σ∆Ms offers some advantages over DT 

implementations. Papers of Table 1.2 demonstrate that fully-integrated high-performance 

quadrature bandpass CT-Σ∆Ms, with their center frequency at higher IF than DT modulators, 

can be implemented in standard CMOS technology and their power consumption can be 

reduced compared to DT implementation while increasing their bandwidth. But in order to 

make these CT implementations perform well, several innovations are needed. 

TABLE 1.1 
OVERVIEW OF QUADRATURE BANDPASS DT-Σ∆ ADCS CHIPS 

ARTICLE [Swa96] [Jan97] [Jun00] [Oh03] 
Type DT DT DT DT 
Order 4 4 4 2 
# Bits 1 1 1 3 
Bandwidth (kHz) 200 200 200 200 
fs (MHz) 4 10 13 13 
fIF (MHz) 1 (fs/4) 3.75 (3fs/8) 4.875 4.875 
Peak SNR (dB) 48 62 100 85 
IRR (dB)     
Power (mW) 150 130 190 38 
Supply (V) 5 5 5 5 

Technology 
0.8 µm 

BiCMOS 
0.8 µm 
CMOS 

0.6 µm 
CMOS 

0.35 µm 
CMOS 

Application Digital Radio Digital Radio AM/FM radio AM/FM radio 
ARTICLE [Ber03] [Mau05] [Ban06] [Pun06] 
Type DT DT DT DT 
Order 8 2 2 3 
# Bits 1 3 1 1 
Bandwidth (kHz) 200 200 180 200 
fs (MHz) 100 13 52 6.4 
fIF (MHz) 7.5 (3fs/4) 0.010  DC 
Peak SNR (dB)  81 90 60 
IRR (dB)  40  75 
Power (mW) 36 10 19.9 13.1 
Supply (V) 3.3 2.1 2.4 3.3 

Technology 
0.35 µm 
CMOS 

0.25 µm 
CMOS 

0.09 µm 
CMOS 

0.35 µm 
CMOS 

Application GSM/WCDMA  GSM/GPRS GSM 
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First, in [Sch06] a modification of the feedforward architecture which corrects a 

sensitivity problem specific to quadrature bandpass ADCs is implemented. 

Second, in [Bre01] [Phi03] [Sch06] a timing calibration to ensure accurate placement of 

the sampling instant relative to the feedback interval is used. 

Third, in [Yag05] [Ari06], a Data Weighted Averaging (DWA) algorithm is used in 

order to compensate the nonlinearity of the internal multibit DAC. 

Fourth, [Bre01] [Sch06] employ a simple Dynamic Element Matching (DEM) technique 

in order to reduce the effects of path mismatch, namely aliasing in the signal band of the mirror 

images of the signal and of the quantization noise. 

TABLE 1.2 
OVERVIEW OF QUADRATURE BANDPASS CT-Σ∆ ADCS CHIPS 

ARTICLE [Bre01] [Ste02] [Hen02] [Phi03] 
Type CT CT CT CT 
Order ? 2 2 5 
# Bits 1 >1 1 1 
Bandwidth (MHz) 0.2 2 1 1 
fs (MHz) 21.05 128 100 64 
fIF (MHz) DC 4 (fs/32) 1 (fs/100) 0.5 (fs/128) 
Peak SNR (dB) 76 62 56.7 75.5 
IRR (dB) 63 32 40 47 
Power (mW) 10 14.2 21.8 4.4 
Supply (V) 3.3 2 2.7 1.8 

Technology 
0.35 µm 
CMOS 

0.25 µm 
CMOS 

0.65 µm 
BiCMOS 

0.18 µm 
CMOS 

Application QPSK-QAM GPS AM/FM radio Bluetooth 
ARTICLE [Esf03] [Yag05] [Ari06] [Sch06] 
Type CT CT CT CT 
Order 4 4 2 4 
# Bits 1 4 3 4 
Bandwidth (MHz) 0.27 23 20 8.5 
fs (MHz) 13 276 320 264 
fIF (MHz) -0.1 (fs/100) 11.5 (fs/24) DC or 10 44 (fs/6) 
Peak SNR (dB) 82 69.9 55.5 77 
IRR (dB) 57 45 47.2 50 
Power (mW) 4.6 42.6 32 375 
Supply (V) 2 1.8 2.5 1.8 

Technology 
0.25 µm 
CMOS 

0.18 µm 
CMOS 

0.25 µm 
CMOS 

0.18 µm 
CMOS 

Application GSM WLAN WLAN TV tuner 
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Additional innovations in [Sch06] include circuit techniques that allow the use of an 

active-RC resonator to be high despite finite amplifier gain and bandwidth. With these 

techniques, the realized Q-factors of resonators exceed the design requirement by nearly a 

factor of 2. Finally, gain scaling is used to extend the ADC’s dynamic range without increasing 

its power consumption. 

The work in this thesis aims at designing a quadrature bandpass Σ∆M that shares some 

of the advantages of DT and CT implementations, using distributed resonators (Transmission 

Lines) in the loop filter instead of gm-C or LC resonators. For this purpose, two other designs 

will be studied first, a transmission line LPΣ∆M and a transmission line BPΣ∆M. The models 

and techniques described in this thesis are demonstrated through three prototypes: 

• A transmission line LPΣ∆M in 0.6µm CMOS technology. 

• A transmission line BPΣ∆M in 0.35µm BiCMOS technology. 

• A transmission line Quadrature BPΣ∆M in 0.35µm BiCMOS technology. 
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CHAPTER 2 

Introduction to Retarded Linear 

Systems and its Application to Sigma-Delta 

Modulators 

The classical conception of lumped linear electric networks is based into modeling 

them as a system of linear differential equations. Continuous time sigma delta modulators (CT-

Σ∆Ms) follow this approach and their loop filters are represented using the standard state 

variable notation. This leads to an implementation using a cascade of integrators, following 

closely the canonical implementation models for continuous linear systems [Hal77]. However, 

there are other continuous-time linear systems which cannot be fully expressed as a system of 

linear differential equations and that could be seized to implement a CT-Σ∆M. Specially, those 

systems which involve delayed versions of the output signal require the concept of retarded 

differential equations [Hal77]. Practical CT-Σ∆Ms are in fact one of these systems when the 

excess loop delay effects are considered. Also, networks that produce a delay such as electrical 

transmission lines cannot be modeled only with linear differential equations. We will explore 

in this chapter the possibilities to use such retarded systems to implement a filter with the aim 

of replacing a discrete time sigma delta modulator (DT-Σ∆M) loop filter. 
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2.1 Linear Systems described by Retarded Differential 

Equations (RDE). 

Consider a system with output y(t) described by Eq.2.1: 

( ) ( )m

M

m
m Ttyaty −⋅= ∑

=0

 (2.1) 

This homogeneous equation has a nontrivial solution consisting of a series of complex 

exponentials: 
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Coefficients Ar and kr can be computed by solving the following characteristic 

equation: 
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and imposing initial conditions. A detailed analysis of Eq.2.3 would show that this 

characteristic equation may have a numerable or a non numerable number of solutions 

depending on the delays Tm. There will be a numerable number of solutions if all the delays Tm 

are an integer multiply of a basic delay T: 

NmTmTm ∈⋅=                                                                             (2.4) 

The reason for this is that if Eq.2.4 holds, Eq.2.3 represents a polynomial of order M 

and hence has only M roots which are periodic and hence numerable. We will restrict to this 

case, where for every root of Eq.2.3 we have a series of periodic solutions of the form: 
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The case where the delays Tm are related by irrational factors is a problem of complex 

nature because then Eq.2.3 has an countable infinite number of non-periodic solutions. We will 

consider this situation as a non desirable mismatch effect. The author has not found any Σ∆M 

with irrational delays that produces useful results. However, linear systems with infinite non 
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harmonic eigenvalues could also yield useful Σ∆Ms if properly designed.  

We are going to use the linear system represented by Eq.2.1 to implement a 

continuous time filter. To do so, we will modify this equation to provide an excitation by an 

external signal x(t): 
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We prove in chapter 2 annex that y(t) may be expressed as the following series: 
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The solution expressed in Eq.2.7 corresponds with the conventional expression of a 

linear system output as the convolution sum of its impulse corresponds with the input, where 

such impulse response is composed of delayed Dirac delta functions. 

2.2 Equivalence between continuous and discrete time 

linear systems 

Figure 2.1 depicts two discrete time linear systems Hd1(z) and Hd2(z) driven by the 

same sequence v[n]. In Fig.2.1, system Hd1(z) is a purely discrete time system. System Hd2(z) is 

the combination of a pulse shaper p(t) that produces a pulse train weighted by sequence v[n] at 

a rate 1/T, a continuous time system Ha(s) and a sampler S. Both systems Hd1(z) and Hd2(z) will 

be equivalent if for any input v[n], the two output sequences u1[n] and u2[n] are coincident.  

p(t)
T

v[n]
u2[n]

u1[n]

v(t) u(t)

S
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Ha(s)p(t)
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v[n]
u2[n]

u1[n]
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T
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Figure 2.1. Equivalence between discrete and continuous time linear systems. 

Discrete time system Hd1(z) may be represented by its impulse response hd1[n]. We are 

going to study the case where system Ha(s) belongs to the class of systems represented by 

Eq.2.7. We may replace the value of x(t) in Eq2.7 by the pulse train v(t) at the input of Ha(s) in 
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Fig.2.1: 
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We may define the time instants when S samples u(t) as: 

[ ] TTTnTnT <∆∆+=   (2.9) 

where ∆T will be a time shift smaller than T, typically T/2. The sequence of values at 

the output of the sampler will be: 
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On the other hand we know that the output of the discrete time system Hd1(z) may be 

expressed as: 
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If we want u1 and u2 to be coincident, we could impose the following two conditions: 
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Equation 2.12 defines p(t) as any pulse of duration T. As a consequence of Eq.2.12, p(t) 

in Eq.2.10 will take only two values: 
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And then, Eq.2.10 may be rewritten as: 
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Condition Eq.2.15 completes the proof that Hd1(z) and Hd2(z) will be equivalent up to a 

gain factor.  

In practice, it is not necessary to impose the matching of impulse responses to obtain 

equivalent systems. A simpler system replacement rule can be inferred by comparing Eq.2.6 

with the difference equation that describes any digital IIR filter: 
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It is clear that the only requirement to implement equivalent discrete time systems is 

to use the same coefficients in Eq.2.6 and Eq.2.16: 

1)( =∆== Tpab rrmm αβ   (2.17) 

This means that we may replace any unit delay z-1 in the flow graph that expresses a 

discrete time filter Hd(z) by a continuous time delay T and the resulting continuous time 

system H(e-sT) will be directly useable as system Ha(s) in the system equivalence of Fig.2.1 

except for a gain factor p(∆T). 

2.3 Properties of Retarded Linear Systems (RLS) 

We will use the equations and conclusions of previous sections to define some 

properties of the RLS. 

2.3.1 Sampling point insensitivity in Retarded Linear Systems 

An interesting property of the implementation of system Hd2(z) (see section 2.2) is that 

it may be made insensitive to clock jitter and time offsets in the sampling point of the clock 

applied to the sampler that generates p(t), yet Ha(s) will still be a continuous time system. We 

will define p(t) as a zero order hold pulse with a variable placement of its rise and fall edges 

within the n-th interval of duration T: 
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With such a time varying pulse, we have tried to model the effect of a clock with 

period jitter but whose accumulated jitter never produces a cycle slip. The pulse defined in 

Eq2.18 always has a duration equal or less than T. This would be the usual situation in a 

CTΣ∆M driven by a PLL clock with zero frequency error. We may also introduce a timing error 

in the sampling clock such that Eq.2.9 is transformed into: 

[ ] [ ] [ ] TnTnTnTnT <∆∆+=   (2.19) 

With these definitions we may rewrite Eq.2.10 as follows: 
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The following condition will allow desensitizing the system from clock jitter: 
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If Eq.2.21 is met, then we may write Eq.2.20 as: 
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Figure 2.2. Geometric conditions for clock jitter insensitivity. 
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Then, ∆r[n], ∆f[n] and ∆T[n] do not affect the system equivalence. Thinking on a 

possible practical implementation of a discrete system with continuous time delays, the 

equivalent discrete time system would be insensitive to clock jitter or sampling time offsets as 

long as the timing errors were bounded as in Eq.2.21. This situation is depicted in an example 

in Figure 2.2. 

2.3.2 Conservation of the State Variables at the sampling points  

As long as Ha(s) in Fig.2.1 is composed only by equal delays and linear operators, it 

may be proven [Hal77] that its impulse response will be causal and composed by a number of 

delta functions, scaled by a sequence h[k] and shifted in time by multiples of the basic delay T: 
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The response u(t) of the system in Fig.2.1 to an input signal x(t), may be computed by 

the following convolution integral: 
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where Int( ) denotes the integer part. If we sample y(t) at t=nTm, the output sequence 

will be: 
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Sections 2.2 and 2.3.1 and Eq.2.25 reveal an interesting property of the RLS: the sample 

y[n] at t=nTm only depends on the past samples of x(t) at t=0,Tm,...nTm. Hence, we are not 

concerned on the actual shape of x(t), only on its values at the sampling points. This also means 

that the state variables of both systems of Fig.2.1 are equal in the sampling points, although at a 

time different than the sampling points the state variables may have different values. 

2.3.3 Subsampling of the input in Retarded Linear Systems 

The system Hd1(z) of Fig.2.1 is a discrete time system, where the sampler S is placed 
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before the filter H[z]. Hence, if we apply a band-limited signal x(t) to its input, the discrete time 

system will not distinguish whether this signal is below or above the Nyquist frequency. This 

is what is called “subsampling of the input” in discrete time systems. 

The continuous time system Ha(s) of Fig.2.1 is a retarded system that uses delays in its 

flow graph, and hence its poles are periodic. Then if we sample a signal above the Nyquist 

frequency, using a sampler placed after the filter, this topology is able to subsample, same as in 

a discrete time system. This effect is due to the periodic poles of the retarded filter. However, 

in a continuous time filter, where the poles are not periodic, if we sample a signal above the 

Nyquist frequency, using a sampler placed after the filter, this subsampling effect will not 

occur. 

The properties of a RLS explained up to now have important consequences that will be 

explained in next sections, and makes the continuous time system Ha(s) of Fig.2.1 to share the 

properties of both discrete and continuous time system. 

2.3.4 Equivalent integrators 

Figure 2.3 represents the block diagram of two continuous time feedback systems that 

use delay elements instead of derivation or integration.  

y(t)x(t)

αr

+ τ

a)

±

y(t)x(t)
αf+

τ
b)

±

αf

αr

 
Figure 2.3. Block diagram of two possible resonator configurations based in delay elements. 

In Fig.2.3.a, the input signal x(t) is applied to a delay element with delay τ. Constant αf 

could model the effect of the energy dissipation in the transmission media employed in a 

practical implementation of the delay element. The delayed version of the input is fed back to 

the delay element with a gain αr and two possible polarities. This system may be characterized 

by the equation: 
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( ) ( ) ( )( )τατα −⋅±−= tytxty rf  (2.26) 

This system is linear and time invariant but its kernel is singular [Kwa91]. Hence, it 

does not belong to the class of systems that are fully described by its gain, pole and zero 

locations. As will be shown later, its transfer function has a countable infinite number of poles. 

The transfer function of this system resembles that of a resonator and is: 
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When the feedback from the delay element is subtracted at the input we will designate 

the transfer function as Ha1(s). The poles of Ha1(s) will be the solutions of : 
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The poles are periodic and there is no pole at DC. When the feedback from the delay 

element is added at the input, the transfer function of the resonator will be named Ha2(s). The 

poles of Ha2(s) will be the solutions of the equation: 
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It may be seen that the poles have a periodic structure same as before, but in this 

configuration there is a pole at DC. To benefit from this DC pole, the delay element must be 

able to transmit constant input values. 

Now we will consider the resonator structure shown in Figure 2.3.b, where αr 

represents the loss factor in the transmission media. The input signal x(t) forms the output of 

the system combined with the output delayed τ seconds. The feedback path of the signal has a 

gain αf   and two possible polarities. This resonator may be characterized by the equation: 

( ) ( ) ( )( )τατα −±−⋅= tytxty fr  (2.30) 

The transfer function of the resonator will be: 
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Same as before, the polarity in the feedback path define two possible transfer 

functions. When the feedback from the delay element is subtracted at the input, the transfer 

function will be named Hb1(s) and its poles will be: 
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When the feedback from the delay element is added at the input, the transfer function 

will be Hb2(s), and its poles will be: 
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Again, the DC pole will require the delay element to transmit constant input values.  

To clarify the concepts of this section, we are going to analyze a simple example that 

will provide a graphical intuition of the system equivalence proposed in Fig.2.1. Figure 2.4 

shows three equivalent linear systems which represent a discrete time integrator. Fig.2.4.a 

shows the standard representation of a delaying discrete time integrator, together with is 

response to a discrete time step function. Fig.2.4.b shows and equivalent system implemented 

with a pulse shaper p(t), a continuous time integrator and a sampler. Fig.2.4.c represents an 

equivalent system implemented with the pulse shaper and sampler as in Fig.2.4.b but using a 

continuous time integrator based on a delay.  

Although formally they are equivalent, systems 2.4.b and 2.4.c have a different 

behavior against misalignment of the pulses generated by the pulse shapers or sampling errors 

in the samplers. The reason is that the output of the continuous time integrator in 2.4.b is a 

ramp and any error in the sampling point will lead to an error in the sampled value, however 

the output of system 2.4.c is a staircase signal whose slope near the sampling point is zero. 

Also, if the pulses generated by p(t) in system 2.4.b are not uniformly distributed in time, the 

ramp at the output of the integrator will be broken into misaligned pieces, whereas in the case 

of system 2.4.c the steps of the staircase will be misplaced but its value will not be affected 
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close to the sampling points. 

T
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p(t)
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Figure 2.4. Block diagram of three equivalent integrators. 
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2.4 Synthesis of Σ∆ Modulators using continuous time 

Delays 

The system replacement mentioned before may be applied to any discrete time filter. 

In the particular case of a sigma delta modulator loop filter, this transformation may be of a 

special interest due to the properties of the retarded linear systems analyzed in the previous 

section. 

Figure 2.5.a depicts a general model of a CT-Σ∆M, whose loop filter belongs to the 

class of filters expressed by Eq.2.8. Figure 2.5.b shows the equivalent DT-Σ∆M, where the input 

sampling clock has also been marked.  

 

Hd[z] y[n]

x(t)

v2[n]

u[n]
v1[n]

T3

Sb

b)

Ha(s) y[n]
T1

p(t)
u(t)

y(t)

x(t)

T2

u[n]

Sa

a)
v1(t)

v2(t)

 
Figure 2.5. General model of a) CTΣ∆ modulator and b) DTΣ∆ modulator. 

If we want the CT-Σ∆M in Fig 2.5.a to be equivalent to the DT-Σ∆M in Fig. 2.5.b, we 

may use the impulse invariance condition [Che99] (see also chapter 1). In the design of a 

conventional CT-Σ∆M, the condition of impulse invariance requires the computation of an 

inverse Laplace transform of some complexity. However, in our case it suffices to apply the 

condition of Eq.2.17 to accomplish this task. By using the same signal flow graph and replacing 

the unit delays of the filter Hd[z] on Fig. 2.5.b by continuous time delays of T in the filter Ha(s) 

of Fig. 2.5.a, both modulators will have the same NTF. This will happen regardless of the shape 

of p(t) because of Eq.2.16. Assuming that all clock signals T1 and T2 operate at points t=nT 

without timing errors, the behavior of the CT-Σ∆M of Fig.2.5.a may be described by the 

following equation: 
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where Q(u[n]) are the samples of the quantizer at t=nT. 

In Eq.2.34, sequences ha1 and ha2 represent the impulse responses of the loop filter, 

evaluated from inputs v1 and v2 respectively up to the output u(t). These sequences match with 

the impulse responses of the equivalent discrete time modulator. The impulse invariance 

condition to transform discrete into continuous time modulators [Che99], is implicit in this 

architecture [Her03]. 

An important property of delay based CT-Σ∆M may be observed in Eq.2.34: the 

behavior of the modulator depends only on the values of the input signal and the quantizer 

output at specific time instants, as a difference with conventional CT-Σ∆Ms that depend on 

averages over a time range produced by integrators (see section 2.3). Hence, only the values of 

p(t) at the sampling points are relevant. In the foregoing, we will choose a DAC pulse p(t) 

which is constant over T, i.e. the typical zero-order-hold pulse: 

( ) ( ) ( )Ttututp −−=   (2.35) 

We could take as a start point in the design, a known DT-Σ∆M with loop filter Hd[z], 

which would be implemented with continuous time delays by replicating its impulse response 

into Ha(s). As an example, we will try to synthesize and simulate the equivalent of the standard 

single-bit, low-pass, second order DT-Σ∆M shown in Figure 2.6.a [Nor96]. Although in next 

sections we will show a more efficient hardware implementation of this system, we may 

simply replace the unit delays represented by z-1 by a continuous time delay T and rearrange 

the input sampler and feedback DAC. The resulting system is shown in Figure 2.6.b. To 

simplify the analysis it has been assumed that the resonators are ideal, hence α=1. The 

quantizer carries out both the sampling operation and the amplitude discretization. Assuming 

the conventional white noise model for the quantization error introduced at the quantizer, and 

applying the pulse invariant transformation (see chapter 1, section 1.3.5), we may define the 

equivalent NTF and STF of the structure of Fig.2.6.b as follows: 

( ) 121 )(1)( −− =−= zzSTFzzNTF    (2.36) 
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The alias components generated by the sampling operation may be feedback to the 

modulator loop filter, causing instabilities or degrading the SNR due to its periodic pole 

structure. A possible solution is to use a sampling clock with a period that is an integer 

multiply of Τ, the resonator delay. Assuming a proper band limitation of the input signal, this 

choice may avoid any undersampling problem because the alias components have the same 

periodicity in frequency than the loop filter function. 

T
y[n ]x(t )

y[n ]x(t )

z-1

z-1
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p(t )

α α
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y[n ]x(t )
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T

T
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T

p(t )

α α

 

Figure 2.6. Two realizations of a second order single bit Σ∆ modulator. a) discrete time. b) continuous time with delays. 

We will show a measurement to validate the synthesis of delay based Σ∆Ms using the 

proposed method in this chapter. For such purpose, the loop filter of the modulator in Fig.2.6.b 

has been designed with an open loop gain of 120dB at DC. 
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Figure 2.7. FFT of simulated output from delay based CTΣ∆ modulator of Fig.2.6.b. 
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This value has been calculated using a non ideal resonator (α=0.999). Considering 

OSR=256, we will simulate the modulator in Fig.2.6.b with a full scale tone in the middle of the 

signal band. Figure 2.7 shows the modulus of the FFT of the simulated output of the delay 

based CT-Σ∆M of Fig.2.6.b using a single bit quantizer and applying a -3dB low frequency sine 

wave at the input. The sampling clock (fs) was set to 1/Τ to place the first NTF zero at DC and to 

match the following zero with the sampling frequency. The output sequence shows a noise 

spectrum that closely matches that of the second order Σ∆M in Fig.2.6.a [Nor96]. 

2.5 Implementation Advantages of Delayed CTΣ∆ 

Modulators 

The main differences at system level between this new type of delayed CT-Σ∆M, when 

compared to standard CT-Σ∆M and DT-Σ∆M, may be inferred by observing Fig.2.5. First, in 

this new architecture, the sampler is located in front of the quantizer, seizing its error shaping 

properties, same as in a CT-Σ∆M. However, if the conditions in Eq.2.17 are met, the equivalent 

system would be insensitive to timing errors in the generation of the feedback pulse p(t) and 

the area and rising and falling times of this pulse would be no longer relevant (see section 

2.3.1). Finally, we would not need the initial sample and hold function inherent to switched 

capacitor implementations of DT-Σ∆Μs. Hence, this new architecture seizes many of the 

advantages of both CT-Σ∆Ms and DT-Σ∆Ms. 

These properties provide several implementation advantages over conventional CT-Σ∆Ms, 

which will be analyzed in the following chapters: 

a) The modulators are partially desensitized from clock jitter and code dependencies in the feedback 

signal. 

b) There may be an arbitrary delay between the sampling at the quantizer and the update of the 

feedback DACs. This allows a varying loop delay. This loop delay may be added as part of the loop filter 

in the design, if required. 

c) The modulators may be designed using the tools of discrete time modulators. 

d) The modulators may allow sub-sampling of the input as in discrete time modulators, but using a 

continuous time loop filter. 
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Chapter 2 Annex 
 

Although we know that a solution of Eq.2.7 may be obtained by an equivalent of the 

variation of constants formula, we are going to use a simpler method to solve this equation for 

a generic causal input x(t). We will try to prove that in a system expressed by the following 

equation: 
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  y(t) may be expressed as the following series: 
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After substituting (A.2) into (A.1) and changing the summation orders we obtain: 
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The values of hf[k] can be computed recursively as follows if we consider the system 

causal: 
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To make this linear system more general, we may replace xf by a linear combination of 

delayed input signals: 
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With this modification, the nature of the output signal will still be a series but with 

different coefficients h[k]: 
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This completes the proof. 
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CHAPTER 3 

Continuous Time Implementation of Delay 

Elements for Σ∆ Modulators  

According to the results of chapter 2, we could replace any unit delay element in an 

already designed discrete-time sigma-delta modulator by a continuous time delay equal to the 

sampling clock period and rearrange the position of the sampler and feedback DAC to obtain a 

continuous time implementation. 

In this chapter we will study the physical implementation options for these continuous 

time delays, as well as the mapping of discrete time systems using delay elements with special 

emphasis on Transmission Lines. 

Some passive components taken from the field of RF circuits can be candidates to 

implement a continuous time delay. They can be divided into two groups depending on the 

kind of propagation media use to store the signal. We will study devices which use electrical or 

mechanical media: 

a) Transmission Lines (electrical propagation). 

b) RF MEMS and SAW (mechanical or electromechanical propagation). 
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3.1 Implementation of a delay element 

Our purpose is to implement an electronic circuit where a physical magnitude like a 

voltage or a current is available in the circuit delayed by a certain amount of time T. There are 

two possible options to accomplish this. 

In Figure 3.1.a, v1(t) is applied to the input port of a fourpole and appears in the load at 

the output port delayed. This would require that the signal is stored in some distributed energy 

storage device, such as transmission media where a waveform propagates. 

In Figure 3.1.b we have an impedance connected to a current or voltage driving 

source, being the output signal of the circuit the reciprocal voltage or current magnitude which 

represents a voltage-to-current or a current-to-voltage conversion with a delay. To accomplish 

this, the signal must travel through a transmission media and be reflected back to the source. 

 

Figure 3.1. Electrical implementation of a delay element. 

The signal is available in the circuit in the form of an electromagnetic field. It is known 

that electromagnetic fields can propagate through a longitudinal structure forming what is 

referred as a transmission line. This would suffice to achieve our purpose; however the 

propagation speed in conventional transmission lines leads to very short delays when 

compared with the resonant frequency of LC resonators of similar physical magnitudes. For 

instance, a LC resonator whose inductor and capacitor values are in the order of nH and pF 

would resonate at hundreds of megahertz and still could be integrated on a chip. However, a 

transmission line which resonates at hundreds of megahertz has a length in the order of a 

meter.  
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The propagation speed of mechanical waves in solids is usually much lower than the 

propagation speed of electromagnetic fields. For this reason, it may be helpful to implement a 

delay in a circuit, to convert the electrical energy into a mechanical energy, feed it to a solid 

and convert the mechanical energy back to electrical energy after propagation. This principle 

has been used extensively in RF electronics with piezoelectric resonators such as SAW filters, 

quartz crystals, etc. 

In this chapter we will make a brief survey of the theoretical aspects and the physical 

principles of the available devices to implement a delay.  

3.2 Transmission Lines (electrical propagation) 

3.2.1 Introduction 

An electrical transmission line can be seen as a continuous time delay. This property 

of transmission lines is commonly used in RF applications to build resonators when the 

transmission line is properly loaded. When used in such a way, two main characteristics must 

be described: the characteristic impedance Z0 and the unloaded Q0 factor of the transmission 

line. 

A transmission line can be modeled as a two-port network (also called a fourpole 

network), as in Figure 3.2: 

Transmission Line
Z0

Port A Port B
 

Figure 3.2. Transmission Line model as a two-port network. 

In the simplest case, the network is assumed to be linear (i.e. the complex voltage 

across either port is proportional to the complex current flowing into it when there are no 

reflections), and the two ports are assumed to be interchangeable. If the transmission line is 

uniform along its length, then its behavior is largely described by a single parameter called the 

characteristic impedance, symbol Z0. This is the ratio of the complex voltage of a given wave to 

the complex current of the same wave at any point on the line. The characteristic impedance of 

a lossless transmission line is purely real, that is, there is no imaginary component (Z0=|Z0|+j0). 
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Characteristic impedance appears like a resistance in this case, such that power generated by a 

source on one end of an infinitely long lossless transmission line is dissipated through the line 

but is not dissipated in the line itself. 

A transmission line of finite length (lossless or lossy) that is terminated at one end 

with a resistor equal to the characteristic impedance (ZL = Z0) appears like an infinitely long 

transmission line to the source. Figure 3.3 shows the schematic representation of a transmission 

line, showing the characteristic impedance Z0. Typical values of Z0 are 50 or 75 ohms for a 

coaxial cable, about 100 ohms for a twisted pair of wires, and about 300 ohms for a common 

type of untwisted pair used in radio transmission. 

 

Figure 3.3. Schematic representation of a transmission line, showing the characteristic impedance Z0. 

Some of the power that is fed into a transmission line is lost because of its resistance. 

This effect is called ohmic or resistive loss. At high frequencies, another effect called dielectric loss 

becomes significant, adding to the losses caused by resistance. Dielectric loss is caused when 

the insulating material inside the transmission line absorbs energy from the alternating electric 

field and converts it to heat. 

3.2.2 Telegrapher's equations 

The Telegrapher's Equations (or just Telegraph Equations) [Var02] are a pair of linear 

differential equations which describe the voltage and current on an electrical transmission line 

with distance and time. They were developed by Oliver Heaviside who created the transmission 

line model, and are based on Maxwell's Equations. 

Figure 3.4 shows the transmission line model. This model represents the transmission 

line as an infinite series of two-port elementary components, each representing an 

infinitesimally short segment of the transmission line: 

• The distributed resistance R of the conductors is represented by a series resistor 

(expressed in ohms per unit length).  
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• The distributed inductance L (due to the magnetic field around the wires, self-

inductance, etc.) is represented by a series inductor (henries per unit length).  

• The capacitance C between the two conductors is represented by a shunt capacitor C 

(farads per unit length).  

• The conductance G of the dielectric material separating the two conductors is 

represented by a conductance G shunted between the signal wire and the return wire 

(siemens per unit length).  

The model consists of an infinite series of the elements shown in Fig.3.4, and that the 

values of the components are specified per unit length so the picture of the component can be 

misleading. R, L, C, and G may also be functions of frequency. An alternative notation is to use 

R', L', C' and G' to emphasize that the values are derivatives with respect to length. 

R L

G C

 

Figure 3.4. Schematic representation of the elementary components of a transmission line. 

When the elements R and G are very small, their effects can be neglected, and the 

transmission line is considered as an idealized, lossless, structure. In this case, the model 

depends only on the L and C elements, and we obtain a pair of first-order partial differential 

equations, one function describing the voltage V along the line and the other the current I, both 

function of position x and time t: 
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These equations may be combined to form either of two exact wave equations: 
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In the steady-state case (assuming a sinusoidal wave), these reduce to 
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where ω is the frequency of the steady-state wave. 

If the line has infinite length or when it is terminated with its characteristic 

impedance, these equations indicate the presence of a wave, traveling with a speed: 

LC
v 1

=                (3.4) 

Note that this propagation speed, Eq.3.4, applies to the wave phenomenon on the line 

and has nothing to do with the electron drift velocity. In other words, the electrical impulse 

travels very close to the speed of light, although the electrons themselves travel only a few 

centimeters per second. For a coaxial transmission line, made of perfect conductors with 

vacuum between them, it can be shown that this speed is equal to the speed of light. 

Applying the transmission line model based on the telegrapher's equations, the 

general expression for the characteristic impedance of a transmission line is: 

CjG
LjRZ

ω
ω

+
+

=0      (3.5) 

For a lossless line R and G are zero and the equation for characteristic impedance 

reduces to: 

C
LZ =0        (3.6) 
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3.2.3 Input Impedance, resonant frequency and Q0 factor of a Transmission Line 

The characteristic impedance Z0 of a transmission line is the ratio of the amplitude of a 

single voltage wave to its current wave. Since most transmission lines also have a reflected 

wave, the characteristic impedance is generally not the impedance that is measured on the line. 

For a lossless transmission line, it can be shown that the impedance measured at a 

given position l from the load impedance ZL is: 

)sin()cos(
)sin()cos(

0

0
0 ljZlZ

ljZlZ
ZZ

l

l
in ββ

ββ
+
+

=  (3.7) 

where 
λ
πβ 2

=  is the propagation constant in the medium. 

In calculating β, the wavelength is generally different inside the transmission line to 

what it would be in free-space. The velocity constant of the material of the transmission line is 

made of needs to be taken into account when doing such a calculation. 

When the transmission line is of finite length, a short circuited quarter wavelength 

behaves as a parallel resonant circuit. To analyze this, the input impedance of a transmission 

line is defined as in Eq.3.7. If this line is terminated in a short circuit, the input impedance Zin is 

written as: 
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where α is the attenuation constant in the medium. 

Applying boundary conditions, the resonant frequency is such that 

,
2
πβ nl =  (3.9) 

The corresponding resonant frequency is 

20
nvf =  (3.10) 

n is a odd integer 
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where v is the is the velocity of electromagnetic waves in the medium (see Eq.3.4) 

between the conductors of the transmission line. Using the resonant condition in Eq.3.9, Eq.3.8 

reduces to: 

l
Z

l
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lZZin ααα

α 00
0 )tan()sinh(
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≈==  (3.11) 

At this point it is also possible to derive expressions for the Q factor of such a 

resonating segment. At frequencies close to the resonant frequency f0, 
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Substituting these into Eq.3.8, after simple trigonometric transformations, the input 

impedance becomes: 
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Substituting simplifications for small arguments of these trigonometric functions: 
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Comparing this with Eq.3.11, it is clear that if the imaginary term in the denominator 

of Eq.3.14 is made equal to its real term, the input impedance is half that at the resonant 

frequency. The corresponding frequency deviation is: 

β
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The corresponding Q0 factor is therefore: 
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3.2.4 Types of electrical Transmission Lines 

a) Coaxial transmission lines: 

Figure 3.5.a shows a typical coaxial transmission line. This kind of transmission lines 

confines the electromagnetic wave to the area inside the transmission line, between the center 

conductor and the shield. 

  
Figure 3.5. Coaxial transmission lines. 

The transmission of energy in the line occurs totally through the dielectric inside the 

cable between the conductors. We can use them as continuous time delays to implement 

resonators when properly loaded. When implemented in such a way the resonator benefits 

from the high unloaded Q0 factor of the coaxial transmission line (Q0>100). The standard 

characteristic impedance of this coaxial transmission lines is around Z0=50Ω. The propagation 

speed in a coaxial transmission line depends on the properties of the dielectric inside of the 

transmission line. To reduce the size of the transmission line while keeping its delay 

properties, a material with a high dielectric constant is used, for example the ceramic material 

used for capacitors. An example of this kind of ceramic coaxial transmission line is shown in 

Figure 3.5.b.   

b) Microstrip: 

A microstrip circuit when implemented as a transmission line uses a thin flat 

conductor which is parallel to a ground plane. Microstrip can be made by having a strip of 

copper on one side of a printed circuit board (PCB) or ceramic substrate while the other side is 

a continuous ground plane. The width of the strip, the thickness of the insulating layer (PCB or 

ceramic) and the dielectric constant of the insulating layer determine the characteristic 

impedance of the strip which is a transmission line. 

In the literature also some examples of integrated Microstrip Tubs used as a 

a) b) 
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transmission line structure are shown. The microstrip tub structure shown in Figure 3.6 is used 

throughout the CMOS chip in [Kom06] [Kom05] for matching 50Ω transmission lines. The 

presence of the side shields increases isolation between adjacent lines, allowing a compact 

layout. The lines are implemented using the top three metals of the process. The lower two 

metals are left for routing of low frequency signals.  

 
Figure 3.6. Conductor-backed coplanar waveguide microstrip tub transmission line structure used for impedance matching in 

[Kom06] [Kom05]. 

c) Integrated Lines 

It is also possible to integrate a transmission line in silicon using L and C. However, 

the resonance frequencies are constrained to values above the tenths of gigahertz due to the 

dimension of the chips and the dielectric constant of silicon. Also, these transmission lines are 

subjected to the same loss problems that affect to integrated inductors. 

In the recent literature two approaches have been used to overcome the loss problem 

and to achieve transmission line resonators in gigahertz range. 

In [Ana03] an integrated transmission line structure is described whose resonance 

frequency is in the order of 5 GHz. It is consists of a constant-k LC ladder structure. The ladder 

is a lumped approximation of a transmission line and hence, can be used as a delay line. But 

this approximation still suffers from the low Q factor of its integrated L and C components. 

A second approach that has been published in recent years uses distributed 

Microelectromechanical System (MEMS) transmission line for making RF filters. In this way, 

distributed MEMS transmission lines (DMTLs) are used in implementation of phase shifters 

[Reb03] [Bar00] [Bar98] [Bor00], resonators [Mul00] and filters [Lak03], which are the key 

components in phased arrays, radars, wireless communication systems and measurement 

instrumentation. The implementation of DMTLs employs the idea of periodically loading a 
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high-impedance coplanar waveguide (CPW) with reactive loading elements. Generally, the 

loading elements are tunable RF MEMS bridges, forming a transmission line with adjustable 

parameters [Reb03] [Bar00] [Bor00] [Bar98]. Figure 3.7 shows a simplified schematic of this 

structure. 

 

                   

Figure 3.7. General view of DMTL structure and model from [Bar00]. a) General view of a DMTL structure. b) Top view of a 

DMTL structure. c) Lumped-element CLR model of the unit section of DMTL. 

Simulations and measurement results of fabricated devices in 1–20GHz band verify 

that these DMTL structures provides good results, even with bridge widths in the range of 

50µm. The Q factor of these transmission lines can be one order of magnitude higher than that 

of the LC ladder structures. 

A second option is to use the RF-MEMS as a mechanical transmission line where a 

mechanical propagation is used to build a transmission line instead of an electrical 

propagation. In next section we describe this kind of integrated transmission line resonators 

using mechanical propagation. 

3.3 RF MEMS transmission lines (mechanical propagation) 

Mechanical resonance characteristics of coupling components such as bar, string and 

beam have been studied in the context of conventional mechanical filters [Var02]. Although 

their micro size RF-MEMS counterparts may not behave identically as the larger ones, an 

analysis of these would give an insight into the performance of these systems. For these 

components, we first endeavor to develop an equivalent circuit model, treating them as an 

b) c) 
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ideal transmission line. These equivalent circuits are developed based on electromechanical 

mobility analogies. Their wave propagation characteristics for specified boundary conditions 

are used to obtain their resonance characteristics. 

In the recent literature some works have shown that using sound waveguides as delay 

lines for RF signals is desirable since much smaller group velocities can be reached than with 

electromagnetic waveguides. Also high-Q values of microelectromechanical resonators suggest 

that, at least for narrow bandwidths below 100 MHz, mechanical impedance transformation 

can enable efficient acoustic waveguide operation with capacitive coupling [Ala03]. Figure 3.8 

shows an example of a mechanical RF-MEMS transmission line. 

 

Figure 3.8. Mechanical RF-MEMS transmission line. 

Also, other kinds of resonators that use mechanical propagation are common used in 

RF applications. They are called Surface Acoustic Wave (SAW) resonators. These resonators are 

normally used to place only one resonance frequency [Yu07]. Therefore, we will not consider 

them for our applications, as they don’t behave as a continuous time delay with multiple 

resonance frequencies as transmission lines do. 

3.3.1 Assumptions and theorems for mechanical modeling of RF-MEMS 

transmission lines 

For a simple straight forward analysis the present discussion is restricted to 

homogeneous, isotropic, continuous, elastic, lossless solids. Even for micro size systems, these 

assumptions are valid if the grain size of the crystalline materials is much smaller than the 

wavelength. It is also assumed that disturbances that travel along these solids are continuous 

motions around their rest positions with a relatively small magnitude of variation. The 

elasticity law defines the normal stress σx, due to deformation in the direction of propagation x 

as 

xlx E εσ =  (3.17) 
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where El is the longitudinal modulus of elasticity and εx is the fractional variation in 

thickness (strain). The longitudinal modulus of elasticity is 

)21)(1(
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µµ
µ
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−
= EEl  (3.18) 

where E is the modulus of elasticity of the material and µ is the Poisson ratio. 

The deformations in the transverse directions on a rectangular element make it a 

parallelogram: 

xyyxxy Gγττ ==  (3.19) 

where τxy and τyx are the tangential stresses on the element, γxy is the shear angle and G 

is the shear modulus. For long thin bars, Hooke's and Poisson's laws are also relevant: 

l
lSEF δ
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where F is the force applied, S is the cross-sectional area, δl/l is the strain and δa/a is 

the relative variation in the lateral dimension. 

Consider a long thin solid bar of length l and a uniform cross-sectional area S placed 

along the x-axis. A small longitudinal deformation traveling in the x direction causes a force 

F(x). The resultant displacement at x is ξ(x). For a section of length dx on the bar, Newton's law 

can be applied to equate the force to mass of the section and the acceleration 

2
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After rearranging terms, this becomes: 
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Hooke's law in Eq.3.20 is used to express the force at a location in terms of 

displacement as 

x
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Taking the derivative with respect to time and rearranging terms: 
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Assuming sinusoidal variations for these disturbances, phasor notation can be 

employed to remove the time dependencies of Eq.3.23 and Eq.3.25. These then become: 
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Comparing Eq.3.26 and Eq.3.27 with the characteristic equations of lossless 

transmission lines in Eq.3.3 (after making R = G = O), the similarities are striking. Now, using 

electromechanical mobility analogies, an equivalent circuit representation can be obtained for 

the transmission line equivalent circuit of the bar, as shown in Figure 3.9. 

It would also be of interest to obtain the propagation constant and the velocity of 

propagation on this transmission line equivalent of the bar. Comparing with Eq.3.4, the 

velocity of waves in the bar vb is 
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Figure 3.9. Equivalent circuit for a string modeled as a transmission line. 

3.4 Implementation issues for continuous time delays using 

transmission lines 

As we have explained in the previous two sections, there are different kinds of 

possible practical implementations for continuous time delays modeled as transmission lines. 

They can be off-chip transmission lines: coaxial resonators or microstrips implemented on PCB, 

or integrated transmission lines: integrated microstrips, LC ladder structures [Ana03], electrical 

distributed RF-MEMS transmission lines (DMTLs) [Bar00] or mechanical RF-MEMS 

transmission lines [Ala03]. 

In the case of off-chip transmission lines we can build resonators that have the 

advantage of the unloaded high-Q0 factor of the coaxial transmission lines (up to 5000) and 

wide and accurate resonant frequency range (from tenth of megahertz to gigahertz). In the 

other hand, these transmission lines have the disadvantage of the parasitics in the connections 

with the integrated circuit and the low value of the characteristic impedance that is around 

Z0=50Ω. As the gm of the transconductors of the modulator is inversely proportional to the 

value of Z0, as we will explain in next section, an increase in the value of Z0 will reduce the 

power consumption of the transconductors. 

Then, to fully seize the properties of transmission line Σ∆Ms we would need to 

integrate the transmission lines together with the associated active elements in a single chip. In 

this way we can reduce power by increasing the value of Z0 and we are also able to reduce the 

parasitics in the connection between the transmission lines and the active elements. However, 

the integrated transmission lines have a lower unloaded Q0 factor (Q0<100) than coaxial 

transmission lines and they are in the range of gigahertz. Only the unloaded Q0 factor of the 

mechanical RF-MEMS transmission lines is comparable to that of the coaxial transmission lines. 

Table 3.1 shows a comparison between different types of transmission lines. 

Although off-chip transmission lines could be a problem, depending on the 
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application, could be accepted as a solution. In [Yu07] a bandpass CT-Σ∆M employing off-chip 

SAW resonators as loop filters is presented. Compared with the loop filters realized with gm-C 

and LC resonators, the SAW resonator has the advantage of high-Q factor, wide resonant 

frequency range and accurate resonant frequency without the need for automatic tuning. 

 Implementation Propagation Freq. range 
(GHz.) Z0 (Ω) Q0 

Coaxial TLs Off-chip Electrical 0.01-3 50-75 100-5000 
Microsrtips Off-Chip/Integrated Electrical 0.5-10 50-100 20-100 
LC ladders Integrated [Ana03] Electrical 1-30 50-300 5-50 

DMTLs Integrated [Bar00] Electrical 1-20 50-350 5-100 
Mechanical RF-MEMS 

SAW resonators 
Integrated [Ala03] 

[Yu07] 
Mechanical 0.5-40 50-300 10-1000 

Table 3.1. Transmission lines implementation options. 

The demonstration circuits that we present in this thesis operate at a sampling rate of 

hundreds of megahertz and therefore they require off-chip coaxial transmission lines. 

However, we believe that the advantages of transmission line Σ∆Ms to implement data 

converters at very high frequencies may motivate more research on the field. As it has been 

shown in this chapter, a fully integrated solution would require that, apart from tackling the 

theoretical aspects of transmission line Σ∆Ms, we would need to implement RF-MEMS devices 

which are still a field under research. This would exceed the scope of the thesis. 

3.5 Mapping of Σ∆Ms with Transmission Lines 

3.5.1 Replacement of a continuous time integrator 

A delay element may be implemented electronically by using a transmission line, as 

has been discussed in previous sections, with proper loads. If we consider that the signals 

traveling through the transmission line are going to be well below its cutoff frequency, the 

delay line behaves as a linear phase four pole with nearly constant attenuation.  However, 

replacing the delays of a discrete time filter by transmission lines is not very practical as long as 

the transmission line should be embedded in the feedback loop of an amplifier, as for example, 

in an integrator (see section 2.4). There is a more convenient way to implement a modulator 

with transmission lines but it requires rearranging the modulator structure to fit with some 

basic building blocks that will be defined next.  
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The building blocks proposed in this chapter, implement an integrator seizing the 

impedance poles and zeroes of a transmission line with proper termination, and are shown in 

Figure 3.10. We will analyze a transmission line terminated with an open (Fig.3.10.a) or short 

(Fig.3.10.b) circuit, driven by a transconductor in series with a resistor and producing an 

electrical delay of T/2. 
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Figure 3.10. Integrators using transmission lines. 

The input-output relationships for these two circuits are: 
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A special case is when Z0=R, gm*R=gm*Z0=1/2: 
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   (3.31)                         

If we use sampling frequency fs as defined in Eq.3.31, the circuit in Fig.3.10.a may 

replace a non delaying integrator in conventional discrete-time systems. Hence, these two 

building blocks allow the implementation of many of the existing Σ∆M topologies by moving 

all delays in the forward path of the signal after the quantizer, where they can be implemented 

with digital hardware. Also, the circuit in Fig.3.10.a allows building resonators that place poles 

at different frequencies than DC by cascading two integrators and adding negative feedback. 

This enables this architecture to implement band pass modulators as well. The circuit in 

Fig.3.10.b has its poles at multiplies of fs/2 rather than at DC. It may find use to build bandpass 

CTΣ∆ modulators as well. 

As a practical example, we may observe in Figure 3.11 transconductor loaded with an 

open ideal transmission line and a resistor. If the input to the transconductor is a zero-order-
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hold pulse train, this system may be shown to be equivalent to a discrete time integrator, if we 

sample the voltage in the transmission line.  
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Figure 3.11. Equivalence between a discrete time integrator and a delayed continuous time integrator. 

This formal equivalence is established in Eq.3.32, where L-1 represents the inverse 

Laplace transform: 
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Obviously, a practical implementation of Fig.3.11 will behave in a different manner if 

we consider real elements with finite bandwidth. However, the properties that make this 

circuit interesting for Σ∆Ms with transmission lines will still be valid for feasible bandwidths. 

As we explain in section 2.3.5, some of the advantages of implementing a discrete system using 

a delayed continuous time system may be visualized by observing the time domain waveforms 

in Fig.3.11, where a unit step has been applied to the integrator. The sampler at the output of 

the transmission line would sample a stair case waveform with flat top steps. Hence, any 

uncertainties in the sampling point would yield the same output data if they are restricted to 

one clock period. Also, this property holds for uncertainties in the position of the zero order 

hold pulses in the input signal. In the case of a conventional continuous time integrator, (for 

instance a gm-C integrator), the output of the integrator would be a straight line and the timing 

uncertainties in the sampling clock would be reflected at the output as erroneous amplitude 
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levels. 

3.5.2 Example: Design of a Second Order Low Pass Σ∆M 

We will design a modulator which has the same NTF as the standard low-pass single-

bit second order delta-sigma modulator [Nor96] but implemented as described in chapter 2. 

Figure 3.12 shows the block diagram of the proposed modulator, where the blocks named H, d1 

and d2 represent the resonator of Fig.3.10. This architecture uses local feedforward coefficients 

d1 and d2 instead of multiple feedbacks from the quantizer. The reason for this is that the circuit 

to implement such coefficients is only a series resistor between the transconductor and the 

coaxial resonator, simplifying the converter architecture.  

  

 

 

Figure 3.12. Model of a 2nd order 1-bit low pass transmission line Σ∆M. 

It may be seen that a full clock cycle delay has been inserted in the feedback path as 

part of the loop filter. This delay may comprise the excess loop delay imposed by the 

hardware. To compute coefficients d1, d2 and d3 we may apply the impulse invariance 

condition, but it is easier to solve the following equation between the Z and the Laplace 

transform representations of the NTF functions: 

( ) ( ) ( ) ( )
( ) ( )( )( ) 1

311213
2

3

21

1

1,
1

−−

−

−+++=

−==
−=−

dddHdddHdesNTF

zzNTFsNTFzNTF

sT

sTez   (3.33) 

This equation yields d1=1, d2=3, d3=-1/4. A simplified circuit that implements the 

system of Fig.3.12 is shown in Figure 3.13. 
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Figure 3.13. Schematic of the Second-order single-bit low-pass transmission line Σ∆M. 

For an ideal transmission line, the input-output relationships of the circuit in Fig.3.13 

will be: 

)()()()()()( 0101 TtvZRgtvZRgTtvtv xmxmyy −⋅−+⋅+=−−   (3.34) 

A special case is when Zo=R1 and gm=1/Z0, as the circuit may replace the integrators in 

conventional discrete-time systems. This building block allows the implementation of most of 

the existing Σ∆M topologies, even bandpass modulators if configured as a resonator or with the 

line end shorted. 

We will show two simulated measurements to demonstrate the properties of the 

transmission line Σ∆M proposed in Fig.3.13. Considering OSR=256, we will simulate the 

modulator in Fig.3.13 with a full scale tone in the middle of the signal band. 

First, Figure 3.14 shows the modulus of the FFT of the simulated output of the 

transmission line Σ∆M of Fig.3.13 applying a -3dB low frequency sine wave at the input. The 

sampling clock (fs) was set to 1/Τ to place the first NTF zero at DC and to match the following 

zero with the sampling frequency. The output sequence shows a noise spectrum that closely 

matches that of the second order Σ∆M in [Nor96]. Also if we compare this result with Fig.2.8, 

we may end up with the conclusion that the mapping mechanism that we propose in this 

chapter for transmission line Σ∆M is valid. 
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Figure 3.14. FFT of simulated output from the transmission line Σ∆M of Fig.3.13. 

Second, we have measured the behavior of the transmission line Σ∆M of Fig.3.13 

against jitter. The solid trace of Figure 3.15 represents the SNR of modulator of Fig.3.13 and the 

dashed trace represents the SNR of the standard second order CT-Σ∆M of Figure 3.16, for 

various jitter variances. The dotted line represents the SNR obtained by sampling the input 

signal without any quantization but using a clock with jitter, which is the performance limit of 

a discrete time modulator. As we may see, the delay based modulator reaches a maximum SNR 

of 85dB with a jitter σ=3x10-3T while the conventional integrator-based CT-Σ∆M requires a 

more stringent jitter specification of σ=10-5T to achieve the same SNR. In this simulation, the 

clock has independent random timing uncertainties with a uniform PDF. This result was 

predicted in chapter 2, and is one of the advantages that transmission line Σ∆Ms has over 

existing CT-Σ∆Ms.  
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Figure 3.15. Simulation of three Σ∆Ms under different jitter conditions. (⋅⋅⋅ ) discrete time, () continuous time with 

transmission lines (Fig.3.13) and (- - -) continuous time with integrators. 
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Figure 3.16. Standard second-order CT-Σ∆M. 

3.5.3 Example: Design of a Second Order Band Pass Σ∆M 

The structure of Fig.3.13 may be modified to have a band-pass noise transfer function. 

By replacing the transmission line resonators of Fig.3.13 by the same transmission line 

resonators with their end shorted to ground and changing the polarity of the feedback DAC 

signal y(t), the NTF obtained has zeroes at (n+1)fs/2 Hz with n=0,1,2... The resonators require a 

transmission line with an electrical length equivalent to half a wavelength of the first desired 

NTF zero frequency. A single bit quantizer and a digital delay that matches the delay of the 

transmission line, complete the feedback loop. 

This modulator structure has been simulated using a -6dB sine wave whose frequency 

is slightly shifted from the first NTF zero. Figure 3.17 shows the FFT of the output of the digital 

sampler. A detailed analysis of the simulation results reveals that the spectral noise density has 

a slope similar to that of a second order zero. 
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Figure 3.17. FFT of a 2nd order bandpass transmission line Σ∆M. 

Figure 3.18 shows the  NTF (solid) and STF (dotted) of the circuit. 
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Figure 3.18. NTF and STF of a 2nd order bandpass transmission line Σ∆M. 
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CHAPTER 4 

Non-Ideal Effects in Σ∆ Modulators 

Implemented with Transmission Lines 

In this chapter we will describe some of the implementation problems and practical 

limitations of transmission lines Σ∆Ms as well as the advantages of this new architecture. 

In chapter 2 we have concluded that the main property of a transmission line Σ∆M is 

that its loop filter may be written as a Laplace domain transfer function which only depends on 

complex exponentials, H(e-sT).  This would require that a physical implementation is only 

realized with distributed energy storage elements. The presence of any lumped element such a 

concentrated capacitor or inductor will include in the loop transfer function a dependence on 

variable s in addition to complex exponentials. Then the eigenfunctions of the system will no 

longer have periods harmonically related, which is the basic property that equips transmission 

line Σ∆Ms with advantageous features against conventional CT-Σ∆Ms. These lumped 

capacitors or inductors are inherent to the physical dimensions of the wiring of the circuit and 

the parasitics that affect the semiconductors. In this chapter we will analyze these effects with 

the purpose of finding the right trade-offs between a feasible circuit and a modulator that 

benefits from using transmission lines. 

As the main advantages of using a transmission line Σ∆M instead of a conventional 

CT-Σ∆M we may highlight the following: 

• Loop delay tolerance 

A common problem in standard CT-Σ∆Ms is undesired loop delay [Che99], which is 

caused by delays in the feedback path, inherent to the hardware implementation. In most 

designs, this represents a deviation form the desired NTF which is compensated by increasing 

the order of the modulator or, if it does not cause instabilities, tolerated causing a SNR loss. 

However, in a transmission line Σ∆M, this delay may be included as part of the NTF as 

explained in chapter 2 and 3. Hence, this effect may be turned from a problem into a necessity 

of the design.  
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• NRZ DAC pulse distortion 

Using a continuous time delay based loop filter also alleviates the problems caused by 

time-varying changes in the area of the feedback DAC pulses p(t). One of such problems is 

DAC pulse distortion [Che99]. Time varying pulse distortion is due to unequal pulse areas for 

same DAC codes among different sampling periods. The unequal pulse areas are caused by 

ringing and non ideal rise and fall times in the feedback DAC when NRZ codes are used. If the 

implementation of the transmission line Σ∆M proposed in this thesis is used, the actual area of 

the pulses is not relevant, only the pulse value in the proximity of the sampling point, as 

explained also in chapter 2.  

• Clock jitter insensitivity in the DAC 

Another source of SNR degradation in a conventional CT-Σ∆M is jitter in the feedback 

DAC clock. The main reason for that is the same as before, jitter causes unequal pulse areas in 

the feedback DAC. Jitter in the sampling clock may also be considered. The noise introduced at 

the quantizer is spectrally shaped by the modulator in a standard CT-Σ∆M. However, [Her05] 

shows that in a transmission line modulator, jitter affects mainly at the quantizer, due to a 

different coupling mechanism. This will be studied in section 4.1, where we will show that in a 

transmission line Σ∆M, the shape of the DAC pulses p(t) may be time varying without SNR 

degradation, as long as the time domain waveform of each of the pulses takes always the same 

value at the sampling points. 

• Design parameters independence 

Due to the properties of transmission line modulators, the design parameters are 

independent of the sampling clock, only the length of the transmission lines determines the 

clock frequency and signal band location. In the case of a standard CT-Σ∆M modulator, most of 

the architecture coefficients are related to the sampling period, which forces to define such 

parameters in the design process. In transmission line Σ∆Ms, only the bandwidth requirements 

of the transconductors and the maximum operating frequency of the sampler and DACs set the 

bounds for the clock rate. 
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On the other hand, a Σ∆M implemented with transmission lines has several circuit 

limitations that influence the design and performance of the modulator. These limitations are 

discussed in this chapter: 

• Effect of clock jitter in the quantizer. 

• Bandwidth limitations of the active elements. 

• Mismatch among the resonators of the loop filter. 

• Parasitic capacitance and inductance on the resonator connections. 

• Finite Q factor of resonators and transconductor load. 

• Non-linear distortion due to: 

o Dynamic range of the State Variables. 

o Transconductor saturation. 
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4.1 Clock jitter performance of transmission line Σ∆ 

modulators 

As explained in chapter 2, section 2.4, the system replacement proposed in this thesis 

may be applied to any digital filter. In the particular case of a Σ∆M loop filter, this 

transformation may be of a special interest due to the timing error desensitization property 

analyzed in the previous chapters. The block diagram of such a Σ∆M using a continuous time 

filter with delays is shown in Figure 4.1.a, where all points that require a clock signal have been 

explicitly marked. Figure 4.1.b shows the equivalent DT-Σ∆M, where the input sampling clock 

has also been marked. The retarded linear system Ha will have two inputs v1(t) and v2(t), and 

one output u(t). For every input, a pulse shaper is required to transform a discrete time 

sequence into a pulse train. This is obviously required in the feedback path from the quantizer 

as y[n] is a sequence of quantized values. However x(t) is a continuous time signal and the 

usual practice in CT-Σ∆Ms is to remove the input sampler and pulse shaper S1. We will propose 

to remove this input block (marked in dashed line) as well in the foregoing explanations, but to 

formally analyze the block diagram of Fig.4.1.a we will keep it for the moment. Assuming that 

all clock signals T1, T2 and T3 operate at points t=nT without timing errors, the behavior of the 

Σ∆M using delays may be described as in section 2.4  (see Eq.2.34).  
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Figure 4.1. Block diagram of a) a Σ∆M with delays and an input sampler and b) a DT-Σ∆M. 

The models of Fig. 4.1.a and 4.1.b may be made completely equivalent even when 
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some of the clocks are subjected to clock jitter. In both models, the clock jitter of T1 will degrade 

the resulting SNR as samplers S1 introduce some error at the input of both modulators that 

cannot be distinguished from the signal itself. However, as a difference with an integrator-

based CT-Σ∆M, the system of Fig. 4.1.a is not affected by clock jitter in T2 and T3 if some 

conditions equivalent to Eq.2.21 are accomplished. 

For instance, this fact can be observed in a time domain simulation of the modulator of 

Figure 4.2 (second order lowpass Σ∆M implemented with delays and input sampler). We are 

going to simulate the behavior with a sinusoidal input signal when the DAC clock and the 

quantizer clock (T2 and T3 of Fig.4.2) have jitter, but the input sampler (T1) is ideal. Figure 4.3.a 

represents the input to the quantizer without jitter. Figure 4.3.b represents the input to the 

quantizer when the clock jitter of T2 and T3 have a rms value of σ=0.1%T. 
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Figure 4.2. Second order lowpass Σ∆M with delays an input sampler. 
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Figure 4.3. Input to the quantizer with jitter in the DAC and the quantizer clocks of Fig.4.2. 
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As can be seen jitter is accumulated by the integrators in the edges of the signal 

whereas in the hold phase of the input sampler and DAC, the signal exhibits a flat top which 

would make any jitter in sampler T2 irrelevant. If the jitter in T3 is constrained to a moderated 

value its effect in the sampled signal could also be neglected.  

If the block diagram of Fig. 4.1.a were used in a practical CT-Σ∆M, there would be no 

advantage in using the proposed architecture. One of the motivations to use a CT-Σ∆M is to 

avoid using the input sampler S1. We may remove this sampler but then the influence of clock 

jitter will be different. 

In this new situation, there will be no sampling error directly introduced into the 

input signal, as sampling will take place at the quantizer input in S2. This is a favorable 

situation because the errors produced by clock jitter in sampler S2 will be spectrally shaped by 

the sigma-delta loop. On the other hand, we will show that the power of the error signal 

introduced by clock jitter at S2 depends on the clock source and also on the open loop filter 

gain, which may be very large within the band of interest of the modulator. The proposed 

architecture may be an advantageous replacement of conventional CT-Σ∆Ms if there is a 

compromise between the open loop response and the clock jitter variance. As we will see, this 

compromise can be found without difficulty for most modulators.  
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Figure 4.4. Block diagram of a Σ∆M with delays and without input sampler. 

We are going to quantify the effect of clock jitter in the model of Fig. 4.1.a when S1 is 

removed. Figure 4.4 represents the same system as Fig. 4.1.a with this input sampler removed. 

With this figure we may rewrite the system equations as follows: 
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In this equation, we may impose some conditions to the shaping pulse p(t) operated by 

clock T3 to avoid the influence of clock jitter in the feedback pulse (see chapter 2): 
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Using the definition of p(t) in Eq.2.18 we may write Eq.4.1 as: 
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We can see that clock jitter only influences the samples of x(t) but in a different 

manner as in the block diagrams of Fig. 4.1, because the sampling error ∆T2[n] is 

simultaneously applied to all the samples memorized in the delays of the filter. We can make 

an approximated analysis of the sampling error using the derivative of x(t): 
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The term e[n] in Eq.4.4 represents a random variable ∆T2[n] multiplied by the samples 

of the derivative of the input x(t) filtered by the loop filter. This error is applied along with the 

ideal input to the quantizer; hence its spectra will be shaped by the sigma-delta loop provided 

that this error signal has a finite power.  

We may decompose the error term as: 
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where eT[n] is a random sequence and x’[nT] is a deterministic sequence which may be 

considered uncorrelated with eT[n] and of finite power. Hence, the only requirement is that the 

output of the open loop filter is stable. A loop filter made up of a cascade of ideal integrators 

would have an output with infinitely growing amplitude and the jitter errors would be 

accumulated.  
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As practical circuits never have an infinite gain, we only need that the gain in the band 

of interest and the expected jitter power are properly adjusted to yield the required SNR when 

the jitter error is shaped by the loop filter. To quantify the relation between jitter variance σΤ
2 of 

the clock signal T2 and the in-band gain of the loop filter, we will analyze the case of a generic 

sigma-delta modulator when a tone of amplitude A and frequency ωο is applied to the input: 
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The graph of Figure 4.5 represents the relation between the clock jitter sigma and the 

open loop gain such that the quantization noise power equals the power of e[n] given by Eq.4.5 

in a single-bit modulator, using a full scale test tone shifted fs/128 from the center of the signal 

band. It must be noticed that both quantization and jitter noises are assumed white and shaped 

by the same NTF. The solid line represents a low pass modulator, the dashed line a band pass 

modulator with the signal band located at π/4 and the dotted line a band pass modulator at π/2. 

  

20 40 60 80 100 120 10 -7 
10 -6 
10 -5 
10 -4 
10 -3 
10 -2 
10 -1 
10 0 

open loop gain (dB) 

σ T 
LP BP π/4 

BP π/2 

 

Figure 4.5. Maximum jitter σ (ref. to T) as a function of the open loop gain (dB). 

The predictions of Eq.4.6 are conservative if we consider the SNR degradation due to 

jitter which is a more relevant figure of merit. A better estimation of the jitter sigma may be 

achieved by simulation of an integrator based CT-Σ∆M and the equivalent delayed-based Σ∆M 

operated by the same clock. 
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To validate practically the theory exposed in this section, we are going to apply its 

results to the second order Σ∆M implemented with transmission lines from chapter 3 (see 

Fig.3.12 and Fig.3.13).  

We will analyze the clock jitter sensitivity of the modulator assuming infinite 

bandwidth but finite output resistance of the transconductors and using the prediction of 

Eq.4.6. This will be done by a time domain simulation of a behavioral model of the block 

diagram of the modulator of Fig. 3.13, simulated with jitter and without jitter, but injecting a 

white noise source with the power predicted by Eq.4.6 at the quantizer.  

Figure 4.6 shows a plot of the SNR achieved with a -4dBfs tone considering an OSR of 

128. The solid trace represents the predictions of Eq.4.6 and the dashed trace represents the 

simulations using a clock with jitter. In both cases the modulator has a finite open loop DC gain 

of 80dB.  
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Figure 4.6. Predicted and simulated effect of jitter in a second order TL-Σ∆M. 

It may be seen that the simulation and the theoretic prediction match except for high 

jitter variances. For jitter variances smaller than 2x10-4T, the SNR of the modulator is 

dominated by the quantization noise instead of jitter, as predicted by Fig.4.5. 
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4.2 Effect of finite bandwidth in active elements 

The systems studied so far rely on the principle that they produce linear combinations 

of delayed signals. In essence, this means that a pulse train weighted by a sequence will be 

processed into another pulse train whose shaping pulse has the same shape as in the original 

sequence if the pulse is of a finite duration equal to the basic delay. If we investigate this fact 

further, we would require that all signal processing elements such as adders, delays and gains 

operate with signals which are not band limited (for instance, a zero order hold pulse train). As 

long as practical circuits always have a finite bandwidth, any of such implementations will 

have a deviation from its ideal behavior which is related to this bandwidth limitation. As a 

consequence, the jitter insensitivity property that we have discussed in previous sections will 

also be restricted by the finite bandwidth effects. In this section we will try to quantify the 

trade off between the performance of a practical delay based Σ∆M and the bandwidth of its 

active components. 

A linear system that requires both, delays and derivatives to be modeled, is complex 

to handle. A simpler approach can be applied if we restrict the analysis to a system where the 

finite bandwidth effects can be separated from the delays allowing the whole system to be 

expressed as a cascade of a purely retarded linear system and a linear system expressed by 

differential equations only. This separation will be possible if there are no feedback loops 

involving both delays and finite bandwidth elements. As we have seen in chapter 2 and 3, 

there are practical ways to implement integrators using a delay element without the need of a 

loop with a summing amplifier of finite bandwidth, as it would be required in Fig.2.6.b. Hence, 

the case which will be analyzed here is really meaningful in practice. 

Figure 4.7 depicts a practical system to synthesize a discrete time filter using the 

system equivalence of Fig.2.1. The finite bandwidth effects of all components have been 

separated in a transfer function H(s) from the delay transfer function H(esT). If we make the 

block arrangement of Fig.4.7, the pulse train v(t) will be filtered by H(s) so, we may consider 

that this system behaves as the original one where the shaping pulse p(t) has been replaced by 

another pulse ph(t) (bottom graph of Fig.4.7). This new pulse is the convolution of p(t) with the 

impulse response of H(s). The effect that we may expect is that the pulse ph(t) is no longer of 
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finite duration, so we cannot exactly accomplish condition of Eq.2.18 and we will have an inter-

symbol interference effect among the successive samples of v[n]. 

 u[n] 
  H(esT) p(t) 

  
T v[n] T 

  H(s) 
v(t) 

u[n] 
  H(esT) ph(t) 

  
T v[n] T 

vh(t) 

 

p(t)

ph(t)

 
Figure 4.7. Separation of the delay transfer function. 

This by itself is not a problem and it would suffice that we compensate H(e-sT) such 

that the impulse response of the overall system matches again with the desired discrete time 

system. However, the clock jitter insensitivity property will be affected because it completely 

relies in the fact that the pulses p(t) are of finite duration. It may be expected that clock jitter 

influence is progressive with bandwidth decrease, so we could try to establish the trade off 

between the overall system bandwidth expressed by H(s) and the clock jitter influence.  

We may rewrite Eq.4.1, assuming that pulses p(t) are generated with some timing 

uncertainty ∆T[n]: 
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Sequence ui[n] is what could be expected from the equivalent ideal discrete time 

system. We may decompose u[n] into a term representing the ideal system output without 

clock jitter and an additive jitter error term. This decomposition may be accomplished by 

approximating the effect of the timing uncertainties ∆T[n] using the derivative of ph(t): 
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We have represented a discrete time convolution by *. Eq.4.8 allows to estimate the 

trade off between the loop bandwidth and the noise power that is injected in the feedback loop 

of a CT-Σ∆M modulator, as well as to define a block diagram of the delay-based modulator, 

considering clock jitter with a band-limited loop. This model is depicted in Figure 4.8. 
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Figure 4.8. Clock jitter noise model of a delay based Σ∆M with finite bandwidth components. 

The error component nj(t) will be indistinguishable from the input signal x(t). As the 

errors introduced by S2 are spectrally shaped by the modulator loop under the conditions 

expressed in previous section, error nj(t) will be the dominant source of SNR degradation in a 

practical Σ∆M modulator constructed with delays. To estimate the variance of nj(t), we may 

assume that sequence ej[n]  is a white noise and that y[n] is uncorrelated with ∆T[n] . Then, 

using the Fourier transform of p’h [n] we have: 
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The power of y[n] will be one for single bit modulators and smaller than one and close 

to the power of the input signal for multibit modulators. Considering σy=1, a bound of the jitter 

noise power in the band of interest may be approximated by the following formula: 
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We have decomposed Eq.4.10 into two terms. One is ηj which represents the spectral 

density of the clock jitter noise referred to the clock period and Ebj which may be considered an 

equivalent jitter noise bandwidth. The jitter noise bandwidth depends on the over sampling 

ratio R, the order of the modulator and the bandwidth of the active elements. 

As an example, we have evaluated numerically Ebj for the case of an m-th order, low-

pass modulator using a cascade of integrators similar to the one depicted in Fig.3.16. We will 

consider that each integrator has a bandwidth ω0 , which is k times larger than the sampling 

frequency. Then, we may group the transfer functions of every integrator in the loop and the 

zero order hold pulse into a single transfer function as follows: 
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Figure 4.9 shows the numerical evaluation of Eq.4.10 assuming the feedback pulse and 

amplifier bandwidth expressed by Eq.4.11, considering the cases m=2 and 3 and an over 

sampling ratio OSR=128.  

Fig. 4.9 allows to estimate the bandwidth required for the active circuitry in this CT-

Σ∆M, such that the SNR of the modulator is dominated by quantization noise rather than by 

clock jitter noise. Fig.4.9 may be tailored to different over sampling ratios, modulator orders 

and location of the band of interest. 

Ebj(dB) 

k=w0/wm 

m=3 

m=2 

 
Figure 4.9. Clock jitter attenuation factor for a second and third order modulator with open loop amplifiers and NRZ feedback as 

a function of the amplifier bandwidth. 
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As a consequence of the previous discussion about jitter and limited bandwidth 

effects, making analytical calculations in a design may be a complicated task and we will prefer 

to do an estimation of the design parameters by time domain simulations. 

In order to address the problem of finite bandwidth in the resonators and jitter of the 

modulator, we will do transient simulations using the second order transmission line Σ∆M of 

Fig.3.11. We may model finite bandwidth by placing a first order low pass function after every 

resonator in Fig.3.13. The low pass functions will convolve with the pulse p(t) making it loose 

its finite duration. This will degrade the SNR of the modulator, although the proposed 

structure may still be used compromising jitter sensitivity with resonator bandwidth. 

Figure 4.10.b shows the output spectra of the second order transmission line Σ∆M in 

Fig.3.13 for a random jitter with σ=0.01T and whose resonators are restricted by a dominant 

pole at 3.5 times the sampling frequency (fs). This is comparable to the gain-bandwidth product 

required for opamps in a conventional CT-Σ∆M [Che99]. Figure 4.10.a shows the behavior of 

modulator in Fig.3.13 with an ideal clock. In all previous simulations, transconductor 

saturation has been included and the delay between the quantizer and the DAC has been 

reduced to compensate the phase shift in the transconductor low pass functions. 
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Figure 4.10. Effect of finite bandwidth on jitter sensitivity. 
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We may conclude from Fig.4.10 that in this case, finite bandwidth of transconductors 

and resonators should not be more restrictive than in a conventional CT-Σ∆M. Although, in the 

transmission line Σ∆M jitter of the clock can be relaxed. 

As an example of this jitter performance, Figure 4.11.a shows variable v2(t) of the 

modulator in Fig. 3.13 with a null input and a clock with a jitter variance of 0.01T. 
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Figure 4.11. State variables in a transmission line Σ∆M. a) Ideal. b) Transconductors with finite bandwidth. 

Clock jitter insensitivity is degraded when we consider that circuit elements have a 

finite bandwidth. Then, the zero order hold pulses of the feedback are smeared in time and 

occupy more than a single clock cycle producing an effect similar to the intersymbol 

interference in a communication system. Figure 4.9.b reproduces the same situation as Fig.4.9.a 

but the transconductors have a bandwidth of 3.5 times the sampling frequency. As we can see, 

active element bandwidths in the range of those of conventional CT-Σ∆Ms still provide a 

qualitative advantage, as the feedback signal is still flat close to the sampling point. 

4.3 Mismatch and parasitic effects in the resonators 

Parasitics at the connection of the transmission line and the circuit also present design 

challenges. There is parasitic inductance to the resonator and parasitic capacitance in parallel 

with the resonator, which is exacerbated when using an external transmission line. When we 

examine the parasitic model of a resonator, the parasitic capacitance and inductance are caused 

by the pads and bonding wires. These alter the frequency-dependent impedance of the 
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transmission line, and affect the resonant frequencies. The poles of the input impedance of the 

transmission line are a function of the parasitic capacitance and inductance of the transmission 

line, and have terms in s, as well as in e-sT, destroying the ideal locations of the loop filter poles. 

Mismatch between the different resonators of a transmission line Σ∆M is another 

effect that must be taken into account. Transmission lines are fabricated with a tolerance in its 

electrical length that can be very tight. However, even transmission lines with tolerances of 1% 

may need some kind of trimming if they are used to implement narrowband bandpass 

converters. The attenuation of the quantization noise is proportional to the product of the gains 

of all resonators in the band of interest. Hence, any detuning among the resonance frequencies 

diminishes the average attenuation and worsens the SNR. 

These two problems can be solved by placing a parallel trimming capacitor in the 

transmission line and correcting the nominal electrical length of the transmission line to match 

with the desired resonance frequency, at least in the band of interest of the modulator. 

Assume that we chose an electrical length of the transmission line slightly shorter than 

required by the nominal resonance frequency. The total capacity resulting from the parallel of 

the parasitic capacitor and the trimming capacitor (Cp) may correct the phase of the resonator 

impedance increasing the effective transmission line delay [Her05]. 

 

Figure 4.12. Transmission line resonator with parasitic/trimming capacitance. 

If we calculate the impedance seen by transconductor of Figure 4.12 loaded with a 

transmission line in parallel with a capacitor we obtain: 
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The poles of Eq.4.12 are no longer evenly spaced and the resonance frequencies no 

longer match with the ideal ones. This effect is shown in Figure 4.13. 



 Chapter 4. Non-Ideal effects in Σ∆Ms implemented with TLs 

-81- 

Zideal

ω0 ω

Zparasitic

ω 0́ ω  

Figure 4.13. Transmission line impedance w/o and with parasitics. 

We can correct approximately the total delay time by an amount Tc by giving the 

proper value to Cp. This can be accomplished using the following expression: 

s

ps
c f

CZf
T

π
π

2
)2(tan 0

1−

=  (4.13) 

Figure 4.13 shows the electrical model of the assembly of a transmission line together 

with the parasitic capacity of a pad and a trimming capacitor. The lower plot in Fig.4.14 shows 

the impulse response of the resonator and the effect of the trimming capacitor. The frequency 

domain equivalent of this trimming is to adjust the first pole of the resonator to its nominal 

frequency. 
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Figure 4.14. Compensation of parasitic and mismatch effects in a transmission line. 
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This way, the mismatch between the transmission line lengths of the different 

resonators could be ideally adjusted to zero. For 50Ω transmission lines, circuit simulations and 

measurements in [Her06] [Pre07] have shown that an estimated capacitor of Cp=2pF do not 

severely degrade the SNR and clock jitter properties, if resonant frequency of the transmission 

line is around hundreds of MHz, while allowing to trim-off the mismatches and compensate 

the parasitic capacity of the pads. 

Moreover, in transmission line Σ∆Ms, the resonator length is designed such that the 

multiple resonance frequencies fold into the fundamental frequency after sampling. Deviations 

from the ideal resonator length perturbate the pole and zero locations of the NTF, not only due 

to the detuning but also due to incorrect aliases. This results in a degradation of the modulator 

performance, which cannot be corrected with the method described before. The lowpass 

implementation is far more immune to non-idealities than the bandpass implementation. In the 

lowpass implementation, the fundamental resonant frequency is always 0, regardless of the 

transmission line length. In the bandpass implementation, the resonant frequency shifts 

around of the designed notch frequency, thus affecting both the STF and NTF. 

The effect of resonant frequency on the STF is exacerbated for signals in higher 

Nyquist zones [Kap05]. The SNR is more sensitive to mismatch among the resonators when the 

signal is in the second and consecutive Nyquist zones. With a non-ideal length, the multiple 

resonator harmonics no longer alias into the fundamental harmonic after sampling. The 

harmonics play a large role in the STF, and the first harmonic largely determines the NTF, 

especially when the NTF has RC time constants that attenuate DAC harmonics. Thus, the STF 

and NTF have misaligned center frequencies and resonator lengths which mean that an 

optimal NTF may lead to low STF values. 

4.4 Finite Q factor of resonators 

A well known limitation of standard bandpass CT-Σ∆M is the Q factor of the loaded 

resonators of the loop filter [Sch06]. One of the main motivations of this thesis was the 

advantage in replacing a LC resonator with a transmission line due to its better Q factor. The 

author has found experimentally that the SNR limiting factor is the output impedance of the 

transconductor that drives the transmission line rather than the loss in the transmission line 

itself. 
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In a practical situation, the transconductor will have finite output impedance. This 

finite output impedance can degrade the performance of the modulator. The transfer function 

TF realized by Figure 4.15 looks like: 

R
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−
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1// 0  (4.14) 

 

Figure 4.15. Transconductor with output impedance followed by transmission line resonator. 

If R = Z0, then Eq.4.14 can be simplified as follows: 
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We assume that the position of the poles of TF will have the largest influence on the 

performance of the modulator and not the gain of TF or the position of the NTF poles. As a 

result, we can model the finite output impedance with the loss parameter A. 

02ZR
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=  if R = Z0 (4.16) 

Considering typical values, the transmission lines can achieve a maximal Q-factor 

associated to the first resonance frequency of 5000. Since the Q-factor in terms of the loss 

parameter A is about: 

A
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 (4.17) 

This means that: 

9996.021 ≤−≈
Q

A  (4.18) 
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The loss parameter A has an influence on the SNR performance as well as on the jitter 

performance. Jitter will introduce an upper limit for A, the SNR requirement a lower limit. 

Also, in a standard CT-Σ∆M, another problem associated with subsampling operation 

is the dependence of the loop filter H(s) with the subsampling ratio to obtain a modulator H(z) 

equivalent to the Nyquist rate modulator, when finite Q of resonators is considered. As an 

advantage of transmission line Σ∆Ms the frequencies of the notches of the NTF of a bandpass 

modulator are not affected by the subsampling ratio when finite Q values are considered 

[Her08]. 

4.5 Non-linear distortion 

The feedback loop of the transmission line Σ∆M is essentially designed so the DAC 

cancels the input at the transmission line node (see v1 and v2 in Fig.3.13). However, the input is 

designed to be narrowband, while the DAC output has a wide bandwidth. While the DAC can 

cancel the input at one frequency, it does not at the harmonics of the DAC signal. These 

harmonics can feed into the resonator higher pole locations and create very large voltage 

swings. 

In [Pre07] a simulation of a bandpass transmission line Σ∆M is realized in order to 

estimate the dynamic range of the state variables. The difference between the peak of state 

variables in continuous time and the maximum values in the sampling instants is produced by 

the mismatch between the feedback DAC spectrum, which has sync shaped aliases, and the 

input signal with no aliases. 

As shown in Figure 4.16, the DAC aliases would be suppressed by the loop filter of a 

conventional CT-Σ∆M, but with a transmission line loop filter, the DAC aliases are amplified 

by the higher resonances of the transmission lines, which create large instantaneous voltage 

values in the transconductors, far from the sampling points. 

To prevent this effect, the Q0 of the resonators and the transconductor bandwidth can 

be deliberately lowered. While this reduces the peak SNR, it also prevents high resonances 

values which may lead to saturation. Also a voltage clamp can be placed at the output of each 

transconductor [Kap05]. 
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Figure 4.16. Effect of DAC aliases in the state variables in a transmission line Σ∆M. 

There should be a trade off between the SNR achievable due to the Q0 factor, the 

dynamic range of the state variables and the minimum voltage that needs to be resolved by the 

quantizer. To evaluate this problem, in [Pre07] a simulation of a bandpass Σ∆M has been made 

including a saturation model for the transconductors. The result of this simulation shows that 

there is no significant degradation compared with the ideal performance of the modulator. 

The main problem encountered in the implementation of bandpass transmission line 

Σ∆Ms is distortion [Pre07] [Her06], which is responsible of the reduction in the performance of 

the modulators. This effect is due to the large state variables outside the sampling points, as 

explained in this section. 

Although in simulations it was shown that this effect would ideally not affect to the 

behavior of the modulator, the output stage of the implemented transconductors may not be 

fast enough to recover from the large peak level of the state variables. This may require some 

kind of compensation method, such modulation of the transconductor gains with the clock 

signal or low pass filtering the DAC signal to attenuate high-frequency components. 
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CHAPTER 5 

Low-pass transmission line Σ∆ Modulator in 

0.6µm CMOS 

5.1 Introduction 

In this chapter, we discuss the practical implementation and measurements of the 

second order low-pass single-bit transmission line Σ∆M proposed in chapter 3, Fig.3.13, using 

off-chip passive resonators constructed with transmission lines and terminated as an open 

circuit. 

This chapter includes the architecture design, the circuit design and the layout of the 

chip in a 0.6μm CMOS technology, together with the chip measurements that prove the validity 

of the design. 
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5.2 System level design 

Figure 5.1 shows the system level diagram of the transmission line Σ∆M proposed in 

chapter 3. The blocks named H implement the following transfer function: 
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−
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=
1
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 (5.1) 

This transfer function is proportional to the impedance of an open circuit transmission 

line (see chapter 3), where T corresponds to the delay of the transmission line. If this delay T is 

equal to the period of the sampling clock, this diagram can be used to implement a transmission 

line Σ∆M that has nearly identical properties as a discrete time counterpart [Her03].  
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Figure 5.1. System level diagram of a 2nd order low-pass single-bit transmission line Σ∆M. 

In this design, di coefficients are chosen such that the transmission line Σ∆M is 

equivalent to the ideal second-order lowpass discrete time modulator in [Nor96]. 

Mathematically this can be written as (see section 3.4.2): 
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This yields the values d1=1, d2=3, d3=1/4. Coefficient d3 may be neglected in our single-

bit design. 

In order to accomplish the design of the modulator, in this section we will show some 

simulations of the proposed modulator of Fig.5.1. We will introduce some non-ideal parameters 

in order to have a more realistic response. Those parameters are:  

- Finite bandwidth. 
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- Transconductors saturation. 

- Loop delay. 

- Clock jitter. 

- Transmission line delay mismatch. 

We will show the modulator behavior against such non-idealities using the SNR as a 

figure of merit. We will also show the dynamic range of state variables, gm1 and gm2 values, 

voltage swing at V1 and V2 and maximum value of the transconductors current I1 and I2. 

5.2.1 Maximum Ideal SNR 

We have used a simulation model of Fig.5.1 to simulate the behavior of the second 

order low-pas transmission line Σ∆M. 

In the Simulink model of Fig.5.1, the previously defined di coefficients are 

implemented by adding series resistors to the transmission lines. The resonator block H is 

implemented as explained in sections 2 and 3. Also, we have included the gmi values for the 

transconductors, a sample and hold block, a one-bit quantizer and a delay block that represents 

the loop delay of the feedback DAC. 

Figure 5.2 shows a simplified circuit implementation of the modulator of Fig.5.1. In this 

case we have used the same conceptual circuit as in section 3.4.2. 
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Figure 5.2. Schematic of the Second-order single-bit low-pass transmission line Σ∆M. 

Matching equations from circuit in Fig5.2 and Fig.5.1 and Eq.5.2 we conclude: 
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If we assume Z0 (transmission line impedance) as 50Ω, gm1 and gm2 will have a value 

of 20 mA/V. This value for gm1 and gm2 may be too large to keep a low power design. In the 

simulations we have scaled the gmi down to 2 mA/V. This factor has not a significant influence 

in the maximum SNR value, as long as the absolute value of transconductances is only a gain 

factor and only defines the full-scale of the input. Equation 5.4 and 5.5 show this point. These 

equations are extracted from section 3.4.2 and Eq.3.41. 
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The appropriate values of these resistors and the transconductors are expressed in 

Table 5.1. Here fs corresponds to the sampling frequency, Z0 to the characteristic impedance of 

the line and ViMAX to the maximum input level. 

gm1 1/(10*Z0) 
gm2 1/(10*Z0) 

R1 Z0 

R2 3Z0 

Ir ViMAX/(10*Z0) 

 Electrical length v/2fs 

Table 5.1. Design values of the lowpass 2nd order transmission line Σ∆M of Fig.5.2. 

Figure 5.3 shows the ideal output spectrum of the model in Fig.5.1. In this simulation 

we have used an OSR=128, and an input tone at half of the signal bandwidth (BW=fs/2/OSR). 

The FFT of Fig.5.2 shows a second order low pass function, corresponding with the 

behavior of the equivalent 2nd order low pass DT-Σ∆M in [Nor96], as explained in section 3.4. 

The SNR in this simulation is 69.7 dB with an input of -10dBFs. 
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Figure 5.3. Output spectrum of the low-pass 2nd order transmission line Σ∆M of Fig.5.2. 

5.2.2 Finite bandwidth of transconductors 

As explained in section 4.2, the finite bandwidth (Bw) of the active elements in the 

modulator limits its performance. In this design we have two transconductors. We have to 

estimate what is the minimum bandwidth of the two transconductors in order to design them 

properly. As we target a low voltage and low power design, this parameter is one of the 

limitation for this task. Also, in [Her03] and in section 4.2 was shown that transconductors 

require a minimum unity gain bandwidth in excess of 2.5fs to ensure that the intersymbol 

interference between the feedback DAC pulses will produce a noise power below the 

quantization noise, when moderate jitter (σ≤0.1%T) is present. 
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Figure 5.4. SNR of the low-pass transmission line Σ∆M of Fig.5.2 vs. 1/fw. 

Figure 5.4 shows a plot where we have used different values for the transconductors 

bandwidth of Fig.5.2. For this simulation a one pole model has been used to estimate the finite 
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bandwidth of each transconductor. In Fig.5.4 we represent 1/fw, where fw=Bw/fs, in log scale 

against the SNR of the modulator, using for this simulation the same parameters as in section 

5.2.1. 

In the simulation of Fig.5.4 the clock had no jitter. In next sections we will also 

introduce a clock jitter to compute the trade off between finite bandwidth of active elements 

and open loop gain of the loop filter. 

5.2.3 Dynamic range of state variables 

We have done a time domain simulations of the dynamic range of the state variables of 

Fig.5.2 to define the saturation values for the transconductors. These values are shown in Figure 

5.5, considering an ideal transconductor and an open loop gain limited to 120dB at DC to 

account for transmission line losses. 
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Figure 5.5. Dynamic range of state variables of the low-pass 2nd order transmission line Σ∆M of Fig.5.2. 

Using the graph of Fig.5.5, we may estimate the maximum current provided by 

transconductor gm2 and its maximum input voltage. For an input tone of –4dBFs, the maximum 

current delivered by gm2 is 1.74Ir (see Fig.5.2) and the maximum amplitude at the transmission 

line V1(t) is 1.1ViMAX. We can also note that the value of V2(t) peaks at 9.7ViMAX for the same 

input level. To compare this value with a standard second order sigma-delta modulator we 

should multiply V2(t) by d3.  
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5.2.4 Clock jitter 

As discussed in sections 4.1 and 4.2, the noise induced by jitter into the output 

sequence of a transmission line Σ∆M is composed of two terms. The equation that expresses 

such noise decomposition is Eq.4.10 of section 4.2. 

One noise term represents the jitter component that is signal dependant and appears at 

the sampler in front of the quantizer. This noise term is spectrally shaped by the loop provided 

that its power is finite. This power is proportional to the derivative of the input signal and the 

open loop gain of the modulator. Hence in a practical implementation it is always a shaped 

component, although its variance may be enough to be a significant source of SNR loss, as a 

difference with conventional CT-Σ∆Ms. Due to the derivative dependence, DC inputs or idle 

channel noise (DC=0) produce a null noise component. 

The second component is due to the DAC pulses which may have a time varying area 

due to jitter. In the ideal case, the DAC pulses should be of finite duration and the signal 

processing elements of infinite bandwidth. Under such ideal conditions this noise component 

should be null if the jitter variance is constrained to some limits. However, in a real 

implementation, finite bandwidth of transconductors will affect the duration of the DAC pulses 

and this jitter term will depend on the loop bandwidth and the jitter noise power. This is the 

noise component that is inherent to the modulator implementation. 
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Figure 5.6. Clock jitter performance of the low-pass 2nd order TL-Σ∆M of Fig.5.2. 

To compute this effect first we will run a simulation including jitter in the clock. For 

this simulation, the transconductors have a finite bandwidth of Bw=2.5fs. Figure 5.6 shows the 

jitter performance of the low-pass 2nd order transmission line Σ∆M of Fig.5.2. Also in this 

simulation we have include a loop delay of 0.4Ts for the feedback path of the DAC. 

Clock jitter: σ/Ts 
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Second, we can simulate the modulator with a fixed clock jitter and vary the loop delay 

to calculate the maximum delay that we can tolerate in the feedback path of the DAC. This is 

explained in next section. 

5.2.5 Loop Delay 

As explained in chapter 2 and 4, in a low-pass 2nd order transmission line Σ∆M, with 

ideal transconductors, the loop delay may vary between 0 to one full clock cycle without any 

theoretical degradation, if a NRZ feedback pulse is used in the DAC. However, in chapter 4 we 

explain that if the transconductors of the modulator have finite bandwidth and clock is jittered, 

we should reduce the loop delay in order to keep the ideal performance of the modulator. 

Figure 5.7 shows a simulation of the low-pass 2nd order transmission line Σ∆M of 

Fig.5.2 where we plot the SNR against the loop delay of the feedback path of the DAC. The loop 

delay has been simulated as a function of the clock period Ts. We have defined parameter 

mld=loopdelay/Ts to compute de loop delay. 

In the simulation of Fig.5.7 transconductors gm1 and gm2 have a finite bandwidth of 

BW=2.5fs. The clock has jitter of σ=10-3Ts. This simulation shows that the loop delay should be 

approximately smaller than 0.5Ts to keep the ideal performance of the modulator. 

20

30

40

50

60

70

80

0 0,2 0,4 0,6 0,8 1 1,2

mld

SN
R(

dB
)

 

Figure 5.7. SNR vs. loop delay with finite bandwidth of transconductors of the LP 2nd order TL-Σ∆M. 

5.2.6 Mismatch among the resonance frequencies 

One of the limiting factors in the design of a transmission line Σ∆M is the mismatch 

among the resonance frequencies of the resonators, as explained in section 4.3.1. Figure 5.8 

shows the relation between the resonance frequency of the transmission line connected to the 
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second transconductor gm2 of Fig.5.2, expressed as a function of the period of this frequency 

(Td), and the SNR. We have kept the first transmission line with a delay equal to the sampling 

period in order to compute the mismatch among the resonance frequencies of the transmission 

lines. 
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Figure 5.8. Mismatch among the resonators frequencies of the low-pass 2nd order TL-Σ∆M of Fig.5.2. 

As predicted in [Kap05] the mismatch of the resonance frequency of the transmission 

lines perturbate the poles and zeros of the NTF of the modulator. This perturbation degrades 

the performance of the modulator as it can be seen in Fig.5.8. 
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5.3 Circuit Design 

The system block diagram (see Fig.5.2) and parameters defined in the previous section 

were used as the start point of a CMOS circuit design. For this proof-of-concept circuit, a 

conservative 0.6µm standard CMOS process and a power supply of 3.3 V were selected. A clock 

frequency of fs = 50MHz was targeted. 

x(t)

λ/4
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1/Zo

ZL open

R1 λ/4

gm2=
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R2
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8b Shift register

CLK 
distribution

CLK

 

Figure 5.9. Block diagram of the low-pass 2nd order TL-Σ∆M CMOS chip. 

A block diagram of the chip is shown on Figure 5.9. It consists of a first input 

transconductor, a second transconductor, a comparator, a synchronization latch, a 1bit DAC 

and a digital interface block. Essentially it is the same block diagram as in Fig.5.2 but including 

the digital block to generate the output data and the clock distribution. 
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Figure 5.10. Differential block diagram of the low-pass 2nd order transmission line Σ∆M CMOS chip. 
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A fully differential implementation of the modulator shown on Fig.5.9 is shown in 

Figure 5.10. The transmission lines and their series resistors are not implemented on-chip. This 

way, the output of each transconductor is connected to an ESD-protected bond pad. 

5.3.1 First transconductor (gm1) 

The most demanding building block of the entire circuit is the input transconductor. 

This block should be at least as linear as the linearity of the overall modulator. The reason for 

this is that this transconductor performs the voltage-to-current conversion of the input signal 

prior to entering the feedback loop. Hence, non-linearity of this transconductor is not 

attenuated by the operation of the loop. For the same reason, this input transconductor does 

only require the bandwidth of the input signal instead of 2.5 times the sampling frequency, as 

stated in the previous section, which only applies to transconductor gm2. 

 

Figure 5.11. Simplified schematic of the first transconductor of the lowpass TL-Σ∆M. 

Table 5.2 shows the sizes of the main CMOS transistors of the first transconductor. 

Figure 5.11 depicts the simplified schematic of this first transconductor. It is based on 

source degeneration of the input differential pair transistors similar to what was used in 

[Cha95]. Also, Fig.5.11 shows the connections with the Common Mode Feedback Circuit 

(CMFB) and the biasing circuit (Bias). 

For enhanced linearity, the operational amplifiers A1 and A2 are added at the inputs. 

These amplifiers are implemented as simple NMOS differential pairs with active loads. 

The resistor R is a 1kΩ linear resistor which is available in the target process. This value 

was a compromise between noise and power consumption. Note that this does not correspond 
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to the value of Table 5.1. However, as explained above, the first transconductor is outside the 

loop and hence this deviation from the theory only results in a gain error of the overall 

modulator. 

Amplifiers A3-A4 are added to achieve an adequate output impedance [Sac90]. It 

turned out that the equivalent amplifiers for the NMOS cascodes could be removed. This is due 

to the fact that relatively long channels were used for these current source transistors that are 

outside the main signal path.  

CMOS trts. W/L [µm] 
M1,M2 400/0.6 
M3,M4 400/0.6 
M5,M6 800/1.2 
M7,M8 600/0.6 

M9,M10 300/0.6 

M11,M12 200/0.6 

M13,M14 800/1.2 

Table 5.2. CMOS transistors of transconductor gm1 of the lowpass TL-Σ∆M. 

CMFB circuit 

Since the circuit is differential, it requires a common mode feedback circuit (CMFB) to 

stabilize the output common mode voltage. 

 

Figure 5.12. Simplified schematic of the first transconductor of the lowpass TL-Σ∆M common mode feedback circuit (CMFB). 

The circuit [Joh97], shown on Figure 5.12, was used to set the common mode level. It 

consists in two cross-coupled PMOS differential amplifiers (M1a, M2a, M3a, M4a) that compare 



  Chapter 5. Lowpass TL-Σ∆M in 0.6µm CMOS 
 

-99- 

the differential output of the transconductor with the desired common mode voltage of the 

output of the transconductor. This circuit then compensates the differences respect to the 

common mode voltage and sets the new gate voltage of transistors M13 and M14 of Fig.5.11, 

acting as a control loop of the current of the output stage of the transconductor. 

One important issue to design the CMFB circuit of Fig.5.12 is its bandwidth. This 

bandwidth should be enough to ensure: 

- The stability of the control loop between the CMFB circuit and the output of the 

transconductor. 

- Enough phase margin of the circuit itself, as it can be seen as an opamp. 

- That the circuit is fast enough to follow the input signal. 

For this reason the input transistors of circuit of Fig.5.12 (M1a, M2a, M3a, M4a) have 

been designed such the bandwidth and phase margin of the CMFB circuit make the loop control 

stable and make the differential pair fast enough to follow the input signal. Table 5.3 shows the 

sizes of these CMOS transistors. 

CMOS trts. W/L [µm] 
M1a,M2a,M3a,M4a 60/0.6 
M5a,M6a,M7a,M8a 30/0.6 

M9a,M10a 20/0.6 
M11a,M12a 80/1.2 

Table 5.3. CMOS transistors of the CMFB circuit of transconductor gm1 of the lowpass TL-Σ∆M. 

5.3.2 Second transconductor (gm2) 

The second transconductor (gm2 on fig.5.10) is implemented as a simple differential 

pair without source degeneration nor auxiliary amplifiers. This is possible because non-linearity 

of this block is attenuated by the operation of the loop. Due to the simplicity of this block, it also 

achieves high bandwidth. 

Figure 5.13 shows a simplified schematic of the second transconductor of Fig.5.10, 

including the CMFB circuit and the bias circuit. To achieve the proper bandwidth for the second 

transconductor gm2, we have designed the sizes of the input NMOS transistors (M1, M2) such 

their gm fit with the value of table 5.1. 
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Figure 5.13. Simplified schematic of the second transconductor of the lowpass TL-Σ∆M. 

In the other hand, as far as the linearity of this block is not critical for the performance 

of the modulator, we can also achieve high bandwidth by increasing gmM1 and gmM2. This 

change in the value of the transconductance of the input differential pair will only be a gain 

error, as predicted by Eq.5.4 and section 5.2.1, but will increase the power consumption of the 

transconductor. 

To properly design transconductor gm2 we should have a trade off between bandwidth 

and power consumption. But as far as this design was only a proof-of-concept, the 

implementation was not power optimized. Therefore, the final value of the transconductance of 

the input differential pair of the second transconductor was selected in order to achieve a 

bandwidth of 3 times the sampling frequency. This bandwidth was Bw=3*fs=150MHz, which 

may exceed the minimum bandwidth needed. 

Table 5.4 shows the final values of the MOS transistors of the second transconductor. 

CMOS trts. W/L [µm] 

M1,M2 80/0.8 

M3 800/0.6 

M5 1600/1.2 

M7,M8 600/0.6 

M9,M10 300/0.6 

M11,M12 200/0.6 

M13,M14 800/1.2 

Table 5.4. CMOS transistors of transconductor gm2 of the lowpass TL-Σ∆M. 
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CMFB circuit 

Since the circuit is differential, it requires a common mode feedback circuit to stabilize 

the output common mode voltage. The circuit [Joh97], shown on Figure 5.14, was used to set the 

common mode level of the second transconductor. It consists in two NMOS cross-coupled 

differential amplifiers (M1a, M2a, M3a, M4a) that compare the differential output of the 

transconductor with the desired common mode voltage of the output of the transconductor. 

 

Figure 5.14. Simplified schematic of the second transconductor of the lowpass TL-Σ∆M common mode feedback circuit (CMFB). 

As a difference with the CMFB circuit (see Fig.5.12) of transconductor gm1, the CMFB 

circuit of transconductor gm2 uses NMOS transistors instead of PMOS transistors for its input 

stage. Therefore, we are able to increase the bandwidth of the CMFB circuit of Fig.5.14, 

compared with the CMFB circuit of Fig.5.12. This bandwidth increase is needed due to the fact 

that the bandwidth of the transconductor itself has been increased. Table 5.5 shows the sizes of 

the CMOS transistors of the CMFB circuit of gm2. 

CMOS trts. W/L [µm] 

M1a,M2a,M3a,M4a 100/0.6 

M5a,M6a,M7a,M8a 30/0.6 

M9a,M10a 20/0.6 

M11a,M12a 80/1.2 

Table 5.5. CMOS transistors of the CMFB circuit of transconductor gm2 of the lowpass TL-Σ∆M. 
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5.3.3 DAC 

Next we will describe the 1-bit DAC (see Fig.5.10) implemented for this design. This 

DAC can be implemented as NRZ DAC which simplifies the implementation. Use of NRZ or 

RZ DACs has no impact in this type of Σ∆Ms in the sensitivity to non-idealities in the switching 

points, such as clock jitter or code dependent distortion of the DAC pulses, as has been 

explained in chapter 4 [Pre07]. 

Figure 5.15 shows a simplified schematic of the 1-bit DAC. It is composed of one 

synchronization latch (Gigalatch of Fig.5.15 [Van01]) that drives the switches of a 1-bit current 

cell. 

The dynamic performance degradation of a current-steering D/A converter can be 

caused by several reasons [Van01]. Some important issues that have been identified to cause 

dynamic limitations are: 

1) imperfect synchronization of the control signals at the switches; 

2) drain-voltage variation of the current-source transistors; 

3) coupling of the control signals through the GGD of the switches to the output. 

To minimize these three effects, a well-designed and carefully laid out synchronized 

driver is used. A major function of this driver is shifting the crossing point of the switch 

transistor’s differential control signals, in such a way that these transistors are never 

simultaneously in the off state. The driver also performs the final synchronization. By placing it 

in front of the switches and by paying much attention to symmetrical interconnections in the 

layout, the difference in delay between the different digital decoder outputs is minimized. 

Furthermore, the dynamic error caused by the parasitic gate–drain feedthrough capacitance is 

significantly lowered by the use of a reduced voltage swing at the input of the switches. This 

reduced voltage swing is achieved by lowering the power supply of the digital driver. 

In this way the synchronization latch, and therefore the DAC, is strobed slightly after 

the comparator latch [Joh97] by adjusting a chain of inverters. This chain of inverters can be 

programmed to adjust the loop delay to the correct value. 

The full-scale current of the DAC (Ir) is calculated from table 5.1. As explained in 

section 5.2 the input full-scale should be a trade-off between the dynamic range of the state 

variables, the power consumption and the input to the quantizer. For this design we have 
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selected an input full-scale of ViMAX=100mV. Using this value, the full-scale of the DAC is 

Ir=300µA. 

Figure 5.16 shows a simplified schematic of the 1-bit NRZ current cell. In this schematic 

transistors M1 and M2 are the PMOS current source of the DAC, and transistors M7 and M8 are 

the NMOS current source of the DAC. Transistors M3, M4, M5 and M6 are the switches driven 

by the Gigalatch. 

Gigalatch
D+

D-

IDAC+

IDAC-

PMOS Ir

NMOS IrCLK

GL+

GL-

1-bit current cell

 

Figure 5.15. Simplified schematic of the NRZ 1-bit DAC of the lowpass TL-Σ∆M. 

Table 5.6 shows the sizes of the CMOS transistors of the 1-bit current cell of Fig.5.16. 

CMOS trts. W/L [µm] 
M1 240/2 
M2 90/0.6 

M3,M4 30/0.6 
M5,M6 10/0.6 

M7 30/0.6 
M8 80/2 

Table 5.6. CMOS transistors of the 1-bit current cell of the lowpass TL-Σ∆M. 

One restriction in the design of the DAC is its output impedance. The output 

impedance of the DAC should be large enough to avoid a reduction of the loaded Q factor of 

the associated transmission line. For this reason a NMOS and PMOS wide-swing current 

mirrors [Joh97] are designed to implement the NMOS and PMOS current sources of the DAC. 

In this case the output impedance of the DAC is similar to a CMOS cascode mirror: 

877__ MMMSOURCECURRENTNMOS rdsrdsgmRout =  (5.6) 
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122__ MMMSOURCECURRENTPMOS rdsrdsgmRout =  (5.7) 

Equation 5.6 and 5.7 represents the output impedance at nodes x and y of Fig.5.16 

respectively. 

 

Figure 5.16. Simplified schematic of the NRZ 1-bit current cell of the lowpass TL-Σ∆M. 

5.3.4 Comparator 

The 1-bit comparator of the modulator is implemented as shown in Figure 5.17. It 

consists of a pre-amplifier and a two stage regenerative latch [Gee99]. 

 

Figure 5.17. Simplified schematic of the comparator of the lowpass TL-Σ∆M. 

In the comparator of Fig.5.17 we have used a pre-amplifier in order to avoid kickback 

of the latch in the sampling instant of the clock (CLK). However, this pre-amplifier is also used 
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to amplify the input to the comparator (u2(t) in Fig.5.9) in order to reduce the metastability of 

the latch.  This effect can be seen as a delay between the sampling instant and the “decision” 

instant. This means that ideally, when a rise edge of the clock arrives, the comparator must 

decide whether its output is a “1” or a “0” without any delay. In the real circuit this is not 

possible. Even with a very carefully design, this delay gets larger as the input gets smaller. For 

this reason, we have placed a re-synchronization latch after the comparator to avoid as much as 

possible this variable delay from the feedback loop. If we do not do so, distortion from the 

feedback path would appear into our modulator. 

Then the gain stage of the latch of Fig.5.10 (transistors M8 and M9) can be relaxed due 

to the pre-amplifier. This latch has two phases. In the first phase, when the clock is positive, the 

latch decides whether the input signal is negative or positive. The transistors involve in this 

stage are M8 and M9. Transistors M10 and M11 act as a switch. Then when the clock is negative, 

the latch gets into the hold phase. In this phase, transistors M12, M13, M15 and M16 act like 

strong inverters, holding the decision taken in the previous stage. 

Table 5.7 shows the transistors sizes of the comparator of Fig.5.17. 

CMOS trts. W/L [µm] 
M1 120/1.2 

M2,M3 10/0.6 
M4,M7 6/0.6 
M5,M6 3/0.6 
M8,M9 15/0.6 

M10,M11,M12,M13,M15,M16 7.6/0.6 
M14,M17 3/0.6 

Table 5.7.CMOS transistors of the comparator of the lowpass TL-Σ∆M. 

5.3.5 Digital interface 

The digital interface, shown in Figure 5.18, groups 8 consecutive output bits in a single 

8-bit word (DataOut<7:0>) to reduce the clock rate of the output digital pads. Also a direct 

digital output (TestOut) is provided for testing at low clock rates. 

The digital block is composed of a shift register (ShiftReg) that makes the serial to 

parallel conversion, a parallel loadable register (Register8) that captures every 8-bit word, and a 

ring counter (ShiftCount1) that controls the block and generates the output signals. This output 
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signals have a clock rate of 1/8 the sampling frequency, and they are synchronize by an 

auxiliary clock signal (Latch Enable). 

 

Figure 5.18. Simplified schematic of the digital interface of the lowpass TL-Σ∆M. 

The digital interface has been designed using the standard cells of the technology. 

However, as the target sampling frequency is 50MHz, and therefore the clock rate of the digital 

output is 6.25MHz, no optimization of this block was needed. 

5.3.6 Power estimation 

Once all the main blocks of the modulator are designed, we can estimate the power 

consumption of the chip. For this purpose we have run a transient simulation in Spectre, with a 

full spice transistor-level model of the modulator. For this calculation we have taken into 

account only the next blocks from Fig.5.10: 

- gm1 

- gm2 

- comparator 

- 1-bit DAC 

Table 5.8 shows the rms value of an equivalent current source, connected to the power 

supply of each block of the modulator. 
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Block Irms [mA] Pwr [mW] 
gm1 1.15 3.8 
gm2 1.8 5.94 

comparator 0.95 3.13 
1-bit DAC 5.1 16.8 

Table 5.8. Power estimation of the low-pass 2nd order transmission line Σ∆M. 

5.3.7 Transistor-level simulation 

Finally, we have made a full SPICE transistor-level simulation of the chip in Spectre. 

We have used an OSR=128, and an input tone at half of the analog bandwidth (ABW=fs/2/OSR). 

The amplitude of the tone was 0dFs in order to estimate the distortion contributions of each 

block of the modulator. 

Figure 5.19 shows the FFT of the modulator output computed with a transistor level 

simulation of 8K points, same as in section 5.2.1. The simulation produces a SNDR of 77dB. As it 

can be seen in Fig.5.19, the behavior of the modulator is not limited by distortion, and it is close 

to the ideal simulation of section 5.2.1. 
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Figure 5.19. FFT of the low-pass 2nd order TL-Σ∆M output computed with a full spice transistor level simulation of 8K points. 
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5.4 Implementation and measurements 

5.4.1 Layout considerations 

The operation of an electronic circuit may be severely degraded as a consequence of 

the fabrication process. This fact is extremely important in analog circuits in which technology 

parameter variations may fully destroy their ideal performance. This degradation can be 

partially avoided by following some practical recommendations during the layout synthesis 

process. 

On the other hand, when both analog and digital circuits are integrated on the same 

chip, the high-speed switching signals provided by the digital circuitry create interferences on 

the sensitive analog nodes. This interference is often referred to as “switching noise” or simply 

digital noise. This noise is mainly coupled to the analog circuitry via the power supplies and the 

substrate. 

For the design of the chips in this work, the following precautions were taken into 

account, when possible, during the layout process. 

1. Separate digital and analog power supplies. 

2. Partitioning of the circuit. It is critical to avoid the proximity of analog and digital 

circuitry. When this is not possible, it is very important to place well and substrate 

contacts between the corresponding analog and digital interfaces. 

3. Shielding of sensitive circuits. These guard rings are composed of two parts. One part 

is of the p+-well type and the other one is of the n-well type. The former is placed 

closer to the circuit it guards than the latter. 

4. Basic analog layout recommendations. In addition to the mentioned precautions, we 

have applied the basic analog layout recommendations for those parts of the circuit 

that have to be matched. Among others, the most important rules are: the use of 

unit transistors, making all transistors matched in order to drive the drain current 

in the same direction, placing them as close as possible, using common-centroid 

techniques or similar techniques, etc. 
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A photograph of the prototype chip described in this chapter is shown in Figure 5.20. 

The layout of each block and the final floor planning has been completed taking into 

consideration the pad routing to minimize the parasitic capacitance at the transmission line 

connections. The chip measures 4 mm2 including the pad ring. 

gm1

DAC

gm2

D
igitalC

om
p.

 

Figure 5.20. Chip microphotograph of the low-pass 2nd order TL-Σ∆M. 
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5.4.2 Chip measurements 

To test the chip, four pieces of RG-178 coaxial cable were used as off chip resonators, 

trimmed to the clock frequency. The test setup consisted of a PCB board with current 

references, analog single ended to differential drivers and an interface to a logic analyzer. 

The values of the off-chip circuit parameters that have been chosen for the design are 

in Table 5.9. 

Z0 50Ω 

R1 50Ω 

R2 150Ω 

Table 5.9. Off-chip circuit parameters of the lowpass 2nd order TL-Σ∆M. 

Figure 5.21 shows the block diagram of the test board used to measure the chip of this 

chapter. The single-ended to differential input stage has been made with two Opamps 

(AD8041). The digital buffer is a 74LVC244A and provides a 3.3V to 5V logic level translation. 

The clock circuit has been made with a 74LVCU04 and a circuitry that allows to introduce a 

jitter noise in the clock signal. The bias circuit has been made with four matched transistor pairs 

SSM2220. Tp+ and Tp- are the input signal points of the chip. 

CHIP

Single-ended to differential converter Digital Buffer

D0…D7

Latch Enable
Test Out

Bias Circuit

Input Signal

TP+

TP-

Clock Circuit

Clock Signal

 

Figure 5.21. Block diagram of the test board of the low-pass 2nd order TL-Σ∆M. 

In order to capture the data and make all the necessary measurements in this section, 

we have used the test bench shown in Figure 5.22.  

The instrumentation used for the measurements is the next: 

*   Signal Generator and Clock Generator: Hameg HM8134-2 1Hz.-1,2 GHz. 

*   Power Supply: Programmable Power Supply HM7044 (Hameg). 
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*   Spectrum Analyzer: Anritsu Spectrum Analyzer MS2661C 9kHz-3GHz. 

*   Digital oscilloscope: Yokogawa DL1720 1GS/s 500MHz digital oscilloscope. 

 

Test Board
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CLK
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Digital Oscilloscope

Noise Generator
 

Figure 5.22. Block diagram of the test bench used to measure the chip. 

Nominal measurements 

The modulator was tested by applying sinusoidal signals at its input. In order to 

calculate the FFT of the output signal we have used a set of Matlab programs. We have 

captured for every measurement a record length of 64k samples of 1 bit with the data capture 

board of Fig.5.22, and then the FFT plots have been obtained by the average of 8 FFT with 8K 

samples. The Y axis is in dBFs referred to the input tone, and the X axis is scaled logarithmically 

and expressed as function of the sampling frequency fs. 

In figure 5.23 we show the windowed FFT of a data capture when using an input 

signal at half of the analog bandwidth fin=ABW/2=fs/2/OSR/2=104.883kHz, using a sampling 

frequency fs=53.7MHz, and the OSR=128. The input amplitude was -3dBFs. The DC component 

has been removed. The nominal jitter of the clock is σ = 0.1%Ts. 



Chapter 5. Lowpass TL-Σ∆M in 0.6µm CMOS 

-112- 

10
-4

10
-3

10
-2

10
-1

10
0

-120

-100

-80

-60

-40

-20

0

dB
Fs

f (fs1)  

Figure 5.23. Measured 8k FFT of the low-pass 2nd order TL-Σ∆M at ABW/2. 

We obtain a maximum SNDR value of 63 dB with an input signal of –3 dBFs. This 

value is the average of the SNDR of 10 data captures with different input phases. 

Figure 5.24 shows a dynamic range of the modulator DR=62dB at fs=53.7MHz, using an 

input signal at 104.883KHz. 

The SNDR loss against the simulated behavior is mainly due to: 

1. 1/f noise in the first transconductor. 

2. Frequency mismatch among the resonators. Although a trimming capacitor has been 

added, as suggested in chapter 4 at the connection between the transmission lines 

and the pads, this does not correct perfectly the mismatch among the resonance. 

3. Finite output impedance of the DAC and transconductors. Although we have designed 

them using a special circuit (CMOS cascode mirror) to increase their output 

impedance, this is yet not enough to keep the Q factor of the resonators close to the 

nominal unloaded Q0 factor of the transmission lines. 

4. Distortion of the transconductors. As explained in chapter 4, the large state variables 

out of the sampling instants, can severally degrade the performance of the 

modulator. This is because, although in simulations this is not a problem, in the 

real circuit the output cascode of the transconductors is not fast enough to recover 

from these large swings in their outputs nodes. In Fig.5.23 we can see two 
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distortion tones. These tones are not cause by the linearity of the transconductors, 

but by the slow cascodes at the output stages of the transconductors. 
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Figure 5.24. Dynamic Range of the low-pass 2nd order TL-Σ∆M. 

In Figure 5.25 we show the spectrum analyzer screen hardcopy of the digital output of 

the chip (pin Test Out) using the TTL level output gate as a single-bit reconstruction D/A 

converter. For this measurement we have lowered the sampling frequency up to 9MHz. The 

frequency span goes from 0 Hz. to 15 MHz. We can see the noise shaping effect at DC and also 

the first alias around the sampling frequency.  

 

Figure 5.25. Spectrum analyzer screen hardcopy of the digital output of the low-pass 2nd order TL-Σ∆M. 

At 3.3 Volt supply voltage, the power consumption of the chip was measured to be 32.4 

mW analog and 16.5 mW digital. Since the circuit’s goal was to demonstrate the feasibility and 

the jitter insensitivity of transmission line Σ∆Ms, no attempt was done to obtain a power 

efficient design. Table 5.10 shows the power measurements of the modulator. 
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 I [mA] Pwr [mW] 

Analog core (VDDA) 9.8 32.4 
Digital Core (VDD) 5 16.5 

Table 5.10. Power measurement of the low-pass 2nd order TL-Σ∆M. 

Jitter measurements 

To generate the clock jitter in the test bench we will use a 74ACT04 digital inverter as 

clock driver whose input is the combination of a DC level, a 0dBm sine wave of the clock 

frequency and a gaussian noise source with programmable rms level. This jitter generation 

method has been preferred to a clock synthesizer modulated in phase with a noise source, 

because it can be modeled in Simulink in a more precise way and produces faster simulations. 

This clock driver guarantees that statistically the average period of the clock is constant and 

equal to the nominal clock (there is no cycle slip) but the clock edges are randomly placed 

producing time varying pulse widths in the DAC. 

To demonstrate the robustness against clock jitter of the architecture, the clock jitter 

was increased until it was the dominant source of the in-band noise. 

As jitter measurement technique we will compare the FFT of the measured data against 

simulations of a Simulink model of the transmission line Σ∆M and as a comparison with prior 

art, a second order modulator based on integrators. In these simulations we will use a clock 

modeled with the equivalent jitter variance. 

The FFT of the measured data has been plotted in Figure 5.26 when the modulator is 

clocked at fs=53.7MHz and a test tone of –15dBFs is applied. A small amplitude value for the 

input signal has been selected to avoid distortion in the inband spectrum. The dotted trace 

shows the FFT of the measured data using the nominal jitter of the clock generator (18ps rms, 

0.1% of the clock period Ts). The solid trace shows the FFT of the captured data with a clock 

jitter variance of 186ps rms (1% of Ts), which produces only 5dB below the nominal case. For 

comparison purposes, the dashed trace shows the simulated output of an equivalent CT-Σ∆M 

implemented with ideal integrators using the same test signal and clock jitter variance of 1% of 

Ts. In this case, the SNDR is 15 dB below the nominal case. 

As it can be seen, the spectral density of the in band noise caused by this level of jitter 

variance is larger in the integrator-based modulator than in the case of the transmission line 

modulator. 
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Figure 5.26. Measured output spectrum for the low-pass 2nd order TL-Σ∆M and simulated output spectrum for an equivalent 

integrator based CT-Σ∆M for a clock jitter of σ=1%Ts. 

Idle channel measurements 

The pads of the external transmission lines allow to observe the time domain 

waveform at the transmission line connection. The feedback DAC signal in the transmission line 

has a staircase shape with flat top pulses, which is the reason for a lesser jitter sensitivity. 

This situation is depicted in Figure 5.27 which shows the measured voltage across gm1 

(v1(t)) in the upper trace and the clock in the lower trace. In this measurement, the modulator 

input was grounded (idle channel). 

As may be seen, this signal is composed of staircase-like ramps corresponding to 

accumulated square DAC pulses. This measurement is not differential and is partially 

contaminated by digital ground noise. 

 

Figure 5.27. Oscilloscope capture of the first transconductor output voltage of the low-pass 2nd order TL-Σ∆M. 
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5.5 Conclusions 

In this chapter we have demonstrated the feasibility of sigma-delta modulation with 

transmission lines as resonators in its loop filter. 

The prototype second-order modulator was clocked at 53.7 MHz and achieves 63dB 

peak SNDR at an oversampling ratio of 128. 

When an excessive clock jitter of 1% of the clock period is applied, the modulator 

SNDR is degraded by 5dB only. This is 15dB better than a conventional CT-Σ∆M with capacitive 

integrators. 

The next two chapters will focus on two possible applications of this new architecture. 

The first one is a 6th order bandpass transmission line Σ∆M with programmable bandwidth. The 

second one is a subsampling quadrature transmission line Σ∆M for use in radio receivers. 

 

 

 

 

 

 

 

 

 

 

 

 

 



-117- 

CHAPTER 6 
Programmable Subsampling Bandpass 

Transmission Line Σ∆ Modulator in 0.35µm 

BiCMOS 

6.1 Introduction 

In this chapter we present the design and implementation of a band-pass sigma-delta 

modulator. This modulator is based on similar principles as the low-pass modulator described 

in the previous chapter and also uses transmission lines as delay elements; however it is 

implemented in BiCMOS technology which is more suited for RF applications. 

The novelty of the modulator presented here compared to the low-pass modulator of 

chapter 5 is the use in the design of its equivalent discrete time NTF of a z-1 to z-2 

transformation, known as 2-path transformation [Ong97]. This allows to trade off analog signal 

bandwidth by resolution with a single tuning coefficient. 

As an additional benefit, the modulator tolerates two full clock periods of loop delay 

and a higher clock jitter level than conventional continuous time band pass modulators. Note 

that a N-path transformation is feasible in a delay-based Σ∆M due to its formal similarity with 

discrete time modulators (see chapter 2). An equivalent approach is not easily feasible in 

continuous time modulators based on lumped elements. 
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6.2 System level design 

To design a band-pass Σ∆M with transmission lines it is better to start form a discrete 

time design and apply a similar transformation to the one of chapter 3 to translate a discrete 

time block diagram into a delayed continuous time system which permits an implementation 

with transmission lines. This approach allows implementing modulators that for instance, can 

subsample a signal due to the higher resonances of the transmission lines. 

As stated before, the first step is to choose a discrete time prototype that can be 

transformed using the equivalence that we have describe in this thesis between a discrete time 

resonator and a transmission line resonator. Figure 6.1 depicts the block diagram of the 

proposed modulator in the Z domain: 

z-2

Ts

z-2z-2

z-2

sin(φ)

a1 a2 a3

X(z) Y(z)

d1 d3

 

Figure 6.1. Discrete time prototype of the 6th order bandpass TL-Σ∆M. 

This modulator structure is based on a cascade of resonators with local feed forward 

coefficients ai and multiple feedback coefficients di that provide stability to the modulator. An 

interesting feature is that the loop includes a delay of two samples which permits to account for 

the delay of the quantizer at high speed. 

Figure 6.2.a depicts the pole-zero plot of the NTF(z) prototype that will be used in the 

design. This transfer function has two complex conjugate zeroes located in the unit circle close 

to a real zero at z=-1. The phase ±φ of the two complex conjugate zeroes will define the 

bandwidth of interest of the modulator and will be selected according to the desired 

oversampling ratio OSR. 

The NTF has also been equipped with three poles p0, p1 and p*1 to provide stability in a 

single bit design. If we replace z-1 by z-2 in the NTF, the zeroes and poles are shifted around 
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z=e±jπ/2 and the order is doubled, as shown in Figure 6.2.b, without increase on the resonator 

count. 

The input signal can be placed at fs/4 or, if the modulator is used as a subsampling 

converter, at any odd integer multiply of fs/4. 

The expression of the NTF(z) represented in Fig. 6.2 is as follows: 
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( ) ( )czbazz
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Figure 6.2. Prototype NTF pole-zero plot of the 6th order bandpass TL-Σ∆M. a) Pole-zero plot of NTF(z) prototype used in the 

design. b) Effect of replacing z-1 by z-2 in the NTF. 

Figure 6.3 shows the modulus of the discrete noise transfer function (NTF(z)) and the 

discrete signal transfer function (STF(z)) of the bandpass modulator. 
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Figure 6.3. Prototype discrete NTF(z) and STF(z) plot of the 6th order bandpass TL-Σ∆M. 

The next step in the design is to accomplish the block diagram of a delayed system 

with an equivalent behavior to the proposed discrete time modulator. We may implement such 
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retarded system by means of transconductors, transmission lines, a sampler and quantizer and 

two current feedback DACs. 

The proposed system is shown in Figure 6.4, where all transmission lines are identical, 

have a characteristic impedance Z0, an electrical delay T corresponding to the sampling 

frequency period fs=1/T and a loss parameter A≤ 1. 

The feedforward coefficients ai have been implemented by means of resistors in series 

with the transmission lines and the feedback coefficients di are two single bit current DACs. It 

must be noted that the subsampling property of the discrete time equivalent system still holds 

for the system of Fig.6.4 despite of the lack of an input sampler, due to the periodic frequency 

response of the transmission lines. 

It may be shown that any of the state variables ui complies with the following 

relationship: 
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Figure 6.4. Block diagram of the bandpass 6th order TL-Σ∆M. 

where Q0 is the unloaded Q factor of the TL [Kuh94]. 

Considering the system equivalence defined in this thesis, we may replace e-s2T by z-2 in 

Eq.6.2 and compute the corresponding NTF and STF of the modulator as if it was a discrete 

time system. Note that this equivalence holds for any DAC pulse shape of finite duration T, 

because the value of the DAC pulse in the sampling instant is what is relevant instead of the 
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pulse area, as a difference with a conventional CT-Σ∆M, as explained in chapter 4. Due to the 

same practical considerations, we will select a NRZ zero-order-hold pulse as in the design of 

chapter 5. 

To complete the design, it suffices to equate the coefficients of Eq.6.1 with the NTF(z) 

obtained using Fig.6.4, Eq.6.2 (assuming A=1) and the proposed replacement. 

Transconductances gm1, gm2 and gm3 may be considered design parameters to scale the state 

variables ui(t) and the STF gain. Table 6.1 shows the resulting design equations. 
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Table 6.1. Design equations for the bandpass 6th order TL-Σ∆M. 

The signal bandwidth of the modulator depends on angle φ and can be modified by 

transconductance gm12, which moves four of the zeroes of Fig.6.2.b all together, as shown by the 

arrows. Setting constant values for dac1, dac3 and R1 and changing only gm12 shifts also the 

location of the NTF poles. However, as φ approaches π, this pole shift is small enough for the 

modulator to remain stable, as will be verified by simulation in the next section. 

The NTF expressed in Eq.6.1 requires a loop with a z-2 delay block. This is equivalent to 

delaying the quantizer data by two clock cycles before reaching the feedback DAC. The 

feedback path in Fig.6.4 contains a quantizer and two D flip-flops triggered in the rising and 

falling edges of the sampling clock respectively. For a symmetric clock signal, this configuration 

would update the DAC output with the data captured in the quantizer 1.5 clock cycles before. 

The next sampling operation in the quantizer would happen 0.5 clock cycles after the DAC 

update. Hence, this circuit provides the two clock cycles of delay required by the NTF and 

forces the sampler to sample in the middle of the zero order hold feedback DAC pulse. By 

doing so, the modulator is desensitized from clock jitter or code dependent distortion of the 

DAC pulses, which will accumulate in the DAC pulse edges, as explained in chapter 4. 
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In the following sub-sections we will first specify the values for the circuit parameters 

such as transconductance values and bandwidths, resonator Q factor or clock jitter 

requirements for an implementation in a 0.35u 3.3V BiCMOS technology. Afterwards we will 

discuss the circuit details and the measurements. 

6.2.1 Loop Filter Design 

To prove the validity of this design we have used the model of Fig.6.4 to simulate the 

system along with some circuit non-idealities. 

The design has been realized with the aid of a software tool specifically designed for 

this type of modulators. This software tool assumes the implementation described in this 

section. For the implemented case, the outcome of this tool is in Figure 6.5, showing the STF, the 

NTF, the circuit design parameters, the FFT of a discrete time domain simulation and a plot of 

the state variables. 

 

Figure 6.5. Design tool output for the bandpass 6th order TL-Σ∆M. 

To define a practical case, we will use the circuit parameters expressed in Table 6.2, a 

line impedance of 50Ω, an input full scale 0dBFs=-10dBm and a sampling frequency fs=200MHz. 
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In this way we can digitize an IF signal at fs/4 or, if the modulator is used as a subsampling 

converter, at any odd integer multiply of fs/4. 

gm1 =3.4mA/V gm2 =6.8mA/V gm3 =3.4mA/V 
R1 =586Ω R2 =0 R3=50Ω 
DAC1 =±367µA  DAC3 =±1.05mA 

Table 6.2. Circuit parameters of the bandpass 6th order TL-Σ∆M. 

Figure 6.6 shows the FFT of three time domain simulation of the modulator of Fig.6.4 

using transmission lines with a loss parameter A=0.99 (see Eq. 6.2). The simulations use three 

values of gm12, computed by optimizing the NTF for oversampling ratios OSR=16, OSR=128 and 

OSR=256 respectively. 
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Figure 6.6. FFT of time domain simulations of the bandpass modulator of Fig.6.4 with different values of gm12. a) OSR=16. b) 

OSR=128. c) OSR=256. 

Due to the properties of transmission line modulators, the parameters in Table 6.2 are 

independent of the sampling clock, only the length of the transmission lines determines the 

clock frequency and signal band location. In the case of a standard CT-Σ∆M modulator, most of 
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the architecture coefficients are related to the sampling period, which forces to define such 

parameters in the design process. In this case, only the bandwidth requirements of the 

transconductors and the maximum operating frequency of the sampler and DACs set the 

bounds for the clock rate. 

6.2.2 Finite Bandwidth of transconductors 

In a practical implementation, the loop filter of the modulator will not have a perfectly 

periodic frequency response, as suggested by Eq.6.2, due to finite bandwidth (BW) of 

transconductors. The finite BW limits the performance of the modulator and sets the maximum 

bound for the sampling frequency fs. To prove the feasibility of the modulator we have 

simulated the bandpass 6th order transmission line Σ∆M of Fig.6.4 using a first order model for 

the transconductors bandwidth with a dominant pole at BW. For this simulation we have used 

the conditions of Fig.6.6.c (OSR=256). 
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Figure 6.7. Simulated SNR vs. transconductors BW in the bandpass 6th order TL-Σ∆M. 

The plot of Figure 6.7 shows the SNR of the modulator of Fig.6.4 as a function of the 

BW of the transconductors gm2 and gm3. In this architecture, transconductor gm1 will only affect 

the linearity of the modulator as it is outside the loop and for this reason is not considered in 

this simulation. After the results of Fig.6.7, we have considered that a BW=2.5fs for 

transconductors gm2 and gm3 is an adequate compromise between performance and power 

consumption. 
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6.2.3 Q factor of Transmission Lines 

Another effect that limits the performance of a standard bandpass CT-Σ∆M is the Q 

factor of the loaded resonators of the loop filter [Sch06]. As stated before, one of the reasons 

because we use transmission lines is to increase the performance of the modulator due to the 

high Q factor that can be achieved. A usual value for the unloaded Q of a low loss transmission 

line is around 500. To estimate the required Q0 of the transmission lines, we have obtained the 

plot of Figure 6.8 by simulation, which shows the SNR as a function of the Q0 factor. 
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Figure 6.8. Simulated SNR vs. Q0 factor of transmission lines in the bandpass 6th order TL-Σ∆M. 

For the simulation of Fig.6.8 we have used the conditions of Fig.6.6.c (OSR=256) and a 

ratio BW/fs=2.5 for gm2 and gm3. A Q0 of the transmission lines around 150 would be enough to 

ensure that our modulator achieves a performance close to the results of section 6.2.1. 

6.2.4 Feedback DAC 

For the block diagram of Fig.6.4 to be associated to the NTF expressed in Eq.6.1, a delay 

of two samples in the feedback loop is required, as shown in Fig.6.1. This is equivalent to 

delaying the quantizer data by two clock cycles before reaching the feedback DAC. The 

feedback path in Fig.6.4 contains two D flip-flops triggered in the rising and falling edges of the 

sampling clock respectively. For a symmetric clock signal, this configuration would update the 

DAC output with the data captured in the quantizer 1.5 clock cycles before. The next sampling 

operation in the quantizer would happen 0.5 clock cycles after the DAC update, completing the 

required condition, as shown in Figure 6.9. 
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Figure 6.9. NRZ feedback DAC pulse used in the bandpass 6th order TL-Σ∆M. 

6.2.5 Dynamic Range of State Variables 

Once the circuit parameters of Table 6.2 are defined, we need to estimate the level of 

the state variables to see if they represent a feasible dynamic range for a transconductor in a 

BiCMOS 3.3V technology. Table 6.3 shows the peak values of the 3 state variables of Fig.6.4, u1, 

u2 and u3. The values are computed as a function of the input voltage, both in continuous time 

and in the sampling instants. Table 6.3 shows two input conditions, the nominal one with a full-

scale tone at fs/4 and a subsampling case, with the same input tone at 3fs/4. 

Input at fs/4 Input at 3fs/4 

u1(t)/x(t)=2 u1[nT]/x[nT]=1 u1(t)/x(t)=2 u1[nT]/x[nT]=1 

u2(t)/x(t)=2 u2[nT]/x[nT]=0.72 u2(t)/x(t)=4 u2[nT]/x[nT]=0.72 

u3(t)/x(t)=48 u3[nT]/x[nT]=0.48 u3(t)/x(t)=160 u3[nT]/x[nT]=0.48 

Table 6.3. Simulated peak values of the state variables of the bandpass 6th order TL-Σ∆M. 

The difference between the peak state variables in continuous time and the maximum 

values in the sampling instants is produced by the mismatch between the feedback DAC 

spectrum, which has sync shaped aliases, and the input signal with no aliases. 

As shown in Figure 6.10, the DAC aliases would be suppressed by the loop filter of a 

conventional CT modulator, but with a transmission line loop filter, the DAC aliases are 

amplified by the higher resonances of the transmission lines, which create large instantaneous 

voltage values in the transconductors, far from the sampling points. To prevent this effect, the 

Q0 of the resonators and the transconductor bandwidth can be deliberately lowered. While this 

reduces the peak SNR, it also prevents high resonances values. Also a voltage clamp can be 

placed at the output of each transconductor [Kap05]. 
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Figure 6.10. Effect of DAC aliases in the state variables of a bandpass TL-Σ∆M. 

There should be a trade off between the SNR achievable due to the Q0 factor, the 

dynamic range of the state variables and the minimum voltage that needs to be resolved by the 

quantizer (see u3 in Table 6.3). 

To evaluate this problem, a simulation of the modulator in Fig.6.4 has been made 

including some non-idealities. We have used a saturation model in transconductors gm1, gm2 and 

gm3. The saturation voltage of this model was set to 3V, while the full scale input level was set to 

100mV. We have also lowered the Q0 of transmission lines up to 100 and used a ratio BW/fs=2.5 

for gm2 and gm3. The result of this simulation shows that there is no significant degradation 

compared with the results of the modulator in section 6.2.1. 

6.2.6 Clock Jitter performance 

The performance of band-pass CT-Σ∆M can be limited also by clock jitter, as explained 

in chapter 2 and 4 of this work. Figure 6.11 shows the variation of the overall SNR of the 

modulator against the standard deviation of the clock jitter. Fig.6.11 shows two simulations of 

the transmission line band-pass Σ∆M of Fig.6.4 with an input tone of -6dBFs at fs/4 and 3fs/4. 

These two simulations were made using the same parameters as in Table 6.2, a ratio BW/fs=2.5 

for gm2 and gm3 and a Q0(TLs)=150. 

We will compare the proposed transmission line band-pass Σ∆M with the results 

predicted in [Hai99] for conventional Σ∆ modulators. Fig.6.11 also shows the SNR considering 

only the noise introduced by jitter for three conventional single-bit modulators: a band-pass DT-

Σ∆M with an input tone at fs/4, a band-pass DT-Σ∆M with an input tone at 3fs/4 and a band-pass 

CT-Σ∆M with an input tone of -6dBFs at fs/4. 
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Figure 6.11. Jitter performance of the bandpass 6th order TL-Σ∆M compared to conventional BP-Σ∆Ms. 

When jitter noise dominates the SNR, the simulated behavior of the transmission line 

band-pass Σ∆M is close to that of a conventional band-pass DT-Σ∆M calculated using the 

equations in [Hai99], both for inputs at fs/4 and 3fs/4. 

This behavior indicates that the performance with a jittered clock in the transmission 

line band-pass Σ∆M approaches what could be achieved with an ideal discrete time 

implementation. Furthermore, if we compare the behavior of the transmission line band-pass 

Σ∆M with an input tone at fs/4 against the calculated results of a band-pass CT-Σ∆M using 

equations from [Hai99], we can see that, when jitter dominates over quantization noise, the 

transmission line band-pass Σ∆M achieves better performance. 

In conventional CT-Σ∆Ms noise induced by the clock jitter at the quantizer is shaped by 

the loop and the relevant jitter source is the feedback DAC clock. However, [Her05] shows that 

in a transmission line band-pass Σ∆M modulator, jitter affects mainly at the quantizer, due to a 

different coupling mechanism. Observing Fig.6.11 it may be concluded that the jitter sensitivity 

of this transmission line modulator is between that of a discrete time modulator and a 

continuous time modulator. 

6.2.7 Resonators Frequency Mismatch 

The resonators length is designed such that the multiple resonance frequencies fold 

into the fundamental frequency after sampling. Deviations from the ideal resonators length 
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perturbate the pole and zero locations of the NTF. This results in a degradation of the 

modulator performance [Kap05]. 

However, this problem can be solved by placing a parallel trimming capacitor Cp (see 

Fig.6.4), as we have explained in chapter 4 and 5. Capacitor Cp corrects the phase of the 

resonator impedance reducing the effective transmission line delay by Τc=Z0Cp within the 

transconductor bandwidth [Her05]. This way, the mismatch between the transmission line 

length of the different resonators could be ideally adjusted to zero. Circuit simulations have 

shown that an estimated capacitor of Cp=2pF do not severely degrade the SNR and clock jitter 

properties, while allows trimming of the transmission line mismatches and may include the 

parasitic capacity of the pads. 
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6.3 Circuit Design 

The system block diagram and parameters defined in the previous section were used 

as the start point of a BiCMOS circuit design. For this circuit, a 0.35µm SiGe process and a 

power supply of 3.3 Volt were selected. 

The block diagram of the demonstration bandpass 6th order transmission line Σ∆M chip 

is shown in Figure 6.12 which is a fully differential implementation of the modulator structure 

in Fig.6.4. It consists of four transconductors, gm1, gm2, gm3 and gm12, a single bit quantizer, two 1-

bit feedback DACs, an auxiliary DAC and a digital interface block. 

The 50Ω transmission lines are not implemented on-chip. This way, ESD-protected 

bond pads were used to connect the output of each transconductor to the transmission lines. 

A clock frequency of fs = 200MHz was targeted for this design, as explained in previous 

section. Also, setting the input full-scale level at 100mV, with a 50Ohm source, results in a 

thermal noise 10dB below the quantization noise. A smaller value of the input full scale would 

optimize the power consumption of the modulator but could produce quantizer metastability 

due to the low level of state variable u3 in the sampling points (see section 6.2.5). Also, there 

must be a trade off between the input full scale and the peak values of the state variables to ease 

the recovery from saturation in the transconductors. 
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Figure 6.12. Block diagram of the bandpass 6th order TL-Σ∆M chip. 
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6.3.1 First transconductor (gm1) 

The most demanding building block of the entire circuit is the input transconductor. 

This block should be at least as linear as the linearity of the overall modulator, as explained in 

the previous chapter. The reason for this is that this transconductor performs the voltage-to-

current conversion of the input signal prior to entering the feedback loop. Hence, non-linearity 

of this transconductor is not attenuated by the operation of the loop. 

Figure 6.13 shows a simplified schematic of gm1 (see Fig.6.12). This transconductor is 

based on a source degenerated differential pair with two operational amplifiers A1 and A2 

added at the inputs to enhance the linearity. These amplifiers are implemented as simple PMOS 

differential pairs with active loads. 

Transconductor gm1 has been designed for a BW=300MHz, to allow subsampling of 

inputs beyond the sampling frequency. This input transconductor does only require the 

bandwidth of the input signal instead of 2.5 times the sampling frequency, as stated in the 

previous section, which only applies to transconductors gm2 and gm3 (see Fig.6.12). 

 

Figure 6.13. Simplified schematic of the input transconductor gm1 of the bandpass 6th order TL-Σ∆M. 

The resistor R is a linear resistor which is available in the target process. The value of R 

is calculated using the value of gm1 in Table 6.2. Then, using an approximated relation between 

the input voltage and the output current through the resistor, its value is R = 2/gm1 = 590Ω. This 

value was a compromise between noise and power consumption. 

In this design we have not used a current cascode for the output of the transconductor. 

Instead, we have designed transistors M5 and M6 with relatively long channels to keep the high 
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output impedance needed to avoid a reduction of the loaded Q factor of the resonators. Also, in 

this way we can save area and power because the bias circuit is simpler than the circuit used in 

chapter 5 for the input transconductor. Table 6.4 shows the sizes of these CMOS transistors of 

the first transconductor. 

CMOS trts. W/L [µm] 
M1,M2 156/0.35 
M3,M4 80/0.35 
M5,M6 200/1.2 

Table 6.4. CMOS transistors of the input transconductor of the bandpass 6th order TL-Σ∆M. 

Another point that was modified in this design compared with the circuit of chapter 5 

is the CMFB circuit. In this case the transmission lines are DC coupled and used as supply 

points of the transconductors common mode voltage. Also, this helps to reduce the power 

consumption and simplifies the design. 

6.3.2 Second and third transconductors (gm2 and gm3) 

The second and third transconductors (gm2 and gm3 in fig.6.12) are implemented as a 

simple bipolar differential pair with emitter degeneration and a poly resistor (R) that sets the 

transconductance. This simple implementation is possible because non-linearity of these blocks 

is attenuated by the operation of the loop. Also, due to the simplicity of these blocks, they can 

achieve high bandwidth. 

Using the results of section 6.2.2, a bandwidth of 2.5fs=500MHz was selected to achieve 

a compromise between clock jitter desensitization, feasibility and power consumption. 

Figure 6.14 shows a simplified schematic of the second (gm2) and third (gm3) 

transconductors of the bandpass 6th order TL-Σ∆M of Fig.6.12. To achieve the proper bandwidth 

for the second and third transconductors, we have used bipolar transistors to realize the 

voltage-to-current conversion (B1 and B2 in Fig.6.14). These transistors are available in the 

targeted process. This way, we can increase the bandwidth of the implemented transconductors 

without increasing their power consumption due to the high cutoff frequency (ft) of such 

transistors. 
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As explained in section 6.3.1 for the input transconductor, we have used the 

transmission lines also as supply points for the common mode voltages of gm2 and gm3. This way 

we save area and power because we don’t need a CMFB circuit. 

Another important point in the design of these transconductors is the output 

impedance at node y of Fig.6.14. We need transconductors with a high output impedance to 

avoid a reduction in the loaded Q factor of the resonators. 

One possible solution is to increase the output impedance by using a current cascode 

PMOS transistor in the output of the transconductors. This will increase the area and the power 

consumption of the bias circuit. 

In the other hand we can increase this output impedance by using relatively long 

channels in transistors M1 and M2 of Fig.6.14. This way we can save area and power as well. 

 

Figure 6.14. Simplified schematic of the second (gm2) and third (gm3) transconductors of the bandpass 6th order TL-Σ∆M. 

Table 6.5 shows the sizes of the transistors of transconductors gm2 and gm3 of the 

bandpass 6th order TL-Σ∆M. Also in Table 6.5 we show the value of the resistor R that fits the 

transconductance of each transconductor. 

gm2 gm3 
CMOS trts. W/L [µm] CMOS trts. W/L [µm] 

M1,M2 200/1 M1,M2 300/1 
M3,M4 200/1 M3,M4 300/1 

Bipolar trts. Ratio  Bipolar trts. Ratio  
B1,B2 4 B1,B2 4 

R 150 Ω R 300 Ω 

Table 6.5. Design parameters of the second and third transconductors of the bandpass 6th order TL-Σ∆M. 
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Transconductor gm12 is similar to gm2 and gm3 but with a programmable 

transconductance. 

6.3.3 Single bit Quantizer 

The 1-bit quantizer of the modulator is implemented as shown in Figure 6.15. It 

consists of a pre-amplifier and a two stage regenerative latch. Due to the architecture of the 

modulator, which includes a two clock cycle delay in its feedback path, the synchronization 

latch and the clock drivers provide a delay of 1.5 clock cycles between the comparator sampling 

and the update of the DAC outputs. For this reason a D-flip-flop (DFF) has been included in 

Fig.6.15 to provide a complete full cycle of delay between the latch and DACs. The other half 

cycle is realized by updating the DACs with the inverse clock (/CLK) compare with the latch 

and the DFF. 

 

Figure 6.15. 1-bit quantizer simplified schematic of the bandpass 6th order TL-Σ∆M. 

 

Figure 6.16. Pre-amplifier simplified schematic of the bandpass 6th order TL-Σ∆M. 

In the quantizer of Fig.6.15 we have used a pre-amplifier in order to avoid kickback of 

the latch in the sampling instant of the clock (CLK). However, this pre-amplifier is also used to 

amplify the input to the latch (u3(t) in Fig.6.4) in order to reduce the metastability of the 

quantizer. Also, the pre-amplifier helps to ease the design of the input stage of the latch, 
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reducing its power consumption. Figure 6.16 shows a simplified schematic of the pre-amplifier. 

We have used bipolar transistors in order to have more gain and bandwidth compared with a 

pure CMOS design. 

The pre-amplifier of Fig.6.16 has two stages. The input stage (B1 and B2) is used to fix 

its gain. The second stage is a voltage follower (B5 and B6) to decouple the pre-amplifier from 

the latch. 

 

Figure 6.17. Simplified schematic of the two-stage regenerative latch of the bandpass 6th order TL-Σ∆M. 

Table 6.6 shows the transistors sizes of the latch of Fig.6.17. 

CMOS trts. W/L [µm] 
M1,M2 8/0.35 

M3,M4 2/0.35 
M5,M6,M7,M8,M9,M10 2/0.35 

M11,M12,M13,M14 1/0.35 
M15,M16,M17,M18 0.4/0.35 

Table 6.6. CMOS transistors of the latch of Fig.6.17. 

Figure 6.17 shows a simplified schematic of the two-stage regenerative latch of Fig.6.15. 

This is a version of the latch described in [Gee99]. It consists of a top and bottom regeneration 

loop divided into two stages. The first one is a flip-flop stage similar to what was used in 

chapter 5 (see section 5.3.4 and Fig.5.17). The second stage is an S-R latch that stores and 

regenerates the data captured in the first stage. As far as the output of this latch is connected to 
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a DFF, no extra logic is needed to adequate the output signals to the correct value. Only a 

carefully layout is needed to place together these two blocks and make sure that the DFF does 

not load the latch. 

6.3.4 DACs 

Next we will describe the implementation of the two 1-bit DACs, DAC1 and DAC3 in 

Fig.6.12. Figure 6.18 shows a simplified schematic of the 1-bit DAC scheme used for both DACs. 

It is composed of a synchronization latch (Gigalatch) that drives the switches of a 1-bit  NRZ 

current cell [Van01]. 

M1

M2

v3

v1

v2

M5 M6

M3 M4

v3

v4 M7 M8 v4

Gigalatch
D+

D-

CLK

GL+

GL-

IPMOS IPMOS

INMOS

IDAC+
IDAC-

Current Cell

y

x

 

Figure 6.18. NRZ 1-bit DAC simplified schematic of the bandpass 6th order TL-Σ∆M. 

The dynamic performance degradation of a current-steering D/A converter can be 

caused by several reasons [Van01]. Some important issues that have been identified to cause 

dynamic limitations have been explained in previous chapter (section 5.3.3) and in this design 

are also considered. To minimize these effects, a well-designed and carefully laid out 

synchronized driver (Gigalatch) is used as explained in section 5.3.3. A major function of this 

driver is shifting the crossing point of the switch transistor’s differential control signals, in such 

a way that these transistors are never simultaneously in the off state. The driver also performs 

the final synchronization. By placing it in front of the switches and by paying attention to 

symmetrical interconnections in the layout, the difference in delay between the different digital 

decoder outputs is minimized. 
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The 1-bit NRZ current cell of Fig.6.18 is similar to what was designed in [Van01], but 

with some changes. In this schematic, transistor M1 is the NMOS current source of the DAC, 

and transistors M7 and M8 are the PMOS current source of the DAC. In his design we have 

implemented also wide-swing current mirrors [Joh97] by placing NMOS and PMOS cascodes in 

each current source (transistor M2 for the NMOS cascode and transistors M5 and M6 for the 

PMOS cascode). Transistors M3 and M4 are the switches driven by the Gigalatch. 

The full-scale current of each DAC is calculated from Table 6.2. In this design this value 

is composed by the difference between the NMOS and the PMOS current sources. 

One restriction in the design of the DAC is the output impedance at nodes x and y of 

Fig.6.18. The output impedance of the DAC should be large enough to avoid a reduction of the 

loaded Q factor of the associated resonator through the frequency of interest [Van01]. This high-

frequency output impedance design specification is one of the critical elements to size the high-

frequency Q factor behavior of the resonators. For this reason a NMOS and PMOS wide-swing 

current mirrors have been designed to implement the NMOS and PMOS current sources of the 

DACs.  

Table 6.7 shows the sizes of the CMOS transistors and the current sources of the two 

NRZ 1-bit DACs of this design. 

DAC1 DAC3 
CMOS trts. W/L [µm] CMOS trts. W/L [µm] 

M1 70/2 M1 200/2 
M2 28/0.6 M2 80/0.6 

M3,M4 3.5/0.35 M3,M4 10/0.35 
M5,M6 70/0.35 M5,M6 200/0.35 
M7,M8 168/1 M7,M8 480/1 

Current sources µA  Current sources µA  
INMOS 367 INMOS 1050 
IPMOS 525 IPMOS 525 

Table 6.7. CMOS transistors and current sources of the two NRZ DACs of the bandpass 6th order TL-Σ∆M. 
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6.3.5 Clock generator 

The internal clock signals are generated using an input clock buffer (block CLKGEN in 

Fig.6.12). This block produces a digital level clock signal to drive the quantizer and DACs from 

a low level external sinusoidal source. It is composed of a cascade of low noise amplifiers (LNA) 

and a differential to single-ended circuit that produce the CMOS clock signal. Figure 6.19 shows 

a simplified schematic of the input clock buffer. 

 

Figure 6.19. Input clock buffer simplified schematic of the bandpass 6th order TL-Σ∆M. 

The CMOS clock signal must followed by a clock tree made of buffering inverters to 

drive all the clock paths of the chip. 

Figure 6.20.a shows a simplified schematic of the LNAs used in the input clock buffer. 

They consist in a degenerated bipolar differential pair with active loads to enhance their gain 

and bandwidth. 

Figure 6.20.b shows a simplified schematic of the differential to single-ended circuit 

used in the input clock buffer. This circuit transforms the differential signal that comes from the 

LNAs to a two opposite single-ended CMOS signals that can be used to drive the different 

clocks of the chip. 
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Figure 6.20. a) Simplified schematic of a LNA of the input clock buffer. b) Simplified schematic of the differential to single-ended 

circuit.  
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6.3.6 Output interface 

To measure the performance of the chip we have implemented two circuits to capture 

the output data of the chip. 

The first one is the digital block (see Fig.6.12) that groups 16 consecutive output bits in 

a single 16-bit word to reduce the clock rate of the output digital pads. This block has been 

designed using the same architecture as in section 5.3.5. The only difference is that we use a 

single 16-bit word instead of a single 8-bit word.  

The digital interface has been designed using the standard cells of the technology. 

However, as the target sampling frequency is 200MHz, and therefore the clock rate of the 

digital output is 12.5MHz, no optimization of this block was needed. 

The second one is a dedicated single bit DAC (AUXDAC in Fig.6.12) that is used to 

represent in real time the spectrum of the output data in an analog spectrum analyzer to 

perform online trimmings. It must be noted that this auxiliary DAC reproduces the same data 

as the DACs used in the feedback path and will differ from the digital capture. Also, the 

architecture of this auxiliary DAC is the same as we have used for the feedback path DACs (see 

Fig.6.18). 
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6.3.7 Power estimation 

Once all the main blocks of the modulator are designed, we can estimate the power 

consumption of the chip. For this purpose we have run a transient simulation in Spectre, with a 

full spice transistor-level model of the modulator. For this calculation we have taken into 

account only the next blocks from Fig.6.12: 

- gm1, gm2, gm3, gm12, 1-bit quantizer, 1-bit DAC1 and 1-bit DAC3 

Table 6.8 shows the rms value of an equivalent current source, connected to the power 

supply of each block of the modulator. 

Block Irms [mA] Pwr [mW] 
gm1 4.1 13.53 
gm2 2.9 9.57 
gm3 2.5 8.25 
gm12 0.9 2.97 

1-bit Quantizer 1.9 6.27 
1-bit DAC1 2.3 7.59 
1-bit DAC3 3.4 11.22 

Total 18 59.4 

Table 6.8.Power estimation of the lowpass 2nd order transmission line Σ∆M of Fig.5.10. 

6.3.8 Transistor-level simulation 

Finally, we have made a full SPICE transistor-level simulation of the chip in Spectre. 

We have used an input tone at fs/4-ABW/4=49.8MHz, with an analog bandwidth 

ABW=fs/2/OSR=782kHz. The analog bandwidth of the modulator depends on angle φ of Eq.6.1 

that can be modified by transconductance gm12, which moves four of the zeroes of the NTF. For 

this simulation we have used an OSR=128. The sampling frequency of this simulation was 

fs=200MHz and the amplitude of the tone was -3dFs, where we have defined the full-scale of the 

modulator to be Fs=100mV, as discussed in section 6.2.5. 

The parasitic capacity of the pad that connects the transmission lines perturbates the 

pole and zero locations of the NTF. Circuit simulations have shown that an estimated parasitic 

capacitor of the output pad is around 1.8pF. This parasitic capacity has been increased 

intentionally by a trimming capacitor Cp (see section 6.2.7), in parallel with the transmission 

lines, in spite of degrading the clock jitter robustness [Her05] to allow trimming of the 

transmission line mismatches. We have placed a parallel capacitor Cp=2pF. 
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The transmission line delay has to be corrected by the time constant: τ=Z0⋅Cp, as 

explained in section 6.2.7. In this case, the characteristic impedance of the transmission line was 

set to 50Ω and the Q0 factor of the transmission line was simulated by a parallel resistor of 1Ω at 

the far end of the transmission line to introduce loss in the reflection. 

Figure 6.21 shows the FFT of the modulator output computed with a transistor level 

simulation of 8K points. The simulation produces a SNDR of 70dB. As it can be seen in Fig.6.21, 

the behavior of the modulator is limited by distortion, which is responsible of the spurs seen in 

Fig.6.21. This effect is due to the large state variables outside the sampling points, as explained 

in section 6.2.5. 
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Figure 6.21. FFT (8k points) of a transistor level simulation of the bandpass 6th order TL-Σ∆M. 

6.4 Implementation and measurements 

6.4.1 Layout considerations 

A photograph of the prototype chip is shown in Figure 6.22. The layout of each block 

and the final floor planning has been completed taking into consideration the pad routing to 

minimize the parasitic capacity at the transmission line connections. Also we have taken into 

account the same precautions as in section 5.4.1. The chip measures 6 mm2 due to the pad ring 

requirements.  
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Figure 6.22. Chip microphotograph of the bandpass 6th order TL-Σ∆M. 

6.4.2 Chip measurements 

The test setup consisted of a PCB with current references, single ended to differential 

transformers to couple the input signal sources (input sine wave and input clock sine wave), an 

interface to a spectrum analyzer to represent the output of the auxiliary DAC and an interface 

to a  logic analyzer connected to the digital test interface of the chip. Figure 6.23.a shows a 

simplified schematic of the PCB used to test the chip. Figure 6.23.b shows a picture of the 

fabricated PCB, showing the ceramic coaxial transmission lines. 



                                          Chapter 6. Programmable Subsampling Bandpass TL-Σ∆M in 0.35µm BiCMOS 
 

-143- 

CHIP

Single-ended to differential converters

Digital Buffer
D0…D15

Latch Enable

Current references

Input Signal TP+

TP-

Clock Signal Clk+

Clk-

AU
X

D
AC

-

AU
X

D
A

C
+

AU
X

D
AC

-

AU
X

D
A

C
+

Spectrum Analyzer

Differential to single-ended converter

 

TLs

 

Figure 6.23. a) PCB simplified schematic used to test the bandpass 6th order TL-Σ∆M chip. b) Photograph of the PCB. 

Also, to test the chip, six 50Ohm off-chip ceramic coaxial resonators were used as 

transmissio lines with a frequency tolerance of 1%. Detuning of the resonators was 

compensated using external trimming capacitors, as explained in previous sections. 

In order to capture the data and make all the measurements that we will propose in 

this section, we have used the same test bench as in section 5.4.2 that is represented in Fig.5.22. 

Nyquist measurements  

The chip was tested using a clock frequency of 184MHz. The difference with the 

targeted frequency of the system (200MHz.) design was due to the commercial availability of 

ceramic coaxial resonators.  

a) 

b) 
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a) b)

 

Figure 6.24. Output spectrum of the bandpass 6th order TL-Σ∆M. 

The first measurement that we realized was to trim the modulator to obtain the desired 

NTF. For this purpose we used an input tone of -6dBFs at 46.02MHz. Figure 6.24 shows two 

spectrum analyzer captures taken at the AUXDAC output, showing the expected shape for the 

modulator output. 

Fig.6.24.a shows a capture of the spectrum analyzer where the frequency span goes 

from 0 to fs/2=92MHz. In this plot we can see the expected NTF of the modulator with the notch 

at fs/4. 

Fig.6.24.b shows a capture of the spectrum analyzer with a frequency span from 0 to 

fs=184MHZ. Also, in this plot we have superimposed the feedback DAC transfer function 

(dashed line) which is represented by a sinc function with a cero at fs. Fig.6.24.b shows the 

expected behavior of the modulator, where the input tone at fs/4 also appears at 3fs/4 due to 

periodic poles of the NTF. The notches of the NTF are at odd multiples of fs/4. 

45.6 45.7 45.8 45.9 46 46.1 46.2 46.3 46.4

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

f(MHz.)

M
ag

ni
tu

de
(d

B
Fs

)

45.6 45.7 45.8 45.9 46 46.1 46.2 46.3 46.4

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

f(MHz.)

M
ag

ni
tu

de
(d

B
Fs

)

a)

-71dBc @25kHz

45.6 45.7 45.8 45.9 46 46.1 46.2 46.3 46.4

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

f(MHz.)

M
ag

ni
tu

de
(d

B
Fs

)

-71dBc @25kHz

 

Figure 6.25. FFT plot of a digital capture within the signal band (input at fs/4) of the bandpass 6th order TL-Σ∆M. 
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Figure 6.25 shows a close up view of a 512K point FFT of the same data as in Fig.6.24, 

taken from the digital interface, which allows to estimate a peak SNDR of 58dB with an 

OSR=256. The dynamic range of the modulator was limited to 40dB. As no DC regulation loop 

was implemented, the limited dynamic range is assumed to be due to the offset produced by 

the loop filter at the comparator, which stops the operation of the modulator for small inputs. 

Adding a dither signal at the external connections of gm3 extended the dynamic range but at the 

expense of altering the load of the transmission line and its Q factor. 

Operation as a sub-sampling ADC 

Next, we will show the ability to perform subsampling of the input signal. To test the 

subsampling capability of this modulator, a signal located at 3fs/4 was used. We repeated the 

data capture in Fig.6.25 in Figure 6.26 with a signal located at 137.98MHz and equivalent 

amplitude. In this case, the peak SNDR obtained was 53dB, thus proving the down conversion 

capabilities by subsampling of this architecture. 
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Figure 6.26. FFT plot of a digital capture within the signal band (input at 3fs/4) of the bandpass 6th order TL-Σ∆M. 

This reduction in the performance of the modulator is due to two factors. First, when 

the modulator is used as a subsampling ADC and the clock has jitter, there is a reduction in the 

SNR achievable by the modulator, as we have explained in section 6.2.6. 

Second, in the subsampling mode the dynamic range of the state variables is increased, 

as pointed out in section 6.2.5. Therefore the distortion produced by the transconductor due to 

the voltage swing  also gets larger and may increase the inband noise floor as seen in Fig.6.26. 
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Clock jitter sensitivity 

The sensitivity to clock jitter was evaluated using the phase noise spectral densities at 

25kHz from the carrier of the clock input sine wave and the input signal compared to the noise 

floor in the digital capture of the modulator. Figure 6.27 shows the measured spectra of the 

clock signal superimposed to the input tone, using a resolution bandwidth approximately 

equivalent to the FFT bin spacing in Fig.6.25. 

We will use Fig.6.27 to estimate the phase noise spectral densities of the clock and the 

input, assuming signal generators with negligible AM noise. In the data capture of Fig.6.25, a 

signal generator with a phase noise spectral density of -90dBc/Hz (upper trace in Fig.6.27) was 

used to drive the clock signal, whereas a generator with -110dBc/Hz (lower trace in Fig.6.27) 

was used as input signal, to be well below the phase noise of the clock. If we would sample an 

ideal tone located at ft=fs/4 with a clock with -90dBc/Hz phase noise, the sampled tone would 

have a noise density of: 

 ( ) HzdBcfsftHzdBc /96/log10/90 −=+−    (6.3) 

By observing the FFT of Fig.6.25, we may see that each FFT bin represents a bandwidth 

of 350Hz and hence, the phase noise at 25 kHz from the carrier would be approximately: 

( ) HzdBcHzdBc /96350log1071 −=−−           (6.4) 

Comparing Eq.6.3 and Eq.6.4, we may conclude that the spectral density of the 

acquired signal is similar to what could be achieved by a sampler at the input of a discrete time 

modulator.   

-110dBc/Hz
@25KHz

-90dBc/Hz
@25KHz

 

Figure 6.27. Clock and input tone spectra used in the measurements of the bandpass 6th order TL-Σ∆M. 
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Resonators frequency mismatch  

Another effect that was measured was the detuning between the sampling clock and 

the transmission line resonant frequency. By trimming the external capacitor Cp we can adjust 

this frequency offset within a certain range. Figure 6.28 shows the effect in the output spectrum 

of a detuned resonator. An increase of the noise floor at the frequency offset is observed in 

Figure 6.28, marked with an arrow. 

Detuning is more problematic when the frequency offset is within the signal band. For 

this reason and to tune the mismatches among the transmission lines of the different stages, an 

on chip capacity tuning circuit should be implemented. 

 

Figure 6.28. Effect of mismatch between the sampling clock and the resonance frequency of the transmission lines. 

Distortion 

The main problem encountered in this design is distortion, which is responsible of the 

spurs seen in Fig.6.24, Fig,6.25 and Fig.6.26. This effect is due to the large state variables outside 

the sampling points, as explained in section 6.2.5. Although in simulations it was shown that 

this effect would ideally not affect the behavior of the modulator, the output stage of 

transconductors may not be fast enough to recover from the large peak level of the state 

variables. This may require some kind of compensation method, such as modulation of the 

transconductor gain with the clock signal or low pass filtering of the DAC signal to attenuate 

high-frequency components. However, this would have negative impact in the jitter sensitivity 

and its subsampling capabilities. 
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Power measurements and FOM 

At 3.3 V supply voltage, the power consumption of the chip was measured as 62.7 mW. 

Table 6.9 shows the power measurements of the modulator. 

 I [mA] Pwr [mW] 

Analog core (VDDA) 19 62.7 

Table 6.9. Power measurement of the bandpass 6th order TL-Σ∆M. 

The measured performance is summarized in the first column of Table 6.10 and 

compared with the previously published 0.35µm CMOS/BiCMOS single-bit high order (>4) 

band-pass CT-Σ∆Ms and DT-Σ∆Ms. A figure of merit (FOM) similar to that proposed in [Sch05] 

is also used for comparison. The FOM is defined as: 







+=

P
BWSNDRFOM dB log10  (6.5) 

where BW is the signal bandwidth and P is the power consumption. 

The measured SNDR and FOM using an OSR=256 are comparable with that of band-

pass CT-Σ∆Ms and DT-Σ∆Ms previously published. 

  This Work [Yu07] [Mau00] [Tao99] [Cus01] [Sal03] 

Technology 0.35um SiGe 
BiCMOS(3.3V) 

0.35um 
CMOS(3.3V) 

SiGe 
BiCMOS(3V) 

0.35um 
CMOS(3.3V) 

0.35um 
CMOS(3.3V) 

0.35um 
CMOS(3V) 

Type TL SAW Gm-C LC,SC SC SC 
Modulator order 6 4 4 4 6 4 

Power 62mW 45mW 64mW 330mW 76mW 24mW 
fs 184MHz 189.2MHz 800MHz 400MHz 42.8MHz 80MHz 

Center 
Frequency 46MHz  /  138MHz 47.3MHz 200MHz 100MHz 10.7MHz 20MHz 

Bandwidth 360kHz 200kHz 200kHz 200kHz 200kHz 270kHz 
OSR 256 473 2000 1000 107 148.15 

Peak SNDR 58dB  /  53dB 66dB 68dB 45dB 61dB 78dB 
FOM 125.6  /  120.6 132.48 132.95 102.83 125.2 148.51 

Table 6.10. Performance comparison of the bandpass 6th order TL-Σ∆M with previously published designs. 
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6.5 Conclusions 

This chapter discusses the theory behind the design of a band-pass Σ∆M using 

transmission lines as delay elements. The theory is illustrated with the design and 

implementation of an experimental modulator using a 3.3V 0.35µm BiCMOS technology. 

As we have seen in this chapter, modulators implemented with this architecture have 

the drawbacks of requiring a special circuit to limit the distortion, the lack of inherent 

antialiasing filtering in the STF and the mismatch of the resonators. The mismatch would 

require not only off-chip tuning capacitors but on-chip tuning capacitors as well. 

Despite of this, building a bandpass transmission line Σ∆M with this approach benefits 

from the high Q0 factor of transmission lines, allows down conversion by subsampling of the 

input, behaves close to a discrete time modulator at high clock jitter levels and tolerates loop 

delay. With a careful design, this modulator potentially allows for efficient sampling of narrow-

band signals at very high frequencies with simple circuitry that does not require either a mixer 

or high-precision sampler. 

To summarize the results, the ADC operates at a fs=184 MHz, consumes 62mW and is 

able to convert narrow-band signals centered both at 46 MHz and 138 MHz respectively, with a 

maximum SNDR of 58dB assuming an analog bandwidth of ABW=360kHz. 
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CHAPTER 7 
Subsampling Quadrature Receiver using a 

Transmission Line Σ∆M in 0.35µm BiCMOS 
 

The receiver architecture proposed in this chapter seizes the subsampling properties of 

continuous time Σ∆ modulators based on distributed resonators presented in this thesis to 

construct a quadrature receiver. 

As we have already explained, such kinds of modulators employ continuous time 

circuitry, which makes them suitable for high frequency operation. Yet they have some of the 

advantages of discrete time modulators, such as allowing subsampling of the input signal. 

The proposed receiver in this chapter is based on a lowpass Σ∆ modulator, similar to 

that of chapter 5, that subsamples an IF signal around the sampling frequency. Therefore the 

modulator may be feasible for the typical IF frequencies used in cellular base stations. 

The modulator employs transmission lines and transconductors as main components 

and does not require any switches. Two circuit architectures are going to be proposed to do the 

practical implementation. The first one uses separate circuitry for the I and Q paths. The second 

architecture introduces an innovative way to produce the I and Q outputs that is immune to 

path mismatch due to the sharing of all the analog circuitry for both paths. We will implement 

these two modulators in only one integrated circuit. The system level design, the 

implementation of the proposed architecture in a 3.3V 0.35µm BiCMOS technology and the 

experimental results will be also presented in this chapter. 
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7.1 System level design 

A simplified block diagram of a subsampling superheterodyne quadrature receiver is 

shown in Figure 7.1.a. A pre-select filter attenuates the out-of-band signals and performs image 

rejection of the received signal. A low-noise amplifier (LNA) follows the pre-select filter. After 

the LNA, the desired RF signal is downconverted to a fixed IF using a single mixer and tunable 

LO. 

An IF filter rejects the unwanted images and selects the desired signal bandwidth. 

After the IF filter there is an IF amplifier with gain G that performs part of the amplification of 

the IF stage, another part can be supplied by the signal transfer function of the modulator. 

Instead of an image rejection mixer to perform the I and Q decomposition and 

baseband demodulation, the receiver in Fig.7.1.a demodulates by subsampling. The I and Q 

decomposition is accomplished by a delay ∆T = 1/4fs in the sampling instants between the I and 

Q paths. This corresponds to a frequency dependent phase difference instead of the desired 

constant phase shift of π/2. 

Then, the dedicated image rejection mixer is traded off by two samplers at the cost of 

limiting the image rejection to a narrow bandwidth [Val04].  Such architecture would map into 

the baseband a desired alias of any signal located around the sampling clock frequency. 

Therefore, the sampling clock frequency is chosen equal to the IF value (fs=fIF). Afterwards, the 

signal is digitized by two discrete time (DT) interpolative lowpass Σ∆Ms. 

Finally, part of the automatic gain control (AGC) of the receiver can be accomplished 

by digitally trimming the reference of the feedback DACs [Sch02]. 

Considering that, typical IF values for base station receivers are situated around a few 

hundreds of MHz, a practical implementation of this receiver, with switched capacitor circuits, 

would be difficult to achieve. Furthermore, it would not be competitive in terms of power 

consumption against a classical receiver with an analog image rejection mixer. 

Also, the required gain for the IF and the rejection of out of band signals would rely on 

the Σ∆M loop, which would be limited by its operational amplifiers, yielding a very poor 

rejection to blocking interferers. 
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7.1.1 Loop Filter Design (Quadrature Lowpass) 

To overcome these problems, we introduce the architecture of Fig.7.1.b where a CT-

Σ∆M based on TLs is used. One of the properties of TL- Σ∆Ms is the ability to convert signals 

located at any multiple of the sampling frequency fs, due to the periodic frequency response of 

their loop filter [Her06], [Kap05]. This property permits to directly demodulate to baseband a 

bandpass modulated signal x(t) located around the clock frequency by subsampling with a low-

pass Σ∆M. 

Note that the quadrature modulator of Fig.7.1.b does not require the high precision 

sample-and-hold circuits of Fig.7.1.a. Now, the samplers are replaced by clocked comparators, 

seizing the error shaping properties of the loop, just as in a conventional CT-Σ∆M. With regard 

to the linearity and noise requirements of the remaining building blocks, the requirements are 

expected to be very similar to the conventional structures. 

 

Figure 7.1. Superheterodyne quadrature receiver (a) using a DT quadrature Σ∆M, and (b) using a CT quadrature TL-Σ∆M. 

[Ree07] 

Moreover, TLs permit to implement resonators close to the gigahertz range with low 

power and reduced complexity. In this case, the resonator frequency can be close to the GHz 

range and would only be limited by the speed of the active elements in the loop.  
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Figure 7.2 represents the block diagram of a possible quadrature Σ∆M based on TLs, 

which can be used in the receiver of Fig.7.1.b. This structure is the complex equivalent of the 

lowpass TL modulator of chapter 5. 

It is clear that the structure does not require a quadrature mixer. A circuit 

implementation would require six transconductors, four open circuit TLs, two single bit 

sampled quantizers and two current feedback DACs. For robust circuit design, we select a 

nonreturn-to-zero (NRZ) zeroth-order-hold DAC pulse. 

 

Figure 7.2. Block diagram of the quadrature modulator with TLs. [Ree07] 

In the quadrature modulator of Fig.7.2, all the TLs are identical, have a characteristic 

impedance Z0, an electrical delay of T/2, corresponding to half the sampling period and a loss 

parameter A ≤ 1. The TLs are used as part of the load of a transconductor gm. For instance, in 

Fig.7.2, if we neglect the parallel capacitors Cp for the moment, we could define the following 

transfer function: 

2
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 (7.1) 

In this case, the frequency dependency of the loop transfer function only depends on 

delays (terms in e-sT). Thus, we may apply the system equivalence of chapter 2 with a DT-Σ∆M: 

i.e., we may replace e-sT by z-1 and compute the corresponding noise transfer function (NTF) and 

signal transfer function (STF) of both branches of the modulator as if it was a DT system. By 

doing so, the proposed circuit has an NTF that can be mapped to the following transfer function 

of a second-order lowpass DT-Σ∆M, assuming A = 1: 

1 1 2 1( ) ( ) ( ) 2cos( ) 1j jNTF z e z e z z zφ φ φ− − − − −= − ⋅ − = + +  (7.2) 
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The transfer function NTF(z) is the same for both branches: NTF(z) = NTFI(z) = 

NTFQ(z). 

The phase φ defines the location of two complex conjugated zeros. These zeros will 

determine the bandwidth of interest of the modulator and will be selected according to the 

desired oversampling ratio (OSR). 

Furthermore, the NTF with real coefficients of Eq.7.2 is preferred instead of one with 

complex coefficients to avoid cross-couplings between the I- and Q-path. These cross-couplings 

would require extra sample-and-hold circuits if the quadrature modulator is implemented with 

TLs. Mapping the NTF obtained with the circuit of Fig.7.2 and Eq.7.1 with Eq.7.2, results in the 

following design equations for a single-bit modulator: 

1 0

2 0 0

m12 2
0 2

2 cos( ) 1
3

2 cos( ) 1
1 cos( )

g
(1 cos( ))

 if 0

m

R Z

R Z Z

Z g

φ
φ

φ
φ

φ

=

+
= ≈

−

−
= −

+

≈  (7.3) 

The transconductors gm1, gm2, and the DAC current occur as scale factors in the 

expression for the loop gain. Due to the presence of the quantizer in the loop, their value is 

irrelevant. In practice, they may be used to scale the state variables and the STF gain, as we have 

discussed in the implementation of the circuits of chapters 5 and 6. If necessary, a voltage clamp 

could be used to ensure that the state variables are bounded [Kap05]. 

Note that the design parameters in Eq.7.3 are independent of the sampling period, due 

to the properties of the TL modulators. Only the length of the TLs is determined by the clock 

frequency. To implement the NTF expressed in Eq.7.2, the CT-Σ∆M requires a loop with a delay 

of one clock cycle, same as in the lowpass design of chapter 5. 

In the schematic of Fig.7.2, the feedback loop contains a quantizer and a DAC triggered 

in the rising edges and falling edges of the sampling clock, respectively. This results in a delay 

of 0.5 clock cycles between the data capture in the quantizer and the update of the DAC output. 

The next sampling operation in the quantizer occurs 0.5 clock cycles after the DAC update, 

resulting in the required delay of one clock cycle. 

Moreover, the quantizer samples in the middle of the zeroth-order-hold feedback DAC 

pulse. This has the potential to desensitize the modulator against clock jitter in the DAC because 

the value of the DAC pulse in the sampling instant is what is relevant instead of the pulse area, 
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as would be the case with conventional CT-Σ∆Ms. For the same reason, the loop delay may vary 

between zero and one clock cycle without any performance degradation. 

Application issues 

The coexistence of different communication standards in wireless systems demands 

flexible data converter architectures that allow reconfiguration to exchange bandwidth by 

resolution. As can be seen from Eq.7.3, the signal bandwidth of the modulator mainly depends 

on one transconductor, namely gm12. Setting a constant value for R2 and changing only gm12 will 

produce the desired change of the zeros of the NTF. 

To analyze a practical example we will explore the application of this receiver to a 

WCDMA UMTS signal. The same receiver could be used in a narrow bandwidth GSM 

application by setting gm12 equal to zero. 

In Fig. 7.3.a and 7.3.b, the simulated output spectra of the proposed quadrature 

modulator without nonidealities are plotted for two different OSRs: OSR=128 and OSR=64, 

respectively. For the plot, a sinusoidal input has been preferred against a WCDMA modulated 

signal to better show the quantization noise spectra and the image rejection ratio (IRR).  

 

Figure 7.3. Ideal output spectrum of the quadrature modulator. a) OSR = 128. b) OSR = 64. Both modulators have an -6 dBFs 

input tone at fs+BW/2. The dashed line shows the frequency dependence of the IRR.[Ree07] 
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The signal bandwidth (BW) in Fig.7.3.a was set to 3.84 MHz, which is the bandwidth 

occupied by a WCDMA UMTS channel. For an OSR of 128, the sampling frequency equals 

491.52 MHz, which is in the range of feasible sampling frequencies for the given architecture 

when implemented in a standard RF BiCMOS technology [Her06]. For an -6dBFs input tone x(t) 

located at fs+BW/2, the signal-to-noise ratio (SNR) is equal to 87 dB and the IRR is about 50 dB. 

Note that the IRR in our structure is limited due to the fact that the decomposition is implicitly 

approximated by delayed sampling. This effect is known [Val04] and the corresponding 

calculated frequency dependence of the IRR is represented by the dashed line in Fig.7.3, which 

is consistent with the simulation. Still, this IRR is more than good enough to attenuate the self-

image so that the received signal could be demodulated correctly [Fdd05]. Note, the IRR 

improves for input signals closer to the sampling frequency. 

In Fig.7.3.b, a bandwidth of 8.84 MHz is chosen. To achieve a feasible sampling 

frequency, the OSR is lowered to 64, resulting in a 565.76-MHz clock. In this case, the receiver 

architecture could be used to digitize two WCDMA UMTS channels with a channel spacing of 5 

MHz. One channel is located at positive frequencies and the other at negative frequencies. As a 

result, the dc component resulting for e.g., clock feedthrough lies in the gap between the two 

channels. This way, it can be removed digitally without harming any UMTS signal. The 

required IRR is now higher and equals the adjacent channel rejection ratio (40 dB) as specified 

in [Fdd05]. 

Simulations show that in this case the SNR is 77 dB and the IRR is about 44 dB which 

should be sufficient. However, if a higher IRR is desired, the IRR can be improved by means of 

a simple digital compensation technique suitable for delayed sampling [Val04]. 

Feasibility Analysis 

In a practical implementation, the loop filter does not have a perfectly periodic 

frequency response due to finite bandwidth effects. To prove the feasibility of the Σ∆M in the 

examples of this section, we have used the model of Fig.7.2 to simulate the configuration used 

for Fig.7.3.a, assuming typical circuit nonidealities. 

Figure 7.4 shows the output spectrum of the modulator including finite bandwidth 

transconductors, parasitic capacitance, loss in the TLs and clock jitter. We have used a first 

order model for the transconductors with a pole at 3fs, as a compromise between feasibility and 

power consumption, assuming an implementation in a 0.35µm BiCMOS process [Her06]. 
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The TLs have a loss parameter A=0.99 (see Eq.7.1) which will limit the dc loop gain. 

Furthermore, a clock source with a random period jitter with a constant standard deviation of 

σ=0.1%T is used. The combination of these nonidealities results in a SNR loss of only 5 dB, 

while maintaining the IRR performance. 

 

Figure 7.4. Output spectrum of the nonideal quadrature modulator. 

Figure 7.5, shows the dependence of the SNR of the modulator against the standard 

deviation of the clock jitter. The solid line represents the SNR in the case of the presented 

modulator, assuming A=0.99 and a transconductor with a dominant pole at BW=3fs. The dashed 

line has been included as reference and represents the SNR obtained in the case that an ideal 

delay-based quadrature subsampling circuit would be used for the same input around fs. The 

asymptotic behavior of the solid line for high jitter values is close to the ideal dashed line 

indicating that the performance with a jittered clock in this type of Σ∆M approaches what could 

be achieved with an ideal switched capacitor implementation. 

 

Figure 7.5. Jitter sensitivity comparison between the CT-Σ∆M with TLs (solid line) and an ideal delay based 

quadrature subsampling circuit without quantizer (dashed line).[Ree07] 
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Furthermore, due to mismatch between the TL length of the different resonators, the 

exact location of the NTF zeros will deviate from the desired ones. This has the effect that there 

could be a mismatch between clock and resonate frequency and also that the resonate frequency 

of the different resonators are mismatched. This results in a deterioration of the performance. 

However, this problem can be solved by placing a small parallel trimming capacitor Cp (see 

Fig.7.2), as it was shown in chapter 4. 

Alternative Implementation 

The main problem still remaining in the structure of Fig.7.2 is mismatch between the I 

and Q path, which causes an undesired alias between positive and negative signal bands. For a 

symmetric NTF, the alias of quantization noise is of no importance, however, the IRR will be 

degraded. For example, if we perform the simulations of Fig.7.3.a and Fig.7.4 with a path 

mismatch of 2% between the I and Q branches the SNR remains unaffected but the IRR is 

degraded to 34 dB. This problem of path mismatch for quadrature modulators is well known 

and various partial solutions have been proposed [Mau05], [Ree06]. 

A novel implementation that is insensitive to path mismatch is shown in Figure 7.6. 

The idea is to share the loop filter and feedback DAC for both the I and Q paths. At the bottom 

of Fig.7.6, the required clock phases are shown. Here, the arrows on the clock edges indicate a 

sampling operation. A black arrow means the I-value is updated at the output of the block 

driven by that clock phase and gray stands for an update of the Q-value. If the time axis is black 

(gray), the I-value (Q-value) is available at its output. 

The quantizer is sampled at both the rising and the falling edge of CLKs. On edge (1) 

(rising edge), it captures the new I-sample and on edge (6) (falling edge) the Q-sample. The 

deinterleaving between the I- and Q-paths is done digitally by means of two D flip-flops. At 

edge (2) the new I-sample is available at the upper output of the modulator and at edge (7) the 

new Q-sample at the lower output. Note that the upper (lower) flip-flop should update during 

the time that the I–sample (Q-sample) is available at the output of the quantizer. The exact 

moment of the update is of minor importance as long as the order is preserved and as long as it 

is feasible at circuit level. 

Before the DAC, a multiplexer interleaves the I and Q paths again, resulting into only 

one feedback DAC. When CLKM is high, the I-value is passed through to the DAC and at edge 

(4) it becomes available at the output of the DAC and remains at least until a new I sample is 
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taken at edge (5). When CLKM is low, the Q value is passed through to the DAC and at edge (9) 

it becomes available at the output of the DAC and remains at least until a new sample is taken 

at edge (10). 

 

Figure 7.6. One path quadrature modulator with TLs. [Ree07] 

To understand the influence of timing errors, let us first assume that all clocks phases 

with the exception of CLKD are free of timing error and jitter. By spreading the sampling 

instants of the quantizer (edge (5) and edge (10)) equally around edge (9), a timing-error of ±T/8 

on CLKD without performance degradation can be afforded in case there are no bandwidth 

limitations. Since, no other timing schedules result in a higher allowable timing error, the clock 

signals of Fig.7.6 are optimized such that the modulator has the best jitter performance. 

As a result of the finite bandwidth effects, the zeroth-orderhold DAC pulses are 

smeared in time, resulting in a slightly different DAC gain between the I- and Q-path at the 

sampling instants due to the asymmetric timing of CLKS. Additionally, this also results in a 

kind of inter-symbol interference between the feedback DAC pulses, mostly from the I-path to 

Q-path. This will degrade the IRR. The effect of the bandwidth on the IRR is quantified in 

Figure 7.7, where the solid line shows the IRR degradation in the case that the clocks are 

optimized for the best jitter performance, corresponding to the clocks signals shown in Fig.7.6. 
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By advancing CLKD by a time equal to T/8, the IRR performance could be optimized in 

case of finite transconductor bandwidth. In this case, the DAC pulses have more time to settle 

before the quantizer goes off. The dashed line of Fig.7.7 shows the reduction of the required 

bandwidth if such a clocking scheme is used. However, this optimization limits the jitter 

performance. So, for a given clock jitter and transconductor bandwidth, the sampling instants of 

the quantizer may be adjusted to achieve the best overall performance. 

 

Figure 7.7. IRR versus bandwidth of the transconductors: Solid line: clocks optimized for best jitter performance. Dashed line: 

clocks optimized for best finite bandwidth performance.[Ree07] 

7.1.2 Quadrature Bandpass at fs/2 

Another possible mode for the quadrature implementation of this section is to place the 

first notch of the NTF at fs/2, transforming the modulator from lowpass to bandpass. In this way 

we could be able to digitize signals above the sampling frequency, for instance at 3fs/2. Then, if 

we target the same specifications as in the lowpass mode, we are able to reduce the sampling 

frequency as well as the bandwidth requirements of the active elements of the modulator. 

To go from the lowpass mode to the bandpass one, some changes should be made. 

First of all, the NTF needs to be altered from a notch at DC to a notch at fs/2. This can be 

accomplished by altering in the NTF(z) every z by −z. For the circuit implementation this means 

that all the transmission line ends should be a short instead of an open line. Furthermore, since 

the feedback introduces one delay, also the sign of the feedback needs to be altered. 

Secondly, the phase shift among the I/Q sampling clocks should now be 180 degrees 

instead of 90. We know that the attenuation of the image is given by 

2

)2sin(
)2cos(1)(

Tf
TffL

∆
∆+

=
π

π
 (7.5) 
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where ∆T stands for the time delay between the two paths [Val04]. When ∆T is equal to 

sf
T

4
1

=∆  (7.6) 

the image rejection is very high around DC. On the other hand when ∆T is equal to 

sf
T

2
1

=∆  (7.7) 

the image rejection is very high around fs/2. Which proves why the phase shift among 

the I/Q sampling clocks should now be 180 degrees instead of 90. 

7.1.3 Real Bandpass at fs/4 

Finally, a third mode can be implemented in this modulator. In this third mode, the 

output samples of the I and Q path are no longer interpreted as the I and Q part of a complex 

signal. The outputs of the I part are the even samples of a real output and the outputs of the Q 

part are the odd samples. 

Since the two quantizers work at alternated clock, a two path transformation (every z is 

altered into a z2) occurs and we achieve a real bandpass modulator at fs/4 running at twice the 

speed. 

With the three modes presented in this section we show the possibilities of our 

architecture to be implemented in a multi-standard digital receiver, where different types of 

A/D converters are needed. 

Next, we will show the nominal simulations along with some circuit impairments. 

7.1.4 Design specifications and circuit impairments 

Definition and operation modes 

On the chip we will make two modulator-loops which means that we can process one 

input signal in basic mode or two different input signals in multiplexed mode. When the 

modulator is used in its basic mode, it means that I/Q channels are processed by two separated 

lowpass modulators. If the modulator is used in its multiplexed mode, then the I/Q channels are 

processed by the same loop. The analog part of the loop can be reused in both modes. The 

digital parts will be different for both modes and will be discussed in detailed. 
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• Nominal sampling frequency: fs = 433 MHz. 

• Input bandwidth: 

BW1 = 3.84 MHz (one UMTS channel), OSR1 = 112.76. 

BW2 = 8.84 MHz (two UMTS channels), OSR2 = 48.98. 

• Required resolution: above 10 bits. 

• STF gain: about 0 dB. 

• Required image rejection ratio: 

BW1: IRR1 > 20 dB. 

BW2: IRR2 > 40 dB. 

The following modes are included in the design: 

1. Basic mode, poles at DC. 

2. Basic mode, poles optimized for one UMTS channel. 

3. Basic mode, poles optimized for two UMTS channels. 

4. Multiplexed mode, poles at DC. 

5. Multiplexed mode, poles optimized for one UMTS channel. 

6. Multiplexed mode, poles optimized for two UMTS channels. 

All these modes can be also been implemented using the bandpass configuration. To 

fix the nominal modes for the quadrature receiver we need design equations Eq.7.3 and Eq.7.4. 

As mentioned before, the transconductors gm1 and gm2 and the DAC current will be used to scale 

the state variables and the STF gain.  

gm-cell: finite bandwidth 

• Basic Mode: 

The influence of finite bandwidth of gm2 has the same influence on the performance of 

the modulator as in the case of the lowpass modulator of chapter 5. The SNR as well as the IRR 

remains almost the same, as in the ideal case, for a BW larger than two times the sampling 

frequency. 
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Furthermore, also the performance of the modulator in combination with the digital 

compensation algorithm does not change significantly. 

• Multiplexed Mode: 

The influence of finite bandwidth of gm2 has the same influence on the SNR as in the 

basic mode. However, as shown in Figure 7.7, the IRR degrades strongly if the BW lowers.  

gm-cell: finite Q 

The transmission lines are used as part of the load of a transconductor. In a practical 

situation, the transconductor will have finite output impedance. And as we have seen in the 

practical implementations of the lowpass and bandpass modulators, this finite output 

impedance can degrade the performance of the modulator. The transfer function TF realized by 

Figure 7.8 looks like: 

R
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OUT +
−
+

= −

−

1
1// 0  (7.8) 

 

Figure 7.8. Transconductor with output impedance followed by transmission line resonator. 

If R = Z0, then Eq.7.8 can be simplified as follow: 
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If R = 3Z0, then: 
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 (7.10) 

We assume that the position of the poles of TF1 and TF2 will have the largest influence 

on the performance of the modulator and not the gain of TF1 and TF2 or the position of the NTF 

poles. As a result, we can model the finite output impedance with the loss parameter A. 
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With the transmission lines we can achieve a maximal Q-factor associated to the first 

resonance frequency of 5000. This means that: 

9996.021 ≤−≈
Q

A  (7.13) 

since the Q-factor in terms of the loss parameter A is about: 

A
Q

−
≈

1
2

 (7.14) 

The loss parameter A has an influence on the SNR performance as well as on the jitter 

performance. Jitter will introduce an upper limit for A, the SNR requirement a lower limit. 

Due to the fact that simulation results always show limit cycles if A < 1, the 

performance of the modulator can be hardly simulated, even with finite bandwidth. Therefore, 

we decided to perform no time based simulations, but to research the influence of A on the 

frequency response of the NTF. As a result, the results will be the same for the basic and 

multiplexed mode. 

For zeros at DC, the NTF in function of A = [0.9996 0.99 0.98] looks like Figure 7.9. In 

Figure 7.10 on the left axis, we see the SNR degradation in function of A. On the right, the 

necessary ROUT is plotted to achieve this A. 

 

Figure 7.9. Amplitude response of the NTF with the zeros at DC, (__): A = 0.9996, (_._._.): A = 0.99 and (…...): 

A=0.98. 
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Figure 7.10. (___): ∆SNR and (- - -): ROUT in function of A for the quadrature TL-Σ∆M with the zeros at DC. 

Resistor mismatch 

As long as this design can suffer from I/Q mismatch, we have simulated the influence 

of the resistor mismatch in two cases. First in case of homopolaire mismatch (R1 and R2 evolve 

in the same direction) and secondly when there was a differential mismatch. The simulations 

show that the influence of resistor mismatch is small for feasible mismatch values. We have 

used a standard value of the resistor mismatch of 20% taken from the technology. We can draw 

these conclusions for every mode and pole locations. 

Parasitic capacitor after trimming 

With a non-zero pad capacitance, the resonant frequency is shifted as shown in Figure 

7.11 (dashed line in the ideal case, solid line is with parasitic capacitance). This frequency shift 

can be compensated by changing the transmission line length with Eq.4.13. 

With this compensation the NTF is shown in Figure 7.12 for two cases. The dashed line 

indicates the NTF in the band of interest with a finite transconductor output resistor of 10k. The 

solid line shows the NTF for a ROUT = 10k and a pad capacitance Cp of 4pF. We can conclude 

from Fig.7.12 that the in-band spectrum is higher in the case with Cp than in the case without 

pad capacitance. Hence, we can also conclude from system level simulations that there is SNR 

degradation. The SNR degradation also depends on the fact that the STF gain drops for higher 

Cp. We can compensate this effect with a higher gm1 gain. 
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Figure 7.11. NTF of the quadrature TL-Σ∆M in ideal case (- - -) and with parasitic capacitance: (___). 

 

Fig. 7.12. NTF of the quadrature TL-Σ∆M in ideal case (- - -) and with parasitic capacitance (___) using the compensation 

Eq.7.4. 

State Variables 

Table 7.1 shows the scaled coefficients of the modulator so that the amplitude of the 

state variables is limited to 500mV and that the input reference value is 100mV. For A = 0.99 this 

values results in bounded state variables. 

 

Table 7.1. Scaled coefficients for the quadrature TL-Σ∆M. 

In this case the input to the quantizer in the sampling instants is around 2mV when we 

apply 50mV at the input. As we have shown in this thesis, the amplitude of the state variables 
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outside the sampling instants is much higher than in the sampling instants. In this case there is 

a maximum value of 600mV at the input of the quantizer outside the sampling instants when a 

50mV input is applied. 

7.2 Circuit Design 

The system block diagram and parameters defined in the previous section were used 

as the start point of a circuit design using a 0.35μm SiGe BiCMOS technology with a supply 

voltage of 3.3V from AMS. 

The differential block diagram of the quadrature transmission line Σ∆M chip is shown 

in Figure 7.13. The analog part is composed of the following elements: a differential first gm 

cell, a differential second gm cell, a differential feedback gm cell, a differential two level current 

DAC, a comparator configured as sign detector, an analog test buffer with an input multiplexer 

that allows to observe different quantizer outputs (the power supply of this circuit will be 

separated form the rest of the analog circuits to avoid wrong power consumption estimation), a 

clock generator and a CMFB circuit. The off-chip elements are: transmission lines with 

characteristic impedance Z0 = 50Ω and a trimming capacitors Cp to compensate the transmission 

line variance. 

Design specifications 

• Required bandwidth for every transconductor. We have decided that all the 

transconductor in the loop must have a bandwidth of 1.5 GHz. 

• For the first transconductor, a bandwidth of 500 MHz should be sufficient as 

long as it is matched for the two loops. The first transconductor only introduce 

a gain loss which can be compensated by a higher gain. 

• Minimum output impedance for every transconductor must be ROUT = 10k. In 

this point we have to be carefully with the specification. We need this minimum 

output impedance at least at the first and second resonant frequency; this 

means, that the output impedance of the transconductor must have frequency 

dependency that feet with this requirement. 
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Figure 7.13. Block diagram of the quadrature TL-Σ∆M. 

• Estimation trimming capacitor to compensate transmission line mismatch 

should match with next equation: 

εε ⋅== pF
Z
TC p 18.46

0

 (7.15) 

with ε the transmission line mismatch normalized to the nominal transmission 

line length. 
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7.2.1 First transconductor (gm1) 

As we have discussed in the previous section the first transconductor should have a 

bandwidth of 500MHz and should be at least as linear as the linearity of the overall modulator. 

Also this transconductor should meet the output impedance requirements discussed in the 

previous section. Figure 7.14 depicts the simplified schematic of the first transconductor. It is a 

two stage transconductor. 

The first stage it is composed of transistors M1-M6. It is based on source degeneration 

of the input differential pair transistors (PMOS M3-M4) similar to what was used in [Cha95]. 

The resistor R is a 1.2kΩ linear resistor which is available in the target process. This value was a 

compromise between noise and power consumption. Note that this value can introduce a 

mismatch in the value of gm1 compare to the value of Table 7.1. However, the first 

transconductor is outside the loop and hence this deviation from the theory only results in a 

gain error of the overall modulator. Transistors M1 and M2 are the current source of the first 

stage, and transistors M5 and M6 are the active load of the input stage. 

Vb
2

Vb
1

Vb
3

Vb
4

 

Figure 7.14. First transconductor gm1 simplified schematic of the quadrature TL-Σ∆M. 

Then, the current across transistors M5-M6 is copied in the second stage using 

transistors M13 and M14. This second stage is composed of wide swing PMOS and NMOS 

cascodes (M9-M10 and M11-M12 respectively) and a current source controlled by a CMFB 

circuit (M7-M8). In this way the output impedance of the first transconductor has been 

increased to meet the requirements specified in previous section and also the output stage of the 

transconductor allows more voltage swing than previous solutions implemented in this thesis. 
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Fig.7.14 also shows the connections with the CMFB and the biasing circuit (Bias). Table 7.2 

shows the sizes of the main CMOS transistors of the first transconductor. 

CMOS trts. W/L [µm] 

M1,M2 150/0.35 

M3,M4 150/0.35 

M5,M6 150/0.7 

M7,M8 480/0.35 

M9,M10,M11,M12 500/0.35 

M13,M14 280/0.7 

Table 7.2. CMOS transistors of transconductor gm1 of the quadrature TL-Σ∆M. 

CMFB circuit 

Since the circuit is differential, it requires a CMFB circuit to stabilize the output 

common mode voltage. The proposed continuous-time CMFB circuit [Luh00] is shown in 

Figure 7.15. It is composed of transistors M3-M9 and current sources M1-M2. Long channel 

(small aspect ratio) NMOS transistors are used for the input stage (M3-M6) to minimize the 

differential pair nonlinearity and to accommodate more input voltage swing. They also 

minimize the common mode error voltage (VERR) caused by the transistor mismatch among M3-

M6. The transistor sizes are listed in Table 7.3. 

 

Figure 7.15. Simplified schematic of gm1 CMFB circuit of the quadrature TL-Σ∆M. 

A high-impedance place, node x in Fig.7.15, introduce a low frequency pole and causes 

a stability problem. Frequency compensation is achieved by adding RC and CC. With CC shunted 

to the input and output of the CMFB circuit, an extra pole and zero are introduced to attenuate 

the high frequency gain of this stage. Therefore, the proposed CMFB circuit has a large low-

frequency gain to minimize VERR and a moderate high-frequency gain to keep the system stable. 
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CMOS trts. W/L [µm] 
M1,M2 40/1 

M3,M4,M5,M6 5/1 
M7,M9 20/0.35 

M8 40/0.35 

Table 7.3. CMOS transistors of the gm1 CMFB circuit of the quadrature TL-Σ∆M. 

7.2.2 Second transconductor (gm2) 

As we have discussed in the previous section the second transconductor should have a 

bandwidth of 1.5GHz and moderated non-linear distortion produced by this transconductor 

can be tolerated due to the fact that it is inside the loop. Figure 7.16 depicts the simplified 

schematic of the second transconductor. It is a two stage transconductor similar to the first 

transconductor. 

The first stage it is composed of CMOS transistors M1-M4 and bipolar transistors B5-

B6. It is based on source degeneration of the input differential pair transistors (PMOS M3-M4) 

similar to what was used in gm1. The resistor R is a 1.8kΩ linear resistor which is available in the 

target process. Note that this value can introduce a mismatch in the value of gm2 compare to the 

value of Table 7.1. However, the second transconductor can be used also to scale the modulator, 

as explained in previous section, and hence deviation from its nominal value can be tolerated 

and only results in a gain error of the overall modulator. Transistors M1 and M2 are the current 

source of the first stage, and transistors B5 and B6 are the active load of the input stage. 
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Figure 7.16. Simplified schematic of the second transconductor gm2 of the quadrature TL-Σ∆M. 
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Then, the current across transistors B5-B6 is copied in the second stage using bipolar 

transistors B13 and B14. In this way we can increase the bandwidth of the transconductor 

without expending more power than in gm1. To implement the cascode stage associated to B13 

and B14 we need to use bipolar transistors B11-B12. This bipolar cascode stage is faster than a 

pure NMOS cascode stage (as the one used in gm1), but it limits the linearity of the 

transconductor. However, as the second transconductor in inside the loop, we prefer a faster 

output cascode stage rather than a more linear output cascode stage. In top of these bipolar 

transistors we have implemented a PMOS cascode stage (M9-M10) and a current source (M7-

M8) that is controlled by the CMFB circuit. 

Fig.7.16 also shows the connections with the CMFB circuit and the biasing circuit 

(Bias). Table 7.4 shows the sizes of the main transistors of the second transconductor. 

CMOS trts. W/L [µm] 
M1,M2 150/0.35 
M3,M4 150/0.35 
B5,B6 Ratio=4 

M7,M8 384/0.35 
M9,M10 500/0.35 
B11,B12 Ratio=12 
B13,B14 Ratio=8 

Table 7.4. Transistors of transconductor gm2 of the quadrature TL-Σ∆M. 

CMFB circuit 

For the second transconductor CMFB circuit we have implemented the same schematic 

as in the first transconductor (see Fig.7.15). After Spectre simulations we concluded that the 

CMFB circuit designed for gm1 was good enough to meet the requirements of the CMFB circuit 

of gm2. Therefore no modifications were made in this circuit. 

7.2.3 Single bit Quantizer 

The 1-bit quantizer of the modulator is implemented as shown in Figure 7.17. It 

consists of a simple pre-amplifier to avoid kickback and a two stage regenerative latch similar to 

what was implemented in the quantizer of the bandpass modulator of this thesis (see chapter 6, 

section 6.3.3). The pre-amplifier was implemented using the same schematic as in the bandpass 

implementation of chapter 6 (see Fig.6.16) but changing its bandwidth. We increase the 

bandwidth of the pre-amplifier due to the specifications of the design. The Latch was also 
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implemented using the same schematic as in the bandpass design (see Fig.6.17). It consists in a 

two-stage regenerative latch similar to the one presented in [Gee99]. 

LATCH

CLK

D+
D-

u2+

u2-

Pre-amplifier Latch

 

Figure 7.17. 1-bit quantizer simplified schematic of the quadrature TL-Σ∆M. 

7.2.4 DACs 

Next we will describe the 1-bit DAC implemented for this design. Figure 7.18 shows a 

simplified schematic of the 1-bit DAC scheme used. It is composed of one synchronization latch 

(Gigalatch) that drives the switches of a 1-bit NRZ current cell [Van01]. We used the same 

architecture as in chapter 6 for the bandpass design (see section 6.3.4). Also, the same 

considerations explained in section 6.3.4 have been taken into account in the design of the NRZ 

DAC of this design. 

The 1-bit NRZ current cell of Fig.7.18 is similar to what was designed in [Van01], but 

with some changes. In this schematic, transistor M1 is the NMOS current source of the DAC, 

and transistors M7 and M8 are the PMOS current source of the DAC. In this design we have 

implemented also wide-swing current mirrors [Joh97] by placing NMOS and PMOS cascodes in 

each current source (transistor M2 for the NMOS cascode and transistors M5 and M6 for the 

PMOS cascode). Transistors M3 and M4 are the switches driven by the Gigalatch. 

The full-scale current of each DAC is calculated from Table 7.1. In this design this value 

is composed by the difference between the NMOS and the PMOS current sources.  

One restriction in the design of the DAC is its output impedance at nodes x and y of 

Fig.7.18. The output impedance of the DAC should be large enough to keep the Q factor of the 

associated resonator in the desire value through the frequency of interest (see section 4.5). This 

high-frequency output impedance design specification is one of the critical elements in 

achieving the improved high-frequency Q factor behavior in the resonators. For this reason a 

NMOS and PMOS wide-swing current mirrors have been designed to implement the NMOS 

and PMOS current sources of the DAC. 
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Figure 7.18. NRZ 1-bit DAC simplified schematic of the quadrature TL-Σ∆M. 

Table 7.5 shows the sizes of the CMOS transistors and the current sources of the NRZ 

1-bit DAC of this design. 

DAC 
CMOS trts. W/L [µm] 

M1,M2 300/0.7 
M3,M4 20/0.35 

M5,M6,M7,M8 400/0.7 
Current sources µA  

INMOS 100 

IPMOS 50 

Table 7.5. CMOS transistors and current sources of the NRZ DAC of the quadrature TL-Σ∆M. 

7.2.5 Clock generator and Digital interface 

The internal clock signal is generated using an input clock buffer same as in the design 

of the bandpass modulator of chapter 6 (see Fig.6.19 and Fig.6.20). It is composed of a cascade of 

low noise amplifiers (LNA) and a differential to single-ended circuit that produce a CMOS clock 

signal from a low level external sinusoidal source. This CMOS signal drives the clock generator 

of Fig.7.13 which produces the entire necessaries clock signals to drive the two quantizers and 

DACs in all modes. The rest of the clock signals are also produced by this block.  
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7.2.6 Output interface 

To measure the performance of the chip we have implemented two circuits to capture 

the output data of the chip. 

The first one is the output register of Fig.7.13 that groups 8 consecutive output bits in a 

single 8-bit word to reduce the clock rate of the output digital pads. We have implemented two 

different dedicated output registers, each one for the I and Q path respectively. This block has 

been designed using the same architecture as in section 5.3.5. 

The second one is a dedicated single bit DAC (AUXDAC of Fig.7.13) that is used to 

represent in real time the spectrum of the output data in an analog spectrum analyzer to 

perform online trimmings. It must be noted that this auxiliary DAC reproduces the same data 

as the DAC used in the feedback path and will differ from the digital capture. The architecture 

of this auxiliary DAC is the same as we have used for the feedback path DAC. 

7.2.7 Power estimation 

Once all the main blocks of the modulator are designed, we can estimate the power 

consumption of the chip. For this purpose we have run a transient simulation in Spectre, with a 

full spice transistor-level model of the modulator. For this calculation we have taken into 

account only the main blocks of one path of the receiver:  

- gm1, gm2,  1-bit quantizer, 1-bit DAC. 

Table 7.6 shows the rms value of an equivalent current source, connected to the power 

supply of each block of the modulator. 

Block Irms [mA] Pwr [mW] 
gm1 3.9 12.87 
gm2 3.1 10.23 

1-bit Quantizer 1 3.3 
1-bit DAC 0.3 1 

Total 8.3 27.4 

Table 7.6. Power estimation of the quadrature TL-Σ∆M. 

7.2.8 Transistor-level simulation 

Finally, we have made a full SPICE transistor-level simulation of the chip in Spectre. 

We have used a two tone test and mode 1 in lowpass configuration to evaluate the design. For 
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this simulation we used two input tones around fs, an OSR=32 and a sampling frequency of 

fs=75MHz that leads to a clock input frequency of 300MHz. This value for the input clock was 

set by simulations of the digital interface after layout. The post-layout simulations showed that 

the performance of the digital interface had a limit of performance at 300MHz. 

In this case, the characteristic impedance of the transmission line was set to 50Ω and 

the Q0 factor of the transmission line was simulated by a parallel resistor of 1Ω at the far end of 

the transmission line to introduce loss in the reflection. Also, circuit simulations have shown 

that an estimated parasitic capacitor of the output pad is around 1.8pF. This parasitic capacity 

has been increased intentionally by a trimming capacitor Cp in parallel with the transmission 

lines to allow trimming of the transmission line mismatches. We have placed a parallel 

capacitor Cp=2.5pF. 

Figure 7.19 shows the FFT of the modulator output computed with a transistor level 

simulation of 8K points. Simulation of Fig.7.19 shows that the IRR and the IMD are within the 

simulated performance of section 7.1, but the inband noise is higher than in the nominal 

simulations of section 7.1. This fact and some other simulations leaded us to the conclusion that 

trying to optimize the zeros of the NTF was not going to be possible in this design. For this 

reason we finally decided to remove transconductor gm12 from the design, reducing the 

complexity and the power consumption. 
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Figure 7.19. FFT (8k points) of a transistor level simulation of the quadrature TL-Σ∆M in mode 1. 
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7.3 Implementation and measurements 

7.3.1 Layout considerations 

A photograph of the prototype chip is shown in Figure 7.20. The layout of each block 

and the final floor planning has been completed taking into consideration the pad routing to 

minimize the parasitic capacity at the transmission line connections. Also we have taken into 

account the same precautions as in section 5.4.1. The chip measures 6 mm2 due to the pad ring 

requirements.  
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Figure 7.20. Chip microphotograph of the quadrature TL-Σ∆M. 
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7.3.2 Chip measurements 

The test setup consisted of a PCB with current references, single ended to differential 

transformers to couple the input signal sources (input sine wave and input clock sine wave), an 

interface to a spectrum analyzer to represent the output of the auxiliary DAC and an interface 

to a  logic analyzer connected to the digital test interface of the chip. We use the same scheme as 

in chapter 6, Fig.6.23, where we show a simplified schematic of the PCB used to test the chip.  

Also, to test the chip, six 50Ohm off-chip coaxial resonators were used as transmission 

lines. Detuning of the resonators was compensated using external trimming capacitors, as 

explained in previous sections. 

In order to capture the data and make all the measurements that we will propose in 

this section, we have used the same test bench as in section 5.4.2 that is represented in Fig.5.22. 

Nominal measurements 

First, we measured the resonance frequencies of the coaxial resonators. We founded 

out that the two first resonance frequencies were around DC and 50MHz for the lowpass 

configuration (open transmission line) and 25MHz and 75MHz for the bandpass configuration 

(shorted transmission line). Therefore to validate the design, we decided to use the bandpass 

configuration because then we could apply a higher IF signal (i.e. @75MHz) than in the lowpass 

configuration (i.e. @50MHz). In addition, we used the multiplexed mode to test the one path 

architecture to validate this new idea. In order to use the one-path bandpass configuration the 

sampling frequency had to be at fs=50MHz, leading to a clock frequency of 100MHz. In this way 

the NTF had the first two notch at fs/2 and 3fs/2 respectively. 

As a summary of the mode used to test the chip we show the next values: 

• Clock frequency: 100MHz. 

• Vdd: 3.3V. 

• fs = 50MHz. 

• Mode 4 = One-path Band-Pass @ fs/2. 

• Signal BW = 1MHz (OSR=50). 
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The first measurement that we realized was to trim the modulator to obtain the desire 

NTF. For this purpose we used an input tone of -9dBFs at 24.9MHz. Figure 7.21 shows a 

spectrum analyzer capture taken at the AUXDAC output, showing the expected shape for the 

modulator output. 

 

Figure 7.21. Output spectrum of the quadrature TL-Σ∆M (mode 4, bandpass configuration). 
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Figure 7.22. FFT (8k points) of the quadrature TL-Σ∆M (mode 4, bandpass configuration). 

Figure 7.22 shows an 8K point FFT taken from the digital interface of the same data as 

in Fig.7.21. Figure 7.23 shows the dynamic range (SNR (solid line) and SNDR (dashed line)) of 

the modulator. From this plot we can estimate a dynamic range of 10 bits with a signal 

BW=1MHz, using an OSR=50. 

Figure 7.24 shows the inband spectrum of the same data as in Fig.7.22. In this 

measurement we observe that the third harmonic HD3 is in the same range as the image, and 

that the clock feedthrough is 10 dB below. Also, we observe that the inband noise is higher that 

in the transistor level simulation of section 7.2.8. This effect is mainly due to two facts: this is a 

bandpass configuration and the Q factor of the resonators is lower than expected. 



                                     Chapter 7. Subsampling Quadrature Receiver using a TL-Σ∆M in 0.35µm BiCMOS  
 

-181- 

-60 -50 -40 -30 -20 -10 0

0

10

20

30

40

50

60

Input Amplitude (dBFs)

S
N

R
 a

nd
 S

N
D

R
 (d

B
)

DR@24.9MHz. BW=1MHz. fs=50MHz.

SNR

SNDR

 

Figure 7.23. Dynamic range of the quadrature TL-Σ∆M (mode 4, bandpass configuration). 
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Figure 7.24. Inband spectrum of the quadrature TL-Σ∆M (mode 4, bandpass configuration). 
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Figure 7.25. Inband spectrum of the quadrature TL-Σ∆M when a two tone test is applied. 
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To measure the image rejection of the modulator a two tone test has been performance. 

Figure 7.25 shows an inband spectrum of the modulator, where we observe that the IMD=48dBc 

when a two tones are applied to the modulator. 

If we calculate the IRR as a function of the frequency input tone, we obtain the 

measurement of Figure 7.26 (solid line). In Fig.7.26 we also represented the ideal performance 

(dashed line) [Val01]. As we can see the IRR of our modulator is close to the ideal IRR 

performance. 
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Figure 7.26. IRR of the quadrature TL-Σ∆M (___) compared with the ideal case from [Val01] (----). 
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Figure 7.27. FFT of the subsampling quadrature TL-Σ∆M (mode 4, bandpass configuration). 
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The second measurement that we realized was to prove its capability to subsample. For 

this purpose we used an input tone of -9dBFs at 75.096MHz. Figure 7.27 shows an 8K point FFT 

taken from the digital interface. 

Figure 7.28 shows the dynamic range (SNR (solid line) and SNDR (dashed line)) of the 

modulator in the subsampling mode. From this plot we can estimate a dynamic range of 9.5 bits 

with an ABW=1MHz, using an OSR=50. 
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Figure 7.28. Dynamic range of the subsampling quadrature TL-Σ∆M (mode 4, bandpass configuration). 

Figure 7.29 shows the inband spectrum of the same data as in Fig.7.27. In this 

measurement we observe that the third harmonic HD3 is in the same range as the image, and 

that the clock feedthrough is 10 dB below. 
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Figure 7.29. Inband spectrum of the subsampling quadrature TL-Σ∆M (mode 4, bandpass configuration). 
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Summarize results 

At 3.3 Volt supply voltage, the power consumption of the chip was measured as 28.05 

mW, including: gm1, gm2, DAC and the multiplexed quantizer. Table 7.7 shows a summary of the 

performance of the quadrature transmission line Σ∆M.  

Type TL-CT 
Order 2 
# Bits 1 
Bandwidth (MHz) 1 
fs (MHz) 50 
fIF (MHz) 25/75 
DR (dB) 60 
IRR (dB) >40 
IMD (dBc) 48 
Power (mW) 28.05 
Supply (V) 3.3 

Technology 0.35 µm 
BiCMOS 

Table 7.7. Performance of the subsampling quadrature bandpass TL-Σ∆M. 

If we compare these experimental results with the state-of-the-art reported in chapter 1 

(see Table 1.1 and 1.2) we can conclude that, the main advantage of the subsampling bandpass 

transmission line Σ∆M is the possibility of digitize an IF signal at 75MHz. This value is higher 

than any of the IF values of the Σ∆Ms reported in Table 1.1 and 1.2. Also, the one path structure 

that we have tested in this chapter shows an IRR performance close to the theoretical value 

while the modulator is free from I/Q mismatches. Another advantage of this approach is the 

simplicity of the circuits of the modulator compared with other solutions presented in the 

literature. 

However, this modulator still suffers from the parasitics at the pad connections 

between the transmission lines and the chip. These parasitics degrade the overall performance 

of the modulator reducing its resolution.  
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7.4 Conclusions 

In this chapter, a new subsampling quadrature Σ∆ modulator and its use in a radio 

receiver has been proposed. The presented receiver does not require quadrature mixers nor 

high precision sample-and-holds at the input. Furthermore, it has been shown that such a 

receiver has the potential to be immune against circuit imperfections like clock jitter in the DAC 

and loop delay. A first architecture is based on a low-pass Σ∆ modulator with separate I and Q 

paths that subsamples a modulated carrier located around the sampling frequency. 

Also in this chapter we show simulations that include circuit non-idealities and prove 

the feasibility of the modulator even for the high IF values used in base station UMTS receivers. 

A second architecture turns out to be insensitive to analog path mismatch due to the 

sharing of the loop filter for both the I and Q paths. In this case, the bandwidth requirements 

are more stringent than in the two paths topology but the design is free of I /Q path mismatch. 

The theory is illustrated with the design and implementation of an experimental 

modulator in a 3.3V 0.35µm BiCMOS technology. To summarize the results, the ADC operates 

at a fs=50 MHz, consumes 28mW and is able to convert I/Q narrow-band complex signals using 

only one path, centered both at 25 MHz and 75 MHz respectively. The dynamic range of the 

modulator is 10 bits with an analog bandwidth of ABW=1MHz. Also a two tone test is realized 

as long with an IRR test, showing an IMD close to 50 dBc, and an IRR behavior close to the 

theoretical one. The main advantage of this modulator compared with state-of-the-art 

quadrature CT-Σ∆Ms is the possibility of digitize an IF signal at 75MHz using a one-path 

structure that is free from I/Q mismatches. 
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CHAPTER 8 
Conclusions and future work 

8.1 Conclusions 

This work introduces a new sigma-delta architecture that uses a non conventional loop 

filter based on transmission lines. As such, the topic is innovative, promising and the 

mathematical modeling of the problem has led to surprising results. The experimental work 

carried out has proven the possibilities of these modulators, which expand what can be 

achieved by either CT and DT designs. As the main advantages of using a transmission line 

ΣΔM instead of a conventional CT-ΣΔM we may highlight the following: 

• Loop delay tolerance. 

• NRZ DAC pulse distortion. Using a continuous time delay based loop filter alleviates 

the problems caused by time-varying changes in the area of the feedback DAC 

pulses. 

• Clock jitter insensitivity in the DAC. 

• Design parameters independence. Due to the properties of transmission line 

modulators, the design parameters are independent of the sampling clock, only the 

length of the transmission lines determines the clock frequency and signal band 

location. 

• High Q factor of transmission lines. 

• Subsampling of the input. 

On the other hand, a ΣΔM implemented with transmission lines has several circuit 

limitations that influence the design and performance of the modulator. These limitations are: 

• Effect of clock jitter in the quantizer. 

• Mismatch among the resonators of the loop filter. 

• Parasitic capacitance and inductance on the resonator connections. 

• Finite Q factor of resonators and transconductor load. 
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• Non-linear distortion due to: 

o Dynamic range of the State Variables. 

o Transconductor saturation. 

The main restriction that limits the modulators designed in the thesis is the need of off-

chip passive elements. The author believes that this is not a limitation of the application of this 

architecture and only reveals the need of more research in the technology oriented aspects, to 

accomplish a fully integrated solution. The achievement of such integrated solution could 

represent a breakthrough in communications receiver technology, as the results of the thesis 

predict. 

The main contributions of the thesis are: 

1. The mathematical modeling of delay based CT-ΣΔMs. Such modeling has never 

been attempted in the time domain. Only partial results presented under the 

focus of RF field and based on frequency domain approximations have been 

disclosed previously [Kap05]. 

2. The modeling of the practical problems inherent to a microelectronics 

implementation of the modulators. These problems include the modeling of 

parasitic and mismatch effects, a complete analysis of clock jitter, finite 

bandwidth effects and subsampling properties. The experimental work has 

been the driving force to point out the relevant issues which is missing in 

previously reported works [Kap05]. 

3. The discovery of a new quadrature subsampling modulator architecture which 

can be calified as minimalist circuit. This architecture multiplexes in time 

domain the I and Q components of a bandpass subsampled signal through the 

same physical circuit, thus achieving a minimal transistor count and inherent 

mismatch insensitivity. 

A summary of the contributions as are described in the document follows:  

• The theoretical analysis of the modulator has been explored in depth in 

chapter 2, 3 and 4. 

Three experimental circuits has been designed and implemented to support the 

analysis. These circuits have been presented in chapters 5, 6 and 7. 
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• In chapter 5 we have demonstrated the feasibility of sigma-delta 

modulation with transmission lines as resonators in its loop filter. The 

prototype second-order modulator was clocked at 53.7 MHz and 

achieves 63dB peak SNDR at an oversampling ratio of 128. When an 

excessive clock jitter of 1% of the clock period is applied, the modulator 

SNDR is degraded by 5dB only. This is 15dB better than a conventional 

CT-ΣΔM with capacitive integrators. 

• Chapter 6 discusses the theory behind the design of a band-pass ΣΔM 

using transmission lines as delay elements. The theory is illustrated with 

the design and implementation of an experimental modulator using a 

3.3V 0.35μm BiCMOS technology. As we have seen in this chapter, 

modulators implemented with this architecture have the drawbacks of 

requiring a special circuit to limit the distortion, the lack of inherent 

antialiasing filtering in the STF and the mismatch of the resonators. The 

mismatch would require not only off-chip tuning capacitors but on-chip 

tuning capacitors as well. Despite of this, building a bandpass 

transmission line ΣΔM with this approach benefits from the high Q0 

factor of transmission lines, allows down conversion by subsampling of 

the input, behaves close to a discrete time modulator at high clock jitter 

levels and tolerates loop delay. With a careful design, this modulator 

potentially allows for efficient sampling of narrow-band signals at very 

high frequencies with simple circuitry that does not require either a 

mixer or high-precision sampler. To summarize the results, the ADC 

operates at a fs=184 MHz, consumes 62mW and is able to convert 

narrow-band signals centered both at 46 MHz and 138 MHz 

respectively, with a maximum SNDR of 58dB assuming an analog 

bandwidth of ABW=360kHz. 

• In chapter 7, a new subsampling quadrature ΣΔΜ and its use in a radio 

receiver has been proposed. The presented receiver does not require 

quadrature mixers nor high precision sample-and-holds at the input. 

Furthermore, it has been shown that such a receiver has the potential to 

be immune against circuit imperfections like clock jitter in the DAC and 
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loop delay. A first architecture is based on a low-pass ΣΔ modulator 

with separate I and Q paths that subsamples a modulated carrier located 

around the sampling frequency. Chapter 7 shows simulations that 

include circuit nonidealities and proves the feasibility of the modulator 

even for the high IF values used in base station UMTS receivers. A 

second architecture turns out to be insensitive to analog path mismatch 

due to the sharing of the loop filter for both the I and Q paths. In this 

case, the bandwidth requirements are more stringent than in the two 

paths topology but the design is free of I /Q path mismatch. The theory 

is illustrated with the design and implementation of an experimental 

modulator using a 3.3V 0.35μm BiCMOS technology. To summarize the 

results, the ADC operates at a fs=50 MHz, consumes 28mW and is able to 

convert I/Q narrow-band complex signals using only one path, centered 

both at 25 MHz and 75 MHz respectively. The dynamic range of the 

modulator is 10 bits with an analog bandwidth of ABW=1MHz. Also a 

two tone test is realized as long with an IRR test, showing an IMD close 

to 50 dBc, and an IRR behavior close to the theoretical value. The main 

advantage of this modulator compared with state-of-the-art quadrature 

CT-ΣΔMs is the possibility of digitize an IF signal at 75MHz using a one-

path structure that is free from I/Q mismatches. 
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8.2 Future work 

The open issues left after the research of this thesis fall within three categories. 

• Technology. The possibility of integrating the transmission lines on-chip would 

reduce the power consumption by increasing the characteristic impedance of 

the transmission line and would minimize the parasitic problems. This problem 

possesses the following trade-off: or the operating frequency is increased to the 

gigahertz range or the size of the transmission lines will occupy most of the 

space of the chip. The author envisions two solutions: use of RF-MEMS 

resonators based on mechanical propagation, or use of a hybrid structure that 

mixes lumped and distributed components to approximate the behavior of an 

ideal delay.  

• Circuit issues. The main problem that limits the practical results is the 

distortion caused by the dynamic range of the state variables. This problem has 

its foundations in the system level operation of the converter. It has been shown 

that a hard limitation of the dynamic range is not a problem by itself, as it does 

not generate distortion. However recovery from saturation in the active 

components is the real cause of distortion.  New circuit techniques need to be 

developed to overcome the problem of dynamic range. One possibility is to 

modulate the gain of the transconductors with the sampling clock, constraining 

the peak values of the state variables far from the sampling points. Another 

possible solution is to use an optimized output stage in the transconductors 

which does not suffer from overload recovery problems.  

• System level improvements. There are a number of different architecture 

modifications that may lead to new applications. One of the most interesting is 

the subsampling operation, which can be improved by mixing lumped and 

distributed loop filters [Her08]. Another unexplored choice is the 

implementation of multiple resonators which do not have integer delay ratios. 

This would result in a NTF function with multiple zeros that accumulate in the 

band of interest.  
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